xref: /freebsd/sys/dev/netmap/netmap_kern.h (revision 1bae9dc584272dd75dc4e04cb5d73be0e9fb562a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo
5  * Copyright (C) 2013-2016 Universita` di Pisa
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *   1. Redistributions of source code must retain the above copyright
12  *      notice, this list of conditions and the following disclaimer.
13  *   2. Redistributions in binary form must reproduce the above copyright
14  *      notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 /*
31  *
32  * The header contains the definitions of constants and function
33  * prototypes used only in kernelspace.
34  */
35 
36 #ifndef _NET_NETMAP_KERN_H_
37 #define _NET_NETMAP_KERN_H_
38 
39 #if defined(linux)
40 
41 #if defined(CONFIG_NETMAP_EXTMEM)
42 #define WITH_EXTMEM
43 #endif
44 #if  defined(CONFIG_NETMAP_VALE)
45 #define WITH_VALE
46 #endif
47 #if defined(CONFIG_NETMAP_PIPE)
48 #define WITH_PIPES
49 #endif
50 #if defined(CONFIG_NETMAP_MONITOR)
51 #define WITH_MONITOR
52 #endif
53 #if defined(CONFIG_NETMAP_GENERIC)
54 #define WITH_GENERIC
55 #endif
56 #if defined(CONFIG_NETMAP_PTNETMAP)
57 #define WITH_PTNETMAP
58 #endif
59 #if defined(CONFIG_NETMAP_SINK)
60 #define WITH_SINK
61 #endif
62 #if defined(CONFIG_NETMAP_NULL)
63 #define WITH_NMNULL
64 #endif
65 
66 #elif defined (_WIN32)
67 #define WITH_VALE	// comment out to disable VALE support
68 #define WITH_PIPES
69 #define WITH_MONITOR
70 #define WITH_GENERIC
71 #define WITH_NMNULL
72 
73 #else	/* neither linux nor windows */
74 #define WITH_VALE	// comment out to disable VALE support
75 #define WITH_PIPES
76 #define WITH_MONITOR
77 #define WITH_GENERIC
78 #define WITH_EXTMEM
79 #define WITH_NMNULL
80 #endif
81 
82 #if defined(__FreeBSD__)
83 #include <sys/selinfo.h>
84 #include <vm/vm.h>
85 
86 #define likely(x)	__builtin_expect((long)!!(x), 1L)
87 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
88 #define __user
89 
90 #define	NM_LOCK_T	struct mtx	/* low level spinlock, used to protect queues */
91 
92 #define NM_MTX_T	struct sx	/* OS-specific mutex (sleepable) */
93 #define NM_MTX_INIT(m)		sx_init(&(m), #m)
94 #define NM_MTX_DESTROY(m)	sx_destroy(&(m))
95 #define NM_MTX_LOCK(m)		sx_xlock(&(m))
96 #define NM_MTX_SPINLOCK(m)	while (!sx_try_xlock(&(m))) ;
97 #define NM_MTX_UNLOCK(m)	sx_xunlock(&(m))
98 #define NM_MTX_ASSERT(m)	sx_assert(&(m), SA_XLOCKED)
99 
100 #define	NM_SELINFO_T	struct nm_selinfo
101 #define NM_SELRECORD_T	struct thread
102 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
103 #define MBUF_TXQ(m)	((m)->m_pkthdr.flowid)
104 #define MBUF_TRANSMIT(na, ifp, m)	((na)->if_transmit(ifp, m))
105 #define	GEN_TX_MBUF_IFP(m)	((m)->m_pkthdr.rcvif)
106 #define	GEN_TX_MBUF_NA(m)	((struct netmap_adapter *)(m)->m_ext.ext_arg1)
107 
108 #define NM_ATOMIC_T	volatile int /* required by atomic/bitops.h */
109 /* atomic operations */
110 #include <machine/atomic.h>
111 #define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
112 #define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
113 
114 struct netmap_adapter *netmap_getna(if_t ifp);
115 
116 #define MBUF_REFCNT(m)		((m)->m_ext.ext_count)
117 #define SET_MBUF_REFCNT(m, x)   (m)->m_ext.ext_count = x
118 
119 #define MBUF_QUEUED(m)		1
120 
121 struct nm_selinfo {
122 	/* Support for select(2) and poll(2). */
123 	struct selinfo si;
124 	/* Support for kqueue(9). See comments in netmap_freebsd.c */
125 	struct taskqueue *ntfytq;
126 	struct task ntfytask;
127 	struct mtx m;
128 	char mtxname[32];
129 	int kqueue_users;
130 };
131 
132 
133 struct hrtimer {
134     /* Not used in FreeBSD. */
135 };
136 
137 #define NM_BNS_GET(b)
138 #define NM_BNS_PUT(b)
139 
140 #elif defined (linux)
141 
142 #define	NM_LOCK_T	safe_spinlock_t	// see bsd_glue.h
143 #define	NM_SELINFO_T	wait_queue_head_t
144 #define	MBUF_LEN(m)	((m)->len)
145 #define MBUF_TRANSMIT(na, ifp, m)							\
146 	({										\
147 		/* Avoid infinite recursion with generic. */				\
148 		m->priority = NM_MAGIC_PRIORITY_TX;					\
149 		(((struct net_device_ops *)(na)->if_transmit)->ndo_start_xmit(m, ifp));	\
150 		0;									\
151 	})
152 
153 /* See explanation in nm_os_generic_xmit_frame. */
154 #define	GEN_TX_MBUF_IFP(m)	((if_t)skb_shinfo(m)->destructor_arg)
155 
156 #define NM_ATOMIC_T	volatile long unsigned int
157 
158 #define NM_MTX_T	struct mutex	/* OS-specific sleepable lock */
159 #define NM_MTX_INIT(m)	mutex_init(&(m))
160 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
161 #define NM_MTX_LOCK(m)		mutex_lock(&(m))
162 #define NM_MTX_UNLOCK(m)	mutex_unlock(&(m))
163 #define NM_MTX_ASSERT(m)	mutex_is_locked(&(m))
164 
165 #ifndef DEV_NETMAP
166 #define DEV_NETMAP
167 #endif /* DEV_NETMAP */
168 
169 #elif defined (__APPLE__)
170 
171 #warning apple support is incomplete.
172 #define likely(x)	__builtin_expect(!!(x), 1)
173 #define unlikely(x)	__builtin_expect(!!(x), 0)
174 #define	NM_LOCK_T	IOLock *
175 #define	NM_SELINFO_T	struct selinfo
176 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
177 
178 #elif defined (_WIN32)
179 #include "../../../WINDOWS/win_glue.h"
180 
181 #define NM_SELRECORD_T		IO_STACK_LOCATION
182 #define NM_SELINFO_T		win_SELINFO		// see win_glue.h
183 #define NM_LOCK_T		win_spinlock_t	// see win_glue.h
184 #define NM_MTX_T		KGUARDED_MUTEX	/* OS-specific mutex (sleepable) */
185 
186 #define NM_MTX_INIT(m)		KeInitializeGuardedMutex(&m);
187 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
188 #define NM_MTX_LOCK(m)		KeAcquireGuardedMutex(&(m))
189 #define NM_MTX_UNLOCK(m)	KeReleaseGuardedMutex(&(m))
190 #define NM_MTX_ASSERT(m)	assert(&m.Count>0)
191 
192 //These linknames are for the NDIS driver
193 #define NETMAP_NDIS_LINKNAME_STRING             L"\\DosDevices\\NMAPNDIS"
194 #define NETMAP_NDIS_NTDEVICE_STRING             L"\\Device\\NMAPNDIS"
195 
196 //Definition of internal driver-to-driver ioctl codes
197 #define NETMAP_KERNEL_XCHANGE_POINTERS		_IO('i', 180)
198 #define NETMAP_KERNEL_SEND_SHUTDOWN_SIGNAL	_IO_direct('i', 195)
199 
200 typedef struct hrtimer{
201 	KTIMER timer;
202 	BOOLEAN active;
203 	KDPC deferred_proc;
204 };
205 
206 /* MSVC does not have likely/unlikely support */
207 #ifdef _MSC_VER
208 #define likely(x)	(x)
209 #define unlikely(x)	(x)
210 #else
211 #define likely(x)	__builtin_expect((long)!!(x), 1L)
212 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
213 #endif //_MSC_VER
214 
215 #else
216 
217 #error unsupported platform
218 
219 #endif /* end - platform-specific code */
220 
221 #ifndef _WIN32 /* support for emulated sysctl */
222 #define SYSBEGIN(x)
223 #define SYSEND
224 #endif /* _WIN32 */
225 
226 #define NM_ACCESS_ONCE(x)	(*(volatile __typeof__(x) *)&(x))
227 
228 #define	NMG_LOCK_T		NM_MTX_T
229 #define	NMG_LOCK_INIT()		NM_MTX_INIT(netmap_global_lock)
230 #define	NMG_LOCK_DESTROY()	NM_MTX_DESTROY(netmap_global_lock)
231 #define	NMG_LOCK()		NM_MTX_LOCK(netmap_global_lock)
232 #define	NMG_UNLOCK()		NM_MTX_UNLOCK(netmap_global_lock)
233 #define	NMG_LOCK_ASSERT()	NM_MTX_ASSERT(netmap_global_lock)
234 
235 #if defined(__FreeBSD__)
236 #define nm_prerr_int	printf
237 #define nm_prinf_int	printf
238 #elif defined (_WIN32)
239 #define nm_prerr_int	DbgPrint
240 #define nm_prinf_int	DbgPrint
241 #elif defined(linux)
242 #define nm_prerr_int(fmt, arg...)    printk(KERN_ERR fmt, ##arg)
243 #define nm_prinf_int(fmt, arg...)    printk(KERN_INFO fmt, ##arg)
244 #endif
245 
246 #define nm_prinf(format, ...)					\
247 	do {							\
248 		struct timeval __xxts;				\
249 		microtime(&__xxts);				\
250 		nm_prinf_int("%03d.%06d [%4d] %-25s " format "\n",\
251 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
252 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
253 	} while (0)
254 
255 #define nm_prerr(format, ...)					\
256 	do {							\
257 		struct timeval __xxts;				\
258 		microtime(&__xxts);				\
259 		nm_prerr_int("%03d.%06d [%4d] %-25s " format "\n",\
260 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
261 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
262 	} while (0)
263 
264 /* Disabled printf (used to be nm_prdis). */
265 #define nm_prdis(format, ...)
266 
267 /* Rate limited, lps indicates how many per second. */
268 #define nm_prlim(lps, format, ...)				\
269 	do {							\
270 		static int t0, __cnt;				\
271 		if (t0 != time_second) {			\
272 			t0 = time_second;			\
273 			__cnt = 0;				\
274 		}						\
275 		if (__cnt++ < lps)				\
276 			nm_prinf(format, ##__VA_ARGS__);	\
277 	} while (0)
278 
279 struct netmap_adapter;
280 struct nm_bdg_fwd;
281 struct nm_bridge;
282 struct netmap_priv_d;
283 struct nm_bdg_args;
284 
285 /* os-specific NM_SELINFO_T initialization/destruction functions */
286 int nm_os_selinfo_init(NM_SELINFO_T *, const char *name);
287 void nm_os_selinfo_uninit(NM_SELINFO_T *);
288 
289 const char *nm_dump_buf(char *p, int len, int lim, char *dst);
290 
291 void nm_os_selwakeup(NM_SELINFO_T *si);
292 void nm_os_selrecord(NM_SELRECORD_T *sr, NM_SELINFO_T *si);
293 
294 int nm_os_ifnet_init(void);
295 void nm_os_ifnet_fini(void);
296 void nm_os_ifnet_lock(void);
297 void nm_os_ifnet_unlock(void);
298 
299 unsigned nm_os_ifnet_mtu(if_t ifp);
300 
301 void nm_os_get_module(void);
302 void nm_os_put_module(void);
303 
304 void netmap_make_zombie(if_t);
305 void netmap_undo_zombie(if_t);
306 
307 /* os independent alloc/realloc/free */
308 void *nm_os_malloc(size_t);
309 void *nm_os_vmalloc(size_t);
310 void *nm_os_realloc(void *, size_t new_size, size_t old_size);
311 void nm_os_free(void *);
312 void nm_os_vfree(void *);
313 
314 /* os specific attach/detach enter/exit-netmap-mode routines */
315 void nm_os_onattach(if_t);
316 void nm_os_ondetach(if_t);
317 void nm_os_onenter(if_t);
318 void nm_os_onexit(if_t);
319 
320 /* passes a packet up to the host stack.
321  * If the packet is sent (or dropped) immediately it returns NULL,
322  * otherwise it links the packet to prev and returns m.
323  * In this case, a final call with m=NULL and prev != NULL will send up
324  * the entire chain to the host stack.
