1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 #include "opt_inet.h"
33 #include "opt_ipsec.h"
34 #include "opt_kern_tls.h"
35 #include "opt_mbuf_stress_test.h"
36 #include "opt_ratelimit.h"
37 #include "opt_route.h"
38 #include "opt_rss.h"
39 #include "opt_sctp.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/kernel.h>
44 #include <sys/ktls.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/priv.h>
49 #include <sys/proc.h>
50 #include <sys/protosw.h>
51 #include <sys/sdt.h>
52 #include <sys/socket.h>
53 #include <sys/socketvar.h>
54 #include <sys/sysctl.h>
55 #include <sys/ucred.h>
56
57 #include <net/if.h>
58 #include <net/if_var.h>
59 #include <net/if_private.h>
60 #include <net/if_vlan_var.h>
61 #include <net/if_llatbl.h>
62 #include <net/ethernet.h>
63 #include <net/netisr.h>
64 #include <net/pfil.h>
65 #include <net/route.h>
66 #include <net/route/nhop.h>
67 #include <net/rss_config.h>
68 #include <net/vnet.h>
69
70 #include <netinet/in.h>
71 #include <netinet/in_fib.h>
72 #include <netinet/in_kdtrace.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/ip.h>
75 #include <netinet/in_fib.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/in_rss.h>
78 #include <netinet/in_var.h>
79 #include <netinet/ip_var.h>
80 #include <netinet/ip_options.h>
81
82 #include <netinet/udp.h>
83 #include <netinet/udp_var.h>
84
85 #if defined(SCTP) || defined(SCTP_SUPPORT)
86 #include <netinet/sctp.h>
87 #include <netinet/sctp_crc32.h>
88 #endif
89
90 #include <netipsec/ipsec_support.h>
91
92 #include <machine/in_cksum.h>
93
94 #include <security/mac/mac_framework.h>
95
96 #ifdef MBUF_STRESS_TEST
97 static int mbuf_frag_size = 0;
98 SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
99 &mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
100 #endif
101
102 static void ip_mloopback(struct ifnet *, const struct mbuf *, int);
103
104 extern int in_mcast_loop;
105
106 static inline int
ip_output_pfil(struct mbuf ** mp,struct ifnet * ifp,int flags,struct inpcb * inp,struct sockaddr_in * dst,int * fibnum,int * error)107 ip_output_pfil(struct mbuf **mp, struct ifnet *ifp, int flags,
108 struct inpcb *inp, struct sockaddr_in *dst, int *fibnum, int *error)
109 {
110 struct m_tag *fwd_tag = NULL;
111 struct mbuf *m;
112 struct in_addr odst;
113 struct ip *ip;
114 int ret;
115
116 m = *mp;
117 ip = mtod(m, struct ip *);
118
119 /* Run through list of hooks for output packets. */
120 odst.s_addr = ip->ip_dst.s_addr;
121 if (flags & IP_FORWARDING)
122 ret = pfil_mbuf_fwd(V_inet_pfil_head, mp, ifp, inp);
123 else
124 ret = pfil_mbuf_out(V_inet_pfil_head, mp, ifp, inp);
125
126 switch (ret) {
127 case PFIL_DROPPED:
128 *error = EACCES;
129 /* FALLTHROUGH */
130 case PFIL_CONSUMED:
131 return 1; /* Finished */
132 case PFIL_PASS:
133 *error = 0;
134 }
135 m = *mp;
136 ip = mtod(m, struct ip *);
137
138 /* See if destination IP address was changed by packet filter. */
139 if (odst.s_addr != ip->ip_dst.s_addr) {
140 m->m_flags |= M_SKIP_FIREWALL;
141 /* If destination is now ourself drop to ip_input(). */
142 if (in_localip(ip->ip_dst)) {
143 m->m_flags |= M_FASTFWD_OURS;
144 if (m->m_pkthdr.rcvif == NULL)
145 m->m_pkthdr.rcvif = V_loif;
146 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
147 m->m_pkthdr.csum_flags |=
148 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
149 m->m_pkthdr.csum_data = 0xffff;
150 }
151 m->m_pkthdr.csum_flags |=
152 CSUM_IP_CHECKED | CSUM_IP_VALID;
153 #if defined(SCTP) || defined(SCTP_SUPPORT)
154 if (m->m_pkthdr.csum_flags & CSUM_SCTP)
155 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
156 #endif
157 *error = netisr_queue(NETISR_IP, m);
158 return 1; /* Finished */
159 }
160
161 bzero(dst, sizeof(*dst));
162 dst->sin_family = AF_INET;
163 dst->sin_len = sizeof(*dst);
164 dst->sin_addr = ip->ip_dst;
165
166 return -1; /* Reloop */
167 }
168 /* See if fib was changed by packet filter. */
169 if ((*fibnum) != M_GETFIB(m)) {
170 m->m_flags |= M_SKIP_FIREWALL;
171 *fibnum = M_GETFIB(m);
172 return -1; /* Reloop for FIB change */
173 }
174
175 /* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
176 if (m->m_flags & M_FASTFWD_OURS) {
177 if (m->m_pkthdr.rcvif == NULL)
178 m->m_pkthdr.rcvif = V_loif;
179 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
180 m->m_pkthdr.csum_flags |=
181 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
182 m->m_pkthdr.csum_data = 0xffff;
183 }
184 #if defined(SCTP) || defined(SCTP_SUPPORT)
185 if (m->m_pkthdr.csum_flags & CSUM_SCTP)
186 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
187 #endif
188 m->m_pkthdr.csum_flags |=
189 CSUM_IP_CHECKED | CSUM_IP_VALID;
190
191 *error = netisr_queue(NETISR_IP, m);
192 return 1; /* Finished */
193 }
194 /* Or forward to some other address? */
195 if ((m->m_flags & M_IP_NEXTHOP) &&
196 ((fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL)) {
197 bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
198 m->m_flags |= M_SKIP_FIREWALL;
199 m->m_flags &= ~M_IP_NEXTHOP;
200 m_tag_delete(m, fwd_tag);
201
202 return -1; /* Reloop for CHANGE of dst */
203 }
204
205 return 0;
206 }
207
208 static int
ip_output_send(struct inpcb * inp,struct ifnet * ifp,struct mbuf * m,const struct sockaddr * gw,struct route * ro,bool stamp_tag)209 ip_output_send(struct inpcb *inp, struct ifnet *ifp, struct mbuf *m,
210 const struct sockaddr *gw, struct route *ro, bool stamp_tag)
211 {
212 #ifdef KERN_TLS
213 struct ktls_session *tls = NULL;
214 #endif
215 struct m_snd_tag *mst;
216 int error;
217
218 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
219 mst = NULL;
220
221 #ifdef KERN_TLS
222 /*
223 * If this is an unencrypted TLS record, save a reference to
224 * the record. This local reference is used to call
225 * ktls_output_eagain after the mbuf has been freed (thus
226 * dropping the mbuf's reference) in if_output.
