1 /*
2 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
3 * Authors: Doug Rabson <dfr@rabson.org>
4 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 /*
29 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
30 * Copyright (c) 2012 by Delphix. All rights reserved.
31 */
32
33 /*
34 * NFS LockManager, start/stop, support functions, etc.
35 * Most of the interesting code is here.
36 *
37 * Source code derived from FreeBSD nlm_prot_impl.c
38 */
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/thread.h>
43 #include <sys/fcntl.h>
44 #include <sys/flock.h>
45 #include <sys/mount.h>
46 #include <sys/priv.h>
47 #include <sys/proc.h>
48 #include <sys/share.h>
49 #include <sys/socket.h>
50 #include <sys/syscall.h>
51 #include <sys/syslog.h>
52 #include <sys/systm.h>
53 #include <sys/class.h>
54 #include <sys/unistd.h>
55 #include <sys/vnode.h>
56 #include <sys/vfs.h>
57 #include <sys/queue.h>
58 #include <sys/bitmap.h>
59 #include <sys/sdt.h>
60 #include <netinet/in.h>
61
62 #include <rpc/rpc.h>
63 #include <rpc/xdr.h>
64 #include <rpc/pmap_prot.h>
65 #include <rpc/pmap_clnt.h>
66 #include <rpc/rpcb_prot.h>
67
68 #include <rpcsvc/nlm_prot.h>
69 #include <rpcsvc/sm_inter.h>
70 #include <rpcsvc/nsm_addr.h>
71
72 #include <nfs/nfs.h>
73 #include <nfs/nfs_clnt.h>
74 #include <nfs/export.h>
75 #include <nfs/rnode.h>
76 #include <nfs/lm.h>
77
78 #include "nlm_impl.h"
79
80 struct nlm_knc {
81 struct knetconfig n_knc;
82 const char *n_netid;
83 };
84
85 /*
86 * Number of attempts NLM tries to obtain RPC binding
87 * of local statd.
88 */
89 #define NLM_NSM_RPCBIND_RETRIES 10
90
91 /*
92 * Timeout (in seconds) NLM waits before making another
93 * attempt to obtain RPC binding of local statd.
94 */
95 #define NLM_NSM_RPCBIND_TIMEOUT 5
96
97 /*
98 * Total number of sysids in NLM sysid bitmap
99 */
100 #define NLM_BMAP_NITEMS (LM_SYSID_MAX + 1)
101
102 /*
103 * Number of ulong_t words in bitmap that is used
104 * for allocation of sysid numbers.
105 */
106 #define NLM_BMAP_WORDS (NLM_BMAP_NITEMS / BT_NBIPUL)
107
108 /*
109 * Given an integer x, the macro returns
110 * -1 if x is negative,
111 * 0 if x is zero
112 * 1 if x is positive
113 */
114 #define SIGN(x) (((x) > 0) - ((x) < 0))
115
116 #define ARRSIZE(arr) (sizeof (arr) / sizeof ((arr)[0]))
117 #define NLM_KNCS ARRSIZE(nlm_netconfigs)
118
119 krwlock_t lm_lck;
120
121 /*
122 * Zero timeout for asynchronous NLM RPC operations
123 */
124 static const struct timeval nlm_rpctv_zero = { 0, 0 };
125
126 /*
127 * List of all Zone globals nlm_globals instences
128 * linked together.
129 */
130 static struct nlm_globals_list nlm_zones_list; /* (g) */
131
132 /*
133 * NLM kmem caches
134 */
135 static struct kmem_cache *nlm_hosts_cache = NULL;
136 static struct kmem_cache *nlm_vhold_cache = NULL;
137
138 /*
139 * A bitmap for allocation of new sysids.
140 * Sysid is a unique number between LM_SYSID
141 * and LM_SYSID_MAX. Sysid represents unique remote
142 * host that does file locks on the given host.
143 */
144 static ulong_t nlm_sysid_bmap[NLM_BMAP_WORDS]; /* (g) */
145 static int nlm_sysid_nidx; /* (g) */
146
147 /*
148 * RPC service registration for all transports
149 */
150 static SVC_CALLOUT nlm_svcs[] = {
151 { NLM_PROG, 4, 4, nlm_prog_4 }, /* NLM4_VERS */
152 { NLM_PROG, 1, 3, nlm_prog_3 } /* NLM_VERS - NLM_VERSX */
153 };
154
155 static SVC_CALLOUT_TABLE nlm_sct = {
156 ARRSIZE(nlm_svcs),
157 FALSE,
158 nlm_svcs
159 };
160
161 /*
162 * Static table of all netid/knetconfig network
163 * lock manager can work with. nlm_netconfigs table
164 * is used when we need to get valid knetconfig by
165 * netid and vice versa.
166 *
167 * Knetconfigs are activated either by the call from
168 * user-space lockd daemon (server side) or by taking
169 * knetconfig from NFS mountinfo (client side)
170 */
171 static struct nlm_knc nlm_netconfigs[] = { /* (g) */
172 /* UDP */
173 {
174 { NC_TPI_CLTS, NC_INET, NC_UDP, NODEV },
175 "udp",
176 },
177 /* TCP */
178 {
179 { NC_TPI_COTS_ORD, NC_INET, NC_TCP, NODEV },
180 "tcp",
181 },
182 /* UDP over IPv6 */
183 {
184 { NC_TPI_CLTS, NC_INET6, NC_UDP, NODEV },
185 "udp6",
186 },
187 /* TCP over IPv6 */
188 {
189 { NC_TPI_COTS_ORD, NC_INET6, NC_TCP, NODEV },
190 "tcp6",
191 },
192 /* ticlts (loopback over UDP) */
193 {
194 { NC_TPI_CLTS, NC_LOOPBACK, NC_NOPROTO, NODEV },
195 "ticlts",
196 },
197 /* ticotsord (loopback over TCP) */
198 {
199 { NC_TPI_COTS_ORD, NC_LOOPBACK, NC_NOPROTO, NODEV },
200 "ticotsord",
201 },
202 };
203
204 /*
205 * NLM misc. function
206 */
207 static void nlm_copy_netbuf(struct netbuf *, struct netbuf *);
208 static int nlm_netbuf_addrs_cmp(struct netbuf *, struct netbuf *);
209 static void nlm_kmem_reclaim(void *);
210 static void nlm_pool_shutdown(void);
211 static void nlm_suspend_zone(struct nlm_globals *);
212 static void nlm_resume_zone(struct nlm_globals *);
213 static void nlm_nsm_clnt_init(CLIENT *, struct nlm_nsm *);
214 static void nlm_netbuf_to_netobj(struct netbuf *, int *, netobj *);
215
216 /*
217 * NLM thread functions
218 */
219 static void nlm_gc(struct nlm_globals *);
220 static void nlm_reclaimer(struct nlm_host *);
221
222 /*
223 * NLM NSM functions
224 */
225 static int nlm_init_local_knc(struct knetconfig *);
226 static int nlm_nsm_init_local(struct nlm_nsm *);
227 static int nlm_nsm_init(struct nlm_nsm *, struct knetconfig *, struct netbuf *);
228 static void nlm_nsm_fini(struct nlm_nsm *);
229 static enum clnt_stat nlm_nsm_simu_crash(struct nlm_nsm *);
230 static enum clnt_stat nlm_nsm_stat(struct nlm_nsm *, int32_t *);
231 static enum clnt_stat nlm_nsm_mon(struct nlm_nsm *, char *, uint16_t);
232 static enum clnt_stat nlm_nsm_unmon(struct nlm_nsm *, char *);
233
234 /*
235 * NLM host functions
236 */
237 static int nlm_host_ctor(void *, void *, int);
238 static void nlm_host_dtor(void *, void *);
239 static void nlm_host_destroy(struct nlm_host *);
240 static struct nlm_host *nlm_host_create(char *, const char *,
241 struct knetconfig *, struct netbuf *);
242 static struct nlm_host *nlm_host_find_locked(struct nlm_globals *,
243 const char *, struct netbuf *, avl_index_t *);
244 static void nlm_host_unregister(struct nlm_globals *, struct nlm_host *);
245 static void nlm_host_gc_vholds(struct nlm_host *);
246 static bool_t nlm_host_has_srv_locks(struct nlm_host *);
247 static bool_t nlm_host_has_cli_locks(struct nlm_host *);
248 static bool_t nlm_host_has_locks(struct nlm_host *);
249
250 /*
251 * NLM vhold functions
252 */
253 static int nlm_vhold_ctor(void *, void *, int);
254 static void nlm_vhold_dtor(void *, void *);
255 static void nlm_vhold_destroy(struct nlm_host *,
256 struct nlm_vhold *);
257 static bool_t nlm_vhold_busy(struct nlm_host *, struct nlm_vhold *);
258 static void nlm_vhold_clean(struct nlm_vhold *, int);
259
260 /*
261 * NLM client/server sleeping locks/share reservation functions
262 */
263 struct nlm_slreq *nlm_slreq_find_locked(struct nlm_host *,
264 struct nlm_vhold *, struct flock64 *);
265 static struct nlm_shres *nlm_shres_create_item(struct shrlock *, vnode_t *);
266 static void nlm_shres_destroy_item(struct nlm_shres *);
267 static bool_t nlm_shres_equal(struct shrlock *, struct shrlock *);
268
269 /*
270 * NLM initialization functions.
271 */
272 void
nlm_init(void)273 nlm_init(void)
274 {
275 nlm_hosts_cache = kmem_cache_create("nlm_host_cache",
276 sizeof (struct nlm_host), 0, nlm_host_ctor, nlm_host_dtor,
277 nlm_kmem_reclaim, NULL, NULL, 0);
278
279 nlm_vhold_cache = kmem_cache_create("nlm_vhold_cache",
280 sizeof (struct nlm_vhold), 0, nlm_vhold_ctor, nlm_vhold_dtor,
281 NULL, NULL, NULL, 0);
282
283 nlm_rpc_init();
284 TAILQ_INIT(&nlm_zones_list);
285
286 /* initialize sysids bitmap */
287 bzero(nlm_sysid_bmap, sizeof (nlm_sysid_bmap));
288 nlm_sysid_nidx = 1;
289
290 /*
291 * Reserv the sysid #0, because it's associated
292 * with local locks only. Don't let to allocate
293 * it for remote locks.
294 */
295 BT_SET(nlm_sysid_bmap, 0);
296 }
297
298 void
nlm_globals_register(struct nlm_globals * g)299 nlm_globals_register(struct nlm_globals *g)
300 {
301 rw_enter(&lm_lck, RW_WRITER);
302 TAILQ_INSERT_TAIL(&nlm_zones_list, g, nlm_link);
303 rw_exit(&lm_lck);
304 }
305
306 void
nlm_globals_unregister(struct nlm_globals * g)307 nlm_globals_unregister(struct nlm_globals *g)
308 {
309 rw_enter(&lm_lck, RW_WRITER);
310 TAILQ_REMOVE(&nlm_zones_list, g, nlm_link);
311 rw_exit(&lm_lck);
312 }
313
314 /* ARGSUSED */
315 static void
nlm_kmem_reclaim(void * cdrarg)316 nlm_kmem_reclaim(void *cdrarg)
317 {
318 struct nlm_globals *g;
319
320 rw_enter(&lm_lck, RW_READER);
321 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link)
322 cv_broadcast(&g->nlm_gc_sched_cv);
323
324 rw_exit(&lm_lck);
325 }
326
327 /*
328 * NLM garbage collector thread (GC).
329 *
330 * NLM GC periodically checks whether there're any host objects
331 * that can be cleaned up. It also releases stale vnodes that
332 * live on the server side (under protection of vhold objects).
333 *
334 * NLM host objects are cleaned up from GC thread because
335 * operations helping us to determine whether given host has
336 * any locks can be quite expensive and it's not good to call
337 * them every time the very last reference to the host is dropped.
338 * Thus we use "lazy" approach for hosts cleanup.
339 *
340 * The work of GC is to release stale vnodes on the server side
341 * and destroy hosts that haven't any locks and any activity for
342 * some time (i.e. idle hosts).
343 */
344 static void
nlm_gc(struct nlm_globals * g)345 nlm_gc(struct nlm_globals *g)
346 {
347 struct nlm_host *hostp;
348 clock_t now, idle_period;
349
350 idle_period = SEC_TO_TICK(g->cn_idle_tmo);
351 mutex_enter(&g->lock);
352 for (;;) {
353 /*
354 * GC thread can be explicitly scheduled from
355 * memory reclamation function.
356 */
357 (void) cv_timedwait(&g->nlm_gc_sched_cv, &g->lock,
358 ddi_get_lbolt() + idle_period);
359
360 /*
361 * NLM is shutting down, time to die.
362 */
363 if (g->run_status == NLM_ST_STOPPING)
364 break;
365
366 now = ddi_get_lbolt();
367 DTRACE_PROBE2(gc__start, struct nlm_globals *, g,
368 clock_t, now);
369
370 /*
371 * Find all obviously unused vholds and destroy them.
