xref: /linux/drivers/tee/optee/smc_abi.c (revision e70140ba0d2b1a30467d4af6bcfe761327b9ec95)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015-2021, 2023 Linaro Limited
4  * Copyright (c) 2016, EPAM Systems
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/arm-smccc.h>
10 #include <linux/cpuhotplug.h>
11 #include <linux/errno.h>
12 #include <linux/firmware.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/irqdomain.h>
16 #include <linux/kernel.h>
17 #include <linux/mm.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/rpmb.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/tee_core.h>
28 #include <linux/types.h>
29 #include <linux/workqueue.h>
30 #include "optee_private.h"
31 #include "optee_smc.h"
32 #include "optee_rpc_cmd.h"
33 #include <linux/kmemleak.h>
34 #define CREATE_TRACE_POINTS
35 #include "optee_trace.h"
36 
37 /*
38  * This file implement the SMC ABI used when communicating with secure world
39  * OP-TEE OS via raw SMCs.
40  * This file is divided into the following sections:
41  * 1. Convert between struct tee_param and struct optee_msg_param
42  * 2. Low level support functions to register shared memory in secure world
43  * 3. Dynamic shared memory pool based on alloc_pages()
44  * 4. Do a normal scheduled call into secure world
45  * 5. Asynchronous notification
46  * 6. Driver initialization.
47  */
48 
49 /*
50  * A typical OP-TEE private shm allocation is 224 bytes (argument struct
51  * with 6 parameters, needed for open session). So with an alignment of 512
52  * we'll waste a bit more than 50%. However, it's only expected that we'll
53  * have a handful of these structs allocated at a time. Most memory will
54  * be allocated aligned to the page size, So all in all this should scale
55  * up and down quite well.
56  */
57 #define OPTEE_MIN_STATIC_POOL_ALIGN    9 /* 512 bytes aligned */
58 
59 /* SMC ABI considers at most a single TEE firmware */
60 static unsigned int pcpu_irq_num;
61 
optee_cpuhp_enable_pcpu_irq(unsigned int cpu)62 static int optee_cpuhp_enable_pcpu_irq(unsigned int cpu)
63 {
64 	enable_percpu_irq(pcpu_irq_num, IRQ_TYPE_NONE);
65 
66 	return 0;
67 }
68 
optee_cpuhp_disable_pcpu_irq(unsigned int cpu)69 static int optee_cpuhp_disable_pcpu_irq(unsigned int cpu)
70 {
71 	disable_percpu_irq(pcpu_irq_num);
72 
73 	return 0;
74 }
75 
76 /*
77  * 1. Convert between struct tee_param and struct optee_msg_param
78  *
79  * optee_from_msg_param() and optee_to_msg_param() are the main
80  * functions.
81  */
82 
from_msg_param_tmp_mem(struct tee_param * p,u32 attr,const struct optee_msg_param * mp)83 static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr,
84 				  const struct optee_msg_param *mp)
85 {
86 	struct tee_shm *shm;
87 	phys_addr_t pa;
88 	int rc;
89 
90 	p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
91 		  attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT;
92 	p->u.memref.size = mp->u.tmem.size;
93 	shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref;
94 	if (!shm) {
95 		p->u.memref.shm_offs = 0;
96 		p->u.memref.shm = NULL;
97 		return 0;
98 	}
99 
100 	rc = tee_shm_get_pa(shm, 0, &pa);
101 	if (rc)
102 		return rc;
103 
104 	p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa;
105 	p->u.memref.shm = shm;
106 
107 	return 0;
108 }
109 
from_msg_param_reg_mem(struct tee_param * p,u32 attr,const struct optee_msg_param * mp)110 static void from_msg_param_reg_mem(struct tee_param *p, u32 attr,
111 				   const struct optee_msg_param *mp)
112 {
113 	struct tee_shm *shm;
114 
115 	p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
116 		  attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
117 	p->u.memref.size = mp->u.rmem.size;
118 	shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref;
119 
120 	if (shm) {
121 		p->u.memref.shm_offs = mp->u.rmem.offs;
122 		p->u.memref.shm = shm;
123 	} else {
124 		p->u.memref.shm_offs = 0;
125 		p->u.memref.shm = NULL;
126 	}
127 }
128 
129 /**
130  * optee_from_msg_param() - convert from OPTEE_MSG parameters to
131  *			    struct tee_param
132  * @optee:	main service struct
133  * @params:	subsystem internal parameter representation
134  * @num_params:	number of elements in the parameter arrays
135  * @msg_params:	OPTEE_MSG parameters
136  * Returns 0 on success or <0 on failure
137  */
optee_from_msg_param(struct optee * optee,struct tee_param * params,size_t num_params,const struct optee_msg_param * msg_params)138 static int optee_from_msg_param(struct optee *optee, struct tee_param *params,
139 				size_t num_params,
140 				const struct optee_msg_param *msg_params)
141 {
142 	int rc;
143 	size_t n;
144 
145 	for (n = 0; n < num_params; n++) {
146 		struct tee_param *p = params + n;
147 		const struct optee_msg_param *mp = msg_params + n;
148 		u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK;
149 
150 		switch (attr) {
151 		case OPTEE_MSG_ATTR_TYPE_NONE:
152 			p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
153 			memset(&p->u, 0, sizeof(p->u));
154 			break;
155 		case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT:
156 		case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
157 		case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
158 			optee_from_msg_param_value(p, attr, mp);
159 			break;
160 		case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT:
161 		case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
162 		case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
163 			rc = from_msg_param_tmp_mem(p, attr, mp);
164 			if (rc)
165 				return rc;
166 			break;
167 		case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT:
168 		case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
169 		case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
170 			from_msg_param_reg_mem(p, attr, mp);
171 			break;
172 
173 		default:
174 			return -EINVAL;
175 		}
176 	}
177 	return 0;
178 }
179 
to_msg_param_tmp_mem(struct optee_msg_param * mp,const struct tee_param * p)180 static int to_msg_param_tmp_mem(struct optee_msg_param *mp,
181 				const struct tee_param *p)
182 {
183 	int rc;
184 	phys_addr_t pa;
185 
186 	mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr -
187 		   TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
188 
189 	mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm;
190 	mp->u.tmem.size = p->u.memref.size;
191 
192 	if (!p->u.memref.shm) {
193 		mp->u.tmem.buf_ptr = 0;
194 		return 0;
195 	}
196 
197 	rc = tee_shm_get_pa(p->u.memref.shm, p->u.memref.shm_offs, &pa);
198 	if (rc)
199 		return rc;
200 
201 	mp->u.tmem.buf_ptr = pa;
202 	mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED <<
203 		    OPTEE_MSG_ATTR_CACHE_SHIFT;
204 
205 	return 0;
206 }
207 
to_msg_param_reg_mem(struct optee_msg_param * mp,const struct tee_param * p)208 static int to_msg_param_reg_mem(struct optee_msg_param *mp,
209 				const struct tee_param *p)
210 {
211 	mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr -
212 		   TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
213 
214 	mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm;
215 	mp->u.rmem.size = p->u.memref.size;
216 	mp->u.rmem.offs = p->u.memref.shm_offs;
217 	return 0;
218 }
219 
220 /**
221  * optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters
222  * @optee:	main service struct
223  * @msg_params:	OPTEE_MSG parameters
224  * @num_params:	number of elements in the parameter arrays
225  * @params:	subsystem itnernal parameter representation
226  * Returns 0 on success or <0 on failure
227  */
optee_to_msg_param(struct optee * optee,struct optee_msg_param * msg_params,size_t num_params,const struct tee_param * params)228 static int optee_to_msg_param(struct optee *optee,
229 			      struct optee_msg_param *msg_params,
230 			      size_t num_params, const struct tee_param *params)
231 {
232 	int rc;
233 	size_t n;
234 
235 	for (n = 0; n < num_params; n++) {
236 		const struct tee_param *p = params + n;
237 		struct optee_msg_param *mp = msg_params + n;
238 
239 		switch (p->attr) {
240 		case TEE_IOCTL_PARAM_ATTR_TYPE_NONE:
241 			mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
242 			memset(&mp->u, 0, sizeof(mp->u));
243 			break;
244 		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT:
245 		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT:
246 		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT:
247 			optee_to_msg_param_value(mp, p);
248 			break;
249 		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT:
250 		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
251 		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT:
252 			if (tee_shm_is_dynamic(p->u.memref.shm))
253 				rc = to_msg_param_reg_mem(mp, p);
254 			else
255 				rc = to_msg_param_tmp_mem(mp, p);
256 			if (rc)
257 				return rc;
258 			break;
259 		default:
260 			return -EINVAL;
261 		}
262 	}
263 	return 0;
264 }
265 
266 /*
267  * 2. Low level support functions to register shared memory in secure world
268  *
269  * Functions to enable/disable shared memory caching in secure world, that
270  * is, lazy freeing of previously allocated shared memory. Freeing is
271  * performed when a request has been compled.