227 */
228 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) {
229 tls = ktls_hold(m->m_next->m_epg_tls);
230 mst = tls->snd_tag;
231
232 /*
233 * If a TLS session doesn't have a valid tag, it must
234 * have had an earlier ifp mismatch, so drop this
235 * packet.
236 */
237 if (mst == NULL) {
238 m_freem(m);
239 error = EAGAIN;
240 goto done;
241 }
242 /*
243 * Always stamp tags that include NIC ktls.
244 */
245 stamp_tag = true;
246 }
247 #endif
248 #ifdef RATELIMIT
249 if (inp != NULL && mst == NULL) {
250 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 ||
251 (inp->inp_snd_tag != NULL &&
252 inp->inp_snd_tag->ifp != ifp))
253 in_pcboutput_txrtlmt(inp, ifp, m);
254
255 if (inp->inp_snd_tag != NULL)
256 mst = inp->inp_snd_tag;
257 }
258 #endif
259 if (stamp_tag && mst != NULL) {
260 KASSERT(m->m_pkthdr.rcvif == NULL,
261 ("trying to add a send tag to a forwarded packet"));
262 if (mst->ifp != ifp) {
263 m_freem(m);
264 error = EAGAIN;
265 goto done;
266 }
267
268 /* stamp send tag on mbuf */
269 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst);
270 m->m_pkthdr.csum_flags |= CSUM_SND_TAG;
271 }
272
273 error = (*ifp->if_output)(ifp, m, gw, ro);
274
275 done:
276 /* Check for route change invalidating send tags. */
277 #ifdef KERN_TLS
278 if (tls != NULL) {
279 if (error == EAGAIN)
280 error = ktls_output_eagain(inp, tls);
281 ktls_free(tls);
282 }
283 #endif
284 #ifdef RATELIMIT
285 if (error == EAGAIN)
286 in_pcboutput_eagain(inp);
287 #endif
288 return (error);
289 }
290
291 /* rte<>ro_flags translation */
292 static inline void
rt_update_ro_flags(struct route * ro,const struct nhop_object * nh)293 rt_update_ro_flags(struct route *ro, const struct nhop_object *nh)
294 {
295 int nh_flags = nh->nh_flags;
296
297 ro->ro_flags &= ~ (RT_REJECT|RT_BLACKHOLE|RT_HAS_GW);
298
299 ro->ro_flags |= (nh_flags & NHF_REJECT) ? RT_REJECT : 0;
300 ro->ro_flags |= (nh_flags & NHF_BLACKHOLE) ? RT_BLACKHOLE : 0;
301 ro->ro_flags |= (nh_flags & NHF_GATEWAY) ? RT_HAS_GW : 0;
302 }
303
304 /*
305 * IP output. The packet in mbuf chain m contains a skeletal IP
306 * header (with len, off, ttl, proto, tos, src, dst).
307 * The mbuf chain containing the packet will be freed.
308 * The mbuf opt, if present, will not be freed.
309 * If route ro is present and has ro_rt initialized, route lookup would be
310 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
311 * then result of route lookup is stored in ro->ro_rt.
312 *
313 * In the IP forwarding case, the packet will arrive with options already
314 * inserted, so must have a NULL opt pointer.
315 */
316 int
ip_output(struct mbuf * m,struct mbuf * opt,struct route * ro,int flags,struct ip_moptions * imo,struct inpcb * inp)317 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
318 struct ip_moptions *imo, struct inpcb *inp)
319 {
320 struct ip *ip;
321 struct ifnet *ifp = NULL; /* keep compiler happy */
322 struct mbuf *m0;
323 int hlen = sizeof (struct ip);
324 int mtu = 0;
325 int error = 0;
326 int vlan_pcp = -1;
327 struct sockaddr_in *dst;
328 const struct sockaddr *gw;
329 struct in_ifaddr *ia = NULL;
330 struct in_addr src;
331 bool isbroadcast;
332 uint16_t ip_len, ip_off;
333 struct route iproute;
334 uint32_t fibnum;
335 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
336 int no_route_but_check_spd = 0;
337 #endif
338
339 M_ASSERTPKTHDR(m);
340 NET_EPOCH_ASSERT();
341
342 if (inp != NULL) {
343 INP_LOCK_ASSERT(inp);
344 M_SETFIB(m, inp->inp_inc.inc_fibnum);
345 if ((flags & IP_NODEFAULTFLOWID) == 0) {
346 m->m_pkthdr.flowid = inp->inp_flowid;
347 M_HASHTYPE_SET(m, inp->inp_flowtype);
348 }
349 if ((inp->inp_flags2 & INP_2PCP_SET) != 0)
350 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >>
351 INP_2PCP_SHIFT;
352 #ifdef NUMA
353 m->m_pkthdr.numa_domain = inp->inp_numa_domain;
354 #endif
355 }
356
357 if (opt) {
358 int len = 0;
359 m = ip_insertoptions(m, opt, &len);
360 if (len != 0)
361 hlen = len; /* ip->ip_hl is updated above */
362 }
363 ip = mtod(m, struct ip *);
364 ip_len = ntohs(ip->ip_len);
365 ip_off = ntohs(ip->ip_off);
366
367 if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
368 ip->ip_v = IPVERSION;
369 ip->ip_hl = hlen >> 2;
370 ip_fillid(ip, V_ip_random_id);
371 } else {
372 /* Header already set, fetch hlen from there */
373 hlen = ip->ip_hl << 2;
374 }
375 if ((flags & IP_FORWARDING) == 0)
376 IPSTAT_INC(ips_localout);
377
378 /*
379 * dst/gw handling:
380 *
381 * gw is readonly but can point either to dst OR rt_gateway,
382 * therefore we need restore gw if we're redoing lookup.
383 */
384 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
385 if (ro == NULL) {
386 ro = &iproute;
387 bzero(ro, sizeof (*ro));
388 }
389 dst = (struct sockaddr_in *)&ro->ro_dst;
390 if (ro->ro_nh == NULL) {
391 dst->sin_family = AF_INET;
392 dst->sin_len = sizeof(*dst);
393 dst->sin_addr = ip->ip_dst;
394 }
395 gw = (const struct sockaddr *)dst;
396 again:
397 /*
398 * Validate route against routing table additions;
399 * a better/more specific route might have been added.
400 */
401 if (inp != NULL && ro->ro_nh != NULL)
402 NH_VALIDATE(ro, &inp->inp_rt_cookie, fibnum);
403 /*
404 * If there is a cached route,
405 * check that it is to the same destination
406 * and is still up. If not, free it and try again.
407 * The address family should also be checked in case of sharing the
408 * cache with IPv6.
