1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo
5 * Copyright (C) 2013-2016 Universita` di Pisa
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30 /*
31 *
32 * The header contains the definitions of constants and function
33 * prototypes used only in kernelspace.
34 */
35
36 #ifndef _NET_NETMAP_KERN_H_
37 #define _NET_NETMAP_KERN_H_
38
39 #if defined(linux)
40
41 #if defined(CONFIG_NETMAP_EXTMEM)
42 #define WITH_EXTMEM
43 #endif
44 #if defined(CONFIG_NETMAP_VALE)
45 #define WITH_VALE
46 #endif
47 #if defined(CONFIG_NETMAP_PIPE)
48 #define WITH_PIPES
49 #endif
50 #if defined(CONFIG_NETMAP_MONITOR)
51 #define WITH_MONITOR
52 #endif
53 #if defined(CONFIG_NETMAP_GENERIC)
54 #define WITH_GENERIC
55 #endif
56 #if defined(CONFIG_NETMAP_PTNETMAP)
57 #define WITH_PTNETMAP
58 #endif
59 #if defined(CONFIG_NETMAP_SINK)
60 #define WITH_SINK
61 #endif
62 #if defined(CONFIG_NETMAP_NULL)
63 #define WITH_NMNULL
64 #endif
65
66 #elif defined (_WIN32)
67 #define WITH_VALE // comment out to disable VALE support
68 #define WITH_PIPES
69 #define WITH_MONITOR
70 #define WITH_GENERIC
71 #define WITH_NMNULL
72
73 #else /* neither linux nor windows */
74 #define WITH_VALE // comment out to disable VALE support
75 #define WITH_PIPES
76 #define WITH_MONITOR
77 #define WITH_GENERIC
78 #define WITH_EXTMEM
79 #define WITH_NMNULL
80 #endif
81
82 #if defined(__FreeBSD__)
83 #include <sys/selinfo.h>
84 #include <vm/vm.h>
85
86 #define likely(x) __builtin_expect((long)!!(x), 1L)
87 #define unlikely(x) __builtin_expect((long)!!(x), 0L)
88 #define __user
89
90 #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */
91
92 #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */
93 #define NM_MTX_INIT(m) sx_init(&(m), #m)
94 #define NM_MTX_DESTROY(m) sx_destroy(&(m))
95 #define NM_MTX_LOCK(m) sx_xlock(&(m))
96 #define NM_MTX_SPINLOCK(m) while (!sx_try_xlock(&(m))) ;
97 #define NM_MTX_UNLOCK(m) sx_xunlock(&(m))
98 #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED)
99
100 #define NM_SELINFO_T struct nm_selinfo
101 #define NM_SELRECORD_T struct thread
102 #define MBUF_LEN(m) ((m)->m_pkthdr.len)
103 #define MBUF_TXQ(m) ((m)->m_pkthdr.flowid)
104 #define MBUF_TRANSMIT(na, ifp, m) ((na)->if_transmit(ifp, m))
105 #define GEN_TX_MBUF_IFP(m) ((m)->m_pkthdr.rcvif)
106 #define GEN_TX_MBUF_NA(m) ((struct netmap_adapter *)(m)->m_ext.ext_arg1)
107
108 #define NM_ATOMIC_T volatile int /* required by atomic/bitops.h */
109 /* atomic operations */
110 #include <machine/atomic.h>
111 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1))
112 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0)
113
114 struct netmap_adapter *netmap_getna(if_t ifp);
115
116 #define MBUF_REFCNT(m) ((m)->m_ext.ext_count)
117 #define SET_MBUF_REFCNT(m, x) (m)->m_ext.ext_count = x
118
119 #define MBUF_QUEUED(m) 1
120
121 struct nm_selinfo {
122 /* Support for select(2) and poll(2). */
123 struct selinfo si;
124 /* Support for kqueue(9). See comments in netmap_freebsd.c */
125 struct taskqueue *ntfytq;
126 struct task ntfytask;
127 struct mtx m;
128 char mtxname[32];
129 int kqueue_users;
130 };
131
132
133 struct hrtimer {
134 /* Not used in FreeBSD. */
135 };
136
137 #define NM_BNS_GET(b)
138 #define NM_BNS_PUT(b)
139
140 #elif defined (linux)
141
142 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h
143 #define NM_SELINFO_T wait_queue_head_t
144 #define MBUF_LEN(m) ((m)->len)
145 #define MBUF_TRANSMIT(na, ifp, m) \
146 ({ \
147 /* Avoid infinite recursion with generic. */ \
148 m->priority = NM_MAGIC_PRIORITY_TX; \
149 (((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp)); \
150 0; \
151 })
152
153 /* See explanation in nm_os_generic_xmit_frame. */
154 #define GEN_TX_MBUF_IFP(m) ((if_t)skb_shinfo(m)->destructor_arg)
155
156 #define NM_ATOMIC_T volatile long unsigned int
157
158 #define NM_MTX_T struct mutex /* OS-specific sleepable lock */
159 #define NM_MTX_INIT(m) mutex_init(&(m))
160 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0)
161 #define NM_MTX_LOCK(m) mutex_lock(&(m))
162 #define NM_MTX_UNLOCK(m) mutex_unlock(&(m))
163 #define NM_MTX_ASSERT(m) mutex_is_locked(&(m))
164
165 #ifndef DEV_NETMAP
166 #define DEV_NETMAP
167 #endif /* DEV_NETMAP */
168
169 #elif defined (__APPLE__)
170
171 #warning apple support is incomplete.
172 #define likely(x) __builtin_expect(!!(x), 1)
173 #define unlikely(x) __builtin_expect(!!(x), 0)
174 #define NM_LOCK_T IOLock *
175 #define NM_SELINFO_T struct selinfo
176 #define MBUF_LEN(m) ((m)->m_pkthdr.len)
177
178 #elif defined (_WIN32)
179 #include "../../../WINDOWS/win_glue.h"
180
181 #define NM_SELRECORD_T IO_STACK_LOCATION
182 #define NM_SELINFO_T win_SELINFO // see win_glue.h
183 #define NM_LOCK_T win_spinlock_t // see win_glue.h
184 #define NM_MTX_T KGUARDED_MUTEX /* OS-specific mutex (sleepable) */
185
186 #define NM_MTX_INIT(m) KeInitializeGuardedMutex(&m);
187 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0)
188 #define NM_MTX_LOCK(m) KeAcquireGuardedMutex(&(m))
189 #define NM_MTX_UNLOCK(m) KeReleaseGuardedMutex(&(m))
190 #define NM_MTX_ASSERT(m) assert(&m.Count>0)
191
192 //These linknames are for the NDIS driver
193 #define NETMAP_NDIS_LINKNAME_STRING L"\\DosDevices\\NMAPNDIS"
194 #define NETMAP_NDIS_NTDEVICE_STRING L"\\Device\\NMAPNDIS"
195
196 //Definition of internal driver-to-driver ioctl codes
197 #define NETMAP_KERNEL_XCHANGE_POINTERS _IO('i', 180)
198 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL _IO_direct('i', 195)
199
200 typedef struct hrtimer{
201 KTIMER timer;
202 BOOLEAN active;
203 KDPC deferred_proc;
204 };
205
206 /* MSVC does not have likely/unlikely support */
207 #ifdef _MSC_VER
208 #define likely(x) (x)
209 #define unlikely(x) (x)
210 #else
211 #define likely(x) __builtin_expect((long)!!(x), 1L)
212 #define unlikely(x) __builtin_expect((long)!!(x), 0L)
213 #endif //_MSC_VER
214
215 #else
216
217 #error unsupported platform
218
219 #endif /* end - platform-specific code */
220
221 #ifndef _WIN32 /* support for emulated sysctl */
222 #define SYSBEGIN(x)
223 #define SYSEND
224 #endif /* _WIN32 */
225
226 #define NM_ACCESS_ONCE(x) (*(volatile __typeof__(x) *)&(x))
227
228 #define NMG_LOCK_T NM_MTX_T
229 #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock)
230 #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock)
231 #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock)
232 #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock)
233 #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock)
234
235 #if defined(__FreeBSD__)
236 #define nm_prerr_int printf
237 #define nm_prinf_int printf
238 #elif defined (_WIN32)
239 #define nm_prerr_int DbgPrint
240 #define nm_prinf_int DbgPrint
241 #elif defined(linux)
242 #define nm_prerr_int(fmt, arg...) printk(KERN_ERR fmt, ##arg)
243 #define nm_prinf_int(fmt, arg...) printk(KERN_INFO fmt, ##arg)
244 #endif
245
246 #define nm_prinf(format, ...) \
247 do { \
248 struct timeval __xxts; \
249 microtime(&__xxts); \
250 nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\
251 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \
252 __LINE__, __FUNCTION__, ##__VA_ARGS__); \
253 } while (0)
254
255 #define nm_prerr(format, ...) \
256 do { \
257 struct timeval __xxts; \
258 microtime(&__xxts); \
259 nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\
260 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \
261 __LINE__, __FUNCTION__, ##__VA_ARGS__); \
262 } while (0)
263
264 /* Disabled printf (used to be nm_prdis). */
265 #define nm_prdis(format, ...)
266
267 /* Rate limited, lps indicates how many per second. */
268 #define nm_prlim(lps, format, ...) \
269 do { \
270 static int t0, __cnt; \
271 if (t0 != time_second) { \
272 t0 = time_second; \
273 __cnt = 0; \
274 } \
275 if (__cnt++ < lps) \
276 nm_prinf(format, ##__VA_ARGS__); \
277 } while (0)
278
279 struct netmap_adapter;
280 struct nm_bdg_fwd;
281 struct nm_bridge;
282 struct netmap_priv_d;
283 struct nm_bdg_args;
284
285 /* os-specific NM_SELINFO_T initialization/destruction functions */
286 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name);
287 void nm_os_selinfo_uninit(NM_SELINFO_T *);
288
289 const char *nm_dump_buf(char *p, int len, int lim, char *dst);
290
291 void nm_os_selwakeup(NM_SELINFO_T *si);
292 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si);
293
294 int nm_os_ifnet_init(void);
295 void nm_os_ifnet_fini(void);
296 void nm_os_ifnet_lock(void);
297 void nm_os_ifnet_unlock(void);
298
299 unsigned nm_os_ifnet_mtu(if_t ifp);
300
301 void nm_os_get_module(void);
302 void nm_os_put_module(void);
303
304 void netmap_make_zombie(if_t);
305 void netmap_undo_zombie(if_t);
306
307 /* os independent alloc/realloc/free */
308 void *nm_os_malloc(size_t);
309 void *nm_os_vmalloc(size_t);
310 void *nm_os_realloc(void *, size_t new_size, size_t old_size);
311 void nm_os_free(void *);
312 void nm_os_vfree(void *);
313
314 /* os specific attach/detach enter/exit-netmap-mode routines */
315 void nm_os_onattach(if_t);
316 void nm_os_ondetach(if_t);
317 void nm_os_onenter(if_t);
318 void nm_os_onexit(if_t);
319
320 /* passes a packet up to the host stack.
321 * If the packet is sent (or dropped) immediately it returns NULL,
322 * otherwise it links the packet to prev and returns m.
323 * In this case, a final call with m=NULL and prev != NULL will send up
324 * the entire chain to the host stack.
