1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * PCI Peer 2 Peer DMA support.
4 *
5 * Copyright (c) 2016-2018, Logan Gunthorpe
6 * Copyright (c) 2016-2017, Microsemi Corporation
7 * Copyright (c) 2017, Christoph Hellwig
8 * Copyright (c) 2018, Eideticom Inc.
9 */
10
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/pci-p2pdma.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/genalloc.h>
18 #include <linux/memremap.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/random.h>
21 #include <linux/seq_buf.h>
22 #include <linux/xarray.h>
23
24 struct pci_p2pdma {
25 struct gen_pool *pool;
26 bool p2pmem_published;
27 struct xarray map_types;
28 };
29
30 struct pci_p2pdma_pagemap {
31 struct pci_dev *provider;
32 u64 bus_offset;
33 struct dev_pagemap pgmap;
34 };
35
to_p2p_pgmap(struct dev_pagemap * pgmap)36 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap)
37 {
38 return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap);
39 }
40
size_show(struct device * dev,struct device_attribute * attr,char * buf)41 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
42 char *buf)
43 {
44 struct pci_dev *pdev = to_pci_dev(dev);
45 struct pci_p2pdma *p2pdma;
46 size_t size = 0;
47
48 rcu_read_lock();
49 p2pdma = rcu_dereference(pdev->p2pdma);
50 if (p2pdma && p2pdma->pool)
51 size = gen_pool_size(p2pdma->pool);
52 rcu_read_unlock();
53
54 return sysfs_emit(buf, "%zd\n", size);
55 }
56 static DEVICE_ATTR_RO(size);
57
available_show(struct device * dev,struct device_attribute * attr,char * buf)58 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
59 char *buf)
60 {
61 struct pci_dev *pdev = to_pci_dev(dev);
62 struct pci_p2pdma *p2pdma;
63 size_t avail = 0;
64
65 rcu_read_lock();
66 p2pdma = rcu_dereference(pdev->p2pdma);
67 if (p2pdma && p2pdma->pool)
68 avail = gen_pool_avail(p2pdma->pool);
69 rcu_read_unlock();
70
71 return sysfs_emit(buf, "%zd\n", avail);
72 }
73 static DEVICE_ATTR_RO(available);
74
published_show(struct device * dev,struct device_attribute * attr,char * buf)75 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
76 char *buf)
77 {
78 struct pci_dev *pdev = to_pci_dev(dev);
79 struct pci_p2pdma *p2pdma;
80 bool published = false;
81
82 rcu_read_lock();
83 p2pdma = rcu_dereference(pdev->p2pdma);
84 if (p2pdma)
85 published = p2pdma->p2pmem_published;
86 rcu_read_unlock();
87
88 return sysfs_emit(buf, "%d\n", published);
89 }
90 static DEVICE_ATTR_RO(published);
91
p2pmem_alloc_mmap(struct file * filp,struct kobject * kobj,const struct bin_attribute * attr,struct vm_area_struct * vma)92 static int p2pmem_alloc_mmap(struct file *filp, struct kobject *kobj,
93 const struct bin_attribute *attr, struct vm_area_struct *vma)
94 {
95 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
96 size_t len = vma->vm_end - vma->vm_start;
97 struct pci_p2pdma *p2pdma;
98 struct percpu_ref *ref;
99 unsigned long vaddr;
100 void *kaddr;
101 int ret;
102
103 /* prevent private mappings from being established */
104 if ((vma->vm_flags & VM_MAYSHARE) != VM_MAYSHARE) {
105 pci_info_ratelimited(pdev,
106 "%s: fail, attempted private mapping\n",
107 current->comm);
108 return -EINVAL;
109 }
110
111 if (vma->vm_pgoff) {
112 pci_info_ratelimited(pdev,
113 "%s: fail, attempted mapping with non-zero offset\n",
114 current->comm);
115 return -EINVAL;
116 }
117
118 rcu_read_lock();
119 p2pdma = rcu_dereference(pdev->p2pdma);
120 if (!p2pdma) {
121 ret = -ENODEV;
122 goto out;
123 }
124
125 kaddr = (void *)gen_pool_alloc_owner(p2pdma->pool, len, (void **)&ref);
126 if (!kaddr) {
127 ret = -ENOMEM;
128 goto out;
129 }
130
131 /*
132 * vm_insert_page() can sleep, so a reference is taken to mapping
133 * such that rcu_read_unlock() can be done before inserting the
134 * pages
135 */
136 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) {
137 ret = -ENODEV;
138 goto out_free_mem;
139 }
140 rcu_read_unlock();
141
142 for (vaddr = vma->vm_start; vaddr < vma->vm_end; vaddr += PAGE_SIZE) {
143 struct page *page = virt_to_page(kaddr);
144
145 /*
146 * Initialise the refcount for the freshly allocated page. As
147 * we have just allocated the page no one else should be
148 * using it.
