1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 * Copyright 2016 Nexenta Systems, Inc.
26 */
27
28 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
29 /* All Rights Reserved */
30
31 /*
32 * University Copyright- Copyright (c) 1982, 1986, 1988
33 * The Regents of the University of California
34 * All Rights Reserved
35 *
36 * University Acknowledgment- Portions of this document are derived from
37 * software developed by the University of California, Berkeley, and its
38 * contributors.
39 */
40
41 #include <sys/types.h>
42 #include <sys/t_lock.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/bitmap.h>
46 #include <sys/sysmacros.h>
47 #include <sys/kmem.h>
48 #include <sys/signal.h>
49 #include <sys/user.h>
50 #include <sys/proc.h>
51 #include <sys/disp.h>
52 #include <sys/buf.h>
53 #include <sys/pathname.h>
54 #include <sys/vfs.h>
55 #include <sys/vfs_opreg.h>
56 #include <sys/vnode.h>
57 #include <sys/file.h>
58 #include <sys/atomic.h>
59 #include <sys/uio.h>
60 #include <sys/dkio.h>
61 #include <sys/cred.h>
62 #include <sys/conf.h>
63 #include <sys/dnlc.h>
64 #include <sys/kstat.h>
65 #include <sys/acl.h>
66 #include <sys/fs/ufs_fsdir.h>
67 #include <sys/fs/ufs_fs.h>
68 #include <sys/fs/ufs_inode.h>
69 #include <sys/fs/ufs_mount.h>
70 #include <sys/fs/ufs_acl.h>
71 #include <sys/fs/ufs_panic.h>
72 #include <sys/fs/ufs_bio.h>
73 #include <sys/fs/ufs_quota.h>
74 #include <sys/fs/ufs_log.h>
75 #undef NFS
76 #include <sys/statvfs.h>
77 #include <sys/mount.h>
78 #include <sys/mntent.h>
79 #include <sys/swap.h>
80 #include <sys/errno.h>
81 #include <sys/debug.h>
82 #include "fs/fs_subr.h"
83 #include <sys/cmn_err.h>
84 #include <sys/dnlc.h>
85 #include <sys/fssnap_if.h>
86 #include <sys/sunddi.h>
87 #include <sys/bootconf.h>
88 #include <sys/policy.h>
89 #include <sys/zone.h>
90
91 /*
92 * This is the loadable module wrapper.
93 */
94 #include <sys/modctl.h>
95
96 int ufsfstype;
97 vfsops_t *ufs_vfsops;
98 static int ufsinit(int, char *);
99 static int mountfs();
100 extern int highbit();
101 extern struct instats ins;
102 extern struct vnode *common_specvp(struct vnode *vp);
103 extern vfs_t EIO_vfs;
104
105 struct dquot *dquot, *dquotNDQUOT;
106
107 /*
108 * Cylinder group summary information handling tunable.
109 * This defines when these deltas get logged.
110 * If the number of cylinders in the file system is over the
111 * tunable then we log csum updates. Otherwise the updates are only
112 * done for performance on unmount. After a panic they can be
113 * quickly constructed during mounting. See ufs_construct_si()
114 * called from ufs_getsummaryinfo().
115 *
116 * This performance feature can of course be disabled by setting
117 * ufs_ncg_log to 0, and fully enabled by setting it to 0xffffffff.
118 */
119 #define UFS_LOG_NCG_DEFAULT 10000
120 uint32_t ufs_ncg_log = UFS_LOG_NCG_DEFAULT;
121
122 /*
123 * ufs_clean_root indicates whether the root fs went down cleanly
124 */
125 static int ufs_clean_root = 0;
126
127 /*
128 * UFS Mount options table
129 */
130 static char *intr_cancel[] = { MNTOPT_NOINTR, NULL };
131 static char *nointr_cancel[] = { MNTOPT_INTR, NULL };
132 static char *forcedirectio_cancel[] = { MNTOPT_NOFORCEDIRECTIO, NULL };
133 static char *noforcedirectio_cancel[] = { MNTOPT_FORCEDIRECTIO, NULL };
134 static char *largefiles_cancel[] = { MNTOPT_NOLARGEFILES, NULL };
135 static char *nolargefiles_cancel[] = { MNTOPT_LARGEFILES, NULL };
136 static char *logging_cancel[] = { MNTOPT_NOLOGGING, NULL };
137 static char *nologging_cancel[] = { MNTOPT_LOGGING, NULL };
138 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
139 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
140 static char *quota_cancel[] = { MNTOPT_NOQUOTA, NULL };
141 static char *noquota_cancel[] = { MNTOPT_QUOTA, NULL };
142 static char *dfratime_cancel[] = { MNTOPT_NODFRATIME, NULL };
143 static char *nodfratime_cancel[] = { MNTOPT_DFRATIME, NULL };
144
145 static mntopt_t mntopts[] = {
146 /*
147 * option name cancel option default arg flags
148 * ufs arg flag
149 */
150 { MNTOPT_INTR, intr_cancel, NULL, MO_DEFAULT,
151 (void *)0 },
152 { MNTOPT_NOINTR, nointr_cancel, NULL, 0,
153 (void *)UFSMNT_NOINTR },
154 { MNTOPT_SYNCDIR, NULL, NULL, 0,
155 (void *)UFSMNT_SYNCDIR },
156 { MNTOPT_FORCEDIRECTIO, forcedirectio_cancel, NULL, 0,
157 (void *)UFSMNT_FORCEDIRECTIO },
158 { MNTOPT_NOFORCEDIRECTIO, noforcedirectio_cancel, NULL, 0,
159 (void *)UFSMNT_NOFORCEDIRECTIO },
160 { MNTOPT_NOSETSEC, NULL, NULL, 0,
161 (void *)UFSMNT_NOSETSEC },
162 { MNTOPT_LARGEFILES, largefiles_cancel, NULL, MO_DEFAULT,
163 (void *)UFSMNT_LARGEFILES },
164 { MNTOPT_NOLARGEFILES, nolargefiles_cancel, NULL, 0,
165 (void *)0 },
166 { MNTOPT_LOGGING, logging_cancel, NULL, MO_TAG,
167 (void *)UFSMNT_LOGGING },
168 { MNTOPT_NOLOGGING, nologging_cancel, NULL,
169 MO_NODISPLAY|MO_DEFAULT|MO_TAG, (void *)0 },
170 { MNTOPT_QUOTA, quota_cancel, NULL, MO_IGNORE,
171 (void *)0 },
172 { MNTOPT_NOQUOTA, noquota_cancel, NULL,
173 MO_NODISPLAY|MO_DEFAULT, (void *)0 },
174 { MNTOPT_GLOBAL, NULL, NULL, 0,
175 (void *)0 },
176 { MNTOPT_XATTR, xattr_cancel, NULL, MO_DEFAULT,
177 (void *)0 },
178 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0,
179 (void *)0 },
180 { MNTOPT_NOATIME, NULL, NULL, 0,
181 (void *)UFSMNT_NOATIME },
182 { MNTOPT_DFRATIME, dfratime_cancel, NULL, 0,
183 (void *)0 },
184 { MNTOPT_NODFRATIME, nodfratime_cancel, NULL,
185 MO_NODISPLAY|MO_DEFAULT, (void *)UFSMNT_NODFRATIME },
186 { MNTOPT_ONERROR, NULL, UFSMNT_ONERROR_PANIC_STR,
187 MO_DEFAULT|MO_HASVALUE, (void *)0 },
188 };
189
190 static mntopts_t ufs_mntopts = {
191 sizeof (mntopts) / sizeof (mntopt_t),
192 mntopts
193 };
194
195 static vfsdef_t vfw = {
196 VFSDEF_VERSION,
197 "ufs",
198 ufsinit,
199 VSW_HASPROTO|VSW_CANREMOUNT|VSW_STATS|VSW_CANLOFI,
200 &ufs_mntopts
201 };
202
203 /*
204 * Module linkage information for the kernel.
205 */
206 extern struct mod_ops mod_fsops;
207
208 static struct modlfs modlfs = {
209 &mod_fsops, "filesystem for ufs", &vfw
210 };
211
212 static struct modlinkage modlinkage = {
213 MODREV_1, (void *)&modlfs, NULL
214 };
215
216 /*
217 * An attempt has been made to make this module unloadable. In order to
218 * test it, we need a system in which the root fs is NOT ufs. THIS HAS NOT
219 * BEEN DONE
220 */
221
222 extern kstat_t *ufs_inode_kstat;
223 extern uint_t ufs_lockfs_key;
224 extern void ufs_lockfs_tsd_destructor(void *);
225 extern uint_t bypass_snapshot_throttle_key;
226
227 int
_init(void)228 _init(void)
229 {
230 /*
231 * Create an index into the per thread array so that any thread doing
232 * VOP will have a lockfs mark on it.
233 */
234 tsd_create(&ufs_lockfs_key, ufs_lockfs_tsd_destructor);
235 tsd_create(&bypass_snapshot_throttle_key, NULL);
236 return (mod_install(&modlinkage));
237 }
238
239 int
_fini(void)240 _fini(void)
241 {
242 return (EBUSY);
243 }
244
245 int
_info(struct modinfo * modinfop)246 _info(struct modinfo *modinfop)
247 {
248 return (mod_info(&modlinkage, modinfop));
249 }
250
251 extern struct vnode *makespecvp(dev_t dev, vtype_t type);
252
253 extern kmutex_t ufs_scan_lock;
254
255 static int mountfs(struct vfs *, enum whymountroot, struct vnode *, char *,
256 struct cred *, int, void *, int);
257
258
259 static int
ufs_mount(struct vfs * vfsp,struct vnode * mvp,struct mounta * uap,struct cred * cr)260 ufs_mount(struct vfs *vfsp, struct vnode *mvp, struct mounta *uap,
261 struct cred *cr)
262
263 {
264 char *data = uap->dataptr;
265 int datalen = uap->datalen;
266 dev_t dev;
267 struct vnode *lvp = NULL;
268 struct vnode *svp = NULL;
269 struct pathname dpn;
270 int error;
271 enum whymountroot why = ROOT_INIT;
272 struct ufs_args args;
273 int oflag, aflag;
274 int fromspace = (uap->flags & MS_SYSSPACE) ?
