1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/strsubr.h> 26 #include <sys/strsun.h> 27 #include <sys/param.h> 28 #include <sys/sysmacros.h> 29 #include <vm/seg_map.h> 30 #include <vm/seg_kpm.h> 31 #include <sys/condvar_impl.h> 32 #include <sys/sendfile.h> 33 #include <fs/sockfs/nl7c.h> 34 #include <fs/sockfs/nl7curi.h> 35 #include <fs/sockfs/socktpi_impl.h> 36 37 #include <inet/common.h> 38 #include <inet/ip.h> 39 #include <inet/ip6.h> 40 #include <inet/tcp.h> 41 #include <inet/led.h> 42 #include <inet/mi.h> 43 44 #include <inet/nca/ncadoorhdr.h> 45 #include <inet/nca/ncalogd.h> 46 #include <inet/nca/ncandd.h> 47 48 #include <sys/promif.h> 49 50 /* 51 * Some externs: 52 */ 53 54 extern boolean_t nl7c_logd_enabled; 55 extern void nl7c_logd_log(uri_desc_t *, uri_desc_t *, 56 time_t, ipaddr_t); 57 extern boolean_t nl7c_close_addr(struct sonode *); 58 extern struct sonode *nl7c_addr2portso(void *); 59 extern uri_desc_t *nl7c_http_cond(uri_desc_t *, uri_desc_t *); 60 61 /* 62 * Various global tuneables: 63 */ 64 65 clock_t nl7c_uri_ttl = -1; /* TTL in seconds (-1 == infinite) */ 66 67 boolean_t nl7c_use_kmem = B_FALSE; /* Force use of kmem (no segmap) */ 68 69 uint64_t nl7c_file_prefetch = 1; /* File cache prefetch pages */ 70 71 uint64_t nl7c_uri_max = 0; /* Maximum bytes (0 == infinite) */ 72 uint64_t nl7c_uri_bytes = 0; /* Bytes of kmem used by URIs */ 73 74 /* 75 * Locals: 76 */ 77 78 static int uri_rd_response(struct sonode *, uri_desc_t *, 79 uri_rd_t *, boolean_t); 80 static int uri_response(struct sonode *, uri_desc_t *); 81 82 /* 83 * HTTP scheme functions called from nl7chttp.c: 84 */ 85 86 boolean_t nl7c_http_request(char **, char *, uri_desc_t *, struct sonode *); 87 boolean_t nl7c_http_response(char **, char *, uri_desc_t *, struct sonode *); 88 boolean_t nl7c_http_cmp(void *, void *); 89 mblk_t *nl7c_http_persist(struct sonode *); 90 void nl7c_http_free(void *arg); 91 void nl7c_http_init(void); 92 93 /* 94 * Counters that need to move to kstat and/or be removed: 95 */ 96 97 volatile uint64_t nl7c_uri_request = 0; 98 volatile uint64_t nl7c_uri_hit = 0; 99 volatile uint64_t nl7c_uri_pass = 0; 100 volatile uint64_t nl7c_uri_miss = 0; 101 volatile uint64_t nl7c_uri_temp = 0; 102 volatile uint64_t nl7c_uri_more = 0; 103 volatile uint64_t nl7c_uri_data = 0; 104 volatile uint64_t nl7c_uri_sendfilev = 0; 105 volatile uint64_t nl7c_uri_reclaim_calls = 0; 106 volatile uint64_t nl7c_uri_reclaim_cnt = 0; 107 volatile uint64_t nl7c_uri_pass_urifail = 0; 108 volatile uint64_t nl7c_uri_pass_dupbfail = 0; 109 volatile uint64_t nl7c_uri_more_get = 0; 110 volatile uint64_t nl7c_uri_pass_method = 0; 111 volatile uint64_t nl7c_uri_pass_option = 0; 112 volatile uint64_t nl7c_uri_more_eol = 0; 113 volatile uint64_t nl7c_uri_more_http = 0; 114 volatile uint64_t nl7c_uri_pass_http = 0; 115 volatile uint64_t nl7c_uri_pass_addfail = 0; 116 volatile uint64_t