149 */
150 VM_WARN_ON_ONCE_PAGE(!page_ref_count(page), page);
151 set_page_count(page, 1);
152 ret = vm_insert_page(vma, vaddr, page);
153 if (ret) {
154 gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len);
155 return ret;
156 }
157 percpu_ref_get(ref);
158 put_page(page);
159 kaddr += PAGE_SIZE;
160 len -= PAGE_SIZE;
161 }
162
163 percpu_ref_put(ref);
164
165 return 0;
166 out_free_mem:
167 gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len);
168 out:
169 rcu_read_unlock();
170 return ret;
171 }
172
173 static const struct bin_attribute p2pmem_alloc_attr = {
174 .attr = { .name = "allocate", .mode = 0660 },
175 .mmap = p2pmem_alloc_mmap,
176 /*
177 * Some places where we want to call mmap (ie. python) will check
178 * that the file size is greater than the mmap size before allowing
179 * the mmap to continue. To work around this, just set the size
180 * to be very large.
181 */
182 .size = SZ_1T,
183 };
184
185 static struct attribute *p2pmem_attrs[] = {
186 &dev_attr_size.attr,
187 &dev_attr_available.attr,
188 &dev_attr_published.attr,
189 NULL,
190 };
191
192 static const struct bin_attribute *const p2pmem_bin_attrs[] = {
193 &p2pmem_alloc_attr,
194 NULL,
195 };
196
197 static const struct attribute_group p2pmem_group = {
198 .attrs = p2pmem_attrs,
199 .bin_attrs_new = p2pmem_bin_attrs,
200 .name = "p2pmem",
201 };
202
p2pdma_page_free(struct page * page)203 static void p2pdma_page_free(struct page *page)
204 {
205 struct pci_p2pdma_pagemap *pgmap = to_p2p_pgmap(page_pgmap(page));
206 /* safe to dereference while a reference is held to the percpu ref */
207 struct pci_p2pdma *p2pdma =
208 rcu_dereference_protected(pgmap->provider->p2pdma, 1);
209 struct percpu_ref *ref;
210
211 gen_pool_free_owner(p2pdma->pool, (uintptr_t)page_to_virt(page),
212 PAGE_SIZE, (void **)&ref);
213 percpu_ref_put(ref);
214 }
215
216 static const struct dev_pagemap_ops p2pdma_pgmap_ops = {
217 .page_free = p2pdma_page_free,
218 };
219
pci_p2pdma_release(void * data)220 static void pci_p2pdma_release(void *data)
221 {
222 struct pci_dev *pdev = data;
223 struct pci_p2pdma *p2pdma;
224
225 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
226 if (!p2pdma)
227 return;
228
229 /* Flush and disable pci_alloc_p2p_mem() */
230 pdev->p2pdma = NULL;
231 synchronize_rcu();
232
233 gen_pool_destroy(p2pdma->pool);
234 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
235 xa_destroy(&p2pdma->map_types);
236 }
237
pci_p2pdma_setup(struct pci_dev * pdev)238 static int pci_p2pdma_setup(struct pci_dev *pdev)
239 {
240 int error = -ENOMEM;
241 struct pci_p2pdma *p2p;
242
243 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
244 if (!p2p)
245 return -ENOMEM;
246
247 xa_init(&p2p->map_types);
248
249 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
250 if (!p2p->pool)
251 goto out;
252
253 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
254 if (error)
255 goto out_pool_destroy;
256
257 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
258 if (error)
259 goto out_pool_destroy;
260
261 rcu_assign_pointer(pdev->p2pdma, p2p);
262 return 0;
263
264 out_pool_destroy:
265 gen_pool_destroy(p2p->pool);
266 out:
267 devm_kfree(&pdev->dev, p2p);
268 return error;
269 }
270
pci_p2pdma_unmap_mappings(void * data)271 static void pci_p2pdma_unmap_mappings(void *data)
272 {
273 struct pci_dev *pdev = data;
274
275 /*
276 * Removing the alloc attribute from sysfs will call
277 * unmap_mapping_range() on the inode, teardown any existing userspace
278 * mappings and prevent new ones from being created.
