1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */
26
27 /*
28 * Copyright (c) 2012 by Delphix. All rights reserved.
29 */
30
31 /*
32 * DTrace Process Control
33 *
34 * This file provides a set of routines that permit libdtrace and its clients
35 * to create and grab process handles using libproc, and to share these handles
36 * between library mechanisms that need libproc access, such as ustack(), and
37 * client mechanisms that need libproc access, such as dtrace(1M) -c and -p.
38 * The library provides several mechanisms in the libproc control layer:
39 *
40 * Reference Counting: The library code and client code can independently grab
41 * the same process handles without interfering with one another. Only when
42 * the reference count drops to zero and the handle is not being cached (see
43 * below for more information on caching) will Prelease() be called on it.
44 *
45 * Handle Caching: If a handle is grabbed PGRAB_RDONLY (e.g. by ustack()) and
46 * the reference count drops to zero, the handle is not immediately released.
47 * Instead, libproc handles are maintained on dph_lrulist in order from most-
48 * recently accessed to least-recently accessed. Idle handles are maintained
49 * until a pre-defined LRU cache limit is exceeded, permitting repeated calls
50 * to ustack() to avoid the overhead of releasing and re-grabbing processes.
51 *
52 * Process Control: For processes that are grabbed for control (~PGRAB_RDONLY)
53 * or created by dt_proc_create(), a control thread is created to provide
54 * callbacks on process exit and symbol table caching on dlopen()s.
55 *
56 * MT-Safety: Libproc is not MT-Safe, so dt_proc_lock() and dt_proc_unlock()
57 * are provided to synchronize access to the libproc handle between libdtrace
58 * code and client code and the control thread's use of the ps_prochandle.
59 *
60 * NOTE: MT-Safety is NOT provided for libdtrace itself, or for use of the
61 * dtrace_proc_grab/dtrace_proc_create mechanisms. Like all exported libdtrace
62 * calls, these are assumed to be MT-Unsafe. MT-Safety is ONLY provided for
63 * synchronization between libdtrace control threads and the client thread.
64 *
65 * The ps_prochandles themselves are maintained along with a dt_proc_t struct
66 * in a hash table indexed by PID. This provides basic locking and reference
67 * counting. The dt_proc_t is also maintained in LRU order on dph_lrulist.
68 * The dph_lrucnt and dph_lrulim count the number of cacheable processes and
69 * the current limit on the number of actively cached entries.
70 *
71 * The control thread for a process establishes breakpoints at the rtld_db
72 * locations of interest, updates mappings and symbol tables at these points,
73 * and handles exec and fork (by always following the parent). The control
74 * thread automatically exits when the process dies or control is lost.
75 *
76 * A simple notification mechanism is provided for libdtrace clients using
77 * dtrace_handle_proc() for notification of PS_UNDEAD or PS_LOST events. If
78 * such an event occurs, the dt_proc_t itself is enqueued on a notification
79 * list and the control thread broadcasts to dph_cv. dtrace_sleep() will wake
80 * up using this condition and will then call the client handler as necessary.
81 */
82
83 #include <sys/wait.h>
84 #include <sys/lwp.h>
85 #include <strings.h>
86 #include <signal.h>
87 #include <assert.h>
88 #include <errno.h>
89
90 #include <dt_proc.h>
91 #include <dt_pid.h>
92 #include <dt_impl.h>
93
94 #define IS_SYS_EXEC(w) (w == SYS_execve)
95 #define IS_SYS_FORK(w) (w == SYS_vfork || w == SYS_forksys)
96
97 static dt_bkpt_t *
dt_proc_bpcreate(dt_proc_t * dpr,uintptr_t addr,dt_bkpt_f * func,void * data)98 dt_proc_bpcreate(dt_proc_t *dpr, uintptr_t addr, dt_bkpt_f *func, void *data)
99 {
100 struct ps_prochandle *P = dpr->dpr_proc;
101 dt_bkpt_t *dbp;
102
103 assert(MUTEX_HELD(&dpr->dpr_lock));
104
105 if ((dbp = dt_zalloc(dpr->dpr_hdl, sizeof (dt_bkpt_t))) != NULL) {
106 dbp->dbp_func = func;
107 dbp->dbp_data = data;
108 dbp->dbp_addr = addr;
109
110 if (Psetbkpt(P, dbp->dbp_addr, &dbp->dbp_instr) == 0)
111 dbp->dbp_active = B_TRUE;
112
113 dt_list_append(&dpr->dpr_bps, dbp);
114 }
115
116 return (dbp);
117 }
118
119 static void
dt_proc_bpdestroy(dt_proc_t * dpr,int delbkpts)120 dt_proc_bpdestroy(dt_proc_t *dpr, int delbkpts)
121 {
122 int state = Pstate(dpr->dpr_proc);
123 dt_bkpt_t *dbp, *nbp;
124
125 assert(MUTEX_HELD(&dpr->dpr_lock));
126
127 for (dbp = dt_list_next(&dpr->dpr_bps); dbp != NULL; dbp = nbp) {
128 if (delbkpts && dbp->dbp_active &&
129 state != PS_LOST && state != PS_UNDEAD) {
130 (void) Pdelbkpt(dpr->dpr_proc,
131 dbp->dbp_addr, dbp->dbp_instr);
132 }
133 nbp = dt_list_next(dbp);
134 dt_list_delete(&dpr->dpr_bps, dbp);
135 dt_free(dpr->dpr_hdl, dbp);
136 }
137 }
138
139 static void
dt_proc_bpmatch(dtrace_hdl_t * dtp,dt_proc_t * dpr)140 dt_proc_bpmatch(dtrace_hdl_t *dtp, dt_proc_t *dpr)
141 {
142 const lwpstatus_t *psp = &Pstatus(dpr->dpr_proc)->pr_lwp;
143 dt_bkpt_t *dbp;
144
145 assert(MUTEX_HELD(&dpr->dpr_lock));
146
147 for (dbp = dt_list_next(&dpr->dpr_bps);
148 dbp != NULL; dbp = dt_list_next(dbp)) {
149 if (psp->pr_reg[R_PC] == dbp->dbp_addr)
150 break;
151 }
152
153 if (dbp == NULL) {
