xref: /freebsd/sys/ufs/ffs/ffs_subr.c (revision 1111a44301da39d7b7459c784230e1405e8980f8)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include <sys/param.h>
33 #include <sys/endian.h>
34 #include <sys/limits.h>
35 
36 #ifndef _KERNEL
37 #include <stdbool.h>
38 #include <stdio.h>
39 #include <string.h>
40 #include <stdlib.h>
41 #include <time.h>
42 #include <sys/errno.h>
43 #include <ufs/ufs/dinode.h>
44 #include <ufs/ffs/fs.h>
45 
46 uint32_t calculate_crc32c(uint32_t, const void *, size_t);
47 uint32_t ffs_calc_sbhash(struct fs *);
48 struct malloc_type;
49 #define UFS_MALLOC(size, type, flags) malloc(size)
50 #define UFS_FREE(ptr, type) free(ptr)
51 #define maxphys MAXPHYS
52 
53 #else /* _KERNEL */
54 #include <sys/systm.h>
55 #include <sys/gsb_crc32.h>
56 #include <sys/lock.h>
57 #include <sys/malloc.h>
58 #include <sys/mount.h>
59 #include <sys/vnode.h>
60 #include <sys/bio.h>
61 #include <sys/buf.h>
62 #include <sys/ucred.h>
63 #include <sys/sysctl.h>
64 
65 #include <ufs/ufs/quota.h>
66 #include <ufs/ufs/inode.h>
67 #include <ufs/ufs/extattr.h>
68 #include <ufs/ufs/ufsmount.h>
69 #include <ufs/ufs/ufs_extern.h>
70 #include <ufs/ffs/ffs_extern.h>
71 #include <ufs/ffs/fs.h>
72 
73 #define UFS_MALLOC(size, type, flags) malloc(size, type, flags)
74 #define UFS_FREE(ptr, type) free(ptr, type)
75 
76 #endif /* _KERNEL */
77 
78 /*
79  * Verify an inode check-hash.
80  */
81 int
ffs_verify_dinode_ckhash(struct fs * fs,struct ufs2_dinode * dip)82 ffs_verify_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
83 {
84 	uint32_t ckhash, save_ckhash;
85 
86 	/*
87 	 * Return success if unallocated or we are not doing inode check-hash.
88 	 */
89 	if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
90 		return (0);
91 	/*
92 	 * Exclude di_ckhash from the crc32 calculation, e.g., always use
93 	 * a check-hash value of zero when calculating the check-hash.
94 	 */
95 	save_ckhash = dip->di_ckhash;
96 	dip->di_ckhash = 0;
97 	ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
98 	dip->di_ckhash = save_ckhash;
99 	if (save_ckhash == ckhash)
100 		return (0);
101 	return (EINVAL);
102 }
103 
104 /*
105  * Update an inode check-hash.
106  */
107 void
ffs_update_dinode_ckhash(struct fs * fs,struct ufs2_dinode * dip)108 ffs_update_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip)
109 {
110 
111 	if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0)
112 		return;
113 	/*
114 	 * Exclude old di_ckhash from the crc32 calculation, e.g., always use
115 	 * a check-hash value of zero when calculating the new check-hash.
116 	 */
117 	dip->di_ckhash = 0;
118 	dip->di_ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip));
119 }
120 
121 /*
122  * These are the low-level functions that actually read and write
123  * the superblock and its associated data.
124  */
125 static off_t sblock_try[] = SBLOCKSEARCH;
126 static int readsuper(void *, struct fs **, off_t, int,
127 	int (*)(void *, off_t, void **, int));
128 static void ffs_oldfscompat_read(struct fs *, ufs2_daddr_t);
129 static int validate_sblock(struct fs *, int);
130 
131 /*
132  * Read a superblock from the devfd device.
133  *
134  * If an alternate superblock is specified, it is read. Otherwise the
135  * set of locations given in the SBLOCKSEARCH list is searched for a
136  * superblock. Memory is allocated for the superblock by the readfunc and
137  * is returned. If filltype is non-NULL, additional memory is allocated
138  * of type filltype and filled in with the superblock summary information.
139  * All memory is freed when any error is returned.
140  *
141  * If a superblock is found, zero is returned. Otherwise one of the
142  * following error values is returned:
143  *     EIO: non-existent or truncated superblock.
144  *     EIO: error reading summary information.
145  *     ENOENT: no usable known superblock found.
146  *     EILSEQ: filesystem with wrong byte order found.
147  *     ENOMEM: failed to allocate space for the superblock.
148  *     EINVAL: The previous newfs operation on this volume did not complete.
149  *         The administrator must complete newfs before using this volume.
150  */
151 int
ffs_sbget(void * devfd,struct fs ** fsp,off_t sblock,int flags,struct malloc_type * filltype,int (* readfunc)(void * devfd,off_t loc,void ** bufp,int size))152 ffs_sbget(void *devfd, struct fs **fsp, off_t sblock, int flags,
153     struct malloc_type *filltype,
154     int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
155 {
156 	struct fs *fs;
157 	struct fs_summary_info *fs_si;
158 	int i, error;
159 	uint64_t size, blks;
160 	uint8_t *space;
161 	int32_t *lp;
162 	char *buf;
163 
164 	fs = NULL;
165 	*fsp = NULL;
166 	if (sblock != UFS_STDSB) {
167 		if ((error = readsuper(devfd, &fs, sblock,
168 		    flags | UFS_ALTSBLK, readfunc)) != 0) {
169 			if (fs != NULL)
170 				UFS_FREE(fs, filltype);
171 			return (error);
172 		}
173 	} else {
174 		for (i = 0; sblock_try[i] != -1; i++) {
175 			if ((error = readsuper(devfd, &fs, sblock_try[i],
176 			     flags, readfunc)) == 0) {
177 				if ((flags & UFS_NOCSUM) != 0) {
178 					*fsp = fs;
179 					return (0);
180 				}
181 				break;
182 			}
183 			if (fs != NULL) {
184 				UFS_FREE(fs, filltype);
185 				fs = NULL;
186 			}
187 			if (error == ENOENT)
188 				continue;
189 			return (error);
190 		}
191 		if (sblock_try[i] == -1)
192 			return (ENOENT);
193 	}
194 	/*
195 	 * Read in the superblock summary information.