325 */
326 void *nm_os_send_up(if_t, struct mbuf *m, struct mbuf *prev);
327
328 int nm_os_mbuf_has_seg_offld(struct mbuf *m);
329 int nm_os_mbuf_has_csum_offld(struct mbuf *m);
330
331 #include "netmap_mbq.h"
332
333 extern NMG_LOCK_T netmap_global_lock;
334
335 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
336
337 static __inline const char*
nm_txrx2str(enum txrx t)338 nm_txrx2str(enum txrx t)
339 {
340 return (t== NR_RX ? "RX" : "TX");
341 }
342
343 static __inline enum txrx
nm_txrx_swap(enum txrx t)344 nm_txrx_swap(enum txrx t)
345 {
346 return (t== NR_RX ? NR_TX : NR_RX);
347 }
348
349 #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++)
350
351 #ifdef WITH_MONITOR
352 struct netmap_zmon_list {
353 struct netmap_kring *next;
354 struct netmap_kring *prev;
355 };
356 #endif /* WITH_MONITOR */
357
358 /*
359 * private, kernel view of a ring. Keeps track of the status of
360 * a ring across system calls.
361 *
362 * nr_hwcur index of the next buffer to refill.
363 * It corresponds to ring->head
364 * at the time the system call returns.
365 *
366 * nr_hwtail index of the first buffer owned by the kernel.
367 * On RX, hwcur->hwtail are receive buffers
368 * not yet released. hwcur is advanced following
369 * ring->head, hwtail is advanced on incoming packets,
370 * and a wakeup is generated when hwtail passes ring->cur
371 * On TX, hwcur->rcur have been filled by the sender
372 * but not sent yet to the NIC; rcur->hwtail are available
373 * for new transmissions, and hwtail->hwcur-1 are pending
374 * transmissions not yet acknowledged.
375 *
376 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
377 * This is so that, on a reset, buffers owned by userspace are not
378 * modified by the kernel. In particular:
379 * RX rings: the next empty buffer (hwtail + hwofs) coincides with
380 * the next empty buffer as known by the hardware (next_to_check or so).
381 * TX rings: hwcur + hwofs coincides with next_to_send
382 *
383 * The following fields are used to implement lock-free copy of packets
384 * from input to output ports in VALE switch:
385 * nkr_hwlease buffer after the last one being copied.
386 * A writer in nm_bdg_flush reserves N buffers
387 * from nr_hwlease, advances it, then does the
388 * copy outside the lock.
389 * In RX rings (used for VALE ports),
390 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
391 * In TX rings (used for NIC or host stack ports)
392 * nkr_hwcur <= nkr_hwlease < nkr_hwtail
393 * nkr_leases array of nkr_num_slots where writers can report
394 * completion of their block. NR_NOSLOT (~0) indicates
395 * that the writer has not finished yet
396 * nkr_lease_idx index of next free slot in nr_leases, to be assigned
397 *
398 * The kring is manipulated by txsync/rxsync and generic netmap function.
399 *
400 * Concurrent rxsync or txsync on the same ring are prevented through
401 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
402 * for NIC rings, and for TX rings attached to the host stack.
403 *
404 * RX rings attached to the host stack use an mbq (rx_queue) on both
405 * rxsync_from_host() and netmap_transmit(). The mbq is protected
406 * by its internal lock.
407 *
408 * RX rings attached to the VALE switch are accessed by both senders
409 * and receiver. They are protected through the q_lock on the RX ring.
410 */
411 struct netmap_kring {
412 struct netmap_ring *ring;
413
414 uint32_t nr_hwcur; /* should be nr_hwhead */
415 uint32_t nr_hwtail;
416
417 /*
418 * Copies of values in user rings, so we do not need to look
419 * at the ring (which could be modified). These are set in the
420 * *sync_prologue()/finalize() routines.
421 */
422 uint32_t rhead;
423 uint32_t rcur;
424 uint32_t rtail;
425
426 uint32_t nr_kflags; /* private driver flags */
427 #define NKR_PENDINTR 0x1 // Pending interrupt.
428 #define NKR_EXCLUSIVE 0x2 /* exclusive binding */
429 #define NKR_FORWARD 0x4 /* (host ring only) there are
430 packets to forward
431 */
432 #define NKR_NEEDRING 0x8 /* ring needed even if users==0
433 * (used internally by pipes and
434 * by ptnetmap host ports)
435 */
436 #define NKR_NOINTR 0x10 /* don't use interrupts on this ring */
437 #define NKR_FAKERING 0x20 /* don't allocate/free buffers */
438
439 uint32_t nr_mode;
440 uint32_t nr_pending_mode;
441 #define NKR_NETMAP_OFF 0x0
442 #define NKR_NETMAP_ON 0x1
443
444 uint32_t nkr_num_slots;
445
446 /*
447 * On a NIC reset, the NIC ring indexes may be reset but the
448 * indexes in the netmap rings remain the same. nkr_hwofs
449 * keeps track of the offset between the two.
450 *
451 * Moreover, during reset, we can restore only the subset of
452 * the NIC ring that corresponds to the kernel-owned part of
453 * the netmap ring. The rest of the slots must be restored
454 * by the *sync routines when the user releases more slots.
455 * The nkr_to_refill field keeps track of the number of slots
456 * that still need to be restored.
457 */
458 int32_t nkr_hwofs;
459 int32_t nkr_to_refill;
460
461 /* last_reclaim is opaque marker to help reduce the frequency
462 * of operations such as reclaiming tx buffers. A possible use
463 * is set it to ticks and do the reclaim only once per tick.
464 */
465 uint64_t last_reclaim;
466
467
468 NM_SELINFO_T si; /* poll/select wait queue */
469 NM_LOCK_T q_lock; /* protects kring and ring. */
470 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */
471
472 /* the adapter the owns this kring */
473 struct netmap_adapter *na;
474
475 /* the adapter that wants to be notified when this kring has
476 * new slots available. This is usually the same as the above,
477 * but wrappers may let it point to themselves
478 */
479 struct netmap_adapter *notify_na;
480
481 /* The following fields are for VALE switch support */
482 struct nm_bdg_fwd *nkr_ft;
483 uint32_t *nkr_leases;
484 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */
485 uint32_t nkr_hwlease;
486 uint32_t nkr_lease_idx;
487
488 /* while nkr_stopped is set, no new [tr]xsync operations can
489 * be started on this kring.
490 * This is used by netmap_disable_all_rings()
491 * to find a synchronization point where critical data
492 * structures pointed to by the kring can be added or removed
493 */
494 volatile int nkr_stopped;
495
496 /* Support for adapters without native netmap support.
497 * On tx rings we preallocate an array of tx buffers
498 * (same size as the netmap ring), on rx rings we
499 * store incoming mbufs in a queue that is drained by
500 * a rxsync.
501 */
502 struct mbuf **tx_pool;
503 struct mbuf *tx_event; /* TX event used as a notification */
504 NM_LOCK_T tx_event_lock; /* protects the tx_event mbuf */
505 #ifdef __FreeBSD__
506 struct callout tx_event_callout;
507 #endif
508 struct mbq rx_queue; /* intercepted rx mbufs. */
509
510 uint32_t users; /* existing bindings for this ring */
511
512 uint32_t ring_id; /* kring identifier */
513 enum txrx tx; /* kind of ring (tx or rx) */
514 char name[64]; /* diagnostic */
515
516 /* [tx]sync callback for this kring.
517 * The default nm_kring_create callback (netmap_krings_create)
518 * sets the nm_sync callback of each hardware tx(rx) kring to
519 * the corresponding nm_txsync(nm_rxsync) taken from the
520 * netmap_adapter; moreover, it sets the sync callback
521 * of the host tx(rx) ring to netmap_txsync_to_host
522 * (netmap_rxsync_from_host).
523 *
524 * Overrides: the above configuration is not changed by
525 * any of the nm_krings_create callbacks.
526 */
527 int (*nm_sync)(struct netmap_kring *kring, int flags);
528 int (*nm_notify)(struct netmap_kring *kring, int flags);
529
530 #ifdef WITH_PIPES
531 struct netmap_kring *pipe; /* if this is a pipe ring,
532 * pointer to the other end
533 */
534 uint32_t pipe_tail; /* hwtail updated by the other end */
535 #endif /* WITH_PIPES */
536
537 /* mask for the offset-related part of the ptr field in the slots */
538 uint64_t offset_mask;
539 /* maximum user-specified offset, as stipulated at bind time.
540 * Larger offset requests will be silently capped to offset_max.
541 */
542 uint64_t offset_max;
543 /* minimum gap between two consecutive offsets into the same
544 * buffer, as stipulated at bind time. This is used to choose
545 * the hwbuf_len, but is not otherwise checked for compliance
546 * at runtime.
547 */
548 uint64_t offset_gap;
549
550 /* size of hardware buffer. This may be less than the size of
551 * the netmap buffers because of non-zero offsets, or because
552 * the netmap buffer size exceeds the capability of the hardware.
553 */
554 uint64_t hwbuf_len;
555
556 /* required alignment (in bytes) for the buffers used by this ring.
557 * Netmap buffers are aligned to cachelines, which should suffice
558 * for most NICs. If the user is passing offsets, though, we need
559 * to check that the resulting buf address complies with any
560 * alignment restriction.
561 */
562 uint64_t buf_align;
563
564 /* hardware specific logic for the selection of the hwbuf_len */
565 int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target);
566
567 int (*save_notify)(struct netmap_kring *kring, int flags);
568
569 #ifdef WITH_MONITOR
570 /* array of krings that are monitoring this kring */
571 struct netmap_kring **monitors;
572 uint32_t max_monitors; /* current size of the monitors array */
573 uint32_t n_monitors; /* next unused entry in the monitor array */
574 uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */
575 uint32_t mon_tail; /* last seen slot on rx */
576
577 /* circular list of zero-copy monitors */
578 struct netmap_zmon_list zmon_list[NR_TXRX];
579
580 /*
581 * Monitors work by intercepting the sync and notify callbacks of the
582 * monitored krings. This is implemented by replacing the pointers
583 * above and saving the previous ones in mon_* pointers below
584 */
585 int (*mon_sync)(struct netmap_kring *kring, int flags);
586 int (*mon_notify)(struct netmap_kring *kring, int flags);
587
588 #endif
589 }
590 #ifdef _WIN32
591 __declspec(align(64));
592 #else
593 __attribute__((__aligned__(64)));
594 #endif
595
596 /* return 1 iff the kring needs to be turned on */
597 static inline int
nm_kring_pending_on(struct netmap_kring * kring)598 nm_kring_pending_on(struct netmap_kring *kring)
599 {
600 return kring->nr_pending_mode == NKR_NETMAP_ON &&
601 kring->nr_mode == NKR_NETMAP_OFF;
602 }
603
604 /* return 1 iff the kring needs to be turned off */
605 static inline int
nm_kring_pending_off(struct netmap_kring * kring)606 nm_kring_pending_off(struct netmap_kring *kring)
607 {
608 return kring->nr_pending_mode == NKR_NETMAP_OFF &&
609 kring->nr_mode == NKR_NETMAP_ON;
610 }
611
612 /* return the next index, with wraparound */
613 static inline uint32_t
nm_next(uint32_t i,uint32_t lim)614 nm_next(uint32_t i, uint32_t lim)
615 {
616 return unlikely (i == lim) ? 0 : i + 1;
617 }
618
619
620 /* return the previous index, with wraparound */
621 static inline uint32_t
nm_prev(uint32_t i,uint32_t lim)622 nm_prev(uint32_t i, uint32_t lim)
623 {
624 return unlikely (i == 0) ? lim : i - 1;
625 }
626
627
628 /*
629 *
630 * Here is the layout for the Rx and Tx rings.
631
632 RxRING TxRING
633
634 +-----------------+ +-----------------+
635 | | | |
636 | free | | free |
637 +-----------------+ +-----------------+
638 head->| owned by user |<-hwcur | not sent to nic |<-hwcur
639 | | | yet |
640 +-----------------+ | |
641 cur->| available to | | |
642 | user, not read | +-----------------+
643 | yet | cur->| (being |
644 | | | prepared) |
645 | | | |
646 +-----------------+ + ------ +
647 tail->| |<-hwtail | |<-hwlease
648 | (being | ... | | ...