154 dt_dprintf("pid %d: spurious breakpoint wakeup for %lx\n",
155 (int)dpr->dpr_pid, (ulong_t)psp->pr_reg[R_PC]);
156 return;
157 }
158
159 dt_dprintf("pid %d: hit breakpoint at %lx (%lu)\n",
160 (int)dpr->dpr_pid, (ulong_t)dbp->dbp_addr, ++dbp->dbp_hits);
161
162 dbp->dbp_func(dtp, dpr, dbp->dbp_data);
163 (void) Pxecbkpt(dpr->dpr_proc, dbp->dbp_instr);
164 }
165
166 static void
dt_proc_bpenable(dt_proc_t * dpr)167 dt_proc_bpenable(dt_proc_t *dpr)
168 {
169 dt_bkpt_t *dbp;
170
171 assert(MUTEX_HELD(&dpr->dpr_lock));
172
173 for (dbp = dt_list_next(&dpr->dpr_bps);
174 dbp != NULL; dbp = dt_list_next(dbp)) {
175 if (!dbp->dbp_active && Psetbkpt(dpr->dpr_proc,
176 dbp->dbp_addr, &dbp->dbp_instr) == 0)
177 dbp->dbp_active = B_TRUE;
178 }
179
180 dt_dprintf("breakpoints enabled\n");
181 }
182
183 static void
dt_proc_bpdisable(dt_proc_t * dpr)184 dt_proc_bpdisable(dt_proc_t *dpr)
185 {
186 dt_bkpt_t *dbp;
187
188 assert(MUTEX_HELD(&dpr->dpr_lock));
189
190 for (dbp = dt_list_next(&dpr->dpr_bps);
191 dbp != NULL; dbp = dt_list_next(dbp)) {
192 if (dbp->dbp_active && Pdelbkpt(dpr->dpr_proc,
193 dbp->dbp_addr, dbp->dbp_instr) == 0)
194 dbp->dbp_active = B_FALSE;
195 }
196
197 dt_dprintf("breakpoints disabled\n");
198 }
199
200 static void
dt_proc_notify(dtrace_hdl_t * dtp,dt_proc_hash_t * dph,dt_proc_t * dpr,const char * msg)201 dt_proc_notify(dtrace_hdl_t *dtp, dt_proc_hash_t *dph, dt_proc_t *dpr,
202 const char *msg)
203 {
204 dt_proc_notify_t *dprn = dt_alloc(dtp, sizeof (dt_proc_notify_t));
205
206 if (dprn == NULL) {
207 dt_dprintf("failed to allocate notification for %d %s\n",
208 (int)dpr->dpr_pid, msg);
209 } else {
210 dprn->dprn_dpr = dpr;
211 if (msg == NULL)
212 dprn->dprn_errmsg[0] = '\0';
213 else
214 (void) strlcpy(dprn->dprn_errmsg, msg,
215 sizeof (dprn->dprn_errmsg));
216
217 (void) pthread_mutex_lock(&dph->dph_lock);
218
219 dprn->dprn_next = dph->dph_notify;
220 dph->dph_notify = dprn;
221
222 (void) pthread_cond_broadcast(&dph->dph_cv);
223 (void) pthread_mutex_unlock(&dph->dph_lock);
224 }
225 }
226
227 /*
228 * Check to see if the control thread was requested to stop when the victim
229 * process reached a particular event (why) rather than continuing the victim.
230 * If 'why' is set in the stop mask, we wait on dpr_cv for dt_proc_continue().
231 * If 'why' is not set, this function returns immediately and does nothing.
232 */
233 static void
dt_proc_stop(dt_proc_t * dpr,uint8_t why)234 dt_proc_stop(dt_proc_t *dpr, uint8_t why)
235 {
236 assert(MUTEX_HELD(&dpr->dpr_lock));
237 assert(why != DT_PROC_STOP_IDLE);
238
239 if (dpr->dpr_stop & why) {
240 dpr->dpr_stop |= DT_PROC_STOP_IDLE;
241 dpr->dpr_stop &= ~why;
242
243 (void) pthread_cond_broadcast(&dpr->dpr_cv);
244
245 /*
246 * We disable breakpoints while stopped to preserve the
247 * integrity of the program text for both our own disassembly
248 * and that of the kernel.
249 */
250 dt_proc_bpdisable(dpr);
251
252 while (dpr->dpr_stop & DT_PROC_STOP_IDLE)
253 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
254
255 dt_proc_bpenable(dpr);
256 }
257 }
258
259 /*ARGSUSED*/
260 static void
dt_proc_bpmain(dtrace_hdl_t * dtp,dt_proc_t * dpr,const char * fname)261 dt_proc_bpmain(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *fname)
262 {
263 dt_dprintf("pid %d: breakpoint at %s()\n", (int)dpr->dpr_pid, fname);
264 dt_proc_stop(dpr, DT_PROC_STOP_MAIN);
265 }
266
267 static void
dt_proc_rdevent(dtrace_hdl_t * dtp,dt_proc_t * dpr,const char * evname)268 dt_proc_rdevent(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *evname)
269 {
270 rd_event_msg_t rdm;
271 rd_err_e err;
272
273 if ((err = rd_event_getmsg(dpr->dpr_rtld, &rdm)) != RD_OK) {
274 dt_dprintf("pid %d: failed to get %s event message: %s\n",
275 (int)dpr->dpr_pid, evname, rd_errstr(err));
276 return;
277 }
278
279 dt_dprintf("pid %d: rtld event %s type=%d state %d\n",
280 (int)dpr->dpr_pid, evname, rdm.type, rdm.u.state);
281
282 switch (rdm.type) {
283 case RD_DLACTIVITY:
284 if (rdm.u.state != RD_CONSISTENT)
285 break;
286
287 Pupdate_syms(dpr->dpr_proc);
288 if (dt_pid_create_probes_module(dtp, dpr) != 0)
289 dt_proc_notify(dtp, dtp->dt_procs, dpr,
290 dpr->dpr_errmsg);
291
292 break;
293 case RD_PREINIT:
294 Pupdate_syms(dpr->dpr_proc);
295 dt_proc_stop(dpr, DT_PROC_STOP_PREINIT);
296 break;
297 case RD_POSTINIT:
298 Pupdate_syms(dpr->dpr_proc);
299 dt_proc_stop(dpr, DT_PROC_STOP_POSTINIT);
300 break;
301 }
302 }
303
304 static void
dt_proc_rdwatch(dt_proc_t * dpr,rd_event_e event,const char * evname)305 dt_proc_rdwatch(dt_proc_t *dpr, rd_event_e event, const char *evname)
306 {
307 rd_notify_t rdn;
308 rd_err_e err;
309
310 if ((err = rd_event_addr(dpr->dpr_rtld, event, &rdn)) != RD_OK) {
311 dt_dprintf("pid %d: failed to get event address for %s: %s\n",
312 (int)dpr->dpr_pid, evname, rd_errstr(err));
313 return;
314 }
315
316 if (rdn.type != RD_NOTIFY_BPT) {
317 dt_dprintf("pid %d: event %s has unexpected type %d\n",
318 (int)dpr->dpr_pid, evname, rdn.type);
319 return;
320 }
321
322 (void) dt_proc_bpcreate(dpr, rdn.u.bptaddr,
323 (dt_bkpt_f *)dt_proc_rdevent, (void *)evname);
324 }
325
326 /*
327 * Common code for enabling events associated with the run-time linker after
328 * attaching to a process or after a victim process completes an exec(2).