nl7c_uri_pass_temp = 0; 117 volatile uint64_t nl7c_uri_expire = 0; 118 volatile uint64_t nl7c_uri_purge = 0; 119 volatile uint64_t nl7c_uri_NULL1 = 0; 120 volatile uint64_t nl7c_uri_NULL2 = 0; 121 volatile uint64_t nl7c_uri_close = 0; 122 volatile uint64_t nl7c_uri_temp_close = 0; 123 volatile uint64_t nl7c_uri_free = 0; 124 volatile uint64_t nl7c_uri_temp_free = 0; 125 volatile uint64_t nl7c_uri_temp_mk = 0; 126 volatile uint64_t nl7c_uri_rd_EAGAIN = 0; 127 128 /* 129 * Various kmem_cache_t's: 130 */ 131 132 kmem_cache_t *nl7c_uri_kmc; 133 kmem_cache_t *nl7c_uri_rd_kmc; 134 static kmem_cache_t *uri_desb_kmc; 135 static kmem_cache_t *uri_segmap_kmc; 136 137 static void uri_kmc_reclaim(void *); 138 139 static void nl7c_uri_reclaim(void); 140 141 /* 142 * The URI hash is a dynamically sized A/B bucket hash, when the current 143 * hash's average bucket chain length exceeds URI_HASH_AVRG a new hash of 144 * the next P2Ps[] size is created. 145 * 146 * All lookups are done in the current hash then the new hash (if any), 147 * if there is a new has then when a current hash bucket chain is examined 148 * any uri_desc_t members will be migrated to the new hash and when the 149 * last uri_desc_t has been migrated then the new hash will become the 150 * current and the previous current hash will be freed leaving a single 151 * hash. 152 * 153 * uri_hash_t - hash bucket (chain) type, contained in the uri_hash_ab[] 154 * and can be accessed only after aquiring the uri_hash_access lock (for 155 * READER or WRITER) then acquiring the lock uri_hash_t.lock, the uri_hash_t 156 * and all linked uri_desc_t.hash members are protected. Note, a REF_HOLD() 157 * is placed on all uri_desc_t uri_hash_t list members. 158 * 159 * uri_hash_access - rwlock for all uri_hash_* variables, READER for read 160 * access and WRITER for write access. Note, WRITER is only required for 161 * hash geometry changes. 162 * 163 * uri_hash_which - which uri_hash_ab[] is the current hash. 164 * 165 * uri_hash_n[] - the P2Ps[] index for each uri_hash_ab[]. 166 * 167 * uri_hash_sz[] - the size for each uri_hash_ab[]. 168 * 169 * uri_hash_cnt[] - the total uri_desc_t members for each uri_hash_ab[]. 170 * 171 * uri_hash_overflow[] - the uri_hash_cnt[] for each uri_hash_ab[] when 172 * a new uri_hash_ab[] needs to be created. 173 * 174 * uri_hash_ab[] - the uri_hash_t entries. 175 * 176 * uri_hash_lru[] - the last uri_hash_ab[] walked for lru reclaim. 177 */ 178 179 typedef struct uri_hash_s { 180 struct uri_desc_s *list; /* List of uri_t(s) */ 181 kmutex_t lock; 182 } uri_hash_t; 183 184 #define URI_HASH_AVRG 5 /* Desired average hash chain length */ 185 #define URI_HASH_N_INIT 9 /* P2Ps[] initial index */ 186 187 static krwlock_t uri_hash_access; 188 static uint32_t uri_hash_which = 0; 189 static uint32_t uri_hash_n[2] = {URI_HASH_N_INIT, 0}; 190 static uint32_t uri_hash_sz[2] = {0, 0}; 191 static uint32_t uri_hash_cnt[2] = {0, 0}; 192 static uint32_t uri_hash_overflow[2] = {0, 0}; 193 static uri_hash_t *uri_hash_ab[2] = {NULL, NULL}; 194 static uri_hash_t *uri_hash_lru[2] = {NULL, NULL}; 195 196 /* 197 * Primes for N of 3 - 24 where P is first prime less then (2^(N-1))+(2^(N-2)) 198 * these primes have been foud to be useful for prime sized hash tables. 