372 */
373 for (hostp = avl_first(&g->nlm_hosts_tree); hostp != NULL;
374 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp)) {
375 struct nlm_vhold *nvp;
376
377 mutex_enter(&hostp->nh_lock);
378
379 nvp = TAILQ_FIRST(&hostp->nh_vholds_list);
380 while (nvp != NULL) {
381 struct nlm_vhold *new_nvp;
382
383 new_nvp = TAILQ_NEXT(nvp, nv_link);
384
385 /*
386 * If these conditions are met, the vhold is
387 * obviously unused and we will destroy it. In
388 * a case either v_filocks and/or v_shrlocks is
389 * non-NULL the vhold might still be unused by
390 * the host, but it is expensive to check that.
391 * We defer such check until the host is idle.
392 * The expensive check is done below without
393 * the global lock held.
394 */
395 if (nvp->nv_refcnt == 0 &&
396 nvp->nv_vp->v_filocks == NULL &&
397 nvp->nv_vp->v_shrlocks == NULL) {
398 nlm_vhold_destroy(hostp, nvp);
399 }
400
401 nvp = new_nvp;
402 }
403
404 mutex_exit(&hostp->nh_lock);
405 }
406
407 /*
408 * Handle all hosts that are unused at the moment
409 * until we meet one with idle timeout in future.
410 */
411 while ((hostp = TAILQ_FIRST(&g->nlm_idle_hosts)) != NULL) {
412 bool_t has_locks;
413
414 if (hostp->nh_idle_timeout > now)
415 break;
416
417 /*
418 * Drop global lock while doing expensive work
419 * on this host. We'll re-check any conditions
420 * that might change after retaking the global
421 * lock.
422 */
423 mutex_exit(&g->lock);
424 mutex_enter(&hostp->nh_lock);
425
426 /*
427 * nlm_globals lock was dropped earlier because
428 * garbage collecting of vholds and checking whether
429 * host has any locks/shares are expensive operations.
430 */
431 nlm_host_gc_vholds(hostp);
432 has_locks = nlm_host_has_locks(hostp);
433
434 mutex_exit(&hostp->nh_lock);
435 mutex_enter(&g->lock);
436
437 /*
438 * While we were doing expensive operations
439 * outside of nlm_globals critical section,
440 * somebody could take the host and remove it
441 * from the idle list. Whether its been
442 * reinserted or not, our information about
443 * the host is outdated, and we should take no
444 * further action.
445 */
446 if ((hostp->nh_flags & NLM_NH_INIDLE) == 0 ||
447 hostp->nh_idle_timeout > now)
448 continue;
449
450 /*
451 * If the host has locks we have to renew the
452 * host's timeout and put it at the end of LRU
453 * list.
454 */
455 if (has_locks) {
456 TAILQ_REMOVE(&g->nlm_idle_hosts,
457 hostp, nh_link);
458 hostp->nh_idle_timeout = now + idle_period;
459 TAILQ_INSERT_TAIL(&g->nlm_idle_hosts,
460 hostp, nh_link);
461 continue;
462 }
463
464 /*
465 * We're here if all the following conditions hold:
466 * 1) Host hasn't any locks or share reservations
467 * 2) Host is unused
468 * 3) Host wasn't touched by anyone at least for
469 * g->cn_idle_tmo seconds.
470 *
471 * So, now we can destroy it.
472 */
473 nlm_host_unregister(g, hostp);
474 mutex_exit(&g->lock);
475
476 nlm_host_unmonitor(g, hostp);
477 nlm_host_destroy(hostp);
478 mutex_enter(&g->lock);
479 if (g->run_status == NLM_ST_STOPPING)
480 break;
481
482 }
483
484 DTRACE_PROBE(gc__end);
485 }
486
487 DTRACE_PROBE1(gc__exit, struct nlm_globals *, g);
488
489 /* Let others know that GC has died */
490 g->nlm_gc_thread = NULL;
491 mutex_exit(&g->lock);
492
493 cv_broadcast(&g->nlm_gc_finish_cv);
494 zthread_exit();
495 }
496
497 /*
498 * Thread reclaim locks/shares acquired by the client side
499 * on the given server represented by hostp.
500 */
501 static void
nlm_reclaimer(struct nlm_host * hostp)502 nlm_reclaimer(struct nlm_host *hostp)
503 {
504 struct nlm_globals *g;
505
506 mutex_enter(&hostp->nh_lock);
507 hostp->nh_reclaimer = curthread;
508 mutex_exit(&hostp->nh_lock);
509
510 g = zone_getspecific(nlm_zone_key, curzone);
511 nlm_reclaim_client(g, hostp);
512
513 mutex_enter(&hostp->nh_lock);
514 hostp->nh_flags &= ~NLM_NH_RECLAIM;
515 hostp->nh_reclaimer = NULL;
516 cv_broadcast(&hostp->nh_recl_cv);
517 mutex_exit(&hostp->nh_lock);
518
519 /*
520 * Host was explicitly referenced before
521 * nlm_reclaim() was called, release it
522 * here.
523 */
524 nlm_host_release(g, hostp);
525 zthread_exit();
526 }
527
528 /*
529 * Copy a struct netobj. (see xdr.h)
530 */
531 void
nlm_copy_netobj(struct netobj * dst,struct netobj * src)532 nlm_copy_netobj(struct netobj *dst, struct netobj *src)
533 {
534 dst->n_len = src->n_len;
535 dst->n_bytes = kmem_alloc(src->n_len, KM_SLEEP);
536 bcopy(src->n_bytes, dst->n_bytes, src->n_len);
537 }
538
539 /*
540 * An NLM specificw replacement for clnt_call().
541 * nlm_clnt_call() is used by all RPC functions generated
542 * from nlm_prot.x specification. The function is aware
543 * about some pitfalls of NLM RPC procedures and has a logic
544 * that handles them properly.
545 */
546 enum clnt_stat
nlm_clnt_call(CLIENT * clnt,rpcproc_t procnum,xdrproc_t xdr_args,caddr_t argsp,xdrproc_t xdr_result,caddr_t resultp,struct timeval wait)547 nlm_clnt_call(CLIENT *clnt, rpcproc_t procnum, xdrproc_t xdr_args,
548 caddr_t argsp, xdrproc_t xdr_result, caddr_t resultp, struct timeval wait)
549 {
550 k_sigset_t oldmask;
551 enum clnt_stat stat;
552 bool_t sig_blocked = FALSE;
553
554 /*
555 * If NLM RPC procnum is one of the NLM _RES procedures
556 * that are used to reply to asynchronous NLM RPC
557 * (MSG calls), explicitly set RPC timeout to zero.
558 * Client doesn't send a reply to RES procedures, so
559 * we don't need to wait anything.
560 *
561 * NOTE: we ignore NLM4_*_RES procnums because they are
562 * equal to NLM_*_RES numbers.
563 */
564 if (procnum >= NLM_TEST_RES && procnum <= NLM_GRANTED_RES)
565 wait = nlm_rpctv_zero;
566
567 /*
568 * We need to block signals in case of NLM_CANCEL RPC
569 * in order to prevent interruption of network RPC
570 * calls.
571 */
572 if (procnum == NLM_CANCEL) {
573 k_sigset_t newmask;
574
575 sigfillset(&newmask);
576 sigreplace(&newmask, &oldmask);
577 sig_blocked = TRUE;
578 }
579
580 stat = clnt_call(clnt, procnum, xdr_args,
581 argsp, xdr_result, resultp, wait);
582
583 /*
584 * Restore signal mask back if signals were blocked
585 */
586 if (sig_blocked)
587 sigreplace(&oldmask, (k_sigset_t *)NULL);
588
589 return (stat);
590 }
591
592 /*
593 * Suspend NLM client/server in the given zone.
594 *
595 * During suspend operation we mark those hosts
596 * that have any locks with NLM_NH_SUSPEND flags,
597 * so that they can be checked later, when resume
598 * operation occurs.
599 */
600 static void
nlm_suspend_zone(struct nlm_globals * g)601 nlm_suspend_zone(struct nlm_globals *g)
602 {
603 struct nlm_host *hostp;
604 struct nlm_host_list all_hosts;
605
606 /*
607 * Note that while we're doing suspend, GC thread is active
608 * and it can destroy some hosts while we're walking through
609 * the hosts tree. To prevent that and make suspend logic
610 * a bit more simple we put all hosts to local "all_hosts"
611 * list and increment reference counter of each host.
612 * This guaranties that no hosts will be released while
613 * we're doing suspend.
614 * NOTE: reference of each host must be dropped during
615 * resume operation.
616 */
617 TAILQ_INIT(&all_hosts);
618 mutex_enter(&g->lock);
619 for (hostp = avl_first(&g->nlm_hosts_tree); hostp != NULL;
620 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp)) {
621 /*
622 * If host is idle, remove it from idle list and
623 * clear idle flag. That is done to prevent GC
624 * from touching this host.
625 */
626 if (hostp->nh_flags & NLM_NH_INIDLE) {
627 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
628 hostp->nh_flags &= ~NLM_NH_INIDLE;
629 }
630
631 hostp->nh_refs++;
632 TAILQ_INSERT_TAIL(&all_hosts, hostp, nh_link);
633 }
634
635 /*
636 * Now we can walk through all hosts on the system
637 * with zone globals lock released. The fact the
638 * we have taken a reference to each host guaranties
639 * that no hosts can be destroyed during that process.
640 */
641 mutex_exit(&g->lock);
642 while ((hostp = TAILQ_FIRST(&all_hosts)) != NULL) {
643 mutex_enter(&hostp->nh_lock);
644 if (nlm_host_has_locks(hostp))
645 hostp->nh_flags |= NLM_NH_SUSPEND;
646
647 mutex_exit(&hostp->nh_lock);
648 TAILQ_REMOVE(&all_hosts, hostp, nh_link);
649 }
650 }
651
652 /*
653 * Resume NLM hosts for the given zone.
654 *
655 * nlm_resume_zone() is called after hosts were suspended
656 * (see nlm_suspend_zone) and its main purpose to check
657 * whether remote locks owned by hosts are still in consistent
658 * state. If they aren't, resume function tries to reclaim
659 * locks (for client side hosts) and clean locks (for
660 * server side hosts).
661 */
662 static void
nlm_resume_zone(struct nlm_globals * g)663 nlm_resume_zone(struct nlm_globals *g)
664 {
665 struct nlm_host *hostp, *h_next;
666
667 mutex_enter(&g->lock);
668 hostp = avl_first(&g->nlm_hosts_tree);
669
670 /*
671 * In nlm_suspend_zone() the reference counter of each
672 * host was incremented, so we can safely iterate through
673 * all hosts without worrying that any host we touch will
674 * be removed at the moment.
675 */
676 while (hostp != NULL) {
677 struct nlm_nsm nsm;
678 enum clnt_stat stat;
679 int32_t sm_state;
680 int error;
681 bool_t resume_failed = FALSE;
682
683 h_next = AVL_NEXT(&g->nlm_hosts_tree, hostp);
684 mutex_exit(&g->lock);
685
686 DTRACE_PROBE1(resume__host, struct nlm_host *, hostp);
687
688 /*
689 * Suspend operation marked that the host doesn't
690 * have any locks. Skip it.
691 */
692 if (!(hostp->nh_flags & NLM_NH_SUSPEND))
693 goto cycle_end;
694
695 error = nlm_nsm_init(&nsm, &hostp->nh_knc, &hostp->nh_addr);
696 if (error != 0) {
697 NLM_ERR("Resume: Failed to contact to NSM of host %s "
698 "[error=%d]\n", hostp->nh_name, error);
699 resume_failed = TRUE;
700 goto cycle_end;
701 }
702
703 stat = nlm_nsm_stat(&nsm, &sm_state);
704 if (stat != RPC_SUCCESS) {
705 NLM_ERR("Resume: Failed to call SM_STAT operation for "
706 "host %s [stat=%d]\n", hostp->nh_name, stat);
707 resume_failed = TRUE;
708 nlm_nsm_fini(&nsm);
709 goto cycle_end;
710 }
711
712 if (sm_state != hostp->nh_state) {
713 /*
714 * Current SM state of the host isn't equal
715 * to the one host had when it was suspended.
716 * Probably it was rebooted. Try to reclaim
717 * locks if the host has any on its client side.
718 * Also try to clean up its server side locks
719 * (if the host has any).
720 */
721 nlm_host_notify_client(hostp, sm_state);
722 nlm_host_notify_server(hostp, sm_state);
723 }
724
725 nlm_nsm_fini(&nsm);
726
727 cycle_end:
728 if (resume_failed) {
729 /*
730 * Resume failed for the given host.
731 * Just clean up all resources it owns.
732 */
733 nlm_host_notify_server(hostp, 0);
734 nlm_client_cancel_all(g, hostp);
735 }
736
737 hostp->nh_flags &= ~NLM_NH_SUSPEND;
738 nlm_host_release(g, hostp);
739 hostp = h_next;
740 mutex_enter(&g->lock);
741 }
742
743 mutex_exit(&g->lock);
744 }
745
746 /*
747 * NLM functions responsible for operations on NSM handle.
748 */
749
750 /*
751 * Initialize knetconfig that is used for communication
752 * with local statd via loopback interface.