329 */
330 static void
dt_proc_attach(dt_proc_t * dpr,int exec)331 dt_proc_attach(dt_proc_t *dpr, int exec)
332 {
333 const pstatus_t *psp = Pstatus(dpr->dpr_proc);
334 rd_err_e err;
335 GElf_Sym sym;
336
337 assert(MUTEX_HELD(&dpr->dpr_lock));
338
339 if (exec) {
340 if (psp->pr_lwp.pr_errno != 0)
341 return; /* exec failed: nothing needs to be done */
342
343 dt_proc_bpdestroy(dpr, B_FALSE);
344 Preset_maps(dpr->dpr_proc);
345 }
346
347 if ((dpr->dpr_rtld = Prd_agent(dpr->dpr_proc)) != NULL &&
348 (err = rd_event_enable(dpr->dpr_rtld, B_TRUE)) == RD_OK) {
349 dt_proc_rdwatch(dpr, RD_PREINIT, "RD_PREINIT");
350 dt_proc_rdwatch(dpr, RD_POSTINIT, "RD_POSTINIT");
351 dt_proc_rdwatch(dpr, RD_DLACTIVITY, "RD_DLACTIVITY");
352 } else {
353 dt_dprintf("pid %d: failed to enable rtld events: %s\n",
354 (int)dpr->dpr_pid, dpr->dpr_rtld ? rd_errstr(err) :
355 "rtld_db agent initialization failed");
356 }
357
358 Pupdate_maps(dpr->dpr_proc);
359
360 if (Pxlookup_by_name(dpr->dpr_proc, LM_ID_BASE,
361 "a.out", "main", &sym, NULL) == 0) {
362 (void) dt_proc_bpcreate(dpr, (uintptr_t)sym.st_value,
363 (dt_bkpt_f *)dt_proc_bpmain, "a.out`main");
364 } else {
365 dt_dprintf("pid %d: failed to find a.out`main: %s\n",
366 (int)dpr->dpr_pid, strerror(errno));
367 }
368 }
369
370 /*
371 * Wait for a stopped process to be set running again by some other debugger.
372 * This is typically not required by /proc-based debuggers, since the usual
373 * model is that one debugger controls one victim. But DTrace, as usual, has
374 * its own needs: the stop() action assumes that prun(1) or some other tool
375 * will be applied to resume the victim process. This could be solved by
376 * adding a PCWRUN directive to /proc, but that seems like overkill unless
377 * other debuggers end up needing this functionality, so we implement a cheap
378 * equivalent to PCWRUN using the set of existing kernel mechanisms.
379 *
380 * Our intent is really not just to wait for the victim to run, but rather to
381 * wait for it to run and then stop again for a reason other than the current
382 * PR_REQUESTED stop. Since PCWSTOP/Pstopstatus() can be applied repeatedly
383 * to a stopped process and will return the same result without affecting the
384 * victim, we can just perform these operations repeatedly until Pstate()
385 * changes, the representative LWP ID changes, or the stop timestamp advances.
386 * dt_proc_control() will then rediscover the new state and continue as usual.
387 * When the process is still stopped in the same exact state, we sleep for a
388 * brief interval before waiting again so as not to spin consuming CPU cycles.
389 */
390 static void
dt_proc_waitrun(dt_proc_t * dpr)391 dt_proc_waitrun(dt_proc_t *dpr)
392 {
393 struct ps_prochandle *P = dpr->dpr_proc;
394 const lwpstatus_t *psp = &Pstatus(P)->pr_lwp;
395
396 int krflag = psp->pr_flags & (PR_KLC | PR_RLC);
397 timestruc_t tstamp = psp->pr_tstamp;
398 lwpid_t lwpid = psp->pr_lwpid;
399
400 const long wstop = PCWSTOP;
401 int pfd = Pctlfd(P);
402
403 assert(MUTEX_HELD(&dpr->dpr_lock));
404 assert(psp->pr_flags & PR_STOPPED);
405 assert(Pstate(P) == PS_STOP);
406
407 /*
408 * While we are waiting for the victim to run, clear PR_KLC and PR_RLC
409 * so that if the libdtrace client is killed, the victim stays stopped.
410 * dt_proc_destroy() will also observe this and perform PRELEASE_HANG.
411 */
412 (void) Punsetflags(P, krflag);
413 Psync(P);
414
415 (void) pthread_mutex_unlock(&dpr->dpr_lock);
416
417 while (!dpr->dpr_quit) {
418 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR)
419 continue; /* check dpr_quit and continue waiting */
420
421 (void) pthread_mutex_lock(&dpr->dpr_lock);
422 (void) Pstopstatus(P, PCNULL, 0);
423 psp = &Pstatus(P)->pr_lwp;
424
425 /*
426 * If we've reached a new state, found a new representative, or
427 * the stop timestamp has changed, restore PR_KLC/PR_RLC to its
428 * original setting and then return with dpr_lock held.