199 */ 200 201 static const int P2Ps[] = { 202 0, 0, 0, 5, 11, 23, 47, 89, 191, 383, 761, 1531, 3067, 203 6143, 12281, 24571, 49139, 98299, 196597, 393209, 204 786431, 1572853, 3145721, 6291449, 12582893, 0}; 205 206 /* 207 * Hash macros: 208 * 209 * H2A(char *cp, char *ep, char c) - convert the escaped octet (ASCII) 210 * hex multichar of the format "%HH" pointeded to by *cp to a char and 211 * return in c, *ep points to past end of (char *), on return *cp will 212 * point to the last char consumed. 213 * 214 * URI_HASH(unsigned hix, char *cp, char *ep) - hash the char(s) from 215 * *cp to *ep to the unsigned hix, cp nor ep are modified. 216 * 217 * URI_HASH_IX(unsigned hix, int which) - convert the hash value hix to 218 * a hash index 0 - (uri_hash_sz[which] - 1). 219 * 220 * URI_HASH_MIGRATE(from, hp, to) - migrate the uri_hash_t *hp list 221 * uri_desc_t members from hash from to hash to. 222 * 223 * URI_HASH_UNLINK(cur, new, hp, puri, uri) - unlink the uri_desc_t 224 * *uri which is a member of the uri_hash_t *hp list with a previous 225 * list member of *puri for the uri_hash_ab[] cur. After unlinking 226 * check for cur hash empty, if so make new cur. Note, as this macro 227 * can change a hash chain it needs to be run under hash_access as 228 * RW_WRITER, futher as it can change the new hash to cur any access 229 * to the hash state must be done after either dropping locks and 230 * starting over or making sure the global state is consistent after 231 * as before. 232 */ 233 234 #define H2A(cp, ep, c) { \ 235 int _h = 2; \ 236 int _n = 0; \ 237 char _hc; \ 238 \ 239 while (_h > 0 && ++(cp) < (ep)) { \ 240 if (_h == 1) \ 241 _n *= 0x10; \ 242 _hc = *(cp); \ 243 if (_hc >= '0' && _hc <= '9') \ 244 _n += _hc - '0'; \ 245 else if (_hc >= 'a' || _hc <= 'f') \ 246 _n += _hc - 'W'; \ 247 else if (_hc >= 'A' || _hc <= 'F') \ 248 _n += _hc - '7'; \ 249 _h--; \ 250 } \ 251 (c) = _n; \ 252 } 253 254 #define URI_HASH(hv, cp, ep) { \ 255 char *_s = (cp); \ 256 char _c; \ 257 \ 258 while (_s < (ep)) { \ 259 if ((_c = *_s) == '%') { \ 260 H2A(_s, (ep), _c); \ 261 } \ 262 CHASH(hv, _c); \ 263 _s++; \ 264 } \ 265 } 266 267 #define URI_HASH_IX(hix, which) (hix) = (hix) % (uri_hash_sz[(which)]) 268 269 #define URI_HASH_MIGRATE(from, hp, to) { \ 270 uri_desc_t *_nuri; \ 271 uint32_t _nhix; \ 272 uri_hash_t *_nhp; \ 273 \ 274 mutex_enter(&(hp)->lock); \ 275 while ((_nuri = (hp)->list) != NULL) { \ 276 (hp)->list = _nuri->hash; \ 277 atomic_dec_32(&uri_hash_cnt[(from)]); \ 278 atomic_inc_32(&uri_hash_cnt[(to)]); \ 