649 | prepared) | ... | | ...
650 +-----------------+ ... | | ...
651 | |<-hwlease +-----------------+
652 | | tail->| |<-hwtail
653 | | | |
654 | | | |
655 | | | |
656 +-----------------+ +-----------------+
657
658 * The cur/tail (user view) and hwcur/hwtail (kernel view)
659 * are used in the normal operation of the card.
660 *
661 * When a ring is the output of a switch port (Rx ring for
662 * a VALE port, Tx ring for the host stack or NIC), slots
663 * are reserved in blocks through 'hwlease' which points
664 * to the next unused slot.
665 * On an Rx ring, hwlease is always after hwtail,
666 * and completions cause hwtail to advance.
667 * On a Tx ring, hwlease is always between cur and hwtail,
668 * and completions cause cur to advance.
669 *
670 * nm_kr_space() returns the maximum number of slots that
671 * can be assigned.
672 * nm_kr_lease() reserves the required number of buffers,
673 * advances nkr_hwlease and also returns an entry in
674 * a circular array where completions should be reported.
675 */
676
677 struct lut_entry;
678 #ifdef __FreeBSD__
679 #define plut_entry lut_entry
680 #endif
681
682 struct netmap_lut {
683 struct lut_entry *lut;
684 struct plut_entry *plut;
685 uint32_t objtotal; /* max buffer index */
686 uint32_t objsize; /* buffer size */
687 };
688
689 struct netmap_vp_adapter; // forward
690 struct nm_bridge;
691
692 /* Struct to be filled by nm_config callbacks. */
693 struct nm_config_info {
694 unsigned num_tx_rings;
695 unsigned num_rx_rings;
696 unsigned num_tx_descs;
697 unsigned num_rx_descs;
698 unsigned rx_buf_maxsize;
699 };
700
701 /*
702 * default type for the magic field.
703 * May be overridden in glue code.
704 */
705 #ifndef NM_OS_MAGIC
706 #define NM_OS_MAGIC uint32_t
707 #endif /* !NM_OS_MAGIC */
708
709 /*
710 * The "struct netmap_adapter" extends the "struct adapter"
711 * (or equivalent) device descriptor.
712 * It contains all base fields needed to support netmap operation.
713 * There are in fact different types of netmap adapters
714 * (native, generic, VALE switch...) so a netmap_adapter is
715 * just the first field in the derived type.
716 */
717 struct netmap_adapter {
718 /*
719 * On linux we do not have a good way to tell if an interface
720 * is netmap-capable. So we always use the following trick:
721 * NA(ifp) points here, and the first entry (which hopefully
722 * always exists and is at least 32 bits) contains a magic
723 * value which we can use to detect that the interface is good.
724 */
725 NM_OS_MAGIC magic;
726 uint32_t na_flags; /* enabled, and other flags */
727 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler.
728 * useful during initialization
729 */
730 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */
731 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when
732 * forwarding packets coming from this
733 * interface
734 */
735 #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area
736 * that cannot be changed
737 */
738 #define NAF_NATIVE 16 /* the adapter is native.
739 * Virtual ports (non persistent vale ports,
740 * pipes, monitors...) should never use
741 * this flag.
742 */
743 #define NAF_NETMAP_ON 32 /* netmap is active (either native or
744 * emulated). Where possible (e.g. FreeBSD)
745 * IFCAP_NETMAP also mirrors this flag.
746 */
747 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */
748 #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */
749 /* free */
750 #define NAF_MOREFRAG 512 /* the adapter supports NS_MOREFRAG */
751 #define NAF_OFFSETS 1024 /* the adapter supports the slot offsets */
752 #define NAF_HOST_ALL 2048 /* the adapter wants as many host rings as hw */
753 #define NAF_ZOMBIE (1U<<30) /* the nic driver has been unloaded */
754 #define NAF_BUSY (1U<<31) /* the adapter is used internally and
755 * cannot be registered from userspace
756 */
757 int active_fds; /* number of user-space descriptors using this
758 interface, which is equal to the number of
759 struct netmap_if objs in the mapped region. */
760
761 u_int num_rx_rings; /* number of adapter receive rings */
762 u_int num_tx_rings; /* number of adapter transmit rings */
763 u_int num_host_rx_rings; /* number of host receive rings */
764 u_int num_host_tx_rings; /* number of host transmit rings */
765
766 u_int num_tx_desc; /* number of descriptor in each queue */
767 u_int num_rx_desc;
768
769 /* tx_rings and rx_rings are private but allocated as a
770 * contiguous chunk of memory. Each array has N+K entries,
771 * N for the hardware rings and K for the host rings.
772 */
773 struct netmap_kring **tx_rings; /* array of TX rings. */
774 struct netmap_kring **rx_rings; /* array of RX rings. */
775
776 void *tailroom; /* space below the rings array */
777 /* (used for leases) */
778
779
780 NM_SELINFO_T si[NR_TXRX]; /* global wait queues */
781
782 /* count users of the global wait queues */
783 int si_users[NR_TXRX];
784
785 void *pdev; /* used to store pci device */
786
787 /* copy of if_qflush and if_transmit pointers, to intercept
788 * packets from the network stack when netmap is active.
789 */
790 int (*if_transmit)(if_t, struct mbuf *);
791
792 /* copy of if_input for netmap_send_up() */
793 void (*if_input)(if_t, struct mbuf *);
794
795 /* Back reference to the parent ifnet struct. Used for
796 * hardware ports (emulated netmap included). */
797 if_t ifp; /* adapter is if_getsoftc(ifp) */
798
799 /*---- callbacks for this netmap adapter -----*/
800 /*
801 * nm_dtor() is the cleanup routine called when destroying
802 * the adapter.
803 * Called with NMG_LOCK held.
804 *
805 * nm_register() is called on NIOCREGIF and close() to enter
806 * or exit netmap mode on the NIC
807 * Called with NNG_LOCK held.
808 *
809 * nm_txsync() pushes packets to the underlying hw/switch
810 *
811 * nm_rxsync() collects packets from the underlying hw/switch
812 *
813 * nm_config() returns configuration information from the OS
814 * Called with NMG_LOCK held.
815 *
816 * nm_bufcfg()
817 * the purpose of this callback is to fill the kring->hwbuf_len
818 * (l) and kring->buf_align fields. The l value is most important
819 * for RX rings, where we want to disallow writes outside of the
820 * netmap buffer. The l value must be computed taking into account
821 * the stipulated max_offset (o), possibly increased if there are
822 * alignment constraints, the maxframe (m), if known, and the
823 * current NETMAP_BUF_SIZE (b) of the memory region used by the
824 * adapter. We want the largest supported l such that o + l <= b.
825 * If m is known to be <= b - o, the callback may also choose the
826 * largest l <= m, ignoring the offset. The buf_align field is
827 * most important for TX rings when there are offsets. The user
828 * will see this value in the ring->buf_align field. Misaligned
829 * offsets will cause the corresponding packets to be silently
830 * dropped.
831 *
832 * nm_krings_create() create and init the tx_rings and
833 * rx_rings arrays of kring structures. In particular,
834 * set the nm_sync callbacks for each ring.
835 * There is no need to also allocate the corresponding
836 * netmap_rings, since netmap_mem_rings_create() will always
837 * be called to provide the missing ones.
838 * Called with NNG_LOCK held.
839 *
840 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
841 * arrays
842 * Called with NMG_LOCK held.
843 *
844 * nm_notify() is used to act after data have become available
845 * (or the stopped state of the ring has changed)
846 * For hw devices this is typically a selwakeup(),
847 * but for NIC/host ports attached to a switch (or vice-versa)
848 * we also need to invoke the 'txsync' code downstream.
849 * This callback pointer is actually used only to initialize
850 * kring->nm_notify.
851 * Return values are the same as for netmap_rx_irq().
852 */
853 void (*nm_dtor)(struct netmap_adapter *);
854
855 int (*nm_register)(struct netmap_adapter *, int onoff);
856 void (*nm_intr)(struct netmap_adapter *, int onoff);
857
858 int (*nm_txsync)(struct netmap_kring *kring, int flags);
859 int (*nm_rxsync)(struct netmap_kring *kring, int flags);
860 int (*nm_notify)(struct netmap_kring *kring, int flags);
861 int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target);
862 #define NAF_FORCE_READ 1
863 #define NAF_FORCE_RECLAIM 2
864 #define NAF_CAN_FORWARD_DOWN 4
865 /* return configuration information */
866 int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info);
867 int (*nm_krings_create)(struct netmap_adapter *);
868 void (*nm_krings_delete)(struct netmap_adapter *);
869 /*
870 * nm_bdg_attach() initializes the na_vp field to point
871 * to an adapter that can be attached to a VALE switch. If the
872 * current adapter is already a VALE port, na_vp is simply a cast;
873 * otherwise, na_vp points to a netmap_bwrap_adapter.
874 * If applicable, this callback also initializes na_hostvp,
875 * that can be used to connect the adapter host rings to the
876 * switch.
877 * Called with NMG_LOCK held.
878 *
879 * nm_bdg_ctl() is called on the actual attach/detach to/from
880 * to/from the switch, to perform adapter-specific
881 * initializations
882 * Called with NMG_LOCK held.
883 */
884 int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *,
885 struct nm_bridge *);
886 int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *);
887
888 /* adapter used to attach this adapter to a VALE switch (if any) */
889 struct netmap_vp_adapter *na_vp;
890 /* adapter used to attach the host rings of this adapter
891 * to a VALE switch (if any) */
892 struct netmap_vp_adapter *na_hostvp;
893
894 /* standard refcount to control the lifetime of the adapter
895 * (it should be equal to the lifetime of the corresponding ifp)
896 */
897 int na_refcount;
898
899 /* memory allocator (opaque)
900 * We also cache a pointer to the lut_entry for translating
901 * buffer addresses, the total number of buffers and the buffer size.
902 */
903 struct netmap_mem_d *nm_mem;
904 struct netmap_mem_d *nm_mem_prev;
905 struct netmap_lut na_lut;
906
907 /* additional information attached to this adapter
908 * by other netmap subsystems. Currently used by
909 * bwrap, LINUX/v1000 and ptnetmap
910 */
911 void *na_private;
912
913 /* array of pipes that have this adapter as a parent */
914 struct netmap_pipe_adapter **na_pipes;
915 int na_next_pipe; /* next free slot in the array */
916 int na_max_pipes; /* size of the array */
917
918 /* Offset of ethernet header for each packet. */
919 u_int virt_hdr_len;
920
921 /* Max number of bytes that the NIC can store in the buffer
922 * referenced by each RX descriptor. This translates to the maximum
923 * bytes that a single netmap slot can reference. Larger packets
924 * require NS_MOREFRAG support. */
925 unsigned rx_buf_maxsize;
926
927 char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */
928
929 #ifdef WITH_MONITOR
930 unsigned long monitor_id; /* debugging */
931 #endif
932 };
933
934 static __inline u_int
nma_get_ndesc(struct netmap_adapter * na,enum txrx t)935 nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
936 {
937 return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
938 }
939
940 static __inline void
nma_set_ndesc(struct netmap_adapter * na,enum txrx t,u_int v)941 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
942 {
943 if (t == NR_TX)
944 na->num_tx_desc = v;
945 else
946 na->num_rx_desc = v;
947 }
948
949 static __inline u_int
nma_get_nrings(struct netmap_adapter * na,enum txrx t)950 nma_get_nrings(struct netmap_adapter *na, enum txrx t)
951 {
952 return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
953 }
954
955 static __inline u_int
nma_get_host_nrings(struct netmap_adapter * na,enum txrx t)956 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t)
957 {
958 return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings);
959 }
960
961 static __inline void
nma_set_nrings(struct netmap_adapter * na,enum txrx t,u_int v)962 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
963 {
964 if (t == NR_TX)
965 na->num_tx_rings = v;
966 else
967 na->num_rx_rings = v;
968 }
969
970 static __inline void
nma_set_host_nrings(struct netmap_adapter * na,enum txrx t,u_int v)971 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
972 {
973 if (t == NR_TX)
974 na->num_host_tx_rings = v;
975 else
976 na->num_host_rx_rings = v;
977 }
978
979 static __inline struct netmap_kring**
NMR(struct netmap_adapter * na,enum txrx t)980 NMR(struct netmap_adapter *na, enum txrx t)
981 {
982 return (t == NR_TX ? na->tx_rings : na->rx_rings);
983 }
984
985 int nma_intr_enable(struct netmap_adapter *na, int onoff);
986
987 /*
988 * If the NIC is owned by the kernel
989 * (i.e., bridge), neither another bridge nor user can use it;
990 * if the NIC is owned by a user, only users can share it.