429 */
430 if (Pstate(P) != PS_STOP || psp->pr_lwpid != lwpid ||
431 bcmp(&psp->pr_tstamp, &tstamp, sizeof (tstamp)) != 0) {
432 (void) Psetflags(P, krflag);
433 Psync(P);
434 return;
435 }
436
437 (void) pthread_mutex_unlock(&dpr->dpr_lock);
438 (void) poll(NULL, 0, MILLISEC / 2);
439 }
440
441 (void) pthread_mutex_lock(&dpr->dpr_lock);
442 }
443
444 typedef struct dt_proc_control_data {
445 dtrace_hdl_t *dpcd_hdl; /* DTrace handle */
446 dt_proc_t *dpcd_proc; /* proccess to control */
447 } dt_proc_control_data_t;
448
449 /*
450 * Main loop for all victim process control threads. We initialize all the
451 * appropriate /proc control mechanisms, and then enter a loop waiting for
452 * the process to stop on an event or die. We process any events by calling
453 * appropriate subroutines, and exit when the victim dies or we lose control.
454 *
455 * The control thread synchronizes the use of dpr_proc with other libdtrace
456 * threads using dpr_lock. We hold the lock for all of our operations except
457 * waiting while the process is running: this is accomplished by writing a
458 * PCWSTOP directive directly to the underlying /proc/<pid>/ctl file. If the
459 * libdtrace client wishes to exit or abort our wait, SIGCANCEL can be used.
460 */
461 static void *
dt_proc_control(void * arg)462 dt_proc_control(void *arg)
463 {
464 dt_proc_control_data_t *datap = arg;
465 dtrace_hdl_t *dtp = datap->dpcd_hdl;
466 dt_proc_t *dpr = datap->dpcd_proc;
467 dt_proc_hash_t *dph = dtp->dt_procs;
468 struct ps_prochandle *P = dpr->dpr_proc;
469
470 int pfd = Pctlfd(P);
471 int pid = dpr->dpr_pid;
472
473 const long wstop = PCWSTOP;
474 int notify = B_FALSE;
475
476 /*
477 * We disable the POSIX thread cancellation mechanism so that the
478 * client program using libdtrace can't accidentally cancel our thread.
479 * dt_proc_destroy() uses SIGCANCEL explicitly to simply poke us out
480 * of PCWSTOP with EINTR, at which point we will see dpr_quit and exit.
481 */
482 (void) pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
483
484 /*
485 * Set up the corresponding process for tracing by libdtrace. We want
486 * to be able to catch breakpoints and efficiently single-step over
487 * them, and we need to enable librtld_db to watch libdl activity.
488 */
489 (void) pthread_mutex_lock(&dpr->dpr_lock);
490
491 (void) Punsetflags(P, PR_ASYNC); /* require synchronous mode */
492 (void) Psetflags(P, PR_BPTADJ); /* always adjust eip on x86 */
493 (void) Punsetflags(P, PR_FORK); /* do not inherit on fork */
494
495 (void) Pfault(P, FLTBPT, B_TRUE); /* always trace breakpoints */
496 (void) Pfault(P, FLTTRACE, B_TRUE); /* always trace single-step */
497
498 /*
499 * We must trace exit from exec() system calls so that if the exec is
500 * successful, we can reset our breakpoints and re-initialize libproc.
501 */
502 (void) Psysexit(P, SYS_execve, B_TRUE);
503
504 /*
505 * We must trace entry and exit for fork() system calls in order to
506 * disable our breakpoints temporarily during the fork. We do not set
507 * the PR_FORK flag, so if fork succeeds the child begins executing and
508 * does not inherit any other tracing behaviors or a control thread.
509 */
510 (void) Psysentry(P, SYS_vfork, B_TRUE);
511 (void) Psysexit(P, SYS_vfork, B_TRUE);
512 (void) Psysentry(P, SYS_forksys, B_TRUE);
513 (void) Psysexit(P, SYS_forksys, B_TRUE);
514
515 Psync(P); /* enable all /proc changes */
516 dt_proc_attach(dpr, B_FALSE); /* enable rtld breakpoints */
517
518 /*
519 * If PR_KLC is set, we created the process; otherwise we grabbed it.
520 * Check for an appropriate stop request and wait for dt_proc_continue.
521 */
522 if (Pstatus(P)->pr_flags & PR_KLC)
523 dt_proc_stop(dpr, DT_PROC_STOP_CREATE);
524 else
525 dt_proc_stop(dpr, DT_PROC_STOP_GRAB);
526
527 if (Psetrun(P, 0, 0) == -1) {
528 dt_dprintf("pid %d: failed to set running: %s\n",
529 (int)dpr->dpr_pid, strerror(errno));
530 }
531
532 (void) pthread_mutex_unlock(&dpr->dpr_lock);
533
534 /*
535 * Wait for the process corresponding to this control thread to stop,
536 * process the event, and then set it running again. We want to sleep
537 * with dpr_lock *unheld* so that other parts of libdtrace can use the
538 * ps_prochandle in the meantime (e.g. ustack()). To do this, we write
539 * a PCWSTOP directive directly to the underlying /proc/<pid>/ctl file.
540 * Once the process stops, we wake up, grab dpr_lock, and then call
541 * Pwait() (which will return immediately) and do our processing.
542 */
543 while (!dpr->dpr_quit) {
544 const lwpstatus_t *psp;
545
546 if (write(pfd, &wstop, sizeof (wstop)) == -1 && errno == EINTR)
547 continue; /* check dpr_quit and continue waiting */
548
549 (void) pthread_mutex_lock(&dpr->dpr_lock);
550 pwait_locked:
551 if (Pstopstatus(P, PCNULL, 0) == -1 && errno == EINTR) {
552 (void) pthread_mutex_unlock(&dpr->dpr_lock);
553 continue; /* check dpr_quit and continue waiting */
554 }
555
556 switch (Pstate(P)) {
557 case PS_STOP:
558 psp = &Pstatus(P)->pr_lwp;
559
560 dt_dprintf("pid %d: proc stopped showing %d/%d\n",
561 pid, psp->pr_why, psp->pr_what);
562
563 /*
564 * If the process stops showing PR_REQUESTED, then the
565 * DTrace stop() action was applied to it or another
566 * debugging utility (e.g. pstop(1)) asked it to stop.