196 	 */
197 	size = fs->fs_cssize;
198 	blks = howmany(size, fs->fs_fsize);
199 	if (fs->fs_contigsumsize > 0)
200 		size += fs->fs_ncg * sizeof(int32_t);
201 	size += fs->fs_ncg * sizeof(uint8_t);
202 	if ((fs_si = UFS_MALLOC(sizeof(*fs_si), filltype, M_NOWAIT)) == NULL) {
203 		UFS_FREE(fs, filltype);
204 		return (ENOMEM);
205 	}
206 	bzero(fs_si, sizeof(*fs_si));
207 	fs->fs_si = fs_si;
208 	if ((space = UFS_MALLOC(size, filltype, M_NOWAIT)) == NULL) {
209 		UFS_FREE(fs->fs_si, filltype);
210 		UFS_FREE(fs, filltype);
211 		return (ENOMEM);
212 	}
213 	fs->fs_csp = (struct csum *)space;
214 	for (i = 0; i < blks; i += fs->fs_frag) {
215 		size = fs->fs_bsize;
216 		if (i + fs->fs_frag > blks)
217 			size = (blks - i) * fs->fs_fsize;
218 		buf = NULL;
219 		error = (*readfunc)(devfd,
220 		    dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size);
221 		if (error) {
222 			if (buf != NULL)
223 				UFS_FREE(buf, filltype);
224 			UFS_FREE(fs->fs_csp, filltype);
225 			UFS_FREE(fs->fs_si, filltype);
226 			UFS_FREE(fs, filltype);
227 			return (error);
228 		}
229 		memcpy(space, buf, size);
230 		UFS_FREE(buf, filltype);
231 		space += size;
232 	}
233 	if (fs->fs_contigsumsize > 0) {
234 		fs->fs_maxcluster = lp = (int32_t *)space;
235 		for (i = 0; i < fs->fs_ncg; i++)
236 			*lp++ = fs->fs_contigsumsize;
237 		space = (uint8_t *)lp;
238 	}
239 	size = fs->fs_ncg * sizeof(uint8_t);
240 	fs->fs_contigdirs = (uint8_t *)space;
241 	bzero(fs->fs_contigdirs, size);
242 	*fsp = fs;
243 	return (0);
244 }
245 
246 /*
247  * Try to read a superblock from the location specified by sblockloc.
248  * Return zero on success or an errno on failure.
249  */
250 static int
readsuper(void * devfd,struct fs ** fsp,off_t sblockloc,int flags,int (* readfunc)(void * devfd,off_t loc,void ** bufp,int size))251 readsuper(void *devfd, struct fs **fsp, off_t sblockloc, int flags,
252     int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
253 {
254 	struct fs *fs;
255 	int error, res;
256 	uint32_t ckhash;
257 
258 	error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE);
259 	if (error != 0)
260 		return (error);
261 	fs = *fsp;
262 	if (fs->fs_magic == FS_BAD_MAGIC)
263 		return (EINVAL);
264 	/*
265 	 * For UFS1 with a 65536 block size, the first backup superblock
266 	 * is at the same location as the UFS2 superblock. Since SBLOCK_UFS2
267 	 * is the first location checked, the first backup is the superblock
268 	 * that will be accessed. Here we fail the lookup so that we can
269 	 * retry with the correct location for the UFS1 superblock.
270 	 */
271 	if (fs->fs_magic == FS_UFS1_MAGIC && (flags & UFS_ALTSBLK) == 0 &&
272 	    fs->fs_bsize == SBLOCK_UFS2 && sblockloc == SBLOCK_UFS2)
273 		return (ENOENT);
274 	ffs_oldfscompat_read(fs, sblockloc);
275 	if ((error = validate_sblock(fs, flags)) > 0)
276 		return (error);
277 	/*
278 	 * If the filesystem has been run on a kernel without
279 	 * metadata check hashes, disable them.
280 	 */
281 	if ((fs->fs_flags & FS_METACKHASH) == 0)
282 		fs->fs_metackhash = 0;
283 	/*
284 	 * Clear any check-hashes that are not maintained
285 	 * by this kernel. Also clear any unsupported flags.
286 	 */
287 	fs->fs_metackhash &= CK_SUPPORTED;
288 	fs->fs_flags &= FS_SUPPORTED;
289 	if (fs->fs_ckhash != (ckhash = ffs_calc_sbhash(fs))) {
290 		if ((flags & (UFS_NOMSG | UFS_NOHASHFAIL)) ==
291 		    (UFS_NOMSG | UFS_NOHASHFAIL))
292 			return (0);
293 		if ((flags & UFS_NOMSG) != 0)
294 			return (EINTEGRITY);
295 #ifdef _KERNEL
296 		res = uprintf("Superblock check-hash failed: recorded "
297 		    "check-hash 0x%x != computed check-hash 0x%x%s\n",
298 		    fs->fs_ckhash, ckhash,
299 		    (flags & UFS_NOHASHFAIL) != 0 ? " (Ignored)" : "");
300 #else
301 		res = 0;
302 #endif
303 		/*
304 		 * Print check-hash failure if no controlling terminal
305 		 * in kernel or always if in user-mode (libufs).
306 		 */
307 		if (res == 0)
308 			printf("Superblock check-hash failed: recorded "
309 			    "check-hash 0x%x != computed check-hash "
310 			    "0x%x%s\n", fs->fs_ckhash, ckhash,
311 			    (flags & UFS_NOHASHFAIL) ? " (Ignored)" : "");
312 		if ((flags & UFS_NOHASHFAIL) != 0)
313 			return (0);
314 		return (EINTEGRITY);
315 	}
316 	/* Have to set for old filesystems that predate this field */
317 	fs->fs_sblockactualloc = sblockloc;
318 	/* Not yet any summary information */
319 	fs->fs_si = NULL;
320 	return (0);
321 }
322 
323 /*
324  * Sanity checks for loading old filesystem superblocks.
325  * See ffs_oldfscompat_write below for unwound actions.
326  *
327  * XXX - Parts get retired eventually.
328  * Unfortunately new bits get added.
329  */
330 static void
ffs_oldfscompat_read(struct fs * fs,ufs2_daddr_t sblockloc)331 ffs_oldfscompat_read(struct fs *fs, ufs2_daddr_t sblockloc)
332 {
333 	uint64_t maxfilesize;
334 
335 	/*
336 	 * If not yet done, update fs_flags location and value of fs_sblockloc.
337 	 */
338 	if ((fs->fs_old_flags & FS_FLAGS_UPDATED) == 0) {
339 		fs->fs_flags = fs->fs_old_flags;
340 		fs->fs_old_flags |= FS_FLAGS_UPDATED;
341 		fs->fs_sblockloc = sblockloc;
342 	}
343 	/*
344 	 * If not yet done, update UFS1 superblock with new wider fields.
345 	 */
346 	if (fs->fs_magic == FS_UFS1_MAGIC && fs->fs_maxbsize != fs->fs_bsize) {
347 		fs->fs_maxbsize = fs->fs_bsize;
348 		fs->fs_time = fs->fs_old_time;
349 		fs->fs_size = fs->fs_old_size;
350 		fs->fs_dsize = fs->fs_old_dsize;
351 		fs->fs_csaddr = fs->fs_old_csaddr;
352 		fs->fs_cstotal.cs_ndir = fs->fs_old_cstotal.cs_ndir;
353 		fs->fs_cstotal.cs_nbfree = fs->fs_old_cstotal.cs_nbfree;
354 		fs->fs_cstotal.cs_nifree = fs->fs_old_cstotal.cs_nifree;
355 		fs->fs_cstotal.cs_nffree = fs->fs_old_cstotal.cs_nffree;
356 	}
357 	if (fs->fs_magic == FS_UFS1_MAGIC &&
358 	    fs->fs_old_inodefmt < FS_44INODEFMT) {
359 		fs->fs_maxfilesize = ((uint64_t)1 << 31) - 1;
360 		fs->fs_qbmask = ~fs->fs_bmask;
361 		fs->fs_qfmask = ~fs->fs_fmask;
362 	}
363 	if (fs->fs_magic == FS_UFS1_MAGIC) {
364 		fs->fs_save_maxfilesize = fs->fs_maxfilesize;
365 		maxfilesize = (uint64_t)0x80000000 * fs->fs_bsize - 1;
366 		if (fs->fs_maxfilesize > maxfilesize)
367 			fs->fs_maxfilesize = maxfilesize;
368 	}
369 	/* Compatibility for old filesystems */
370 	if (fs->fs_avgfilesize <= 0)
371 		fs->fs_avgfilesize = AVFILESIZ;
372 	if (fs->fs_avgfpdir <= 0)
373 		fs->fs_avgfpdir = AFPDIR;
374 }
375 
376 /*
377  * Unwinding superblock updates for old filesystems.