325  */
326 void *nm_os_send_up(if_t, struct mbuf *m, struct mbuf *prev);
327 
328 int nm_os_mbuf_has_seg_offld(struct mbuf *m);
329 int nm_os_mbuf_has_csum_offld(struct mbuf *m);
330 
331 #include "netmap_mbq.h"
332 
333 extern NMG_LOCK_T	netmap_global_lock;
334 
335 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
336 
337 static __inline const char*
nm_txrx2str(enum txrx t)338 nm_txrx2str(enum txrx t)
339 {
340 	return (t== NR_RX ? "RX" : "TX");
341 }
342 
343 static __inline enum txrx
nm_txrx_swap(enum txrx t)344 nm_txrx_swap(enum txrx t)
345 {
346 	return (t== NR_RX ? NR_TX : NR_RX);
347 }
348 
349 #define for_rx_tx(t)	for ((t) = 0; (t) < NR_TXRX; (t)++)
350 
351 #ifdef WITH_MONITOR
352 struct netmap_zmon_list {
353 	struct netmap_kring *next;
354 	struct netmap_kring *prev;
355 };
356 #endif /* WITH_MONITOR */
357 
358 /*
359  * private, kernel view of a ring. Keeps track of the status of
360  * a ring across system calls.
361  *
362  *	nr_hwcur	index of the next buffer to refill.
363  *			It corresponds to ring->head
364  *			at the time the system call returns.
365  *
366  *	nr_hwtail	index of the first buffer owned by the kernel.
367  *			On RX, hwcur->hwtail are receive buffers
368  *			not yet released. hwcur is advanced following
369  *			ring->head, hwtail is advanced on incoming packets,
370  *			and a wakeup is generated when hwtail passes ring->cur
371  *			    On TX, hwcur->rcur have been filled by the sender
372  *			but not sent yet to the NIC; rcur->hwtail are available
373  *			for new transmissions, and hwtail->hwcur-1 are pending
374  *			transmissions not yet acknowledged.
375  *
376  * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
377  * This is so that, on a reset, buffers owned by userspace are not
378  * modified by the kernel. In particular:
379  * RX rings: the next empty buffer (hwtail + hwofs) coincides with
380  * 	the next empty buffer as known by the hardware (next_to_check or so).
381  * TX rings: hwcur + hwofs coincides with next_to_send
382  *
383  * The following fields are used to implement lock-free copy of packets
384  * from input to output ports in VALE switch:
385  *	nkr_hwlease	buffer after the last one being copied.
386  *			A writer in nm_bdg_flush reserves N buffers
387  *			from nr_hwlease, advances it, then does the
388  *			copy outside the lock.
389  *			In RX rings (used for VALE ports),
390  *			nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
391  *			In TX rings (used for NIC or host stack ports)
392  *			nkr_hwcur <= nkr_hwlease < nkr_hwtail
393  *	nkr_leases	array of nkr_num_slots where writers can report
394  *			completion of their block. NR_NOSLOT (~0) indicates
395  *			that the writer has not finished yet
396  *	nkr_lease_idx	index of next free slot in nr_leases, to be assigned
397  *
398  * The kring is manipulated by txsync/rxsync and generic netmap function.
399  *
400  * Concurrent rxsync or txsync on the same ring are prevented through
401  * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
402  * for NIC rings, and for TX rings attached to the host stack.
403  *
404  * RX rings attached to the host stack use an mbq (rx_queue) on both
405  * rxsync_from_host() and netmap_transmit(). The mbq is protected
406  * by its internal lock.
407  *
408  * RX rings attached to the VALE switch are accessed by both senders
409  * and receiver. They are protected through the q_lock on the RX ring.
410  */
411 struct netmap_kring {
412 	struct netmap_ring	*ring;
413 
414 	uint32_t	nr_hwcur;  /* should be nr_hwhead */
415 	uint32_t	nr_hwtail;
416 
417 	/*
418 	 * Copies of values in user rings, so we do not need to look
419 	 * at the ring (which could be modified). These are set in the
420 	 * *sync_prologue()/finalize() routines.
421 	 */
422 	uint32_t	rhead;
423 	uint32_t	rcur;
424 	uint32_t	rtail;
425 
426 	uint32_t	nr_kflags;	/* private driver flags */
427 #define NKR_PENDINTR	0x1		// Pending interrupt.
428 #define NKR_EXCLUSIVE	0x2		/* exclusive binding */
429 #define NKR_FORWARD	0x4		/* (host ring only) there are
430 					   packets to forward
431 					 */
432 #define NKR_NEEDRING	0x8		/* ring needed even if users==0
433 					 * (used internally by pipes and
434 					 *  by ptnetmap host ports)
435 					 */
436 #define NKR_NOINTR      0x10            /* don't use interrupts on this ring */
437 #define NKR_FAKERING	0x20		/* don't allocate/free buffers */
438 
439 	uint32_t	nr_mode;
440 	uint32_t	nr_pending_mode;
441 #define NKR_NETMAP_OFF	0x0
442 #define NKR_NETMAP_ON	0x1
443 
444 	uint32_t	nkr_num_slots;
445 
446 	/*
447 	 * On a NIC reset, the NIC ring indexes may be reset but the
448 	 * indexes in the netmap rings remain the same. nkr_hwofs
449 	 * keeps track of the offset between the two.
450 	 *
451 	 * Moreover, during reset, we can restore only the subset of
452 	 * the NIC ring that corresponds to the kernel-owned part of
453 	 * the netmap ring. The rest of the slots must be restored
454 	 * by the *sync routines when the user releases more slots.
455 	 * The nkr_to_refill field keeps track of the number of slots
456 	 * that still need to be restored.
457 	 */
458 	int32_t		nkr_hwofs;
459 	int32_t		nkr_to_refill;
460 
461 	/* last_reclaim is opaque marker to help reduce the frequency
462 	 * of operations such as reclaiming tx buffers. A possible use
463 	 * is set it to ticks and do the reclaim only once per tick.
464 	 */
465 	uint64_t	last_reclaim;
466 
467 
468 	NM_SELINFO_T	si;		/* poll/select wait queue */
469 	NM_LOCK_T	q_lock;		/* protects kring and ring. */
470 	NM_ATOMIC_T	nr_busy;	/* prevent concurrent syscalls */
471 
472 	/* the adapter the owns this kring */
473 	struct netmap_adapter *na;
474 
475 	/* the adapter that wants to be notified when this kring has
476 	 * new slots available. This is usually the same as the above,
477 	 * but wrappers may let it point to themselves
478 	 */
479 	struct netmap_adapter *notify_na;
480 
481 	/* The following fields are for VALE switch support */
482 	struct nm_bdg_fwd *nkr_ft;
483 	uint32_t	*nkr_leases;
484 #define NR_NOSLOT	((uint32_t)~0)	/* used in nkr_*lease* */
485 	uint32_t	nkr_hwlease;
486 	uint32_t	nkr_lease_idx;
487 
488 	/* while nkr_stopped is set, no new [tr]xsync operations can
489 	 * be started on this kring.
490 	 * This is used by netmap_disable_all_rings()
491 	 * to find a synchronization point where critical data
492 	 * structures pointed to by the kring can be added or removed
493 	 */
494 	volatile int nkr_stopped;
495 
496 	/* Support for adapters without native netmap support.
497 	 * On tx rings we preallocate an array of tx buffers
498 	 * (same size as the netmap ring), on rx rings we
499 	 * store incoming mbufs in a queue that is drained by
500 	 * a rxsync.
501 	 */
502 	struct mbuf	**tx_pool;
503 	struct mbuf	*tx_event;	/* TX event used as a notification */
504 	NM_LOCK_T	tx_event_lock;	/* protects the tx_event mbuf */
505 #ifdef __FreeBSD__
506 	struct callout	tx_event_callout;
507 #endif
508 	struct mbq	rx_queue;       /* intercepted rx mbufs. */
509 
510 	uint32_t	users;		/* existing bindings for this ring */
511 
512 	uint32_t	ring_id;	/* kring identifier */
513 	enum txrx	tx;		/* kind of ring (tx or rx) */
514 	char name[64];			/* diagnostic */
515 
516 	/* [tx]sync callback for this kring.
517 	 * The default nm_kring_create callback (netmap_krings_create)
518 	 * sets the nm_sync callback of each hardware tx(rx) kring to
519 	 * the corresponding nm_txsync(nm_rxsync) taken from the
520 	 * netmap_adapter; moreover, it sets the sync callback
521 	 * of the host tx(rx) ring to netmap_txsync_to_host
522 	 * (netmap_rxsync_from_host).
523 	 *
524 	 * Overrides: the above configuration is not changed by
525 	 * any of the nm_krings_create callbacks.
526 	 */
527 	int (*nm_sync)(struct netmap_kring *kring, int flags);
528 	int (*nm_notify)(struct netmap_kring *kring, int flags);
529 
530 #ifdef WITH_PIPES
531 	struct netmap_kring *pipe;	/* if this is a pipe ring,
532 					 * pointer to the other end
533 					 */
534 	uint32_t pipe_tail;		/* hwtail updated by the other end */
535 #endif /* WITH_PIPES */
536 
537 	/* mask for the offset-related part of the ptr field in the slots */
538 	uint64_t offset_mask;
539 	/* maximum user-specified offset, as stipulated at bind time.
540 	 * Larger offset requests will be silently capped to offset_max.
541 	 */
542 	uint64_t offset_max;
543 	/* minimum gap between two consecutive offsets into the same
544 	 * buffer, as stipulated at bind time. This is used to choose
545 	 * the hwbuf_len, but is not otherwise checked for compliance
546 	 * at runtime.
547 	 */
548 	uint64_t offset_gap;
549 
550 	/* size of hardware buffer. This may be less than the size of
551 	 * the netmap buffers because of non-zero offsets, or because
552 	 * the netmap buffer size exceeds the capability of the hardware.
553 	 */
554 	uint64_t hwbuf_len;
555 
556 	/* required alignment (in bytes) for the buffers used by this ring.
557 	 * Netmap buffers are aligned to cachelines, which should suffice
558 	 * for most NICs. If the user is passing offsets, though, we need
559 	 * to check that the resulting buf address complies with any
560 	 * alignment restriction.
561 	 */
562 	uint64_t buf_align;
563 
564 	/* hardware specific logic for the selection of the hwbuf_len */
565 	int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target);
566 
567 	int (*save_notify)(struct netmap_kring *kring, int flags);
568 
569 #ifdef WITH_MONITOR
570 	/* array of krings that are monitoring this kring */
571 	struct netmap_kring **monitors;
572 	uint32_t max_monitors; /* current size of the monitors array */
573 	uint32_t n_monitors;	/* next unused entry in the monitor array */
574 	uint32_t mon_pos[NR_TXRX]; /* index of this ring in the monitored ring array */
575 	uint32_t mon_tail;  /* last seen slot on rx */
576 
577 	/* circular list of zero-copy monitors */
578 	struct netmap_zmon_list zmon_list[NR_TXRX];
579 
580 	/*
581 	 * Monitors work by intercepting the sync and notify callbacks of the
582 	 * monitored krings. This is implemented by replacing the pointers
583 	 * above and saving the previous ones in mon_* pointers below
584 	 */
585 	int (*mon_sync)(struct netmap_kring *kring, int flags);
586 	int (*mon_notify)(struct netmap_kring *kring, int flags);
587 
588 #endif
589 }
590 #ifdef _WIN32
591 __declspec(align(64));
592 #else
593 __attribute__((__aligned__(64)));
594 #endif
595 
596 /* return 1 iff the kring needs to be turned on */
597 static inline int
nm_kring_pending_on(struct netmap_kring * kring)598 nm_kring_pending_on(struct netmap_kring *kring)
599 {
600 	return kring->nr_pending_mode == NKR_NETMAP_ON &&
601 	       kring->nr_mode == NKR_NETMAP_OFF;
602 }
603 
604 /* return 1 iff the kring needs to be turned off */
605 static inline int
nm_kring_pending_off(struct netmap_kring * kring)606 nm_kring_pending_off(struct netmap_kring *kring)
607 {
608 	return kring->nr_pending_mode == NKR_NETMAP_OFF &&
609 	       kring->nr_mode == NKR_NETMAP_ON;
610 }
611 
612 /* return the next index, with wraparound */
613 static inline uint32_t
nm_next(uint32_t i,uint32_t lim)614 nm_next(uint32_t i, uint32_t lim)
615 {
616 	return unlikely (i == lim) ? 0 : i + 1;
617 }
618 
619 
620 /* return the previous index, with wraparound */
621 static inline uint32_t
nm_prev(uint32_t i,uint32_t lim)622 nm_prev(uint32_t i, uint32_t lim)
623 {
624 	return unlikely (i == 0) ? lim : i - 1;
625 }
626 
627 
628 /*
629  *
630  * Here is the layout for the Rx and Tx rings.
631 
632        RxRING                            TxRING
633 
634       +-----------------+            +-----------------+
635       |                 |            |                 |
636       |      free       |            |      free       |
637       +-----------------+            +-----------------+
638 head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
639       |                 |            | yet             |
640       +-----------------+            |                 |
641  cur->| available to    |            |                 |
642       | user, not read  |            +-----------------+
643       | yet             |       cur->| (being          |
644       |                 |            |  prepared)      |
645       |                 |            |                 |
646       +-----------------+            +     ------      +
647 tail->|                 |<-hwtail    |                 |<-hwlease
648       | (being          | ...        |                 | ...
649       |  prepared)      | ...        |                 | ...
650       +-----------------+ ...        |                 | ...