753 */
754 static int
nlm_init_local_knc(struct knetconfig * knc)755 nlm_init_local_knc(struct knetconfig *knc)
756 {
757 int error;
758 vnode_t *vp;
759
760 bzero(knc, sizeof (*knc));
761 error = lookupname("/dev/tcp", UIO_SYSSPACE,
762 FOLLOW, NULLVPP, &vp);
763 if (error != 0)
764 return (error);
765
766 knc->knc_semantics = NC_TPI_COTS;
767 knc->knc_protofmly = NC_INET;
768 knc->knc_proto = NC_TCP;
769 knc->knc_rdev = vp->v_rdev;
770 VN_RELE(vp);
771
772
773 return (0);
774 }
775
776 /*
777 * Initialize NSM handle that will be used to talk
778 * to local statd via loopback interface.
779 */
780 static int
nlm_nsm_init_local(struct nlm_nsm * nsm)781 nlm_nsm_init_local(struct nlm_nsm *nsm)
782 {
783 int error;
784 struct knetconfig knc;
785 struct sockaddr_in sin;
786 struct netbuf nb;
787
788 error = nlm_init_local_knc(&knc);
789 if (error != 0)
790 return (error);
791
792 bzero(&sin, sizeof (sin));
793 sin.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
794 sin.sin_family = AF_INET;
795
796 nb.buf = (char *)&sin;
797 nb.len = nb.maxlen = sizeof (sin);
798
799 return (nlm_nsm_init(nsm, &knc, &nb));
800 }
801
802 /*
803 * Initialize NSM handle used for talking to statd
804 */
805 static int
nlm_nsm_init(struct nlm_nsm * nsm,struct knetconfig * knc,struct netbuf * nb)806 nlm_nsm_init(struct nlm_nsm *nsm, struct knetconfig *knc, struct netbuf *nb)
807 {
808 enum clnt_stat stat;
809 int error, retries;
810
811 bzero(nsm, sizeof (*nsm));
812 nsm->ns_knc = *knc;
813 nlm_copy_netbuf(&nsm->ns_addr, nb);
814
815 /*
816 * Try several times to get the port of statd service,
817 * If rpcbind_getaddr returns RPC_PROGNOTREGISTERED,
818 * retry an attempt, but wait for NLM_NSM_RPCBIND_TIMEOUT
819 * seconds berofore.
820 */
821 for (retries = 0; retries < NLM_NSM_RPCBIND_RETRIES; retries++) {
822 stat = rpcbind_getaddr(&nsm->ns_knc, SM_PROG,
823 SM_VERS, &nsm->ns_addr);
824 if (stat != RPC_SUCCESS) {
825 if (stat == RPC_PROGNOTREGISTERED) {
826 delay(SEC_TO_TICK(NLM_NSM_RPCBIND_TIMEOUT));
827 continue;
828 }
829 }
830
831 break;
832 }
833
834 if (stat != RPC_SUCCESS) {
835 DTRACE_PROBE2(rpcbind__error, enum clnt_stat, stat,
836 int, retries);
837 error = ENOENT;
838 goto error;
839 }
840
841 /*
842 * Create an RPC handle that'll be used for communication with local
843 * statd using the status monitor protocol.
844 */
845 error = clnt_tli_kcreate(&nsm->ns_knc, &nsm->ns_addr, SM_PROG, SM_VERS,
846 0, NLM_RPC_RETRIES, kcred, &nsm->ns_handle);
847 if (error != 0)
848 goto error;
849
850 /*
851 * Create an RPC handle that'll be used for communication with the
852 * local statd using the address registration protocol.
853 */
854 error = clnt_tli_kcreate(&nsm->ns_knc, &nsm->ns_addr, NSM_ADDR_PROGRAM,
855 NSM_ADDR_V1, 0, NLM_RPC_RETRIES, kcred, &nsm->ns_addr_handle);
856 if (error != 0)
857 goto error;
858
859 sema_init(&nsm->ns_sem, 1, NULL, SEMA_DEFAULT, NULL);
860 return (0);
861
862 error:
863 kmem_free(nsm->ns_addr.buf, nsm->ns_addr.maxlen);
864 if (nsm->ns_handle)
865 CLNT_DESTROY(nsm->ns_handle);
866
867 return (error);
868 }
869
870 static void
nlm_nsm_fini(struct nlm_nsm * nsm)871 nlm_nsm_fini(struct nlm_nsm *nsm)
872 {
873 kmem_free(nsm->ns_addr.buf, nsm->ns_addr.maxlen);
874 CLNT_DESTROY(nsm->ns_addr_handle);
875 nsm->ns_addr_handle = NULL;
876 CLNT_DESTROY(nsm->ns_handle);
877 nsm->ns_handle = NULL;
878 sema_destroy(&nsm->ns_sem);
879 }
880
881 static enum clnt_stat
nlm_nsm_simu_crash(struct nlm_nsm * nsm)882 nlm_nsm_simu_crash(struct nlm_nsm *nsm)
883 {
884 enum clnt_stat stat;
885
886 sema_p(&nsm->ns_sem);
887 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
888 stat = sm_simu_crash_1(NULL, NULL, nsm->ns_handle);
889 sema_v(&nsm->ns_sem);
890
891 return (stat);
892 }
893
894 static enum clnt_stat
nlm_nsm_stat(struct nlm_nsm * nsm,int32_t * out_stat)895 nlm_nsm_stat(struct nlm_nsm *nsm, int32_t *out_stat)
896 {
897 struct sm_name args;
898 struct sm_stat_res res;
899 enum clnt_stat stat;
900
901 args.mon_name = uts_nodename();
902 bzero(&res, sizeof (res));
903
904 sema_p(&nsm->ns_sem);
905 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
906 stat = sm_stat_1(&args, &res, nsm->ns_handle);
907 sema_v(&nsm->ns_sem);
908
909 if (stat == RPC_SUCCESS)
910 *out_stat = res.state;
911
912 return (stat);
913 }
914
915 static enum clnt_stat
nlm_nsm_mon(struct nlm_nsm * nsm,char * hostname,uint16_t priv)916 nlm_nsm_mon(struct nlm_nsm *nsm, char *hostname, uint16_t priv)
917 {
918 struct mon args;
919 struct sm_stat_res res;
920 enum clnt_stat stat;
921
922 bzero(&args, sizeof (args));
923 bzero(&res, sizeof (res));
924
925 args.mon_id.mon_name = hostname;
926 args.mon_id.my_id.my_name = uts_nodename();
927 args.mon_id.my_id.my_prog = NLM_PROG;
928 args.mon_id.my_id.my_vers = NLM_SM;
929 args.mon_id.my_id.my_proc = NLM_SM_NOTIFY1;
930 bcopy(&priv, args.priv, sizeof (priv));
931
932 sema_p(&nsm->ns_sem);
933 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
934 stat = sm_mon_1(&args, &res, nsm->ns_handle);
935 sema_v(&nsm->ns_sem);
936
937 return (stat);
938 }
939
940 static enum clnt_stat
nlm_nsm_unmon(struct nlm_nsm * nsm,char * hostname)941 nlm_nsm_unmon(struct nlm_nsm *nsm, char *hostname)
942 {
943 struct mon_id args;
944 struct sm_stat res;
945 enum clnt_stat stat;
946
947 bzero(&args, sizeof (args));
948 bzero(&res, sizeof (res));
949
950 args.mon_name = hostname;
951 args.my_id.my_name = uts_nodename();
952 args.my_id.my_prog = NLM_PROG;
953 args.my_id.my_vers = NLM_SM;
954 args.my_id.my_proc = NLM_SM_NOTIFY1;
955
956 sema_p(&nsm->ns_sem);
957 nlm_nsm_clnt_init(nsm->ns_handle, nsm);
958 stat = sm_unmon_1(&args, &res, nsm->ns_handle);
959 sema_v(&nsm->ns_sem);
960
961 return (stat);
962 }
963
964 static enum clnt_stat
nlm_nsmaddr_reg(struct nlm_nsm * nsm,char * name,int family,netobj * address)965 nlm_nsmaddr_reg(struct nlm_nsm *nsm, char *name, int family, netobj *address)
966 {
967 struct reg1args args = { 0 };
968 struct reg1res res = { 0 };
969 enum clnt_stat stat;
970
971 args.family = family;
972 args.name = name;
973 args.address = *address;
974
975 sema_p(&nsm->ns_sem);
976 nlm_nsm_clnt_init(nsm->ns_addr_handle, nsm);
977 stat = nsmaddrproc1_reg_1(&args, &res, nsm->ns_addr_handle);
978 sema_v(&nsm->ns_sem);
979
980 return (stat);
981 }
982
983 /*
984 * Get NLM vhold object corresponding to vnode "vp".
985 * If no such object was found, create a new one.
986 *
987 * The purpose of this function is to associate vhold
988 * object with given vnode, so that:
989 * 1) vnode is hold (VN_HOLD) while vhold object is alive.
990 * 2) host has a track of all vnodes it touched by lock
991 * or share operations. These vnodes are accessible
992 * via collection of vhold objects.
993 */
994 struct nlm_vhold *
nlm_vhold_get(struct nlm_host * hostp,vnode_t * vp)995 nlm_vhold_get(struct nlm_host *hostp, vnode_t *vp)
996 {
997 struct nlm_vhold *nvp, *new_nvp = NULL;
998
999 mutex_enter(&hostp->nh_lock);
1000 nvp = nlm_vhold_find_locked(hostp, vp);
1001 if (nvp != NULL)
1002 goto out;
1003
1004 /* nlm_vhold wasn't found, then create a new one */
1005 mutex_exit(&hostp->nh_lock);
1006 new_nvp = kmem_cache_alloc(nlm_vhold_cache, KM_SLEEP);
1007
1008 /*
1009 * Check if another thread has already
1010 * created the same nlm_vhold.
1011 */
1012 mutex_enter(&hostp->nh_lock);
1013 nvp = nlm_vhold_find_locked(hostp, vp);
1014 if (nvp == NULL) {
1015 nvp = new_nvp;
1016 new_nvp = NULL;
1017
1018 TAILQ_INIT(&nvp->nv_slreqs);
1019 nvp->nv_vp = vp;
1020 nvp->nv_refcnt = 1;
1021 VN_HOLD(nvp->nv_vp);
1022
1023 VERIFY(mod_hash_insert(hostp->nh_vholds_by_vp,
1024 (mod_hash_key_t)vp, (mod_hash_val_t)nvp) == 0);
1025 TAILQ_INSERT_TAIL(&hostp->nh_vholds_list, nvp, nv_link);
1026 }
1027
1028 out:
1029 mutex_exit(&hostp->nh_lock);
1030 if (new_nvp != NULL)
1031 kmem_cache_free(nlm_vhold_cache, new_nvp);
1032
1033 return (nvp);
1034 }
1035
1036 /*
1037 * Drop a reference to vhold object nvp.
1038 */
1039 void
nlm_vhold_release(struct nlm_host * hostp,struct nlm_vhold * nvp)1040 nlm_vhold_release(struct nlm_host *hostp, struct nlm_vhold *nvp)
1041 {
1042 if (nvp == NULL)
1043 return;
1044
1045 mutex_enter(&hostp->nh_lock);
1046 ASSERT(nvp->nv_refcnt > 0);
1047 nvp->nv_refcnt--;
1048
1049 /*
1050 * If these conditions are met, the vhold is obviously unused and we
1051 * will destroy it. In a case either v_filocks and/or v_shrlocks is
1052 * non-NULL the vhold might still be unused by the host, but it is
1053 * expensive to check that. We defer such check until the host is
1054 * idle. The expensive check is done in the NLM garbage collector.
1055 */
1056 if (nvp->nv_refcnt == 0 &&
1057 nvp->nv_vp->v_filocks == NULL &&
1058 nvp->nv_vp->v_shrlocks == NULL) {
1059 nlm_vhold_destroy(hostp, nvp);
1060 }
1061
1062 mutex_exit(&hostp->nh_lock);
1063 }
1064
1065 /*
1066 * Clean all locks and share reservations on the
1067 * given vhold object that were acquired by the
1068 * given sysid
1069 */
1070 static void
nlm_vhold_clean(struct nlm_vhold * nvp,int sysid)1071 nlm_vhold_clean(struct nlm_vhold *nvp, int sysid)
1072 {
1073 cleanlocks(nvp->nv_vp, IGN_PID, sysid);
1074 cleanshares_by_sysid(nvp->nv_vp, sysid);
1075 }
1076
1077 static void
nlm_vhold_destroy(struct nlm_host * hostp,struct nlm_vhold * nvp)1078 nlm_vhold_destroy(struct nlm_host *hostp, struct nlm_vhold *nvp)
1079 {
1080 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1081
1082 ASSERT(nvp->nv_refcnt == 0);
1083 ASSERT(TAILQ_EMPTY(&nvp->nv_slreqs));
1084
1085 VERIFY(mod_hash_remove(hostp->nh_vholds_by_vp,
1086 (mod_hash_key_t)nvp->nv_vp,
1087 (mod_hash_val_t)&nvp) == 0);
1088
1089 TAILQ_REMOVE(&hostp->nh_vholds_list, nvp, nv_link);
1090 VN_RELE(nvp->nv_vp);
1091 nvp->nv_vp = NULL;
1092
1093 kmem_cache_free(nlm_vhold_cache, nvp);
1094 }
1095
1096 /*
1097 * Return TRUE if the given vhold is busy.