378  * See ffs_oldfscompat_read above for details.
379  *
380  * XXX - Parts get retired eventually.
381  * Unfortunately new bits get added.
382  */
383 void
ffs_oldfscompat_write(struct fs * fs)384 ffs_oldfscompat_write(struct fs *fs)
385 {
386 
387 	/*
388 	 * Copy back UFS2 updated fields that UFS1 inspects.
389 	 */
390 	if (fs->fs_magic == FS_UFS1_MAGIC) {
391 		fs->fs_old_time = fs->fs_time;
392 		fs->fs_old_cstotal.cs_ndir = fs->fs_cstotal.cs_ndir;
393 		fs->fs_old_cstotal.cs_nbfree = fs->fs_cstotal.cs_nbfree;
394 		fs->fs_old_cstotal.cs_nifree = fs->fs_cstotal.cs_nifree;
395 		fs->fs_old_cstotal.cs_nffree = fs->fs_cstotal.cs_nffree;
396 		fs->fs_maxfilesize = fs->fs_save_maxfilesize;
397 	}
398 }
399 
400 /*
401  * Sanity checks for loading old filesystem inodes.
402  *
403  * XXX - Parts get retired eventually.
404  * Unfortunately new bits get added.
405  */
406 static int prttimechgs = 0;
407 #ifdef _KERNEL
408 SYSCTL_DECL(_vfs_ffs);
409 SYSCTL_INT(_vfs_ffs, OID_AUTO, prttimechgs, CTLFLAG_RWTUN, &prttimechgs, 0,
410 	"print UFS1 time changes made to inodes");
411 #endif /* _KERNEL */
412 bool
ffs_oldfscompat_inode_read(struct fs * fs,union dinodep dp,time_t now)413 ffs_oldfscompat_inode_read(struct fs *fs, union dinodep dp, time_t now)
414 {
415 	bool change;
416 
417 	change = false;
418 	switch (fs->fs_magic) {
419 	case FS_UFS2_MAGIC:
420 		/* No changes for now */
421 		break;
422 
423 	case FS_UFS1_MAGIC:
424 		/*
425 		 * With the change to unsigned time values in UFS1, times set
426 		 * before Jan 1, 1970 will appear to be in the future. Check
427 		 * for future times and set them to be the current time.
428 		 */
429 		if (dp.dp1->di_ctime > now) {
430 			if (prttimechgs)
431 				printf("ctime %ud changed to %ld\n",
432 				    dp.dp1->di_ctime, (long)now);
433 			dp.dp1->di_ctime = now;
434 			change = true;
435 		}
436 		if (dp.dp1->di_mtime > now) {
437 			if (prttimechgs)
438 				printf("mtime %ud changed to %ld\n",
439 				    dp.dp1->di_mtime, (long)now);
440 			dp.dp1->di_mtime = now;
441 			dp.dp1->di_ctime = now;
442 			change = true;
443 		}
444 		if (dp.dp1->di_atime > now) {
445 			if (prttimechgs)
446 				printf("atime %ud changed to %ld\n",
447 				    dp.dp1->di_atime, (long)now);
448 			dp.dp1->di_atime = now;
449 			dp.dp1->di_ctime = now;
450 			change = true;
451 		}
452 		break;
453 	}
454 	return (change);
455 }
456 
457 /*
458  * Verify the filesystem values.
459  */
460 #define ILOG2(num)	(fls(num) - 1)
461 #ifdef STANDALONE_SMALL
462 #define MPRINT(...)	do { } while (0)
463 #else
464 #define MPRINT(...)	if (prtmsg) printf(__VA_ARGS__)
465 #endif
466 #define FCHK(lhs, op, rhs, fmt)						\
467 	if (lhs op rhs) {						\
468 		MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s ("	\
469 		    #fmt ")\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2,	\
470 		    #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs);	\
471 		if (error < 0)						\
472 			return (ENOENT);				\
473 		if (error == 0)						\
474 			error = ENOENT;					\
475 	}
476 #define WCHK(lhs, op, rhs, fmt)						\
477 	if (lhs op rhs) {						\
478 		MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s ("	\
479 		    #fmt ")%s\n", fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2,\
480 		    #lhs, (intmax_t)lhs, #op, #rhs, (intmax_t)rhs, wmsg);\
481 		if (error == 0)						\
482 			error = warnerr;				\
483 		if (warnerr == 0)					\
484 			lhs = rhs;					\
485 	}
486 #define FCHK2(lhs1, op1, rhs1, lhs2, op2, rhs2, fmt)			\
487 	if (lhs1 op1 rhs1 && lhs2 op2 rhs2) {				\
488 		MPRINT("UFS%d superblock failed: %s (" #fmt ") %s %s ("	\
489 		    #fmt ") && %s (" #fmt ") %s %s (" #fmt ")\n",	\
490 		    fs->fs_magic == FS_UFS1_MAGIC ? 1 : 2, #lhs1,	\
491 		    (intmax_t)lhs1, #op1, #rhs1, (intmax_t)rhs1, #lhs2,	\
492 		    (intmax_t)lhs2, #op2, #rhs2, (intmax_t)rhs2);	\
493 		if (error < 0)						\
494 			return (ENOENT);				\
495 		if (error == 0)						\
496 			error = ENOENT;					\
497 	}
498 
499 static int
validate_sblock(struct fs * fs,int flags)500 validate_sblock(struct fs *fs, int flags)
501 {
502 	uint64_t i, sectorsize;
503 	uint64_t maxfilesize, sizepb;
504 	int error, prtmsg, warnerr;
505 	char *wmsg;
506 
507 	error = 0;
508 	sectorsize = dbtob(1);
509 	prtmsg = ((flags & UFS_NOMSG) == 0);
510 	warnerr = (flags & UFS_NOWARNFAIL) == UFS_NOWARNFAIL ? 0 : ENOENT;
511 	wmsg = warnerr ? "" : " (Ignored)";
512 	/*
513 	 * Check for endian mismatch between machine and filesystem.