651       |                 |<-hwlease   +-----------------+
652       |                 |      tail->|                 |<-hwtail
653       |                 |            |                 |
654       |                 |            |                 |
655       |                 |            |                 |
656       +-----------------+            +-----------------+
657 
658  * The cur/tail (user view) and hwcur/hwtail (kernel view)
659  * are used in the normal operation of the card.
660  *
661  * When a ring is the output of a switch port (Rx ring for
662  * a VALE port, Tx ring for the host stack or NIC), slots
663  * are reserved in blocks through 'hwlease' which points
664  * to the next unused slot.
665  * On an Rx ring, hwlease is always after hwtail,
666  * and completions cause hwtail to advance.
667  * On a Tx ring, hwlease is always between cur and hwtail,
668  * and completions cause cur to advance.
669  *
670  * nm_kr_space() returns the maximum number of slots that
671  * can be assigned.
672  * nm_kr_lease() reserves the required number of buffers,
673  *    advances nkr_hwlease and also returns an entry in
674  *    a circular array where completions should be reported.
675  */
676 
677 struct lut_entry;
678 #ifdef __FreeBSD__
679 #define plut_entry lut_entry
680 #endif
681 
682 struct netmap_lut {
683 	struct lut_entry *lut;
684 	struct plut_entry *plut;
685 	uint32_t objtotal;	/* max buffer index */
686 	uint32_t objsize;	/* buffer size */
687 };
688 
689 struct netmap_vp_adapter; // forward
690 struct nm_bridge;
691 
692 /* Struct to be filled by nm_config callbacks. */
693 struct nm_config_info {
694 	unsigned num_tx_rings;
695 	unsigned num_rx_rings;
696 	unsigned num_tx_descs;
697 	unsigned num_rx_descs;
698 	unsigned rx_buf_maxsize;
699 };
700 
701 /*
702  * default type for the magic field.
703  * May be overridden in glue code.
704  */
705 #ifndef NM_OS_MAGIC
706 #define NM_OS_MAGIC uint32_t
707 #endif /* !NM_OS_MAGIC */
708 
709 /*
710  * The "struct netmap_adapter" extends the "struct adapter"
711  * (or equivalent) device descriptor.
712  * It contains all base fields needed to support netmap operation.
713  * There are in fact different types of netmap adapters
714  * (native, generic, VALE switch...) so a netmap_adapter is
715  * just the first field in the derived type.
716  */
717 struct netmap_adapter {
718 	/*
719 	 * On linux we do not have a good way to tell if an interface
720 	 * is netmap-capable. So we always use the following trick:
721 	 * NA(ifp) points here, and the first entry (which hopefully
722 	 * always exists and is at least 32 bits) contains a magic
723 	 * value which we can use to detect that the interface is good.
724 	 */
725 	NM_OS_MAGIC magic;
726 	uint32_t na_flags;	/* enabled, and other flags */
727 #define NAF_SKIP_INTR	1	/* use the regular interrupt handler.
728 				 * useful during initialization
729 				 */
730 #define NAF_SW_ONLY	2	/* forward packets only to sw adapter */
731 #define NAF_BDG_MAYSLEEP 4	/* the bridge is allowed to sleep when
732 				 * forwarding packets coming from this
733 				 * interface
734 				 */
735 #define NAF_MEM_OWNER	8	/* the adapter uses its own memory area
736 				 * that cannot be changed
737 				 */
738 #define NAF_NATIVE      16      /* the adapter is native.
739 				 * Virtual ports (non persistent vale ports,
740 				 * pipes, monitors...) should never use
741 				 * this flag.
742 				 */
743 #define	NAF_NETMAP_ON	32	/* netmap is active (either native or
744 				 * emulated). Where possible (e.g. FreeBSD)
745 				 * IFCAP_NETMAP also mirrors this flag.
746 				 */
747 #define NAF_HOST_RINGS  64	/* the adapter supports the host rings */
748 #define NAF_FORCE_NATIVE 128	/* the adapter is always NATIVE */
749 /* free */
750 #define NAF_MOREFRAG	512	/* the adapter supports NS_MOREFRAG */
751 #define NAF_OFFSETS	1024	/* the adapter supports the slot offsets */
752 #define NAF_HOST_ALL	2048	/* the adapter wants as many host rings as hw */
753 #define NAF_ZOMBIE	(1U<<30) /* the nic driver has been unloaded */
754 #define	NAF_BUSY	(1U<<31) /* the adapter is used internally and
755 				  * cannot be registered from userspace
756 				  */
757 	int active_fds; /* number of user-space descriptors using this
758 			 interface, which is equal to the number of
759 			 struct netmap_if objs in the mapped region. */
760 
761 	u_int num_rx_rings; /* number of adapter receive rings */
762 	u_int num_tx_rings; /* number of adapter transmit rings */
763 	u_int num_host_rx_rings; /* number of host receive rings */
764 	u_int num_host_tx_rings; /* number of host transmit rings */
765 
766 	u_int num_tx_desc;  /* number of descriptor in each queue */
767 	u_int num_rx_desc;
768 
769 	/* tx_rings and rx_rings are private but allocated as a
770 	 * contiguous chunk of memory. Each array has N+K entries,
771 	 * N for the hardware rings and K for the host rings.
772 	 */
773 	struct netmap_kring **tx_rings; /* array of TX rings. */
774 	struct netmap_kring **rx_rings; /* array of RX rings. */
775 
776 	void *tailroom;		       /* space below the rings array */
777 				       /* (used for leases) */
778 
779 
780 	NM_SELINFO_T si[NR_TXRX];	/* global wait queues */
781 
782 	/* count users of the global wait queues */
783 	int si_users[NR_TXRX];
784 
785 	void *pdev; /* used to store pci device */
786 
787 	/* copy of if_qflush and if_transmit pointers, to intercept
788 	 * packets from the network stack when netmap is active.
789 	 */
790 	int     (*if_transmit)(if_t, struct mbuf *);
791 
792 	/* copy of if_input for netmap_send_up() */
793 	void     (*if_input)(if_t, struct mbuf *);
794 
795 	/* Back reference to the parent ifnet struct. Used for
796 	 * hardware ports (emulated netmap included). */
797 	if_t ifp; /* adapter is if_getsoftc(ifp) */
798 
799 	/*---- callbacks for this netmap adapter -----*/
800 	/*
801 	 * nm_dtor() is the cleanup routine called when destroying
802 	 *	the adapter.
803 	 *	Called with NMG_LOCK held.
804 	 *
805 	 * nm_register() is called on NIOCREGIF and close() to enter
806 	 *	or exit netmap mode on the NIC
807 	 *	Called with NNG_LOCK held.
808 	 *
809 	 * nm_txsync() pushes packets to the underlying hw/switch
810 	 *
811 	 * nm_rxsync() collects packets from the underlying hw/switch
812 	 *
813 	 * nm_config() returns configuration information from the OS
814 	 *	Called with NMG_LOCK held.
815 	 *
816 	 * nm_bufcfg()
817 	 *      the purpose of this callback is to fill the kring->hwbuf_len
818 	 *      (l) and kring->buf_align fields. The l value is most important
819 	 *      for RX rings, where we want to disallow writes outside of the
820 	 *      netmap buffer. The l value must be computed taking into account
821 	 *      the stipulated max_offset (o), possibly increased if there are
822 	 *      alignment constraints, the maxframe (m), if known, and the
823 	 *      current NETMAP_BUF_SIZE (b) of the memory region used by the
824 	 *      adapter. We want the largest supported l such that o + l <= b.
825 	 *      If m is known to be <= b - o, the callback may also choose the
826 	 *      largest l <= m, ignoring the offset.  The buf_align field is
827 	 *      most important for TX rings when there are offsets.  The user
828 	 *      will see this value in the ring->buf_align field.  Misaligned
829 	 *      offsets will cause the corresponding packets to be silently
830 	 *      dropped.
831 	 *
832 	 * nm_krings_create() create and init the tx_rings and
833 	 * 	rx_rings arrays of kring structures. In particular,
834 	 * 	set the nm_sync callbacks for each ring.
835 	 * 	There is no need to also allocate the corresponding
836 	 * 	netmap_rings, since netmap_mem_rings_create() will always
837 	 * 	be called to provide the missing ones.
838 	 *	Called with NNG_LOCK held.
839 	 *
840 	 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
841 	 * 	arrays
842 	 *	Called with NMG_LOCK held.
843 	 *
844 	 * nm_notify() is used to act after data have become available
845 	 * 	(or the stopped state of the ring has changed)
846 	 *	For hw devices this is typically a selwakeup(),
847 	 *	but for NIC/host ports attached to a switch (or vice-versa)
848 	 *	we also need to invoke the 'txsync' code downstream.
849 	 *      This callback pointer is actually used only to initialize
850 	 *      kring->nm_notify.
851 	 *      Return values are the same as for netmap_rx_irq().
852 	 */
853 	void (*nm_dtor)(struct netmap_adapter *);
854 
855 	int (*nm_register)(struct netmap_adapter *, int onoff);
856 	void (*nm_intr)(struct netmap_adapter *, int onoff);
857 
858 	int (*nm_txsync)(struct netmap_kring *kring, int flags);
859 	int (*nm_rxsync)(struct netmap_kring *kring, int flags);
860 	int (*nm_notify)(struct netmap_kring *kring, int flags);
861 	int (*nm_bufcfg)(struct netmap_kring *kring, uint64_t target);
862 #define NAF_FORCE_READ      1
863 #define NAF_FORCE_RECLAIM   2
864 #define NAF_CAN_FORWARD_DOWN 4
865 	/* return configuration information */
866 	int (*nm_config)(struct netmap_adapter *, struct nm_config_info *info);
867 	int (*nm_krings_create)(struct netmap_adapter *);
868 	void (*nm_krings_delete)(struct netmap_adapter *);
869 	/*
870 	 * nm_bdg_attach() initializes the na_vp field to point
871 	 *      to an adapter that can be attached to a VALE switch. If the
872 	 *      current adapter is already a VALE port, na_vp is simply a cast;
873 	 *      otherwise, na_vp points to a netmap_bwrap_adapter.
874 	 *      If applicable, this callback also initializes na_hostvp,
875 	 *      that can be used to connect the adapter host rings to the
876 	 *      switch.
877 	 *      Called with NMG_LOCK held.
878 	 *
879 	 * nm_bdg_ctl() is called on the actual attach/detach to/from
880 	 *      to/from the switch, to perform adapter-specific
881 	 *      initializations
882 	 *      Called with NMG_LOCK held.
883 	 */
884 	int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *,
885 			struct nm_bridge *);
886 	int (*nm_bdg_ctl)(struct nmreq_header *, struct netmap_adapter *);
887 
888 	/* adapter used to attach this adapter to a VALE switch (if any) */
889 	struct netmap_vp_adapter *na_vp;
890 	/* adapter used to attach the host rings of this adapter
891 	 * to a VALE switch (if any) */
892 	struct netmap_vp_adapter *na_hostvp;
893 
894 	/* standard refcount to control the lifetime of the adapter
895 	 * (it should be equal to the lifetime of the corresponding ifp)
896 	 */
897 	int na_refcount;
898 
899 	/* memory allocator (opaque)
900 	 * We also cache a pointer to the lut_entry for translating
901 	 * buffer addresses, the total number of buffers and the buffer size.
902 	 */
903  	struct netmap_mem_d *nm_mem;
904 	struct netmap_mem_d *nm_mem_prev;
905 	struct netmap_lut na_lut;
906 
907 	/* additional information attached to this adapter
908 	 * by other netmap subsystems. Currently used by
909 	 * bwrap, LINUX/v1000 and ptnetmap
910 	 */
911 	void *na_private;
912 
913 	/* array of pipes that have this adapter as a parent */
914 	struct netmap_pipe_adapter **na_pipes;
915 	int na_next_pipe;	/* next free slot in the array */
916 	int na_max_pipes;	/* size of the array */
917 
918 	/* Offset of ethernet header for each packet. */
919 	u_int virt_hdr_len;
920 
921 	/* Max number of bytes that the NIC can store in the buffer
922 	 * referenced by each RX descriptor. This translates to the maximum
923 	 * bytes that a single netmap slot can reference. Larger packets
924 	 * require NS_MOREFRAG support. */
925 	unsigned rx_buf_maxsize;
926 
927 	char name[NETMAP_REQ_IFNAMSIZ]; /* used at least by pipes */
928 
929 #ifdef WITH_MONITOR
930 	unsigned long	monitor_id;	/* debugging */
931 #endif
932 };
933 
934 static __inline u_int
nma_get_ndesc(struct netmap_adapter * na,enum txrx t)935 nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
936 {
937 	return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
938 }
939 
940 static __inline void
nma_set_ndesc(struct netmap_adapter * na,enum txrx t,u_int v)941 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
942 {
943 	if (t == NR_TX)
944 		na->num_tx_desc = v;
945 	else
946 		na->num_rx_desc = v;
947 }
948 
949 static __inline u_int
nma_get_nrings(struct netmap_adapter * na,enum txrx t)950 nma_get_nrings(struct netmap_adapter *na, enum txrx t)
951 {
952 	return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
953 }
954 
955 static __inline u_int
nma_get_host_nrings(struct netmap_adapter * na,enum txrx t)956 nma_get_host_nrings(struct netmap_adapter *na, enum txrx t)
957 {
958 	return (t == NR_TX ? na->num_host_tx_rings : na->num_host_rx_rings);
959 }
960 
961 static __inline void
nma_set_nrings(struct netmap_adapter * na,enum txrx t,u_int v)962 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
963 {
964 	if (t == NR_TX)
965 		na->num_tx_rings = v;
966 	else
967 		na->num_rx_rings = v;
968 }
969 
970 static __inline void
nma_set_host_nrings(struct netmap_adapter * na,enum txrx t,u_int v)971 nma_set_host_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
972 {
973 	if (t == NR_TX)
974 		na->num_host_tx_rings = v;
975 	else
976 		na->num_host_rx_rings = v;
977 }
978 
979 static __inline struct netmap_kring**
NMR(struct netmap_adapter * na,enum txrx t)980 NMR(struct netmap_adapter *na, enum txrx t)
981 {
982 	return (t == NR_TX ? na->tx_rings : na->rx_rings);
983 }
984 
985 int nma_intr_enable(struct netmap_adapter *na, int onoff);
986 
987 /*
988  * If the NIC is owned by the kernel
989  * (i.e., bridge), neither another bridge nor user can use it;
990  * if the NIC is owned by a user, only users can share it.