279 _nhix = _nuri->hvalue; \ 280 URI_HASH_IX(_nhix, to); \ 281 _nhp = &uri_hash_ab[(to)][_nhix]; \ 282 mutex_enter(&_nhp->lock); \ 283 _nuri->hash = _nhp->list; \ 284 _nhp->list = _nuri; \ 285 _nuri->hit = 0; \ 286 mutex_exit(&_nhp->lock); \ 287 } \ 288 mutex_exit(&(hp)->lock); \ 289 } 290 291 #define URI_HASH_UNLINK(cur, new, hp, puri, uri) { \ 292 if ((puri) != NULL) { \ 293 (puri)->hash = (uri)->hash; \ 294 } else { \ 295 (hp)->list = (uri)->hash; \ 296 } \ 297 if (atomic_dec_32_nv(&uri_hash_cnt[(cur)]) == 0 && \ 298 uri_hash_ab[(new)] != NULL) { \ 299 kmem_free(uri_hash_ab[cur], \ 300 sizeof (uri_hash_t) * uri_hash_sz[cur]); \ 301 uri_hash_ab[(cur)] = NULL; \ 302 uri_hash_lru[(cur)] = NULL; \ 303 uri_hash_which = (new); \ 304 } else { \ 305 uri_hash_lru[(cur)] = (hp); \ 306 } \ 307 } 308 309 void 310 nl7c_uri_init(void) 311 { 312 uint32_t cur = uri_hash_which; 313 314 rw_init(&uri_hash_access, NULL, RW_DEFAULT, NULL); 315 316 uri_hash_sz[cur] = P2Ps[URI_HASH_N_INIT]; 317 uri_hash_overflow[cur] = P2Ps[URI_HASH_N_INIT] * URI_HASH_AVRG; 318 uri_hash_ab[cur] = kmem_zalloc(sizeof (uri_hash_t) * uri_hash_sz[cur], 319 KM_SLEEP); 320 uri_hash_lru[cur] = uri_hash_ab[cur]; 321 322 nl7c_uri_kmc = kmem_cache_create("NL7C_uri_kmc", sizeof (uri_desc_t), 323 0, NULL, NULL, uri_kmc_reclaim, NULL, NULL, 0); 324 325 nl7c_uri_rd_kmc = kmem_cache_create("NL7C_uri_rd_kmc", 326 sizeof (uri_rd_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 327 328 uri_desb_kmc = kmem_cache_create("NL7C_uri_desb_kmc", 329 sizeof (uri_desb_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 330 331 uri_segmap_kmc = kmem_cache_create("NL7C_uri_segmap_kmc", 332 sizeof (uri_segmap_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 333 334 nl7c_http_init(); 335 } 336 337 #define CV_SZ 16 338 339 void 340 nl7c_mi_report_hash(mblk_t *mp) 341 { 342 uri_hash_t *hp, *pend; 343 uri_desc_t *uri; 344 uint32_t cur; 345 uint32_t new; 346 int n, nz, tot; 347 uint32_t cv[CV_SZ + 1]; 348 349 rw_enter(&uri_hash_access, RW_READER); 350 cur = uri_hash_which; 351 new = cur ? 0 : 1; 352 next: 353 for (n = 0; n <= CV_SZ; n++) 354 cv[n] = 0; 355 nz = 0; 356 tot = 0; 357 hp = &uri_hash_ab[cur][0]; 358 pend = &uri_hash_ab[cur][uri_hash_sz[cur]]; 359 while (hp < pend) { 360 n = 0; 361 for (uri = hp->list; uri != NULL; uri = uri->hash) { 362 n++; 363 } 364 tot += n; 365 if (n > 0) 366 nz++; 367 if (n > CV_SZ) 368 n = CV_SZ; 369 cv[n]++; 370 hp++; 371 } 372 373 (void) mi_mpprintf(mp, "\nHash=%s, Buckets=%d, " 374 "Avrg=%d\nCount by bucket:", cur != new ? "CUR" : "NEW", 375 uri_hash_sz[cur], nz != 0 ? ((tot * 10 + 5) / nz) / 10 : 0); 376 (void) mi_mpprintf(mp, "Free=%d", cv[0]); 377 for (n = 1; n < CV_SZ; n++) { 378 int pn = 0; 379 char pv[5]; 380 char *pp = pv; 381 382 for (pn = n; pn < 1000; pn *= 10) 383 *pp++ = ' '; 384 *pp = 0; 385 (void) mi_mpprintf(mp, "%s%d=%d", pv, n, cv[n]); 386 } 387 (void) mi_mpprintf(mp, "Long=%d", cv[CV_SZ]); 388 389 if (cur != new && uri_hash_ab[new] != NULL) { 390 cur = new; 391 goto next; 392 } 393 rw_exit(&uri_hash_access); 394 } 395 396 void 397 nl7c_mi_report_uri(mblk_t *mp) 398 { 399 uri_hash_t *hp; 400 uri_desc_t *uri; 401 uint32_t cur; 402 uint32_t new; 403 int ix; 404 int ret; 405 char sc; 406 407 rw_enter(&uri_hash_access, RW_READER); 408 cur = uri_hash_which; 409 new = cur ? 