514 	 */
515 	if (((fs->fs_magic != FS_UFS2_MAGIC) &&
516 	    (bswap32(fs->fs_magic) == FS_UFS2_MAGIC)) ||
517 	    ((fs->fs_magic != FS_UFS1_MAGIC) &&
518 	    (bswap32(fs->fs_magic) == FS_UFS1_MAGIC))) {
519 		MPRINT("UFS superblock failed due to endian mismatch "
520 		    "between machine and filesystem\n");
521 		return(EILSEQ);
522 	}
523 	/*
524 	 * If just validating for recovery, then do just the minimal
525 	 * checks needed for the superblock fields needed to find
526 	 * alternate superblocks.
527 	 */
528 	if ((flags & UFS_FSRONLY) == UFS_FSRONLY &&
529 	    (fs->fs_magic == FS_UFS1_MAGIC || fs->fs_magic == FS_UFS2_MAGIC)) {
530 		error = -1; /* fail on first error */
531 		if (fs->fs_magic == FS_UFS2_MAGIC) {
532 			FCHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx);
533 		} else if (fs->fs_magic == FS_UFS1_MAGIC) {
534 			FCHK(fs->fs_sblockloc, <, 0, %jd);
535 			FCHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd);
536 		}
537 		FCHK(fs->fs_frag, <, 1, %jd);
538 		FCHK(fs->fs_frag, >, MAXFRAG, %jd);
539 		FCHK(fs->fs_bsize, <, MINBSIZE, %jd);
540 		FCHK(fs->fs_bsize, >, MAXBSIZE, %jd);
541 		FCHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE),
542 		    %jd);
543 		FCHK(fs->fs_fsize, <, sectorsize, %jd);
544 		FCHK(fs->fs_fsize * fs->fs_frag, !=, fs->fs_bsize, %jd);
545 		FCHK(powerof2(fs->fs_fsize), ==, 0, %jd);
546 		FCHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd);
547 		FCHK(fs->fs_sbsize, <, (signed)sizeof(struct fs), %jd);
548 		FCHK(fs->fs_sbsize % sectorsize, !=, 0, %jd);
549 		FCHK(fs->fs_fpg, <, 3 * fs->fs_frag, %jd);
550 		FCHK(fs->fs_ncg, <, 1, %jd);
551 		FCHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd);
552 		FCHK(fs->fs_old_cgoffset, <, 0, %jd);
553 		FCHK2(fs->fs_old_cgoffset, >, 0, ~fs->fs_old_cgmask, <, 0, %jd);
554 		FCHK(fs->fs_old_cgoffset * (~fs->fs_old_cgmask), >, fs->fs_fpg,
555 		    %jd);
556 		FCHK(fs->fs_sblkno, !=, roundup(
557 		    howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize),
558 		    fs->fs_frag), %jd);
559 		FCHK(CGSIZE(fs), >, fs->fs_bsize, %jd);
560 		/* Only need to validate these if reading in csum data */
561 		if ((flags & UFS_NOCSUM) != 0)
562 			return (error);
563 		FCHK((uint64_t)fs->fs_ipg * fs->fs_ncg, >,
564 		    (((int64_t)(1)) << 32) - INOPB(fs), %jd);
565 		FCHK(fs->fs_cstotal.cs_nifree, <, 0, %jd);
566 		FCHK(fs->fs_cstotal.cs_nifree, >,
567 		    (uint64_t)fs->fs_ipg * fs->fs_ncg, %jd);
568 		FCHK(fs->fs_cstotal.cs_ndir, >,
569 		    ((uint64_t)fs->fs_ipg * fs->fs_ncg) -
570 		    fs->fs_cstotal.cs_nifree, %jd);
571 		FCHK(fs->fs_size, <, 8 * fs->fs_frag, %jd);
572 		FCHK(fs->fs_size, <=, ((int64_t)fs->fs_ncg - 1) * fs->fs_fpg,
573 		    %jd);
574 		FCHK(fs->fs_size, >, (int64_t)fs->fs_ncg * fs->fs_fpg, %jd);
575 		FCHK(fs->fs_csaddr, <, 0, %jd);
576 		FCHK(fs->fs_cssize, !=,
577 		    fragroundup(fs, fs->fs_ncg * sizeof(struct csum)), %jd);
578 		FCHK(fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize), >,
579 		    fs->fs_size, %jd);
580 		FCHK(fs->fs_csaddr, <, cgdmin(fs, dtog(fs, fs->fs_csaddr)),
581 		    %jd);
582 		FCHK(dtog(fs, fs->fs_csaddr + howmany(fs->fs_cssize,
583 		    fs->fs_fsize)), >, dtog(fs, fs->fs_csaddr), %jd);
584 		return (error);
585 	}
586 	if (fs->fs_magic == FS_UFS2_MAGIC) {
587 		if ((flags & UFS_ALTSBLK) == 0)
588 			FCHK2(fs->fs_sblockactualloc, !=, SBLOCK_UFS2,
589 			    fs->fs_sblockactualloc, !=, 0, %jd);
590 		FCHK(fs->fs_sblockloc, !=, SBLOCK_UFS2, %#jx);
591 		FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) *
592 			sizeof(ufs2_daddr_t)), %jd);
593 		FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs2_daddr_t),
594 		    %jd);
595 		FCHK(fs->fs_inopb, !=,
596 		    fs->fs_bsize / sizeof(struct ufs2_dinode), %jd);
597 	} else if (fs->fs_magic == FS_UFS1_MAGIC) {
598 		if ((flags & UFS_ALTSBLK) == 0)
599 			FCHK(fs->fs_sblockactualloc, >, SBLOCK_UFS1, %jd);
600 		FCHK(fs->fs_sblockloc, <, 0, %jd);
601 		FCHK(fs->fs_sblockloc, >, SBLOCK_UFS1, %jd);
602 		FCHK(fs->fs_nindir, !=, fs->fs_bsize / sizeof(ufs1_daddr_t),
603 		    %jd);
604 		FCHK(fs->fs_inopb, !=,
605 		    fs->fs_bsize / sizeof(struct ufs1_dinode), %jd);
606 		FCHK(fs->fs_maxsymlinklen, !=, ((UFS_NDADDR + UFS_NIADDR) *
607 			sizeof(ufs1_daddr_t)), %jd);
608 		WCHK(fs->fs_old_inodefmt, !=, FS_44INODEFMT, %jd);
609 		WCHK(fs->fs_old_rotdelay, !=, 0, %jd);
610 		WCHK(fs->fs_old_rps, !=, 60, %jd);
611 		WCHK(fs->fs_old_nspf, !=, fs->fs_fsize / sectorsize, %jd);
612 		WCHK(fs->fs_old_interleave, !=, 1, %jd);
613 		WCHK(fs->fs_old_trackskew, !=, 0, %jd);
614 		WCHK(fs->fs_old_cpc, !=, 0, %jd);