991  * Evaluation must be done under NMG_LOCK().
992  */
993 #define NETMAP_OWNED_BY_KERN(na)	((na)->na_flags & NAF_BUSY)
994 #define NETMAP_OWNED_BY_ANY(na) \
995 	(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
996 
997 /*
998  * derived netmap adapters for various types of ports
999  */
1000 struct netmap_vp_adapter {	/* VALE software port */
1001 	struct netmap_adapter up;
1002 
1003 	/*
1004 	 * Bridge support:
1005 	 *
1006 	 * bdg_port is the port number used in the bridge;
1007 	 * na_bdg points to the bridge this NA is attached to.
1008 	 */
1009 	int bdg_port;
1010 	struct nm_bridge *na_bdg;
1011 	int retry;
1012 	int autodelete; /* remove the ifp on last reference */
1013 
1014 	/* Maximum Frame Size, used in bdg_mismatch_datapath() */
1015 	u_int mfs;
1016 	/* Last source MAC on this port */
1017 	uint64_t last_smac;
1018 };
1019 
1020 
1021 struct netmap_hw_adapter {	/* physical device */
1022 	struct netmap_adapter up;
1023 
1024 #ifdef linux
1025 	struct net_device_ops nm_ndo;
1026 	struct ethtool_ops    nm_eto;
1027 #endif
1028 	const struct ethtool_ops*   save_ethtool;
1029 
1030 	int (*nm_hw_register)(struct netmap_adapter *, int onoff);
1031 };
1032 
1033 #ifdef WITH_GENERIC
1034 /* Mitigation support. */
1035 struct nm_generic_mit {
1036 	struct hrtimer mit_timer;
1037 	int mit_pending;
1038 	int mit_ring_idx;  /* index of the ring being mitigated */
1039 	struct netmap_adapter *mit_na;  /* backpointer */
1040 };
1041 
1042 struct netmap_generic_adapter {	/* emulated device */
1043 	struct netmap_hw_adapter up;
1044 
1045 	/* Pointer to a previously used netmap adapter. */
1046 	struct netmap_adapter *prev;
1047 
1048 	/* Emulated netmap adapters support:
1049 	 *  - mit implements rx interrupt mitigation;
1050 	 */
1051 	struct nm_generic_mit *mit;
1052 #ifdef linux
1053         netdev_tx_t (*save_start_xmit)(struct mbuf *, if_t);
1054 #endif
1055 	/* Is the adapter able to use multiple RX slots to scatter
1056 	 * each packet pushed up by the driver? */
1057 	int rxsg;
1058 
1059 	/* Is the transmission path controlled by a netmap-aware
1060 	 * device queue (i.e. qdisc on linux)? */
1061 	int txqdisc;
1062 };
1063 #endif  /* WITH_GENERIC */
1064 
1065 static __inline u_int
netmap_real_rings(struct netmap_adapter * na,enum txrx t)1066 netmap_real_rings(struct netmap_adapter *na, enum txrx t)
1067 {
1068 	return nma_get_nrings(na, t) +
1069 		!!(na->na_flags & NAF_HOST_RINGS) * nma_get_host_nrings(na, t);
1070 }
1071 
1072 /* account for fake rings */
1073 static __inline u_int
netmap_all_rings(struct netmap_adapter * na,enum txrx t)1074 netmap_all_rings(struct netmap_adapter *na, enum txrx t)
1075 {
1076 	return max(nma_get_nrings(na, t) + 1, netmap_real_rings(na, t));
1077 }
1078 
1079 int netmap_default_bdg_attach(const char *name, struct netmap_adapter *na,
1080 		struct nm_bridge *);
1081 struct nm_bdg_polling_state;
1082 /*
1083  * Bridge wrapper for non VALE ports attached to a VALE switch.
1084  *
1085  * The real device must already have its own netmap adapter (hwna).
1086  * The bridge wrapper and the hwna adapter share the same set of
1087  * netmap rings and buffers, but they have two separate sets of
1088  * krings descriptors, with tx/rx meanings swapped:
1089  *
1090  *                                  netmap
1091  *           bwrap     krings       rings      krings      hwna
1092  *         +------+   +------+     +-----+    +------+   +------+
1093  *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
1094  *         |      |   +------+ \ / +-----+    +------+   |      |
1095  *         |      |             X                        |      |
1096  *         |      |            / \                       |      |
1097  *         |      |   +------+/   \+-----+    +------+   |      |
1098  *         |rx_rings->|      |     |     |----|      |<-rx_rings|
1099  *         |      |   +------+     +-----+    +------+   |      |
1100  *         +------+                                      +------+
1101  *
1102  * - packets coming from the bridge go to the brwap rx rings,
1103  *   which are also the hwna tx rings.  The bwrap notify callback
1104  *   will then complete the hwna tx (see netmap_bwrap_notify).
1105  *
1106  * - packets coming from the outside go to the hwna rx rings,
1107  *   which are also the bwrap tx rings.  The (overwritten) hwna
1108  *   notify method will then complete the bridge tx
1109  *   (see netmap_bwrap_intr_notify).
1110  *
1111  *   The bridge wrapper may optionally connect the hwna 'host' rings
1112  *   to the bridge. This is done by using a second port in the
1113  *   bridge and connecting it to the 'host' netmap_vp_adapter
1114  *   contained in the netmap_bwrap_adapter. The brwap host adapter
1115  *   cross-links the hwna host rings in the same way as shown above.
1116  *
1117  * - packets coming from the bridge and directed to the host stack
1118  *   are handled by the bwrap host notify callback
1119  *   (see netmap_bwrap_host_notify)
1120  *
1121  * - packets coming from the host stack are still handled by the
1122  *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
1123  *   but are diverted to the host adapter depending on the ring number.
1124  *
1125  */
1126 struct netmap_bwrap_adapter {
1127 	struct netmap_vp_adapter up;
1128 	struct netmap_vp_adapter host;  /* for host rings */
1129 	struct netmap_adapter *hwna;	/* the underlying device */
1130 
1131 	/*
1132 	 * When we attach a physical interface to the bridge, we
1133 	 * allow the controlling process to terminate, so we need
1134 	 * a place to store the n_detmap_priv_d data structure.
1135 	 * This is only done when physical interfaces
1136 	 * are attached to a bridge.
1137 	 */
1138 	struct netmap_priv_d *na_kpriv;
1139 	struct nm_bdg_polling_state *na_polling_state;
1140 	/* we overwrite the hwna->na_vp pointer, so we save
1141 	 * here its original value, to be restored at detach
1142 	 */
1143 	struct netmap_vp_adapter *saved_na_vp;
1144 	int (*nm_intr_notify)(struct netmap_kring *kring, int flags);
1145 };
1146 int nm_is_bwrap(struct netmap_adapter *na);
1147 int nm_bdg_polling(struct nmreq_header *hdr);
1148 
1149 int netmap_bdg_attach(struct nmreq_header *hdr, void *auth_token);
1150 int netmap_bdg_detach(struct nmreq_header *hdr, void *auth_token);
1151 #ifdef WITH_VALE
1152 int netmap_vale_list(struct nmreq_header *hdr);
1153 int netmap_vi_create(struct nmreq_header *hdr, int);
1154 int nm_vi_create(struct nmreq_header *);
1155 int nm_vi_destroy(const char *name);
1156 #else /* !WITH_VALE */
1157 #define netmap_vi_create(hdr, a) (EOPNOTSUPP)
1158 #endif /* WITH_VALE */
1159 
1160 #ifdef WITH_PIPES
1161 
1162 #define NM_MAXPIPES 	64	/* max number of pipes per adapter */
1163 
1164 struct netmap_pipe_adapter {
1165 	/* pipe identifier is up.name */
1166 	struct netmap_adapter up;
1167 
1168 #define NM_PIPE_ROLE_MASTER	0x1
1169 #define NM_PIPE_ROLE_SLAVE	0x2
1170 	int role;	/* either NM_PIPE_ROLE_MASTER or NM_PIPE_ROLE_SLAVE */
1171 
1172 	struct netmap_adapter *parent; /* adapter that owns the memory */
1173 	struct netmap_pipe_adapter *peer; /* the other end of the pipe */
1174 	int peer_ref;		/* 1 iff we are holding a ref to the peer */
1175 	if_t parent_ifp;	/* maybe null */
1176 
1177 	u_int parent_slot; /* index in the parent pipe array */
1178 };
1179 
1180 #endif /* WITH_PIPES */
1181 
1182 #ifdef WITH_NMNULL
1183 struct netmap_null_adapter {
1184 	struct netmap_adapter up;
1185 };
1186 #endif /* WITH_NMNULL */
1187 
1188 
1189 /* return slots reserved to rx clients; used in drivers */
1190 static inline uint32_t
nm_kr_rxspace(struct netmap_kring * k)1191 nm_kr_rxspace(struct netmap_kring *k)
1192 {
1193 	int space = k->nr_hwtail - k->nr_hwcur;
1194 	if (space < 0)
1195 		space += k->nkr_num_slots;
1196 	nm_prdis("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
1197 
1198 	return space;
1199 }
1200 
1201 /* return slots reserved to tx clients */
1202 #define nm_kr_txspace(_k) nm_kr_rxspace(_k)
1203 
1204 
1205 /* True if no space in the tx ring, only valid after txsync_prologue */
1206 static inline int
nm_kr_txempty(struct netmap_kring * kring)1207 nm_kr_txempty(struct netmap_kring *kring)
1208 {
1209 	return kring->rhead == kring->nr_hwtail;
1210 }
1211 
1212 /* True if no more completed slots in the rx ring, only valid after
1213  * rxsync_prologue */
1214 #define nm_kr_rxempty(_k)	nm_kr_txempty(_k)
1215 
1216 /* True if the application needs to wait for more space on the ring
1217  * (more received packets or more free tx slots).
1218  * Only valid after *xsync_prologue. */
1219 static inline int
nm_kr_wouldblock(struct netmap_kring * kring)1220 nm_kr_wouldblock(struct netmap_kring *kring)
1221 {
1222 	return kring->rcur == kring->nr_hwtail;
1223 }
1224 
1225 /*
1226  * protect against multiple threads using the same ring.
1227  * also check that the ring has not been stopped or locked
1228  */
1229 #define NM_KR_BUSY	1	/* some other thread is syncing the ring */
1230 #define NM_KR_STOPPED	2	/* unbounded stop (ifconfig down or driver unload) */
1231 #define NM_KR_LOCKED	3	/* bounded, brief stop for mutual exclusion */
1232 
1233 
1234 /* release the previously acquired right to use the *sync() methods of the ring */
nm_kr_put(struct netmap_kring * kr)1235 static __inline void nm_kr_put(struct netmap_kring *kr)
1236 {
1237 	NM_ATOMIC_CLEAR(&kr->nr_busy);
1238 }
1239 
1240 
1241 /* true if the ifp that backed the adapter has disappeared (e.g., the
1242  * driver has been unloaded)
1243  */
1244 static inline int nm_iszombie(struct netmap_adapter *na);
1245 
1246 /* try to obtain exclusive right to issue the *sync() operations on the ring.
1247  * The right is obtained and must be later relinquished via nm_kr_put() if and
1248  * only if nm_kr_tryget() returns 0.
1249  * If can_sleep is 1 there are only two other possible outcomes:
1250  * - the function returns NM_KR_BUSY
1251  * - the function returns NM_KR_STOPPED and sets the POLLERR bit in *perr
1252  *   (if non-null)
1253  * In both cases the caller will typically skip the ring, possibly collecting
1254  * errors along the way.
1255  * If the calling context does not allow sleeping, the caller must pass 0 in can_sleep.
1256  * In the latter case, the function may also return NM_KR_LOCKED and leave *perr
1257  * untouched: ideally, the caller should try again at a later time.