275 UIO_SYSSPACE : UIO_USERSPACE;
276
277 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
278 return (error);
279
280 if (mvp->v_type != VDIR)
281 return (ENOTDIR);
282
283 mutex_enter(&mvp->v_lock);
284 if ((uap->flags & MS_REMOUNT) == 0 &&
285 (uap->flags & MS_OVERLAY) == 0 &&
286 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
287 mutex_exit(&mvp->v_lock);
288 return (EBUSY);
289 }
290 mutex_exit(&mvp->v_lock);
291
292 /*
293 * Get arguments
294 */
295 bzero(&args, sizeof (args));
296 if ((uap->flags & MS_DATA) && data != NULL && datalen != 0) {
297 int copy_result = 0;
298
299 if (datalen > sizeof (args))
300 return (EINVAL);
301 if (uap->flags & MS_SYSSPACE)
302 bcopy(data, &args, datalen);
303 else
304 copy_result = copyin(data, &args, datalen);
305 if (copy_result)
306 return (EFAULT);
307 datalen = sizeof (struct ufs_args);
308 } else {
309 datalen = 0;
310 }
311
312 if ((vfsp->vfs_flag & VFS_RDONLY) != 0 ||
313 (uap->flags & MS_RDONLY) != 0) {
314 oflag = FREAD;
315 aflag = VREAD;
316 } else {
317 oflag = FREAD | FWRITE;
318 aflag = VREAD | VWRITE;
319 }
320
321 /*
322 * Read in the mount point pathname
323 * (so we can record the directory the file system was last mounted on).
324 */
325 if (error = pn_get(uap->dir, fromspace, &dpn))
326 return (error);
327
328 /*
329 * Resolve path name of special file being mounted.
330 */
331 if (error = lookupname(uap->spec, fromspace, FOLLOW, NULL, &svp)) {
332 pn_free(&dpn);
333 return (error);
334 }
335
336 error = vfs_get_lofi(vfsp, &lvp);
337
338 if (error > 0) {
339 VN_RELE(svp);
340 pn_free(&dpn);
341 return (error);
342 } else if (error == 0) {
343 dev = lvp->v_rdev;
344
345 if (getmajor(dev) >= devcnt) {
346 error = ENXIO;
347 goto out;
348 }
349 } else {
350 dev = svp->v_rdev;
351
352 if (svp->v_type != VBLK) {
353 VN_RELE(svp);
354 pn_free(&dpn);
355 return (ENOTBLK);
356 }
357
358 if (getmajor(dev) >= devcnt) {
359 error = ENXIO;
360 goto out;
361 }
362
363 /*
364 * In SunCluster, requests to a global device are
365 * satisfied by a local device. We substitute the global
366 * pxfs node with a local spec node here.
367 */
368 if (IS_PXFSVP(svp)) {
369 ASSERT(lvp == NULL);
370 VN_RELE(svp);
371 svp = makespecvp(dev, VBLK);
372 }
373
374 if ((error = secpolicy_spec_open(cr, svp, oflag)) != 0) {
375 VN_RELE(svp);
376 pn_free(&dpn);
377 return (error);
378 }
379 }
380
381 if (uap->flags & MS_REMOUNT)
382 why = ROOT_REMOUNT;
383
384 /*
385 * Open device/file mounted on. We need this to check whether
386 * the caller has sufficient rights to access the resource in
387 * question. When bio is fixed for vnodes this can all be vnode
388 * operations.
389 */
390 if ((error = VOP_ACCESS(svp, aflag, 0, cr, NULL)) != 0)
391 goto out;
392
393 /*
394 * Ensure that this device isn't already mounted or in progress on a
395 * mount unless this is a REMOUNT request or we are told to suppress
396 * mount checks. Global mounts require special handling.
397 */
398 if ((uap->flags & MS_NOCHECK) == 0) {
399 if ((uap->flags & MS_GLOBAL) == 0 &&
400 vfs_devmounting(dev, vfsp)) {
401 error = EBUSY;
402 goto out;
403 }
404 if (vfs_devismounted(dev)) {
405 if ((uap->flags & MS_REMOUNT) == 0) {
406 error = EBUSY;
407 goto out;
408 }
409 }
410 }
411
412 /*
413 * If the device is a tape, mount it read only
414 */
415 if (devopsp[getmajor(dev)]->devo_cb_ops->cb_flag & D_TAPE) {
416 vfsp->vfs_flag |= VFS_RDONLY;
417 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
418 }
419 if (uap->flags & MS_RDONLY)
420 vfsp->vfs_flag |= VFS_RDONLY;
421
422 /*
423 * Mount the filesystem, free the device vnode on error.
424 */
425 error = mountfs(vfsp, why, lvp != NULL ? lvp : svp,
426 dpn.pn_path, cr, 0, &args, datalen);
427
428 if (error == 0) {
429 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS);
430
431 /*
432 * If lofi, drop our reference to the original file.
433 */
434 if (lvp != NULL)
435 VN_RELE(svp);
436 }
437
438 out:
439 pn_free(&dpn);
440
441 if (error) {
442 if (lvp != NULL)
443 VN_RELE(lvp);
444 if (svp != NULL)
445 VN_RELE(svp);
446 }
447 return (error);
448 }
449
450 /*
451 * Mount root file system.
452 * "why" is ROOT_INIT on initial call ROOT_REMOUNT if called to
453 * remount the root file system, and ROOT_UNMOUNT if called to
454 * unmount the root (e.g., as part of a system shutdown).
455 *
456 * XXX - this may be partially machine-dependent; it, along with the VFS_SWAPVP
457 * operation, goes along with auto-configuration. A mechanism should be
458 * provided by which machine-INdependent code in the kernel can say "get me the
459 * right root file system" and "get me the right initial swap area", and have
460 * that done in what may well be a machine-dependent fashion.
461 * Unfortunately, it is also file-system-type dependent (NFS gets it via
462 * bootparams calls, UFS gets it from various and sundry machine-dependent
463 * mechanisms, as SPECFS does for swap).
464 */
465 static int
ufs_mountroot(struct vfs * vfsp,enum whymountroot why)466 ufs_mountroot(struct vfs *vfsp, enum whymountroot why)
467 {
468 struct fs *fsp;
469 int error;
470 static int ufsrootdone = 0;
471 dev_t rootdev;
472 struct vnode *vp;
473 struct vnode *devvp = 0;
474 int ovflags;
475 int doclkset;
476 ufsvfs_t *ufsvfsp;
477
478 if (why == ROOT_INIT) {
479 if (ufsrootdone++)
480 return (EBUSY);
481 rootdev = getrootdev();
482 if (rootdev == (dev_t)NODEV)
483 return (ENODEV);
484 vfsp->vfs_dev = rootdev;
485 vfsp->vfs_flag |= VFS_RDONLY;
486 } else if (why == ROOT_REMOUNT) {
487 vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp;
488 (void) dnlc_purge_vfsp(vfsp, 0);
489 vp = common_specvp(vp);
490 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_INVAL,
491 CRED(), NULL);
492 (void) bfinval(vfsp->vfs_dev, 0);
493 fsp = getfs(vfsp);
494
495 ovflags = vfsp->vfs_flag;
496 vfsp->vfs_flag &= ~VFS_RDONLY;
497 vfsp->vfs_flag |= VFS_REMOUNT;
498 rootdev = vfsp->vfs_dev;
499 } else if (why == ROOT_UNMOUNT) {
500 if (vfs_lock(vfsp) == 0) {
501 (void) ufs_flush(vfsp);
502 /*
503 * Mark the log as fully rolled
504 */
505 ufsvfsp = (ufsvfs_t *)vfsp->vfs_data;
506 fsp = ufsvfsp->vfs_fs;
507 if (TRANS_ISTRANS(ufsvfsp) &&
508 !TRANS_ISERROR(ufsvfsp) &&
509 (fsp->fs_rolled == FS_NEED_ROLL)) {
510 ml_unit_t *ul = ufsvfsp->vfs_log;
511
512 error = ufs_putsummaryinfo(ul->un_dev,
513 ufsvfsp, fsp);
514 if (error == 0) {
515 fsp->fs_rolled = FS_ALL_ROLLED;
516 UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp);
517 }
518 }
519 vfs_unlock(vfsp);
520 } else {
521 ufs_update(0);
522 }
523
524 vp = ((struct ufsvfs *)vfsp->vfs_data)->vfs_devvp;
525 (void) VOP_CLOSE(vp, FREAD|FWRITE, 1,
526 (offset_t)0, CRED(), NULL);
527 return (0);
528 }
529 error = vfs_lock(vfsp);
530 if (error)
531 return (error);
532
533 devvp = makespecvp(rootdev, VBLK);
534
535 /* If RO media, don't call clkset() (see below) */
536 doclkset = 1;
537 if (why == ROOT_INIT) {
538 error = VOP_OPEN(&devvp, FREAD|FWRITE, CRED(), NULL);
539 if (error == 0) {
540 (void) VOP_CLOSE(devvp, FREAD|FWRITE, 1,
541 (offset_t)0, CRED(), NULL);
542 } else {
543 doclkset = 0;
544 }
545 }
546
547 error = mountfs(vfsp, why, devvp, "/", CRED(), 1, NULL, 0);
548 /*
549 * XXX - assumes root device is not indirect, because we don't set
550 * rootvp. Is rootvp used for anything? If so, make another arg
551 * to mountfs.