409 * Also check whether routing cache needs invalidation.
410 */
411 if (ro->ro_nh != NULL &&
412 ((!NH_IS_VALID(ro->ro_nh)) || dst->sin_family != AF_INET ||
413 dst->sin_addr.s_addr != ip->ip_dst.s_addr))
414 RO_INVALIDATE_CACHE(ro);
415 ia = NULL;
416 /*
417 * If routing to interface only, short circuit routing lookup.
418 * The use of an all-ones broadcast address implies this; an
419 * interface is specified by the broadcast address of an interface,
420 * or the destination address of a ptp interface.
421 */
422 if (flags & IP_SENDONES) {
423 if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst),
424 M_GETFIB(m)))) == NULL &&
425 (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
426 M_GETFIB(m)))) == NULL) {
427 IPSTAT_INC(ips_noroute);
428 error = ENETUNREACH;
429 goto bad;
430 }
431 ip->ip_dst.s_addr = INADDR_BROADCAST;
432 dst->sin_addr = ip->ip_dst;
433 ifp = ia->ia_ifp;
434 mtu = ifp->if_mtu;
435 ip->ip_ttl = 1;
436 isbroadcast = true;
437 src = IA_SIN(ia)->sin_addr;
438 } else if (flags & IP_ROUTETOIF) {
439 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
440 M_GETFIB(m)))) == NULL &&
441 (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0,
442 M_GETFIB(m)))) == NULL) {
443 IPSTAT_INC(ips_noroute);
444 error = ENETUNREACH;
445 goto bad;
446 }
447 ifp = ia->ia_ifp;
448 mtu = ifp->if_mtu;
449 ip->ip_ttl = 1;
450 isbroadcast = ifp->if_flags & IFF_BROADCAST ?
451 (in_broadcast(ip->ip_dst) ||
452 in_ifaddr_broadcast(dst->sin_addr, ia)) : 0;
453 src = IA_SIN(ia)->sin_addr;
454 } else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
455 imo != NULL && imo->imo_multicast_ifp != NULL) {
456 /*
457 * Bypass the normal routing lookup for multicast
458 * packets if the interface is specified.
459 */
460 ifp = imo->imo_multicast_ifp;
461 mtu = ifp->if_mtu;
462 IFP_TO_IA(ifp, ia);
463 isbroadcast = false;
464 /* Interface may have no addresses. */
465 if (ia != NULL)
466 src = IA_SIN(ia)->sin_addr;
467 else
468 src.s_addr = INADDR_ANY;
469 } else if (ro != &iproute) {
470 if (ro->ro_nh == NULL) {
471 /*
472 * We want to do any cloning requested by the link
473 * layer, as this is probably required in all cases
474 * for correct operation (as it is for ARP).
475 */
476 uint32_t flowid;
477 flowid = m->m_pkthdr.flowid;
478 ro->ro_nh = fib4_lookup(fibnum, dst->sin_addr, 0,
479 NHR_REF, flowid);
480
481 if (ro->ro_nh == NULL || (!NH_IS_VALID(ro->ro_nh))) {
482 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
483 /*
484 * There is no route for this packet, but it is
485 * possible that a matching SPD entry exists.
486 */
487 no_route_but_check_spd = 1;
488 goto sendit;
489 #endif
490 IPSTAT_INC(ips_noroute);
491 error = EHOSTUNREACH;
492 goto bad;
493 }
494 }
495 struct nhop_object *nh = ro->ro_nh;
496
497 ia = ifatoia(nh->nh_ifa);
498 ifp = nh->nh_ifp;
499 counter_u64_add(nh->nh_pksent, 1);
500 rt_update_ro_flags(ro, nh);
501 if (nh->nh_flags & NHF_GATEWAY)
502 gw = &nh->gw_sa;
503 if (nh->nh_flags & NHF_HOST)
504 isbroadcast = (nh->nh_flags & NHF_BROADCAST);
505 else if ((ifp->if_flags & IFF_BROADCAST) &&
506 (gw->sa_family == AF_INET))
507 isbroadcast = in_broadcast(ip->ip_dst) ||
508 in_ifaddr_broadcast(
509 ((const struct sockaddr_in *)gw)->sin_addr, ia);
510 else
511 isbroadcast = false;
512 mtu = nh->nh_mtu;
513 src = IA_SIN(ia)->sin_addr;
514 } else {
515 struct nhop_object *nh;
516
517 nh = fib4_lookup(M_GETFIB(m), dst->sin_addr, 0, NHR_NONE,
518 m->m_pkthdr.flowid);
519 if (nh == NULL) {
520 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
521 /*
522 * There is no route for this packet, but it is
523 * possible that a matching SPD entry exists.
524 */
525 no_route_but_check_spd = 1;
526 goto sendit;
527 #endif
528 IPSTAT_INC(ips_noroute);
529 error = EHOSTUNREACH;
530 goto bad;
531 }
532 ifp = nh->nh_ifp;
533 mtu = nh->nh_mtu;
534 rt_update_ro_flags(ro, nh);
535 if (nh->nh_flags & NHF_GATEWAY)
536 gw = &nh->gw_sa;
537 ia = ifatoia(nh->nh_ifa);
538 src = IA_SIN(ia)->sin_addr;
539 isbroadcast = ((nh->nh_flags & (NHF_HOST | NHF_BROADCAST)) ==
540 (NHF_HOST | NHF_BROADCAST)) ||
541 ((ifp->if_flags & IFF_BROADCAST) &&
542 (gw->sa_family == AF_INET) &&
543 (in_broadcast(ip->ip_dst) || in_ifaddr_broadcast(
544 ((const struct sockaddr_in *)gw)->sin_addr, ia)));
545 }
546
547 /* Catch a possible divide by zero later. */
548 KASSERT(mtu > 0, ("%s: mtu %d <= 0, ro=%p (nh_flags=0x%08x) ifp=%p",
549 __func__, mtu, ro,
550 (ro != NULL && ro->ro_nh != NULL) ? ro->ro_nh->nh_flags : 0, ifp));
551
552 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
553 m->m_flags |= M_MCAST;
554 /*
555 * IP destination address is multicast. Make sure "gw"
556 * still points to the address in "ro". (It may have been
557 * changed to point to a gateway address, above.)
558 */
559 gw = (const struct sockaddr *)dst;
560 /*
561 * See if the caller provided any multicast options
562 */
563 if (imo != NULL) {
564 ip->ip_ttl = imo->imo_multicast_ttl;
565 if (imo->imo_multicast_vif != -1)
566 ip->ip_src.s_addr =
567 ip_mcast_src ?
568 ip_mcast_src(imo->imo_multicast_vif) :
569 INADDR_ANY;
570 } else
571 ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
572 /*
573 * Confirm that the outgoing interface supports multicast.