272  *
273  * Functions to register and unregister shared memory both for normal
274  * clients and for tee-supplicant.
275  */
276 
277 /**
278  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
279  *			      in OP-TEE
280  * @optee:	main service struct
281  */
optee_enable_shm_cache(struct optee * optee)282 static void optee_enable_shm_cache(struct optee *optee)
283 {
284 	struct optee_call_waiter w;
285 
286 	/* We need to retry until secure world isn't busy. */
287 	optee_cq_wait_init(&optee->call_queue, &w, false);
288 	while (true) {
289 		struct arm_smccc_res res;
290 
291 		optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE,
292 				     0, 0, 0, 0, 0, 0, 0, &res);
293 		if (res.a0 == OPTEE_SMC_RETURN_OK)
294 			break;
295 		optee_cq_wait_for_completion(&optee->call_queue, &w);
296 	}
297 	optee_cq_wait_final(&optee->call_queue, &w);
298 }
299 
300 /**
301  * __optee_disable_shm_cache() - Disables caching of some shared memory
302  *				 allocation in OP-TEE
303  * @optee:	main service struct
304  * @is_mapped:	true if the cached shared memory addresses were mapped by this
305  *		kernel, are safe to dereference, and should be freed
306  */
__optee_disable_shm_cache(struct optee * optee,bool is_mapped)307 static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped)
308 {
309 	struct optee_call_waiter w;
310 
311 	/* We need to retry until secure world isn't busy. */
312 	optee_cq_wait_init(&optee->call_queue, &w, false);
313 	while (true) {
314 		union {
315 			struct arm_smccc_res smccc;
316 			struct optee_smc_disable_shm_cache_result result;
317 		} res;
318 
319 		optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE,
320 				     0, 0, 0, 0, 0, 0, 0, &res.smccc);
321 		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
322 			break; /* All shm's freed */
323 		if (res.result.status == OPTEE_SMC_RETURN_OK) {
324 			struct tee_shm *shm;
325 
326 			/*
327 			 * Shared memory references that were not mapped by
328 			 * this kernel must be ignored to prevent a crash.
329 			 */
330 			if (!is_mapped)
331 				continue;
332 
333 			shm = reg_pair_to_ptr(res.result.shm_upper32,
334 					      res.result.shm_lower32);
335 			tee_shm_free(shm);
336 		} else {
337 			optee_cq_wait_for_completion(&optee->call_queue, &w);
338 		}
339 	}
340 	optee_cq_wait_final(&optee->call_queue, &w);
341 }
342 
343 /**
344  * optee_disable_shm_cache() - Disables caching of mapped shared memory
345  *			       allocations in OP-TEE
346  * @optee:	main service struct
347  */
optee_disable_shm_cache(struct optee * optee)348 static void optee_disable_shm_cache(struct optee *optee)
349 {
350 	return __optee_disable_shm_cache(optee, true);
351 }
352 
353 /**
354  * optee_disable_unmapped_shm_cache() - Disables caching of shared memory
355  *					allocations in OP-TEE which are not
356  *					currently mapped
357  * @optee:	main service struct
358  */
optee_disable_unmapped_shm_cache(struct optee * optee)359 static void optee_disable_unmapped_shm_cache(struct optee *optee)
360 {
361 	return __optee_disable_shm_cache(optee, false);
362 }
363 
364 #define PAGELIST_ENTRIES_PER_PAGE				\
365 	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
366 
367 /*
368  * The final entry in each pagelist page is a pointer to the next
369  * pagelist page.
370  */
get_pages_list_size(size_t num_entries)371 static size_t get_pages_list_size(size_t num_entries)
372 {
373 	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
374 
375 	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
376 }
377 
optee_allocate_pages_list(size_t num_entries)378 static u64 *optee_allocate_pages_list(size_t num_entries)
379 {
380 	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
381 }
382 
optee_free_pages_list(void * list,size_t num_entries)383 static void optee_free_pages_list(void *list, size_t num_entries)
384 {
385 	free_pages_exact(list, get_pages_list_size(num_entries));
386 }
387 
388 /**
389  * optee_fill_pages_list() - write list of user pages to given shared
390  * buffer.
391  *
392  * @dst: page-aligned buffer where list of pages will be stored
393  * @pages: array of pages that represents shared buffer
394  * @num_pages: number of entries in @pages
395  * @page_offset: offset of user buffer from page start
396  *
397  * @dst should be big enough to hold list of user page addresses and
398  *	links to the next pages of buffer
399  */
optee_fill_pages_list(u64 * dst,struct page ** pages,int num_pages,size_t page_offset)400 static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
401 				  size_t page_offset)
402 {
403 	int n = 0;
404 	phys_addr_t optee_page;
405 	/*
406 	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
407 	 * for details.
408 	 */
409 	struct {
410 		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
411 		u64 next_page_data;
412 	} *pages_data;
413 
414 	/*
415 	 * Currently OP-TEE uses 4k page size and it does not looks
416 	 * like this will change in the future.  On other hand, there are
417 	 * no know ARM architectures with page size < 4k.
418 	 * Thus the next built assert looks redundant. But the following
419 	 * code heavily relies on this assumption, so it is better be
420 	 * safe than sorry.
421 	 */
422 	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
423 
424 	pages_data = (void *)dst;
425 	/*
426 	 * If linux page is bigger than 4k, and user buffer offset is
427 	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
428 	 * because they bear no value data for OP-TEE.
429 	 */
430 	optee_page = page_to_phys(*pages) +
431 		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
432 
433 	while (true) {
434 		pages_data->pages_list[n++] = optee_page;
435 
436 		if (n == PAGELIST_ENTRIES_PER_PAGE) {
437 			pages_data->next_page_data =
438 				virt_to_phys(pages_data + 1);
439 			pages_data++;
440 			n = 0;
441 		}
442 
443 		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
444 		if (!(optee_page & ~PAGE_MASK)) {
445 			if (!--num_pages)
446 				break;
447 			pages++;
448 			optee_page = page_to_phys(*pages);
449 		}
450 	}
451 }
452 
optee_shm_register(struct tee_context * ctx,struct tee_shm * shm,struct page ** pages,size_t num_pages,unsigned long start)453 static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
454 			      struct page **pages, size_t num_pages,
455 			      unsigned long start)
456 {
457 	struct optee *optee = tee_get_drvdata(ctx->teedev);
458 	struct optee_msg_arg *msg_arg;
459 	struct tee_shm *shm_arg;
460 	u64 *pages_list;
461 	size_t sz;
462 	int rc;
463 
464 	if (!num_pages)
465 		return -EINVAL;
466 
467 	rc = optee_check_mem_type(start, num_pages);
468 	if (rc)
469 		return rc;
470 
471 	pages_list = optee_allocate_pages_list(num_pages);
472 	if (!pages_list)
473 		return -ENOMEM;
474 
475 	/*
476 	 * We're about to register shared memory we can't register shared
477 	 * memory for this request or there's a catch-22.
478 	 *
479 	 * So in this we'll have to do the good old temporary private
480 	 * allocation instead of using optee_get_msg_arg().
481 	 */
482 	sz = optee_msg_arg_size(optee->rpc_param_count);
483 	shm_arg = tee_shm_alloc_priv_buf(ctx, sz);
484 	if (IS_ERR(shm_arg)) {
485 		rc = PTR_ERR(shm_arg);
486 		goto out;
487 	}
488 	msg_arg = tee_shm_get_va(shm_arg, 0);
489 	if (IS_ERR(msg_arg)) {
490 		rc = PTR_ERR(msg_arg);
491 		goto out;
492 	}
493 
494 	optee_fill_pages_list(pages_list, pages, num_pages,
495 			      tee_shm_get_page_offset(shm));
496 
497 	memset(msg_arg, 0, OPTEE_MSG_GET_ARG_SIZE(1));
498 	msg_arg->num_params = 1;
499 	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
500 	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
501 				OPTEE_MSG_ATTR_NONCONTIG;
502 	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
503 	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
504 	/*
505 	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
506 	 * store buffer offset from 4k page, as described in OP-TEE ABI.