615 		WCHK(fs->fs_old_postblformat, !=, 1, %jd);
616 		FCHK(fs->fs_old_nrpos, !=, 1, %jd);
617 		WCHK(fs->fs_old_nsect, !=, fs->fs_old_spc, %jd);
618 		WCHK(fs->fs_old_npsect, !=, fs->fs_old_spc, %jd);
619 	} else {
620 		/* Bad magic number, so assume not a superblock */
621 		return (ENOENT);
622 	}
623 	FCHK(fs->fs_bsize, <, MINBSIZE, %jd);
624 	FCHK(fs->fs_bsize, >, MAXBSIZE, %jd);
625 	FCHK(fs->fs_bsize, <, roundup(sizeof(struct fs), DEV_BSIZE), %jd);
626 	FCHK(powerof2(fs->fs_bsize), ==, 0, %jd);
627 	FCHK(fs->fs_frag, <, 1, %jd);
628 	FCHK(fs->fs_frag, >, MAXFRAG, %jd);
629 	FCHK(fs->fs_frag, !=, numfrags(fs, fs->fs_bsize), %jd);
630 	FCHK(fs->fs_fsize, <, sectorsize, %jd);
631 	FCHK(fs->fs_fsize * fs->fs_frag, !=, fs->fs_bsize, %jd);
632 	FCHK(powerof2(fs->fs_fsize), ==, 0, %jd);
633 	FCHK(fs->fs_fpg, <, 3 * fs->fs_frag, %jd);
634 	FCHK(fs->fs_ncg, <, 1, %jd);
635 	FCHK(fs->fs_ipg, <, fs->fs_inopb, %jd);
636 	FCHK((uint64_t)fs->fs_ipg * fs->fs_ncg, >,
637 	    (((int64_t)(1)) << 32) - INOPB(fs), %jd);
638 	FCHK(fs->fs_cstotal.cs_nifree, <, 0, %jd);
639 	FCHK(fs->fs_cstotal.cs_nifree, >, (uint64_t)fs->fs_ipg * fs->fs_ncg,
640 	    %jd);
641 	FCHK(fs->fs_cstotal.cs_ndir, <, 0, %jd);
642 	FCHK(fs->fs_cstotal.cs_ndir, >,
643 	    ((uint64_t)fs->fs_ipg * fs->fs_ncg) - fs->fs_cstotal.cs_nifree,
644 	    %jd);
645 	FCHK(fs->fs_sbsize, >, SBLOCKSIZE, %jd);
646 	FCHK(fs->fs_sbsize, <, (signed)sizeof(struct fs), %jd);
647 	/* fix for misconfigured filesystems */
648 	if (fs->fs_maxbsize == 0)
649 		fs->fs_maxbsize = fs->fs_bsize;
650 	FCHK(fs->fs_maxbsize, <, fs->fs_bsize, %jd);
651 	FCHK(powerof2(fs->fs_maxbsize), ==, 0, %jd);
652 	FCHK(fs->fs_maxbsize, >, FS_MAXCONTIG * fs->fs_bsize, %jd);
653 	FCHK(fs->fs_bmask, !=, ~(fs->fs_bsize - 1), %#jx);
654 	FCHK(fs->fs_fmask, !=, ~(fs->fs_fsize - 1), %#jx);
655 	FCHK(fs->fs_qbmask, !=, ~fs->fs_bmask, %#jx);
656 	FCHK(fs->fs_qfmask, !=, ~fs->fs_fmask, %#jx);
657 	FCHK(fs->fs_bshift, !=, ILOG2(fs->fs_bsize), %jd);
658 	FCHK(fs->fs_fshift, !=, ILOG2(fs->fs_fsize), %jd);
659 	FCHK(fs->fs_fragshift, !=, ILOG2(fs->fs_frag), %jd);
660 	FCHK(fs->fs_fsbtodb, !=, ILOG2(fs->fs_fsize / sectorsize), %jd);
661 	FCHK(fs->fs_old_cgoffset, <, 0, %jd);
662 	FCHK2(fs->fs_old_cgoffset, >, 0, ~fs->fs_old_cgmask, <, 0, %jd);
663 	FCHK(fs->fs_old_cgoffset * (~fs->fs_old_cgmask), >, fs->fs_fpg, %jd);
664 	FCHK(CGSIZE(fs), >, fs->fs_bsize, %jd);
665 	/*
666 	 * If anything has failed up to this point, it is usafe to proceed
667 	 * as checks below may divide by zero or make other fatal calculations.
668 	 * So if we have any errors at this point, give up.
669 	 */
670 	if (error)
671 		return (error);
672 	FCHK(fs->fs_sbsize % sectorsize, !=, 0, %jd);
673 	FCHK(fs->fs_ipg % fs->fs_inopb, !=, 0, %jd);
674 	FCHK(fs->fs_sblkno, !=, roundup(
675 	    howmany(fs->fs_sblockloc + SBLOCKSIZE, fs->fs_fsize),
676 	    fs->fs_frag), %jd);
677 	FCHK(fs->fs_cblkno, !=, fs->fs_sblkno +
678 	    roundup(howmany(SBLOCKSIZE, fs->fs_fsize), fs->fs_frag), %jd);
679 	FCHK(fs->fs_iblkno, !=, fs->fs_cblkno + fs->fs_frag, %jd);
680 	FCHK(fs->fs_dblkno, !=, fs->fs_iblkno + fs->fs_ipg / INOPF(fs), %jd);
681 	FCHK(fs->fs_cgsize, >, fs->fs_bsize, %jd);
682 	FCHK(fs->fs_cgsize, <, fs->fs_fsize, %jd);
683 	FCHK(fs->fs_cgsize % fs->fs_fsize, !=, 0, %jd);
684 	/*
685 	 * This test is valid, however older versions of growfs failed
686 	 * to correctly update fs_dsize so will fail this test. Thus we
687 	 * exclude it from the requirements.
688 	 */
689 #ifdef notdef
690 	WCHK(fs->fs_dsize, !=, fs->fs_size - fs->fs_sblkno -
691 		fs->fs_ncg * (fs->fs_dblkno - fs->fs_sblkno) -
692 		howmany(fs->fs_cssize, fs->fs_fsize), %jd);
693 #endif
694 	WCHK(fs->fs_metaspace, <, 0, %jd);
695 	WCHK(fs->fs_metaspace, >, fs->fs_fpg / 2, %jd);
696 	WCHK(fs->fs_minfree, >, 99, %jd%%);
697 	maxfilesize = fs->fs_bsize * UFS_NDADDR - 1;
698 	for (sizepb = fs->fs_bsize, i = 0; i < UFS_NIADDR; i++) {
699 		sizepb *= NINDIR(fs);
700 		maxfilesize += sizepb;
701 	}
702 	WCHK(fs->fs_maxfilesize, >, maxfilesize, %jd);
703 	/*
704 	 * These values have a tight interaction with each other that
705 	 * makes it hard to tightly bound them. So we can only check
706 	 * that they are within a broader possible range.
707 	 *
708 	 * The size cannot always be accurately determined, but ensure
709 	 * that it is consistent with the number of cylinder groups (fs_ncg)
710 	 * and the number of fragments per cylinder group (fs_fpg). Ensure
711 	 * that the summary information size is correct and that it starts
712 	 * and ends in the data area of the same cylinder group.