567 * In either case, the user's intention is for the
568 * process to remain stopped until another external
569 * mechanism (e.g. prun(1)) is applied. So instead of
570 * setting the process running ourself, we wait for
571 * someone else to do so. Once that happens, we return
572 * to our normal loop waiting for an event of interest.
573 */
574 if (psp->pr_why == PR_REQUESTED) {
575 dt_proc_waitrun(dpr);
576 (void) pthread_mutex_unlock(&dpr->dpr_lock);
577 continue;
578 }
579
580 /*
581 * If the process stops showing one of the events that
582 * we are tracing, perform the appropriate response.
583 * Note that we ignore PR_SUSPENDED, PR_CHECKPOINT, and
584 * PR_JOBCONTROL by design: if one of these conditions
585 * occurs, we will fall through to Psetrun() but the
586 * process will remain stopped in the kernel by the
587 * corresponding mechanism (e.g. job control stop).
588 */
589 if (psp->pr_why == PR_FAULTED && psp->pr_what == FLTBPT)
590 dt_proc_bpmatch(dtp, dpr);
591 else if (psp->pr_why == PR_SYSENTRY &&
592 IS_SYS_FORK(psp->pr_what))
593 dt_proc_bpdisable(dpr);
594 else if (psp->pr_why == PR_SYSEXIT &&
595 IS_SYS_FORK(psp->pr_what))
596 dt_proc_bpenable(dpr);
597 else if (psp->pr_why == PR_SYSEXIT &&
598 IS_SYS_EXEC(psp->pr_what))
599 dt_proc_attach(dpr, B_TRUE);
600 break;
601
602 case PS_LOST:
603 if (Preopen(P) == 0)
604 goto pwait_locked;
605
606 dt_dprintf("pid %d: proc lost: %s\n",
607 pid, strerror(errno));
608
609 dpr->dpr_quit = B_TRUE;
610 notify = B_TRUE;
611 break;
612
613 case PS_UNDEAD:
614 dt_dprintf("pid %d: proc died\n", pid);
615 dpr->dpr_quit = B_TRUE;
616 notify = B_TRUE;
617 break;
618 }
619
620 if (Pstate(P) != PS_UNDEAD && Psetrun(P, 0, 0) == -1) {
621 dt_dprintf("pid %d: failed to set running: %s\n",
622 (int)dpr->dpr_pid, strerror(errno));
623 }
624
625 (void) pthread_mutex_unlock(&dpr->dpr_lock);
626 }
627
628 /*
629 * If the control thread detected PS_UNDEAD or PS_LOST, then enqueue
630 * the dt_proc_t structure on the dt_proc_hash_t notification list.
631 */
632 if (notify)
633 dt_proc_notify(dtp, dph, dpr, NULL);
634
635 /*
636 * Destroy and remove any remaining breakpoints, set dpr_done and clear
637 * dpr_tid to indicate the control thread has exited, and notify any
638 * waiting thread in dt_proc_destroy() that we have succesfully exited.
639 */
640 (void) pthread_mutex_lock(&dpr->dpr_lock);
641
642 dt_proc_bpdestroy(dpr, B_TRUE);
643 dpr->dpr_done = B_TRUE;
644 dpr->dpr_tid = 0;
645
646 (void) pthread_cond_broadcast(&dpr->dpr_cv);
647 (void) pthread_mutex_unlock(&dpr->dpr_lock);
648
649 return (NULL);
650 }
651
652 /*PRINTFLIKE3*/
653 static struct ps_prochandle *
dt_proc_error(dtrace_hdl_t * dtp,dt_proc_t * dpr,const char * format,...)654 dt_proc_error(dtrace_hdl_t *dtp, dt_proc_t *dpr, const char *format, ...)
655 {
656 va_list ap;
657
658 va_start(ap, format);
659 dt_set_errmsg(dtp, NULL, NULL, NULL, 0, format, ap);
660 va_end(ap);
661
662 if (dpr->dpr_proc != NULL)
663 Prelease(dpr->dpr_proc, 0);
664
665 dt_free(dtp, dpr);
666 (void) dt_set_errno(dtp, EDT_COMPILER);
667 return (NULL);
668 }
669
670 dt_proc_t *
dt_proc_lookup(dtrace_hdl_t * dtp,struct ps_prochandle * P,int remove)671 dt_proc_lookup(dtrace_hdl_t *dtp, struct ps_prochandle *P, int remove)
672 {
673 dt_proc_hash_t *dph = dtp->dt_procs;
674 pid_t pid = Pstatus(P)->pr_pid;
675 dt_proc_t *dpr, **dpp = &dph->dph_hash[pid & (dph->dph_hashlen - 1)];
676
677 for (dpr = *dpp; dpr != NULL; dpr = dpr->dpr_hash) {
678 if (dpr->dpr_pid == pid)
679 break;
680 else
681 dpp = &dpr->dpr_hash;
682 }
683
684 assert(dpr != NULL);
685 assert(dpr->dpr_proc == P);
686
687 if (remove)
688 *dpp = dpr->dpr_hash; /* remove from pid hash chain */
689
690 return (dpr);
691 }
692
693 static void
dt_proc_destroy(dtrace_hdl_t * dtp,struct ps_prochandle * P)694 dt_proc_destroy(dtrace_hdl_t *dtp, struct ps_prochandle *P)
695 {
696 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
697 dt_proc_hash_t *dph = dtp->dt_procs;
698 dt_proc_notify_t *npr, **npp;
699 int rflag;
700
701 assert(dpr != NULL);
702
703 /*
704 * If neither PR_KLC nor PR_RLC is set, then the process is stopped by
705 * an external debugger and we were waiting in dt_proc_waitrun().
706 * Leave the process in this condition using PRELEASE_HANG.