507 	 */
508 	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
509 	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
510 
511 	if (optee->ops->do_call_with_arg(ctx, shm_arg, 0, false) ||
512 	    msg_arg->ret != TEEC_SUCCESS)
513 		rc = -EINVAL;
514 
515 	tee_shm_free(shm_arg);
516 out:
517 	optee_free_pages_list(pages_list, num_pages);
518 	return rc;
519 }
520 
optee_shm_unregister(struct tee_context * ctx,struct tee_shm * shm)521 static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
522 {
523 	struct optee *optee = tee_get_drvdata(ctx->teedev);
524 	struct optee_msg_arg *msg_arg;
525 	struct tee_shm *shm_arg;
526 	int rc = 0;
527 	size_t sz;
528 
529 	/*
530 	 * We're about to unregister shared memory and we may not be able
531 	 * register shared memory for this request in case we're called
532 	 * from optee_shm_arg_cache_uninit().
533 	 *
534 	 * So in order to keep things simple in this function just as in
535 	 * optee_shm_register() we'll use temporary private allocation
536 	 * instead of using optee_get_msg_arg().
537 	 */
538 	sz = optee_msg_arg_size(optee->rpc_param_count);
539 	shm_arg = tee_shm_alloc_priv_buf(ctx, sz);
540 	if (IS_ERR(shm_arg))
541 		return PTR_ERR(shm_arg);
542 	msg_arg = tee_shm_get_va(shm_arg, 0);
543 	if (IS_ERR(msg_arg)) {
544 		rc = PTR_ERR(msg_arg);
545 		goto out;
546 	}
547 
548 	memset(msg_arg, 0, sz);
549 	msg_arg->num_params = 1;
550 	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
551 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
552 	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
553 
554 	if (optee->ops->do_call_with_arg(ctx, shm_arg, 0, false) ||
555 	    msg_arg->ret != TEEC_SUCCESS)
556 		rc = -EINVAL;
557 out:
558 	tee_shm_free(shm_arg);
559 	return rc;
560 }
561 
optee_shm_register_supp(struct tee_context * ctx,struct tee_shm * shm,struct page ** pages,size_t num_pages,unsigned long start)562 static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
563 				   struct page **pages, size_t num_pages,
564 				   unsigned long start)
565 {
566 	/*
567 	 * We don't want to register supplicant memory in OP-TEE.
568 	 * Instead information about it will be passed in RPC code.
569 	 */
570 	return optee_check_mem_type(start, num_pages);
571 }
572 
optee_shm_unregister_supp(struct tee_context * ctx,struct tee_shm * shm)573 static int optee_shm_unregister_supp(struct tee_context *ctx,
574 				     struct tee_shm *shm)
575 {
576 	return 0;
577 }
578 
579 /*
580  * 3. Dynamic shared memory pool based on alloc_pages()
581  *
582  * Implements an OP-TEE specific shared memory pool which is used
583  * when dynamic shared memory is supported by secure world.
584  *
585  * The main function is optee_shm_pool_alloc_pages().
586  */
587 
pool_op_alloc(struct tee_shm_pool * pool,struct tee_shm * shm,size_t size,size_t align)588 static int pool_op_alloc(struct tee_shm_pool *pool,
589 			 struct tee_shm *shm, size_t size, size_t align)
590 {
591 	/*
592 	 * Shared memory private to the OP-TEE driver doesn't need
593 	 * to be registered with OP-TEE.
594 	 */
595 	if (shm->flags & TEE_SHM_PRIV)
596 		return tee_dyn_shm_alloc_helper(shm, size, align, NULL);
597 
598 	return tee_dyn_shm_alloc_helper(shm, size, align, optee_shm_register);
599 }
600 
pool_op_free(struct tee_shm_pool * pool,struct tee_shm * shm)601 static void pool_op_free(struct tee_shm_pool *pool,
602 			 struct tee_shm *shm)
603 {
604 	if (!(shm->flags & TEE_SHM_PRIV))
605 		tee_dyn_shm_free_helper(shm, optee_shm_unregister);
606 	else
607 		tee_dyn_shm_free_helper(shm, NULL);
608 }
609 
pool_op_destroy_pool(struct tee_shm_pool * pool)610 static void pool_op_destroy_pool(struct tee_shm_pool *pool)
611 {
612 	kfree(pool);
613 }
614 
615 static const struct tee_shm_pool_ops pool_ops = {
616 	.alloc = pool_op_alloc,
617 	.free = pool_op_free,
618 	.destroy_pool = pool_op_destroy_pool,
619 };
620 
621 /**
622  * optee_shm_pool_alloc_pages() - create page-based allocator pool
623  *
624  * This pool is used when OP-TEE supports dymanic SHM. In this case
625  * command buffers and such are allocated from kernel's own memory.
626  */
optee_shm_pool_alloc_pages(void)627 static struct tee_shm_pool *optee_shm_pool_alloc_pages(void)
628 {
629 	struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL);
630 
631 	if (!pool)
632 		return ERR_PTR(-ENOMEM);
633 
634 	pool->ops = &pool_ops;
635 
636 	return pool;
637 }
638 
639 /*
640  * 4. Do a normal scheduled call into secure world
641  *
642  * The function optee_smc_do_call_with_arg() performs a normal scheduled
643  * call into secure world. During this call may normal world request help
644  * from normal world using RPCs, Remote Procedure Calls. This includes
645  * delivery of non-secure interrupts to for instance allow rescheduling of
646  * the current task.
647  */
648 
handle_rpc_func_cmd_shm_free(struct tee_context * ctx,struct optee_msg_arg * arg)649 static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx,
650 					 struct optee_msg_arg *arg)
651 {
652 	struct tee_shm *shm;
653 
654 	arg->ret_origin = TEEC_ORIGIN_COMMS;
655 
656 	if (arg->num_params != 1 ||
657 	    arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
658 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
659 		return;
660 	}
661 
662 	shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b;
663 	switch (arg->params[0].u.value.a) {
664 	case OPTEE_RPC_SHM_TYPE_APPL:
665 		optee_rpc_cmd_free_suppl(ctx, shm);
666 		break;
667 	case OPTEE_RPC_SHM_TYPE_KERNEL:
668 		tee_shm_free(shm);
669 		break;
670 	default:
671 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
672 	}
673 	arg->ret = TEEC_SUCCESS;
674 }
675 
handle_rpc_func_cmd_shm_alloc(struct tee_context * ctx,struct optee * optee,struct optee_msg_arg * arg,struct optee_call_ctx * call_ctx)676 static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx,
677 					  struct optee *optee,
678 					  struct optee_msg_arg *arg,
679 					  struct optee_call_ctx *call_ctx)
680 {
681 	struct tee_shm *shm;
682 	size_t sz;
683 	size_t n;
684 	struct page **pages;
685 	size_t page_count;
686 
687 	arg->ret_origin = TEEC_ORIGIN_COMMS;
688 
689 	if (!arg->num_params ||
690 	    arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
691 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
692 		return;
693 	}
694 
695 	for (n = 1; n < arg->num_params; n++) {
696 		if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) {
697 			arg->ret = TEEC_ERROR_BAD_PARAMETERS;
698 			return;
699 		}
700 	}
701 
702 	sz = arg->params[0].u.value.b;
703 	switch (arg->params[0].u.value.a) {
704 	case OPTEE_RPC_SHM_TYPE_APPL:
705 		shm = optee_rpc_cmd_alloc_suppl(ctx, sz);
706 		break;
707 	case OPTEE_RPC_SHM_TYPE_KERNEL:
708 		shm = tee_shm_alloc_priv_buf(optee->ctx, sz);
709 		break;
710 	default:
711 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
712 		return;
713 	}
714 
715 	if (IS_ERR(shm)) {
716 		arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
717 		return;
718 	}
719 
720 	/*
721 	 * If there are pages it's dynamically allocated shared memory (not
722 	 * from the reserved shared memory pool) and needs to be
723 	 * registered.
724 	 */
725 	pages = tee_shm_get_pages(shm, &page_count);
726 	if (pages) {
727 		u64 *pages_list;
728 
729 		pages_list = optee_allocate_pages_list(page_count);
730 		if (!pages_list) {
731 			arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
732 			goto bad;
733 		}
734 
735 		call_ctx->pages_list = pages_list;
736 		call_ctx->num_entries = page_count;
737 
738 		arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
739 				      OPTEE_MSG_ATTR_NONCONTIG;
740 		/*
741 		 * In the least bits of u.tmem.buf_ptr we store buffer offset
742 		 * from 4k page, as described in OP-TEE ABI.