0 : 1; 410 next: 411 for (ix = 0; ix < uri_hash_sz[cur]; ix++) { 412 hp = &uri_hash_ab[cur][ix]; 413 mutex_enter(&hp->lock); 414 uri = hp->list; 415 while (uri != NULL) { 416 sc = *(uri->path.ep); 417 *(uri->path.ep) = 0; 418 ret = mi_mpprintf(mp, "%s: %d %d %d", 419 uri->path.cp, (int)uri->resplen, 420 (int)uri->respclen, (int)uri->count); 421 *(uri->path.ep) = sc; 422 if (ret == -1) break; 423 uri = uri->hash; 424 } 425 mutex_exit(&hp->lock); 426 if (ret == -1) break; 427 } 428 if (ret != -1 && cur != new && uri_hash_ab[new] != NULL) { 429 cur = new; 430 goto next; 431 } 432 rw_exit(&uri_hash_access); 433 } 434 435 /* 436 * The uri_desc_t ref_t inactive function called on the last REF_RELE(), 437 * free all resources contained in the uri_desc_t. Note, the uri_desc_t 438 * will be freed by REF_RELE() on return. 439 */ 440 441 void 442 nl7c_uri_inactive(uri_desc_t *uri) 443 { 444 int64_t bytes = 0; 445 446 if (uri->tail) { 447 uri_rd_t *rdp = &uri->response; 448 uri_rd_t *free = NULL; 449 450 while (rdp) { 451 if (rdp->off == -1) { 452 bytes += rdp->sz; 453 kmem_free(rdp->data.kmem, rdp->sz); 454 } else { 455 VN_RELE(rdp->data.vnode); 456 } 457 rdp = rdp->next; 458 if (free != NULL) { 459 kmem_cache_free(nl7c_uri_rd_kmc, free); 460 } 461 free = rdp; 462 } 463 } 464 if (bytes) { 465 atomic_add_64(&nl7c_uri_bytes, -bytes); 466 } 467 if (uri->scheme != NULL) { 468 nl7c_http_free(uri->scheme); 469 } 470 if (uri->reqmp) { 471 freeb(uri->reqmp); 472 } 473 } 474 475 /* 476 * The reclaim is called by the kmem subsystem when kmem is running 477 * low. More work is needed to determine the best reclaim policy, for 478 * now we just manipulate the nl7c_uri_max global maximum bytes threshold 479 * value using a simple arithmetic backoff of the value every time this 480 * function is called then call uri_reclaim() to enforce it. 481 * 482 * Note, this value remains in place and enforced for all subsequent 483 * URI request/response processing. 484 * 485 * Note, nl7c_uri_max is currently initialized to 0 or infinite such that 486 * the first call here set it to the current uri_bytes value then backoff 487 * from there. 488 * 489 * XXX how do we determine when to increase nl7c_uri_max ??? 