1258  */
nm_kr_tryget(struct netmap_kring * kr,int can_sleep,int * perr)1259 static __inline int nm_kr_tryget(struct netmap_kring *kr, int can_sleep, int *perr)
1260 {
1261 	int busy = 1, stopped;
1262 	/* check a first time without taking the lock
1263 	 * to avoid starvation for nm_kr_get()
1264 	 */
1265 retry:
1266 	stopped = kr->nkr_stopped;
1267 	if (unlikely(stopped)) {
1268 		goto stop;
1269 	}
1270 	busy = NM_ATOMIC_TEST_AND_SET(&kr->nr_busy);
1271 	/* we should not return NM_KR_BUSY if the ring was
1272 	 * actually stopped, so check another time after
1273 	 * the barrier provided by the atomic operation
1274 	 */
1275 	stopped = kr->nkr_stopped;
1276 	if (unlikely(stopped)) {
1277 		goto stop;
1278 	}
1279 
1280 	if (unlikely(nm_iszombie(kr->na))) {
1281 		stopped = NM_KR_STOPPED;
1282 		goto stop;
1283 	}
1284 
1285 	return unlikely(busy) ? NM_KR_BUSY : 0;
1286 
1287 stop:
1288 	if (!busy)
1289 		nm_kr_put(kr);
1290 	if (stopped == NM_KR_STOPPED) {
1291 /* if POLLERR is defined we want to use it to simplify netmap_poll().
1292  * Otherwise, any non-zero value will do.
1293  */
1294 #ifdef POLLERR
1295 #define NM_POLLERR POLLERR
1296 #else
1297 #define NM_POLLERR 1
1298 #endif /* POLLERR */
1299 		if (perr)
1300 			*perr |= NM_POLLERR;
1301 #undef NM_POLLERR
1302 	} else if (can_sleep) {
1303 		tsleep(kr, 0, "NM_KR_TRYGET", 4);
1304 		goto retry;
1305 	}
1306 	return stopped;
1307 }
1308 
1309 /* put the ring in the 'stopped' state and wait for the current user (if any) to
1310  * notice. stopped must be either NM_KR_STOPPED or NM_KR_LOCKED
1311  */
nm_kr_stop(struct netmap_kring * kr,int stopped)1312 static __inline void nm_kr_stop(struct netmap_kring *kr, int stopped)
1313 {
1314 	kr->nkr_stopped = stopped;
1315 	while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
1316 		tsleep(kr, 0, "NM_KR_GET", 4);
1317 }
1318 
1319 /* restart a ring after a stop */
nm_kr_start(struct netmap_kring * kr)1320 static __inline void nm_kr_start(struct netmap_kring *kr)
1321 {
1322 	kr->nkr_stopped = 0;
1323 	nm_kr_put(kr);
1324 }
1325 
1326 
1327 /*
1328  * The following functions are used by individual drivers to
1329  * support netmap operation.
1330  *
1331  * netmap_attach() initializes a struct netmap_adapter, allocating the
1332  * 	struct netmap_ring's and the struct selinfo.
1333  *
1334  * netmap_detach() frees the memory allocated by netmap_attach().
1335  *
1336  * netmap_transmit() replaces the if_transmit routine of the interface,
1337  *	and is used to intercept packets coming from the stack.
1338  *
1339  * netmap_load_map/netmap_reload_map are helper routines to set/reset
1340  *	the dmamap for a packet buffer
1341  *
1342  * netmap_reset() is a helper routine to be called in the hw driver
1343  *	when reinitializing a ring. It should not be called by
1344  *	virtual ports (vale, pipes, monitor)
1345  */
1346 int netmap_attach(struct netmap_adapter *);
1347 int netmap_attach_ext(struct netmap_adapter *, size_t size, int override_reg);
1348 void netmap_detach(if_t);
1349 int netmap_transmit(if_t, struct mbuf *);
1350 struct netmap_slot *netmap_reset(struct netmap_adapter *na,
1351 	enum txrx tx, u_int n, u_int new_cur);
1352 int netmap_ring_reinit(struct netmap_kring *);
1353 int netmap_rings_config_get(struct netmap_adapter *, struct nm_config_info *);
1354 
1355 /* Return codes for netmap_*x_irq. */
1356 enum {
1357 	/* Driver should do normal interrupt processing, e.g. because
1358 	 * the interface is not in netmap mode. */
1359 	NM_IRQ_PASS = 0,
1360 	/* Port is in netmap mode, and the interrupt work has been
1361 	 * completed. The driver does not have to notify netmap
1362 	 * again before the next interrupt. */
1363 	NM_IRQ_COMPLETED = -1,
1364 	/* Port is in netmap mode, but the interrupt work has not been
1365 	 * completed. The driver has to make sure netmap will be
1366 	 * notified again soon, even if no more interrupts come (e.g.
1367 	 * on Linux the driver should not call napi_complete()). */
1368 	NM_IRQ_RESCHED = -2,
1369 };
1370 
1371 /* default functions to handle rx/tx interrupts */
1372 int netmap_rx_irq(if_t, u_int, u_int *);
1373 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
1374 int netmap_common_irq(struct netmap_adapter *, u_int, u_int *work_done);
1375 
1376 
1377 #ifdef WITH_VALE
1378 /* functions used by external modules to interface with VALE */
1379 #define netmap_vp_to_ifp(_vp)	((_vp)->up.ifp)
1380 #define netmap_ifp_to_vp(_ifp)	(NA(_ifp)->na_vp)
1381 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
1382 #define netmap_bdg_idx(_vp)	((_vp)->bdg_port)
1383 const char *netmap_bdg_name(struct netmap_vp_adapter *);
1384 #else /* !WITH_VALE */
1385 #define netmap_vp_to_ifp(_vp)	NULL
1386 #define netmap_ifp_to_vp(_ifp)	NULL
1387 #define netmap_ifp_to_host_vp(_ifp) NULL
1388 #define netmap_bdg_idx(_vp)	-1
1389 #endif /* WITH_VALE */
1390 
1391 static inline int
nm_netmap_on(struct netmap_adapter * na)1392 nm_netmap_on(struct netmap_adapter *na)
1393 {
1394 	return na && na->na_flags & NAF_NETMAP_ON;
1395 }
1396 
1397 static inline int
nm_native_on(struct netmap_adapter * na)1398 nm_native_on(struct netmap_adapter *na)
1399 {
1400 	return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
1401 }
1402 
1403 static inline struct netmap_kring *
netmap_kring_on(struct netmap_adapter * na,u_int q,enum txrx t)1404 netmap_kring_on(struct netmap_adapter *na, u_int q, enum txrx t)
1405 {
1406 	struct netmap_kring *kring = NULL;
1407 
1408 	if (!nm_native_on(na))
1409 		return NULL;
1410 
1411 	if (t == NR_RX && q < na->num_rx_rings)
1412 		kring = na->rx_rings[q];
1413 	else if (t == NR_TX && q < na->num_tx_rings)
1414 		kring = na->tx_rings[q];
1415 	else
1416 		return NULL;
1417 
1418 	return (kring->nr_mode == NKR_NETMAP_ON) ? kring : NULL;
1419 }
1420 
1421 static inline int
nm_iszombie(struct netmap_adapter * na)1422 nm_iszombie(struct netmap_adapter *na)
1423 {
1424 	return na == NULL || (na->na_flags & NAF_ZOMBIE);
1425 }
1426 
1427 void nm_set_native_flags(struct netmap_adapter *);
1428 void nm_clear_native_flags(struct netmap_adapter *);
1429 
1430 void netmap_krings_mode_commit(struct netmap_adapter *na, int onoff);
1431 
1432 /*
1433  * nm_*sync_prologue() functions are used in ioctl/poll and ptnetmap
1434  * kthreads.
1435  * We need netmap_ring* parameter, because in ptnetmap it is decoupled
1436  * from host kring.
1437  * The user-space ring pointers (head/cur/tail) are shared through
1438  * CSB between host and guest.
1439  */
1440 
1441 /*
1442  * validates parameters in the ring/kring, returns a value for head
1443  * If any error, returns ring_size to force a reinit.
1444  */
1445 uint32_t nm_txsync_prologue(struct netmap_kring *, struct netmap_ring *);
1446 
1447 
1448 /*
1449  * validates parameters in the ring/kring, returns a value for head
1450  * If any error, returns ring_size lim to force a reinit.
1451  */
1452 uint32_t nm_rxsync_prologue(struct netmap_kring *, struct netmap_ring *);
1453 
1454 
1455 /* check/fix address and len in tx rings */
1456 #if 1 /* debug version */
1457 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1458 	if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {	\
1459 		nm_prlim(5, "bad addr/len ring %d slot %d idx %d len %d",	\
1460 			kring->ring_id, nm_i, slot->buf_idx, len);	\
1461 		if (_l > NETMAP_BUF_SIZE(_na))				\
1462 			_l = NETMAP_BUF_SIZE(_na);			\
1463 	} } while (0)
1464 #else /* no debug version */
1465 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1466 		if (_l > NETMAP_BUF_SIZE(_na))				\
1467 			_l = NETMAP_BUF_SIZE(_na);			\
1468 	} while (0)
1469 #endif
1470 
1471 #define NM_CHECK_ADDR_LEN_OFF(na_, l_, o_) do {				\
1472 	if ((l_) + (o_) < (l_) || 					\
1473 	    (l_) + (o_) > NETMAP_BUF_SIZE(na_)) {			\
1474 		(l_) = NETMAP_BUF_SIZE(na_) - (o_);			\
1475 	} } while (0)
1476 
1477 
1478 /*---------------------------------------------------------------*/
1479 /*
1480  * Support routines used by netmap subsystems
1481  * (native drivers, VALE, generic, pipes, monitors, ...)
1482  */
1483 
1484 
1485 /* common routine for all functions that create a netmap adapter. It performs
1486  * two main tasks:
1487  * - if the na points to an ifp, mark the ifp as netmap capable
1488  *   using na as its native adapter;
1489  * - provide defaults for the setup callbacks and the memory allocator
1490  */
1491 int netmap_attach_common(struct netmap_adapter *);
1492 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1493  * coming from a struct nmreq_register
1494  */
1495 int netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr);
1496 /* update the ring parameters (number and size of tx and rx rings).
1497  * It calls the nm_config callback, if available.
1498  */
1499 int netmap_update_config(struct netmap_adapter *na);
1500 /* create and initialize the common fields of the krings array.
1501  * using the information that must be already available in the na.
1502  * tailroom can be used to request the allocation of additional
1503  * tailroom bytes after the krings array. This is used by
1504  * netmap_vp_adapter's (i.e., VALE ports) to make room for
1505  * leasing-related data structures
1506  */
1507 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1508 /* deletes the kring array of the adapter. The array must have
1509  * been created using netmap_krings_create
1510  */
1511 void netmap_krings_delete(struct netmap_adapter *na);
1512 
1513 int netmap_hw_krings_create(struct netmap_adapter *na);
1514 void netmap_hw_krings_delete(struct netmap_adapter *na);
1515 
1516 /* set the stopped/enabled status of ring
1517  * When stopping, they also wait for all current activity on the ring to
1518  * terminate. The status change is then notified using the na nm_notify
1519  * callback.