574 */
575 if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
576 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
577 IPSTAT_INC(ips_noroute);
578 error = ENETUNREACH;
579 goto bad;
580 }
581 }
582 /*
583 * If source address not specified yet, use address
584 * of outgoing interface.
585 */
586 if (ip->ip_src.s_addr == INADDR_ANY)
587 ip->ip_src = src;
588
589 if ((imo == NULL && in_mcast_loop) ||
590 (imo && imo->imo_multicast_loop)) {
591 /*
592 * Loop back multicast datagram if not expressly
593 * forbidden to do so, even if we are not a member
594 * of the group; ip_input() will filter it later,
595 * thus deferring a hash lookup and mutex acquisition
596 * at the expense of a cheap copy using m_copym().
597 */
598 ip_mloopback(ifp, m, hlen);
599 } else {
600 /*
601 * If we are acting as a multicast router, perform
602 * multicast forwarding as if the packet had just
603 * arrived on the interface to which we are about
604 * to send. The multicast forwarding function
605 * recursively calls this function, using the
606 * IP_FORWARDING flag to prevent infinite recursion.
607 *
608 * Multicasts that are looped back by ip_mloopback(),
609 * above, will be forwarded by the ip_input() routine,
610 * if necessary.
611 */
612 if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
613 /*
614 * If rsvp daemon is not running, do not
615 * set ip_moptions. This ensures that the packet
616 * is multicast and not just sent down one link
617 * as prescribed by rsvpd.
618 */
619 if (!V_rsvp_on)
620 imo = NULL;
621 if (ip_mforward &&
622 ip_mforward(ip, ifp, m, imo) != 0) {
623 m_freem(m);
624 goto done;
625 }
626 }
627 }
628
629 /*
630 * Multicasts with a time-to-live of zero may be looped-
631 * back, above, but must not be transmitted on a network.
632 * Also, multicasts addressed to the loopback interface
633 * are not sent -- the above call to ip_mloopback() will
634 * loop back a copy. ip_input() will drop the copy if
635 * this host does not belong to the destination group on
636 * the loopback interface.
637 */
638 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
639 m_freem(m);
640 goto done;
641 }
642
643 goto sendit;
644 }
645
646 /*
647 * If the source address is not specified yet, use the address
648 * of the outoing interface.
649 */
650 if (ip->ip_src.s_addr == INADDR_ANY)
651 ip->ip_src = src;
652
653 /*
654 * Look for broadcast address and
655 * verify user is allowed to send
656 * such a packet.
657 */
658 if (isbroadcast) {
659 if ((ifp->if_flags & IFF_BROADCAST) == 0) {
660 error = EADDRNOTAVAIL;
661 goto bad;
662 }
663 if ((flags & IP_ALLOWBROADCAST) == 0) {
664 error = EACCES;
665 goto bad;
666 }
667 /* don't allow broadcast messages to be fragmented */
668 if (ip_len > mtu) {
669 error = EMSGSIZE;
670 goto bad;
671 }
672 m->m_flags |= M_BCAST;
673 } else {
674 m->m_flags &= ~M_BCAST;
675 }
676
677 sendit:
678 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
679 if (IPSEC_ENABLED(ipv4)) {
680 struct ip ip_hdr;
681
682 if ((error = IPSEC_OUTPUT(ipv4, ifp, m, inp, mtu)) != 0) {
683 if (error == EINPROGRESS)
684 error = 0;
685 goto done;
686 }
687
688 /* Update variables that are affected by ipsec4_output(). */
689 m_copydata(m, 0, sizeof(ip_hdr), (char *)&ip_hdr);
690 hlen = ip_hdr.ip_hl << 2;
691 }
692
693 /*
694 * Check if there was a route for this packet; return error if not.
695 */
696 if (no_route_but_check_spd) {
697 IPSTAT_INC(ips_noroute);
698 error = EHOSTUNREACH;
699 goto bad;
700 }
701 #endif /* IPSEC */
702
703 /* Jump over all PFIL processing if hooks are not active. */
704 if (PFIL_HOOKED_OUT(V_inet_pfil_head)) {
705 switch (ip_output_pfil(&m, ifp, flags, inp, dst, &fibnum,
706 &error)) {
707 case 1: /* Finished */
708 goto done;
709
710 case 0: /* Continue normally */
711 ip = mtod(m, struct ip *);
712 ip_len = ntohs(ip->ip_len);
713 break;
714
715 case -1: /* Need to try again */
716 /* Reset everything for a new round */
717 if (ro != NULL) {
718 RO_NHFREE(ro);
719 ro->ro_prepend = NULL;
720 }
721 gw = (const struct sockaddr *)dst;
722 ip = mtod(m, struct ip *);
723 goto again;
724 }
725 }
726
727 if (vlan_pcp > -1)
728 EVL_APPLY_PRI(m, vlan_pcp);
729
730 /* IN_LOOPBACK must not appear on the wire - RFC1122. */
731 if (IN_LOOPBACK(ntohl(ip->ip_dst.s_addr)) ||
732 IN_LOOPBACK(ntohl(ip->ip_src.s_addr))) {
733 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
734 IPSTAT_INC(ips_badaddr);
735 error = EADDRNOTAVAIL;
736 goto bad;
737 }
738 }
739
740 /* Ensure the packet data is mapped if the interface requires it. */
741 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) {
742 struct mbuf *m1;
743
744 error = mb_unmapped_to_ext(m, &m1);
745 if (error != 0) {
746 if (error == EINVAL) {
747 if_printf(ifp, "TLS packet\n");
748 /* XXXKIB */
749 } else if (error == ENOMEM) {
750 error = ENOBUFS;
751 }
752 IPSTAT_INC(ips_odropped);
753 goto done;
754 } else {
755 m = m1;
756 }
757 }
758
759 m->m_pkthdr.csum_flags |= CSUM_IP;
760 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
761 in_delayed_cksum(m);
762 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
763 }
764 #if defined(SCTP) || defined(SCTP_SUPPORT)
765 if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
766 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
767 m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
768 }
769 #endif
770
771 /*
772 * If small enough for interface, or the interface will take
773 * care of the fragmentation for us, we can just send directly.
774 * Note that if_vxlan could have requested TSO even though the outer
775 * frame is UDP. It is correct to not fragment such datagrams and
776 * instead just pass them on to the driver.
777 */
778 if (ip_len <= mtu ||
779 (m->m_pkthdr.csum_flags & ifp->if_hwassist &
780 (CSUM_TSO | CSUM_INNER_TSO)) != 0) {
781 ip->ip_sum = 0;
782 if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
783 ip->ip_sum = in_cksum(m, hlen);
784 m->m_pkthdr.csum_flags &= ~CSUM_IP;
785 }
786
787 /*
788 * Record statistics for this interface address.
789 * With CSUM_TSO the byte/packet count will be slightly
790 * incorrect because we count the IP+TCP headers only
791 * once instead of for every generated packet.