743 		 */
744 		arg->params[0].u.tmem.buf_ptr = virt_to_phys(pages_list) |
745 			(tee_shm_get_page_offset(shm) &
746 			 (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
747 
748 		optee_fill_pages_list(pages_list, pages, page_count,
749 				      tee_shm_get_page_offset(shm));
750 	} else {
751 		phys_addr_t pa;
752 
753 		if (tee_shm_get_pa(shm, 0, &pa)) {
754 			arg->ret = TEEC_ERROR_BAD_PARAMETERS;
755 			goto bad;
756 		}
757 
758 		arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT;
759 		arg->params[0].u.tmem.buf_ptr = pa;
760 	}
761 	arg->params[0].u.tmem.size = tee_shm_get_size(shm);
762 	arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
763 
764 	arg->ret = TEEC_SUCCESS;
765 	return;
766 bad:
767 	tee_shm_free(shm);
768 }
769 
free_pages_list(struct optee_call_ctx * call_ctx)770 static void free_pages_list(struct optee_call_ctx *call_ctx)
771 {
772 	if (call_ctx->pages_list) {
773 		optee_free_pages_list(call_ctx->pages_list,
774 				      call_ctx->num_entries);
775 		call_ctx->pages_list = NULL;
776 		call_ctx->num_entries = 0;
777 	}
778 }
779 
optee_rpc_finalize_call(struct optee_call_ctx * call_ctx)780 static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx)
781 {
782 	free_pages_list(call_ctx);
783 }
784 
handle_rpc_func_cmd(struct tee_context * ctx,struct optee * optee,struct optee_msg_arg * arg,struct optee_call_ctx * call_ctx)785 static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee,
786 				struct optee_msg_arg *arg,
787 				struct optee_call_ctx *call_ctx)
788 {
789 
790 	switch (arg->cmd) {
791 	case OPTEE_RPC_CMD_SHM_ALLOC:
792 		free_pages_list(call_ctx);
793 		handle_rpc_func_cmd_shm_alloc(ctx, optee, arg, call_ctx);
794 		break;
795 	case OPTEE_RPC_CMD_SHM_FREE:
796 		handle_rpc_func_cmd_shm_free(ctx, arg);
797 		break;
798 	default:
799 		optee_rpc_cmd(ctx, optee, arg);
800 	}
801 }
802 
803 /**
804  * optee_handle_rpc() - handle RPC from secure world
805  * @ctx:	context doing the RPC
806  * @rpc_arg:	pointer to RPC arguments if any, or NULL if none
807  * @param:	value of registers for the RPC
808  * @call_ctx:	call context. Preserved during one OP-TEE invocation
809  *
810  * Result of RPC is written back into @param.
811  */
optee_handle_rpc(struct tee_context * ctx,struct optee_msg_arg * rpc_arg,struct optee_rpc_param * param,struct optee_call_ctx * call_ctx)812 static void optee_handle_rpc(struct tee_context *ctx,
813 			     struct optee_msg_arg *rpc_arg,
814 			     struct optee_rpc_param *param,
815 			     struct optee_call_ctx *call_ctx)
816 {
817 	struct tee_device *teedev = ctx->teedev;
818 	struct optee *optee = tee_get_drvdata(teedev);
819 	struct optee_msg_arg *arg;
820 	struct tee_shm *shm;
821 	phys_addr_t pa;
822 
823 	switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) {
824 	case OPTEE_SMC_RPC_FUNC_ALLOC:
825 		shm = tee_shm_alloc_priv_buf(optee->ctx, param->a1);
826 		if (!IS_ERR(shm) && !tee_shm_get_pa(shm, 0, &pa)) {
827 			reg_pair_from_64(&param->a1, &param->a2, pa);
828 			reg_pair_from_64(&param->a4, &param->a5,
829 					 (unsigned long)shm);
830 		} else {
831 			param->a1 = 0;
832 			param->a2 = 0;
833 			param->a4 = 0;
834 			param->a5 = 0;
835 		}
836 		kmemleak_not_leak(shm);
837 		break;
838 	case OPTEE_SMC_RPC_FUNC_FREE:
839 		shm = reg_pair_to_ptr(param->a1, param->a2);
840 		tee_shm_free(shm);
841 		break;
842 	case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR:
843 		/*
844 		 * A foreign interrupt was raised while secure world was
845 		 * executing, since they are handled in Linux a dummy RPC is
846 		 * performed to let Linux take the interrupt through the normal
847 		 * vector.
848 		 */
849 		break;
850 	case OPTEE_SMC_RPC_FUNC_CMD:
851 		if (rpc_arg) {
852 			arg = rpc_arg;
853 		} else {
854 			shm = reg_pair_to_ptr(param->a1, param->a2);
855 			arg = tee_shm_get_va(shm, 0);
856 			if (IS_ERR(arg)) {
857 				pr_err("%s: tee_shm_get_va %p failed\n",
858 				       __func__, shm);
859 				break;
860 			}
861 		}
862 
863 		handle_rpc_func_cmd(ctx, optee, arg, call_ctx);
864 		break;
865 	default:
866 		pr_warn("Unknown RPC func 0x%x\n",
867 			(u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0));
868 		break;
869 	}
870 
871 	param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC;
872 }
873 
874 /**
875  * optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world
876  * @ctx:	calling context
877  * @shm:	shared memory holding the message to pass to secure world
878  * @offs:	offset of the message in @shm
879  * @system_thread: true if caller requests TEE system thread support
880  *
881  * Does and SMC to OP-TEE in secure world and handles eventual resulting
882  * Remote Procedure Calls (RPC) from OP-TEE.
883  *
884  * Returns return code from secure world, 0 is OK
885  */
optee_smc_do_call_with_arg(struct tee_context * ctx,struct tee_shm * shm,u_int offs,bool system_thread)886 static int optee_smc_do_call_with_arg(struct tee_context *ctx,
887 				      struct tee_shm *shm, u_int offs,
888 				      bool system_thread)
889 {
890 	struct optee *optee = tee_get_drvdata(ctx->teedev);
891 	struct optee_call_waiter w;
892 	struct optee_rpc_param param = { };
893 	struct optee_call_ctx call_ctx = { };
894 	struct optee_msg_arg *rpc_arg = NULL;
895 	int rc;
896 
897 	if (optee->rpc_param_count) {
898 		struct optee_msg_arg *arg;
899 		unsigned int rpc_arg_offs;
900 
901 		arg = tee_shm_get_va(shm, offs);
902 		if (IS_ERR(arg))
903 			return PTR_ERR(arg);
904 
905 		rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params);
906 		rpc_arg = tee_shm_get_va(shm, offs + rpc_arg_offs);
907 		if (IS_ERR(rpc_arg))
908 			return PTR_ERR(rpc_arg);
909 	}
910 
911 	if  (rpc_arg && tee_shm_is_dynamic(shm)) {
912 		param.a0 = OPTEE_SMC_CALL_WITH_REGD_ARG;
913 		reg_pair_from_64(&param.a1, &param.a2, (u_long)shm);
914 		param.a3 = offs;
915 	} else {
916 		phys_addr_t parg;
917 
918 		rc = tee_shm_get_pa(shm, offs, &parg);
919 		if (rc)
920 			return rc;
921 
922 		if (rpc_arg)
923 			param.a0 = OPTEE_SMC_CALL_WITH_RPC_ARG;
924 		else
925 			param.a0 = OPTEE_SMC_CALL_WITH_ARG;
926 		reg_pair_from_64(&param.a1, &param.a2, parg);
927 	}
928 	/* Initialize waiter */
929 	optee_cq_wait_init(&optee->call_queue, &w, system_thread);
930 	while (true) {
931 		struct arm_smccc_res res;
932 
933 		trace_optee_invoke_fn_begin(&param);
934 		optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3,
935 				     param.a4, param.a5, param.a6, param.a7,
936 				     &res);
937 		trace_optee_invoke_fn_end(&param, &res);
938 
939 		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
940 			/*
941 			 * Out of threads in secure world, wait for a thread
942 			 * become available.
943 			 */
944 			optee_cq_wait_for_completion(&optee->call_queue, &w);
945 		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
946 			cond_resched();
947 			param.a0 = res.a0;
948 			param.a1 = res.a1;
949 			param.a2 = res.a2;
950 			param.a3 = res.a3;
951 			optee_handle_rpc(ctx, rpc_arg, &param, &call_ctx);
952 		} else {
953 			rc = res.a0;
954 			break;
955 		}
956 	}
957 
958 	optee_rpc_finalize_call(&call_ctx);
959 	/*
960 	 * We're done with our thread in secure world, if there's any
961 	 * thread waiters wake up one.