1098 * Vhold object is considered to be "busy" when
1099 * all the following conditions hold:
1100 * 1) No one uses it at the moment;
1101 * 2) It hasn't any locks;
1102 * 3) It hasn't any share reservations;
1103 */
1104 static bool_t
nlm_vhold_busy(struct nlm_host * hostp,struct nlm_vhold * nvp)1105 nlm_vhold_busy(struct nlm_host *hostp, struct nlm_vhold *nvp)
1106 {
1107 vnode_t *vp;
1108 int sysid;
1109
1110 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1111
1112 if (nvp->nv_refcnt > 0)
1113 return (TRUE);
1114
1115 vp = nvp->nv_vp;
1116 sysid = hostp->nh_sysid;
1117 if (flk_has_remote_locks_for_sysid(vp, sysid) ||
1118 shr_has_remote_shares(vp, sysid))
1119 return (TRUE);
1120
1121 return (FALSE);
1122 }
1123
1124 /* ARGSUSED */
1125 static int
nlm_vhold_ctor(void * datap,void * cdrarg,int kmflags)1126 nlm_vhold_ctor(void *datap, void *cdrarg, int kmflags)
1127 {
1128 struct nlm_vhold *nvp = (struct nlm_vhold *)datap;
1129
1130 bzero(nvp, sizeof (*nvp));
1131 return (0);
1132 }
1133
1134 /* ARGSUSED */
1135 static void
nlm_vhold_dtor(void * datap,void * cdrarg)1136 nlm_vhold_dtor(void *datap, void *cdrarg)
1137 {
1138 struct nlm_vhold *nvp = (struct nlm_vhold *)datap;
1139
1140 ASSERT(nvp->nv_refcnt == 0);
1141 ASSERT(TAILQ_EMPTY(&nvp->nv_slreqs));
1142 ASSERT(nvp->nv_vp == NULL);
1143 }
1144
1145 struct nlm_vhold *
nlm_vhold_find_locked(struct nlm_host * hostp,const vnode_t * vp)1146 nlm_vhold_find_locked(struct nlm_host *hostp, const vnode_t *vp)
1147 {
1148 struct nlm_vhold *nvp = NULL;
1149
1150 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1151 (void) mod_hash_find(hostp->nh_vholds_by_vp,
1152 (mod_hash_key_t)vp,
1153 (mod_hash_val_t)&nvp);
1154
1155 if (nvp != NULL)
1156 nvp->nv_refcnt++;
1157
1158 return (nvp);
1159 }
1160
1161 /*
1162 * NLM host functions
1163 */
1164 static void
nlm_copy_netbuf(struct netbuf * dst,struct netbuf * src)1165 nlm_copy_netbuf(struct netbuf *dst, struct netbuf *src)
1166 {
1167 ASSERT(src->len <= src->maxlen);
1168
1169 dst->maxlen = src->maxlen;
1170 dst->len = src->len;
1171 dst->buf = kmem_zalloc(src->maxlen, KM_SLEEP);
1172 bcopy(src->buf, dst->buf, src->len);
1173 }
1174
1175 /* ARGSUSED */
1176 static int
nlm_host_ctor(void * datap,void * cdrarg,int kmflags)1177 nlm_host_ctor(void *datap, void *cdrarg, int kmflags)
1178 {
1179 struct nlm_host *hostp = (struct nlm_host *)datap;
1180
1181 bzero(hostp, sizeof (*hostp));
1182 return (0);
1183 }
1184
1185 /* ARGSUSED */
1186 static void
nlm_host_dtor(void * datap,void * cdrarg)1187 nlm_host_dtor(void *datap, void *cdrarg)
1188 {
1189 struct nlm_host *hostp = (struct nlm_host *)datap;
1190 ASSERT(hostp->nh_refs == 0);
1191 }
1192
1193 static void
nlm_host_unregister(struct nlm_globals * g,struct nlm_host * hostp)1194 nlm_host_unregister(struct nlm_globals *g, struct nlm_host *hostp)
1195 {
1196 ASSERT(hostp->nh_refs == 0);
1197 ASSERT(hostp->nh_flags & NLM_NH_INIDLE);
1198
1199 avl_remove(&g->nlm_hosts_tree, hostp);
1200 VERIFY(mod_hash_remove(g->nlm_hosts_hash,
1201 (mod_hash_key_t)(uintptr_t)hostp->nh_sysid,
1202 (mod_hash_val_t)&hostp) == 0);
1203 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
1204 hostp->nh_flags &= ~NLM_NH_INIDLE;
1205 }
1206
1207 /*
1208 * Free resources used by a host. This is called after the reference
1209 * count has reached zero so it doesn't need to worry about locks.
1210 */
1211 static void
nlm_host_destroy(struct nlm_host * hostp)1212 nlm_host_destroy(struct nlm_host *hostp)
1213 {
1214 ASSERT(hostp->nh_name != NULL);
1215 ASSERT(hostp->nh_netid != NULL);
1216 ASSERT(TAILQ_EMPTY(&hostp->nh_vholds_list));
1217
1218 strfree(hostp->nh_name);
1219 strfree(hostp->nh_netid);
1220 kmem_free(hostp->nh_addr.buf, hostp->nh_addr.maxlen);
1221
1222 if (hostp->nh_sysid != LM_NOSYSID)
1223 nlm_sysid_free(hostp->nh_sysid);
1224
1225 nlm_rpc_cache_destroy(hostp);
1226
1227 ASSERT(TAILQ_EMPTY(&hostp->nh_vholds_list));
1228 mod_hash_destroy_ptrhash(hostp->nh_vholds_by_vp);
1229
1230 mutex_destroy(&hostp->nh_lock);
1231 cv_destroy(&hostp->nh_rpcb_cv);
1232 cv_destroy(&hostp->nh_recl_cv);
1233
1234 kmem_cache_free(nlm_hosts_cache, hostp);
1235 }
1236
1237 /*
1238 * Cleanup SERVER-side state after a client restarts,
1239 * or becomes unresponsive, or whatever.
1240 *
1241 * We unlock any active locks owned by the host.
1242 * When rpc.lockd is shutting down,
1243 * this function is called with newstate set to zero
1244 * which allows us to cancel any pending async locks
1245 * and clear the locking state.
1246 *
1247 * When "state" is 0, we don't update host's state,
1248 * but cleanup all remote locks on the host.
1249 * It's useful to call this function for resources
1250 * cleanup.
1251 */
1252 void
nlm_host_notify_server(struct nlm_host * hostp,int32_t state)1253 nlm_host_notify_server(struct nlm_host *hostp, int32_t state)
1254 {
1255 struct nlm_vhold *nvp;
1256 struct nlm_slreq *slr;
1257 struct nlm_slreq_list slreqs2free;
1258
1259 TAILQ_INIT(&slreqs2free);
1260 mutex_enter(&hostp->nh_lock);
1261 if (state != 0)
1262 hostp->nh_state = state;
1263
1264 TAILQ_FOREACH(nvp, &hostp->nh_vholds_list, nv_link) {
1265
1266 /* cleanup sleeping requests at first */
1267 while ((slr = TAILQ_FIRST(&nvp->nv_slreqs)) != NULL) {
1268 TAILQ_REMOVE(&nvp->nv_slreqs, slr, nsr_link);
1269
1270 /*
1271 * Instead of freeing cancelled sleeping request
1272 * here, we add it to the linked list created
1273 * on the stack in order to do all frees outside
1274 * the critical section.
1275 */
1276 TAILQ_INSERT_TAIL(&slreqs2free, slr, nsr_link);
1277 }
1278
1279 nvp->nv_refcnt++;
1280 mutex_exit(&hostp->nh_lock);
1281
1282 nlm_vhold_clean(nvp, hostp->nh_sysid);
1283
1284 mutex_enter(&hostp->nh_lock);
1285 nvp->nv_refcnt--;
1286 }
1287
1288 mutex_exit(&hostp->nh_lock);
1289 while ((slr = TAILQ_FIRST(&slreqs2free)) != NULL) {
1290 TAILQ_REMOVE(&slreqs2free, slr, nsr_link);
1291 kmem_free(slr, sizeof (*slr));
1292 }
1293 }
1294
1295 /*
1296 * Cleanup CLIENT-side state after a server restarts,
1297 * or becomes unresponsive, or whatever.
1298 *
1299 * This is called by the local NFS statd when we receive a
1300 * host state change notification. (also nlm_svc_stopping)
1301 *
1302 * Deal with a server restart. If we are stopping the
1303 * NLM service, we'll have newstate == 0, and will just
1304 * cancel all our client-side lock requests. Otherwise,
1305 * start the "recovery" process to reclaim any locks
1306 * we hold on this server.
1307 */
1308 void
nlm_host_notify_client(struct nlm_host * hostp,int32_t state)1309 nlm_host_notify_client(struct nlm_host *hostp, int32_t state)
1310 {
1311 mutex_enter(&hostp->nh_lock);
1312 hostp->nh_state = state;
1313 if (hostp->nh_flags & NLM_NH_RECLAIM) {
1314 /*
1315 * Either host's state is up to date or
1316 * host is already in recovery.
1317 */
1318 mutex_exit(&hostp->nh_lock);
1319 return;
1320 }
1321
1322 hostp->nh_flags |= NLM_NH_RECLAIM;
1323
1324 /*
1325 * Host will be released by the recovery thread,
1326 * thus we need to increment refcount.
1327 */
1328 hostp->nh_refs++;
1329 mutex_exit(&hostp->nh_lock);
1330
1331 (void) zthread_create(NULL, 0, nlm_reclaimer,
1332 hostp, 0, minclsyspri);
1333 }
1334
1335 /*
1336 * The function is called when NLM client detects that
1337 * server has entered in grace period and client needs
1338 * to wait until reclamation process (if any) does
1339 * its job.
1340 */
1341 int
nlm_host_wait_grace(struct nlm_host * hostp)1342 nlm_host_wait_grace(struct nlm_host *hostp)
1343 {
1344 struct nlm_globals *g;
1345 int error = 0;
1346
1347 g = zone_getspecific(nlm_zone_key, curzone);
1348 mutex_enter(&hostp->nh_lock);
1349
1350 do {
1351 int rc;
1352
1353 rc = cv_timedwait_sig(&hostp->nh_recl_cv,
1354 &hostp->nh_lock, ddi_get_lbolt() +
1355 SEC_TO_TICK(g->retrans_tmo));
1356
1357 if (rc == 0) {
1358 error = EINTR;
1359 break;
1360 }
1361 } while (hostp->nh_flags & NLM_NH_RECLAIM);
1362
1363 mutex_exit(&hostp->nh_lock);
1364 return (error);
1365 }
1366
1367 /*
1368 * Create a new NLM host.
1369 *
1370 * NOTE: The in-kernel RPC (kRPC) subsystem uses TLI/XTI,
1371 * which needs both a knetconfig and an address when creating
1372 * endpoints. Thus host object stores both knetconfig and
1373 * netid.
1374 */
1375 static struct nlm_host *
nlm_host_create(char * name,const char * netid,struct knetconfig * knc,struct netbuf * naddr)1376 nlm_host_create(char *name, const char *netid,
1377 struct knetconfig *knc, struct netbuf *naddr)
1378 {
1379 struct nlm_host *host;
1380
1381 host = kmem_cache_alloc(nlm_hosts_cache, KM_SLEEP);
1382
1383 mutex_init(&host->nh_lock, NULL, MUTEX_DEFAULT, NULL);
1384 cv_init(&host->nh_rpcb_cv, NULL, CV_DEFAULT, NULL);
1385 cv_init(&host->nh_recl_cv, NULL, CV_DEFAULT, NULL);
1386
1387 host->nh_sysid = LM_NOSYSID;
1388 host->nh_refs = 1;
1389 host->nh_name = strdup(name);
1390 host->nh_netid = strdup(netid);
1391 host->nh_knc = *knc;
1392 nlm_copy_netbuf(&host->nh_addr, naddr);
1393
1394 host->nh_state = 0;
1395 host->nh_rpcb_state = NRPCB_NEED_UPDATE;
1396 host->nh_flags = 0;
1397
1398 host->nh_vholds_by_vp = mod_hash_create_ptrhash("nlm vholds hash",
1399 32, mod_hash_null_valdtor, sizeof (vnode_t));
1400
1401 TAILQ_INIT(&host->nh_vholds_list);
1402 TAILQ_INIT(&host->nh_rpchc);
1403
1404 return (host);
1405 }
1406
1407 /*
1408 * Cancel all client side sleeping locks owned by given host.
1409 */
1410 void
nlm_host_cancel_slocks(struct nlm_globals * g,struct nlm_host * hostp)1411 nlm_host_cancel_slocks(struct nlm_globals *g, struct nlm_host *hostp)
1412 {
1413 struct nlm_slock *nslp;
1414
1415 mutex_enter(&g->lock);
1416 TAILQ_FOREACH(nslp, &g->nlm_slocks, nsl_link) {
1417 if (nslp->nsl_host == hostp) {
1418 nslp->nsl_state = NLM_SL_CANCELLED;
1419 cv_broadcast(&nslp->nsl_cond);
1420 }
1421 }
1422
1423 mutex_exit(&g->lock);
1424 }
1425
1426 /*
1427 * Garbage collect stale vhold objects.