792 */
793 if (!(flags & IP_FORWARDING) && ia) {
794 if (m->m_pkthdr.csum_flags &
795 (CSUM_TSO | CSUM_INNER_TSO))
796 counter_u64_add(ia->ia_ifa.ifa_opackets,
797 m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
798 else
799 counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
800
801 counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
802 }
803 #ifdef MBUF_STRESS_TEST
804 if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
805 m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
806 #endif
807 /*
808 * Reset layer specific mbuf flags
809 * to avoid confusing lower layers.
810 */
811 m_clrprotoflags(m);
812 IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
813 error = ip_output_send(inp, ifp, m, gw, ro,
814 (flags & IP_NO_SND_TAG_RL) ? false : true);
815 goto done;
816 }
817
818 /* Balk when DF bit is set or the interface didn't support TSO. */
819 if ((ip_off & IP_DF) ||
820 (m->m_pkthdr.csum_flags & (CSUM_TSO | CSUM_INNER_TSO))) {
821 error = EMSGSIZE;
822 IPSTAT_INC(ips_cantfrag);
823 goto bad;
824 }
825
826 /*
827 * Too large for interface; fragment if possible. If successful,
828 * on return, m will point to a list of packets to be sent.
829 */
830 error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
831 if (error)
832 goto bad;
833 for (; m; m = m0) {
834 m0 = m->m_nextpkt;
835 m->m_nextpkt = 0;
836 if (error == 0) {
837 /* Record statistics for this interface address. */
838 if (ia != NULL) {
839 counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
840 counter_u64_add(ia->ia_ifa.ifa_obytes,
841 m->m_pkthdr.len);
842 }
843 /*
844 * Reset layer specific mbuf flags
845 * to avoid confusing upper layers.
846 */
847 m_clrprotoflags(m);
848
849 IP_PROBE(send, NULL, NULL, mtod(m, struct ip *), ifp,
850 mtod(m, struct ip *), NULL);
851 error = ip_output_send(inp, ifp, m, gw, ro, true);
852 } else
853 m_freem(m);
854 }
855
856 if (error == 0)
857 IPSTAT_INC(ips_fragmented);
858
859 done:
860 return (error);
861 bad:
862 m_freem(m);
863 goto done;
864 }
865
866 /*
867 * Create a chain of fragments which fit the given mtu. m_frag points to the
868 * mbuf to be fragmented; on return it points to the chain with the fragments.
869 * Return 0 if no error. If error, m_frag may contain a partially built
870 * chain of fragments that should be freed by the caller.
871 *
872 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
873 */
874 int
ip_fragment(struct ip * ip,struct mbuf ** m_frag,int mtu,u_long if_hwassist_flags)875 ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
876 u_long if_hwassist_flags)
877 {
878 int error = 0;
879 int hlen = ip->ip_hl << 2;
880 int len = (mtu - hlen) & ~7; /* size of payload in each fragment */
881 int off;
882 struct mbuf *m0 = *m_frag; /* the original packet */
883 int firstlen;
884 struct mbuf **mnext;
885 int nfrags;
886 uint16_t ip_len, ip_off;
887
888 ip_len = ntohs(ip->ip_len);
889 ip_off = ntohs(ip->ip_off);
890
891 /*
892 * Packet shall not have "Don't Fragment" flag and have at least 8
893 * bytes of payload.
894 */
895 if (__predict_false((ip_off & IP_DF) || len < 8)) {
896 IPSTAT_INC(ips_cantfrag);
897 return (EMSGSIZE);
898 }
899
900 /*
901 * If the interface will not calculate checksums on
902 * fragmented packets, then do it here.
903 */
904 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
905 in_delayed_cksum(m0);
906 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
907 }
908 #if defined(SCTP) || defined(SCTP_SUPPORT)
909 if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
910 sctp_delayed_cksum(m0, hlen);
911 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
912 }
913 #endif
914 if (len > PAGE_SIZE) {
915 /*
916 * Fragment large datagrams such that each segment
917 * contains a multiple of PAGE_SIZE amount of data,
918 * plus headers. This enables a receiver to perform
919 * page-flipping zero-copy optimizations.
920 *
921 * XXX When does this help given that sender and receiver
922 * could have different page sizes, and also mtu could
923 * be less than the receiver's page size ?
924 */
925 int newlen;
926
927 off = MIN(mtu, m0->m_pkthdr.len);
928
929 /*
930 * firstlen (off - hlen) must be aligned on an
931 * 8-byte boundary
932 */
933 if (off < hlen)
934 goto smart_frag_failure;
935 off = ((off - hlen) & ~7) + hlen;
936 newlen = (~PAGE_MASK) & mtu;
937 if ((newlen + sizeof (struct ip)) > mtu) {
938 /* we failed, go back the default */
939 smart_frag_failure:
940 newlen = len;
941 off = hlen + len;
942 }
943 len = newlen;
944
945 } else {
946 off = hlen + len;
947 }
948
949 firstlen = off - hlen;
950 mnext = &m0->m_nextpkt; /* pointer to next packet */
951
952 /*
953 * Loop through length of segment after first fragment,
954 * make new header and copy data of each part and link onto chain.
955 * Here, m0 is the original packet, m is the fragment being created.
956 * The fragments are linked off the m_nextpkt of the original
957 * packet, which after processing serves as the first fragment.
958 */
959 for (nfrags = 1; off < ip_len; off += len, nfrags++) {
960 struct ip *mhip; /* ip header on the fragment */
961 struct mbuf *m;
962 int mhlen = sizeof (struct ip);
963
964 m = m_gethdr(M_NOWAIT, MT_DATA);
965 if (m == NULL) {
966 error = ENOBUFS;
967 IPSTAT_INC(ips_odropped);
968 goto done;
969 }
970 /*
971 * Make sure the complete packet header gets copied
972 * from the originating mbuf to the newly created
973 * mbuf. This also ensures that existing firewall
974 * classification(s), VLAN tags and so on get copied
975 * to the resulting fragmented packet(s):
976 */
977 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) {
978 m_free(m);
979 error = ENOBUFS;
980 IPSTAT_INC(ips_odropped);
981 goto done;
982 }
983 /*
984 * In the first mbuf, leave room for the link header, then
985 * copy the original IP header including options. The payload
986 * goes into an additional mbuf chain returned by m_copym().