962 	 */
963 	optee_cq_wait_final(&optee->call_queue, &w);
964 
965 	return rc;
966 }
967 
968 /*
969  * 5. Asynchronous notification
970  */
971 
get_async_notif_value(optee_invoke_fn * invoke_fn,bool * value_valid,bool * value_pending)972 static u32 get_async_notif_value(optee_invoke_fn *invoke_fn, bool *value_valid,
973 				 bool *value_pending)
974 {
975 	struct arm_smccc_res res;
976 
977 	invoke_fn(OPTEE_SMC_GET_ASYNC_NOTIF_VALUE, 0, 0, 0, 0, 0, 0, 0, &res);
978 
979 	if (res.a0) {
980 		*value_valid = false;
981 		return 0;
982 	}
983 	*value_valid = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_VALID);
984 	*value_pending = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_PENDING);
985 	return res.a1;
986 }
987 
irq_handler(struct optee * optee)988 static irqreturn_t irq_handler(struct optee *optee)
989 {
990 	bool do_bottom_half = false;
991 	bool value_valid;
992 	bool value_pending;
993 	u32 value;
994 
995 	do {
996 		value = get_async_notif_value(optee->smc.invoke_fn,
997 					      &value_valid, &value_pending);
998 		if (!value_valid)
999 			break;
1000 
1001 		if (value == OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF)
1002 			do_bottom_half = true;
1003 		else
1004 			optee_notif_send(optee, value);
1005 	} while (value_pending);
1006 
1007 	if (do_bottom_half)
1008 		return IRQ_WAKE_THREAD;
1009 	return IRQ_HANDLED;
1010 }
1011 
notif_irq_handler(int irq,void * dev_id)1012 static irqreturn_t notif_irq_handler(int irq, void *dev_id)
1013 {
1014 	struct optee *optee = dev_id;
1015 
1016 	return irq_handler(optee);
1017 }
1018 
notif_irq_thread_fn(int irq,void * dev_id)1019 static irqreturn_t notif_irq_thread_fn(int irq, void *dev_id)
1020 {
1021 	struct optee *optee = dev_id;
1022 
1023 	optee_do_bottom_half(optee->ctx);
1024 
1025 	return IRQ_HANDLED;
1026 }
1027 
init_irq(struct optee * optee,u_int irq)1028 static int init_irq(struct optee *optee, u_int irq)
1029 {
1030 	int rc;
1031 
1032 	rc = request_threaded_irq(irq, notif_irq_handler,
1033 				  notif_irq_thread_fn,
1034 				  0, "optee_notification", optee);
1035 	if (rc)
1036 		return rc;
1037 
1038 	optee->smc.notif_irq = irq;
1039 
1040 	return 0;
1041 }
1042 
notif_pcpu_irq_handler(int irq,void * dev_id)1043 static irqreturn_t notif_pcpu_irq_handler(int irq, void *dev_id)
1044 {
1045 	struct optee_pcpu *pcpu = dev_id;
1046 	struct optee *optee = pcpu->optee;
1047 
1048 	if (irq_handler(optee) == IRQ_WAKE_THREAD)
1049 		queue_work(optee->smc.notif_pcpu_wq,
1050 			   &optee->smc.notif_pcpu_work);
1051 
1052 	return IRQ_HANDLED;
1053 }
1054 
notif_pcpu_irq_work_fn(struct work_struct * work)1055 static void notif_pcpu_irq_work_fn(struct work_struct *work)
1056 {
1057 	struct optee_smc *optee_smc = container_of(work, struct optee_smc,
1058 						   notif_pcpu_work);
1059 	struct optee *optee = container_of(optee_smc, struct optee, smc);
1060 
1061 	optee_do_bottom_half(optee->ctx);
1062 }
1063 
init_pcpu_irq(struct optee * optee,u_int irq)1064 static int init_pcpu_irq(struct optee *optee, u_int irq)
1065 {
1066 	struct optee_pcpu __percpu *optee_pcpu;
1067 	int cpu, rc;
1068 
1069 	optee_pcpu = alloc_percpu(struct optee_pcpu);
1070 	if (!optee_pcpu)
1071 		return -ENOMEM;
1072 
1073 	for_each_present_cpu(cpu)
1074 		per_cpu_ptr(optee_pcpu, cpu)->optee = optee;
1075 
1076 	rc = request_percpu_irq(irq, notif_pcpu_irq_handler,
1077 				"optee_pcpu_notification", optee_pcpu);
1078 	if (rc)
1079 		goto err_free_pcpu;
1080 
1081 	INIT_WORK(&optee->smc.notif_pcpu_work, notif_pcpu_irq_work_fn);
1082 	optee->smc.notif_pcpu_wq = create_workqueue("optee_pcpu_notification");
1083 	if (!optee->smc.notif_pcpu_wq) {
1084 		rc = -EINVAL;
1085 		goto err_free_pcpu_irq;
1086 	}
1087 
1088 	optee->smc.optee_pcpu = optee_pcpu;
1089 	optee->smc.notif_irq = irq;
1090 
1091 	pcpu_irq_num = irq;
1092 	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee/pcpu-notif:starting",
1093 			       optee_cpuhp_enable_pcpu_irq,
1094 			       optee_cpuhp_disable_pcpu_irq);
1095 	if (!rc)
1096 		rc = -EINVAL;
1097 	if (rc < 0)
1098 		goto err_free_pcpu_irq;
1099 
1100 	optee->smc.notif_cpuhp_state = rc;
1101 
1102 	return 0;
1103 
1104 err_free_pcpu_irq:
1105 	free_percpu_irq(irq, optee_pcpu);
1106 err_free_pcpu:
1107 	free_percpu(optee_pcpu);
1108 
1109 	return rc;
1110 }
1111 
optee_smc_notif_init_irq(struct optee * optee,u_int irq)1112 static int optee_smc_notif_init_irq(struct optee *optee, u_int irq)
1113 {
1114 	if (irq_is_percpu_devid(irq))
1115 		return init_pcpu_irq(optee, irq);
1116 	else
1117 		return init_irq(optee, irq);
1118 }
1119 
uninit_pcpu_irq(struct optee * optee)1120 static void uninit_pcpu_irq(struct optee *optee)
1121 {
1122 	cpuhp_remove_state(optee->smc.notif_cpuhp_state);
1123 
1124 	destroy_workqueue(optee->smc.notif_pcpu_wq);
1125 
1126 	free_percpu_irq(optee->smc.notif_irq, optee->smc.optee_pcpu);
1127 	free_percpu(optee->smc.optee_pcpu);
1128 }
1129 
optee_smc_notif_uninit_irq(struct optee * optee)1130 static void optee_smc_notif_uninit_irq(struct optee *optee)
1131 {
1132 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1133 		optee_stop_async_notif(optee->ctx);
1134 		if (optee->smc.notif_irq) {
1135 			if (irq_is_percpu_devid(optee->smc.notif_irq))
1136 				uninit_pcpu_irq(optee);
1137 			else
1138 				free_irq(optee->smc.notif_irq, optee);
1139 
1140 			irq_dispose_mapping(optee->smc.notif_irq);
1141 		}
1142 	}
1143 }
1144 
1145 /*
1146  * 6. Driver initialization
1147  *
1148  * During driver initialization is secure world probed to find out which
1149  * features it supports so the driver can be initialized with a matching
1150  * configuration. This involves for instance support for dynamic shared
1151  * memory instead of a static memory carvout.