1428 *
1429 * In other words check whether vnodes that are
1430 * held by vhold objects still have any locks
1431 * or shares or still in use. If they aren't,
1432 * just destroy them.
1433 */
1434 static void
nlm_host_gc_vholds(struct nlm_host * hostp)1435 nlm_host_gc_vholds(struct nlm_host *hostp)
1436 {
1437 struct nlm_vhold *nvp;
1438
1439 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1440
1441 nvp = TAILQ_FIRST(&hostp->nh_vholds_list);
1442 while (nvp != NULL) {
1443 struct nlm_vhold *nvp_tmp;
1444
1445 if (nlm_vhold_busy(hostp, nvp)) {
1446 nvp = TAILQ_NEXT(nvp, nv_link);
1447 continue;
1448 }
1449
1450 nvp_tmp = TAILQ_NEXT(nvp, nv_link);
1451 nlm_vhold_destroy(hostp, nvp);
1452 nvp = nvp_tmp;
1453 }
1454 }
1455
1456 /*
1457 * Check whether the given host has any
1458 * server side locks or share reservations.
1459 */
1460 static bool_t
nlm_host_has_srv_locks(struct nlm_host * hostp)1461 nlm_host_has_srv_locks(struct nlm_host *hostp)
1462 {
1463 /*
1464 * It's cheap and simple: if server has
1465 * any locks/shares there must be vhold
1466 * object storing the affected vnode.
1467 *
1468 * NOTE: We don't need to check sleeping
1469 * locks on the server side, because if
1470 * server side sleeping lock is alive,
1471 * there must be a vhold object corresponding
1472 * to target vnode.
1473 */
1474 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1475 if (!TAILQ_EMPTY(&hostp->nh_vholds_list))
1476 return (TRUE);
1477
1478 return (FALSE);
1479 }
1480
1481 /*
1482 * Check whether the given host has any client side
1483 * locks or share reservations.
1484 */
1485 static bool_t
nlm_host_has_cli_locks(struct nlm_host * hostp)1486 nlm_host_has_cli_locks(struct nlm_host *hostp)
1487 {
1488 ASSERT(MUTEX_HELD(&hostp->nh_lock));
1489
1490 /*
1491 * XXX: It's not the way I'd like to do the check,
1492 * because flk_sysid_has_locks() can be very
1493 * expensive by design. Unfortunatelly it iterates
1494 * through all locks on the system, doesn't matter
1495 * were they made on remote system via NLM or
1496 * on local system via reclock. To understand the
1497 * problem, consider that there're dozens of thousands
1498 * of locks that are made on some ZFS dataset. And there's
1499 * another dataset shared by NFS where NLM client had locks
1500 * some time ago, but doesn't have them now.
1501 * In this case flk_sysid_has_locks() will iterate
1502 * thrught dozens of thousands locks until it returns us
1503 * FALSE.
1504 * Oh, I hope that in shiny future somebody will make
1505 * local lock manager (os/flock.c) better, so that
1506 * it'd be more friedly to remote locks and
1507 * flk_sysid_has_locks() wouldn't be so expensive.
1508 */
1509 if (flk_sysid_has_locks(hostp->nh_sysid |
1510 LM_SYSID_CLIENT, FLK_QUERY_ACTIVE))
1511 return (TRUE);
1512
1513 /*
1514 * Check whether host has any share reservations
1515 * registered on the client side.
1516 */
1517 if (hostp->nh_shrlist != NULL)
1518 return (TRUE);
1519
1520 return (FALSE);
1521 }
1522
1523 /*
1524 * Determine whether the given host owns any
1525 * locks or share reservations.
1526 */
1527 static bool_t
nlm_host_has_locks(struct nlm_host * hostp)1528 nlm_host_has_locks(struct nlm_host *hostp)
1529 {
1530 if (nlm_host_has_srv_locks(hostp))
1531 return (TRUE);
1532
1533 return (nlm_host_has_cli_locks(hostp));
1534 }
1535
1536 /*
1537 * This function compares only addresses of two netbufs
1538 * that belong to NC_TCP[6] or NC_UDP[6] protofamily.
1539 * Port part of netbuf is ignored.
1540 *
1541 * Return values:
1542 * -1: nb1's address is "smaller" than nb2's
1543 * 0: addresses are equal
1544 * 1: nb1's address is "greater" than nb2's
1545 */
1546 static int
nlm_netbuf_addrs_cmp(struct netbuf * nb1,struct netbuf * nb2)1547 nlm_netbuf_addrs_cmp(struct netbuf *nb1, struct netbuf *nb2)
1548 {
1549 union nlm_addr {
1550 struct sockaddr sa;
1551 struct sockaddr_in sin;
1552 struct sockaddr_in6 sin6;
1553 } *na1, *na2;
1554 int res;
1555
1556 /* LINTED E_BAD_PTR_CAST_ALIGN */
1557 na1 = (union nlm_addr *)nb1->buf;
1558 /* LINTED E_BAD_PTR_CAST_ALIGN */
1559 na2 = (union nlm_addr *)nb2->buf;
1560
1561 if (na1->sa.sa_family < na2->sa.sa_family)
1562 return (-1);
1563 if (na1->sa.sa_family > na2->sa.sa_family)
1564 return (1);
1565
1566 switch (na1->sa.sa_family) {
1567 case AF_INET:
1568 res = memcmp(&na1->sin.sin_addr, &na2->sin.sin_addr,
1569 sizeof (na1->sin.sin_addr));
1570 break;
1571 case AF_INET6:
1572 res = memcmp(&na1->sin6.sin6_addr, &na2->sin6.sin6_addr,
1573 sizeof (na1->sin6.sin6_addr));
1574 break;
1575 default:
1576 VERIFY(0);
1577 return (0);
1578 }
1579
1580 return (SIGN(res));
1581 }
1582
1583 /*
1584 * Compare two nlm hosts.
1585 * Return values:
1586 * -1: host1 is "smaller" than host2
1587 * 0: host1 is equal to host2
1588 * 1: host1 is "greater" than host2
1589 */
1590 int
nlm_host_cmp(const void * p1,const void * p2)1591 nlm_host_cmp(const void *p1, const void *p2)
1592 {
1593 struct nlm_host *h1 = (struct nlm_host *)p1;
1594 struct nlm_host *h2 = (struct nlm_host *)p2;
1595 int res;
1596
1597 res = strcmp(h1->nh_netid, h2->nh_netid);
1598 if (res != 0)
1599 return (SIGN(res));
1600
1601 res = nlm_netbuf_addrs_cmp(&h1->nh_addr, &h2->nh_addr);
1602 return (res);
1603 }
1604
1605 /*
1606 * Find the host specified by... (see below)
1607 * If found, increment the ref count.
1608 */
1609 static struct nlm_host *
nlm_host_find_locked(struct nlm_globals * g,const char * netid,struct netbuf * naddr,avl_index_t * wherep)1610 nlm_host_find_locked(struct nlm_globals *g, const char *netid,
1611 struct netbuf *naddr, avl_index_t *wherep)
1612 {
1613 struct nlm_host *hostp, key;
1614 avl_index_t pos;
1615
1616 ASSERT(MUTEX_HELD(&g->lock));
1617
1618 key.nh_netid = (char *)netid;
1619 key.nh_addr.buf = naddr->buf;
1620 key.nh_addr.len = naddr->len;
1621 key.nh_addr.maxlen = naddr->maxlen;
1622
1623 hostp = avl_find(&g->nlm_hosts_tree, &key, &pos);
1624
1625 if (hostp != NULL) {
1626 /*
1627 * Host is inuse now. Remove it from idle
1628 * hosts list if needed.
1629 */
1630 if (hostp->nh_flags & NLM_NH_INIDLE) {
1631 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
1632 hostp->nh_flags &= ~NLM_NH_INIDLE;
1633 }
1634
1635 hostp->nh_refs++;
1636 }
1637 if (wherep != NULL)
1638 *wherep = pos;
1639
1640 return (hostp);
1641 }
1642
1643 /*
1644 * Find NLM host for the given name and address.
1645 */
1646 struct nlm_host *
nlm_host_find(struct nlm_globals * g,const char * netid,struct netbuf * addr)1647 nlm_host_find(struct nlm_globals *g, const char *netid,
1648 struct netbuf *addr)
1649 {
1650 struct nlm_host *hostp = NULL;
1651
1652 mutex_enter(&g->lock);
1653 if (g->run_status != NLM_ST_UP)
1654 goto out;
1655
1656 hostp = nlm_host_find_locked(g, netid, addr, NULL);
1657
1658 out:
1659 mutex_exit(&g->lock);
1660 return (hostp);
1661 }
1662
1663
1664 /*
1665 * Find or create an NLM host for the given name and address.
1666 *
1667 * The remote host is determined by all of: name, netid, address.
1668 * Note that the netid is whatever nlm_svc_add_ep() gave to
1669 * svc_tli_kcreate() for the service binding. If any of these
1670 * are different, allocate a new host (new sysid).
1671 */
1672 struct nlm_host *
nlm_host_findcreate(struct nlm_globals * g,char * name,const char * netid,struct netbuf * addr)1673 nlm_host_findcreate(struct nlm_globals *g, char *name,
1674 const char *netid, struct netbuf *addr)
1675 {
1676 int err;
1677 struct nlm_host *host, *newhost = NULL;
1678 struct knetconfig knc;
1679 avl_index_t where;
1680
1681 mutex_enter(&g->lock);
1682 if (g->run_status != NLM_ST_UP) {
1683 mutex_exit(&g->lock);
1684 return (NULL);
1685 }
1686
1687 host = nlm_host_find_locked(g, netid, addr, NULL);
1688 mutex_exit(&g->lock);
1689 if (host != NULL)
1690 return (host);
1691
1692 err = nlm_knc_from_netid(netid, &knc);
1693 if (err != 0)
1694 return (NULL);
1695 /*
1696 * Do allocations (etc.) outside of mutex,
1697 * and then check again before inserting.
1698 */
1699 newhost = nlm_host_create(name, netid, &knc, addr);
1700 newhost->nh_sysid = nlm_sysid_alloc();
1701 if (newhost->nh_sysid == LM_NOSYSID)
1702 goto out;
1703
1704 mutex_enter(&g->lock);
1705 host = nlm_host_find_locked(g, netid, addr, &where);
1706 if (host == NULL) {
1707 host = newhost;
1708 newhost = NULL;
1709
1710 /*
1711 * Insert host to the hosts AVL tree that is
1712 * used to lookup by <netid, address> pair.
1713 */
1714 avl_insert(&g->nlm_hosts_tree, host, where);
1715
1716 /*
1717 * Insert host to the hosts hash table that is
1718 * used to lookup host by sysid.
1719 */
1720 VERIFY(mod_hash_insert(g->nlm_hosts_hash,
1721 (mod_hash_key_t)(uintptr_t)host->nh_sysid,
1722 (mod_hash_val_t)host) == 0);
1723 }
1724
1725 mutex_exit(&g->lock);
1726
1727 out:
1728 if (newhost != NULL) {
1729 /*
1730 * We do not need the preallocated nlm_host
1731 * so decrement the reference counter
1732 * and destroy it.
1733 */
1734 newhost->nh_refs--;
1735 nlm_host_destroy(newhost);
1736 }
1737
1738 return (host);
1739 }
1740
1741 /*
1742 * Find the NLM host that matches the value of 'sysid'.
1743 * If found, return it with a new ref,
1744 * else return NULL.
1745 */
1746 struct nlm_host *
nlm_host_find_by_sysid(struct nlm_globals * g,sysid_t sysid)1747 nlm_host_find_by_sysid(struct nlm_globals *g, sysid_t sysid)
1748 {
1749 struct nlm_host *hostp = NULL;
1750
1751 mutex_enter(&g->lock);
1752 if (g->run_status != NLM_ST_UP)
1753 goto out;
1754
1755 (void) mod_hash_find(g->nlm_hosts_hash,
1756 (mod_hash_key_t)(uintptr_t)sysid,
1757 (mod_hash_val_t)&hostp);
1758
1759 if (hostp == NULL)
1760 goto out;
1761
1762 /*
1763 * Host is inuse now. Remove it
1764 * from idle hosts list if needed.
1765 */
1766 if (hostp->nh_flags & NLM_NH_INIDLE) {
1767 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
1768 hostp->nh_flags &= ~NLM_NH_INIDLE;
1769 }
1770
1771 hostp->nh_refs++;
1772
1773 out:
1774 mutex_exit(&g->lock);
1775 return (hostp);
1776 }
1777
1778 /*
1779 * Release the given host.
1780 * I.e. drop a reference that was taken earlier by one of
1781 * the following functions: nlm_host_findcreate(), nlm_host_find(),
1782 * nlm_host_find_by_sysid().
1783 *
1784 * When the very last reference is dropped, host is moved to
1785 * so-called "idle state". All hosts that are in idle state
1786 * have an idle timeout. If timeout is expired, GC thread
1787 * checks whether hosts have any locks and if they heven't
1788 * any, it removes them.
1789 * NOTE: only unused hosts can be in idle state.