1520  */
1521 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1522 /* set the stopped/enabled status of all rings of the adapter. */
1523 void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1524 /* convenience wrappers for netmap_set_all_rings */
1525 void netmap_disable_all_rings(if_t);
1526 void netmap_enable_all_rings(if_t);
1527 
1528 int netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu);
1529 int netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1530 		struct nmreq_header *);
1531 void netmap_do_unregif(struct netmap_priv_d *priv);
1532 
1533 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1534 int netmap_get_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1535 		if_t *ifp, struct netmap_mem_d *nmd, int create);
1536 void netmap_unget_na(struct netmap_adapter *na, if_t ifp);
1537 int netmap_get_hw_na(if_t ifp,
1538 		struct netmap_mem_d *nmd, struct netmap_adapter **na);
1539 void netmap_mem_restore(struct netmap_adapter *na);
1540 
1541 #ifdef WITH_VALE
1542 uint32_t netmap_vale_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1543 		struct netmap_vp_adapter *, void *private_data);
1544 
1545 /* these are redefined in case of no VALE support */
1546 int netmap_get_vale_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1547 		struct netmap_mem_d *nmd, int create);
1548 void *netmap_vale_create(const char *bdg_name, int *return_status);
1549 int netmap_vale_destroy(const char *bdg_name, void *auth_token);
1550 
1551 extern unsigned int vale_max_bridges;
1552 
1553 #else /* !WITH_VALE */
1554 #define netmap_bdg_learning(_1, _2, _3, _4)	0
1555 #define	netmap_get_vale_na(_1, _2, _3, _4)	0
1556 #define netmap_bdg_create(_1, _2)	NULL
1557 #define netmap_bdg_destroy(_1, _2)	0
1558 #define vale_max_bridges		1
1559 #endif /* !WITH_VALE */
1560 
1561 #ifdef WITH_PIPES
1562 /* max number of pipes per device */
1563 #define NM_MAXPIPES	64	/* XXX this should probably be a sysctl */
1564 void netmap_pipe_dealloc(struct netmap_adapter *);
1565 int netmap_get_pipe_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1566 			struct netmap_mem_d *nmd, int create);
1567 #else /* !WITH_PIPES */
1568 #define NM_MAXPIPES	0
1569 #define netmap_pipe_alloc(_1, _2) 	0
1570 #define netmap_pipe_dealloc(_1)
1571 #define netmap_get_pipe_na(hdr, _2, _3, _4)	\
1572 	((strchr(hdr->nr_name, '{') != NULL || strchr(hdr->nr_name, '}') != NULL) ? EOPNOTSUPP : 0)
1573 #endif
1574 
1575 #ifdef WITH_MONITOR
1576 int netmap_get_monitor_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1577 		struct netmap_mem_d *nmd, int create);
1578 void netmap_monitor_stop(struct netmap_adapter *na);
1579 #else
1580 #define netmap_get_monitor_na(hdr, _2, _3, _4) \
1581 	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1582 #endif
1583 
1584 #ifdef WITH_NMNULL
1585 int netmap_get_null_na(struct nmreq_header *hdr, struct netmap_adapter **na,
1586 		struct netmap_mem_d *nmd, int create);
1587 #else /* !WITH_NMNULL */
1588 #define netmap_get_null_na(hdr, _2, _3, _4) \
1589 	(((struct nmreq_register *)(uintptr_t)hdr->nr_body)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1590 #endif /* WITH_NMNULL */
1591 
1592 #ifdef CONFIG_NET_NS
1593 struct net *netmap_bns_get(void);
1594 void netmap_bns_put(struct net *);
1595 void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1596 #else
1597 extern struct nm_bridge *nm_bridges;
1598 #define netmap_bns_get()
1599 #define netmap_bns_put(_1)
1600 #define netmap_bns_getbridges(b, n) \
1601 	do { *b = nm_bridges; *n = vale_max_bridges; } while (0)
1602 #endif
1603 
1604 /* Various prototypes */
1605 int netmap_poll(struct netmap_priv_d *, int events, NM_SELRECORD_T *td);
1606 int netmap_init(void);
1607 void netmap_fini(void);
1608 int netmap_get_memory(struct netmap_priv_d* p);
1609 void netmap_dtor(void *data);
1610 
1611 int netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1612 		struct thread *, int nr_body_is_user);
1613 int netmap_ioctl_legacy(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
1614 			struct thread *td);
1615 size_t nmreq_size_by_type(uint16_t nr_reqtype);
1616 
1617 /* netmap_adapter creation/destruction */
1618 
1619 // #define NM_DEBUG_PUTGET 1
1620 
1621 #ifdef NM_DEBUG_PUTGET
1622 
1623 #define NM_DBG(f) __##f
1624 
1625 void __netmap_adapter_get(struct netmap_adapter *na);
1626 
1627 #define netmap_adapter_get(na) 				\
1628 	do {						\
1629 		struct netmap_adapter *__na = na;	\
1630 		__netmap_adapter_get(__na);		\
1631 		nm_prinf("getting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount);	\
1632 	} while (0)
1633 
1634 int __netmap_adapter_put(struct netmap_adapter *na);
1635 
1636 #define netmap_adapter_put(na)				\
1637 	({						\
1638 		struct netmap_adapter *__na = na;	\
1639 		if (__na == NULL)			\
1640 			nm_prinf("putting NULL");	\
1641 		else					\
1642 			nm_prinf("putting %p:%s -> %d", __na, (__na)->name, (__na)->na_refcount - 1);	\
1643 		__netmap_adapter_put(__na);	\
1644 	})
1645 
1646 #else /* !NM_DEBUG_PUTGET */
1647 
1648 #define NM_DBG(f) f
1649 void netmap_adapter_get(struct netmap_adapter *na);
1650 int netmap_adapter_put(struct netmap_adapter *na);
1651 
1652 #endif /* !NM_DEBUG_PUTGET */
1653 
1654 
1655 /*
1656  * module variables
1657  */
1658 #define NETMAP_BUF_BASE(_na)	((_na)->na_lut.lut[0].vaddr)
1659 #define NETMAP_BUF_SIZE(_na)	((_na)->na_lut.objsize)
1660 extern int netmap_no_pendintr;
1661 extern int netmap_verbose;
1662 #ifdef CONFIG_NETMAP_DEBUG
1663 extern int netmap_debug;		/* for debugging */
1664 #else /* !CONFIG_NETMAP_DEBUG */
1665 #define netmap_debug (0)
1666 #endif /* !CONFIG_NETMAP_DEBUG */
1667 enum {                                  /* debug flags */
1668 	NM_DEBUG_ON = 1,		/* generic debug messages */
1669 	NM_DEBUG_HOST = 0x2,            /* debug host stack */
1670 	NM_DEBUG_RXSYNC = 0x10,         /* debug on rxsync/txsync */
1671 	NM_DEBUG_TXSYNC = 0x20,
1672 	NM_DEBUG_RXINTR = 0x100,        /* debug on rx/tx intr (driver) */
1673 	NM_DEBUG_TXINTR = 0x200,
1674 	NM_DEBUG_NIC_RXSYNC = 0x1000,   /* debug on rx/tx intr (driver) */
1675 	NM_DEBUG_NIC_TXSYNC = 0x2000,
1676 	NM_DEBUG_MEM = 0x4000,		/* verbose memory allocations/deallocations */
1677 	NM_DEBUG_VALE = 0x8000,		/* debug messages from memory allocators */
1678 	NM_DEBUG_BDG = NM_DEBUG_VALE,
1679 };
1680 
1681 extern int netmap_txsync_retry;
1682 extern int netmap_generic_hwcsum;
1683 extern int netmap_generic_mit;
1684 extern int netmap_generic_ringsize;
1685 extern int netmap_generic_rings;
1686 #ifdef linux
1687 extern int netmap_generic_txqdisc;
1688 #endif
1689 
1690 /*
1691  * NA returns a pointer to the struct netmap adapter from the ifp.
1692  * The if_getnetmapadapter() and if_setnetmapadapter() helpers are
1693  * os-specific and must be defined in glue code.
1694  */
1695 #define	NA(_ifp)	(if_getnetmapadapter(_ifp))
1696 
1697 /*
1698  * we provide a default implementation of NM_ATTACH_NA/NM_DETACH_NA
1699  * based on the if_setnetmapadapter() setter function.
1700  * Glue code may override this by defining its own NM_ATTACH_NA
1701  */
1702 #ifndef NM_ATTACH_NA
1703 /*
1704  * On old versions of FreeBSD, NA(ifp) is a pspare. On linux we
1705  * overload another pointer in the netdev.
1706  *
1707  * We check if NA(ifp) is set and its first element has a related
1708  * magic value. The capenable is within the struct netmap_adapter.
1709  */
1710 #define	NETMAP_MAGIC	0x52697a7a
1711 
1712 #define NM_NA_VALID(ifp)	(NA(ifp) &&		\
1713 	((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1714 
1715 #define	NM_ATTACH_NA(ifp, na) do {					\
1716 	if_setnetmapadapter(ifp, na);					\
1717 	if (NA(ifp))							\
1718 		NA(ifp)->magic = 					\
1719 			((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC;	\
1720 } while(0)
1721 #define NM_RESTORE_NA(ifp, na) 	if_setnetmapadapter(ifp, na);
1722 
1723 #define NM_DETACH_NA(ifp)	do { if_setnetmapadapter(ifp, NULL); } while (0)
1724 #define NM_NA_CLASH(ifp)	(NA(ifp) && !NM_NA_VALID(ifp))
1725 #endif /* !NM_ATTACH_NA */
1726 
1727 
1728 #define NM_IS_NATIVE(ifp)	(NM_NA_VALID(ifp) && NA(ifp)->nm_dtor == netmap_hw_dtor)
1729 
1730 #if defined(__FreeBSD__)
1731 extern int netmap_port_numa_affinity;
1732 
1733 static inline int
nm_iommu_group_id(struct netmap_adapter * na)1734 nm_iommu_group_id(struct netmap_adapter *na)
1735 {
1736 	return (-1);
1737 }
1738 
1739 static inline int
nm_numa_domain(struct netmap_adapter * na)1740 nm_numa_domain(struct netmap_adapter *na)
1741 {
1742 	int domain;
1743 
1744 	/*
1745 	 * If the system has only one NUMA domain, don't bother distinguishing
1746 	 * between IF_NODOM and domain 0.
1747 	 */
1748 	if (vm_ndomains == 1 || netmap_port_numa_affinity == 0)
1749 		return (-1);
1750 	domain = if_getnumadomain(na->ifp);
1751 	if (domain == IF_NODOM)
1752 		domain = -1;
1753 	return (domain);
1754 }
1755 
1756 /* Callback invoked by the dma machinery after a successful dmamap_load */
netmap_dmamap_cb(__unused void * arg,__unused bus_dma_segment_t * segs,__unused int nseg,__unused int error)1757 static void netmap_dmamap_cb(__unused void *arg,
1758     __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1759 {
1760 }
1761 
1762 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1763  * XXX can we do it without a callback ?
1764  */
1765 static inline int
netmap_load_map(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map,void * buf)1766 netmap_load_map(struct netmap_adapter *na,
1767 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1768 {
1769 	if (map)
1770 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1771 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1772 	return 0;
1773 }
1774 
1775 static inline void
netmap_unload_map(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map)1776 netmap_unload_map(struct netmap_adapter *na,
1777         bus_dma_tag_t tag, bus_dmamap_t map)
1778 {
1779 	if (map)
1780 		bus_dmamap_unload(tag, map);
1781 }
1782 
1783 #define netmap_sync_map(na, tag, map, sz, t)
1784 
1785 /* update the map when a buffer changes. */
1786 static inline void
netmap_reload_map(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map,void * buf)1787 netmap_reload_map(struct netmap_adapter *na,
1788 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1789 {
1790 	if (map) {
1791 		bus_dmamap_unload(tag, map);
1792 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1793 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1794 	}
1795 }
1796 
1797 #elif defined(_WIN32)
1798 
1799 #else /* linux */
1800 
1801 int nm_iommu_group_id(bus_dma_tag_t dev);
1802 #include <linux/dma-mapping.h>
1803 
1804 /*
1805  * on linux we need
1806  *	dma_map_single(&pdev->dev, virt_addr, len, direction)
1807  *	dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction)
1808  */
1809 #if 0
1810 	struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1811 	/* set time_stamp *before* dma to help avoid a possible race */
1812 	buffer_info->time_stamp = jiffies;
1813 	buffer_info->mapped_as_page = false;
1814 	buffer_info->length = len;
1815 	//buffer_info->next_to_watch = l;
1816 	/* reload dma map */
1817 	dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1818 			NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1819 	buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1820 			addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1821 
1822 	if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1823 		nm_prerr("dma mapping error");
1824 		/* goto dma_error; See e1000_put_txbuf() */
1825 		/* XXX reset */
1826 	}
1827 	tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1828 
1829 #endif
1830 
1831 static inline int
netmap_load_map(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map,void * buf,u_int size)1832 netmap_load_map(struct netmap_adapter *na,
1833 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf, u_int size)
1834 {
1835 	if (map) {
1836 		*map = dma_map_single(na->pdev, buf, size,
1837 				      DMA_BIDIRECTIONAL);
1838 		if (dma_mapping_error(na->pdev, *map)) {
1839 			*map = 0;
1840 			return ENOMEM;
1841 		}
1842 	}
1843 	return 0;
1844 }
1845 
1846 static inline void
netmap_unload_map(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map,u_int sz)1847 netmap_unload_map(struct netmap_adapter *na,
1848 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz)
1849 {
1850 	if (*map) {
1851 		dma_unmap_single(na->pdev, *map, sz,
1852 				 DMA_BIDIRECTIONAL);
1853 	}
1854 }
1855 
1856 #ifdef NETMAP_LINUX_HAVE_DMASYNC
1857 static inline void
netmap_sync_map_cpu(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map,u_int sz,enum txrx t)1858 netmap_sync_map_cpu(struct netmap_adapter *na,
1859 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1860 {
1861 	if (*map) {
1862 		dma_sync_single_for_cpu(na->pdev, *map, sz,
1863 			(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1864 	}
1865 }
1866 
1867 static inline void
netmap_sync_map_dev(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map,u_int sz,enum txrx t)1868 netmap_sync_map_dev(struct netmap_adapter *na,
1869 	bus_dma_tag_t tag, bus_dmamap_t map, u_int sz, enum txrx t)
1870 {
1871 	if (*map) {
1872 		dma_sync_single_for_device(na->pdev, *map, sz,
1873 			(t == NR_TX ? DMA_TO_DEVICE : DMA_FROM_DEVICE));
1874 	}
1875 }
1876 
1877 static inline void
netmap_reload_map(struct netmap_adapter * na,bus_dma_tag_t tag,bus_dmamap_t map,void * buf)1878 netmap_reload_map(struct netmap_adapter *na,
1879 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1880 {
1881 	u_int sz = NETMAP_BUF_SIZE(na);
1882 
1883 	if (*map) {
1884 		dma_unmap_single(na->pdev, *map, sz,
1885 				DMA_BIDIRECTIONAL);
1886 	}
1887 
1888 	*map = dma_map_single(na->pdev, buf, sz,
1889 				DMA_BIDIRECTIONAL);
1890 }
1891 #else /* !NETMAP_LINUX_HAVE_DMASYNC */
1892 #define netmap_sync_map_cpu(na, tag, map, sz, t)
1893 #define netmap_sync_map_dev(na, tag, map, sz, t)
1894 #endif /* NETMAP_LINUX_HAVE_DMASYNC */
1895 
1896 #endif /* linux */
1897 
1898 
1899 /*
1900  * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1901  */
1902 static inline int
netmap_idx_n2k(struct netmap_kring * kr,int idx)1903 netmap_idx_n2k(struct netmap_kring *kr, int idx)
1904 {
1905 	int n = kr->nkr_num_slots;
1906 
1907 	if (likely(kr->nkr_hwofs == 0)) {
1908 		return idx;
1909 	}
1910 
1911 	idx += kr->nkr_hwofs;
1912 	if (idx < 0)
1913 		return idx + n;
1914 	else if (idx < n)
1915 		return idx;
1916 	else
1917 		return idx - n;
1918 }
1919 
1920 
1921 static inline int
netmap_idx_k2n(struct netmap_kring * kr,int idx)1922 netmap_idx_k2n(struct netmap_kring *kr, int idx)
1923 {
1924 	int n = kr->nkr_num_slots;
1925 
1926 	if (likely(kr->nkr_hwofs == 0)) {
1927 		return idx;
1928 	}
1929 
1930 	idx -= kr->nkr_hwofs;
1931 	if (idx < 0)
1932 		return idx + n;
1933 	else if (idx < n)
1934 		return idx;
1935 	else
1936 		return idx - n;
1937 }
1938 
1939 
1940 /* Entries of the look-up table. */
1941 #ifdef __FreeBSD__
1942 struct lut_entry {
1943 	void *vaddr;		/* virtual address. */
1944 	vm_paddr_t paddr;	/* physical address. */
1945 };
1946 #else /* linux & _WIN32 */
1947 /* dma-mapping in linux can assign a buffer a different address
1948  * depending on the device, so we need to have a separate
1949  * physical-address look-up table for each na.