552 */
553 if (error) {
554 vfs_unlock(vfsp);
555 if (why == ROOT_REMOUNT)
556 vfsp->vfs_flag = ovflags;
557 if (rootvp) {
558 VN_RELE(rootvp);
559 rootvp = (struct vnode *)0;
560 }
561 VN_RELE(devvp);
562 return (error);
563 }
564 if (why == ROOT_INIT)
565 vfs_add((struct vnode *)0, vfsp,
566 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
567 vfs_unlock(vfsp);
568 fsp = getfs(vfsp);
569 clkset(doclkset ? fsp->fs_time : -1);
570 ufsvfsp = (ufsvfs_t *)vfsp->vfs_data;
571 if (ufsvfsp->vfs_log) {
572 vfs_setmntopt(vfsp, MNTOPT_LOGGING, NULL, 0);
573 }
574 return (0);
575 }
576
577 static int
remountfs(struct vfs * vfsp,dev_t dev,void * raw_argsp,int args_len)578 remountfs(struct vfs *vfsp, dev_t dev, void *raw_argsp, int args_len)
579 {
580 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
581 struct ulockfs *ulp = &ufsvfsp->vfs_ulockfs;
582 struct buf *bp = ufsvfsp->vfs_bufp;
583 struct fs *fsp = (struct fs *)bp->b_un.b_addr;
584 struct fs *fspt;
585 struct buf *tpt = 0;
586 int error = 0;
587 int flags = 0;
588
589 if (args_len == sizeof (struct ufs_args) && raw_argsp)
590 flags = ((struct ufs_args *)raw_argsp)->flags;
591
592 /* cannot remount to RDONLY */
593 if (vfsp->vfs_flag & VFS_RDONLY)
594 return (ENOTSUP);
595
596 /* whoops, wrong dev */
597 if (vfsp->vfs_dev != dev)
598 return (EINVAL);
599
600 /*
601 * synchronize w/ufs ioctls
602 */
603 mutex_enter(&ulp->ul_lock);
604 atomic_inc_ulong(&ufs_quiesce_pend);
605
606 /*
607 * reset options
608 */
609 ufsvfsp->vfs_nointr = flags & UFSMNT_NOINTR;
610 ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR;
611 ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC;
612 ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME;
613 if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime)
614 ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME;
615 else /* dfratime, default behavior */
616 ufsvfsp->vfs_dfritime |= UFS_DFRATIME;
617 if (flags & UFSMNT_FORCEDIRECTIO)
618 ufsvfsp->vfs_forcedirectio = 1;
619 else /* default is no direct I/O */
620 ufsvfsp->vfs_forcedirectio = 0;
621 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
622
623 /*
624 * set largefiles flag in ufsvfs equal to the
625 * value passed in by the mount command. If
626 * it is "nolargefiles", and the flag is set
627 * in the superblock, the mount fails.
628 */
629 if (!(flags & UFSMNT_LARGEFILES)) { /* "nolargefiles" */
630 if (fsp->fs_flags & FSLARGEFILES) {
631 error = EFBIG;
632 goto remounterr;
633 }
634 ufsvfsp->vfs_lfflags &= ~UFS_LARGEFILES;
635 } else /* "largefiles" */
636 ufsvfsp->vfs_lfflags |= UFS_LARGEFILES;
637 /*
638 * read/write to read/write; all done
639 */
640 if (fsp->fs_ronly == 0)
641 goto remounterr;
642
643 /*
644 * fix-on-panic assumes RO->RW remount implies system-critical fs
645 * if it is shortly after boot; so, don't attempt to lock and fix
646 * (unless the user explicitly asked for another action on error)
647 * XXX UFSMNT_ONERROR_RDONLY rather than UFSMNT_ONERROR_PANIC
648 */
649 #define BOOT_TIME_LIMIT (180*hz)
650 if (!(flags & UFSMNT_ONERROR_FLGMASK) &&
651 ddi_get_lbolt() < BOOT_TIME_LIMIT) {
652 cmn_err(CE_WARN, "%s is required to be mounted onerror=%s",
653 ufsvfsp->vfs_fs->fs_fsmnt, UFSMNT_ONERROR_PANIC_STR);
654 flags |= UFSMNT_ONERROR_PANIC;
655 }
656
657 if ((error = ufsfx_mount(ufsvfsp, flags)) != 0)
658 goto remounterr;
659
660 /*
661 * quiesce the file system
662 */
663 error = ufs_quiesce(ulp);
664 if (error)
665 goto remounterr;
666
667 tpt = UFS_BREAD(ufsvfsp, ufsvfsp->vfs_dev, SBLOCK, SBSIZE);
668 if (tpt->b_flags & B_ERROR) {
669 error = EIO;
670 goto remounterr;
671 }
672 fspt = (struct fs *)tpt->b_un.b_addr;
673 if (((fspt->fs_magic != FS_MAGIC) &&
674 (fspt->fs_magic != MTB_UFS_MAGIC)) ||
675 (fspt->fs_magic == FS_MAGIC &&
676 (fspt->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
677 fspt->fs_version != UFS_VERSION_MIN)) ||
678 (fspt->fs_magic == MTB_UFS_MAGIC &&
679 (fspt->fs_version > MTB_UFS_VERSION_1 ||
680 fspt->fs_version < MTB_UFS_VERSION_MIN)) ||
681 fspt->fs_bsize > MAXBSIZE || fspt->fs_frag > MAXFRAG ||
682 fspt->fs_bsize < sizeof (struct fs) || fspt->fs_bsize < PAGESIZE) {
683 tpt->b_flags |= B_STALE | B_AGE;
684 error = EINVAL;
685 goto remounterr;
686 }
687
688 if (ufsvfsp->vfs_log && (ufsvfsp->vfs_log->un_flags & LDL_NOROLL)) {
689 ufsvfsp->vfs_log->un_flags &= ~LDL_NOROLL;
690 logmap_start_roll(ufsvfsp->vfs_log);
691 }
692
693 if (TRANS_ISERROR(ufsvfsp))
694 goto remounterr;
695 TRANS_DOMATAMAP(ufsvfsp);
696
697 if ((fspt->fs_state + fspt->fs_time == FSOKAY) &&
698 fspt->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp)) {
699 ufsvfsp->vfs_log = NULL;
700 ufsvfsp->vfs_domatamap = 0;
701 error = ENOSPC;
702 goto remounterr;
703 }
704
705 if (fspt->fs_state + fspt->fs_time == FSOKAY &&
706 (fspt->fs_clean == FSCLEAN ||
707 fspt->fs_clean == FSSTABLE ||
708 fspt->fs_clean == FSLOG)) {
709
710 /*
711 * Ensure that ufs_getsummaryinfo doesn't reconstruct
712 * the summary info.
713 */
714 error = ufs_getsummaryinfo(vfsp->vfs_dev, ufsvfsp, fspt);
715 if (error)
716 goto remounterr;
717
718 /* preserve mount name */
719 (void) strncpy(fspt->fs_fsmnt, fsp->fs_fsmnt, MAXMNTLEN);
720 /* free the old cg space */
721 kmem_free(fsp->fs_u.fs_csp, fsp->fs_cssize);
722 /* switch in the new superblock */
723 fspt->fs_rolled = FS_NEED_ROLL;
724 bcopy(tpt->b_un.b_addr, bp->b_un.b_addr, fspt->fs_sbsize);
725
726 fsp->fs_clean = FSSTABLE;
727 } /* superblock updated in memory */
728 tpt->b_flags |= B_STALE | B_AGE;
729 brelse(tpt);
730 tpt = 0;
731
732 if (fsp->fs_clean != FSSTABLE) {
733 error = ENOSPC;
734 goto remounterr;
735 }
736
737
738 if (TRANS_ISTRANS(ufsvfsp)) {
739 fsp->fs_clean = FSLOG;
740 ufsvfsp->vfs_dio = 0;
741 } else
742 if (ufsvfsp->vfs_dio)
743 fsp->fs_clean = FSSUSPEND;
744
745 TRANS_MATA_MOUNT(ufsvfsp);
746
747 fsp->fs_fmod = 0;
748 fsp->fs_ronly = 0;
749
750 atomic_dec_ulong(&ufs_quiesce_pend);
751 cv_broadcast(&ulp->ul_cv);
752 mutex_exit(&ulp->ul_lock);
753
754 if (TRANS_ISTRANS(ufsvfsp)) {
755
756 /*
757 * start the delete thread
758 */
759 ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp);
760
761 /*
762 * start the reclaim thread
763 */
764 if (fsp->fs_reclaim & (FS_RECLAIM|FS_RECLAIMING)) {
765 fsp->fs_reclaim &= ~FS_RECLAIM;
766 fsp->fs_reclaim |= FS_RECLAIMING;
767 ufs_thread_start(&ufsvfsp->vfs_reclaim,
768 ufs_thread_reclaim, vfsp);
769 }
770 }
771
772 TRANS_SBWRITE(ufsvfsp, TOP_MOUNT);
773
774 return (0);
775
776 remounterr:
777 if (tpt)
778 brelse(tpt);
779 atomic_dec_ulong(&ufs_quiesce_pend);
780 cv_broadcast(&ulp->ul_cv);
781 mutex_exit(&ulp->ul_lock);
782 return (error);
783 }
784
785 /*
786 * If the device maxtransfer size is not available, we use ufs_maxmaxphys
787 * along with the system value for maxphys to determine the value for
788 * maxtransfer.
789 */
790 int ufs_maxmaxphys = (1024 * 1024);
791
792 #include <sys/ddi.h> /* for delay(9f) */
793
794 int ufs_mount_error_delay = 20; /* default to 20ms */
795 int ufs_mount_timeout = 60000; /* default to 1 minute */
796
797 static int
mountfs(struct vfs * vfsp,enum whymountroot why,struct vnode * devvp,char * path,cred_t * cr,int isroot,void * raw_argsp,int args_len)798 mountfs(struct vfs *vfsp, enum whymountroot why, struct vnode *devvp,
799 char *path, cred_t *cr, int isroot, void *raw_argsp, int args_len)
800 {
801 dev_t dev = devvp->v_rdev;
802 struct fs *fsp;
803 struct ufsvfs *ufsvfsp = 0;
804 struct buf *bp = 0;
805 struct buf *tp = 0;
806 struct dk_cinfo ci;
807 int error = 0;
808 size_t len;
809 int needclose = 0;
810 int needtrans = 0;
811 struct inode *rip;
812 struct vnode *rvp = NULL;
813 int flags = 0;
814 kmutex_t *ihm;
815 int elapsed;
816 int status;
817 extern int maxphys;
818
819 if (args_len == sizeof (struct ufs_args) && raw_argsp)
820 flags = ((struct ufs_args *)raw_argsp)->flags;
821
822 ASSERT(vfs_lock_held(vfsp));
823
824 if (why == ROOT_INIT) {
825 /*
826 * Open block device mounted on.
827 * When bio is fixed for vnodes this can all be vnode
828 * operations.
829 */
830 error = VOP_OPEN(&devvp,
831 (vfsp->vfs_flag & VFS_RDONLY) ? FREAD : FREAD|FWRITE,
832 cr, NULL);
833 if (error)
834 goto out;
835 needclose = 1;
836
837 /*
838 * Refuse to go any further if this
839 * device is being used for swapping.