713 	 */
714 	FCHK(fs->fs_size, <, 8 * fs->fs_frag, %jd);
715 	FCHK(fs->fs_size, <=, ((int64_t)fs->fs_ncg - 1) * fs->fs_fpg, %jd);
716 	FCHK(fs->fs_size, >, (int64_t)fs->fs_ncg * fs->fs_fpg, %jd);
717 	/*
718 	 * If we are not requested to read in the csum data stop here
719 	 * as the correctness of the remaining values is only important
720 	 * to bound the space needed to be allocated to hold the csum data.
721 	 */
722 	if ((flags & UFS_NOCSUM) != 0)
723 		return (error);
724 	FCHK(fs->fs_csaddr, <, 0, %jd);
725 	FCHK(fs->fs_cssize, !=,
726 	    fragroundup(fs, fs->fs_ncg * sizeof(struct csum)), %jd);
727 	FCHK(fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize), >,
728 	    fs->fs_size, %jd);
729 	FCHK(fs->fs_csaddr, <, cgdmin(fs, dtog(fs, fs->fs_csaddr)), %jd);
730 	FCHK(dtog(fs, fs->fs_csaddr + howmany(fs->fs_cssize, fs->fs_fsize)), >,
731 	    dtog(fs, fs->fs_csaddr), %jd);
732 	/*
733 	 * With file system clustering it is possible to allocate
734 	 * many contiguous blocks. The kernel variable maxphys defines
735 	 * the maximum transfer size permitted by the controller and/or
736 	 * buffering. The fs_maxcontig parameter controls the maximum
737 	 * number of blocks that the filesystem will read or write
738 	 * in a single transfer. It is calculated when the filesystem
739 	 * is created as maxphys / fs_bsize. The loader uses a maxphys
740 	 * of 128K even when running on a system that supports larger
741 	 * values. If the filesystem was built on a system that supports
742 	 * a larger maxphys (1M is typical) it will have configured
743 	 * fs_maxcontig for that larger system. So we bound the upper
744 	 * allowable limit for fs_maxconfig to be able to at least
745 	 * work with a 1M maxphys on the smallest block size filesystem:
746 	 * 1M / 4096 == 256. There is no harm in allowing the mounting of
747 	 * filesystems that make larger than maxphys I/O requests because
748 	 * those (mostly 32-bit machines) can (very slowly) handle I/O
749 	 * requests that exceed maxphys.
750 	 */
751 	WCHK(fs->fs_maxcontig, <, 0, %jd);
752 	WCHK(fs->fs_maxcontig, >, MAX(256, maxphys / fs->fs_bsize), %jd);
753 	FCHK2(fs->fs_maxcontig, ==, 0, fs->fs_contigsumsize, !=, 0, %jd);
754 	FCHK2(fs->fs_maxcontig, >, 1, fs->fs_contigsumsize, !=,
755 	    MIN(fs->fs_maxcontig, FS_MAXCONTIG), %jd);
756 	return (error);
757 }
758 
759 /*
760  * Make an extensive search to find a superblock. If the superblock
761  * in the standard place cannot be used, try looking for one of the
762  * backup superblocks.
763  *
764  * Flags are made up of the following or'ed together options:
765  *
766  * UFS_NOMSG indicates that superblock inconsistency error messages
767  *    should not be printed.
768  *
769  * UFS_NOCSUM causes only the superblock itself to be returned, but does
770  *    not read in any auxillary data structures like the cylinder group
771  *    summary information.
772  */
773 int
ffs_sbsearch(void * devfd,struct fs ** fsp,int reqflags,struct malloc_type * filltype,int (* readfunc)(void * devfd,off_t loc,void ** bufp,int size))774 ffs_sbsearch(void *devfd, struct fs **fsp, int reqflags,
775     struct malloc_type *filltype,
776     int (*readfunc)(void *devfd, off_t loc, void **bufp, int size))
777 {
778 	struct fsrecovery *fsr;
779 	struct fs *protofs;
780 	void *fsrbuf;
781 	char *cp;
782 	long nocsum, flags, msg, cg;
783 	off_t sblk, secsize;
784 	int error;
785 
786 	msg = (reqflags & UFS_NOMSG) == 0;
787 	nocsum = reqflags & UFS_NOCSUM;
788 	/*
789 	 * Try normal superblock read and return it if it works.
790 	 *
791 	 * Suppress messages if it fails until we find out if
792 	 * failure can be avoided.
793 	 */
794 	flags = UFS_NOMSG | nocsum;
795 	error = ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc);
796 	/*
797 	 * If successful or endian error, no need to try further.
798 	 */
799 	if (error == 0 || error == EILSEQ) {
800 		if (msg && error == EILSEQ)
801 			printf("UFS superblock failed due to endian mismatch "
802 			    "between machine and filesystem\n");
803 		return (error);
804 	}
805 	/*
806 	 * First try: ignoring hash failures.
807 	 */
808 	flags |= UFS_NOHASHFAIL;
809 	if (msg)
810 		flags &= ~UFS_NOMSG;
811 	if (ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc) == 0)
812 		return (0);
813 	/*
814 	 * Next up is to check if fields of the superblock that are
815 	 * needed to find backup superblocks are usable.
816 	 */
817 	if (msg)
818 		printf("Attempted recovery for standard superblock: failed\n");
819 	flags = UFS_FSRONLY | UFS_NOHASHFAIL | UFS_NOCSUM | UFS_NOMSG;
820 	if (ffs_sbget(devfd, &protofs, UFS_STDSB, flags, filltype,
821 	    readfunc) == 0) {
822 		if (msg)
823 			printf("Attempt extraction of recovery data from "
824 			    "standard superblock.\n");
825 	} else {
826 		/*
827 		 * Final desperation is to see if alternate superblock
828 		 * parameters have been saved in the boot area.
829 		 */
830 		if (msg)
831 			printf("Attempted extraction of recovery data from "
832 			    "standard superblock: failed\nAttempt to find "
833 			    "boot zone recovery data.\n");
834 		/*
835 		 * Look to see if recovery information has been saved.
836 		 * If so we can generate a prototype superblock based
837 		 * on that information.
838 		 *
839 		 * We need fragments-per-group, number of cylinder groups,
840 		 * location of the superblock within the cylinder group, and
841 		 * the conversion from filesystem fragments to disk blocks.
842 		 *
843 		 * When building a UFS2 filesystem, newfs(8) stores these
844 		 * details at the end of the boot block area at the start
845 		 * of the filesystem partition. If they have been overwritten
846 		 * by a boot block, we fail.  But usually they are there
847 		 * and we can use them.
848 		 *
849 		 * We could ask the underlying device for its sector size,
850 		 * but some devices lie. So we just try a plausible range.