490 */ 491 492 /*ARGSUSED*/ 493 static void 494 uri_kmc_reclaim(void *arg) 495 { 496 uint64_t new_max; 497 498 if ((new_max = nl7c_uri_max) == 0) { 499 /* Currently infinite, initialize to current bytes used */ 500 nl7c_uri_max = nl7c_uri_bytes; 501 new_max = nl7c_uri_bytes; 502 } 503 if (new_max > 1) { 504 /* Lower max_bytes to 93% of current value */ 505 new_max >>= 1; /* 50% */ 506 new_max += (new_max >> 1); /* 75% */ 507 new_max += (new_max >> 2); /* 93% */ 508 if (new_max < nl7c_uri_max) 509 nl7c_uri_max = new_max; 510 else 511 nl7c_uri_max = 1; 512 } 513 nl7c_uri_reclaim(); 514 } 515 516 /* 517 * Delete a uri_desc_t from the URI hash. 518 */ 519 520 static void 521 uri_delete(uri_desc_t *del) 522 { 523 uint32_t hix; 524 uri_hash_t *hp; 525 uri_desc_t *uri; 526 uri_desc_t *puri; 527 uint32_t cur; 528 uint32_t new; 529 530 ASSERT(del->hash != URI_TEMP); 531 rw_enter(&uri_hash_access, RW_WRITER); 532 cur = uri_hash_which; 533 new = cur ? 0 : 1; 534 next: 535 puri = NULL; 536 hix = del->hvalue; 537 URI_HASH_IX(hix, cur); 538 hp = &uri_hash_ab[cur][hix]; 539 for (uri = hp->list; uri != NULL; uri = uri->hash) { 540 if (uri != del) { 541 puri = uri; 542 continue; 543 } 544 /* 545 * Found the URI, unlink from the hash chain, 546 * drop locks, ref release it. 547 */ 548 URI_HASH_UNLINK(cur, new, hp, puri, uri); 549 rw_exit(&uri_hash_access); 550 REF_RELE(uri); 551 return; 552 } 553 if (cur != new && uri_hash_ab[new] != NULL) { 554 /* 555 * Not found in current hash and have a new hash so 556 * check the new hash next. 557 */ 558 cur = new; 559 goto next; 560 } 561 rw_exit(&uri_hash_access); 562 } 563 564 /* 565 * Add a uri_desc_t to the URI hash. 566 */ 567 568 static void 569 uri_add(uri_desc_t *uri, krw_t rwlock, boolean_t nonblocking) 570 { 571 uint32_t hix; 572 uri_hash_t *hp; 573 uint32_t cur = uri_hash_which; 574 uint32_t new = cur ? 0 : 1; 575 576 /* 577 * Caller of uri_add() must hold the uri_hash_access rwlock. 578 */ 579 ASSERT((rwlock == RW_READER && RW_READ_HELD(&uri_hash_access)) || 580 (rwlock == RW_WRITER && RW_WRITE_HELD(&uri_hash_access))); 581 /* 582 * uri_add() always succeeds so add a hash ref to the URI now. 583 */ 584 REF_HOLD(uri); 585 again: 586 hix = uri->hvalue; 587 URI_HASH_IX(hix, cur); 588 if (uri_hash_ab[new] == NULL && 589 uri_hash_cnt[cur] < uri_hash_overflow[cur]) { 590 /* 591 * Easy case, no new hash and current hasn't overflowed, 592 * add URI to current hash and return. 593 * 594 * Note, the check for uri_hash_cnt[] above aren't done 595 * atomictally, i.e. multiple threads can be in this code 596 * as RW_READER and update the cnt[], this isn't a problem 597 * as the check is only advisory. 598 */ 599 fast: 600 atomic_inc_32(&uri_hash_cnt[cur]); 601 hp = &uri_hash_ab[cur][hix]; 602 mutex_enter(&hp->lock); 603 uri->hash = hp->list; 604 hp->list = uri; 605 mutex_exit(&hp->lock); 606 rw_exit(&uri_hash_access); 607 return; 608 } 609 if (uri_hash_ab[new] == NULL) { 610 /* 611 * Need a new a or b hash, if not already RW_WRITER 612 * try to upgrade our lock to writer. 