840 */
841 if (IS_SWAPVP(devvp)) {
842 error = EBUSY;
843 goto out;
844 }
845 }
846
847 /*
848 * check for dev already mounted on
849 */
850 if (vfsp->vfs_flag & VFS_REMOUNT) {
851 error = remountfs(vfsp, dev, raw_argsp, args_len);
852 if (error == 0)
853 VN_RELE(devvp);
854 return (error);
855 }
856
857 ASSERT(devvp != 0);
858
859 /*
860 * Flush back any dirty pages on the block device to
861 * try and keep the buffer cache in sync with the page
862 * cache if someone is trying to use block devices when
863 * they really should be using the raw device.
864 */
865 (void) VOP_PUTPAGE(common_specvp(devvp), (offset_t)0,
866 (size_t)0, B_INVAL, cr, NULL);
867
868 /*
869 * read in superblock
870 */
871 ufsvfsp = kmem_zalloc(sizeof (struct ufsvfs), KM_SLEEP);
872 tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE);
873 if (tp->b_flags & B_ERROR)
874 goto out;
875 fsp = (struct fs *)tp->b_un.b_addr;
876
877 if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC)) {
878 cmn_err(CE_NOTE,
879 "mount: not a UFS magic number (0x%x)", fsp->fs_magic);
880 error = EINVAL;
881 goto out;
882 }
883
884 if ((fsp->fs_magic == FS_MAGIC) &&
885 (fsp->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
886 fsp->fs_version != UFS_VERSION_MIN)) {
887 cmn_err(CE_NOTE,
888 "mount: unrecognized version of UFS on-disk format: %d",
889 fsp->fs_version);
890 error = EINVAL;
891 goto out;
892 }
893
894 if ((fsp->fs_magic == MTB_UFS_MAGIC) &&
895 (fsp->fs_version > MTB_UFS_VERSION_1 ||
896 fsp->fs_version < MTB_UFS_VERSION_MIN)) {
897 cmn_err(CE_NOTE,
898 "mount: unrecognized version of UFS on-disk format: %d",
899 fsp->fs_version);
900 error = EINVAL;
901 goto out;
902 }
903
904 #ifndef _LP64
905 if (fsp->fs_magic == MTB_UFS_MAGIC) {
906 /*
907 * Find the size of the device in sectors. If the
908 * the size in sectors is greater than INT_MAX, it's
909 * a multi-terabyte file system, which can't be
910 * mounted by a 32-bit kernel. We can't use the
911 * fsbtodb() macro in the next line because the macro
912 * casts the intermediate values to daddr_t, which is
913 * a 32-bit quantity in a 32-bit kernel. Here we
914 * really do need the intermediate values to be held
915 * in 64-bit quantities because we're checking for
916 * overflow of a 32-bit field.
917 */
918 if ((((diskaddr_t)(fsp->fs_size)) << fsp->fs_fsbtodb)
919 > INT_MAX) {
920 cmn_err(CE_NOTE,
921 "mount: multi-terabyte UFS cannot be"
922 " mounted by a 32-bit kernel");
923 error = EINVAL;
924 goto out;
925 }
926
927 }
928 #endif
929
930 if (fsp->fs_bsize > MAXBSIZE || fsp->fs_frag > MAXFRAG ||
931 fsp->fs_bsize < sizeof (struct fs) || fsp->fs_bsize < PAGESIZE) {
932 error = EINVAL; /* also needs translation */
933 goto out;
934 }
935
936 /*
937 * Allocate VFS private data.
938 */
939 vfsp->vfs_bcount = 0;
940 vfsp->vfs_data = (caddr_t)ufsvfsp;
941 vfsp->vfs_fstype = ufsfstype;
942 vfsp->vfs_dev = dev;
943 vfsp->vfs_flag |= VFS_NOTRUNC;
944 vfs_make_fsid(&vfsp->vfs_fsid, dev, ufsfstype);
945 ufsvfsp->vfs_devvp = devvp;
946
947 /*
948 * Cross-link with vfs and add to instance list.
949 */
950 ufsvfsp->vfs_vfs = vfsp;
951 ufs_vfs_add(ufsvfsp);
952
953 ufsvfsp->vfs_dev = dev;
954 ufsvfsp->vfs_bufp = tp;
955
956 ufsvfsp->vfs_dirsize = INODESIZE + (4 * ALLOCSIZE) + fsp->fs_fsize;
957 ufsvfsp->vfs_minfrags =
958 (int)((int64_t)fsp->fs_dsize * fsp->fs_minfree / 100);
959 /*
960 * if mount allows largefiles, indicate so in ufsvfs
961 */
962 if (flags & UFSMNT_LARGEFILES)
963 ufsvfsp->vfs_lfflags |= UFS_LARGEFILES;
964 /*
965 * Initialize threads
966 */
967 ufs_delete_init(ufsvfsp, 1);
968 ufs_thread_init(&ufsvfsp->vfs_reclaim, 0);
969
970 /*
971 * Chicken and egg problem. The superblock may have deltas
972 * in the log. So after the log is scanned we reread the
973 * superblock. We guarantee that the fields needed to
974 * scan the log will not be in the log.
975 */
976 if (fsp->fs_logbno && fsp->fs_clean == FSLOG &&
977 (fsp->fs_state + fsp->fs_time == FSOKAY)) {
978 error = lufs_snarf(ufsvfsp, fsp, (vfsp->vfs_flag & VFS_RDONLY));
979 if (error) {
980 /*
981 * Allow a ro mount to continue even if the
982 * log cannot be processed - yet.
983 */
984 if (!(vfsp->vfs_flag & VFS_RDONLY)) {
985 cmn_err(CE_WARN, "Error accessing ufs "
986 "log for %s; Please run fsck(1M)", path);
987 goto out;
988 }
989 }
990 tp->b_flags |= (B_AGE | B_STALE);
991 brelse(tp);
992 tp = UFS_BREAD(ufsvfsp, dev, SBLOCK, SBSIZE);
993 fsp = (struct fs *)tp->b_un.b_addr;
994 ufsvfsp->vfs_bufp = tp;
995 if (tp->b_flags & B_ERROR)
996 goto out;
997 }
998
999 /*
1000 * Set logging mounted flag used by lockfs
1001 */
1002 ufsvfsp->vfs_validfs = UT_MOUNTED;
1003
1004 /*
1005 * Copy the super block into a buffer in its native size.
1006 * Use ngeteblk to allocate the buffer
1007 */
1008 bp = ngeteblk(fsp->fs_bsize);
1009 ufsvfsp->vfs_bufp = bp;
1010 bp->b_edev = dev;
1011 bp->b_dev = cmpdev(dev);
1012 bp->b_blkno = SBLOCK;
1013 bp->b_bcount = fsp->fs_sbsize;
1014 bcopy(tp->b_un.b_addr, bp->b_un.b_addr, fsp->fs_sbsize);
1015 tp->b_flags |= B_STALE | B_AGE;
1016 brelse(tp);
1017 tp = 0;
1018
1019 fsp = (struct fs *)bp->b_un.b_addr;
1020 /*
1021 * Mount fails if superblock flag indicates presence of large
1022 * files and filesystem is attempted to be mounted 'nolargefiles'.
1023 * The exception is for a read only mount of root, which we
1024 * always want to succeed, so fsck can fix potential problems.
1025 * The assumption is that we will remount root at some point,
1026 * and the remount will enforce the mount option.
1027 */
1028 if (!(isroot & (vfsp->vfs_flag & VFS_RDONLY)) &&
1029 (fsp->fs_flags & FSLARGEFILES) &&
1030 !(flags & UFSMNT_LARGEFILES)) {
1031 error = EFBIG;
1032 goto out;
1033 }
1034
1035 if (vfsp->vfs_flag & VFS_RDONLY) {
1036 fsp->fs_ronly = 1;
1037 fsp->fs_fmod = 0;
1038 if (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
1039 ((fsp->fs_clean == FSCLEAN) ||
1040 (fsp->fs_clean == FSSTABLE) ||
1041 (fsp->fs_clean == FSLOG))) {
1042 if (isroot) {
1043 if (fsp->fs_clean == FSLOG) {
1044 if (fsp->fs_rolled == FS_ALL_ROLLED) {
1045 ufs_clean_root = 1;
1046 }
1047 } else {
1048 ufs_clean_root = 1;
1049 }
1050 }
1051 fsp->fs_clean = FSSTABLE;
1052 } else {
1053 fsp->fs_clean = FSBAD;
1054 }
1055 } else {
1056
1057 fsp->fs_fmod = 0;
1058 fsp->fs_ronly = 0;
1059
1060 TRANS_DOMATAMAP(ufsvfsp);
1061
1062 if ((TRANS_ISERROR(ufsvfsp)) ||
1063 (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
1064 fsp->fs_clean == FSLOG && !TRANS_ISTRANS(ufsvfsp))) {
1065 ufsvfsp->vfs_log = NULL;
1066 ufsvfsp->vfs_domatamap = 0;
1067 error = ENOSPC;
1068 goto out;
1069 }
1070
1071 if (((fsp->fs_state + fsp->fs_time) == FSOKAY) &&
1072 (fsp->fs_clean == FSCLEAN ||
1073 fsp->fs_clean == FSSTABLE ||
1074 fsp->fs_clean == FSLOG))
1075 fsp->fs_clean = FSSTABLE;
1076 else {
1077 if (isroot) {
1078 /*
1079 * allow root partition to be mounted even
1080 * when fs_state is not ok
1081 * will be fixed later by a remount root
1082 */
1083 fsp->fs_clean = FSBAD;
1084 ufsvfsp->vfs_log = NULL;
1085 ufsvfsp->vfs_domatamap = 0;
1086 } else {
1087 error = ENOSPC;
1088 goto out;
1089 }
1090 }
1091
1092 if (fsp->fs_clean == FSSTABLE && TRANS_ISTRANS(ufsvfsp))
1093 fsp->fs_clean = FSLOG;
1094 }
1095 TRANS_MATA_MOUNT(ufsvfsp);
1096 needtrans = 1;
1097
1098 vfsp->vfs_bsize = fsp->fs_bsize;
1099
1100 /*
1101 * Read in summary info
1102 */
1103 if (error = ufs_getsummaryinfo(dev, ufsvfsp, fsp))
1104 goto out;
1105
1106 /*
1107 * lastwhinetime is set to zero rather than lbolt, so that after
1108 * mounting if the filesystem is found to be full, then immediately the
1109 * "file system message" will be logged.