991 * Evaluation must be done under NMG_LOCK().
992 */
993 #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY)
994 #define NETMAP_OWNED_BY_ANY(na) \
995 (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
996
997 /*
998 * derived netmap adapters for various types of ports
999 */
1000 struct netmap_vp_adapter { /* VALE software port */
1001 struct netmap_adapter up;
1002
1003 /*
1004 * Bridge support:
1005 *
1006 * bdg_port is the port number used in the bridge;
1007 * na_bdg points to the bridge this NA is attached to.
1008 */
1009 int bdg_port;
1010 struct nm_bridge *na_bdg;
1011 int retry;
1012 int autodelete; /* remove the ifp on last reference */
1013
1014 /* Maximum Frame Size, used in bdg_mismatch_datapath() */
1015 u_int mfs;
1016 /* Last source MAC on this port */
1017 uint64_t last_smac;
1018 };
1019
1020
1021 struct netmap_hw_adapter { /* physical device */
1022 struct netmap_adapter up;
1023
1024 #ifdef linux
1025 struct net_device_ops nm_ndo;
1026 struct ethtool_ops nm_eto;
1027 #endif
1028 const struct ethtool_ops* save_ethtool;
1029
1030 int (*nm_hw_register)(struct netmap_adapter *, int onoff);
1031 };
1032
1033 #ifdef WITH_GENERIC
1034 /* Mitigation support. */
1035 struct nm_generic_mit {
1036 struct hrtimer mit_timer;
1037 int mit_pending;
1038 int mit_ring_idx; /* index of the ring being mitigated */
1039 struct netmap_adapter *mit_na; /* backpointer */
1040 };
1041
1042 struct netmap_generic_adapter { /* emulated device */
1043 struct netmap_hw_adapter up;
1044
1045 /* Pointer to a previously used netmap adapter. */
1046 struct netmap_adapter *prev;
1047
1048 /* Emulated netmap adapters support:
1049 * - mit implements rx interrupt mitigation;
1050 */
1051 struct nm_generic_mit *mit;
1052 #ifdef linux
1053 netdev_tx_t (*save_start_xmit)(struct mbuf *, if_t);
1054 #endif
1055 /* Is the adapter able to use multiple RX slots to scatter
1056 * each packet pushed up by the driver? */
1057 int rxsg;
1058
1059 /* Is the transmission path controlled by a netmap-aware
1060 * device queue (i.e. qdisc on linux)? */
1061 int txqdisc;
1062 };
1063 #endif /* WITH_GENERIC */
1064
1065 static __inline u_int
netmap_real_rings(struct netmap_adapter * na,enum txrx t)1066 netmap_real_rings(struct netmap_adapter *na, enum txrx t)
1067 {
1068 return nma_get_nrings(na, t) +
1069 !!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t);
1070 }
1071
1072 /* account for fake rings */
1073 static __inline u_int
netmap_all_rings(struct netmap_adapter * na,enum txrx t)1074 netmap_all_rings(struct netmap_adapter *na, enum txrx t)
1075 {
1076 return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t));
1077 }
1078
1079 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na,
1080 struct nm_bridge *);
1081 struct nm_bdg_polling_state;
1082 /*
1083 * Bridge wrapper for non VALE ports attached to a VALE switch.
1084 *
1085 * The real device must already have its own netmap adapter (hwna).
1086 * The bridge wrapper and the hwna adapter share the same set of
1087 * netmap rings and buffers, but they have two separate sets of
1088 * krings descriptors, with tx/rx meanings swapped:
1089 *
1090 * netmap
1091 * bwrap krings rings krings hwna
1092 * +------+ +------+ +-----+ +------+ +------+
1093 * |tx_rings->| |\ /| |----| |<-tx_rings|
1094 * | | +------+ \ / +-----+ +------+ | |
1095 * | | X | |
1096 * | | / \ | |
1097 * | | +------+/ \+-----+ +------+ | |
1098 * |rx_rings->| | | |----| |<-rx_rings|
1099 * | | +------+ +-----+ +------+ | |
1100 * +------+ +------+
1101 *
1102 * - packets coming from the bridge go to the brwap rx rings,
1103 * which are also the hwna tx rings. The bwrap notify callback
1104 * will then complete the hwna tx (see netmap_bwrap_notify).
1105 *
1106 * - packets coming from the outside go to the hwna rx rings,
1107 * which are also the bwrap tx rings. The (overwritten) hwna
1108 * notify method will then complete the bridge tx
1109 * (see netmap_bwrap_intr_notify).
1110 *
1111 * The bridge wrapper may optionally connect the hwna 'host' rings
1112 * to the bridge. This is done by using a second port in the
1113 * bridge and connecting it to the 'host' netmap_vp_adapter
1114 * contained in the netmap_bwrap_adapter. The brwap host adapter
1115 * cross-links the hwna host rings in the same way as shown above.
1116 *
1117 * - packets coming from the bridge and directed to the host stack
1118 * are handled by the bwrap host notify callback
1119 * (see netmap_bwrap_host_notify)
1120 *
1121 * - packets coming from the host stack are still handled by the
1122 * overwritten hwna notify callback (netmap_bwrap_intr_notify),
1123 * but are diverted to the host adapter depending on the ring number.
1124 *
1125 */
1126 struct netmap_bwrap_adapter {
1127 struct netmap_vp_adapter up;
1128 struct netmap_vp_adapter host; /* for host rings */
1129 struct netmap_adapter *hwna; /* the underlying device */
1130
1131 /*
1132 * When we attach a physical interface to the bridge, we
1133 * allow the controlling process to terminate, so we need
1134 * a place to store the n_detmap_priv_d data structure.
1135 * This is only done when physical interfaces
1136 * are attached to a bridge.
1137 */
1138 struct netmap_priv_d *na_kpriv;
1139 struct nm_bdg_polling_state *na_polling_state;
1140 /* we overwrite the hwna->na_vp pointer, so we save
1141 * here its original value, to be restored at detach
1142 */
1143 struct netmap_vp_adapter *saved_na_vp;
1144 int (*nm_intr_notify)(struct netmap_kring *kring, int flags);
1145 };
1146 int nm_is_bwrap(struct netmap_adapter *na);
1147 int nm_bdg_polling(struct nmreq_header *hdr);
1148
1149 int netmap_bdg_attach(struct nmreq_header *hdr, void *auth_token);
1150 int netmap_bdg_detach(struct nmreq_header *hdr, void *auth_token);
1151 #ifdef WITH_VALE
1152 int netmap_vale_list(struct nmreq_header *hdr);
1153 int netmap_vi_create(struct nmreq_header *hdr, int);
1154 int nm_vi_create(struct nmreq_header *);
1155 int nm_vi_destroy(const char *name);
1156 #else /* !WITH_VALE */
1157 #define netmap_vi_create(hdr, a) (EOPNOTSUPP)
1158 #endif /* WITH_VALE */
1159
1160 #ifdef WITH_PIPES
1161
1162 #define NM_MAXPIPES 64 /* max number of pipes per adapter */
1163
1164 struct netmap_pipe_adapter {
1165 /* pipe identifier is up.name */
1166 struct netmap_adapter up;
1167
1168 #define NM_PIPE_ROLE_MASTER 0x1
1169 #define NM_PIPE_ROLE_SLAVE 0x2
1170 int role; /* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */
1171
1172 struct netmap_adapter *parent; /* adapter that owns the memory */
1173 struct netmap_pipe_adapter *peer; /* the other end of the pipe */
1174 int peer_ref; /* 1 iff we are holding a ref to the peer */
1175 if_t parent_ifp; /* maybe null */
1176
1177 u_int parent_slot; /* index in the parent pipe array */
1178 };
1179
1180 #endif /* WITH_PIPES */
1181
1182 #ifdef WITH_NMNULL
1183 struct netmap_null_adapter {
1184 struct netmap_adapter up;
1185 };
1186 #endif /* WITH_NMNULL */
1187
1188
1189 /* return slots reserved to rx clients; used in drivers */
1190 static inline uint32_t
nm_kr_rxspace(struct netmap_kring * k)1191 nm_kr_rxspace(struct netmap_kring *k)
1192 {
1193 int space = k->nr_hwtail - k->nr_hwcur;
1194 if (space < 0)
1195 space += k->nkr_num_slots;
1196 nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
1197
1198 return space;
1199 }
1200
1201 /* return slots reserved to tx clients */
1202 #define nm_kr_txspace(_k) nm_kr_rxspace(_k)
1203
1204
1205 /* True if no space in the tx ring, only valid after txsync_prologue */
1206 static inline int
nm_kr_txempty(struct netmap_kring * kring)1207 nm_kr_txempty(struct netmap_kring *kring)
1208 {
1209 return kring->rhead == kring->nr_hwtail;
1210 }
1211
1212 /* True if no more completed slots in the rx ring, only valid after
1213 * rxsync_prologue */
1214 #define nm_kr_rxempty(_k) nm_kr_txempty(_k)
1215
1216 /* True if the application needs to wait for more space on the ring
1217 * (more received packets or more free tx slots).
1218 * Only valid after *xsync_prologue. */
1219 static inline int
nm_kr_wouldblock(struct netmap_kring * kring)1220 nm_kr_wouldblock(struct netmap_kring *kring)
1221 {
1222 return kring->rcur == kring->nr_hwtail;
1223 }
1224
1225 /*
1226 * protect against multiple threads using the same ring.
1227 * also check that the ring has not been stopped or locked
1228 */
1229 #define NM_KR_BUSY 1 /* some other thread is syncing the ring */
1230 #define NM_KR_STOPPED 2 /* unbounded stop (ifconfig down or driver unload) */
1231 #define NM_KR_LOCKED 3 /* bounded, brief stop for mutual exclusion */
1232
1233
1234 /* release the previously acquired right to use the *sync() methods of the ring */
nm_kr_put(struct netmap_kring * kr)1235 static __inline void nm_kr_put(struct netmap_kring *kr)
1236 {
1237 NM_ATOMIC_CLEAR(&kr->nr_busy);
1238 }
1239
1240
1241 /* true if the ifp that backed the adapter has disappeared (e.g., the
1242 * driver has been unloaded)
1243 */
1244 static inline int nm_iszombie(struct netmap_adapter *na);
1245
1246 /* try to obtain exclusive right to issue the *sync() operations on the ring.
1247 * The right is obtained and must be later relinquished via nm_kr_put() if and
1248 * only if nm_kr_tryget() returns 0.
1249 * If can_sleep is 1 there are only two other possible outcomes:
1250 * - the function returns NM_KR_BUSY
1251 * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr
1252 * (if non-null)
1253 * In both cases the caller will typically skip the ring, possibly collecting
1254 * errors along the way.