1950  * We can still share the vaddrs, though, therefore we split
1951  * the lut_entry structure.
1952  */
1953 struct lut_entry {
1954 	void *vaddr;		/* virtual address. */
1955 };
1956 
1957 struct plut_entry {
1958 	vm_paddr_t paddr;	/* physical address. */
1959 };
1960 #endif /* linux & _WIN32 */
1961 
1962 struct netmap_obj_pool;
1963 
1964 /* alignment for netmap buffers */
1965 #define NM_BUF_ALIGN	64
1966 
1967 /*
1968  * NMB return the virtual address of a buffer (buffer 0 on bad index)
1969  * PNMB also fills the physical address
1970  */
1971 static inline void *
NMB(struct netmap_adapter * na,struct netmap_slot * slot)1972 NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1973 {
1974 	struct lut_entry *lut = na->na_lut.lut;
1975 	uint32_t i = slot->buf_idx;
1976 	return (unlikely(i >= na->na_lut.objtotal)) ?
1977 		lut[0].vaddr : lut[i].vaddr;
1978 }
1979 
1980 static inline void *
PNMB(struct netmap_adapter * na,struct netmap_slot * slot,uint64_t * pp)1981 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1982 {
1983 	uint32_t i = slot->buf_idx;
1984 	struct lut_entry *lut = na->na_lut.lut;
1985 	struct plut_entry *plut = na->na_lut.plut;
1986 	void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1987 
1988 #ifdef _WIN32
1989 	*pp = (i >= na->na_lut.objtotal) ? (uint64_t)plut[0].paddr.QuadPart : (uint64_t)plut[i].paddr.QuadPart;
1990 #else
1991 	*pp = (i >= na->na_lut.objtotal) ? plut[0].paddr : plut[i].paddr;
1992 #endif
1993 	return ret;
1994 }
1995 
1996 static inline void
nm_write_offset(struct netmap_kring * kring,struct netmap_slot * slot,uint64_t offset)1997 nm_write_offset(struct netmap_kring *kring,
1998 		struct netmap_slot *slot, uint64_t offset)
1999 {
2000 	slot->ptr = (slot->ptr & ~kring->offset_mask) |
2001 		(offset & kring->offset_mask);
2002 }
2003 
2004 static inline uint64_t
nm_get_offset(struct netmap_kring * kring,struct netmap_slot * slot)2005 nm_get_offset(struct netmap_kring *kring, struct netmap_slot *slot)
2006 {
2007 	uint64_t offset = (slot->ptr & kring->offset_mask);
2008 	if (unlikely(offset > kring->offset_max))
2009 		offset = kring->offset_max;
2010 	return offset;
2011 }
2012 
2013 static inline void *
NMB_O(struct netmap_kring * kring,struct netmap_slot * slot)2014 NMB_O(struct netmap_kring *kring, struct netmap_slot *slot)
2015 {
2016 	void *addr = NMB(kring->na, slot);
2017 	return (char *)addr + nm_get_offset(kring, slot);
2018 }
2019 
2020 static inline void *
PNMB_O(struct netmap_kring * kring,struct netmap_slot * slot,uint64_t * pp)2021 PNMB_O(struct netmap_kring *kring, struct netmap_slot *slot, uint64_t *pp)
2022 {
2023 	void *addr = PNMB(kring->na, slot, pp);
2024 	uint64_t offset = nm_get_offset(kring, slot);
2025 	addr = (char *)addr + offset;
2026 	*pp += offset;
2027 	return addr;
2028 }
2029 
2030 
2031 /*
2032  * Structure associated to each netmap file descriptor.
2033  * It is created on open and left unbound (np_nifp == NULL).
2034  * A successful NIOCREGIF will set np_nifp and the first few fields;
2035  * this is protected by a global lock (NMG_LOCK) due to low contention.
2036  *
2037  * np_refs counts the number of references to the structure: one for the fd,
2038  * plus (on FreeBSD) one for each active mmap which we track ourselves
2039  * (linux automatically tracks them, but FreeBSD does not).
2040  * np_refs is protected by NMG_LOCK.
2041  *
2042  * Read access to the structure is lock free, because ni_nifp once set
2043  * can only go to 0 when nobody is using the entry anymore. Readers
2044  * must check that np_nifp != NULL before using the other fields.
2045  */
2046 struct netmap_priv_d {
2047 	struct netmap_if * volatile np_nifp;	/* netmap if descriptor. */
2048 
2049 	struct netmap_adapter	*np_na;
2050 	if_t		np_ifp;
2051 	uint32_t	np_flags;	/* from the ioctl */
2052 	u_int		np_qfirst[NR_TXRX],
2053 			np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
2054 	uint16_t	np_txpoll;
2055 	uint16_t        np_kloop_state;	/* use with NMG_LOCK held */
2056 #define NM_SYNC_KLOOP_RUNNING	(1 << 0)
2057 #define NM_SYNC_KLOOP_STOPPING	(1 << 1)
2058 	int             np_sync_flags; /* to be passed to nm_sync */
2059 
2060 	int		np_refs;	/* use with NMG_LOCK held */
2061 
2062 	/* pointers to the selinfo to be used for selrecord.
2063 	 * Either the local or the global one depending on the
2064 	 * number of rings.
2065 	 */
2066 	NM_SELINFO_T *np_si[NR_TXRX];
2067 
2068 	/* In the optional CSB mode, the user must specify the start address
2069 	 * of two arrays of Communication Status Block (CSB) entries, for the
2070 	 * two directions (kernel read application write, and kernel write
2071 	 * application read).
2072 	 * The number of entries must agree with the number of rings bound to
2073 	 * the netmap file descriptor. The entries corresponding to the TX
2074 	 * rings are laid out before the ones corresponding to the RX rings.
2075 	 *
2076 	 * Array of CSB entries for application --> kernel communication
2077 	 * (N entries). */
2078 	struct nm_csb_atok	*np_csb_atok_base;
2079 	/* Array of CSB entries for kernel --> application communication
2080 	 * (N entries). */
2081 	struct nm_csb_ktoa	*np_csb_ktoa_base;
2082 
2083 #ifdef linux
2084 	struct file	*np_filp;  /* used by sync kloop */
2085 #endif /* linux */
2086 };
2087 
2088 struct netmap_priv_d *netmap_priv_new(void);
2089 void netmap_priv_delete(struct netmap_priv_d *);
2090 
nm_kring_pending(struct netmap_priv_d * np)2091 static inline int nm_kring_pending(struct netmap_priv_d *np)
2092 {
2093 	struct netmap_adapter *na = np->np_na;
2094 	enum txrx t;
2095 	int i;
2096 
2097 	for_rx_tx(t) {
2098 		for (i = np->np_qfirst[t]; i < np->np_qlast[t]; i++) {
2099 			struct netmap_kring *kring = NMR(na, t)[i];
2100 			if (kring->nr_mode != kring->nr_pending_mode) {
2101 				return 1;
2102 			}
2103 		}
2104 	}
2105 	return 0;
2106 }
2107 
2108 /* call with NMG_LOCK held */
2109 static __inline int
nm_si_user(struct netmap_priv_d * priv,enum txrx t)2110 nm_si_user(struct netmap_priv_d *priv, enum txrx t)
2111 {
2112 	return (priv->np_na != NULL &&
2113 		(priv->np_qlast[t] - priv->np_qfirst[t] > 1));
2114 }
2115 
2116 #ifdef WITH_PIPES
2117 int netmap_pipe_txsync(struct netmap_kring *txkring, int flags);
2118 int netmap_pipe_rxsync(struct netmap_kring *rxkring, int flags);
2119 int netmap_pipe_krings_create_both(struct netmap_adapter *na,
2120 				  struct netmap_adapter *ona);
2121 void netmap_pipe_krings_delete_both(struct netmap_adapter *na,
2122 				    struct netmap_adapter *ona);
2123 int netmap_pipe_reg_both(struct netmap_adapter *na,
2124 			 struct netmap_adapter *ona);
2125 #endif /* WITH_PIPES */
2126 
2127 #ifdef WITH_MONITOR
2128 
2129 struct netmap_monitor_adapter {
2130 	struct netmap_adapter up;
2131 
2132 	struct netmap_priv_d priv;
2133 	uint32_t flags;
2134 };
2135 
2136 #endif /* WITH_MONITOR */
2137 
2138 
2139 #ifdef WITH_GENERIC
2140 /*
2141  * generic netmap emulation for devices that do not have
2142  * native netmap support.
2143  */
2144 int generic_netmap_attach(if_t ifp);
2145 int generic_rx_handler(if_t ifp, struct mbuf *m);
2146 
2147 int nm_os_catch_rx(struct netmap_generic_adapter *gna, int intercept);
2148 int nm_os_catch_tx(struct netmap_generic_adapter *gna, int intercept);
2149 
2150 int na_is_generic(struct netmap_adapter *na);
2151 
2152 /*
2153  * the generic transmit routine is passed a structure to optionally
2154  * build a queue of descriptors, in an OS-specific way.
2155  * The payload is at addr, if non-null, and the routine should send or queue
2156  * the packet, returning 0 if successful, 1 on failure.
2157  *
2158  * At the end, if head is non-null, there will be an additional call
2159  * to the function with addr = NULL; this should tell the OS-specific
2160  * routine to send the queue and free any resources. Failure is ignored.
2161  */
2162 struct nm_os_gen_arg {
2163 	if_t ifp;
2164 	void *m;	/* os-specific mbuf-like object */
2165 	void *head, *tail; /* tailq, if the OS-specific routine needs to build one */
2166 	void *addr;	/* payload of current packet */
2167 	u_int len;	/* packet length */
2168 	u_int ring_nr;	/* transmit ring index */
2169 	u_int qevent;   /* in txqdisc mode, place an event on this mbuf */
2170 };
2171 
2172 int nm_os_generic_xmit_frame(struct nm_os_gen_arg *);
2173 int nm_os_generic_find_num_desc(if_t ifp, u_int *tx, u_int *rx);
2174 void nm_os_generic_find_num_queues(if_t ifp, u_int *txq, u_int *rxq);
2175 void nm_os_generic_set_features(struct netmap_generic_adapter *gna);
2176 
2177 static inline if_t
netmap_generic_getifp(struct netmap_generic_adapter * gna)2178 netmap_generic_getifp(struct netmap_generic_adapter *gna)
2179 {
2180         if (gna->prev)
2181             return gna->prev->ifp;
2182 
2183         return gna->up.up.ifp;
2184 }
2185 
2186 void netmap_generic_irq(struct netmap_adapter *na, u_int q, u_int *work_done);
2187 
2188 //#define RATE_GENERIC  /* Enables communication statistics for generic. */
2189 #ifdef RATE_GENERIC
2190 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
2191 #else
2192 #define generic_rate(txp, txs, txi, rxp, rxs, rxi)
2193 #endif
2194 
2195 /*
2196  * netmap_mitigation API. This is used by the generic adapter
2197  * to reduce the number of interrupt requests/selwakeup
2198  * to clients on incoming packets.