1110 */
1111 ufsvfsp->vfs_lastwhinetime = 0L;
1112
1113
1114 mutex_init(&ufsvfsp->vfs_lock, NULL, MUTEX_DEFAULT, NULL);
1115 (void) copystr(path, fsp->fs_fsmnt, sizeof (fsp->fs_fsmnt) - 1, &len);
1116 bzero(fsp->fs_fsmnt + len, sizeof (fsp->fs_fsmnt) - len);
1117
1118 /*
1119 * Sanity checks for old file systems
1120 */
1121 if (fsp->fs_postblformat == FS_42POSTBLFMT)
1122 ufsvfsp->vfs_nrpos = 8;
1123 else
1124 ufsvfsp->vfs_nrpos = fsp->fs_nrpos;
1125
1126 /*
1127 * Initialize lockfs structure to support file system locking
1128 */
1129 bzero(&ufsvfsp->vfs_ulockfs.ul_lockfs,
1130 sizeof (struct lockfs));
1131 ufsvfsp->vfs_ulockfs.ul_fs_lock = ULOCKFS_ULOCK;
1132 mutex_init(&ufsvfsp->vfs_ulockfs.ul_lock, NULL,
1133 MUTEX_DEFAULT, NULL);
1134 cv_init(&ufsvfsp->vfs_ulockfs.ul_cv, NULL, CV_DEFAULT, NULL);
1135
1136 /*
1137 * We don't need to grab vfs_dqrwlock for this ufs_iget() call.
1138 * We are in the process of mounting the file system so there
1139 * is no need to grab the quota lock. If a quota applies to the
1140 * root inode, then it will be updated when quotas are enabled.
1141 *
1142 * However, we have an ASSERT(RW_LOCK_HELD(&ufsvfsp->vfs_dqrwlock))
1143 * in getinoquota() that we want to keep so grab it anyway.
1144 */
1145 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
1146
1147 error = ufs_iget_alloced(vfsp, UFSROOTINO, &rip, cr);
1148
1149 rw_exit(&ufsvfsp->vfs_dqrwlock);
1150
1151 if (error)
1152 goto out;
1153
1154 /*
1155 * make sure root inode is a directory. Returning ENOTDIR might
1156 * be confused with the mount point not being a directory, so
1157 * we use EIO instead.
1158 */
1159 if ((rip->i_mode & IFMT) != IFDIR) {
1160 /*
1161 * Mark this inode as subject for cleanup
1162 * to avoid stray inodes in the cache.
1163 */
1164 rvp = ITOV(rip);
1165 error = EIO;
1166 goto out;
1167 }
1168
1169 rvp = ITOV(rip);
1170 mutex_enter(&rvp->v_lock);
1171 rvp->v_flag |= VROOT;
1172 mutex_exit(&rvp->v_lock);
1173 ufsvfsp->vfs_root = rvp;
1174 /* The buffer for the root inode does not contain a valid b_vp */
1175 (void) bfinval(dev, 0);
1176
1177 /* options */
1178 ufsvfsp->vfs_nosetsec = flags & UFSMNT_NOSETSEC;
1179 ufsvfsp->vfs_nointr = flags & UFSMNT_NOINTR;
1180 ufsvfsp->vfs_syncdir = flags & UFSMNT_SYNCDIR;
1181 ufsvfsp->vfs_noatime = flags & UFSMNT_NOATIME;
1182 if ((flags & UFSMNT_NODFRATIME) || ufsvfsp->vfs_noatime)
1183 ufsvfsp->vfs_dfritime &= ~UFS_DFRATIME;
1184 else /* dfratime, default behavior */
1185 ufsvfsp->vfs_dfritime |= UFS_DFRATIME;
1186 if (flags & UFSMNT_FORCEDIRECTIO)
1187 ufsvfsp->vfs_forcedirectio = 1;
1188 else if (flags & UFSMNT_NOFORCEDIRECTIO)
1189 ufsvfsp->vfs_forcedirectio = 0;
1190 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
1191
1192 ufsvfsp->vfs_nindiroffset = fsp->fs_nindir - 1;
1193 ufsvfsp->vfs_nindirshift = highbit(ufsvfsp->vfs_nindiroffset);
1194 ufsvfsp->vfs_ioclustsz = fsp->fs_bsize * fsp->fs_maxcontig;
1195
1196 if (cdev_ioctl(dev, DKIOCINFO, (intptr_t)&ci,
1197 FKIOCTL|FNATIVE|FREAD, CRED(), &status) == 0) {
1198 ufsvfsp->vfs_iotransz = ci.dki_maxtransfer * DEV_BSIZE;
1199 } else {
1200 ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys);
1201 }
1202
1203 if (ufsvfsp->vfs_iotransz <= 0) {
1204 ufsvfsp->vfs_iotransz = MIN(maxphys, ufs_maxmaxphys);
1205 }
1206
1207 /*
1208 * When logging, used to reserve log space for writes and truncs
1209 */
1210 ufsvfsp->vfs_avgbfree = fsp->fs_cstotal.cs_nbfree / fsp->fs_ncg;
1211
1212 /*
1213 * Determine whether to log cylinder group summary info.
1214 */
1215 ufsvfsp->vfs_nolog_si = (fsp->fs_ncg < ufs_ncg_log);
1216
1217 if (TRANS_ISTRANS(ufsvfsp)) {
1218 /*
1219 * start the delete thread
1220 */
1221 ufs_thread_start(&ufsvfsp->vfs_delete, ufs_thread_delete, vfsp);
1222
1223 /*
1224 * start reclaim thread if the filesystem was not mounted
1225 * read only.
1226 */
1227 if (!fsp->fs_ronly && (fsp->fs_reclaim &
1228 (FS_RECLAIM|FS_RECLAIMING))) {
1229 fsp->fs_reclaim &= ~FS_RECLAIM;
1230 fsp->fs_reclaim |= FS_RECLAIMING;
1231 ufs_thread_start(&ufsvfsp->vfs_reclaim,
1232 ufs_thread_reclaim, vfsp);
1233 }
1234
1235 /* Mark the fs as unrolled */
1236 fsp->fs_rolled = FS_NEED_ROLL;
1237 } else if (!fsp->fs_ronly && (fsp->fs_reclaim &
1238 (FS_RECLAIM|FS_RECLAIMING))) {
1239 /*
1240 * If a file system that is mounted nologging, after
1241 * having previously been mounted logging, becomes
1242 * unmounted whilst the reclaim thread is in the throes
1243 * of reclaiming open/deleted inodes, a subsequent mount
1244 * of such a file system with logging disabled could lead
1245 * to inodes becoming lost. So, start reclaim now, even
1246 * though logging was disabled for the previous mount, to
1247 * tidy things up.
1248 */
1249 fsp->fs_reclaim &= ~FS_RECLAIM;
1250 fsp->fs_reclaim |= FS_RECLAIMING;
1251 ufs_thread_start(&ufsvfsp->vfs_reclaim,
1252 ufs_thread_reclaim, vfsp);
1253 }
1254
1255 if (!fsp->fs_ronly) {
1256 TRANS_SBWRITE(ufsvfsp, TOP_MOUNT);
1257 if (error = geterror(ufsvfsp->vfs_bufp))
1258 goto out;
1259 }
1260
1261 /* fix-on-panic initialization */
1262 if (isroot && !(flags & UFSMNT_ONERROR_FLGMASK))
1263 flags |= UFSMNT_ONERROR_PANIC; /* XXX ..._RDONLY */
1264
1265 if ((error = ufsfx_mount(ufsvfsp, flags)) != 0)
1266 goto out;
1267
1268 if (why == ROOT_INIT && isroot)
1269 rootvp = devvp;
1270
1271 return (0);
1272 out:
1273 if (error == 0)
1274 error = EIO;
1275 if (rvp) {
1276 /* the following sequence is similar to ufs_unmount() */
1277
1278 /*
1279 * There's a problem that ufs_iget() puts inodes into
1280 * the inode cache before it returns them. If someone
1281 * traverses that cache and gets a reference to our
1282 * inode, there's a chance they'll still be using it
1283 * after we've destroyed it. This is a hard race to
1284 * hit, but it's happened (putting in a medium delay
1285 * here, and a large delay in ufs_scan_inodes() for
1286 * inodes on the device we're bailing out on, makes
1287 * the race easy to demonstrate). The symptom is some
1288 * other part of UFS faulting on bad inode contents,
1289 * or when grabbing one of the locks inside the inode,
1290 * etc. The usual victim is ufs_scan_inodes() or
1291 * someone called by it.
1292 */
1293
1294 /*
1295 * First, isolate it so that no new references can be
1296 * gotten via the inode cache.
1297 */
1298 ihm = &ih_lock[INOHASH(UFSROOTINO)];
1299 mutex_enter(ihm);
1300 remque(rip);
1301 mutex_exit(ihm);
1302
1303 /*
1304 * Now wait for all outstanding references except our
1305 * own to drain. This could, in theory, take forever,
1306 * so don't wait *too* long. If we time out, mark
1307 * it stale and leak it, so we don't hit the problem
1308 * described above.
1309 *
1310 * Note that v_count is an int, which means we can read
1311 * it in one operation. Thus, there's no need to lock
1312 * around our tests.
1313 */
1314 elapsed = 0;
1315 while ((rvp->v_count > 1) && (elapsed < ufs_mount_timeout)) {
1316 delay(ufs_mount_error_delay * drv_usectohz(1000));
1317 elapsed += ufs_mount_error_delay;
1318 }
1319
1320 if (rvp->v_count > 1) {
1321 mutex_enter(&rip->i_tlock);
1322 rip->i_flag |= ISTALE;
1323 mutex_exit(&rip->i_tlock);
1324 cmn_err(CE_WARN,
1325 "Timed out while cleaning up after "
1326 "failed mount of %s", path);
1327 } else {
1328
1329 /*
1330 * Now we're the only one with a handle left, so tear
1331 * it down the rest of the way.