1255 * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep.
1256 * In the latter case, the function may also return NM_KR_LOCKED and leave *perr
1257 * untouched: ideally, the caller should try again at a later time.
1258 */
nm_kr_tryget(struct netmap_kring * kr,int can_sleep,int * perr)1259 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr)
1260 {
1261 int busy = 1, stopped;
1262 /* check a first time without taking the lock
1263 * to avoid starvation for nm_kr_get()
1264 */
1265 retry:
1266 stopped = kr->nkr_stopped;
1267 if (unlikely(stopped)) {
1268 goto stop;
1269 }
1270 busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy);
1271 /* we should not return NM_KR_BUSY if the ring was
1272 * actually stopped, so check another time after
1273 * the barrier provided by the atomic operation
1274 */
1275 stopped = kr->nkr_stopped;
1276 if (unlikely(stopped)) {
1277 goto stop;
1278 }
1279
1280 if (unlikely(nm_iszombie(kr->na))) {
1281 stopped = NM_KR_STOPPED;
1282 goto stop;
1283 }
1284
1285 return unlikely(busy) ? NM_KR_BUSY : 0;
1286
1287 stop:
1288 if (!busy)
1289 nm_kr_put(kr);
1290 if (stopped == NM_KR_STOPPED) {
1291 /* if POLLERR is defined we want to use it to simplify netmap_poll().
1292 * Otherwise, any non-zero value will do.
1293 */
1294 #ifdef POLLERR
1295 #define NM_POLLERR POLLERR
1296 #else
1297 #define NM_POLLERR 1
1298 #endif /* POLLERR */
1299 if (perr)
1300 *perr |= NM_POLLERR;
1301 #undef NM_POLLERR
1302 } else if (can_sleep) {
1303 tsleep(kr, 0, "NM_KR_TRYGET", 4);
1304 goto retry;
1305 }
1306 return stopped;
1307 }
1308
1309 /* put the ring in the 'stopped' state and wait for the current user (if any) to
1310 * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED
1311 */
nm_kr_stop(struct netmap_kring * kr,int stopped)1312 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped)
1313 {
1314 kr->nkr_stopped = stopped;
1315 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
1316 tsleep(kr, 0, "NM_KR_GET", 4);
1317 }
1318
1319 /* restart a ring after a stop */
nm_kr_start(struct netmap_kring * kr)1320 static __inline void nm_kr_start(struct netmap_kring *kr)
1321 {
1322 kr->nkr_stopped = 0;
1323 nm_kr_put(kr);
1324 }
1325
1326
1327 /*
1328 * The following functions are used by individual drivers to
1329 * support netmap operation.
1330 *
1331 * netmap_attach() initializes a struct netmap_adapter, allocating the
1332 * struct netmap_ring's and the struct selinfo.
1333 *
1334 * netmap_detach() frees the memory allocated by netmap_attach().
1335 *
1336 * netmap_transmit() replaces the if_transmit routine of the interface,
1337 * and is used to intercept packets coming from the stack.
1338 *
1339 * netmap_load_map/netmap_reload_map are helper routines to set/reset
1340 * the dmamap for a packet buffer
1341 *
1342 * netmap_reset() is a helper routine to be called in the hw driver
1343 * when reinitializing a ring. It should not be called by
1344 * virtual ports (vale, pipes, monitor)
1345 */
1346 int netmap_attach(struct netmap_adapter *);
1347 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg);
1348 void netmap_detach(if_t);
1349 int netmap_transmit(if_t, struct mbuf *);
1350 struct netmap_slot *netmap_reset(struct netmap_adapter *na,
1351 enum txrx tx, u_int n, u_int new_cur);
1352 int netmap_ring_reinit(struct netmap_kring *);
1353 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *);
1354
1355 /* Return codes for netmap_*x_irq. */
1356 enum {
1357 /* Driver should do normal interrupt processing, e.g. because
1358 * the interface is not in netmap mode. */
1359 NM_IRQ_PASS = 0,
1360 /* Port is in netmap mode, and the interrupt work has been
1361 * completed. The driver does not have to notify netmap
1362 * again before the next interrupt. */
1363 NM_IRQ_COMPLETED = -1,
1364 /* Port is in netmap mode, but the interrupt work has not been
1365 * completed. The driver has to make sure netmap will be
1366 * notified again soon, even if no more interrupts come (e.g.
1367 * on Linux the driver should not call napi_complete()). */
1368 NM_IRQ_RESCHED = -2,
1369 };
1370
1371 /* default functions to handle rx/tx interrupts */
1372 int netmap_rx_irq(if_t, u_int, u_int *);
1373 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
1374 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done);
1375
1376
1377 #ifdef WITH_VALE
1378 /* functions used by external modules to interface with VALE */
1379 #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp)
1380 #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp)
1381 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
1382 #define netmap_bdg_idx(_vp) ((_vp)->bdg_port)
1383 const char *netmap_bdg_name(struct netmap_vp_adapter *);
1384 #else /* !WITH_VALE */
1385 #define netmap_vp_to_ifp(_vp) NULL
1386 #define netmap_ifp_to_vp(_ifp) NULL
1387 #define netmap_ifp_to_host_vp(_ifp) NULL
1388 #define netmap_bdg_idx(_vp) -1
1389 #endif /* WITH_VALE */
1390
1391 static inline int
nm_netmap_on(struct netmap_adapter * na)1392 nm_netmap_on(struct netmap_adapter *na)
1393 {
1394 return na && na->na_flags & NAF_NETMAP_ON;
1395 }
1396
1397 static inline int
nm_native_on(struct netmap_adapter * na)1398 nm_native_on(struct netmap_adapter *na)
1399 {
1400 return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
1401 }
1402
1403 static inline struct netmap_kring *
netmap_kring_on(struct netmap_adapter * na,u_int q,enum txrx t)1404 netmap_kring_on(struct netmap_adapter *na, u_int q, enum txrx t)
1405 {
1406 struct netmap_kring *kring = NULL;
1407
1408 if (!nm_native_on(na))
1409 return NULL;
1410
1411 if (t == NR_RX && q < na->num_rx_rings)
1412 kring = na->rx_rings[q];
1413 else if (t == NR_TX && q < na->num_tx_rings)
1414 kring = na->tx_rings[q];
1415 else
1416 return NULL;
1417
1418 return (kring->nr_mode == NKR_NETMAP_ON) ? kring : NULL;
1419 }
1420
1421 static inline int
nm_iszombie(struct netmap_adapter * na)1422 nm_iszombie(struct netmap_adapter *na)
1423 {
1424 return na == NULL || (na->na_flags & NAF_ZOMBIE);
1425 }
1426
1427 void nm_set_native_flags(struct netmap_adapter *);
1428 void nm_clear_native_flags(struct netmap_adapter *);
1429
1430 void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff);
1431
1432 /*
1433 * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap
1434 * kthreads.
1435 * We need netmap_ring* parameter, because in ptnetmap it is decoupled
1436 * from host kring.
1437 * The user-space ring pointers (head/cur/tail) are shared through
1438 * CSB between host and guest.
1439 */
1440
1441 /*
1442 * validates parameters in the ring/kring, returns a value for head
1443 * If any error, returns ring_size to force a reinit.
1444 */
1445 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *);
1446
1447
1448 /*
1449 * validates parameters in the ring/kring, returns a value for head
1450 * If any error, returns ring_size lim to force a reinit.
1451 */
1452 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *);
1453
1454
1455 /* check/fix address and len in tx rings */
1456 #if 1 /* debug version */
1457 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \
1458 if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \
1459 nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d", \
1460 kring->ring_id, nm_i, slot->buf_idx, len); \
1461 if (_l > NETMAP_BUF_SIZE(_na)) \
1462 _l = NETMAP_BUF_SIZE(_na); \
1463 } } while (0)
1464 #else /* no debug version */
1465 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \
1466 if (_l > NETMAP_BUF_SIZE(_na)) \
1467 _l = NETMAP_BUF_SIZE(_na); \
1468 } while (0)
1469 #endif
1470
1471 #define NM_CHECK_ADDR_LEN_OFF(na_, l_, o_) do { \
1472 if ((l_) + (o_) < (l_) || \
1473 (l_) + (o_) > NETMAP_BUF_SIZE(na_)) { \
1474 (l_) = NETMAP_BUF_SIZE(na_) - (o_); \
1475 } } while (0)
1476
1477
1478 /*---------------------------------------------------------------*/
1479 /*
1480 * Support routines used by netmap subsystems
1481 * (native drivers, VALE, generic, pipes, monitors, ...)
1482 */
1483
1484
1485 /* common routine for all functions that create a netmap adapter. It performs
1486 * two main tasks:
1487 * - if the na points to an ifp, mark the ifp as netmap capable
1488 * using na as its native adapter;
1489 * - provide defaults for the setup callbacks and the memory allocator
1490 */
1491 int netmap_attach_common(struct netmap_adapter *);
1492 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1493 * coming from a struct nmreq_register
1494 */
1495 int netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr);
1496 /* update the ring parameters (number and size of tx and rx rings).
1497 * It calls the nm_config callback, if available.
1498 */
1499 int netmap_update_config(struct netmap_adapter *na);
1500 /* create and initialize the common fields of the krings array.
1501 * using the information that must be already available in the na.
1502 * tailroom can be used to request the allocation of additional
1503 * tailroom bytes after the krings array. This is used by
1504 * netmap_vp_adapter's (i.e., VALE ports) to make room for
1505 * leasing-related data structures
1506 */
1507 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1508 /* deletes the kring array of the adapter. The array must have
1509 * been created using netmap_krings_create
1510 */
1511 void netmap_krings_delete(struct netmap_adapter *na);
1512
1513 int netmap_hw_krings_create(struct netmap_adapter *na);
1514 void netmap_hw_krings_delete(struct netmap_adapter *na);
1515
1516 /* set the stopped/enabled status of ring
1517 * When stopping, they also wait for all current activity on the ring to
1518 * terminate. The status change is then notified using the na nm_notify
1519 * callback.