279 */
280 sysfs_remove_file_from_group(&pdev->dev.kobj, &p2pmem_alloc_attr.attr,
281 p2pmem_group.name);
282 }
283
284 /**
285 * pci_p2pdma_add_resource - add memory for use as p2p memory
286 * @pdev: the device to add the memory to
287 * @bar: PCI BAR to add
288 * @size: size of the memory to add, may be zero to use the whole BAR
289 * @offset: offset into the PCI BAR
290 *
291 * The memory will be given ZONE_DEVICE struct pages so that it may
292 * be used with any DMA request.
293 */
pci_p2pdma_add_resource(struct pci_dev * pdev,int bar,size_t size,u64 offset)294 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
295 u64 offset)
296 {
297 struct pci_p2pdma_pagemap *p2p_pgmap;
298 struct dev_pagemap *pgmap;
299 struct pci_p2pdma *p2pdma;
300 void *addr;
301 int error;
302
303 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
304 return -EINVAL;
305
306 if (offset >= pci_resource_len(pdev, bar))
307 return -EINVAL;
308
309 if (!size)
310 size = pci_resource_len(pdev, bar) - offset;
311
312 if (size + offset > pci_resource_len(pdev, bar))
313 return -EINVAL;
314
315 if (!pdev->p2pdma) {
316 error = pci_p2pdma_setup(pdev);
317 if (error)
318 return error;
319 }
320
321 p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL);
322 if (!p2p_pgmap)
323 return -ENOMEM;
324
325 pgmap = &p2p_pgmap->pgmap;
326 pgmap->range.start = pci_resource_start(pdev, bar) + offset;
327 pgmap->range.end = pgmap->range.start + size - 1;
328 pgmap->nr_range = 1;
329 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
330 pgmap->ops = &p2pdma_pgmap_ops;
331
332 p2p_pgmap->provider = pdev;
333 p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) -
334 pci_resource_start(pdev, bar);
335
336 addr = devm_memremap_pages(&pdev->dev, pgmap);
337 if (IS_ERR(addr)) {
338 error = PTR_ERR(addr);
339 goto pgmap_free;
340 }
341
342 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_unmap_mappings,
343 pdev);
344 if (error)
345 goto pages_free;
346
347 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
348 error = gen_pool_add_owner(p2pdma->pool, (unsigned long)addr,
349 pci_bus_address(pdev, bar) + offset,
350 range_len(&pgmap->range), dev_to_node(&pdev->dev),
351 &pgmap->ref);
352 if (error)
353 goto pages_free;
354
355 pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n",
356 pgmap->range.start, pgmap->range.end);
357
358 return 0;
359
360 pages_free:
361 devm_memunmap_pages(&pdev->dev, pgmap);
362 pgmap_free:
363 devm_kfree(&pdev->dev, pgmap);
364 return error;
365 }
366 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
367
368 /*
369 * Note this function returns the parent PCI device with a
370 * reference taken. It is the caller's responsibility to drop
371 * the reference.
372 */
find_parent_pci_dev(struct device * dev)373 static struct pci_dev *find_parent_pci_dev(struct device *dev)
374 {
375 struct device *parent;
376
377 dev = get_device(dev);
378
379 while (dev) {
380 if (dev_is_pci(dev))
381 return to_pci_dev(dev);
382
383 parent = get_device(dev->parent);
384 put_device(dev);
385 dev = parent;
386 }
387
388 return NULL;
389 }
390
391 /*
392 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
393 * TLPs upstream via ACS. Returns 1 if the packets will be redirected
394 * upstream, 0 otherwise.