2199  */
2200 void nm_os_mitigation_init(struct nm_generic_mit *mit, int idx,
2201                                 struct netmap_adapter *na);
2202 void nm_os_mitigation_start(struct nm_generic_mit *mit);
2203 void nm_os_mitigation_restart(struct nm_generic_mit *mit);
2204 int nm_os_mitigation_active(struct nm_generic_mit *mit);
2205 void nm_os_mitigation_cleanup(struct nm_generic_mit *mit);
2206 #else /* !WITH_GENERIC */
2207 #define generic_netmap_attach(ifp)	(EOPNOTSUPP)
2208 #define na_is_generic(na)		(0)
2209 #endif /* WITH_GENERIC */
2210 
2211 /* Shared declarations for the VALE switch. */
2212 
2213 /*
2214  * Each transmit queue accumulates a batch of packets into
2215  * a structure before forwarding. Packets to the same
2216  * destination are put in a list using ft_next as a link field.
2217  * ft_frags and ft_next are valid only on the first fragment.
2218  */
2219 struct nm_bdg_fwd {	/* forwarding entry for a bridge */
2220 	void *ft_buf;		/* netmap or indirect buffer */
2221 	uint8_t ft_frags;	/* how many fragments (only on 1st frag) */
2222 	uint16_t ft_offset;	/* dst port (unused) */
2223 	uint16_t ft_flags;	/* flags, e.g. indirect */
2224 	uint16_t ft_len;	/* src fragment len */
2225 	uint16_t ft_next;	/* next packet to same destination */
2226 };
2227 
2228 /* struct 'virtio_net_hdr' from linux. */
2229 struct nm_vnet_hdr {
2230 #define VIRTIO_NET_HDR_F_NEEDS_CSUM     1	/* Use csum_start, csum_offset */
2231 #define VIRTIO_NET_HDR_F_DATA_VALID    2	/* Csum is valid */
2232     uint8_t flags;
2233 #define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
2234 #define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
2235 #define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
2236 #define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
2237 #define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
2238     uint8_t gso_type;
2239     uint16_t hdr_len;
2240     uint16_t gso_size;
2241     uint16_t csum_start;
2242     uint16_t csum_offset;
2243 };
2244 
2245 #define WORST_CASE_GSO_HEADER	(14+40+60)  /* IPv6 + TCP */
2246 
2247 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */
2248 
2249 struct nm_iphdr {
2250 	uint8_t		version_ihl;
2251 	uint8_t		tos;
2252 	uint16_t	tot_len;
2253 	uint16_t	id;
2254 	uint16_t	frag_off;
2255 	uint8_t		ttl;
2256 	uint8_t		protocol;
2257 	uint16_t	check;
2258 	uint32_t	saddr;
2259 	uint32_t	daddr;
2260 	/*The options start here. */
2261 };
2262 
2263 struct nm_tcphdr {
2264 	uint16_t	source;
2265 	uint16_t	dest;
2266 	uint32_t	seq;
2267 	uint32_t	ack_seq;
2268 	uint8_t		doff;  /* Data offset + Reserved */
2269 	uint8_t		flags;
2270 	uint16_t	window;
2271 	uint16_t	check;
2272 	uint16_t	urg_ptr;
2273 };
2274 
2275 struct nm_udphdr {
2276 	uint16_t	source;
2277 	uint16_t	dest;
2278 	uint16_t	len;
2279 	uint16_t	check;
2280 };
2281 
2282 struct nm_ipv6hdr {
2283 	uint8_t		priority_version;
2284 	uint8_t		flow_lbl[3];
2285 
2286 	uint16_t	payload_len;
2287 	uint8_t		nexthdr;
2288 	uint8_t		hop_limit;
2289 
2290 	uint8_t		saddr[16];
2291 	uint8_t		daddr[16];
2292 };
2293 
2294 /* Type used to store a checksum (in host byte order) that hasn't been
2295  * folded yet.
2296  */
2297 #define rawsum_t uint32_t
2298 
2299 rawsum_t nm_os_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
2300 uint16_t nm_os_csum_ipv4(struct nm_iphdr *iph);
2301 void nm_os_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
2302 		      size_t datalen, uint16_t *check);
2303 void nm_os_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
2304 		      size_t datalen, uint16_t *check);
2305 uint16_t nm_os_csum_fold(rawsum_t cur_sum);
2306 
2307 void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
2308 			   struct netmap_vp_adapter *dst_na,
2309 			   const struct nm_bdg_fwd *ft_p,
2310 			   struct netmap_ring *dst_ring,
2311 			   u_int *j, u_int lim, u_int *howmany);
2312 
2313 /* persistent virtual port routines */
2314 int nm_os_vi_persist(const char *, if_t *);
2315 void nm_os_vi_detach(if_t);
2316 void nm_os_vi_init_index(void);
2317 
2318 /*
2319  * kernel thread routines
2320  */
2321 struct nm_kctx; /* OS-specific kernel context - opaque */
2322 typedef void (*nm_kctx_worker_fn_t)(void *data);
2323 
2324 /* kthread configuration */
2325 struct nm_kctx_cfg {
2326 	long			type;		/* kthread type/identifier */
2327 	nm_kctx_worker_fn_t	worker_fn;	/* worker function */
2328 	void			*worker_private;/* worker parameter */
2329 	int			attach_user;	/* attach kthread to user process */
2330 };
2331 /* kthread configuration */
2332 struct nm_kctx *nm_os_kctx_create(struct nm_kctx_cfg *cfg,
2333 					void *opaque);
2334 int nm_os_kctx_worker_start(struct nm_kctx *);
2335 void nm_os_kctx_worker_stop(struct nm_kctx *);
2336 void nm_os_kctx_destroy(struct nm_kctx *);
2337 void nm_os_kctx_worker_setaff(struct nm_kctx *, int);
2338 u_int nm_os_ncpus(void);
2339 
2340 int netmap_sync_kloop(struct netmap_priv_d *priv,
2341 		      struct nmreq_header *hdr);
2342 int netmap_sync_kloop_stop(struct netmap_priv_d *priv);
2343 
2344 #ifdef WITH_PTNETMAP
2345 /* ptnetmap guest routines */
2346 
2347 /*
2348  * ptnetmap_memdev routines used to talk with ptnetmap_memdev device driver
2349  */
2350 struct ptnetmap_memdev;
2351 int nm_os_pt_memdev_iomap(struct ptnetmap_memdev *, vm_paddr_t *, void **,
2352                           uint64_t *);
2353 void nm_os_pt_memdev_iounmap(struct ptnetmap_memdev *);
2354 uint32_t nm_os_pt_memdev_ioread(struct ptnetmap_memdev *, unsigned int);
2355 
2356 /*
2357  * netmap adapter for guest ptnetmap ports
2358  */
2359 struct netmap_pt_guest_adapter {
2360         /* The netmap adapter to be used by netmap applications.
2361 	 * This field must be the first, to allow upcast. */
2362 	struct netmap_hw_adapter hwup;
2363 
2364         /* The netmap adapter to be used by the driver. */
2365         struct netmap_hw_adapter dr;
2366 
2367 	/* Reference counter to track users of backend netmap port: the
2368 	 * network stack and netmap clients.
2369 	 * Used to decide when we need (de)allocate krings/rings and
2370 	 * start (stop) ptnetmap kthreads. */
2371 	int backend_users;
2372 
2373 };
2374 
2375 int netmap_pt_guest_attach(struct netmap_adapter *na,
2376 			unsigned int nifp_offset,
2377 			unsigned int memid);
2378 bool netmap_pt_guest_txsync(struct nm_csb_atok *atok,
2379 			struct nm_csb_ktoa *ktoa,
2380 			struct netmap_kring *kring, int flags);
2381 bool netmap_pt_guest_rxsync(struct nm_csb_atok *atok,
2382 			struct nm_csb_ktoa *ktoa,
2383 			struct netmap_kring *kring, int flags);
2384 int ptnet_nm_krings_create(struct netmap_adapter *na);
2385 void ptnet_nm_krings_delete(struct netmap_adapter *na);
2386 void ptnet_nm_dtor(struct netmap_adapter *na);
2387 
2388 /* Helper function wrapping nm_sync_kloop_appl_read(). */
2389 static inline void
ptnet_sync_tail(struct nm_csb_ktoa * ktoa,struct netmap_kring * kring)2390 ptnet_sync_tail(struct nm_csb_ktoa *ktoa, struct netmap_kring *kring)
2391 {
2392 	struct netmap_ring *ring = kring->ring;
2393 
2394 	/* Update hwcur and hwtail as known by the host. */
2395         nm_sync_kloop_appl_read(ktoa, &kring->nr_hwtail, &kring->nr_hwcur);
2396 
2397 	/* nm_sync_finalize */
2398 	ring->tail = kring->rtail = kring->nr_hwtail;
2399 }
2400 #endif /* WITH_PTNETMAP */
2401 
2402 #ifdef __FreeBSD__
2403 /*
2404  * FreeBSD mbuf allocator/deallocator in emulation mode:
2405  *
2406  * We allocate mbufs with m_gethdr(), since the mbuf header is needed
2407  * by the driver. We also attach a customly-provided external storage,
2408  * which in this case is a netmap buffer.
2409  *
2410  * The dtor function does nothing, however we need it since mb_free_ext()
2411  * has a KASSERT(), checking that the mbuf dtor function is not NULL.
2412  */
2413 
2414 static inline void
nm_generic_mbuf_dtor(struct mbuf * m)2415 nm_generic_mbuf_dtor(struct mbuf *m)
2416 {
2417 	uma_zfree(zone_clust, m->m_ext.ext_buf);
2418 }
2419 
2420 #define SET_MBUF_DESTRUCTOR(m, fn, na)	do {		\
2421 	(m)->m_ext.ext_free = (fn != NULL) ?		\
2422 	    (void *)fn : (void *)nm_generic_mbuf_dtor;	\
2423 	(m)->m_ext.ext_arg1 = na;			\
2424 } while (0)
2425 
2426 static inline struct mbuf *
nm_os_get_mbuf(if_t ifp __unused,int len)2427 nm_os_get_mbuf(if_t ifp __unused, int len)
2428 {
2429 	struct mbuf *m;
2430 	void *buf;
2431 
2432 	KASSERT(len <= MCLBYTES, ("%s: len %d", __func__, len));
2433 
2434 	m = m_gethdr(M_NOWAIT, MT_DATA);
2435 	if (__predict_false(m == NULL))
2436 		return (NULL);
2437 	buf = uma_zalloc(zone_clust, M_NOWAIT);
2438 	if (__predict_false(buf == NULL)) {
2439 		m_free(m);
2440 		return (NULL);
2441 	}
2442 	m_extadd(m, buf, MCLBYTES, nm_generic_mbuf_dtor, NULL, NULL, 0,
2443 	    EXT_NET_DRV);
2444 	return (m);
2445 }
2446 
2447 static inline void
nm_os_mbuf_reinit(struct mbuf * m)2448 nm_os_mbuf_reinit(struct mbuf *m)
2449 {
2450 	void *buf;
2451 
2452 	KASSERT((m->m_flags & M_EXT) != 0,
2453 	    ("%s: mbuf %p has no external storage", __func__, m));
2454 	KASSERT(m->m_ext.ext_size == MCLBYTES,
2455 	    ("%s: mbuf %p has wrong external storage size %u", __func__, m,
2456 	    m->m_ext.ext_size));
2457 
2458 	buf = m->m_ext.ext_buf;
2459 	m_init(m, M_NOWAIT, MT_DATA, M_PKTHDR);
2460 	m_extadd(m, buf, MCLBYTES, nm_generic_mbuf_dtor, NULL, NULL, 0,
2461 	    EXT_NET_DRV);
2462 }
2463 
2464 #endif /* __FreeBSD__ */
2465 
2466 struct nmreq_option * nmreq_getoption(struct nmreq_header *, uint16_t);
2467 
2468 int netmap_init_bridges(void);
2469 void netmap_uninit_bridges(void);
2470 
2471 /* Functions to read and write CSB fields from the kernel. */
2472 #if defined (linux)
2473 #define CSB_READ(csb, field, r) (get_user(r, &csb->field))
2474 #define CSB_WRITE(csb, field, v) (put_user(v, &csb->field))
2475 #else  /* ! linux */
2476 #define CSB_READ(csb, field, r) do {				\
2477 	int32_t v __diagused;					\
2478 								\
2479 	v = fuword32(&csb->field);				\
2480 	KASSERT(v != -1, ("%s: fuword32 failed", __func__));	\
2481 	r = v;							\
2482 } while (0)
2483 #define CSB_WRITE(csb, field, v) do {				\
2484 	int error __diagused;					\
2485 								\
2486 	error = suword32(&csb->field, v);			\
2487 	KASSERT(error == 0, ("%s: suword32 failed", __func__));	\
2488 } while (0)
2489 #endif /* ! linux */
2490 
2491 /* some macros that may not be defined */
2492 #ifndef ETH_HLEN
2493 #define ETH_HLEN 6
2494 #endif
2495 #ifndef ETH_FCS_LEN
2496 #define ETH_FCS_LEN 4
2497 #endif
2498 #ifndef VLAN_HLEN
2499 #define VLAN_HLEN 4
2500 #endif
2501 
2502 #endif /* _NET_NETMAP_KERN_H_ */
2503