1152  */
1153 
optee_get_version(struct tee_device * teedev,struct tee_ioctl_version_data * vers)1154 static void optee_get_version(struct tee_device *teedev,
1155 			      struct tee_ioctl_version_data *vers)
1156 {
1157 	struct tee_ioctl_version_data v = {
1158 		.impl_id = TEE_IMPL_ID_OPTEE,
1159 		.impl_caps = TEE_OPTEE_CAP_TZ,
1160 		.gen_caps = TEE_GEN_CAP_GP,
1161 	};
1162 	struct optee *optee = tee_get_drvdata(teedev);
1163 
1164 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1165 		v.gen_caps |= TEE_GEN_CAP_REG_MEM;
1166 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL)
1167 		v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL;
1168 	*vers = v;
1169 }
1170 
optee_smc_open(struct tee_context * ctx)1171 static int optee_smc_open(struct tee_context *ctx)
1172 {
1173 	struct optee *optee = tee_get_drvdata(ctx->teedev);
1174 	u32 sec_caps = optee->smc.sec_caps;
1175 
1176 	return optee_open(ctx, sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL);
1177 }
1178 
1179 static const struct tee_driver_ops optee_clnt_ops = {
1180 	.get_version = optee_get_version,
1181 	.open = optee_smc_open,
1182 	.release = optee_release,
1183 	.open_session = optee_open_session,
1184 	.close_session = optee_close_session,
1185 	.system_session = optee_system_session,
1186 	.invoke_func = optee_invoke_func,
1187 	.cancel_req = optee_cancel_req,
1188 	.shm_register = optee_shm_register,
1189 	.shm_unregister = optee_shm_unregister,
1190 };
1191 
1192 static const struct tee_desc optee_clnt_desc = {
1193 	.name = DRIVER_NAME "-clnt",
1194 	.ops = &optee_clnt_ops,
1195 	.owner = THIS_MODULE,
1196 };
1197 
1198 static const struct tee_driver_ops optee_supp_ops = {
1199 	.get_version = optee_get_version,
1200 	.open = optee_smc_open,
1201 	.release = optee_release_supp,
1202 	.supp_recv = optee_supp_recv,
1203 	.supp_send = optee_supp_send,
1204 	.shm_register = optee_shm_register_supp,
1205 	.shm_unregister = optee_shm_unregister_supp,
1206 };
1207 
1208 static const struct tee_desc optee_supp_desc = {
1209 	.name = DRIVER_NAME "-supp",
1210 	.ops = &optee_supp_ops,
1211 	.owner = THIS_MODULE,
1212 	.flags = TEE_DESC_PRIVILEGED,
1213 };
1214 
1215 static const struct optee_ops optee_ops = {
1216 	.do_call_with_arg = optee_smc_do_call_with_arg,
1217 	.to_msg_param = optee_to_msg_param,
1218 	.from_msg_param = optee_from_msg_param,
1219 };
1220 
enable_async_notif(optee_invoke_fn * invoke_fn)1221 static int enable_async_notif(optee_invoke_fn *invoke_fn)
1222 {
1223 	struct arm_smccc_res res;
1224 
1225 	invoke_fn(OPTEE_SMC_ENABLE_ASYNC_NOTIF, 0, 0, 0, 0, 0, 0, 0, &res);
1226 
1227 	if (res.a0)
1228 		return -EINVAL;
1229 	return 0;
1230 }
1231 
optee_msg_api_uid_is_optee_api(optee_invoke_fn * invoke_fn)1232 static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn)
1233 {
1234 	struct arm_smccc_res res;
1235 
1236 	invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1237 
1238 	if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 &&
1239 	    res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3)
1240 		return true;
1241 	return false;
1242 }
1243 
1244 #ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE
optee_msg_api_uid_is_optee_image_load(optee_invoke_fn * invoke_fn)1245 static bool optee_msg_api_uid_is_optee_image_load(optee_invoke_fn *invoke_fn)
1246 {
1247 	struct arm_smccc_res res;
1248 
1249 	invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1250 
1251 	if (res.a0 == OPTEE_MSG_IMAGE_LOAD_UID_0 &&
1252 	    res.a1 == OPTEE_MSG_IMAGE_LOAD_UID_1 &&
1253 	    res.a2 == OPTEE_MSG_IMAGE_LOAD_UID_2 &&
1254 	    res.a3 == OPTEE_MSG_IMAGE_LOAD_UID_3)
1255 		return true;
1256 	return false;
1257 }
1258 #endif
1259 
optee_msg_get_os_revision(optee_invoke_fn * invoke_fn)1260 static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn)
1261 {
1262 	union {
1263 		struct arm_smccc_res smccc;
1264 		struct optee_smc_call_get_os_revision_result result;
1265 	} res = {
1266 		.result = {
1267 			.build_id = 0
1268 		}
1269 	};
1270 
1271 	invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0,
1272 		  &res.smccc);
1273 
1274 	if (res.result.build_id)
1275 		pr_info("revision %lu.%lu (%08lx)", res.result.major,
1276 			res.result.minor, res.result.build_id);
1277 	else
1278 		pr_info("revision %lu.%lu", res.result.major, res.result.minor);
1279 }
1280 
optee_msg_api_revision_is_compatible(optee_invoke_fn * invoke_fn)1281 static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn)
1282 {
1283 	union {
1284 		struct arm_smccc_res smccc;
1285 		struct optee_smc_calls_revision_result result;
1286 	} res;
1287 
1288 	invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1289 
1290 	if (res.result.major == OPTEE_MSG_REVISION_MAJOR &&
1291 	    (int)res.result.minor >= OPTEE_MSG_REVISION_MINOR)
1292 		return true;
1293 	return false;
1294 }
1295 
optee_msg_exchange_capabilities(optee_invoke_fn * invoke_fn,u32 * sec_caps,u32 * max_notif_value,unsigned int * rpc_param_count)1296 static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn,
1297 					    u32 *sec_caps, u32 *max_notif_value,
1298 					    unsigned int *rpc_param_count)
1299 {
1300 	union {
1301 		struct arm_smccc_res smccc;
1302 		struct optee_smc_exchange_capabilities_result result;
1303 	} res;
1304 	u32 a1 = 0;
1305 
1306 	/*
1307 	 * TODO This isn't enough to tell if it's UP system (from kernel
1308 	 * point of view) or not, is_smp() returns the information
1309 	 * needed, but can't be called directly from here.
1310 	 */
1311 	if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1)
1312 		a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR;
1313 
1314 	invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0,
1315 		  &res.smccc);
1316 
1317 	if (res.result.status != OPTEE_SMC_RETURN_OK)
1318 		return false;
1319 
1320 	*sec_caps = res.result.capabilities;
1321 	if (*sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF)
1322 		*max_notif_value = res.result.max_notif_value;
1323 	else
1324 		*max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE;
1325 	if (*sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1326 		*rpc_param_count = (u8)res.result.data;
1327 	else
1328 		*rpc_param_count = 0;
1329 
1330 	return true;
1331 }
1332 
optee_msg_get_thread_count(optee_invoke_fn * invoke_fn)1333 static unsigned int optee_msg_get_thread_count(optee_invoke_fn *invoke_fn)
1334 {
1335 	struct arm_smccc_res res;
1336 
1337 	invoke_fn(OPTEE_SMC_GET_THREAD_COUNT, 0, 0, 0, 0, 0, 0, 0, &res);
1338 	if (res.a0)
1339 		return 0;
1340 	return res.a1;
1341 }
1342 
1343 static struct tee_shm_pool *
optee_config_shm_memremap(optee_invoke_fn * invoke_fn,void ** memremaped_shm)1344 optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm)
1345 {
1346 	union {
1347 		struct arm_smccc_res smccc;
1348 		struct optee_smc_get_shm_config_result result;
1349 	} res;
1350 	unsigned long vaddr;
1351 	phys_addr_t paddr;
1352 	size_t size;
1353 	phys_addr_t begin;
1354 	phys_addr_t end;
1355 	void *va;
1356 	void *rc;
1357 
1358 	invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1359 	if (res.result.status != OPTEE_SMC_RETURN_OK) {
1360 		pr_err("static shm service not available\n");
1361 		return ERR_PTR(-ENOENT);
1362 	}
1363 
1364 	if (res.result.settings != OPTEE_SMC_SHM_CACHED) {
1365 		pr_err("only normal cached shared memory supported\n");
1366 		return ERR_PTR(-EINVAL);
1367 	}
1368 
1369 	begin = roundup(res.result.start, PAGE_SIZE);
1370 	end = rounddown(res.result.start + res.result.size, PAGE_SIZE);
1371 	paddr = begin;
1372 	size = end - begin;
1373 
1374 	va = memremap(paddr, size, MEMREMAP_WB);
1375 	if (!va) {
1376 		pr_err("shared memory ioremap failed\n");
1377 		return ERR_PTR(-EINVAL);
1378 	}
1379 	vaddr = (unsigned long)va;
1380 
1381 	rc = tee_shm_pool_alloc_res_mem(vaddr, paddr, size,
1382 					OPTEE_MIN_STATIC_POOL_ALIGN);
1383 	if (IS_ERR(rc))
1384 		memunmap(va);
1385 	else
1386 		*memremaped_shm = va;
1387 
1388 	return rc;
1389 }
1390 
1391 /* Simple wrapper functions to be able to use a function pointer */
optee_smccc_smc(unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4,unsigned long a5,unsigned long a6,unsigned long a7,struct arm_smccc_res * res)1392 static void optee_smccc_smc(unsigned long a0, unsigned long a1,
1393 			    unsigned long a2, unsigned long a3,
1394 			    unsigned long a4, unsigned long a5,
1395 			    unsigned long a6, unsigned long a7,
1396 			    struct arm_smccc_res *res)
1397 {
1398 	arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1399 }
1400 
optee_smccc_hvc(unsigned long a0,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4,unsigned long a5,unsigned long a6,unsigned long a7,struct arm_smccc_res * res)1401 static void optee_smccc_hvc(unsigned long a0, unsigned long a1,
1402 			    unsigned long a2, unsigned long a3,
1403 			    unsigned long a4, unsigned long a5,
1404 			    unsigned long a6, unsigned long a7,
1405 			    struct arm_smccc_res *res)
1406 {
1407 	arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1408 }
1409 
get_invoke_func(struct device * dev)1410 static optee_invoke_fn *get_invoke_func(struct device *dev)
1411 {
1412 	const char *method;
1413 
1414 	pr_info("probing for conduit method.\n");
1415 
1416 	if (device_property_read_string(dev, "method", &method)) {
1417 		pr_warn("missing \"method\" property\n");
1418 		return ERR_PTR(-ENXIO);
1419 	}
1420 
1421 	if (!strcmp("hvc", method))
1422 		return optee_smccc_hvc;
1423 	else if (!strcmp("smc", method))
1424 		return optee_smccc_smc;
1425 
1426 	pr_warn("invalid \"method\" property: %s\n", method);
1427 	return ERR_PTR(-EINVAL);
1428 }
1429 
1430 /* optee_remove - Device Removal Routine
1431  * @pdev: platform device information struct
1432  *
1433  * optee_remove is called by platform subsystem to alert the driver
1434  * that it should release the device
1435  */
optee_smc_remove(struct platform_device * pdev)1436 static void optee_smc_remove(struct platform_device *pdev)
1437 {
1438 	struct optee *optee = platform_get_drvdata(pdev);
1439 
1440 	/*
1441 	 * Ask OP-TEE to free all cached shared memory objects to decrease
1442 	 * reference counters and also avoid wild pointers in secure world
1443 	 * into the old shared memory range.