987 */
988 m->m_data += max_linkhdr;
989 mhip = mtod(m, struct ip *);
990 *mhip = *ip;
991 if (hlen > sizeof (struct ip)) {
992 mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
993 mhip->ip_v = IPVERSION;
994 mhip->ip_hl = mhlen >> 2;
995 }
996 m->m_len = mhlen;
997 /* XXX do we need to add ip_off below ? */
998 mhip->ip_off = ((off - hlen) >> 3) + ip_off;
999 if (off + len >= ip_len)
1000 len = ip_len - off;
1001 else
1002 mhip->ip_off |= IP_MF;
1003 mhip->ip_len = htons((u_short)(len + mhlen));
1004 m->m_next = m_copym(m0, off, len, M_NOWAIT);
1005 if (m->m_next == NULL) { /* copy failed */
1006 m_free(m);
1007 error = ENOBUFS; /* ??? */
1008 IPSTAT_INC(ips_odropped);
1009 goto done;
1010 }
1011 m->m_pkthdr.len = mhlen + len;
1012 #ifdef MAC
1013 mac_netinet_fragment(m0, m);
1014 #endif
1015 mhip->ip_off = htons(mhip->ip_off);
1016 mhip->ip_sum = 0;
1017 if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
1018 mhip->ip_sum = in_cksum(m, mhlen);
1019 m->m_pkthdr.csum_flags &= ~CSUM_IP;
1020 }
1021 *mnext = m;
1022 mnext = &m->m_nextpkt;
1023 }
1024 IPSTAT_ADD(ips_ofragments, nfrags);
1025
1026 /*
1027 * Update first fragment by trimming what's been copied out
1028 * and updating header.
1029 */
1030 m_adj(m0, hlen + firstlen - ip_len);
1031 m0->m_pkthdr.len = hlen + firstlen;
1032 ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1033 ip->ip_off = htons(ip_off | IP_MF);
1034 ip->ip_sum = 0;
1035 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
1036 ip->ip_sum = in_cksum(m0, hlen);
1037 m0->m_pkthdr.csum_flags &= ~CSUM_IP;
1038 }
1039
1040 done:
1041 *m_frag = m0;
1042 return error;
1043 }
1044
1045 void
in_delayed_cksum_o(struct mbuf * m,uint16_t iph_offset)1046 in_delayed_cksum_o(struct mbuf *m, uint16_t iph_offset)
1047 {
1048 struct ip *ip;
1049 struct udphdr *uh;
1050 uint16_t cklen, csum, offset;
1051
1052 ip = (struct ip *)mtodo(m, iph_offset);
1053 offset = iph_offset + (ip->ip_hl << 2);
1054
1055 if (m->m_pkthdr.csum_flags & CSUM_UDP) {
1056 /* if udp header is not in the first mbuf copy udplen */
1057 if (offset + sizeof(struct udphdr) > m->m_len) {
1058 m_copydata(m, offset + offsetof(struct udphdr,
1059 uh_ulen), sizeof(cklen), (caddr_t)&cklen);
1060 cklen = ntohs(cklen);
1061 } else {
1062 uh = (struct udphdr *)mtodo(m, offset);
1063 cklen = ntohs(uh->uh_ulen);
1064 }
1065 csum = in_cksum_skip(m, cklen + offset, offset);
1066 if (csum == 0)
1067 csum = 0xffff;
1068 } else {
1069 cklen = ntohs(ip->ip_len);
1070 csum = in_cksum_skip(m, cklen, offset);
1071 }
1072 offset += m->m_pkthdr.csum_data; /* checksum offset */
1073
1074 if (offset + sizeof(csum) > m->m_len)
1075 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum);
1076 else
1077 *(u_short *)mtodo(m, offset) = csum;
1078 }
1079
1080 void
in_delayed_cksum(struct mbuf * m)1081 in_delayed_cksum(struct mbuf *m)
1082 {
1083
1084 in_delayed_cksum_o(m, 0);
1085 }
1086
1087 /*
1088 * IP socket option processing.
1089 */
1090 int
ip_ctloutput(struct socket * so,struct sockopt * sopt)1091 ip_ctloutput(struct socket *so, struct sockopt *sopt)
1092 {
1093 struct inpcb *inp = sotoinpcb(so);
1094 int error, optval;
1095 #ifdef RSS
1096 uint32_t rss_bucket;
1097 int retval;
1098 #endif
1099
1100 error = optval = 0;
1101 if (sopt->sopt_level != IPPROTO_IP) {
1102 error = EINVAL;
1103
1104 if (sopt->sopt_level == SOL_SOCKET &&
1105 sopt->sopt_dir == SOPT_SET) {
1106 switch (sopt->sopt_name) {
1107 case SO_SETFIB:
1108 error = sooptcopyin(sopt, &optval,
1109 sizeof(optval), sizeof(optval));
1110 if (error != 0)
1111 break;
1112
1113 INP_WLOCK(inp);
1114 if ((inp->inp_flags & INP_BOUNDFIB) != 0 &&
1115 optval != so->so_fibnum) {
1116 INP_WUNLOCK(inp);
1117 error = EISCONN;
1118 break;
1119 }
1120 error = sosetfib(inp->inp_socket, optval);
1121 if (error == 0)
1122 inp->inp_inc.inc_fibnum = optval;
1123 INP_WUNLOCK(inp);
1124 break;
1125 case SO_MAX_PACING_RATE:
1126 #ifdef RATELIMIT
1127 INP_WLOCK(inp);
1128 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED;
1129 INP_WUNLOCK(inp);
1130 error = 0;
1131 #else
1132 error = EOPNOTSUPP;
1133 #endif
1134 break;
1135 default:
1136 break;
1137 }
1138 }
1139 return (error);
1140 }
1141
1142 switch (sopt->sopt_dir) {
1143 case SOPT_SET:
1144 switch (sopt->sopt_name) {
1145 case IP_OPTIONS:
1146 #ifdef notyet
1147 case IP_RETOPTS:
1148 #endif
1149 {
1150 struct mbuf *m;
1151 if (sopt->sopt_valsize > MLEN) {
1152 error = EMSGSIZE;
1153 break;
1154 }
1155 m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
1156 if (m == NULL) {
1157 error = ENOBUFS;
1158 break;
1159 }
1160 m->m_len = sopt->sopt_valsize;
1161 error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1162 m->m_len);
1163 if (error) {
1164 m_free(m);
1165 break;
1166 }
1167 INP_WLOCK(inp);
1168 error = ip_pcbopts(inp, sopt->sopt_name, m);
1169 INP_WUNLOCK(inp);
1170 return (error);