1520 */
1521 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1522 /* set the stopped/enabled status of all rings of the adapter. */
1523 void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1524 /* convenience wrappers for netmap_set_all_rings */
1525 void netmap_disable_all_rings(if_t);
1526 void netmap_enable_all_rings(if_t);
1527
1528 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu);
1529 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1530 struct nmreq_header *);
1531 void netmap_do_unregif(struct netmap_priv_d *priv);
1532
1533 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1534 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1535 if_t *ifp, struct netmap_mem_d *nmd, int create);
1536 void netmap_unget_na(struct netmap_adapter *na, if_t ifp);
1537 int netmap_get_hw_na(if_t ifp,
1538 struct netmap_mem_d *nmd, struct netmap_adapter **na);
1539 void netmap_mem_restore(struct netmap_adapter *na);
1540
1541 #ifdef WITH_VALE
1542 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1543 struct netmap_vp_adapter *, void *private_data);
1544
1545 /* these are redefined in case of no VALE support */
1546 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1547 struct netmap_mem_d *nmd, int create);
1548 void *netmap_vale_create(const char *bdg_name, int *return_status);
1549 int netmap_vale_destroy(const char *bdg_name, void *auth_token);
1550
1551 extern unsigned int vale_max_bridges;
1552
1553 #else /* !WITH_VALE */
1554 #define netmap_bdg_learning(_1, _2, _3, _4) 0
1555 #define netmap_get_vale_na(_1, _2, _3, _4) 0
1556 #define netmap_bdg_create(_1, _2) NULL
1557 #define netmap_bdg_destroy(_1, _2) 0
1558 #define vale_max_bridges 1
1559 #endif /* !WITH_VALE */
1560
1561 #ifdef WITH_PIPES
1562 /* max number of pipes per device */
1563 #define NM_MAXPIPES 64 /* XXX this should probably be a sysctl */
1564 void netmap_pipe_dealloc(struct netmap_adapter *);
1565 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1566 struct netmap_mem_d *nmd, int create);
1567 #else /* !WITH_PIPES */
1568 #define NM_MAXPIPES 0
1569 #define netmap_pipe_alloc(_1, _2) 0
1570 #define netmap_pipe_dealloc(_1)
1571 #define netmap_get_pipe_na(hdr, _2, _3, _4) \
1572 ((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0)
1573 #endif
1574
1575 #ifdef WITH_MONITOR
1576 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1577 struct netmap_mem_d *nmd, int create);
1578 void netmap_monitor_stop(struct netmap_adapter *na);
1579 #else
1580 #define netmap_get_monitor_na(hdr, _2, _3, _4) \
1581 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1582 #endif
1583
1584 #ifdef WITH_NMNULL
1585 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1586 struct netmap_mem_d *nmd, int create);
1587 #else /* !WITH_NMNULL */
1588 #define netmap_get_null_na(hdr, _2, _3, _4) \
1589 (((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1590 #endif /* WITH_NMNULL */
1591
1592 #ifdef CONFIG_NET_NS
1593 struct net *netmap_bns_get(void);
1594 void netmap_bns_put(struct net *);
1595 void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1596 #else
1597 extern struct nm_bridge *nm_bridges;
1598 #define netmap_bns_get()
1599 #define netmap_bns_put(_1)
1600 #define netmap_bns_getbridges(b, n) \
1601 do { *b = nm_bridges; *n = vale_max_bridges; } while (0)
1602 #endif
1603
1604 /* Various prototypes */
1605 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td);
1606 int netmap_init(void);
1607 void netmap_fini(void);
1608 int netmap_get_memory(struct netmap_priv_d* p);
1609 void netmap_dtor(void *data);
1610
1611 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1612 struct thread *, int nr_body_is_user);
1613 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1614 struct thread *td);
1615 size_t nmreq_size_by_type(uint16_t nr_reqtype);
1616
1617 /* netmap_adapter creation/destruction */
1618
1619 // #define NM_DEBUG_PUTGET 1
1620
1621 #ifdef NM_DEBUG_PUTGET
1622
1623 #define NM_DBG(f) __##f
1624
1625 void __netmap_adapter_get(struct netmap_adapter *na);
1626
1627 #define netmap_adapter_get(na) \
1628 do { \
1629 struct netmap_adapter *__na = na; \
1630 __netmap_adapter_get(__na); \
1631 nm_prinf("getting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount); \
1632 } while (0)
1633
1634 int __netmap_adapter_put(struct netmap_adapter *na);
1635
1636 #define netmap_adapter_put(na) \
1637 ({ \
1638 struct netmap_adapter *__na = na; \
1639 if (__na == NULL) \
1640 nm_prinf("putting NULL"); \
1641 else \
1642 nm_prinf("putting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount - 1); \
1643 __netmap_adapter_put(__na); \
1644 })
1645
1646 #else /* !NM_DEBUG_PUTGET */
1647
1648 #define NM_DBG(f) f
1649 void netmap_adapter_get(struct netmap_adapter *na);
1650 int netmap_adapter_put(struct netmap_adapter *na);
1651
1652 #endif /* !NM_DEBUG_PUTGET */
1653
1654
1655 /*
1656 * module variables
1657 */
1658 #define NETMAP_BUF_BASE(_na) ((_na)->na_lut.lut[0].vaddr)
1659 #define NETMAP_BUF_SIZE(_na) ((_na)->na_lut.objsize)
1660 extern int netmap_no_pendintr;
1661 extern int netmap_verbose;
1662 #ifdef CONFIG_NETMAP_DEBUG
1663 extern int netmap_debug; /* for debugging */
1664 #else /* !CONFIG_NETMAP_DEBUG */
1665 #define netmap_debug (0)
1666 #endif /* !CONFIG_NETMAP_DEBUG */
1667 enum { /* debug flags */
1668 NM_DEBUG_ON = 1, /* generic debug messages */
1669 NM_DEBUG_HOST = 0x2, /* debug host stack */
1670 NM_DEBUG_RXSYNC = 0x10, /* debug on rxsync/txsync */
1671 NM_DEBUG_TXSYNC = 0x20,
1672 NM_DEBUG_RXINTR = 0x100, /* debug on rx/tx intr (driver) */
1673 NM_DEBUG_TXINTR = 0x200,
1674 NM_DEBUG_NIC_RXSYNC = 0x1000, /* debug on rx/tx intr (driver) */
1675 NM_DEBUG_NIC_TXSYNC = 0x2000,
1676 NM_DEBUG_MEM = 0x4000, /* verbose memory allocations/deallocations */
1677 NM_DEBUG_VALE = 0x8000, /* debug messages from memory allocators */
1678 NM_DEBUG_BDG = NM_DEBUG_VALE,
1679 };
1680
1681 extern int netmap_txsync_retry;
1682 extern int netmap_generic_hwcsum;
1683 extern int netmap_generic_mit;
1684 extern int netmap_generic_ringsize;
1685 extern int netmap_generic_rings;
1686 #ifdef linux
1687 extern int netmap_generic_txqdisc;
1688 #endif
1689
1690 /*
1691 * NA returns a pointer to the struct netmap adapter from the ifp.
1692 * The if_getnetmapadapter() and if_setnetmapadapter() helpers are
1693 * os-specific and must be defined in glue code.
1694 */
1695 #define NA(_ifp) (if_getnetmapadapter(_ifp))
1696
1697 /*
1698 * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA
1699 * based on the if_setnetmapadapter() setter function.
1700 * Glue code may override this by defining its own NM_ATTACH_NA
1701 */
1702 #ifndef NM_ATTACH_NA
1703 /*
1704 * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we
1705 * overload another pointer in the netdev.
1706 *
1707 * We check if NA(ifp) is set and its first element has a related
1708 * magic value. The capenable is within the struct netmap_adapter.
1709 */
1710 #define NETMAP_MAGIC 0x52697a7a
1711
1712 #define NM_NA_VALID(ifp) (NA(ifp) && \
1713 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1714
1715 #define NM_ATTACH_NA(ifp, na) do { \
1716 if_setnetmapadapter(ifp, na); \
1717 if (NA(ifp)) \
1718 NA(ifp)->magic = \
1719 ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC; \
1720 } while(0)
1721 #define NM_RESTORE_NA(ifp, na) if_setnetmapadapter(ifp, na);
1722
1723 #define NM_DETACH_NA(ifp) do { if_setnetmapadapter(ifp, NULL); } while (0)
1724 #define NM_NA_CLASH(ifp) (NA(ifp) && !NM_NA_VALID(ifp))
1725 #endif /* !NM_ATTACH_NA */
1726
1727
1728 #define NM_IS_NATIVE(ifp) (NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor)
1729
1730 #if defined(__FreeBSD__)
1731 extern int netmap_port_numa_affinity;
1732
1733 static inline int
nm_iommu_group_id(struct netmap_adapter * na)1734 nm_iommu_group_id(struct netmap_adapter *na)
1735 {
1736 return (-1);
1737 }
1738
1739 static inline int
nm_numa_domain(struct netmap_adapter * na)1740 nm_numa_domain(struct netmap_adapter *na)
1741 {
1742 int domain;
1743
1744 /*
1745 * If the system has only one NUMA domain, don't bother distinguishing
1746 * between IF_NODOM and domain 0.
1747 */
1748 if (vm_ndomains == 1 || netmap_port_numa_affinity == 0)
1749 return (-1);
1750 domain = if_getnumadomain(na->ifp);
1751 if (domain == IF_NODOM)
1752 domain = -1;
1753 return (domain);
1754 }
1755
1756 /* Callback invoked by the dma machinery after a successful dmamap_load */
netmap_dmamap_cb(__unused void * arg,__unused bus_dma_segment_t * segs,__unused int nseg,__unused int error)1757 static void netmap_dmamap_cb(__unused void *arg,
1758 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1759 {
1760 }
1761
1762 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1763 * XXX can we do it without a callback ?
1764 */
1765 static inline int
netmap_load_map(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map,void * buf)1766 netmap_load_map(struct netmap_adapter *na,
1767 bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1768 {
1769 if (map)
1770 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1771 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1772 return 0;
1773 }
1774
1775 static inline void
netmap_unload_map(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map)1776 netmap_unload_map(struct netmap_adapter *na,
1777 bus_dma_tag_t tag, bus_dmamap_t map)
1778 {
1779 if (map)
1780 bus_dmamap_unload(tag, map);
1781 }
1782
1783 #define netmap_sync_map(na, tag, map, sz, t)
1784
1785 /* update the map when a buffer changes. */
1786 static inline void
netmap_reload_map(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map,void * buf)1787 netmap_reload_map(struct netmap_adapter *na,
1788 bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1789 {
1790 if (map) {
1791 bus_dmamap_unload(tag, map);
1792 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1793 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1794 }
1795 }
1796
1797 #elif defined(_WIN32)
1798
1799 #else /* linux */
1800
1801 int nm_iommu_group_id(bus_dma_tag_t dev);
1802 #include <linux/dma-mapping.h>
1803
1804 /*
1805 * on linux we need
1806 * dma_map_single(&pdev->dev, virt_addr, len, direction)
1807 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction)
1808 */
1809 #if 0
1810 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l];
1811 /* set time_stamp *before* dma to help avoid a possible race */
1812 buffer_info->time_stamp = jiffies;
1813 buffer_info->mapped_as_page = false;
1814 buffer_info->length = len;
1815 //buffer_info->next_to_watch = l;
1816 /* reload dma map */
1817 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1818 NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1819 buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1820 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1821
1822 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1823 nm_prerr("dma mapping error");
1824 /* goto dma_error; See e1000_put_txbuf() */
1825 /* XXX reset */
1826 }
1827 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1828
1829 #endif
1830
1831 static inline int
netmap_load_map(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map,void * buf,u_int size)1832 netmap_load_map(struct netmap_adapter *na,
1833 bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size)
1834 {
1835 if (map) {
1836 *map = dma_map_single(na->pdev, buf, size,
1837 DMA_BIDIRECTIONAL);
1838 if (dma_mapping_error(na->pdev, *map)) {
1839 *map = 0;
1840 return ENOMEM;
1841 }
1842 }
1843 return 0;
1844 }
1845
1846 static inline void
netmap_unload_map(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map,u_int sz)1847 netmap_unload_map(struct netmap_adapter *na,
1848 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz)
1849 {
1850 if (*map) {
1851 dma_unmap_single(na->pdev, *map, sz,
1852 DMA_BIDIRECTIONAL);
1853 }
1854 }
1855
1856 #ifdef NETMAP_LINUX_HAVE_DMASYNC
1857 static inline void
netmap_sync_map_cpu(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map,u_int sz,enum txrx t)1858 netmap_sync_map_cpu(struct netmap_adapter *na,
1859 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1860 {
1861 if (*map) {
1862 dma_sync_single_for_cpu(na->pdev, *map, sz,
1863 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1864 }
1865 }
1866
1867 static inline void
netmap_sync_map_dev(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map,u_int sz,enum txrx t)1868 netmap_sync_map_dev(struct netmap_adapter *na,
1869 bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1870 {
1871 if (*map) {
1872 dma_sync_single_for_device(na->pdev, *map, sz,
1873 (t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1874 }
1875 }
1876
1877 static inline void
netmap_reload_map(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map,void * buf)1878 netmap_reload_map(struct netmap_adapter *na,
1879 bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1880 {
1881 u_int sz = NETMAP_BUF_SIZE(na);
1882
1883 if (*map) {
1884 dma_unmap_single(na->pdev, *map, sz,
1885 DMA_BIDIRECTIONAL);
1886 }
1887
1888 *map = dma_map_single(na->pdev, buf, sz,
1889 DMA_BIDIRECTIONAL);
1890 }
1891 #else /* !NETMAP_LINUX_HAVE_DMASYNC */
1892 #define netmap_sync_map_cpu(na, tag, map, sz, t)
1893 #define netmap_sync_map_dev(na, tag, map, sz, t)
1894 #endif /* NETMAP_LINUX_HAVE_DMASYNC */
1895
1896 #endif /* linux */
1897
1898
1899 /*
1900 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1901 */
1902 static inline int
netmap_idx_n2k(struct netmap_kring * kr,int idx)1903 netmap_idx_n2k(struct netmap_kring *kr, int idx)
1904 {
1905 int n = kr->nkr_num_slots;
1906
1907 if (likely(kr->nkr_hwofs == 0)) {
1908 return idx;
1909 }
1910
1911 idx += kr->nkr_hwofs;
1912 if (idx < 0)
1913 return idx + n;
1914 else if (idx < n)
1915 return idx;
1916 else
1917 return idx - n;
1918 }
1919
1920
1921 static inline int
netmap_idx_k2n(struct netmap_kring * kr,int idx)1922 netmap_idx_k2n(struct netmap_kring *kr, int idx)
1923 {
1924 int n = kr->nkr_num_slots;
1925
1926 if (likely(kr->nkr_hwofs == 0)) {
1927 return idx;
1928 }
1929
1930 idx -= kr->nkr_hwofs;
1931 if (idx < 0)
1932 return idx + n;
1933 else if (idx < n)
1934 return idx;
1935 else
1936 return idx - n;
1937 }
1938
1939
1940 /* Entries of the look-up table. */
1941 #ifdef __FreeBSD__
1942 struct lut_entry {
1943 void *vaddr; /* virtual address. */
1944 vm_paddr_t paddr; /* physical address. */
1945 };
1946 #else /* linux & _WIN32 */
1947 /* dma-mapping in linux can assign a buffer a different address
1948 * depending on the device, so we need to have a separate
1949 * physical-address look-up table for each na.