1332 */
1333 if (ufs_rmidle(rip))
1334 VN_RELE(rvp);
1335 ufs_si_del(rip);
1336 rip->i_ufsvfs = NULL;
1337 rvp->v_vfsp = NULL;
1338 rvp->v_type = VBAD;
1339 VN_RELE(rvp);
1340 }
1341 }
1342 if (needtrans) {
1343 TRANS_MATA_UMOUNT(ufsvfsp);
1344 }
1345 if (ufsvfsp) {
1346 ufs_vfs_remove(ufsvfsp);
1347 ufs_thread_exit(&ufsvfsp->vfs_delete);
1348 ufs_thread_exit(&ufsvfsp->vfs_reclaim);
1349 mutex_destroy(&ufsvfsp->vfs_lock);
1350 if (ufsvfsp->vfs_log) {
1351 lufs_unsnarf(ufsvfsp);
1352 }
1353 kmem_free(ufsvfsp, sizeof (struct ufsvfs));
1354 }
1355 if (bp) {
1356 bp->b_flags |= (B_STALE|B_AGE);
1357 brelse(bp);
1358 }
1359 if (tp) {
1360 tp->b_flags |= (B_STALE|B_AGE);
1361 brelse(tp);
1362 }
1363 if (needclose) {
1364 (void) VOP_CLOSE(devvp, (vfsp->vfs_flag & VFS_RDONLY) ?
1365 FREAD : FREAD|FWRITE, 1, (offset_t)0, cr, NULL);
1366 bflush(dev);
1367 (void) bfinval(dev, 1);
1368 }
1369 return (error);
1370 }
1371
1372 /*
1373 * vfs operations
1374 */
1375 static int
ufs_unmount(struct vfs * vfsp,int fflag,struct cred * cr)1376 ufs_unmount(struct vfs *vfsp, int fflag, struct cred *cr)
1377 {
1378 dev_t dev = vfsp->vfs_dev;
1379 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1380 struct fs *fs = ufsvfsp->vfs_fs;
1381 struct ulockfs *ulp = &ufsvfsp->vfs_ulockfs;
1382 struct vnode *bvp, *vp;
1383 struct buf *bp;
1384 struct inode *ip, *inext, *rip;
1385 union ihead *ih;
1386 int error, flag, i;
1387 struct lockfs lockfs;
1388 int poll_events = POLLPRI;
1389 extern struct pollhead ufs_pollhd;
1390 refstr_t *mountpoint;
1391
1392 ASSERT(vfs_lock_held(vfsp));
1393
1394 if (secpolicy_fs_unmount(cr, vfsp) != 0)
1395 return (EPERM);
1396 /*
1397 * Forced unmount is now supported through the
1398 * lockfs protocol.
1399 */
1400 if (fflag & MS_FORCE) {
1401 /*
1402 * Mark the filesystem as being unmounted now in
1403 * case of a forcible umount before we take any
1404 * locks inside UFS to prevent racing with a VFS_VGET()
1405 * request. Throw these VFS_VGET() requests away for
1406 * the duration of the forcible umount so they won't
1407 * use stale or even freed data later on when we're done.
1408 * It may happen that the VFS has had a additional hold
1409 * placed on it by someone other than UFS and thus will
1410 * not get freed immediately once we're done with the
1411 * umount by dounmount() - use VFS_UNMOUNTED to inform
1412 * users of this still-alive VFS that its corresponding
1413 * filesystem being gone so they can detect that and error
1414 * out.
1415 */
1416 vfsp->vfs_flag |= VFS_UNMOUNTED;
1417
1418 ufs_thread_suspend(&ufsvfsp->vfs_delete);
1419 mutex_enter(&ulp->ul_lock);
1420 /*
1421 * If file system is already hard locked,
1422 * unmount the file system, otherwise
1423 * hard lock it before unmounting.
1424 */
1425 if (!ULOCKFS_IS_HLOCK(ulp)) {
1426 atomic_inc_ulong(&ufs_quiesce_pend);
1427 lockfs.lf_lock = LOCKFS_HLOCK;
1428 lockfs.lf_flags = 0;
1429 lockfs.lf_key = ulp->ul_lockfs.lf_key + 1;
1430 lockfs.lf_comlen = 0;
1431 lockfs.lf_comment = NULL;
1432 ufs_freeze(ulp, &lockfs);
1433 ULOCKFS_SET_BUSY(ulp);
1434 LOCKFS_SET_BUSY(&ulp->ul_lockfs);
1435 (void) ufs_quiesce(ulp);
1436 (void) ufs_flush(vfsp);
1437 (void) ufs_thaw(vfsp, ufsvfsp, ulp);
1438 atomic_dec_ulong(&ufs_quiesce_pend);
1439 ULOCKFS_CLR_BUSY(ulp);
1440 LOCKFS_CLR_BUSY(&ulp->ul_lockfs);
1441 poll_events |= POLLERR;
1442 pollwakeup(&ufs_pollhd, poll_events);
1443 }
1444 ufs_thread_continue(&ufsvfsp->vfs_delete);
1445 mutex_exit(&ulp->ul_lock);
1446 }
1447
1448 /* let all types of writes go through */
1449 ufsvfsp->vfs_iotstamp = ddi_get_lbolt();
1450
1451 /* coordinate with global hlock thread */
1452 if (TRANS_ISTRANS(ufsvfsp) && (ufsvfsp->vfs_validfs == UT_HLOCKING)) {
1453 /*
1454 * last possibility for a forced umount to fail hence clear
1455 * VFS_UNMOUNTED if appropriate.
1456 */
1457 if (fflag & MS_FORCE)
1458 vfsp->vfs_flag &= ~VFS_UNMOUNTED;
1459 return (EAGAIN);
1460 }
1461
1462 ufsvfsp->vfs_validfs = UT_UNMOUNTED;
1463
1464 /* kill the reclaim thread */
1465 ufs_thread_exit(&ufsvfsp->vfs_reclaim);
1466
1467 /* suspend the delete thread */
1468 ufs_thread_suspend(&ufsvfsp->vfs_delete);
1469
1470 /*
1471 * drain the delete and idle queues
1472 */
1473 ufs_delete_drain(vfsp, -1, 1);
1474 ufs_idle_drain(vfsp);
1475
1476 /*
1477 * use the lockfs protocol to prevent new ops from starting
1478 * a forcible umount can not fail beyond this point as
1479 * we hard-locked the filesystem and drained all current consumers
1480 * before.
1481 */
1482 mutex_enter(&ulp->ul_lock);
1483
1484 /*
1485 * if the file system is busy; return EBUSY
1486 */
1487 if (ulp->ul_vnops_cnt || ulp->ul_falloc_cnt || ULOCKFS_IS_SLOCK(ulp)) {
1488 error = EBUSY;
1489 goto out;
1490 }
1491
1492 /*
1493 * if this is not a forced unmount (!hard/error locked), then
1494 * get rid of every inode except the root and quota inodes
1495 * also, commit any outstanding transactions
1496 */
1497 if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp))
1498 if (error = ufs_flush(vfsp))
1499 goto out;
1500
1501 /*
1502 * ignore inodes in the cache if fs is hard locked or error locked
1503 */
1504 rip = VTOI(ufsvfsp->vfs_root);
1505 if (!ULOCKFS_IS_HLOCK(ulp) && !ULOCKFS_IS_ELOCK(ulp)) {
1506 /*
1507 * Otherwise, only the quota and root inodes are in the cache.
1508 *
1509 * Avoid racing with ufs_update() and ufs_sync().
1510 */
1511 mutex_enter(&ufs_scan_lock);
1512
1513 for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
1514 mutex_enter(&ih_lock[i]);
1515 for (ip = ih->ih_chain[0];
1516 ip != (struct inode *)ih;
1517 ip = ip->i_forw) {
1518 if (ip->i_ufsvfs != ufsvfsp)
1519 continue;
1520 if (ip == ufsvfsp->vfs_qinod)
1521 continue;
1522 if (ip == rip && ITOV(ip)->v_count == 1)
1523 continue;
1524 mutex_exit(&ih_lock[i]);
1525 mutex_exit(&ufs_scan_lock);
1526 error = EBUSY;
1527 goto out;
1528 }
1529 mutex_exit(&ih_lock[i]);
1530 }
1531 mutex_exit(&ufs_scan_lock);
1532 }
1533
1534 /*
1535 * if a snapshot exists and this is a forced unmount, then delete
1536 * the snapshot. Otherwise return EBUSY. This will insure the
1537 * snapshot always belongs to a valid file system.
1538 */
1539 if (ufsvfsp->vfs_snapshot) {
1540 if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) {
1541 (void) fssnap_delete(&ufsvfsp->vfs_snapshot);
1542 } else {
1543 error = EBUSY;
1544 goto out;
1545 }
1546 }
1547
1548 /*
1549 * Close the quota file and invalidate anything left in the quota
1550 * cache for this file system. Pass kcred to allow all quota
1551 * manipulations.
1552 */
1553 (void) closedq(ufsvfsp, kcred);
1554 invalidatedq(ufsvfsp);
1555 /*
1556 * drain the delete and idle queues
1557 */
1558 ufs_delete_drain(vfsp, -1, 0);
1559 ufs_idle_drain(vfsp);
1560
1561 /*
1562 * discard the inodes for this fs (including root, shadow, and quota)
1563 */
1564 for (i = 0, ih = ihead; i < inohsz; i++, ih++) {
1565 mutex_enter(&ih_lock[i]);
1566 for (inext = 0, ip = ih->ih_chain[0];
1567 ip != (struct inode *)ih;
1568 ip = inext) {
1569 inext = ip->i_forw;
1570 if (ip->i_ufsvfs != ufsvfsp)
1571 continue;
1572
1573 /*
1574 * We've found the inode in the cache and as we
1575 * hold the hash mutex the inode can not
1576 * disappear from underneath us.
1577 * We also know it must have at least a vnode
1578 * reference count of 1.
1579 * We perform an additional VN_HOLD so the VN_RELE
1580 * in case we take the inode off the idle queue
1581 * can not be the last one.
1582 * It is safe to grab the writer contents lock here
1583 * to prevent a race with ufs_iinactive() putting
1584 * inodes into the idle queue while we operate on
1585 * this inode.
1586 */
1587 rw_enter(&ip->i_contents, RW_WRITER);
1588
1589 vp = ITOV(ip);
1590 VN_HOLD(vp)
1591 remque(ip);
1592 if (ufs_rmidle(ip))
1593 VN_RELE(vp);
1594 ufs_si_del(ip);
1595 /*
1596 * rip->i_ufsvfsp is needed by bflush()
1597 */
1598 if (ip != rip)
1599 ip->i_ufsvfs = NULL;
1600 /*
1601 * Set vnode's vfsops to dummy ops, which return
1602 * EIO. This is needed to forced unmounts to work
1603 * with lofs/nfs properly.