1171 }
1172
1173 case IP_BINDANY:
1174 if (sopt->sopt_td != NULL) {
1175 error = priv_check(sopt->sopt_td,
1176 PRIV_NETINET_BINDANY);
1177 if (error)
1178 break;
1179 }
1180 /* FALLTHROUGH */
1181 case IP_TOS:
1182 case IP_TTL:
1183 case IP_MINTTL:
1184 case IP_RECVOPTS:
1185 case IP_RECVRETOPTS:
1186 case IP_ORIGDSTADDR:
1187 case IP_RECVDSTADDR:
1188 case IP_RECVTTL:
1189 case IP_RECVIF:
1190 case IP_ONESBCAST:
1191 case IP_DONTFRAG:
1192 case IP_RECVTOS:
1193 case IP_RECVFLOWID:
1194 #ifdef RSS
1195 case IP_RECVRSSBUCKETID:
1196 #endif
1197 case IP_VLAN_PCP:
1198 error = sooptcopyin(sopt, &optval, sizeof optval,
1199 sizeof optval);
1200 if (error)
1201 break;
1202
1203 switch (sopt->sopt_name) {
1204 case IP_TOS:
1205 inp->inp_ip_tos = optval;
1206 break;
1207
1208 case IP_TTL:
1209 inp->inp_ip_ttl = optval;
1210 break;
1211
1212 case IP_MINTTL:
1213 if (optval >= 0 && optval <= MAXTTL)
1214 inp->inp_ip_minttl = optval;
1215 else
1216 error = EINVAL;
1217 break;
1218
1219 #define OPTSET(bit) do { \
1220 INP_WLOCK(inp); \
1221 if (optval) \
1222 inp->inp_flags |= bit; \
1223 else \
1224 inp->inp_flags &= ~bit; \
1225 INP_WUNLOCK(inp); \
1226 } while (0)
1227
1228 #define OPTSET2(bit, val) do { \
1229 INP_WLOCK(inp); \
1230 if (val) \
1231 inp->inp_flags2 |= bit; \
1232 else \
1233 inp->inp_flags2 &= ~bit; \
1234 INP_WUNLOCK(inp); \
1235 } while (0)
1236
1237 case IP_RECVOPTS:
1238 OPTSET(INP_RECVOPTS);
1239 break;
1240
1241 case IP_RECVRETOPTS:
1242 OPTSET(INP_RECVRETOPTS);
1243 break;
1244
1245 case IP_RECVDSTADDR:
1246 OPTSET(INP_RECVDSTADDR);
1247 break;
1248
1249 case IP_ORIGDSTADDR:
1250 OPTSET2(INP_ORIGDSTADDR, optval);
1251 break;
1252
1253 case IP_RECVTTL:
1254 OPTSET(INP_RECVTTL);
1255 break;
1256
1257 case IP_RECVIF:
1258 OPTSET(INP_RECVIF);
1259 break;
1260
1261 case IP_ONESBCAST:
1262 OPTSET(INP_ONESBCAST);
1263 break;
1264 case IP_DONTFRAG:
1265 OPTSET(INP_DONTFRAG);
1266 break;
1267 case IP_BINDANY:
1268 OPTSET(INP_BINDANY);
1269 break;
1270 case IP_RECVTOS:
1271 OPTSET(INP_RECVTOS);
1272 break;
1273 case IP_RECVFLOWID:
1274 OPTSET2(INP_RECVFLOWID, optval);
1275 break;
1276 #ifdef RSS
1277 case IP_RECVRSSBUCKETID:
1278 OPTSET2(INP_RECVRSSBUCKETID, optval);
1279 break;
1280 #endif
1281 case IP_VLAN_PCP:
1282 if ((optval >= -1) && (optval <=
1283 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) {
1284 if (optval == -1) {
1285 INP_WLOCK(inp);
1286 inp->inp_flags2 &=
1287 ~(INP_2PCP_SET |
1288 INP_2PCP_MASK);
1289 INP_WUNLOCK(inp);
1290 } else {
1291 INP_WLOCK(inp);
1292 inp->inp_flags2 |=
1293 INP_2PCP_SET;
1294 inp->inp_flags2 &=
1295 ~INP_2PCP_MASK;
1296 inp->inp_flags2 |=
1297 optval << INP_2PCP_SHIFT;
1298 INP_WUNLOCK(inp);
1299 }
1300 } else
1301 error = EINVAL;
1302 break;
1303 }
1304 break;
1305 #undef OPTSET
1306 #undef OPTSET2
1307
1308 /*
1309 * Multicast socket options are processed by the in_mcast
1310 * module.
1311 */
1312 case IP_MULTICAST_IF:
1313 case IP_MULTICAST_VIF:
1314 case IP_MULTICAST_TTL:
1315 case IP_MULTICAST_LOOP:
1316 case IP_ADD_MEMBERSHIP:
1317 case IP_DROP_MEMBERSHIP:
1318 case IP_ADD_SOURCE_MEMBERSHIP:
1319 case IP_DROP_SOURCE_MEMBERSHIP:
1320 case IP_BLOCK_SOURCE:
1321 case IP_UNBLOCK_SOURCE:
1322 case IP_MSFILTER:
1323 case MCAST_JOIN_GROUP:
1324 case MCAST_LEAVE_GROUP:
1325 case MCAST_JOIN_SOURCE_GROUP:
1326 case MCAST_LEAVE_SOURCE_GROUP:
1327 case MCAST_BLOCK_SOURCE:
1328 case MCAST_UNBLOCK_SOURCE:
1329 error = inp_setmoptions(inp, sopt);
1330 break;
1331
1332 case IP_PORTRANGE:
1333 error = sooptcopyin(sopt, &optval, sizeof optval,
1334 sizeof optval);
1335 if (error)
1336 break;
1337
1338 INP_WLOCK(inp);
1339 switch (optval) {
1340 case IP_PORTRANGE_DEFAULT:
1341 inp->inp_flags &= ~(INP_LOWPORT);
1342 inp->inp_flags &= ~(INP_HIGHPORT);
1343 break;
1344
1345 case IP_PORTRANGE_HIGH:
1346 inp->inp_flags &= ~(INP_LOWPORT);
1347 inp->inp_flags |= INP_HIGHPORT;
1348 break;
1349
1350 case IP_PORTRANGE_LOW:
1351 inp->inp_flags &= ~(INP_HIGHPORT);
1352 inp->inp_flags |= INP_LOWPORT;
1353 break;
1354
1355 default:
1356 error = EINVAL;
1357 break;
1358 }
1359 INP_WUNLOCK(inp);
1360 break;
1361
1362 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1363 case IP_IPSEC_POLICY:
1364 if (IPSEC_ENABLED(ipv4)) {
1365 error = IPSEC_PCBCTL(ipv4, inp, sopt);
1366 break;
1367 }
1368 /* FALLTHROUGH */
1369 #endif /* IPSEC */
1370
1371 default:
1372 error = ENOPROTOOPT;
1373 break;
1374 }
1375 break;
1376
1377 case SOPT_GET:
1378 switch (sopt->sopt_name) {
1379 case IP_OPTIONS:
1380 case IP_RETOPTS:
1381 INP_RLOCK(inp);
1382 if (inp->inp_options) {
1383 struct mbuf *options;
1384
1385 options = m_copym(inp->inp_options, 0,
1386 M_COPYALL, M_NOWAIT);
1387 INP_RUNLOCK(inp);
1388 if (options != NULL) {
1389 error = sooptcopyout(sopt,
1390 mtod(options, char *),
1391 options->m_len);
1392 m_freem(options);
1393 } else