1950 * We can still share the vaddrs, though, therefore we split
1951 * the lut_entry structure.
1952 */
1953 struct lut_entry {
1954 void *vaddr; /* virtual address. */
1955 };
1956
1957 struct plut_entry {
1958 vm_paddr_t paddr; /* physical address. */
1959 };
1960 #endif /* linux & _WIN32 */
1961
1962 struct netmap_obj_pool;
1963
1964 /* alignment for netmap buffers */
1965 #define NM_BUF_ALIGN 64
1966
1967 /*
1968 * NMB return the virtual address of a buffer (buffer 0 on bad index)
1969 * PNMB also fills the physical address
1970 */
1971 static inline void *
NMB(struct netmap_adapter * na,struct netmap_slot * slot)1972 NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1973 {
1974 struct lut_entry *lut = na->na_lut.lut;
1975 uint32_t i = slot->buf_idx;
1976 return (unlikely(i >= na->na_lut.objtotal)) ?
1977 lut[0].vaddr : lut[i].vaddr;
1978 }
1979
1980 static inline void *
PNMB(struct netmap_adapter * na,struct netmap_slot * slot,uint64_t * pp)1981 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1982 {
1983 uint32_t i = slot->buf_idx;
1984 struct lut_entry *lut = na->na_lut.lut;
1985 struct plut_entry *plut = na->na_lut.plut;
1986 void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1987
1988 #ifdef _WIN32
1989 *pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart;
1990 #else
1991 *pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr;
1992 #endif
1993 return ret;
1994 }
1995
1996 static inline void
nm_write_offset(struct netmap_kring * kring,struct netmap_slot * slot,uint64_t offset)1997 nm_write_offset(struct netmap_kring *kring,
1998 struct netmap_slot *slot, uint64_t offset)
1999 {
2000 slot->ptr = (slot->ptr & ~kring->offset_mask) |
2001 (offset & kring->offset_mask);
2002 }
2003
2004 static inline uint64_t
nm_get_offset(struct netmap_kring * kring,struct netmap_slot * slot)2005 nm_get_offset(struct netmap_kring *kring, struct netmap_slot *slot)
2006 {
2007 uint64_t offset = (slot->ptr & kring->offset_mask);
2008 if (unlikely(offset > kring->offset_max))
2009 offset = kring->offset_max;
2010 return offset;
2011 }
2012
2013 static inline void *
NMB_O(struct netmap_kring * kring,struct netmap_slot * slot)2014 NMB_O(struct netmap_kring *kring, struct netmap_slot *slot)
2015 {
2016 void *addr = NMB(kring->na, slot);
2017 return (char *)addr + nm_get_offset(kring, slot);
2018 }
2019
2020 static inline void *
PNMB_O(struct netmap_kring * kring,struct netmap_slot * slot,uint64_t * pp)2021 PNMB_O(struct netmap_kring *kring, struct netmap_slot *slot, uint64_t *pp)
2022 {
2023 void *addr = PNMB(kring->na, slot, pp);
2024 uint64_t offset = nm_get_offset(kring, slot);
2025 addr = (char *)addr + offset;
2026 *pp += offset;
2027 return addr;
2028 }
2029
2030
2031 /*
2032 * Structure associated to each netmap file descriptor.
2033 * It is created on open and left unbound (np_nifp == NULL).
2034 * A successful NIOCREGIF will set np_nifp and the first few fields;
2035 * this is protected by a global lock (NMG_LOCK) due to low contention.
2036 *
2037 * np_refs counts the number of references to the structure: one for the fd,
2038 * plus (on FreeBSD) one for each active mmap which we track ourselves
2039 * (linux automatically tracks them, but FreeBSD does not).
2040 * np_refs is protected by NMG_LOCK.
2041 *
2042 * Read access to the structure is lock free, because ni_nifp once set
2043 * can only go to 0 when nobody is using the entry anymore. Readers
2044 * must check that np_nifp != NULL before using the other fields.
2045 */
2046 struct netmap_priv_d {
2047 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */
2048
2049 struct netmap_adapter *np_na;
2050 if_t np_ifp;
2051 uint32_t np_flags; /* from the ioctl */
2052 u_int np_qfirst[NR_TXRX],
2053 np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
2054 uint16_t np_txpoll;
2055 uint16_t np_kloop_state; /* use with NMG_LOCK held */
2056 #define NM_SYNC_KLOOP_RUNNING (1 << 0)
2057 #define NM_SYNC_KLOOP_STOPPING (1 << 1)
2058 int np_sync_flags; /* to be passed to nm_sync */
2059
2060 int np_refs; /* use with NMG_LOCK held */
2061
2062 /* pointers to the selinfo to be used for selrecord.
2063 * Either the local or the global one depending on the
2064 * number of rings.
2065 */
2066 NM_SELINFO_T *np_si[NR_TXRX];
2067
2068 /* In the optional CSB mode, the user must specify the start address
2069 * of two arrays of Communication Status Block (CSB) entries, for the
2070 * two directions (kernel read application write, and kernel write
2071 * application read).
2072 * The number of entries must agree with the number of rings bound to
2073 * the netmap file descriptor. The entries corresponding to the TX
2074 * rings are laid out before the ones corresponding to the RX rings.
2075 *
2076 * Array of CSB entries for application --> kernel communication
2077 * (N entries). */
2078 struct nm_csb_atok *np_csb_atok_base;
2079 /* Array of CSB entries for kernel --> application communication
2080 * (N entries). */
2081 struct nm_csb_ktoa *np_csb_ktoa_base;
2082
2083 #ifdef linux
2084 struct file *np_filp; /* used by sync kloop */
2085 #endif /* linux */
2086 };
2087
2088 struct netmap_priv_d *netmap_priv_new(void);
2089 void netmap_priv_delete(struct netmap_priv_d *);
2090
nm_kring_pending(struct netmap_priv_d * np)2091 static inline int nm_kring_pending(struct netmap_priv_d *np)
2092 {
2093 struct netmap_adapter *na = np->np_na;
2094 enum txrx t;
2095 int i;
2096
2097 for_rx_tx(t) {
2098 for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) {
2099 struct netmap_kring *kring = NMR(na, t)[i];
2100 if (kring->nr_mode != kring->nr_pending_mode) {
2101 return 1;
2102 }
2103 }
2104 }
2105 return 0;
2106 }
2107
2108 /* call with NMG_LOCK held */
2109 static __inline int
nm_si_user(struct netmap_priv_d * priv,enum txrx t)2110 nm_si_user(struct netmap_priv_d *priv, enum txrx t)
2111 {
2112 return (priv->np_na != NULL &&
2113 (priv->np_qlast[t] - priv->np_qfirst[t] > 1));
2114 }
2115
2116 #ifdef WITH_PIPES
2117 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags);
2118 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags);
2119 int netmap_pipe_krings_create_both(struct netmap_adapter *na,
2120 struct netmap_adapter *ona);
2121 void netmap_pipe_krings_delete_both(struct netmap_adapter *na,
2122 struct netmap_adapter *ona);
2123 int netmap_pipe_reg_both(struct netmap_adapter *na,
2124 struct netmap_adapter *ona);
2125 #endif /* WITH_PIPES */
2126
2127 #ifdef WITH_MONITOR
2128
2129 struct netmap_monitor_adapter {
2130 struct netmap_adapter up;
2131
2132 struct netmap_priv_d priv;
2133 uint32_t flags;
2134 };
2135
2136 #endif /* WITH_MONITOR */
2137
2138
2139 #ifdef WITH_GENERIC
2140 /*
2141 * generic netmap emulation for devices that do not have
2142 * native netmap support.
2143 */
2144 int generic_netmap_attach(if_t ifp);
2145 int generic_rx_handler(if_t ifp, struct mbuf *m);
2146
2147 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept);
2148 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept);
2149
2150 int na_is_generic(struct netmap_adapter *na);
2151
2152 /*
2153 * the generic transmit routine is passed a structure to optionally
2154 * build a queue of descriptors, in an OS-specific way.
2155 * The payload is at addr, if non-null, and the routine should send or queue
2156 * the packet, returning 0 if successful, 1 on failure.
2157 *
2158 * At the end, if head is non-null, there will be an additional call
2159 * to the function with addr = NULL; this should tell the OS-specific
2160 * routine to send the queue and free any resources. Failure is ignored.
2161 */
2162 struct nm_os_gen_arg {
2163 if_t ifp;
2164 void *m; /* os-specific mbuf-like object */
2165 void *head, *tail; /* tailq, if the OS-specific routine needs to build one */
2166 void *addr; /* payload of current packet */
2167 u_int len; /* packet length */
2168 u_int ring_nr; /* transmit ring index */
2169 u_int qevent; /* in txqdisc mode, place an event on this mbuf */
2170 };
2171
2172 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *);
2173 int nm_os_generic_find_num_desc(if_t ifp, u_int *tx, u_int *rx);
2174 void nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq);
2175 void nm_os_generic_set_features(struct netmap_generic_adapter *gna);
2176
2177 static inline if_t
netmap_generic_getifp(struct netmap_generic_adapter * gna)2178 netmap_generic_getifp(struct netmap_generic_adapter *gna)
2179 {
2180 if (gna->prev)
2181 return gna->prev->ifp;
2182
2183 return gna->up.up.ifp;
2184 }
2185
2186 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done);
2187
2188 //#define RATE_GENERIC /* Enables communication statistics for generic. */
2189 #ifdef RATE_GENERIC
2190 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
2191 #else
2192 #define generic_rate(txp, txs, txi, rxp, rxs, rxi)
2193 #endif
2194
2195 /*
2196 * netmap_mitigation API. This is used by the generic adapter
2197 * to reduce the number of interrupt requests/selwakeup
2198 * to clients on incoming packets.