1604 */
1605 if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp))
1606 vp->v_vfsp = &EIO_vfs;
1607 else
1608 vp->v_vfsp = NULL;
1609 vp->v_type = VBAD;
1610
1611 rw_exit(&ip->i_contents);
1612
1613 VN_RELE(vp);
1614 }
1615 mutex_exit(&ih_lock[i]);
1616 }
1617 ufs_si_cache_flush(dev);
1618
1619 /*
1620 * kill the delete thread and drain the idle queue
1621 */
1622 ufs_thread_exit(&ufsvfsp->vfs_delete);
1623 ufs_idle_drain(vfsp);
1624
1625 bp = ufsvfsp->vfs_bufp;
1626 bvp = ufsvfsp->vfs_devvp;
1627 flag = !fs->fs_ronly;
1628 if (flag) {
1629 bflush(dev);
1630 if (fs->fs_clean != FSBAD) {
1631 if (fs->fs_clean == FSSTABLE)
1632 fs->fs_clean = FSCLEAN;
1633 fs->fs_reclaim &= ~FS_RECLAIM;
1634 }
1635 if (TRANS_ISTRANS(ufsvfsp) &&
1636 !TRANS_ISERROR(ufsvfsp) &&
1637 !ULOCKFS_IS_HLOCK(ulp) &&
1638 (fs->fs_rolled == FS_NEED_ROLL)) {
1639 /*
1640 * ufs_flush() above has flushed the last Moby.
1641 * This is needed to ensure the following superblock
1642 * update really is the last metadata update
1643 */
1644 error = ufs_putsummaryinfo(dev, ufsvfsp, fs);
1645 if (error == 0) {
1646 fs->fs_rolled = FS_ALL_ROLLED;
1647 }
1648 }
1649 TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UNMOUNT);
1650 /*
1651 * push this last transaction
1652 */
1653 curthread->t_flag |= T_DONTBLOCK;
1654 TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UNMOUNT, TOP_COMMIT_SIZE,
1655 error);
1656 if (!error)
1657 TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UNMOUNT,
1658 TOP_COMMIT_SIZE);
1659 curthread->t_flag &= ~T_DONTBLOCK;
1660 }
1661
1662 TRANS_MATA_UMOUNT(ufsvfsp);
1663 lufs_unsnarf(ufsvfsp); /* Release the in-memory structs */
1664 ufsfx_unmount(ufsvfsp); /* fix-on-panic bookkeeping */
1665 kmem_free(fs->fs_u.fs_csp, fs->fs_cssize);
1666
1667 bp->b_flags |= B_STALE|B_AGE;
1668 ufsvfsp->vfs_bufp = NULL; /* don't point at freed buf */
1669 brelse(bp); /* free the superblock buf */
1670
1671 (void) VOP_PUTPAGE(common_specvp(bvp), (offset_t)0, (size_t)0,
1672 B_INVAL, cr, NULL);
1673 (void) VOP_CLOSE(bvp, flag, 1, (offset_t)0, cr, NULL);
1674 bflush(dev);
1675 (void) bfinval(dev, 1);
1676 VN_RELE(bvp);
1677
1678 /*
1679 * It is now safe to NULL out the ufsvfs pointer and discard
1680 * the root inode.
1681 */
1682 rip->i_ufsvfs = NULL;
1683 VN_RELE(ITOV(rip));
1684
1685 /* free up lockfs comment structure, if any */
1686 if (ulp->ul_lockfs.lf_comlen && ulp->ul_lockfs.lf_comment)
1687 kmem_free(ulp->ul_lockfs.lf_comment, ulp->ul_lockfs.lf_comlen);
1688
1689 /*
1690 * Remove from instance list.
1691 */
1692 ufs_vfs_remove(ufsvfsp);
1693
1694 /*
1695 * For a forcible unmount, threads may be asleep in
1696 * ufs_lockfs_begin/ufs_check_lockfs. These threads will need
1697 * the ufsvfs structure so we don't free it, yet. ufs_update
1698 * will free it up after awhile.
1699 */
1700 if (ULOCKFS_IS_HLOCK(ulp) || ULOCKFS_IS_ELOCK(ulp)) {
1701 extern kmutex_t ufsvfs_mutex;
1702 extern struct ufsvfs *ufsvfslist;
1703
1704 mutex_enter(&ufsvfs_mutex);
1705 ufsvfsp->vfs_dontblock = 1;
1706 ufsvfsp->vfs_next = ufsvfslist;
1707 ufsvfslist = ufsvfsp;
1708 mutex_exit(&ufsvfs_mutex);
1709 /* wakeup any suspended threads */
1710 cv_broadcast(&ulp->ul_cv);
1711 mutex_exit(&ulp->ul_lock);
1712 } else {
1713 mutex_destroy(&ufsvfsp->vfs_lock);
1714 kmem_free(ufsvfsp, sizeof (struct ufsvfs));
1715 }
1716
1717 /*
1718 * Now mark the filesystem as unmounted since we're done with it.
1719 */
1720 vfsp->vfs_flag |= VFS_UNMOUNTED;
1721
1722 return (0);
1723 out:
1724 /* open the fs to new ops */
1725 cv_broadcast(&ulp->ul_cv);
1726 mutex_exit(&ulp->ul_lock);
1727
1728 if (TRANS_ISTRANS(ufsvfsp)) {
1729 /* allow the delete thread to continue */
1730 ufs_thread_continue(&ufsvfsp->vfs_delete);
1731 /* restart the reclaim thread */
1732 ufs_thread_start(&ufsvfsp->vfs_reclaim, ufs_thread_reclaim,
1733 vfsp);
1734 /* coordinate with global hlock thread */
1735 ufsvfsp->vfs_validfs = UT_MOUNTED;
1736 /* check for trans errors during umount */
1737 ufs_trans_onerror();
1738
1739 /*
1740 * if we have a separate /usr it will never unmount
1741 * when halting. In order to not re-read all the
1742 * cylinder group summary info on mounting after
1743 * reboot the logging of summary info is re-enabled
1744 * and the super block written out.
1745 */
1746 mountpoint = vfs_getmntpoint(vfsp);
1747 if ((fs->fs_si == FS_SI_OK) &&
1748 (strcmp("/usr", refstr_value(mountpoint)) == 0)) {
1749 ufsvfsp->vfs_nolog_si = 0;
1750 UFS_BWRITE2(NULL, ufsvfsp->vfs_bufp);
1751 }
1752 refstr_rele(mountpoint);
1753 }
1754
1755 return (error);
1756 }
1757
1758 static int
ufs_root(struct vfs * vfsp,struct vnode ** vpp)1759 ufs_root(struct vfs *vfsp, struct vnode **vpp)
1760 {
1761 struct ufsvfs *ufsvfsp;
1762 struct vnode *vp;
1763
1764 if (!vfsp)
1765 return (EIO);
1766
1767 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1768 if (!ufsvfsp || !ufsvfsp->vfs_root)
1769 return (EIO); /* forced unmount */
1770
1771 vp = ufsvfsp->vfs_root;
1772 VN_HOLD(vp);
1773 *vpp = vp;
1774 return (0);
1775 }
1776
1777 /*
1778 * Get file system statistics.
1779 */
1780 static int
ufs_statvfs(struct vfs * vfsp,struct statvfs64 * sp)1781 ufs_statvfs(struct vfs *vfsp, struct statvfs64 *sp)
1782 {
1783 struct fs *fsp;
1784 struct ufsvfs *ufsvfsp;
1785 int blk, i;
1786 long max_avail, used;
1787 dev32_t d32;
1788
1789 if (vfsp->vfs_flag & VFS_UNMOUNTED)
1790 return (EIO);
1791
1792 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1793 fsp = ufsvfsp->vfs_fs;
1794 if ((fsp->fs_magic != FS_MAGIC) && (fsp->fs_magic != MTB_UFS_MAGIC))
1795 return (EINVAL);
1796 if (fsp->fs_magic == FS_MAGIC &&
1797 (fsp->fs_version != UFS_EFISTYLE4NONEFI_VERSION_2 &&
1798 fsp->fs_version != UFS_VERSION_MIN))
1799 return (EINVAL);
1800 if (fsp->fs_magic == MTB_UFS_MAGIC &&
1801 (fsp->fs_version > MTB_UFS_VERSION_1 ||
1802 fsp->fs_version < MTB_UFS_VERSION_MIN))
1803 return (EINVAL);
1804
1805 /*
1806 * get the basic numbers
1807 */
1808 (void) bzero(sp, sizeof (*sp));
1809
1810 sp->f_bsize = fsp->fs_bsize;
1811 sp->f_frsize = fsp->fs_fsize;
1812 sp->f_blocks = (fsblkcnt64_t)fsp->fs_dsize;
1813 sp->f_bfree = (fsblkcnt64_t)fsp->fs_cstotal.cs_nbfree * fsp->fs_frag +
1814 fsp->fs_cstotal.cs_nffree;
1815
1816 sp->f_files = (fsfilcnt64_t)fsp->fs_ncg * fsp->fs_ipg;
1817 sp->f_ffree = (fsfilcnt64_t)fsp->fs_cstotal.cs_nifree;
1818
1819 /*
1820 * Adjust the numbers based on things waiting to be deleted.
1821 * modifies f_bfree and f_ffree. Afterwards, everything we
1822 * come up with will be self-consistent. By definition, this
1823 * is a point-in-time snapshot, so the fact that the delete
1824 * thread's probably already invalidated the results is not a
1825 * problem. Note that if the delete thread is ever extended to
1826 * non-logging ufs, this adjustment must always be made.
1827 */
1828 if (TRANS_ISTRANS(ufsvfsp))
1829 ufs_delete_adjust_stats(ufsvfsp, sp);
1830
1831 /*
1832 * avail = MAX(max_avail - used, 0)
1833 */
1834 max_avail = fsp->fs_dsize - ufsvfsp->vfs_minfrags;
1835
1836 used = (fsp->fs_dsize - sp->f_bfree);
1837
1838 if (max_avail > used)
1839 sp->f_bavail = (fsblkcnt64_t)max_avail - used;
1840 else
1841 sp->f_bavail = (fsblkcnt64_t)0;
1842
1843 sp->f_favail = sp->f_ffree;
1844 (void) cmpldev(&d32, vfsp->vfs_dev);
1845 sp->f_fsid = d32;
1846 (void) strcpy(sp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1847 sp->f_flag = vf_to_stf(vfsp->vfs_flag);
1848
1849 /* keep coordinated with ufs_l_pathconf() */
1850 sp->f_namemax = MAXNAMLEN;
1851
1852 if (fsp->fs_cpc == 0) {
1853 bzero(sp->f_fstr, 14);
1854 return (0);
1855 }
1856 blk = fsp->fs_spc * fsp->fs_cpc / NSPF(fsp);
1857 for (i = 0; i < blk; i += fsp->fs_frag) /* CSTYLED */
1858 /* void */;
1859 i -= fsp->fs_frag;
1860 blk = i / fsp->fs_frag;
1861 bcopy(&(fs_rotbl(fsp)[blk]), sp->f_fstr, 14);
1862 return (0);
1863 }
1864
1865 /*
1866 * Flush any pending I/O to file system vfsp.