1444 	 */
1445 	if (!optee->rpc_param_count)
1446 		optee_disable_shm_cache(optee);
1447 
1448 	optee_smc_notif_uninit_irq(optee);
1449 
1450 	optee_remove_common(optee);
1451 
1452 	if (optee->smc.memremaped_shm)
1453 		memunmap(optee->smc.memremaped_shm);
1454 
1455 	kfree(optee);
1456 }
1457 
1458 /* optee_shutdown - Device Removal Routine
1459  * @pdev: platform device information struct
1460  *
1461  * platform_shutdown is called by the platform subsystem to alert
1462  * the driver that a shutdown, reboot, or kexec is happening and
1463  * device must be disabled.
1464  */
optee_shutdown(struct platform_device * pdev)1465 static void optee_shutdown(struct platform_device *pdev)
1466 {
1467 	struct optee *optee = platform_get_drvdata(pdev);
1468 
1469 	if (!optee->rpc_param_count)
1470 		optee_disable_shm_cache(optee);
1471 }
1472 
1473 #ifdef CONFIG_OPTEE_INSECURE_LOAD_IMAGE
1474 
1475 #define OPTEE_FW_IMAGE "optee/tee.bin"
1476 
1477 static optee_invoke_fn *cpuhp_invoke_fn;
1478 
optee_cpuhp_probe(unsigned int cpu)1479 static int optee_cpuhp_probe(unsigned int cpu)
1480 {
1481 	/*
1482 	 * Invoking a call on a CPU will cause OP-TEE to perform the required
1483 	 * setup for that CPU. Just invoke the call to get the UID since that
1484 	 * has no side effects.
1485 	 */
1486 	if (optee_msg_api_uid_is_optee_api(cpuhp_invoke_fn))
1487 		return 0;
1488 	else
1489 		return -EINVAL;
1490 }
1491 
optee_load_fw(struct platform_device * pdev,optee_invoke_fn * invoke_fn)1492 static int optee_load_fw(struct platform_device *pdev,
1493 			 optee_invoke_fn *invoke_fn)
1494 {
1495 	const struct firmware *fw = NULL;
1496 	struct arm_smccc_res res;
1497 	phys_addr_t data_pa;
1498 	u8 *data_buf = NULL;
1499 	u64 data_size;
1500 	u32 data_pa_high, data_pa_low;
1501 	u32 data_size_high, data_size_low;
1502 	int rc;
1503 	int hp_state;
1504 
1505 	if (!optee_msg_api_uid_is_optee_image_load(invoke_fn))
1506 		return 0;
1507 
1508 	rc = request_firmware(&fw, OPTEE_FW_IMAGE, &pdev->dev);
1509 	if (rc) {
1510 		/*
1511 		 * The firmware in the rootfs will not be accessible until we
1512 		 * are in the SYSTEM_RUNNING state, so return EPROBE_DEFER until
1513 		 * that point.
1514 		 */
1515 		if (system_state < SYSTEM_RUNNING)
1516 			return -EPROBE_DEFER;
1517 		goto fw_err;
1518 	}
1519 
1520 	data_size = fw->size;
1521 	/*
1522 	 * This uses the GFP_DMA flag to ensure we are allocated memory in the
1523 	 * 32-bit space since TF-A cannot map memory beyond the 32-bit boundary.
1524 	 */
1525 	data_buf = kmemdup(fw->data, fw->size, GFP_KERNEL | GFP_DMA);
1526 	if (!data_buf) {
1527 		rc = -ENOMEM;
1528 		goto fw_err;
1529 	}
1530 	data_pa = virt_to_phys(data_buf);
1531 	reg_pair_from_64(&data_pa_high, &data_pa_low, data_pa);
1532 	reg_pair_from_64(&data_size_high, &data_size_low, data_size);
1533 	goto fw_load;
1534 
1535 fw_err:
1536 	pr_warn("image loading failed\n");
1537 	data_pa_high = 0;
1538 	data_pa_low = 0;
1539 	data_size_high = 0;
1540 	data_size_low = 0;
1541 
1542 fw_load:
1543 	/*
1544 	 * Always invoke the SMC, even if loading the image fails, to indicate
1545 	 * to EL3 that we have passed the point where it should allow invoking
1546 	 * this SMC.
1547 	 */
1548 	pr_warn("OP-TEE image loaded from kernel, this can be insecure");
1549 	invoke_fn(OPTEE_SMC_CALL_LOAD_IMAGE, data_size_high, data_size_low,
1550 		  data_pa_high, data_pa_low, 0, 0, 0, &res);
1551 	if (!rc)
1552 		rc = res.a0;
1553 	if (fw)
1554 		release_firmware(fw);
1555 	kfree(data_buf);
1556 
1557 	if (!rc) {
1558 		/*
1559 		 * We need to initialize OP-TEE on all other running cores as
1560 		 * well. Any cores that aren't running yet will get initialized
1561 		 * when they are brought up by the power management functions in
1562 		 * TF-A which are registered by the OP-TEE SPD. Due to that we
1563 		 * can un-register the callback right after registering it.
1564 		 */
1565 		cpuhp_invoke_fn = invoke_fn;
1566 		hp_state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "optee:probe",
1567 					     optee_cpuhp_probe, NULL);
1568 		if (hp_state < 0) {
1569 			pr_warn("Failed with CPU hotplug setup for OP-TEE");
1570 			return -EINVAL;
1571 		}
1572 		cpuhp_remove_state(hp_state);
1573 		cpuhp_invoke_fn = NULL;
1574 	}
1575 
1576 	return rc;
1577 }
1578 #else
optee_load_fw(struct platform_device * pdev,optee_invoke_fn * invoke_fn)1579 static inline int optee_load_fw(struct platform_device *pdev,
1580 				optee_invoke_fn *invoke_fn)
1581 {
1582 	return 0;
1583 }
1584 #endif
1585 
optee_probe(struct platform_device * pdev)1586 static int optee_probe(struct platform_device *pdev)
1587 {
1588 	optee_invoke_fn *invoke_fn;
1589 	struct tee_shm_pool *pool = ERR_PTR(-EINVAL);
1590 	struct optee *optee = NULL;
1591 	void *memremaped_shm = NULL;
1592 	unsigned int rpc_param_count;
1593 	unsigned int thread_count;
1594 	struct tee_device *teedev;
1595 	struct tee_context *ctx;
1596 	u32 max_notif_value;
1597 	u32 arg_cache_flags;
1598 	u32 sec_caps;
1599 	int rc;
1600 
1601 	invoke_fn = get_invoke_func(&pdev->dev);
1602 	if (IS_ERR(invoke_fn))
1603 		return PTR_ERR(invoke_fn);
1604 
1605 	rc = optee_load_fw(pdev, invoke_fn);
1606 	if (rc)
1607 		return rc;
1608 
1609 	if (!optee_msg_api_uid_is_optee_api(invoke_fn)) {
1610 		pr_warn("api uid mismatch\n");
1611 		return -EINVAL;
1612 	}
1613 
1614 	optee_msg_get_os_revision(invoke_fn);
1615 
1616 	if (!optee_msg_api_revision_is_compatible(invoke_fn)) {
1617 		pr_warn("api revision mismatch\n");
1618 		return -EINVAL;
1619 	}
1620 
1621 	thread_count = optee_msg_get_thread_count(invoke_fn);
1622 	if (!optee_msg_exchange_capabilities(invoke_fn, &sec_caps,
1623 					     &max_notif_value,
1624 					     &rpc_param_count)) {
1625 		pr_warn("capabilities mismatch\n");
1626 		return -EINVAL;
1627 	}
1628 
1629 	/*
1630 	 * Try to use dynamic shared memory if possible
1631 	 */
1632 	if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM) {
1633 		/*
1634 		 * If we have OPTEE_SMC_SEC_CAP_RPC_ARG we can ask
1635 		 * optee_get_msg_arg() to pre-register (by having
1636 		 * OPTEE_SHM_ARG_ALLOC_PRIV cleared) the page used to pass
1637 		 * an argument struct.