851 		 */
852 		error = ENOENT;
853 		fsrbuf = NULL;
854 		for (secsize = dbtob(1); secsize <= SBLOCKSIZE; secsize *= 2)
855 			if ((error = (*readfunc)(devfd, (SBLOCK_UFS2 - secsize),
856 			    &fsrbuf, secsize)) == 0)
857 				break;
858 		if (error != 0)
859 			goto trynowarn;
860 		cp = fsrbuf; /* type change to keep compiler happy */
861 		fsr = (struct fsrecovery *)&cp[secsize - sizeof *fsr];
862 		if (fsr->fsr_magic != FS_UFS2_MAGIC ||
863 		    (protofs = UFS_MALLOC(SBLOCKSIZE, filltype, M_NOWAIT))
864 		    == NULL) {
865 			UFS_FREE(fsrbuf, filltype);
866 			goto trynowarn;
867 		}
868 		memset(protofs, 0, sizeof(struct fs));
869 		protofs->fs_fpg = fsr->fsr_fpg;
870 		protofs->fs_fsbtodb = fsr->fsr_fsbtodb;
871 		protofs->fs_sblkno = fsr->fsr_sblkno;
872 		protofs->fs_magic = fsr->fsr_magic;
873 		protofs->fs_ncg = fsr->fsr_ncg;
874 		UFS_FREE(fsrbuf, filltype);
875 	}
876 	/*
877 	 * Scan looking for alternative superblocks.
878 	 */
879 	flags = nocsum;
880 	if (!msg)
881 		flags |= UFS_NOMSG;
882 	for (cg = 0; cg < protofs->fs_ncg; cg++) {
883 		sblk = fsbtodb(protofs, cgsblock(protofs, cg));
884 		if (msg)
885 			printf("Try cg %ld at sblock loc %jd\n", cg,
886 			    (intmax_t)sblk);
887 		if (ffs_sbget(devfd, fsp, dbtob(sblk), flags, filltype,
888 		    readfunc) == 0) {
889 			if (msg)
890 				printf("Succeeded with alternate superblock "
891 				    "at %jd\n", (intmax_t)sblk);
892 			UFS_FREE(protofs, filltype);
893 			return (0);
894 		}
895 	}
896 	UFS_FREE(protofs, filltype);
897 	/*
898 	 * Our alternate superblock strategies failed. Our last ditch effort
899 	 * is to see if the standard superblock has only non-critical errors.
900 	 */
901 trynowarn:
902 	flags = UFS_NOWARNFAIL | UFS_NOMSG | nocsum;
903 	if (msg) {
904 		printf("Finding an alternate superblock failed.\nCheck for "
905 		    "only non-critical errors in standard superblock\n");
906 		flags &= ~UFS_NOMSG;
907 	}
908 	if (ffs_sbget(devfd, fsp, UFS_STDSB, flags, filltype, readfunc) != 0) {
909 		if (msg)
910 			printf("Failed, superblock has critical errors\n");
911 		return (ENOENT);
912 	}
913 	if (msg)
914 		printf("Success, using standard superblock with "
915 		    "non-critical errors.\n");
916 	return (0);
917 }
918 
919 /*
920  * Write a superblock to the devfd device from the memory pointed to by fs.
921  * Write out the superblock summary information if it is present.
922  *
923  * If the write is successful, zero is returned. Otherwise one of the
924  * following error values is returned:
925  *     EIO: failed to write superblock.
926  *     EIO: failed to write superblock summary information.
927  */
928 int
ffs_sbput(void * devfd,struct fs * fs,off_t loc,int (* writefunc)(void * devfd,off_t loc,void * buf,int size))929 ffs_sbput(void *devfd, struct fs *fs, off_t loc,
930     int (*writefunc)(void *devfd, off_t loc, void *buf, int size))
931 {
932 	int i, error, blks, size;
933 	uint8_t *space;
934 
935 	/*
936 	 * If there is summary information, write it first, so if there
937 	 * is an error, the superblock will not be marked as clean.
938 	 */
939 	if (fs->fs_si != NULL && fs->fs_csp != NULL) {
940 		blks = howmany(fs->fs_cssize, fs->fs_fsize);
941 		space = (uint8_t *)fs->fs_csp;
942 		for (i = 0; i < blks; i += fs->fs_frag) {
943 			size = fs->fs_bsize;
944 			if (i + fs->fs_frag > blks)
945 				size = (blks - i) * fs->fs_fsize;
946 			if ((error = (*writefunc)(devfd,
947 			     dbtob(fsbtodb(fs, fs->fs_csaddr + i)),
948 			     space, size)) != 0)
949 				return (error);
950 			space += size;
951 		}
952 	}
953 	fs->fs_fmod = 0;
954 #ifndef _KERNEL
955 	{
956 		struct fs_summary_info *fs_si;
957 
958 		fs->fs_time = time(NULL);
959 		/* Clear the pointers for the duration of writing. */
960 		fs_si = fs->fs_si;
961 		fs->fs_si = NULL;
962 		fs->fs_ckhash = ffs_calc_sbhash(fs);
963 		error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
964 		fs->fs_si = fs_si;
965 	}
966 #else /* _KERNEL */
967 	fs->fs_time = time_second;
968 	fs->fs_ckhash = ffs_calc_sbhash(fs);
969 	error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize);
970 #endif /* _KERNEL */
971 	return (error);
972 }
973 
974 /*
975  * Calculate the check-hash for a superblock.
976  */
977 uint32_t
ffs_calc_sbhash(struct fs * fs)978 ffs_calc_sbhash(struct fs *fs)
979 {
980 	uint32_t ckhash, save_ckhash;
981 
982 	/*
983 	 * A filesystem that was using a superblock ckhash may be moved
984 	 * to an older kernel that does not support ckhashes. The
985 	 * older kernel will clear the FS_METACKHASH flag indicating
986 	 * that it does not update hashes. When the disk is moved back
987 	 * to a kernel capable of ckhashes it disables them on mount:
988 	 *
989 	 *	if ((fs->fs_flags & FS_METACKHASH) == 0)
990 	 *		fs->fs_metackhash = 0;
991 	 *
992 	 * This leaves (fs->fs_metackhash & CK_SUPERBLOCK) == 0) with an
993 	 * old stale value in the fs->fs_ckhash field. Thus the need to
994 	 * just accept what is there.
995 	 */
996 	if ((fs->fs_metackhash & CK_SUPERBLOCK) == 0)
997 		return (fs->fs_ckhash);
998 
999 	save_ckhash = fs->fs_ckhash;
1000 	fs->fs_ckhash = 0;
1001 	/*
1002 	 * If newly read from disk, the caller is responsible for
1003 	 * verifying that fs->fs_sbsize <= SBLOCKSIZE.
1004 	 */
1005 	ckhash = calculate_crc32c(~0L, (void *)fs, fs->fs_sbsize);
1006 	fs->fs_ckhash = save_ckhash;
1007 	return (ckhash);
1008 }
1009 
1010 /*
1011  * Update the frsum fields to reflect addition or deletion
1012  * of some frags.