1790 */
1791 static void
nlm_host_release_locked(struct nlm_globals * g,struct nlm_host * hostp)1792 nlm_host_release_locked(struct nlm_globals *g, struct nlm_host *hostp)
1793 {
1794 if (hostp == NULL)
1795 return;
1796
1797 ASSERT(MUTEX_HELD(&g->lock));
1798 ASSERT(hostp->nh_refs > 0);
1799
1800 hostp->nh_refs--;
1801 if (hostp->nh_refs != 0)
1802 return;
1803
1804 /*
1805 * The very last reference to the host was dropped,
1806 * thus host is unused now. Set its idle timeout
1807 * and move it to the idle hosts LRU list.
1808 */
1809 hostp->nh_idle_timeout = ddi_get_lbolt() +
1810 SEC_TO_TICK(g->cn_idle_tmo);
1811
1812 ASSERT((hostp->nh_flags & NLM_NH_INIDLE) == 0);
1813 TAILQ_INSERT_TAIL(&g->nlm_idle_hosts, hostp, nh_link);
1814 hostp->nh_flags |= NLM_NH_INIDLE;
1815 }
1816
1817 void
nlm_host_release(struct nlm_globals * g,struct nlm_host * hostp)1818 nlm_host_release(struct nlm_globals *g, struct nlm_host *hostp)
1819 {
1820 if (hostp == NULL)
1821 return;
1822
1823 mutex_enter(&g->lock);
1824 nlm_host_release_locked(g, hostp);
1825 mutex_exit(&g->lock);
1826 }
1827
1828 /*
1829 * Unregister this NLM host (NFS client) with the local statd
1830 * due to idleness (no locks held for a while).
1831 */
1832 void
nlm_host_unmonitor(struct nlm_globals * g,struct nlm_host * host)1833 nlm_host_unmonitor(struct nlm_globals *g, struct nlm_host *host)
1834 {
1835 enum clnt_stat stat;
1836
1837 VERIFY(host->nh_refs == 0);
1838 if (!(host->nh_flags & NLM_NH_MONITORED))
1839 return;
1840
1841 host->nh_flags &= ~NLM_NH_MONITORED;
1842 stat = nlm_nsm_unmon(&g->nlm_nsm, host->nh_name);
1843 if (stat != RPC_SUCCESS) {
1844 NLM_WARN("NLM: Failed to contact statd, stat=%d\n", stat);
1845 return;
1846 }
1847 }
1848
1849 /*
1850 * Ask the local NFS statd to begin monitoring this host.
1851 * It will call us back when that host restarts, using the
1852 * prog,vers,proc specified below, i.e. NLM_SM_NOTIFY1,
1853 * which is handled in nlm_do_notify1().
1854 */
1855 void
nlm_host_monitor(struct nlm_globals * g,struct nlm_host * host,int state)1856 nlm_host_monitor(struct nlm_globals *g, struct nlm_host *host, int state)
1857 {
1858 int family;
1859 netobj obj;
1860 enum clnt_stat stat;
1861
1862 if (state != 0 && host->nh_state == 0) {
1863 /*
1864 * This is the first time we have seen an NSM state
1865 * Value for this host. We record it here to help
1866 * detect host reboots.
1867 */
1868 host->nh_state = state;
1869 }
1870
1871 mutex_enter(&host->nh_lock);
1872 if (host->nh_flags & NLM_NH_MONITORED) {
1873 mutex_exit(&host->nh_lock);
1874 return;
1875 }
1876
1877 host->nh_flags |= NLM_NH_MONITORED;
1878 mutex_exit(&host->nh_lock);
1879
1880 /*
1881 * Before we begin monitoring the host register the network address
1882 * associated with this hostname.
1883 */
1884 nlm_netbuf_to_netobj(&host->nh_addr, &family, &obj);
1885 stat = nlm_nsmaddr_reg(&g->nlm_nsm, host->nh_name, family, &obj);
1886 if (stat != RPC_SUCCESS) {
1887 NLM_WARN("Failed to register address, stat=%d\n", stat);
1888 mutex_enter(&g->lock);
1889 host->nh_flags &= ~NLM_NH_MONITORED;
1890 mutex_exit(&g->lock);
1891
1892 return;
1893 }
1894
1895 /*
1896 * Tell statd how to call us with status updates for
1897 * this host. Updates arrive via nlm_do_notify1().
1898 *
1899 * We put our assigned system ID value in the priv field to
1900 * make it simpler to find the host if we are notified of a
1901 * host restart.
1902 */
1903 stat = nlm_nsm_mon(&g->nlm_nsm, host->nh_name, host->nh_sysid);
1904 if (stat != RPC_SUCCESS) {
1905 NLM_WARN("Failed to contact local NSM, stat=%d\n", stat);
1906 mutex_enter(&g->lock);
1907 host->nh_flags &= ~NLM_NH_MONITORED;
1908 mutex_exit(&g->lock);
1909
1910 return;
1911 }
1912 }
1913
1914 int
nlm_host_get_state(struct nlm_host * hostp)1915 nlm_host_get_state(struct nlm_host *hostp)
1916 {
1917
1918 return (hostp->nh_state);
1919 }
1920
1921 /*
1922 * NLM client/server sleeping locks
1923 */
1924
1925 /*
1926 * Register client side sleeping lock.
1927 *
1928 * Our client code calls this to keep information
1929 * about sleeping lock somewhere. When it receives
1930 * grant callback from server or when it just
1931 * needs to remove all sleeping locks from vnode,
1932 * it uses this information for remove/apply lock
1933 * properly.
1934 */
1935 struct nlm_slock *
nlm_slock_register(struct nlm_globals * g,struct nlm_host * host,struct nlm4_lock * lock,struct vnode * vp)1936 nlm_slock_register(
1937 struct nlm_globals *g,
1938 struct nlm_host *host,
1939 struct nlm4_lock *lock,
1940 struct vnode *vp)
1941 {
1942 struct nlm_slock *nslp;
1943
1944 nslp = kmem_zalloc(sizeof (*nslp), KM_SLEEP);
1945 cv_init(&nslp->nsl_cond, NULL, CV_DEFAULT, NULL);
1946 nslp->nsl_lock = *lock;
1947 nlm_copy_netobj(&nslp->nsl_fh, &nslp->nsl_lock.fh);
1948 nslp->nsl_state = NLM_SL_BLOCKED;
1949 nslp->nsl_host = host;
1950 nslp->nsl_vp = vp;
1951
1952 mutex_enter(&g->lock);
1953 TAILQ_INSERT_TAIL(&g->nlm_slocks, nslp, nsl_link);
1954 mutex_exit(&g->lock);
1955
1956 return (nslp);
1957 }
1958
1959 /*
1960 * Remove this lock from the wait list and destroy it.
1961 */
1962 void
nlm_slock_unregister(struct nlm_globals * g,struct nlm_slock * nslp)1963 nlm_slock_unregister(struct nlm_globals *g, struct nlm_slock *nslp)
1964 {
1965 mutex_enter(&g->lock);
1966 TAILQ_REMOVE(&g->nlm_slocks, nslp, nsl_link);
1967 mutex_exit(&g->lock);
1968
1969 kmem_free(nslp->nsl_fh.n_bytes, nslp->nsl_fh.n_len);
1970 cv_destroy(&nslp->nsl_cond);
1971 kmem_free(nslp, sizeof (*nslp));
1972 }
1973
1974 /*
1975 * Wait for a granted callback or cancellation event
1976 * for a sleeping lock.
1977 *
1978 * If a signal interrupted the wait or if the lock
1979 * was cancelled, return EINTR - the caller must arrange to send
1980 * a cancellation to the server.
1981 *
1982 * If timeout occurred, return ETIMEDOUT - the caller must
1983 * resend the lock request to the server.
1984 *
1985 * On success return 0.
1986 */
1987 int
nlm_slock_wait(struct nlm_globals * g,struct nlm_slock * nslp,uint_t timeo_secs)1988 nlm_slock_wait(struct nlm_globals *g,
1989 struct nlm_slock *nslp, uint_t timeo_secs)
1990 {
1991 clock_t timeo_ticks;
1992 int cv_res, error;
1993
1994 /*
1995 * If the granted message arrived before we got here,
1996 * nslp->nsl_state will be NLM_SL_GRANTED - in that case don't sleep.
1997 */
1998 cv_res = 1;
1999 timeo_ticks = ddi_get_lbolt() + SEC_TO_TICK(timeo_secs);
2000
2001 mutex_enter(&g->lock);
2002 while (nslp->nsl_state == NLM_SL_BLOCKED && cv_res > 0) {
2003 cv_res = cv_timedwait_sig(&nslp->nsl_cond,
2004 &g->lock, timeo_ticks);
2005 }
2006
2007 /*
2008 * No matter why we wake up, if the lock was
2009 * cancelled, let the function caller to know
2010 * about it by returning EINTR.
2011 */
2012 if (nslp->nsl_state == NLM_SL_CANCELLED) {
2013 error = EINTR;
2014 goto out;
2015 }
2016
2017 if (cv_res <= 0) {
2018 /* We were woken up either by timeout or by interrupt */
2019 error = (cv_res < 0) ? ETIMEDOUT : EINTR;
2020
2021 /*
2022 * The granted message may arrive after the
2023 * interrupt/timeout but before we manage to lock the
2024 * mutex. Detect this by examining nslp.
2025 */
2026 if (nslp->nsl_state == NLM_SL_GRANTED)
2027 error = 0;
2028 } else { /* Awaken via cv_signal()/cv_broadcast() or didn't block */
2029 error = 0;
2030 VERIFY(nslp->nsl_state == NLM_SL_GRANTED);
2031 }
2032
2033 out:
2034 mutex_exit(&g->lock);
2035 return (error);
2036 }
2037
2038 /*
2039 * Mark client side sleeping lock as granted
2040 * and wake up a process blocked on the lock.
2041 * Called from server side NLM_GRANT handler.
2042 *
2043 * If sleeping lock is found return 0, otherwise
2044 * return ENOENT.
2045 */
2046 int
nlm_slock_grant(struct nlm_globals * g,struct nlm_host * hostp,struct nlm4_lock * alock)2047 nlm_slock_grant(struct nlm_globals *g,
2048 struct nlm_host *hostp, struct nlm4_lock *alock)
2049 {
2050 struct nlm_slock *nslp;
2051 int error = ENOENT;
2052
2053 mutex_enter(&g->lock);
2054 TAILQ_FOREACH(nslp, &g->nlm_slocks, nsl_link) {
2055 if ((nslp->nsl_state != NLM_SL_BLOCKED) ||
2056 (nslp->nsl_host != hostp))
2057 continue;
2058
2059 if (alock->svid == nslp->nsl_lock.svid &&
2060 alock->l_offset == nslp->nsl_lock.l_offset &&
2061 alock->l_len == nslp->nsl_lock.l_len &&
2062 alock->fh.n_len == nslp->nsl_lock.fh.n_len &&
2063 bcmp(alock->fh.n_bytes, nslp->nsl_lock.fh.n_bytes,
2064 nslp->nsl_lock.fh.n_len) == 0) {
2065 nslp->nsl_state = NLM_SL_GRANTED;
2066 cv_broadcast(&nslp->nsl_cond);
2067 error = 0;
2068 break;
2069 }
2070 }
2071
2072 mutex_exit(&g->lock);
2073 return (error);
2074 }
2075
2076 /*
2077 * Register sleeping lock request corresponding to
2078 * flp on the given vhold object.
2079 * On success function returns 0, otherwise (if
2080 * lock request with the same flp is already
2081 * registered) function returns EEXIST.
2082 */
2083 int
nlm_slreq_register(struct nlm_host * hostp,struct nlm_vhold * nvp,struct flock64 * flp)2084 nlm_slreq_register(struct nlm_host *hostp, struct nlm_vhold *nvp,
2085 struct flock64 *flp)
2086 {
2087 struct nlm_slreq *slr, *new_slr = NULL;
2088 int ret = EEXIST;
2089
2090 mutex_enter(&hostp->nh_lock);
2091 slr = nlm_slreq_find_locked(hostp, nvp, flp);
2092 if (slr != NULL)
2093 goto out;
2094
2095 mutex_exit(&hostp->nh_lock);
2096 new_slr = kmem_zalloc(sizeof (*slr), KM_SLEEP);
2097 bcopy(flp, &new_slr->nsr_fl, sizeof (*flp));
2098
2099 mutex_enter(&hostp->nh_lock);
2100 slr = nlm_slreq_find_locked(hostp, nvp, flp);
2101 if (slr == NULL) {
2102 slr = new_slr;
2103 new_slr = NULL;
2104 ret = 0;
2105
2106 TAILQ_INSERT_TAIL(&nvp->nv_slreqs, slr, nsr_link);
2107 }
2108
2109 out:
2110 mutex_exit(&hostp->nh_lock);
2111 if (new_slr != NULL)
2112 kmem_free(new_slr, sizeof (*new_slr));
2113
2114 return (ret);
2115 }
2116
2117 /*
2118 * Unregister sleeping lock request corresponding
2119 * to flp from the given vhold object.
2120 * On success function returns 0, otherwise (if
2121 * lock request corresponding to flp isn't found
2122 * on the given vhold) function returns ENOENT.