707 */
708 if (!(Pstatus(dpr->dpr_proc)->pr_flags & (PR_KLC | PR_RLC))) {
709 dt_dprintf("abandoning pid %d\n", (int)dpr->dpr_pid);
710 rflag = PRELEASE_HANG;
711 } else if (Pstatus(dpr->dpr_proc)->pr_flags & PR_KLC) {
712 dt_dprintf("killing pid %d\n", (int)dpr->dpr_pid);
713 rflag = PRELEASE_KILL; /* apply kill-on-last-close */
714 } else {
715 dt_dprintf("releasing pid %d\n", (int)dpr->dpr_pid);
716 rflag = 0; /* apply run-on-last-close */
717 }
718
719 if (dpr->dpr_tid) {
720 /*
721 * Set the dpr_quit flag to tell the daemon thread to exit. We
722 * send it a SIGCANCEL to poke it out of PCWSTOP or any other
723 * long-term /proc system call. Our daemon threads have POSIX
724 * cancellation disabled, so EINTR will be the only effect. We
725 * then wait for dpr_done to indicate the thread has exited.
726 *
727 * We can't use pthread_kill() to send SIGCANCEL because the
728 * interface forbids it and we can't use pthread_cancel()
729 * because with cancellation disabled it won't actually
730 * send SIGCANCEL to the target thread, so we use _lwp_kill()
731 * to do the job. This is all built on evil knowledge of
732 * the details of the cancellation mechanism in libc.
733 */
734 (void) pthread_mutex_lock(&dpr->dpr_lock);
735 dpr->dpr_quit = B_TRUE;
736 (void) _lwp_kill(dpr->dpr_tid, SIGCANCEL);
737
738 /*
739 * If the process is currently idling in dt_proc_stop(), re-
740 * enable breakpoints and poke it into running again.
741 */
742 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
743 dt_proc_bpenable(dpr);
744 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
745 (void) pthread_cond_broadcast(&dpr->dpr_cv);
746 }
747
748 while (!dpr->dpr_done)
749 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
750
751 (void) pthread_mutex_unlock(&dpr->dpr_lock);
752 }
753
754 /*
755 * Before we free the process structure, remove this dt_proc_t from the
756 * lookup hash, and then walk the dt_proc_hash_t's notification list
757 * and remove this dt_proc_t if it is enqueued.
758 */
759 (void) pthread_mutex_lock(&dph->dph_lock);
760 (void) dt_proc_lookup(dtp, P, B_TRUE);
761 npp = &dph->dph_notify;
762
763 while ((npr = *npp) != NULL) {
764 if (npr->dprn_dpr == dpr) {
765 *npp = npr->dprn_next;
766 dt_free(dtp, npr);
767 } else {
768 npp = &npr->dprn_next;
769 }
770 }
771
772 (void) pthread_mutex_unlock(&dph->dph_lock);
773
774 /*
775 * Remove the dt_proc_list from the LRU list, release the underlying
776 * libproc handle, and free our dt_proc_t data structure.
777 */
778 if (dpr->dpr_cacheable) {
779 assert(dph->dph_lrucnt != 0);
780 dph->dph_lrucnt--;
781 }
782
783 dt_list_delete(&dph->dph_lrulist, dpr);
784 Prelease(dpr->dpr_proc, rflag);
785 dt_free(dtp, dpr);
786 }
787
788 static int
dt_proc_create_thread(dtrace_hdl_t * dtp,dt_proc_t * dpr,uint_t stop)789 dt_proc_create_thread(dtrace_hdl_t *dtp, dt_proc_t *dpr, uint_t stop)
790 {
791 dt_proc_control_data_t data;
792 sigset_t nset, oset;
793 pthread_attr_t a;
794 int err;
795
796 (void) pthread_mutex_lock(&dpr->dpr_lock);
797 dpr->dpr_stop |= stop; /* set bit for initial rendezvous */
798
799 (void) pthread_attr_init(&a);
800 (void) pthread_attr_setdetachstate(&a, PTHREAD_CREATE_DETACHED);
801
802 (void) sigfillset(&nset);
803 (void) sigdelset(&nset, SIGABRT); /* unblocked for assert() */
804 (void) sigdelset(&nset, SIGCANCEL); /* see dt_proc_destroy() */
805
806 data.dpcd_hdl = dtp;
807 data.dpcd_proc = dpr;
808
809 (void) pthread_sigmask(SIG_SETMASK, &nset, &oset);
810 err = pthread_create(&dpr->dpr_tid, &a, dt_proc_control, &data);
811 (void) pthread_sigmask(SIG_SETMASK, &oset, NULL);
812
813 /*
814 * If the control thread was created, then wait on dpr_cv for either
815 * dpr_done to be set (the victim died or the control thread failed)
816 * or DT_PROC_STOP_IDLE to be set, indicating that the victim is now
817 * stopped by /proc and the control thread is at the rendezvous event.
818 * On success, we return with the process and control thread stopped:
819 * the caller can then apply dt_proc_continue() to resume both.
820 */
821 if (err == 0) {
822 while (!dpr->dpr_done && !(dpr->dpr_stop & DT_PROC_STOP_IDLE))
823 (void) pthread_cond_wait(&dpr->dpr_cv, &dpr->dpr_lock);
824
825 /*
826 * If dpr_done is set, the control thread aborted before it
827 * reached the rendezvous event. This is either due to PS_LOST
828 * or PS_UNDEAD (i.e. the process died). We try to provide a
829 * small amount of useful information to help figure it out.