1867 * The ufs_update() routine will only flush *all* ufs files.
1868 * If vfsp is non-NULL, only sync this ufs (in preparation
1869 * for a umount).
1870 */
1871 /*ARGSUSED*/
1872 static int
ufs_sync(struct vfs * vfsp,short flag,struct cred * cr)1873 ufs_sync(struct vfs *vfsp, short flag, struct cred *cr)
1874 {
1875 struct ufsvfs *ufsvfsp;
1876 struct fs *fs;
1877 int cheap = flag & SYNC_ATTR;
1878 int error;
1879
1880 /*
1881 * SYNC_CLOSE means we're rebooting. Toss everything
1882 * on the idle queue so we don't have to slog through
1883 * a bunch of uninteresting inodes over and over again.
1884 */
1885 if (flag & SYNC_CLOSE)
1886 ufs_idle_drain(NULL);
1887
1888 if (vfsp == NULL) {
1889 ufs_update(flag);
1890 return (0);
1891 }
1892
1893 /* Flush a single ufs */
1894 if (!vfs_matchops(vfsp, ufs_vfsops) || vfs_lock(vfsp) != 0)
1895 return (0);
1896
1897 ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1898 if (!ufsvfsp)
1899 return (EIO);
1900 fs = ufsvfsp->vfs_fs;
1901 mutex_enter(&ufsvfsp->vfs_lock);
1902
1903 if (ufsvfsp->vfs_dio &&
1904 fs->fs_ronly == 0 &&
1905 fs->fs_clean != FSBAD &&
1906 fs->fs_clean != FSLOG) {
1907 /* turn off fast-io on unmount, so no fsck needed (4029401) */
1908 ufsvfsp->vfs_dio = 0;
1909 fs->fs_clean = FSACTIVE;
1910 fs->fs_fmod = 1;
1911 }
1912
1913 /* Write back modified superblock */
1914 if (fs->fs_fmod == 0) {
1915 mutex_exit(&ufsvfsp->vfs_lock);
1916 } else {
1917 if (fs->fs_ronly != 0) {
1918 mutex_exit(&ufsvfsp->vfs_lock);
1919 vfs_unlock(vfsp);
1920 return (ufs_fault(ufsvfsp->vfs_root,
1921 "fs = %s update: ro fs mod\n", fs->fs_fsmnt));
1922 }
1923 fs->fs_fmod = 0;
1924 mutex_exit(&ufsvfsp->vfs_lock);
1925
1926 TRANS_SBUPDATE(ufsvfsp, vfsp, TOP_SBUPDATE_UPDATE);
1927 }
1928 vfs_unlock(vfsp);
1929
1930 /*
1931 * Avoid racing with ufs_update() and ufs_unmount().
1932 *
1933 */
1934 mutex_enter(&ufs_scan_lock);
1935
1936 (void) ufs_scan_inodes(1, ufs_sync_inode,
1937 (void *)(uintptr_t)cheap, ufsvfsp);
1938
1939 mutex_exit(&ufs_scan_lock);
1940
1941 bflush((dev_t)vfsp->vfs_dev);
1942
1943 /*
1944 * commit any outstanding async transactions
1945 */
1946 curthread->t_flag |= T_DONTBLOCK;
1947 TRANS_BEGIN_SYNC(ufsvfsp, TOP_COMMIT_UPDATE, TOP_COMMIT_SIZE, error);
1948 if (!error) {
1949 TRANS_END_SYNC(ufsvfsp, error, TOP_COMMIT_UPDATE,
1950 TOP_COMMIT_SIZE);
1951 }
1952 curthread->t_flag &= ~T_DONTBLOCK;
1953
1954 return (0);
1955 }
1956
1957
1958 void
sbupdate(struct vfs * vfsp)1959 sbupdate(struct vfs *vfsp)
1960 {
1961 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
1962 struct fs *fs = ufsvfsp->vfs_fs;
1963 struct buf *bp;
1964 int blks;
1965 caddr_t space;
1966 int i;
1967 size_t size;
1968
1969 /*
1970 * for ulockfs processing, limit the superblock writes
1971 */
1972 if ((ufsvfsp->vfs_ulockfs.ul_sbowner) &&
1973 (curthread != ufsvfsp->vfs_ulockfs.ul_sbowner)) {
1974 /* process later */
1975 fs->fs_fmod = 1;
1976 return;
1977 }
1978 ULOCKFS_SET_MOD((&ufsvfsp->vfs_ulockfs));
1979
1980 if (TRANS_ISTRANS(ufsvfsp)) {
1981 mutex_enter(&ufsvfsp->vfs_lock);
1982 ufs_sbwrite(ufsvfsp);
1983 mutex_exit(&ufsvfsp->vfs_lock);
1984 return;
1985 }
1986
1987 blks = howmany(fs->fs_cssize, fs->fs_fsize);
1988 space = (caddr_t)fs->fs_u.fs_csp;
1989 for (i = 0; i < blks; i += fs->fs_frag) {
1990 size = fs->fs_bsize;
1991 if (i + fs->fs_frag > blks)
1992 size = (blks - i) * fs->fs_fsize;
1993 bp = UFS_GETBLK(ufsvfsp, ufsvfsp->vfs_dev,
1994 (daddr_t)(fsbtodb(fs, fs->fs_csaddr + i)),
1995 fs->fs_bsize);
1996 bcopy(space, bp->b_un.b_addr, size);
1997 space += size;
1998 bp->b_bcount = size;
1999 UFS_BRWRITE(ufsvfsp, bp);
2000 }
2001 mutex_enter(&ufsvfsp->vfs_lock);
2002 ufs_sbwrite(ufsvfsp);
2003 mutex_exit(&ufsvfsp->vfs_lock);
2004 }
2005
2006 int ufs_vget_idle_count = 2; /* Number of inodes to idle each time */
2007 static int
ufs_vget(struct vfs * vfsp,struct vnode ** vpp,struct fid * fidp)2008 ufs_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp)
2009 {
2010 int error = 0;
2011 struct ufid *ufid;
2012 struct inode *ip;
2013 struct ufsvfs *ufsvfsp = (struct ufsvfs *)vfsp->vfs_data;
2014 struct ulockfs *ulp;
2015
2016 /*
2017 * Check for unmounted filesystem.
2018 */
2019 if (vfsp->vfs_flag & VFS_UNMOUNTED) {
2020 error = EIO;
2021 goto errout;
2022 }
2023
2024 /*
2025 * Keep the idle queue from getting too long by
2026 * idling an inode before attempting to allocate another.
2027 * This operation must be performed before entering
2028 * lockfs or a transaction.
2029 */
2030 if (ufs_idle_q.uq_ne > ufs_idle_q.uq_hiwat)
2031 if ((curthread->t_flag & T_DONTBLOCK) == 0) {
2032 ins.in_vidles.value.ul += ufs_vget_idle_count;
2033 ufs_idle_some(ufs_vget_idle_count);
2034 }
2035
2036 ufid = (struct ufid *)fidp;
2037
2038 if (error = ufs_lockfs_begin(ufsvfsp, &ulp, ULOCKFS_VGET_MASK))
2039 goto errout;
2040
2041 rw_enter(&ufsvfsp->vfs_dqrwlock, RW_READER);
2042
2043 error = ufs_iget(vfsp, ufid->ufid_ino, &ip, CRED());
2044
2045 rw_exit(&ufsvfsp->vfs_dqrwlock);
2046
2047 ufs_lockfs_end(ulp);
2048
2049 if (error)
2050 goto errout;
2051
2052 /*
2053 * Check if the inode has been deleted or freed or is in transient state
2054 * since the last VFS_VGET() request for it, release it and don't return
2055 * it to the caller, presumably NFS, as it's no longer valid.
2056 */
2057 if (ip->i_gen != ufid->ufid_gen || ip->i_mode == 0 ||
2058 (ip->i_nlink <= 0)) {
2059 VN_RELE(ITOV(ip));
2060 error = EINVAL;
2061 goto errout;
2062 }
2063
2064 *vpp = ITOV(ip);
2065 return (0);
2066
2067 errout:
2068 *vpp = NULL;
2069 return (error);
2070 }
2071
2072 static int
ufsinit(int fstype,char * name)2073 ufsinit(int fstype, char *name)
2074 {
2075 static const fs_operation_def_t ufs_vfsops_template[] = {
2076 VFSNAME_MOUNT, { .vfs_mount = ufs_mount },
2077 VFSNAME_UNMOUNT, { .vfs_unmount = ufs_unmount },
2078 VFSNAME_ROOT, { .vfs_root = ufs_root },
2079 VFSNAME_STATVFS, { .vfs_statvfs = ufs_statvfs },
2080 VFSNAME_SYNC, { .vfs_sync = ufs_sync },
2081 VFSNAME_VGET, { .vfs_vget = ufs_vget },
2082 VFSNAME_MOUNTROOT, { .vfs_mountroot = ufs_mountroot },
2083 NULL, NULL
2084 };
2085 int error;
2086
2087 ufsfstype = fstype;
2088
2089 error = vfs_setfsops(fstype, ufs_vfsops_template, &ufs_vfsops);
2090 if (error != 0) {
2091 cmn_err(CE_WARN, "ufsinit: bad vfs ops template");
2092 return (error);
2093 }
2094
2095 error = vn_make_ops(name, ufs_vnodeops_template, &ufs_vnodeops);
2096 if (error != 0) {
2097 (void) vfs_freevfsops_by_type(fstype);
2098 cmn_err(CE_WARN, "ufsinit: bad vnode ops template");
2099 return (error);
2100 }
2101
2102 ufs_iinit();
2103 return (0);
2104 }
2105