1638 		 *
1639 		 * With the page is pre-registered we can use a non-zero
1640 		 * offset for argument struct, this is indicated with
1641 		 * OPTEE_SHM_ARG_SHARED.
1642 		 *
1643 		 * This means that optee_smc_do_call_with_arg() will use
1644 		 * OPTEE_SMC_CALL_WITH_REGD_ARG for pre-registered pages.
1645 		 */
1646 		if (sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1647 			arg_cache_flags = OPTEE_SHM_ARG_SHARED;
1648 		else
1649 			arg_cache_flags = OPTEE_SHM_ARG_ALLOC_PRIV;
1650 
1651 		pool = optee_shm_pool_alloc_pages();
1652 	}
1653 
1654 	/*
1655 	 * If dynamic shared memory is not available or failed - try static one
1656 	 */
1657 	if (IS_ERR(pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM)) {
1658 		/*
1659 		 * The static memory pool can use non-zero page offsets so
1660 		 * let optee_get_msg_arg() know that with OPTEE_SHM_ARG_SHARED.
1661 		 *
1662 		 * optee_get_msg_arg() should not pre-register the
1663 		 * allocated page used to pass an argument struct, this is
1664 		 * indicated with OPTEE_SHM_ARG_ALLOC_PRIV.
1665 		 *
1666 		 * This means that optee_smc_do_call_with_arg() will use
1667 		 * OPTEE_SMC_CALL_WITH_ARG if rpc_param_count is 0, else
1668 		 * OPTEE_SMC_CALL_WITH_RPC_ARG.
1669 		 */
1670 		arg_cache_flags = OPTEE_SHM_ARG_SHARED |
1671 				  OPTEE_SHM_ARG_ALLOC_PRIV;
1672 		pool = optee_config_shm_memremap(invoke_fn, &memremaped_shm);
1673 	}
1674 
1675 	if (IS_ERR(pool))
1676 		return PTR_ERR(pool);
1677 
1678 	optee = kzalloc(sizeof(*optee), GFP_KERNEL);
1679 	if (!optee) {
1680 		rc = -ENOMEM;
1681 		goto err_free_pool;
1682 	}
1683 
1684 	optee->ops = &optee_ops;
1685 	optee->smc.invoke_fn = invoke_fn;
1686 	optee->smc.sec_caps = sec_caps;
1687 	optee->rpc_param_count = rpc_param_count;
1688 
1689 	if (IS_REACHABLE(CONFIG_RPMB) &&
1690 	    (sec_caps & OPTEE_SMC_SEC_CAP_RPMB_PROBE))
1691 		optee->in_kernel_rpmb_routing = true;
1692 
1693 	teedev = tee_device_alloc(&optee_clnt_desc, NULL, pool, optee);
1694 	if (IS_ERR(teedev)) {
1695 		rc = PTR_ERR(teedev);
1696 		goto err_free_optee;
1697 	}
1698 	optee->teedev = teedev;
1699 
1700 	teedev = tee_device_alloc(&optee_supp_desc, NULL, pool, optee);
1701 	if (IS_ERR(teedev)) {
1702 		rc = PTR_ERR(teedev);
1703 		goto err_unreg_teedev;
1704 	}
1705 	optee->supp_teedev = teedev;
1706 
1707 	optee_set_dev_group(optee);
1708 
1709 	rc = tee_device_register(optee->teedev);
1710 	if (rc)
1711 		goto err_unreg_supp_teedev;
1712 
1713 	rc = tee_device_register(optee->supp_teedev);
1714 	if (rc)
1715 		goto err_unreg_supp_teedev;
1716 
1717 	optee_cq_init(&optee->call_queue, thread_count);
1718 	optee_supp_init(&optee->supp);
1719 	optee->smc.memremaped_shm = memremaped_shm;
1720 	optee->pool = pool;
1721 	optee_shm_arg_cache_init(optee, arg_cache_flags);
1722 	mutex_init(&optee->rpmb_dev_mutex);
1723 
1724 	platform_set_drvdata(pdev, optee);
1725 	ctx = teedev_open(optee->teedev);
1726 	if (IS_ERR(ctx)) {
1727 		rc = PTR_ERR(ctx);
1728 		goto err_supp_uninit;
1729 	}
1730 	optee->ctx = ctx;
1731 	rc = optee_notif_init(optee, max_notif_value);
1732 	if (rc)
1733 		goto err_close_ctx;
1734 
1735 	if (sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1736 		unsigned int irq;
1737 
1738 		rc = platform_get_irq(pdev, 0);
1739 		if (rc < 0) {
1740 			pr_err("platform_get_irq: ret %d\n", rc);
1741 			goto err_notif_uninit;
1742 		}
1743 		irq = rc;
1744 
1745 		rc = optee_smc_notif_init_irq(optee, irq);
1746 		if (rc) {
1747 			irq_dispose_mapping(irq);
1748 			goto err_notif_uninit;
1749 		}
1750 		enable_async_notif(optee->smc.invoke_fn);
1751 		pr_info("Asynchronous notifications enabled\n");
1752 	}
1753 
1754 	/*
1755 	 * Ensure that there are no pre-existing shm objects before enabling
1756 	 * the shm cache so that there's no chance of receiving an invalid
1757 	 * address during shutdown. This could occur, for example, if we're
1758 	 * kexec booting from an older kernel that did not properly cleanup the
1759 	 * shm cache.
1760 	 */
1761 	optee_disable_unmapped_shm_cache(optee);
1762 
1763 	/*
1764 	 * Only enable the shm cache in case we're not able to pass the RPC
1765 	 * arg struct right after the normal arg struct.
1766 	 */
1767 	if (!optee->rpc_param_count)
1768 		optee_enable_shm_cache(optee);
1769 
1770 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1771 		pr_info("dynamic shared memory is enabled\n");
1772 
1773 	rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES);
1774 	if (rc)
1775 		goto err_disable_shm_cache;
1776 
1777 	INIT_WORK(&optee->rpmb_scan_bus_work, optee_bus_scan_rpmb);
1778 	optee->rpmb_intf.notifier_call = optee_rpmb_intf_rdev;
1779 	blocking_notifier_chain_register(&optee_rpmb_intf_added,
1780 					 &optee->rpmb_intf);
1781 	pr_info("initialized driver\n");
1782 	return 0;
1783 
1784 err_disable_shm_cache:
1785 	if (!optee->rpc_param_count)
1786 		optee_disable_shm_cache(optee);
1787 	optee_smc_notif_uninit_irq(optee);
1788 	optee_unregister_devices();
1789 err_notif_uninit:
1790 	optee_notif_uninit(optee);
1791 err_close_ctx:
1792 	teedev_close_context(ctx);
1793 err_supp_uninit:
1794 	rpmb_dev_put(optee->rpmb_dev);
1795 	mutex_destroy(&optee->rpmb_dev_mutex);
1796 	optee_shm_arg_cache_uninit(optee);
1797 	optee_supp_uninit(&optee->supp);
1798 	mutex_destroy(&optee->call_queue.mutex);
1799 err_unreg_supp_teedev:
1800 	tee_device_unregister(optee->supp_teedev);
1801 err_unreg_teedev:
1802 	tee_device_unregister(optee->teedev);
1803 err_free_optee:
1804 	kfree(optee);
1805 err_free_pool:
1806 	tee_shm_pool_free(pool);
1807 	if (memremaped_shm)
1808 		memunmap(memremaped_shm);
1809 	return rc;
1810 }
1811 
1812 static const struct of_device_id optee_dt_match[] = {
1813 	{ .compatible = "linaro,optee-tz" },
1814 	{},
1815 };
1816 MODULE_DEVICE_TABLE(of, optee_dt_match);
1817 
1818 static struct platform_driver optee_driver = {
1819 	.probe  = optee_probe,
1820 	.remove = optee_smc_remove,
1821 	.shutdown = optee_shutdown,
1822 	.driver = {
1823 		.name = "optee",
1824 		.of_match_table = optee_dt_match,
1825 	},
1826 };
1827 
optee_smc_abi_register(void)1828 int optee_smc_abi_register(void)
1829 {
1830 	return platform_driver_register(&optee_driver);
1831 }
1832 
optee_smc_abi_unregister(void)1833 void optee_smc_abi_unregister(void)
1834 {
1835 	platform_driver_unregister(&optee_driver);
1836 }
1837