613 */ 614 if (rwlock != RW_WRITER && ! rw_tryupgrade(&uri_hash_access)) { 615 /* 616 * Upgrade failed, we can't simple exit and reenter 617 * the lock as after the exit and before the reenter 618 * the whole world can change so just wait for writer 619 * then do everything again. 620 */ 621 if (nonblocking) { 622 /* 623 * Can't block, use fast-path above. 624 * 625 * XXX should have a background thread to 626 * handle new ab[] in this case so as to 627 * not overflow the cur hash to much. 628 */ 629 goto fast; 630 } 631 rw_exit(&uri_hash_access); 632 rwlock = RW_WRITER; 633 rw_enter(&uri_hash_access, rwlock); 634 cur = uri_hash_which; 635 new = cur ? 0 : 1; 636 goto again; 637 } 638 rwlock = RW_WRITER; 639 if (uri_hash_ab[new] == NULL) { 640 /* 641 * Still need a new hash, allocate and initialize 642 * the new hash. 643 */ 644 uri_hash_n[new] = uri_hash_n[cur] + 1; 645 if (uri_hash_n[new] == 0) { 646 /* 647 * No larger P2Ps[] value so use current, 648 * i.e. 2 of the largest are better than 1 ? 649 */ 650 uri_hash_n[new] = uri_hash_n[cur]; 651 cmn_err(CE_NOTE, "NL7C: hash index overflow"); 652 } 653 uri_hash_sz[new] = P2Ps[uri_hash_n[new]]; 654 ASSERT(uri_hash_cnt[new] == 0); 655 uri_hash_overflow[new] = uri_hash_sz[new] * 656 URI_HASH_AVRG; 657 uri_hash_ab[new] = kmem_zalloc(sizeof (uri_hash_t) * 658 uri_hash_sz[new], nonblocking ? KM_NOSLEEP : 659 KM_SLEEP); 660 if (uri_hash_ab[new] == NULL) { 661 /* 662 * Alloc failed, use fast-path above. 663 * 664 * XXX should have a background thread to 665 * handle new ab[] in this case so as to 666 * not overflow the cur hash to much. 667 */ 668 goto fast; 669 } 670 uri_hash_lru[new] = uri_hash_ab[new]; 671 } 672 } 673 /* 674 * Hashed against current hash so migrate any current hash chain 675 * members, if any. 676 * 677 * Note, the hash chain list can be checked for a non empty list 678 * outside of the hash chain list lock as the hash chain struct 679 * can't be destroyed while in the uri_hash_access rwlock, worst 680 * case is that a non empty list is found and after acquiring the 681 * lock another thread beats us to it (i.e. migrated the list). 682 */ 683 hp = &uri_hash_ab[cur][hix]; 684 if (hp->list != NULL) { 685 URI_HASH_MIGRATE(cur, hp, new); 686 } 687 /* 688 * If new hash has overflowed before current hash has been 689 * completely migrated then walk all current hash chains and 690 * migrate list members now. 691 */ 692 if (atomic_inc_32_nv(&uri_hash_cnt[new]) >= uri_hash_overflow[new]) { 693 for (hix = 0; hix < uri_hash_sz[cur]; hix++) { 694 hp = &uri_hash_ab[cur][hix]; 695 if (hp->list != NULL) { 696 URI_HASH_MIGRATE(cur, hp, new); 697 } 698 } 699 } 700 /* 701 * Add URI to new hash. 702 */ 703 hix = uri->hvalue; 704 URI_HASH_IX(hix, new); 705 hp = &uri_hash_ab[new][hix]; 706 mutex_enter(&hp->lock); 707 uri->hash = hp->list; 708 hp->list = uri; 709 mutex_exit(&hp->lock); 710 /* 711 * Last, check to see if last cur hash chain has been 712 * migrated, if so free cur hash and make new hash cur. 713 */ 714 if (uri_hash_cnt[cur] == 