2123 */
2124 int
nlm_slreq_unregister(struct nlm_host * hostp,struct nlm_vhold * nvp,struct flock64 * flp)2125 nlm_slreq_unregister(struct nlm_host *hostp, struct nlm_vhold *nvp,
2126 struct flock64 *flp)
2127 {
2128 struct nlm_slreq *slr;
2129
2130 mutex_enter(&hostp->nh_lock);
2131 slr = nlm_slreq_find_locked(hostp, nvp, flp);
2132 if (slr == NULL) {
2133 mutex_exit(&hostp->nh_lock);
2134 return (ENOENT);
2135 }
2136
2137 TAILQ_REMOVE(&nvp->nv_slreqs, slr, nsr_link);
2138 mutex_exit(&hostp->nh_lock);
2139
2140 kmem_free(slr, sizeof (*slr));
2141 return (0);
2142 }
2143
2144 /*
2145 * Find sleeping lock request on the given vhold object by flp.
2146 */
2147 struct nlm_slreq *
nlm_slreq_find_locked(struct nlm_host * hostp,struct nlm_vhold * nvp,struct flock64 * flp)2148 nlm_slreq_find_locked(struct nlm_host *hostp, struct nlm_vhold *nvp,
2149 struct flock64 *flp)
2150 {
2151 struct nlm_slreq *slr = NULL;
2152
2153 ASSERT(MUTEX_HELD(&hostp->nh_lock));
2154 TAILQ_FOREACH(slr, &nvp->nv_slreqs, nsr_link) {
2155 if (slr->nsr_fl.l_start == flp->l_start &&
2156 slr->nsr_fl.l_len == flp->l_len &&
2157 slr->nsr_fl.l_pid == flp->l_pid &&
2158 slr->nsr_fl.l_type == flp->l_type)
2159 break;
2160 }
2161
2162 return (slr);
2163 }
2164
2165 /*
2166 * NLM tracks active share reservations made on the client side.
2167 * It needs to have a track of share reservations for two purposes
2168 * 1) to determine if nlm_host is busy (if it has active locks and/or
2169 * share reservations, it is)
2170 * 2) to recover active share reservations when NLM server reports
2171 * that it has rebooted.
2172 *
2173 * Unfortunately Illumos local share reservations manager (see os/share.c)
2174 * doesn't have an ability to lookup all reservations on the system
2175 * by sysid (like local lock manager) or get all reservations by sysid.
2176 * It tracks reservations per vnode and is able to get/looup them
2177 * on particular vnode. It's not what NLM needs. Thus it has that ugly
2178 * share reservations tracking scheme.
2179 */
2180
2181 void
nlm_shres_track(struct nlm_host * hostp,vnode_t * vp,struct shrlock * shrp)2182 nlm_shres_track(struct nlm_host *hostp, vnode_t *vp, struct shrlock *shrp)
2183 {
2184 struct nlm_shres *nsp, *nsp_new;
2185
2186 /*
2187 * NFS code must fill the s_owner, so that
2188 * s_own_len is never 0.
2189 */
2190 ASSERT(shrp->s_own_len > 0);
2191 nsp_new = nlm_shres_create_item(shrp, vp);
2192
2193 mutex_enter(&hostp->nh_lock);
2194 for (nsp = hostp->nh_shrlist; nsp != NULL; nsp = nsp->ns_next)
2195 if (nsp->ns_vp == vp && nlm_shres_equal(shrp, nsp->ns_shr))
2196 break;
2197
2198 if (nsp != NULL) {
2199 /*
2200 * Found a duplicate. Do nothing.
2201 */
2202
2203 goto out;
2204 }
2205
2206 nsp = nsp_new;
2207 nsp_new = NULL;
2208 nsp->ns_next = hostp->nh_shrlist;
2209 hostp->nh_shrlist = nsp;
2210
2211 out:
2212 mutex_exit(&hostp->nh_lock);
2213 if (nsp_new != NULL)
2214 nlm_shres_destroy_item(nsp_new);
2215 }
2216
2217 void
nlm_shres_untrack(struct nlm_host * hostp,vnode_t * vp,struct shrlock * shrp)2218 nlm_shres_untrack(struct nlm_host *hostp, vnode_t *vp, struct shrlock *shrp)
2219 {
2220 struct nlm_shres *nsp, *nsp_prev = NULL;
2221
2222 mutex_enter(&hostp->nh_lock);
2223 nsp = hostp->nh_shrlist;
2224 while (nsp != NULL) {
2225 if (nsp->ns_vp == vp && nlm_shres_equal(shrp, nsp->ns_shr)) {
2226 struct nlm_shres *nsp_del;
2227
2228 nsp_del = nsp;
2229 nsp = nsp->ns_next;
2230 if (nsp_prev != NULL)
2231 nsp_prev->ns_next = nsp;
2232 else
2233 hostp->nh_shrlist = nsp;
2234
2235 nlm_shres_destroy_item(nsp_del);
2236 continue;
2237 }
2238
2239 nsp_prev = nsp;
2240 nsp = nsp->ns_next;
2241 }
2242
2243 mutex_exit(&hostp->nh_lock);
2244 }
2245
2246 /*
2247 * Get a _copy_ of the list of all active share reservations
2248 * made by the given host.
2249 * NOTE: the list function returns _must_ be released using
2250 * nlm_free_shrlist().
2251 */
2252 struct nlm_shres *
nlm_get_active_shres(struct nlm_host * hostp)2253 nlm_get_active_shres(struct nlm_host *hostp)
2254 {
2255 struct nlm_shres *nsp, *nslist = NULL;
2256
2257 mutex_enter(&hostp->nh_lock);
2258 for (nsp = hostp->nh_shrlist; nsp != NULL; nsp = nsp->ns_next) {
2259 struct nlm_shres *nsp_new;
2260
2261 nsp_new = nlm_shres_create_item(nsp->ns_shr, nsp->ns_vp);
2262 nsp_new->ns_next = nslist;
2263 nslist = nsp_new;
2264 }
2265
2266 mutex_exit(&hostp->nh_lock);
2267 return (nslist);
2268 }
2269
2270 /*
2271 * Free memory allocated for the active share reservations
2272 * list created by nlm_get_active_shres() function.
2273 */
2274 void
nlm_free_shrlist(struct nlm_shres * nslist)2275 nlm_free_shrlist(struct nlm_shres *nslist)
2276 {
2277 struct nlm_shres *nsp;
2278
2279 while (nslist != NULL) {
2280 nsp = nslist;
2281 nslist = nslist->ns_next;
2282
2283 nlm_shres_destroy_item(nsp);
2284 }
2285 }
2286
2287 static bool_t
nlm_shres_equal(struct shrlock * shrp1,struct shrlock * shrp2)2288 nlm_shres_equal(struct shrlock *shrp1, struct shrlock *shrp2)
2289 {
2290 if (shrp1->s_sysid == shrp2->s_sysid &&
2291 shrp1->s_pid == shrp2->s_pid &&
2292 shrp1->s_own_len == shrp2->s_own_len &&
2293 bcmp(shrp1->s_owner, shrp2->s_owner,
2294 shrp1->s_own_len) == 0)
2295 return (TRUE);
2296
2297 return (FALSE);
2298 }
2299
2300 static struct nlm_shres *
nlm_shres_create_item(struct shrlock * shrp,vnode_t * vp)2301 nlm_shres_create_item(struct shrlock *shrp, vnode_t *vp)
2302 {
2303 struct nlm_shres *nsp;
2304
2305 nsp = kmem_alloc(sizeof (*nsp), KM_SLEEP);
2306 nsp->ns_shr = kmem_alloc(sizeof (*shrp), KM_SLEEP);
2307 bcopy(shrp, nsp->ns_shr, sizeof (*shrp));
2308 nsp->ns_shr->s_owner = kmem_alloc(shrp->s_own_len, KM_SLEEP);
2309 bcopy(shrp->s_owner, nsp->ns_shr->s_owner, shrp->s_own_len);
2310 nsp->ns_vp = vp;
2311
2312 return (nsp);
2313 }
2314
2315 static void
nlm_shres_destroy_item(struct nlm_shres * nsp)2316 nlm_shres_destroy_item(struct nlm_shres *nsp)
2317 {
2318 kmem_free(nsp->ns_shr->s_owner,
2319 nsp->ns_shr->s_own_len);
2320 kmem_free(nsp->ns_shr, sizeof (struct shrlock));
2321 kmem_free(nsp, sizeof (*nsp));
2322 }
2323
2324 /*
2325 * Called by klmmod.c when lockd adds a network endpoint
2326 * on which we should begin RPC services.
2327 */
2328 int
nlm_svc_add_ep(struct file * fp,const char * netid,struct knetconfig * knc)2329 nlm_svc_add_ep(struct file *fp, const char *netid, struct knetconfig *knc)
2330 {
2331 SVCMASTERXPRT *xprt = NULL;
2332 int error;
2333
2334 error = svc_tli_kcreate(fp, 0, (char *)netid, NULL, &xprt,
2335 &nlm_sct, NULL, NLM_SVCPOOL_ID, FALSE);
2336 if (error != 0)
2337 return (error);
2338
2339 (void) nlm_knc_to_netid(knc);
2340 return (0);
2341 }
2342
2343 /*
2344 * Start NLM service.
2345 */
2346 int
nlm_svc_starting(struct nlm_globals * g,struct file * fp,const char * netid,struct knetconfig * knc)2347 nlm_svc_starting(struct nlm_globals *g, struct file *fp,
2348 const char *netid, struct knetconfig *knc)
2349 {
2350 int error;
2351 enum clnt_stat stat;
2352
2353 VERIFY(g->run_status == NLM_ST_STARTING);
2354 VERIFY(g->nlm_gc_thread == NULL);
2355
2356 error = nlm_nsm_init_local(&g->nlm_nsm);
2357 if (error != 0) {
2358 NLM_ERR("Failed to initialize NSM handler "
2359 "(error=%d)\n", error);
2360 g->run_status = NLM_ST_DOWN;
2361 return (error);
2362 }
2363
2364 error = EIO;
2365
2366 /*
2367 * Create an NLM garbage collector thread that will
2368 * clean up stale vholds and hosts objects.
2369 */
2370 g->nlm_gc_thread = zthread_create(NULL, 0, nlm_gc,
2371 g, 0, minclsyspri);
2372
2373 /*
2374 * Send SIMU_CRASH to local statd to report that
2375 * NLM started, so that statd can report other hosts
2376 * about NLM state change.
2377 */
2378
2379 stat = nlm_nsm_simu_crash(&g->nlm_nsm);
2380 if (stat != RPC_SUCCESS) {
2381 NLM_ERR("Failed to connect to local statd "
2382 "(rpcerr=%d)\n", stat);
2383 goto shutdown_lm;
2384 }
2385
2386 stat = nlm_nsm_stat(&g->nlm_nsm, &g->nsm_state);
2387 if (stat != RPC_SUCCESS) {
2388 NLM_ERR("Failed to get the status of local statd "
2389 "(rpcerr=%d)\n", stat);
2390 goto shutdown_lm;
2391 }
2392
2393 g->grace_threshold = ddi_get_lbolt() +
2394 SEC_TO_TICK(g->grace_period);
2395
2396 /* Register endpoint used for communications with local NLM */
2397 error = nlm_svc_add_ep(fp, netid, knc);
2398 if (error != 0)
2399 goto shutdown_lm;
2400
2401 (void) svc_pool_control(NLM_SVCPOOL_ID,
2402 SVCPSET_SHUTDOWN_PROC, (void *)nlm_pool_shutdown);
2403 g->run_status = NLM_ST_UP;
2404 return (0);
2405
2406 shutdown_lm:
2407 mutex_enter(&g->lock);
2408 g->run_status = NLM_ST_STOPPING;
2409 mutex_exit(&g->lock);
2410
2411 nlm_svc_stopping(g);
2412 return (error);
2413 }
2414
2415 /*
2416 * Called when the server pool is destroyed, so that
2417 * all transports are closed and no any server threads
2418 * exist.
2419 *
2420 * Just call lm_shutdown() to shut NLM down properly.
2421 */
2422 static void
nlm_pool_shutdown(void)2423 nlm_pool_shutdown(void)
2424 {
2425 (void) lm_shutdown();
2426 }
2427
2428 /*
2429 * Stop NLM service, cleanup all resources
2430 * NLM owns at the moment.
2431 *
2432 * NOTE: NFS code can call NLM while it's
2433 * stopping or even if it's shut down. Any attempt
2434 * to lock file either on client or on the server
2435 * will fail if NLM isn't in NLM_ST_UP state.
2436 */
2437 void
nlm_svc_stopping(struct nlm_globals * g)2438 nlm_svc_stopping(struct nlm_globals *g)
2439 {
2440 mutex_enter(&g->lock);
2441 ASSERT(g->run_status == NLM_ST_STOPPING);
2442
2443 /*
2444 * Ask NLM GC thread to exit and wait until it dies.
2445 */
2446 cv_signal(&g->nlm_gc_sched_cv);
2447 while (g->nlm_gc_thread != NULL)
2448 cv_wait(&g->nlm_gc_finish_cv, &g->lock);
2449
2450 mutex_exit(&g->lock);
2451
2452 /*
2453 * Cleanup locks owned by NLM hosts.