1394 error = ENOMEM;
1395 } else {
1396 INP_RUNLOCK(inp);
1397 sopt->sopt_valsize = 0;
1398 }
1399 break;
1400
1401 case IP_TOS:
1402 case IP_TTL:
1403 case IP_MINTTL:
1404 case IP_RECVOPTS:
1405 case IP_RECVRETOPTS:
1406 case IP_ORIGDSTADDR:
1407 case IP_RECVDSTADDR:
1408 case IP_RECVTTL:
1409 case IP_RECVIF:
1410 case IP_PORTRANGE:
1411 case IP_ONESBCAST:
1412 case IP_DONTFRAG:
1413 case IP_BINDANY:
1414 case IP_RECVTOS:
1415 case IP_FLOWID:
1416 case IP_FLOWTYPE:
1417 case IP_RECVFLOWID:
1418 #ifdef RSS
1419 case IP_RSSBUCKETID:
1420 case IP_RECVRSSBUCKETID:
1421 #endif
1422 case IP_VLAN_PCP:
1423 switch (sopt->sopt_name) {
1424 case IP_TOS:
1425 optval = inp->inp_ip_tos;
1426 break;
1427
1428 case IP_TTL:
1429 optval = inp->inp_ip_ttl;
1430 break;
1431
1432 case IP_MINTTL:
1433 optval = inp->inp_ip_minttl;
1434 break;
1435
1436 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
1437 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0)
1438
1439 case IP_RECVOPTS:
1440 optval = OPTBIT(INP_RECVOPTS);
1441 break;
1442
1443 case IP_RECVRETOPTS:
1444 optval = OPTBIT(INP_RECVRETOPTS);
1445 break;
1446
1447 case IP_RECVDSTADDR:
1448 optval = OPTBIT(INP_RECVDSTADDR);
1449 break;
1450
1451 case IP_ORIGDSTADDR:
1452 optval = OPTBIT2(INP_ORIGDSTADDR);
1453 break;
1454
1455 case IP_RECVTTL:
1456 optval = OPTBIT(INP_RECVTTL);
1457 break;
1458
1459 case IP_RECVIF:
1460 optval = OPTBIT(INP_RECVIF);
1461 break;
1462
1463 case IP_PORTRANGE:
1464 if (inp->inp_flags & INP_HIGHPORT)
1465 optval = IP_PORTRANGE_HIGH;
1466 else if (inp->inp_flags & INP_LOWPORT)
1467 optval = IP_PORTRANGE_LOW;
1468 else
1469 optval = 0;
1470 break;
1471
1472 case IP_ONESBCAST:
1473 optval = OPTBIT(INP_ONESBCAST);
1474 break;
1475 case IP_DONTFRAG:
1476 optval = OPTBIT(INP_DONTFRAG);
1477 break;
1478 case IP_BINDANY:
1479 optval = OPTBIT(INP_BINDANY);
1480 break;
1481 case IP_RECVTOS:
1482 optval = OPTBIT(INP_RECVTOS);
1483 break;
1484 case IP_FLOWID:
1485 optval = inp->inp_flowid;
1486 break;
1487 case IP_FLOWTYPE:
1488 optval = inp->inp_flowtype;
1489 break;
1490 case IP_RECVFLOWID:
1491 optval = OPTBIT2(INP_RECVFLOWID);
1492 break;
1493 #ifdef RSS
1494 case IP_RSSBUCKETID:
1495 retval = rss_hash2bucket(inp->inp_flowid,
1496 inp->inp_flowtype,
1497 &rss_bucket);
1498 if (retval == 0)
1499 optval = rss_bucket;
1500 else
1501 error = EINVAL;
1502 break;
1503 case IP_RECVRSSBUCKETID:
1504 optval = OPTBIT2(INP_RECVRSSBUCKETID);
1505 break;
1506 #endif
1507 case IP_VLAN_PCP:
1508 if (OPTBIT2(INP_2PCP_SET)) {
1509 optval = (inp->inp_flags2 &
1510 INP_2PCP_MASK) >> INP_2PCP_SHIFT;
1511 } else {
1512 optval = -1;
1513 }
1514 break;
1515 }
1516 error = sooptcopyout(sopt, &optval, sizeof optval);
1517 break;
1518
1519 /*
1520 * Multicast socket options are processed by the in_mcast
1521 * module.
1522 */
1523 case IP_MULTICAST_IF:
1524 case IP_MULTICAST_VIF:
1525 case IP_MULTICAST_TTL:
1526 case IP_MULTICAST_LOOP:
1527 case IP_MSFILTER:
1528 error = inp_getmoptions(inp, sopt);
1529 break;
1530
1531 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
1532 case IP_IPSEC_POLICY:
1533 if (IPSEC_ENABLED(ipv4)) {
1534 error = IPSEC_PCBCTL(ipv4, inp, sopt);
1535 break;
1536 }
1537 /* FALLTHROUGH */
1538 #endif /* IPSEC */
1539
1540 default:
1541 error = ENOPROTOOPT;
1542 break;
1543 }
1544 break;
1545 }
1546 return (error);
1547 }
1548
1549 /*
1550 * Routine called from ip_output() to loop back a copy of an IP multicast
1551 * packet to the input queue of a specified interface. Note that this
1552 * calls the output routine of the loopback "driver", but with an interface
1553 * pointer that might NOT be a loopback interface -- evil, but easier than
1554 * replicating that code here.
1555 */
1556 static void
ip_mloopback(struct ifnet * ifp,const struct mbuf * m,int hlen)1557 ip_mloopback(struct ifnet *ifp, const struct mbuf *m, int hlen)
1558 {
1559 struct ip *ip;
1560 struct mbuf *copym;
1561
1562 /*
1563 * Make a deep copy of the packet because we're going to
1564 * modify the pack in order to generate checksums.
1565 */
1566 copym = m_dup(m, M_NOWAIT);
1567 if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen))
1568 copym = m_pullup(copym, hlen);
1569 if (copym != NULL) {
1570 /* If needed, compute the checksum and mark it as valid. */
1571 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1572 in_delayed_cksum(copym);
1573 copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1574 copym->m_pkthdr.csum_flags |=
1575 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1576 copym->m_pkthdr.csum_data = 0xffff;
1577 }
1578 /*
1579 * We don't bother to fragment if the IP length is greater
1580 * than the interface's MTU. Can this possibly matter?
1581 */
1582 ip = mtod(copym, struct ip *);
1583 ip->ip_sum = 0;
1584 ip->ip_sum = in_cksum(copym, hlen);
1585 if_simloop(ifp, copym, AF_INET, 0);
1586 }
1587 }
1588