395 */
pci_bridge_has_acs_redir(struct pci_dev * pdev)396 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
397 {
398 int pos;
399 u16 ctrl;
400
401 pos = pdev->acs_cap;
402 if (!pos)
403 return 0;
404
405 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
406
407 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
408 return 1;
409
410 return 0;
411 }
412
seq_buf_print_bus_devfn(struct seq_buf * buf,struct pci_dev * pdev)413 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
414 {
415 if (!buf)
416 return;
417
418 seq_buf_printf(buf, "%s;", pci_name(pdev));
419 }
420
cpu_supports_p2pdma(void)421 static bool cpu_supports_p2pdma(void)
422 {
423 #ifdef CONFIG_X86
424 struct cpuinfo_x86 *c = &cpu_data(0);
425
426 /* Any AMD CPU whose family ID is Zen or newer supports p2pdma */
427 if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17)
428 return true;
429 #endif
430
431 return false;
432 }
433
434 static const struct pci_p2pdma_whitelist_entry {
435 unsigned short vendor;
436 unsigned short device;
437 enum {
438 REQ_SAME_HOST_BRIDGE = 1 << 0,
439 } flags;
440 } pci_p2pdma_whitelist[] = {
441 /* Intel Xeon E5/Core i7 */
442 {PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE},
443 {PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE},
444 /* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */
445 {PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE},
446 {PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE},
447 /* Intel Skylake-E */
448 {PCI_VENDOR_ID_INTEL, 0x2030, 0},
449 {PCI_VENDOR_ID_INTEL, 0x2031, 0},
450 {PCI_VENDOR_ID_INTEL, 0x2032, 0},
451 {PCI_VENDOR_ID_INTEL, 0x2033, 0},
452 {PCI_VENDOR_ID_INTEL, 0x2020, 0},
453 {PCI_VENDOR_ID_INTEL, 0x09a2, 0},
454 {}
455 };
456
457 /*
458 * If the first device on host's root bus is either devfn 00.0 or a PCIe
459 * Root Port, return it. Otherwise return NULL.
460 *
461 * We often use a devfn 00.0 "host bridge" in the pci_p2pdma_whitelist[]
462 * (though there is no PCI/PCIe requirement for such a device). On some
463 * platforms, e.g., Intel Skylake, there is no such host bridge device, and
464 * pci_p2pdma_whitelist[] may contain a Root Port at any devfn.
465 *
466 * This function is similar to pci_get_slot(host->bus, 0), but it does
467 * not take the pci_bus_sem lock since __host_bridge_whitelist() must not
468 * sleep.
469 *
470 * For this to be safe, the caller should hold a reference to a device on the
471 * bridge, which should ensure the host_bridge device will not be freed
472 * or removed from the head of the devices list.
473 */
pci_host_bridge_dev(struct pci_host_bridge * host)474 static struct pci_dev *pci_host_bridge_dev(struct pci_host_bridge *host)
475 {
476 struct pci_dev *root;
477
478 root = list_first_entry_or_null(&host->bus->devices,
479 struct pci_dev, bus_list);
480
481 if (!root)
482 return NULL;
483
484 if (root->devfn == PCI_DEVFN(0, 0))
485 return root;
486
487 if (pci_pcie_type(root) == PCI_EXP_TYPE_ROOT_PORT)
488 return root;
489
490 return NULL;
491 }
492
__host_bridge_whitelist(struct pci_host_bridge * host,bool same_host_bridge,bool warn)493 static bool __host_bridge_whitelist(struct pci_host_bridge *host,
494 bool same_host_bridge, bool warn)
495 {
496 struct pci_dev *root = pci_host_bridge_dev(host);
497 const struct pci_p2pdma_whitelist_entry *entry;
498 unsigned short vendor, device;
499
500 if (!root)
501 return false;
502
503 vendor = root->vendor;
504 device = root->device;
505
506 for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) {
507 if (vendor != entry->vendor || device != entry->device)
508 continue;
509 if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge)
510 return false;
511
512 return true;
513 }
514
515 if (warn)
516 pci_warn(root, "Host bridge not in P2PDMA whitelist: %04x:%04x\n",
517 vendor, device);
518
519 return false;
520 }
521
522 /*
523 * If we can't find a common upstream bridge take a look at the root
524 * complex and compare it to a whitelist of known good hardware.
525 */
host_bridge_whitelist(struct pci_dev * a,struct pci_dev * b,bool warn)526 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b,
527 bool warn)
528 {
529 struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus);
530 struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus);
531
532 if (host_a == host_b)
533 return __host_bridge_whitelist(host_a, true, warn);
534
535 if (__host_bridge_whitelist(host_a, false, warn) &&
536 __host_bridge_whitelist(host_b, false, warn))
537 return true;
538
539 return false;
540 }
541
map_types_idx(struct pci_dev * client)542 static unsigned long map_types_idx(struct pci_dev *client)
543 {
544 return (pci_domain_nr(client->bus) << 16) | pci_dev_id(client);
545 }
546
547 /*
548 * Calculate the P2PDMA mapping type and distance between two PCI devices.
549 *
550 * If the two devices are the same PCI function, return
551 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 0.
552 *
553 * If they are two functions of the same device, return
554 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 2 (one hop up to the bridge,
555 * then one hop back down to another function of the same device).