2454 * NOTE: New hosts won't be created while
2455 * NLM is stopping.
2456 */
2457 while (!avl_is_empty(&g->nlm_hosts_tree)) {
2458 struct nlm_host *hostp;
2459 int busy_hosts = 0;
2460
2461 /*
2462 * Iterate through all NLM hosts in the system
2463 * and drop the locks they own by force.
2464 */
2465 hostp = avl_first(&g->nlm_hosts_tree);
2466 while (hostp != NULL) {
2467 /* Cleanup all client and server side locks */
2468 nlm_client_cancel_all(g, hostp);
2469 nlm_host_notify_server(hostp, 0);
2470
2471 mutex_enter(&hostp->nh_lock);
2472 nlm_host_gc_vholds(hostp);
2473 if (hostp->nh_refs > 0 || nlm_host_has_locks(hostp)) {
2474 /*
2475 * Oh, it seems the host is still busy, let
2476 * it some time to release and go to the
2477 * next one.
2478 */
2479
2480 mutex_exit(&hostp->nh_lock);
2481 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2482 busy_hosts++;
2483 continue;
2484 }
2485
2486 mutex_exit(&hostp->nh_lock);
2487 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2488 }
2489
2490 /*
2491 * All hosts go to nlm_idle_hosts list after
2492 * all locks they own are cleaned up and last refereces
2493 * were dropped. Just destroy all hosts in nlm_idle_hosts
2494 * list, they can not be removed from there while we're
2495 * in stopping state.
2496 */
2497 while ((hostp = TAILQ_FIRST(&g->nlm_idle_hosts)) != NULL) {
2498 nlm_host_unregister(g, hostp);
2499 nlm_host_destroy(hostp);
2500 }
2501
2502 if (busy_hosts > 0) {
2503 /*
2504 * There're some hosts that weren't cleaned
2505 * up. Probably they're in resource cleanup
2506 * process. Give them some time to do drop
2507 * references.
2508 */
2509 delay(MSEC_TO_TICK(500));
2510 }
2511 }
2512
2513 ASSERT(TAILQ_EMPTY(&g->nlm_slocks));
2514
2515 nlm_nsm_fini(&g->nlm_nsm);
2516 g->lockd_pid = 0;
2517 g->run_status = NLM_ST_DOWN;
2518 }
2519
2520 /*
2521 * Returns TRUE if the given vnode has
2522 * any active or sleeping locks.
2523 */
2524 int
nlm_vp_active(const vnode_t * vp)2525 nlm_vp_active(const vnode_t *vp)
2526 {
2527 struct nlm_globals *g;
2528 struct nlm_host *hostp;
2529 struct nlm_vhold *nvp;
2530 int active = 0;
2531
2532 g = zone_getspecific(nlm_zone_key, curzone);
2533
2534 /*
2535 * Server side NLM has locks on the given vnode
2536 * if there exist a vhold object that holds
2537 * the given vnode "vp" in one of NLM hosts.
2538 */
2539 mutex_enter(&g->lock);
2540 hostp = avl_first(&g->nlm_hosts_tree);
2541 while (hostp != NULL) {
2542 mutex_enter(&hostp->nh_lock);
2543 nvp = nlm_vhold_find_locked(hostp, vp);
2544 mutex_exit(&hostp->nh_lock);
2545 if (nvp != NULL) {
2546 active = 1;
2547 break;
2548 }
2549
2550 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2551 }
2552
2553 mutex_exit(&g->lock);
2554 return (active);
2555 }
2556
2557 /*
2558 * Called right before NFS export is going to
2559 * dissapear. The function finds all vnodes
2560 * belonging to the given export and cleans
2561 * all remote locks and share reservations
2562 * on them.
2563 */
2564 void
nlm_unexport(struct exportinfo * exi)2565 nlm_unexport(struct exportinfo *exi)
2566 {
2567 struct nlm_globals *g;
2568 struct nlm_host *hostp;
2569
2570 g = zone_getspecific(nlm_zone_key, curzone);
2571
2572 mutex_enter(&g->lock);
2573 hostp = avl_first(&g->nlm_hosts_tree);
2574 while (hostp != NULL) {
2575 struct nlm_vhold *nvp;
2576
2577 if (hostp->nh_flags & NLM_NH_INIDLE) {
2578 TAILQ_REMOVE(&g->nlm_idle_hosts, hostp, nh_link);
2579 hostp->nh_flags &= ~NLM_NH_INIDLE;
2580 }
2581 hostp->nh_refs++;
2582
2583 mutex_exit(&g->lock);
2584
2585 mutex_enter(&hostp->nh_lock);
2586 TAILQ_FOREACH(nvp, &hostp->nh_vholds_list, nv_link) {
2587 vnode_t *vp;
2588
2589 nvp->nv_refcnt++;
2590 mutex_exit(&hostp->nh_lock);
2591
2592 vp = nvp->nv_vp;
2593
2594 if (!EQFSID(&exi->exi_fsid, &vp->v_vfsp->vfs_fsid))
2595 goto next_iter;
2596
2597 /*
2598 * Ok, it we found out that vnode vp is under
2599 * control by the exportinfo exi, now we need
2600 * to drop all locks from this vnode, let's
2601 * do it.
2602 */
2603 nlm_vhold_clean(nvp, hostp->nh_sysid);
2604
2605 next_iter:
2606 mutex_enter(&hostp->nh_lock);
2607 nvp->nv_refcnt--;
2608 }
2609 mutex_exit(&hostp->nh_lock);
2610
2611 mutex_enter(&g->lock);
2612 nlm_host_release_locked(g, hostp);
2613
2614 hostp = AVL_NEXT(&g->nlm_hosts_tree, hostp);
2615 }
2616
2617 mutex_exit(&g->lock);
2618 }
2619
2620 /*
2621 * Allocate new unique sysid.
2622 * In case of failure (no available sysids)
2623 * return LM_NOSYSID.
2624 */
2625 sysid_t
nlm_sysid_alloc(void)2626 nlm_sysid_alloc(void)
2627 {
2628 sysid_t ret_sysid = LM_NOSYSID;
2629
2630 rw_enter(&lm_lck, RW_WRITER);
2631 if (nlm_sysid_nidx > LM_SYSID_MAX)
2632 nlm_sysid_nidx = LM_SYSID;
2633
2634 if (!BT_TEST(nlm_sysid_bmap, nlm_sysid_nidx)) {
2635 BT_SET(nlm_sysid_bmap, nlm_sysid_nidx);
2636 ret_sysid = nlm_sysid_nidx++;
2637 } else {
2638 index_t id;
2639
2640 id = bt_availbit(nlm_sysid_bmap, NLM_BMAP_NITEMS);
2641 if (id > 0) {
2642 nlm_sysid_nidx = id + 1;
2643 ret_sysid = id;
2644 BT_SET(nlm_sysid_bmap, id);
2645 }
2646 }
2647
2648 rw_exit(&lm_lck);
2649 return (ret_sysid);
2650 }
2651
2652 void
nlm_sysid_free(sysid_t sysid)2653 nlm_sysid_free(sysid_t sysid)
2654 {
2655 ASSERT(sysid >= LM_SYSID && sysid <= LM_SYSID_MAX);
2656
2657 rw_enter(&lm_lck, RW_WRITER);
2658 ASSERT(BT_TEST(nlm_sysid_bmap, sysid));
2659 BT_CLEAR(nlm_sysid_bmap, sysid);
2660 rw_exit(&lm_lck);
2661 }
2662
2663 /*
2664 * Return true if the request came from a local caller.
2665 * By necessity, this "knows" the netid names invented
2666 * in lm_svc() and nlm_netid_from_knetconfig().
2667 */
2668 bool_t
nlm_caller_is_local(SVCXPRT * transp)2669 nlm_caller_is_local(SVCXPRT *transp)
2670 {
2671 char *netid;
2672 struct netbuf *rtaddr;
2673
2674 netid = svc_getnetid(transp);
2675 rtaddr = svc_getrpccaller(transp);
2676
2677 if (netid == NULL)
2678 return (FALSE);
2679
2680 if (strcmp(netid, "ticlts") == 0 ||
2681 strcmp(netid, "ticotsord") == 0)
2682 return (TRUE);
2683
2684 if (strcmp(netid, "tcp") == 0 || strcmp(netid, "udp") == 0) {
2685 struct sockaddr_in *sin = (void *)rtaddr->buf;
2686 if (sin->sin_addr.s_addr == htonl(INADDR_LOOPBACK))
2687 return (TRUE);
2688 }
2689 if (strcmp(netid, "tcp6") == 0 || strcmp(netid, "udp6") == 0) {
2690 struct sockaddr_in6 *sin6 = (void *)rtaddr->buf;
2691 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
2692 return (TRUE);
2693 }
2694
2695 return (FALSE); /* unknown transport */
2696 }
2697
2698 /*
2699 * Get netid string correspondig to the given knetconfig.
2700 * If not done already, save knc->knc_rdev in our table.
2701 */
2702 const char *
nlm_knc_to_netid(struct knetconfig * knc)2703 nlm_knc_to_netid(struct knetconfig *knc)
2704 {
2705 int i;
2706 dev_t rdev;
2707 struct nlm_knc *nc;
2708 const char *netid = NULL;
2709
2710 rw_enter(&lm_lck, RW_READER);
2711 for (i = 0; i < NLM_KNCS; i++) {
2712 nc = &nlm_netconfigs[i];
2713
2714 if (nc->n_knc.knc_semantics == knc->knc_semantics &&
2715 strcmp(nc->n_knc.knc_protofmly,
2716 knc->knc_protofmly) == 0) {
2717 netid = nc->n_netid;
2718 rdev = nc->n_knc.knc_rdev;
2719 break;
2720 }
2721 }
2722 rw_exit(&lm_lck);
2723
2724 if (netid != NULL && rdev == NODEV) {
2725 rw_enter(&lm_lck, RW_WRITER);
2726 if (nc->n_knc.knc_rdev == NODEV)
2727 nc->n_knc.knc_rdev = knc->knc_rdev;
2728 rw_exit(&lm_lck);
2729 }
2730
2731 return (netid);
2732 }
2733
2734 /*
2735 * Get a knetconfig corresponding to the given netid.
2736 * If there's no knetconfig for this netid, ENOENT
2737 * is returned.
2738 */
2739 int
nlm_knc_from_netid(const char * netid,struct knetconfig * knc)2740 nlm_knc_from_netid(const char *netid, struct knetconfig *knc)
2741 {
2742 int i, ret;
2743
2744 ret = ENOENT;
2745 for (i = 0; i < NLM_KNCS; i++) {
2746 struct nlm_knc *nknc;
2747
2748 nknc = &nlm_netconfigs[i];
2749 if (strcmp(netid, nknc->n_netid) == 0 &&
2750 nknc->n_knc.knc_rdev != NODEV) {
2751 *knc = nknc->n_knc;
2752 ret = 0;
2753 break;
2754 }
2755 }
2756
2757 return (ret);
2758 }
2759
2760 void
nlm_cprsuspend(void)2761 nlm_cprsuspend(void)
2762 {
2763 struct nlm_globals *g;
2764
2765 rw_enter(&lm_lck, RW_READER);
2766 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link)
2767 nlm_suspend_zone(g);
2768
2769 rw_exit(&lm_lck);
2770 }
2771
2772 void
nlm_cprresume(void)2773 nlm_cprresume(void)
2774 {
2775 struct nlm_globals *g;
2776
2777 rw_enter(&lm_lck, RW_READER);
2778 TAILQ_FOREACH(g, &nlm_zones_list, nlm_link)
2779 nlm_resume_zone(g);
2780
2781 rw_exit(&lm_lck);
2782 }
2783
2784 static void
nlm_nsm_clnt_init(CLIENT * clnt,struct nlm_nsm * nsm)2785 nlm_nsm_clnt_init(CLIENT *clnt, struct nlm_nsm *nsm)
2786 {
2787 (void) clnt_tli_kinit(clnt, &nsm->ns_knc, &nsm->ns_addr, 0,
2788 NLM_RPC_RETRIES, kcred);
2789 }
2790
2791 static void
nlm_netbuf_to_netobj(struct netbuf * addr,int * family,netobj * obj)2792 nlm_netbuf_to_netobj(struct netbuf *addr, int *family, netobj *obj)
2793 {
2794 /* LINTED pointer alignment */
2795 struct sockaddr *sa = (struct sockaddr *)addr->buf;
2796
2797 *family = sa->sa_family;
2798
2799 switch (sa->sa_family) {
2800 case AF_INET: {
2801 /* LINTED pointer alignment */
2802 struct sockaddr_in *sin = (struct sockaddr_in *)sa;
2803
2804 obj->n_len = sizeof (sin->sin_addr);
2805 obj->n_bytes = (char *)&sin->sin_addr;
2806 break;
2807 }
2808
2809 case AF_INET6: {
2810 /* LINTED pointer alignment */
2811 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
2812
2813 obj->n_len = sizeof (sin6->sin6_addr);
2814 obj->n_bytes = (char *)&sin6->sin6_addr;
2815 break;
2816 }
2817
2818 default:
2819 VERIFY(0);
2820 break;
2821 }
2822 }
2823