830 */
831 if (dpr->dpr_done) {
832 const psinfo_t *prp = Ppsinfo(dpr->dpr_proc);
833 int stat = prp ? prp->pr_wstat : 0;
834 int pid = dpr->dpr_pid;
835
836 if (Pstate(dpr->dpr_proc) == PS_LOST) {
837 (void) dt_proc_error(dpr->dpr_hdl, dpr,
838 "failed to control pid %d: process exec'd "
839 "set-id or unobservable program\n", pid);
840 } else if (WIFSIGNALED(stat)) {
841 (void) dt_proc_error(dpr->dpr_hdl, dpr,
842 "failed to control pid %d: process died "
843 "from signal %d\n", pid, WTERMSIG(stat));
844 } else {
845 (void) dt_proc_error(dpr->dpr_hdl, dpr,
846 "failed to control pid %d: process exited "
847 "with status %d\n", pid, WEXITSTATUS(stat));
848 }
849
850 err = ESRCH; /* cause grab() or create() to fail */
851 }
852 } else {
853 (void) dt_proc_error(dpr->dpr_hdl, dpr,
854 "failed to create control thread for process-id %d: %s\n",
855 (int)dpr->dpr_pid, strerror(err));
856 }
857
858 (void) pthread_mutex_unlock(&dpr->dpr_lock);
859 (void) pthread_attr_destroy(&a);
860
861 return (err);
862 }
863
864 struct ps_prochandle *
dt_proc_create(dtrace_hdl_t * dtp,const char * file,char * const * argv)865 dt_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv)
866 {
867 dt_proc_hash_t *dph = dtp->dt_procs;
868 dt_proc_t *dpr;
869 int err;
870
871 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
872 return (NULL); /* errno is set for us */
873
874 (void) pthread_mutex_init(&dpr->dpr_lock, NULL);
875 (void) pthread_cond_init(&dpr->dpr_cv, NULL);
876
877 dpr->dpr_proc = Pxcreate(file, argv, dtp->dt_proc_env, &err, NULL, 0);
878 if (dpr->dpr_proc == NULL) {
879 return (dt_proc_error(dtp, dpr,
880 "failed to execute %s: %s\n", file, Pcreate_error(err)));
881 }
882
883 dpr->dpr_hdl = dtp;
884 dpr->dpr_pid = Pstatus(dpr->dpr_proc)->pr_pid;
885
886 (void) Punsetflags(dpr->dpr_proc, PR_RLC);
887 (void) Psetflags(dpr->dpr_proc, PR_KLC);
888
889 if (dt_proc_create_thread(dtp, dpr, dtp->dt_prcmode) != 0)
890 return (NULL); /* dt_proc_error() has been called for us */
891
892 dpr->dpr_hash = dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)];
893 dph->dph_hash[dpr->dpr_pid & (dph->dph_hashlen - 1)] = dpr;
894 dt_list_prepend(&dph->dph_lrulist, dpr);
895
896 dt_dprintf("created pid %d\n", (int)dpr->dpr_pid);
897 dpr->dpr_refs++;
898
899 return (dpr->dpr_proc);
900 }
901
902 struct ps_prochandle *
dt_proc_grab(dtrace_hdl_t * dtp,pid_t pid,int flags,int nomonitor)903 dt_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags, int nomonitor)
904 {
905 dt_proc_hash_t *dph = dtp->dt_procs;
906 uint_t h = pid & (dph->dph_hashlen - 1);
907 dt_proc_t *dpr, *opr;
908 int err;
909
910 /*
911 * Search the hash table for the pid. If it is already grabbed or
912 * created, move the handle to the front of the lrulist, increment
913 * the reference count, and return the existing ps_prochandle.
914 */
915 for (dpr = dph->dph_hash[h]; dpr != NULL; dpr = dpr->dpr_hash) {
916 if (dpr->dpr_pid == pid && !dpr->dpr_stale) {
917 /*
918 * If the cached handle was opened read-only and
919 * this request is for a writeable handle, mark
920 * the cached handle as stale and open a new handle.
921 * Since it's stale, unmark it as cacheable.
922 */
923 if (dpr->dpr_rdonly && !(flags & PGRAB_RDONLY)) {
924 dt_dprintf("upgrading pid %d\n", (int)pid);
925 dpr->dpr_stale = B_TRUE;
926 dpr->dpr_cacheable = B_FALSE;
927 dph->dph_lrucnt--;
928 break;
929 }
930
931 dt_dprintf("grabbed pid %d (cached)\n", (int)pid);
932 dt_list_delete(&dph->dph_lrulist, dpr);
933 dt_list_prepend(&dph->dph_lrulist, dpr);
934 dpr->dpr_refs++;
935 return (dpr->dpr_proc);
936 }
937 }
938
939 if ((dpr = dt_zalloc(dtp, sizeof (dt_proc_t))) == NULL)
940 return (NULL); /* errno is set for us */
941
942 (void) pthread_mutex_init(&dpr->dpr_lock, NULL);
943 (void) pthread_cond_init(&dpr->dpr_cv, NULL);
944
945 if ((dpr->dpr_proc = Pgrab(pid, flags, &err)) == NULL) {
946 return (dt_proc_error(dtp, dpr,
947 "failed to grab pid %d: %s\n", (int)pid, Pgrab_error(err)));
948 }
949
950 dpr->dpr_hdl = dtp;
951 dpr->dpr_pid = pid;
952
953 (void) Punsetflags(dpr->dpr_proc, PR_KLC);
954 (void) Psetflags(dpr->dpr_proc, PR_RLC);
955
956 /*
957 * If we are attempting to grab the process without a monitor
958 * thread, then mark the process cacheable only if it's being
959 * grabbed read-only. If we're currently caching more process
960 * handles than dph_lrulim permits, attempt to find the
961 * least-recently-used handle that is currently unreferenced and
962 * release it from the cache. Otherwise we are grabbing the process
963 * for control: create a control thread for this process and store
964 * its ID in dpr->dpr_tid.