556 *
557 * In the case where two devices are connected to the same PCIe switch,
558 * return a distance of 4. This corresponds to the following PCI tree:
559 *
560 * -+ Root Port
561 * \+ Switch Upstream Port
562 * +-+ Switch Downstream Port 0
563 * + \- Device A
564 * \-+ Switch Downstream Port 1
565 * \- Device B
566 *
567 * The distance is 4 because we traverse from Device A to Downstream Port 0
568 * to the common Switch Upstream Port, back down to Downstream Port 1 and
569 * then to Device B. The mapping type returned depends on the ACS
570 * redirection setting of the ports along the path.
571 *
572 * If ACS redirect is set on any port in the path, traffic between the
573 * devices will go through the host bridge, so return
574 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; otherwise return
575 * PCI_P2PDMA_MAP_BUS_ADDR.
576 *
577 * Any two devices that have a data path that goes through the host bridge
578 * will consult a whitelist. If the host bridge is in the whitelist, return
579 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE with the distance set to the number of
580 * ports per above. If the device is not in the whitelist, return
581 * PCI_P2PDMA_MAP_NOT_SUPPORTED.
582 */
583 static enum pci_p2pdma_map_type
calc_map_type_and_dist(struct pci_dev * provider,struct pci_dev * client,int * dist,bool verbose)584 calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client,
585 int *dist, bool verbose)
586 {
587 enum pci_p2pdma_map_type map_type = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
588 struct pci_dev *a = provider, *b = client, *bb;
589 bool acs_redirects = false;
590 struct pci_p2pdma *p2pdma;
591 struct seq_buf acs_list;
592 int acs_cnt = 0;
593 int dist_a = 0;
594 int dist_b = 0;
595 char buf[128];
596
597 seq_buf_init(&acs_list, buf, sizeof(buf));
598
599 /*
600 * Note, we don't need to take references to devices returned by
601 * pci_upstream_bridge() seeing we hold a reference to a child
602 * device which will already hold a reference to the upstream bridge.
603 */
604 while (a) {
605 dist_b = 0;
606
607 if (pci_bridge_has_acs_redir(a)) {
608 seq_buf_print_bus_devfn(&acs_list, a);
609 acs_cnt++;
610 }
611
612 bb = b;
613
614 while (bb) {
615 if (a == bb)
616 goto check_b_path_acs;
617
618 bb = pci_upstream_bridge(bb);
619 dist_b++;
620 }
621
622 a = pci_upstream_bridge(a);
623 dist_a++;
624 }
625
626 *dist = dist_a + dist_b;
627 goto map_through_host_bridge;
628
629 check_b_path_acs:
630 bb = b;
631
632 while (bb) {
633 if (a == bb)
634 break;
635
636 if (pci_bridge_has_acs_redir(bb)) {
637 seq_buf_print_bus_devfn(&acs_list, bb);
638 acs_cnt++;
639 }
640
641 bb = pci_upstream_bridge(bb);
642 }
643
644 *dist = dist_a + dist_b;
645
646 if (!acs_cnt) {
647 map_type = PCI_P2PDMA_MAP_BUS_ADDR;
648 goto done;
649 }
650
651 if (verbose) {
652 acs_list.buffer[acs_list.len-1] = 0; /* drop final semicolon */
653 pci_warn(client, "ACS redirect is set between the client and provider (%s)\n",
654 pci_name(provider));
655 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
656 acs_list.buffer);
657 }
658 acs_redirects = true;
659
660 map_through_host_bridge:
661 if (!cpu_supports_p2pdma() &&
662 !host_bridge_whitelist(provider, client, acs_redirects)) {
663 if (verbose)
664 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n",
665 pci_name(provider));
666 map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
667 }
668 done:
669 rcu_read_lock();
670 p2pdma = rcu_dereference(provider->p2pdma);
671 if (p2pdma)
672 xa_store(&p2pdma->map_types, map_types_idx(client),
673 xa_mk_value(map_type), GFP_ATOMIC);
674 rcu_read_unlock();
675 return map_type;
676 }
677
678 /**
679 * pci_p2pdma_distance_many - Determine the cumulative distance between
680 * a p2pdma provider and the clients in use.
681 * @provider: p2pdma provider to check against the client list
682 * @clients: array of devices to check (NULL-terminated)
683 * @num_clients: number of clients in the array
684 * @verbose: if true, print warnings for devices when we return -1
685 *
686 * Returns -1 if any of the clients are not compatible, otherwise returns a
687 * positive number where a lower number is the preferable choice. (If there's
688 * one client that's the same as the provider it will return 0, which is best
689 * choice).