2199 */
2200 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx,
2201 struct netmap_adapter *na);
2202 void nm_os_mitigation_start(struct nm_generic_mit *mit);
2203 void nm_os_mitigation_restart(struct nm_generic_mit *mit);
2204 int nm_os_mitigation_active(struct nm_generic_mit *mit);
2205 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit);
2206 #else /* !WITH_GENERIC */
2207 #define generic_netmap_attach(ifp) (EOPNOTSUPP)
2208 #define na_is_generic(na) (0)
2209 #endif /* WITH_GENERIC */
2210
2211 /* Shared declarations for the VALE switch. */
2212
2213 /*
2214 * Each transmit queue accumulates a batch of packets into
2215 * a structure before forwarding. Packets to the same
2216 * destination are put in a list using ft_next as a link field.
2217 * ft_frags and ft_next are valid only on the first fragment.
2218 */
2219 struct nm_bdg_fwd { /* forwarding entry for a bridge */
2220 void *ft_buf; /* netmap or indirect buffer */
2221 uint8_t ft_frags; /* how many fragments (only on 1st frag) */
2222 uint16_t ft_offset; /* dst port (unused) */
2223 uint16_t ft_flags; /* flags, e.g. indirect */
2224 uint16_t ft_len; /* src fragment len */
2225 uint16_t ft_next; /* next packet to same destination */
2226 };
2227
2228 /* struct 'virtio_net_hdr' from linux. */
2229 struct nm_vnet_hdr {
2230 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */
2231 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */
2232 uint8_t flags;
2233 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */
2234 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */
2235 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */
2236 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */
2237 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */
2238 uint8_t gso_type;
2239 uint16_t hdr_len;
2240 uint16_t gso_size;
2241 uint16_t csum_start;
2242 uint16_t csum_offset;
2243 };
2244
2245 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */
2246
2247 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */
2248
2249 struct nm_iphdr {
2250 uint8_t version_ihl;
2251 uint8_t tos;
2252 uint16_t tot_len;
2253 uint16_t id;
2254 uint16_t frag_off;
2255 uint8_t ttl;
2256 uint8_t protocol;
2257 uint16_t check;
2258 uint32_t saddr;
2259 uint32_t daddr;
2260 /*The options start here. */
2261 };
2262
2263 struct nm_tcphdr {
2264 uint16_t source;
2265 uint16_t dest;
2266 uint32_t seq;
2267 uint32_t ack_seq;
2268 uint8_t doff; /* Data offset + Reserved */
2269 uint8_t flags;
2270 uint16_t window;
2271 uint16_t check;
2272 uint16_t urg_ptr;
2273 };
2274
2275 struct nm_udphdr {
2276 uint16_t source;
2277 uint16_t dest;
2278 uint16_t len;
2279 uint16_t check;
2280 };
2281
2282 struct nm_ipv6hdr {
2283 uint8_t priority_version;
2284 uint8_t flow_lbl[3];
2285
2286 uint16_t payload_len;
2287 uint8_t nexthdr;
2288 uint8_t hop_limit;
2289
2290 uint8_t saddr[16];
2291 uint8_t daddr[16];
2292 };
2293
2294 /* Type used to store a checksum (in host byte order) that hasn't been
2295 * folded yet.
2296 */
2297 #define rawsum_t uint32_t
2298
2299 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
2300 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph);
2301 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
2302 size_t datalen, uint16_t *check);
2303 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
2304 size_t datalen, uint16_t *check);
2305 uint16_t nm_os_csum_fold(rawsum_t cur_sum);
2306
2307 void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
2308 struct netmap_vp_adapter *dst_na,
2309 const struct nm_bdg_fwd *ft_p,
2310 struct netmap_ring *dst_ring,
2311 u_int *j, u_int lim, u_int *howmany);
2312
2313 /* persistent virtual port routines */
2314 int nm_os_vi_persist(const char *, if_t *);
2315 void nm_os_vi_detach(if_t);
2316 void nm_os_vi_init_index(void);
2317
2318 /*
2319 * kernel thread routines
2320 */
2321 struct nm_kctx; /* OS-specific kernel context - opaque */
2322 typedef void (*nm_kctx_worker_fn_t)(void *data);
2323
2324 /* kthread configuration */
2325 struct nm_kctx_cfg {
2326 long type; /* kthread type/identifier */
2327 nm_kctx_worker_fn_t worker_fn; /* worker function */
2328 void *worker_private;/* worker parameter */
2329 int attach_user; /* attach kthread to user process */
2330 };
2331 /* kthread configuration */
2332 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg,
2333 void *opaque);
2334 int nm_os_kctx_worker_start(struct nm_kctx *);
2335 void nm_os_kctx_worker_stop(struct nm_kctx *);
2336 void nm_os_kctx_destroy(struct nm_kctx *);
2337 void nm_os_kctx_worker_setaff(struct nm_kctx *, int);
2338 u_int nm_os_ncpus(void);
2339
2340 int netmap_sync_kloop(struct netmap_priv_d *priv,
2341 struct nmreq_header *hdr);
2342 int netmap_sync_kloop_stop(struct netmap_priv_d *priv);
2343
2344 #ifdef WITH_PTNETMAP
2345 /* ptnetmap guest routines */
2346
2347 /*
2348 * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver
2349 */
2350 struct ptnetmap_memdev;
2351 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **,
2352 uint64_t *);
2353 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *);
2354 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int);
2355
2356 /*
2357 * netmap adapter for guest ptnetmap ports
2358 */
2359 struct netmap_pt_guest_adapter {
2360 /* The netmap adapter to be used by netmap applications.
2361 * This field must be the first, to allow upcast. */
2362 struct netmap_hw_adapter hwup;
2363
2364 /* The netmap adapter to be used by the driver. */
2365 struct netmap_hw_adapter dr;
2366
2367 /* Reference counter to track users of backend netmap port: the
2368 * network stack and netmap clients.
2369 * Used to decide when we need (de)allocate krings/rings and
2370 * start (stop) ptnetmap kthreads. */
2371 int backend_users;
2372
2373 };
2374
2375 int netmap_pt_guest_attach(struct netmap_adapter *na,
2376 unsigned int nifp_offset,
2377 unsigned int memid);
2378 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok,
2379 struct nm_csb_ktoa *ktoa,
2380 struct netmap_kring *kring, int flags);
2381 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok,
2382 struct nm_csb_ktoa *ktoa,
2383 struct netmap_kring *kring, int flags);
2384 int ptnet_nm_krings_create(struct netmap_adapter *na);
2385 void ptnet_nm_krings_delete(struct netmap_adapter *na);
2386 void ptnet_nm_dtor(struct netmap_adapter *na);
2387
2388 /* Helper function wrapping nm_sync_kloop_appl_read(). */
2389 static inline void
ptnet_sync_tail(struct nm_csb_ktoa * ktoa,struct netmap_kring * kring)2390 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring)
2391 {
2392 struct netmap_ring *ring = kring->ring;
2393
2394 /* Update hwcur and hwtail as known by the host. */
2395 nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur);
2396
2397 /* nm_sync_finalize */
2398 ring->tail = kring->rtail = kring->nr_hwtail;
2399 }
2400 #endif /* WITH_PTNETMAP */
2401
2402 #ifdef __FreeBSD__
2403 /*
2404 * FreeBSD mbuf allocator/deallocator in emulation mode:
2405 *
2406 * We allocate mbufs with m_gethdr(), since the mbuf header is needed
2407 * by the driver. We also attach a customly-provided external storage,
2408 * which in this case is a netmap buffer.
2409 *
2410 * The dtor function does nothing, however we need it since mb_free_ext()
2411 * has a KASSERT(), checking that the mbuf dtor function is not NULL.
2412 */
2413
2414 static inline void
nm_generic_mbuf_dtor(struct mbuf * m)2415 nm_generic_mbuf_dtor(struct mbuf *m)
2416 {
2417 uma_zfree(zone_clust, m->m_ext.ext_buf);
2418 }
2419
2420 #define SET_MBUF_DESTRUCTOR(m, fn, na) do { \
2421 (m)->m_ext.ext_free = (fn != NULL) ? \
2422 (void *)fn : (void *)nm_generic_mbuf_dtor; \
2423 (m)->m_ext.ext_arg1 = na; \
2424 } while (0)
2425
2426 static inline struct mbuf *
nm_os_get_mbuf(if_t ifp __unused,int len)2427 nm_os_get_mbuf(if_t ifp __unused, int len)
2428 {
2429 struct mbuf *m;
2430 void *buf;
2431
2432 KASSERT(len <= MCLBYTES, ("%s: len %d", __func__, len));
2433
2434 m = m_gethdr(M_NOWAIT, MT_DATA);
2435 if (__predict_false(m == NULL))
2436 return (NULL);
2437 buf = uma_zalloc(zone_clust, M_NOWAIT);
2438 if (__predict_false(buf == NULL)) {
2439 m_free(m);
2440 return (NULL);
2441 }
2442 m_extadd(m, buf, MCLBYTES, nm_generic_mbuf_dtor, NULL, NULL, 0,
2443 EXT_NET_DRV);
2444 return (m);
2445 }
2446
2447 static inline void
nm_os_mbuf_reinit(struct mbuf * m)2448 nm_os_mbuf_reinit(struct mbuf *m)
2449 {
2450 void *buf;
2451
2452 KASSERT((m->m_flags & M_EXT) != 0,
2453 ("%s: mbuf %p has no external storage", __func__, m));
2454 KASSERT(m->m_ext.ext_size == MCLBYTES,
2455 ("%s: mbuf %p has wrong external storage size %u", __func__, m,
2456 m->m_ext.ext_size));
2457
2458 buf = m->m_ext.ext_buf;
2459 m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR);
2460 m_extadd(m, buf, MCLBYTES, nm_generic_mbuf_dtor, NULL, NULL, 0,
2461 EXT_NET_DRV);
2462 }
2463
2464 #endif /* __FreeBSD__ */
2465
2466 struct nmreq_option * nmreq_getoption(struct nmreq_header *, uint16_t);
2467
2468 int netmap_init_bridges(void);
2469 void netmap_uninit_bridges(void);
2470
2471 /* Functions to read and write CSB fields from the kernel. */
2472 #if defined (linux)
2473 #define CSB_READ(csb, field, r) (get_user(r, &csb->field))
2474 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field))
2475 #else /* ! linux */
2476 #define CSB_READ(csb, field, r) do { \
2477 int32_t v __diagused; \
2478 \
2479 v = fuword32(&csb->field); \
2480 KASSERT(v != -1, ("%s: fuword32 failed", __func__)); \
2481 r = v; \
2482 } while (0)
2483 #define CSB_WRITE(csb, field, v) do { \
2484 int error __diagused; \
2485 \
2486 error = suword32(&csb->field, v); \
2487 KASSERT(error == 0, ("%s: suword32 failed", __func__)); \
2488 } while (0)
2489 #endif /* ! linux */
2490
2491 /* some macros that may not be defined */
2492 #ifndef ETH_HLEN
2493 #define ETH_HLEN 6
2494 #endif
2495 #ifndef ETH_FCS_LEN
2496 #define ETH_FCS_LEN 4
2497 #endif
2498 #ifndef VLAN_HLEN
2499 #define VLAN_HLEN 4
2500 #endif
2501
2502 #endif /* _NET_NETMAP_KERN_H_ */
2503