965 */
966 if (nomonitor || (flags & PGRAB_RDONLY)) {
967 if (dph->dph_lrucnt >= dph->dph_lrulim) {
968 for (opr = dt_list_prev(&dph->dph_lrulist);
969 opr != NULL; opr = dt_list_prev(opr)) {
970 if (opr->dpr_cacheable && opr->dpr_refs == 0) {
971 dt_proc_destroy(dtp, opr->dpr_proc);
972 break;
973 }
974 }
975 }
976
977 if (flags & PGRAB_RDONLY) {
978 dpr->dpr_cacheable = B_TRUE;
979 dpr->dpr_rdonly = B_TRUE;
980 dph->dph_lrucnt++;
981 }
982
983 } else if (dt_proc_create_thread(dtp, dpr, DT_PROC_STOP_GRAB) != 0)
984 return (NULL); /* dt_proc_error() has been called for us */
985
986 dpr->dpr_hash = dph->dph_hash[h];
987 dph->dph_hash[h] = dpr;
988 dt_list_prepend(&dph->dph_lrulist, dpr);
989
990 dt_dprintf("grabbed pid %d\n", (int)pid);
991 dpr->dpr_refs++;
992
993 return (dpr->dpr_proc);
994 }
995
996 void
dt_proc_release(dtrace_hdl_t * dtp,struct ps_prochandle * P)997 dt_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
998 {
999 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1000 dt_proc_hash_t *dph = dtp->dt_procs;
1001
1002 assert(dpr != NULL);
1003 assert(dpr->dpr_refs != 0);
1004
1005 if (--dpr->dpr_refs == 0 &&
1006 (!dpr->dpr_cacheable || dph->dph_lrucnt > dph->dph_lrulim))
1007 dt_proc_destroy(dtp, P);
1008 }
1009
1010 void
dt_proc_continue(dtrace_hdl_t * dtp,struct ps_prochandle * P)1011 dt_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1012 {
1013 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1014
1015 (void) pthread_mutex_lock(&dpr->dpr_lock);
1016
1017 if (dpr->dpr_stop & DT_PROC_STOP_IDLE) {
1018 dpr->dpr_stop &= ~DT_PROC_STOP_IDLE;
1019 (void) pthread_cond_broadcast(&dpr->dpr_cv);
1020 }
1021
1022 (void) pthread_mutex_unlock(&dpr->dpr_lock);
1023 }
1024
1025 void
dt_proc_lock(dtrace_hdl_t * dtp,struct ps_prochandle * P)1026 dt_proc_lock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1027 {
1028 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1029 int err = pthread_mutex_lock(&dpr->dpr_lock);
1030 assert(err == 0); /* check for recursion */
1031 }
1032
1033 void
dt_proc_unlock(dtrace_hdl_t * dtp,struct ps_prochandle * P)1034 dt_proc_unlock(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1035 {
1036 dt_proc_t *dpr = dt_proc_lookup(dtp, P, B_FALSE);
1037 int err = pthread_mutex_unlock(&dpr->dpr_lock);
1038 assert(err == 0); /* check for unheld lock */
1039 }
1040
1041 void
dt_proc_init(dtrace_hdl_t * dtp)1042 dt_proc_init(dtrace_hdl_t *dtp)
1043 {
1044 extern char **environ;
1045 static char *envdef[] = {
1046 "LD_NOLAZYLOAD=1", /* linker lazy loading hides funcs */
1047 NULL
1048 };
1049 char **p;
1050 int i;
1051
1052 if ((dtp->dt_procs = dt_zalloc(dtp, sizeof (dt_proc_hash_t) +
1053 sizeof (dt_proc_t *) * _dtrace_pidbuckets - 1)) == NULL)
1054 return;
1055
1056 (void) pthread_mutex_init(&dtp->dt_procs->dph_lock, NULL);
1057 (void) pthread_cond_init(&dtp->dt_procs->dph_cv, NULL);
1058
1059 dtp->dt_procs->dph_hashlen = _dtrace_pidbuckets;
1060 dtp->dt_procs->dph_lrulim = _dtrace_pidlrulim;
1061
1062
1063 /*
1064 * Count how big our environment needs to be.
1065 */
1066 for (i = 1, p = environ; *p != NULL; i++, p++)
1067 continue;
1068 for (p = envdef; *p != NULL; i++, p++)
1069 continue;
1070
1071 if ((dtp->dt_proc_env = dt_zalloc(dtp, sizeof (char *) * i)) == NULL)
1072 return;
1073
1074 for (i = 0, p = environ; *p != NULL; i++, p++) {
1075 if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL)
1076 goto err;
1077 }
1078 for (p = envdef; *p != NULL; i++, p++) {
1079 if ((dtp->dt_proc_env[i] = strdup(*p)) == NULL)
1080 goto err;
1081 }
1082
1083 return;
1084
1085 err:
1086 while (--i != 0) {
1087 dt_free(dtp, dtp->dt_proc_env[i]);
1088 }
1089 dt_free(dtp, dtp->dt_proc_env);
1090 dtp->dt_proc_env = NULL;
1091 }
1092
1093 void
dt_proc_fini(dtrace_hdl_t * dtp)1094 dt_proc_fini(dtrace_hdl_t *dtp)
1095 {
1096 dt_proc_hash_t *dph = dtp->dt_procs;
1097 dt_proc_t *dpr;
1098 char **p;
1099
1100 while ((dpr = dt_list_next(&dph->dph_lrulist)) != NULL)
1101 dt_proc_destroy(dtp, dpr->dpr_proc);
1102
1103 dtp->dt_procs = NULL;
1104 dt_free(dtp, dph);
1105
1106 for (p = dtp->dt_proc_env; *p != NULL; p++)
1107 dt_free(dtp, *p);
1108
1109 dt_free(dtp, dtp->dt_proc_env);
1110 dtp->dt_proc_env = NULL;
1111 }
1112
1113 struct ps_prochandle *
dtrace_proc_create(dtrace_hdl_t * dtp,const char * file,char * const * argv)1114 dtrace_proc_create(dtrace_hdl_t *dtp, const char *file, char *const *argv)
1115 {
1116 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
1117 struct ps_prochandle *P = dt_proc_create(dtp, file, argv);
1118
1119 if (P != NULL && idp != NULL && idp->di_id == 0)
1120 idp->di_id = Pstatus(P)->pr_pid; /* $target = created pid */
1121
1122 return (P);
1123 }
1124
1125 struct ps_prochandle *
dtrace_proc_grab(dtrace_hdl_t * dtp,pid_t pid,int flags)1126 dtrace_proc_grab(dtrace_hdl_t *dtp, pid_t pid, int flags)
1127 {
1128 dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
1129 struct ps_prochandle *P = dt_proc_grab(dtp, pid, flags, 0);
1130
1131 if (P != NULL && idp != NULL && idp->di_id == 0)
1132 idp->di_id = pid; /* $target = grabbed pid */
1133
1134 return (P);
1135 }
1136
1137 void
dtrace_proc_release(dtrace_hdl_t * dtp,struct ps_prochandle * P)1138 dtrace_proc_release(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1139 {
1140 dt_proc_release(dtp, P);
1141 }
1142
1143 void
dtrace_proc_continue(dtrace_hdl_t * dtp,struct ps_prochandle * P)1144 dtrace_proc_continue(dtrace_hdl_t *dtp, struct ps_prochandle *P)
1145 {
1146 dt_proc_continue(dtp, P);
1147 }
1148