690 *
691 * "compatible" means the provider and the clients are either all behind
692 * the same PCI root port or the host bridges connected to each of the devices
693 * are listed in the 'pci_p2pdma_whitelist'.
694 */
pci_p2pdma_distance_many(struct pci_dev * provider,struct device ** clients,int num_clients,bool verbose)695 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
696 int num_clients, bool verbose)
697 {
698 enum pci_p2pdma_map_type map;
699 bool not_supported = false;
700 struct pci_dev *pci_client;
701 int total_dist = 0;
702 int i, distance;
703
704 if (num_clients == 0)
705 return -1;
706
707 for (i = 0; i < num_clients; i++) {
708 pci_client = find_parent_pci_dev(clients[i]);
709 if (!pci_client) {
710 if (verbose)
711 dev_warn(clients[i],
712 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
713 return -1;
714 }
715
716 map = calc_map_type_and_dist(provider, pci_client, &distance,
717 verbose);
718
719 pci_dev_put(pci_client);
720
721 if (map == PCI_P2PDMA_MAP_NOT_SUPPORTED)
722 not_supported = true;
723
724 if (not_supported && !verbose)
725 break;
726
727 total_dist += distance;
728 }
729
730 if (not_supported)
731 return -1;
732
733 return total_dist;
734 }
735 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
736
737 /**
738 * pci_has_p2pmem - check if a given PCI device has published any p2pmem
739 * @pdev: PCI device to check
740 */
pci_has_p2pmem(struct pci_dev * pdev)741 bool pci_has_p2pmem(struct pci_dev *pdev)
742 {
743 struct pci_p2pdma *p2pdma;
744 bool res;
745
746 rcu_read_lock();
747 p2pdma = rcu_dereference(pdev->p2pdma);
748 res = p2pdma && p2pdma->p2pmem_published;
749 rcu_read_unlock();
750
751 return res;
752 }
753 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
754
755 /**
756 * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with
757 * the specified list of clients and shortest distance
758 * @clients: array of devices to check (NULL-terminated)
759 * @num_clients: number of client devices in the list
760 *
761 * If multiple devices are behind the same switch, the one "closest" to the
762 * client devices in use will be chosen first. (So if one of the providers is
763 * the same as one of the clients, that provider will be used ahead of any
764 * other providers that are unrelated). If multiple providers are an equal
765 * distance away, one will be chosen at random.
766 *
767 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
768 * to return the reference) or NULL if no compatible device is found. The
769 * found provider will also be assigned to the client list.
770 */
pci_p2pmem_find_many(struct device ** clients,int num_clients)771 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
772 {
773 struct pci_dev *pdev = NULL;
774 int distance;
775 int closest_distance = INT_MAX;
776 struct pci_dev **closest_pdevs;
777 int dev_cnt = 0;
778 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
779 int i;
780
781 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
782 if (!closest_pdevs)
783 return NULL;
784
785 for_each_pci_dev(pdev) {
786 if (!pci_has_p2pmem(pdev))
787 continue;
788
789 distance = pci_p2pdma_distance_many(pdev, clients,
790 num_clients, false);
791 if (distance < 0 || distance > closest_distance)
792 continue;
793
794 if (distance == closest_distance && dev_cnt >= max_devs)
795 continue;
796
797 if (distance < closest_distance) {
798 for (i = 0; i < dev_cnt; i++)
799 pci_dev_put(closest_pdevs[i]);
800
801 dev_cnt = 0;
802 closest_distance = distance;
803 }
804
805 closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
806 }
807
808 if (dev_cnt)
809 pdev = pci_dev_get(closest_pdevs[get_random_u32_below(dev_cnt)]);
810
811 for (i = 0; i < dev_cnt; i++)
812 pci_dev_put(closest_pdevs[i]);
813
814 kfree(closest_pdevs);
815 return pdev;
816 }
817 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
818
819 /**
820 * pci_alloc_p2pmem - allocate peer-to-peer DMA memory
821 * @pdev: the device to allocate memory from
822 * @size: number of bytes to allocate
823 *
824 * Returns the allocated memory or NULL on error.