1013  */
1014 void
ffs_fragacct(struct fs * fs,int fragmap,int32_t fraglist[],int cnt)1015 ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt)
1016 {
1017 	int inblk;
1018 	int field, subfield;
1019 	int siz, pos;
1020 
1021 	inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1;
1022 	fragmap <<= 1;
1023 	for (siz = 1; siz < fs->fs_frag; siz++) {
1024 		if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0)
1025 			continue;
1026 		field = around[siz];
1027 		subfield = inside[siz];
1028 		for (pos = siz; pos <= fs->fs_frag; pos++) {
1029 			if ((fragmap & field) == subfield) {
1030 				fraglist[siz] += cnt;
1031 				pos += siz;
1032 				field <<= siz;
1033 				subfield <<= siz;
1034 			}
1035 			field <<= 1;
1036 			subfield <<= 1;
1037 		}
1038 	}
1039 }
1040 
1041 /*
1042  * block operations
1043  *
1044  * check if a block is available
1045  */
1046 int
ffs_isblock(struct fs * fs,unsigned char * cp,ufs1_daddr_t h)1047 ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
1048 {
1049 	unsigned char mask;
1050 
1051 	switch ((int)fs->fs_frag) {
1052 	case 8:
1053 		return (cp[h] == 0xff);
1054 	case 4:
1055 		mask = 0x0f << ((h & 0x1) << 2);
1056 		return ((cp[h >> 1] & mask) == mask);
1057 	case 2:
1058 		mask = 0x03 << ((h & 0x3) << 1);
1059 		return ((cp[h >> 2] & mask) == mask);
1060 	case 1:
1061 		mask = 0x01 << (h & 0x7);
1062 		return ((cp[h >> 3] & mask) == mask);
1063 	default:
1064 #ifdef _KERNEL
1065 		panic("ffs_isblock");
1066 #endif
1067 		break;
1068 	}
1069 	return (0);
1070 }
1071 
1072 /*
1073  * check if a block is free
1074  */
1075 int
ffs_isfreeblock(struct fs * fs,uint8_t * cp,ufs1_daddr_t h)1076 ffs_isfreeblock(struct fs *fs, uint8_t *cp, ufs1_daddr_t h)
1077 {
1078 
1079 	switch ((int)fs->fs_frag) {
1080 	case 8:
1081 		return (cp[h] == 0);
1082 	case 4:
1083 		return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0);
1084 	case 2:
1085 		return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0);
1086 	case 1:
1087 		return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0);
1088 	default:
1089 #ifdef _KERNEL
1090 		panic("ffs_isfreeblock");
1091 #endif
1092 		break;
1093 	}
1094 	return (0);
1095 }
1096 
1097 /*
1098  * take a block out of the map
1099  */
1100 void
ffs_clrblock(struct fs * fs,uint8_t * cp,ufs1_daddr_t h)1101 ffs_clrblock(struct fs *fs, uint8_t *cp, ufs1_daddr_t h)
1102 {
1103 
1104 	switch ((int)fs->fs_frag) {
1105 	case 8:
1106 		cp[h] = 0;
1107 		return;
1108 	case 4:
1109 		cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1110 		return;
1111 	case 2:
1112 		cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1113 		return;
1114 	case 1:
1115 		cp[h >> 3] &= ~(0x01 << (h & 0x7));
1116 		return;
1117 	default:
1118 #ifdef _KERNEL
1119 		panic("ffs_clrblock");
1120 #endif
1121 		break;
1122 	}
1123 }
1124 
1125 /*
1126  * put a block into the map
1127  */
1128 void
ffs_setblock(struct fs * fs,unsigned char * cp,ufs1_daddr_t h)1129 ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h)
1130 {
1131 
1132 	switch ((int)fs->fs_frag) {
1133 	case 8:
1134 		cp[h] = 0xff;
1135 		return;
1136 	case 4:
1137 		cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1138 		return;
1139 	case 2:
1140 		cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1141 		return;
1142 	case 1:
1143 		cp[h >> 3] |= (0x01 << (h & 0x7));
1144 		return;
1145 	default:
1146 #ifdef _KERNEL
1147 		panic("ffs_setblock");
1148 #endif
1149 		break;
1150 	}
1151 }
1152 
1153 /*
1154  * Update the cluster map because of an allocation or free.
1155  *
1156  * Cnt == 1 means free; cnt == -1 means allocating.
1157  */
1158 void
ffs_clusteracct(struct fs * fs,struct cg * cgp,ufs1_daddr_t blkno,int cnt)1159 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt)
1160 {
1161 	int32_t *sump;
1162 	int32_t *lp;
1163 	uint8_t *freemapp, *mapp;
1164 	int i, start, end, forw, back, map;
1165 	uint64_t bit;
1166 
1167 	if (fs->fs_contigsumsize <= 0)
1168 		return;
1169 	freemapp = cg_clustersfree(cgp);
1170 	sump = cg_clustersum(cgp);
1171 	/*
1172 	 * Allocate or clear the actual block.
1173 	 */
1174 	if (cnt > 0)
1175 		setbit(freemapp, blkno);
1176 	else
1177 		clrbit(freemapp, blkno);
1178 	/*
1179 	 * Find the size of the cluster going forward.
1180 	 */
1181 	start = blkno + 1;
1182 	end = start + fs->fs_contigsumsize;
1183 	if (end >= cgp->cg_nclusterblks)
1184 		end = cgp->cg_nclusterblks;
1185 	mapp = &freemapp[start / NBBY];
1186 	map = *mapp++;
1187 	bit = 1U << (start % NBBY);
1188 	for (i = start; i < end; i++) {
1189 		if ((map & bit) == 0)
1190 			break;
1191 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
1192 			bit <<= 1;
1193 		} else {
1194 			map = *mapp++;
1195 			bit = 1;
1196 		}
1197 	}
1198 	forw = i - start;
1199 	/*
1200 	 * Find the size of the cluster going backward.
1201 	 */
1202 	start = blkno - 1;
1203 	end = start - fs->fs_contigsumsize;
1204 	if (end < 0)
1205 		end = -1;
1206 	mapp = &freemapp[start / NBBY];
1207 	map = *mapp--;
1208 	bit = 1U << (start % NBBY);
1209 	for (i = start; i > end; i--) {
1210 		if ((map & bit) == 0)
1211 			break;
1212 		if ((i & (NBBY - 1)) != 0) {
1213 			bit >>= 1;
1214 		} else {
1215 			map = *mapp--;
1216 			bit = 1U << (NBBY - 1);
1217 		}
1218 	}
1219 	back = start - i;
1220 	/*
1221 	 * Account for old cluster and the possibly new forward and
1222 	 * back clusters.
1223 	 */
1224 	i = back + forw + 1;
1225 	if (i > fs->fs_contigsumsize)
1226 		i = fs->fs_contigsumsize;
1227 	sump[i] += cnt;
1228 	if (back > 0)
1229 		sump[back] -= cnt;
1230 	if (forw > 0)
1231 		sump[forw] -= cnt;
1232 	/*
1233 	 * Update cluster summary information.
1234 	 */
1235 	lp = &sump[fs->fs_contigsumsize];
1236 	for (i = fs->fs_contigsumsize; i > 0; i--)
1237 		if (*lp-- > 0)
1238 			break;
1239 	fs->fs_maxcluster[cgp->cg_cgx] = i;
1240 }
1241