825 */
pci_alloc_p2pmem(struct pci_dev * pdev,size_t size)826 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
827 {
828 void *ret = NULL;
829 struct percpu_ref *ref;
830 struct pci_p2pdma *p2pdma;
831
832 /*
833 * Pairs with synchronize_rcu() in pci_p2pdma_release() to
834 * ensure pdev->p2pdma is non-NULL for the duration of the
835 * read-lock.
836 */
837 rcu_read_lock();
838 p2pdma = rcu_dereference(pdev->p2pdma);
839 if (unlikely(!p2pdma))
840 goto out;
841
842 ret = (void *)gen_pool_alloc_owner(p2pdma->pool, size, (void **) &ref);
843 if (!ret)
844 goto out;
845
846 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) {
847 gen_pool_free(p2pdma->pool, (unsigned long) ret, size);
848 ret = NULL;
849 }
850 out:
851 rcu_read_unlock();
852 return ret;
853 }
854 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
855
856 /**
857 * pci_free_p2pmem - free peer-to-peer DMA memory
858 * @pdev: the device the memory was allocated from
859 * @addr: address of the memory that was allocated
860 * @size: number of bytes that were allocated
861 */
pci_free_p2pmem(struct pci_dev * pdev,void * addr,size_t size)862 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
863 {
864 struct percpu_ref *ref;
865 struct pci_p2pdma *p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
866
867 gen_pool_free_owner(p2pdma->pool, (uintptr_t)addr, size,
868 (void **) &ref);
869 percpu_ref_put(ref);
870 }
871 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
872
873 /**
874 * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual
875 * address obtained with pci_alloc_p2pmem()
876 * @pdev: the device the memory was allocated from
877 * @addr: address of the memory that was allocated
878 */
pci_p2pmem_virt_to_bus(struct pci_dev * pdev,void * addr)879 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
880 {
881 struct pci_p2pdma *p2pdma;
882
883 if (!addr)
884 return 0;
885
886 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
887 if (!p2pdma)
888 return 0;
889
890 /*
891 * Note: when we added the memory to the pool we used the PCI
892 * bus address as the physical address. So gen_pool_virt_to_phys()
893 * actually returns the bus address despite the misleading name.
894 */
895 return gen_pool_virt_to_phys(p2pdma->pool, (unsigned long)addr);
896 }
897 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
898
899 /**
900 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
901 * @pdev: the device to allocate memory from
902 * @nents: the number of SG entries in the list
903 * @length: number of bytes to allocate
904 *
905 * Return: %NULL on error or &struct scatterlist pointer and @nents on success
906 */
pci_p2pmem_alloc_sgl(struct pci_dev * pdev,unsigned int * nents,u32 length)907 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
908 unsigned int *nents, u32 length)
909 {
910 struct scatterlist *sg;
911 void *addr;
912
913 sg = kmalloc(sizeof(*sg), GFP_KERNEL);
914 if (!sg)
915 return NULL;
916
917 sg_init_table(sg, 1);
918
919 addr = pci_alloc_p2pmem(pdev, length);
920 if (!addr)
921 goto out_free_sg;
922
923 sg_set_buf(sg, addr, length);
924 *nents = 1;
925 return sg;
926
927 out_free_sg:
928 kfree(sg);
929 return NULL;
930 }
931 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
932
933 /**
934 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
935 * @pdev: the device to allocate memory from
936 * @sgl: the allocated scatterlist
937 */
pci_p2pmem_free_sgl(struct pci_dev * pdev,struct scatterlist * sgl)938 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
939 {
940 struct scatterlist *sg;
941 int count;
942
943 for_each_sg(sgl, sg, INT_MAX, count) {
944 if (!sg)
945 break;
946
947 pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
948 }
949 kfree(sgl);
950 }
951 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
952
953 /**
954 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
955 * other devices with pci_p2pmem_find()
956 * @pdev: the device with peer-to-peer DMA memory to publish
957 * @publish: set to true to publish the memory, false to unpublish it
958 *
959 * Published memory can be used by other PCI device drivers for
960 * peer-2-peer DMA operations. Non-published memory is reserved for
961 * exclusive use of the device driver that registers the peer-to-peer
962 * memory.
963 */
pci_p2pmem_publish(struct pci_dev * pdev,bool publish)964 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
965 {
966 struct pci_p2pdma *p2pdma;
967
968 rcu_read_lock();
969 p2pdma = rcu_dereference(pdev->p2pdma);
970 if (p2pdma)
971 p2pdma->p2pmem_published = publish;
972 rcu_read_unlock();
973 }
974 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
975
pci_p2pdma_map_type(struct dev_pagemap * pgmap,struct device * dev)976 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct dev_pagemap *pgmap,
977 struct device *dev)
978 {
979 enum pci_p2pdma_map_type type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
980 struct pci_dev *provider = to_p2p_pgmap(pgmap)->provider;
981 struct pci_dev *client;
982 struct pci_p2pdma *p2pdma;
983 int dist;
984
985 if (!provider->p2pdma)
986 return PCI_P2PDMA_MAP_NOT_SUPPORTED;
987
988 if (!dev_is_pci(dev))
989 return PCI_P2PDMA_MAP_NOT_SUPPORTED;
990
991 client = to_pci_dev(dev);
992
993 rcu_read_lock();
994 p2pdma = rcu_dereference(provider->p2pdma);
995
996 if (p2pdma)
997 type = xa_to_value(xa_load(&p2pdma->map_types,
998 map_types_idx(client)));
999 rcu_read_unlock();
1000
1001 if (type == PCI_P2PDMA_MAP_UNKNOWN)
1002 return calc_map_type_and_dist(provider, client, &dist, true);
1003
1004 return type;
1005 }
1006
__pci_p2pdma_update_state(struct pci_p2pdma_map_state * state,struct device * dev,struct page * page)1007 void __pci_p2pdma_update_state(struct pci_p2pdma_map_state *state,
1008 struct device *dev, struct page *page)
1009 {
1010 state->pgmap = page_pgmap(page);
1011 state->map = pci_p2pdma_map_type(state->pgmap, dev);
1012 state->bus_off = to_p2p_pgmap(state->pgmap)->bus_offset;
1013 }
1014
1015 /**
1016 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
1017 * to enable p2pdma
1018 * @page: contents of the value to be stored
1019 * @p2p_dev: returns the PCI device that was selected to be used
1020 * (if one was specified in the stored value)
1021 * @use_p2pdma: returns whether to enable p2pdma or not
1022 *
1023 * Parses an attribute value to decide whether to enable p2pdma.
1024 * The value can select a PCI device (using its full BDF device
1025 * name) or a boolean (in any format kstrtobool() accepts). A false
1026 * value disables p2pdma, a true value expects the caller
1027 * to automatically find a compatible device and specifying a PCI device
1028 * expects the caller to use the specific provider.
1029 *
1030 * pci_p2pdma_enable_show() should be used as the show operation for
1031 * the attribute.
1032 *
1033 * Returns 0 on success
1034 */
pci_p2pdma_enable_store(const char * page,struct pci_dev ** p2p_dev,bool * use_p2pdma)1035 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
1036 bool *use_p2pdma)
1037 {
1038 struct device *dev;
1039
1040 dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
1041 if (dev) {
1042 *use_p2pdma = true;
1043 *p2p_dev = to_pci_dev(dev);
1044
1045 if (!pci_has_p2pmem(*p2p_dev)) {
1046 pci_err(*p2p_dev,
1047 "PCI device has no peer-to-peer memory: %s\n",
1048 page);
1049 pci_dev_put(*p2p_dev);
1050 return -ENODEV;
1051 }
1052
1053 return 0;
1054 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
1055 /*
1056 * If the user enters a PCI device that doesn't exist
1057 * like "0000:01:00.1", we don't want kstrtobool to think
1058 * it's a '0' when it's clearly not what the user wanted.
1059 * So we require 0's and 1's to be exactly one character.
1060 */
1061 } else if (!kstrtobool(page, use_p2pdma)) {
1062 return 0;
1063 }
1064
1065 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
1066 return -ENODEV;
1067 }
1068 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
1069
1070 /**
1071 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
1072 * whether p2pdma is enabled
1073 * @page: contents of the stored value
1074 * @p2p_dev: the selected p2p device (NULL if no device is selected)
1075 * @use_p2pdma: whether p2pdma has been enabled
1076 *
1077 * Attributes that use pci_p2pdma_enable_store() should use this function
1078 * to show the value of the attribute.
1079 *
1080 * Returns 0 on success
1081 */
pci_p2pdma_enable_show(char * page,struct pci_dev * p2p_dev,bool use_p2pdma)1082 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
1083 bool use_p2pdma)
1084 {
1085 if (!use_p2pdma)
1086 return sprintf(page, "0\n");
1087
1088 if (!p2p_dev)
1089 return sprintf(page, "1\n");
1090
1091 return sprintf(page, "%s\n", pci_name(p2p_dev));
1092 }
1093 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
1094