0) { 715 /* 716 * If we don't already hold the uri_hash_access rwlock for 717 * RW_WRITE try to upgrade to RW_WRITE and if successful 718 * check again and to see if still need to do the free. 719 */ 720 if ((rwlock == RW_WRITER || rw_tryupgrade(&uri_hash_access)) && 721 uri_hash_cnt[cur] == 0 && uri_hash_ab[new] != 0) { 722 kmem_free(uri_hash_ab[cur], 723 sizeof (uri_hash_t) * uri_hash_sz[cur]); 724 uri_hash_ab[cur] = NULL; 725 uri_hash_lru[cur] = NULL; 726 uri_hash_which = new; 727 } 728 } 729 rw_exit(&uri_hash_access); 730 } 731 732 /* 733 * Lookup a uri_desc_t in the URI hash, if found free the request uri_desc_t 734 * and return the found uri_desc_t with a REF_HOLD() placed on it. Else, if 735 * add B_TRUE use the request URI to create a new hash entry. Else if add 736 * B_FALSE ... 737 */ 738 739 static uri_desc_t * 740 uri_lookup(uri_desc_t *ruri, boolean_t add, boolean_t nonblocking) 741 { 742 uint32_t hix; 743 uri_hash_t *hp; 744 uri_desc_t *uri; 745 uri_desc_t *puri; 746 uint32_t cur; 747 uint32_t new; 748 char *rcp = ruri->path.cp; 749 char *rep = ruri->path.ep; 750 751 again: 752 rw_enter(&uri_hash_access, RW_READER); 753 cur = uri_hash_which; 754 new = cur ? 0 : 1; 755 nexthash: 756 puri = NULL; 757 hix = ruri->hvalue; 758 URI_HASH_IX(hix, cur); 759 hp = &uri_hash_ab[cur][hix]; 760 mutex_enter(&hp->lock); 761 for (uri = hp->list; uri != NULL; uri = uri->hash) { 762 char *ap = uri->path.cp; 763 char *bp = rcp; 764 char a, b; 765 766 /* Compare paths */ 767 while (bp < rep && ap < uri->path.ep) { 768 if ((a = *ap) == '%') { 769 /* Escaped hex multichar, convert it */ 770 H2A(ap, uri->path.ep, a); 771 } 772 if ((b = *bp) == '%') { 773 /* Escaped hex multichar, convert it */ 774 H2A(bp, rep, b); 775 } 776 if (a != b) { 777 /* Char's don't match */ 778 goto nexturi; 779 } 780 ap++; 781 bp++; 782 } 783 if (bp != rep || ap != uri->path.ep) { 784 /* Not same length */ 785 goto nexturi; 786 } 787 ap = uri->auth.cp; 788 bp = ruri->auth.cp; 789 if (ap != NULL) { 790 if (bp == NULL) { 791 /* URI has auth request URI doesn't */ 792 goto nexturi; 793 } 794 while (bp < ruri->auth.ep && ap < uri->auth.ep) { 795 if ((a = *ap) == '%') { 796 /* Escaped hex multichar, convert it */ 797 H2A(ap, uri->path.ep, a); 798 } 799 if ((b = *bp) == '%') { 800 /* Escaped hex multichar, convert it */ 801 H2A(bp, rep, b); 802 } 803 if (a != b) { 804 /* Char's don't match */ 805 goto nexturi; 806 } 807 ap++; 808 bp++; 809 } 810 if (bp != ruri->auth.ep || ap != uri->auth.ep) { 811 /* Not same length */ 812 goto nexturi; 813 } 814 } else if (bp != NULL) { 815 /* URI doesn't have auth and request URI does */ 816 goto nexturi; 817 } 818 /* 819 * Have a path/auth match so before any other processing 820 * of requested URI, check for expire or request no cache 821 * purge. 822 */ 823 if (uri->expire >= 0 && uri->expire <= ddi_get_lbolt() || 824 ruri->nocache) { 825 /* 826 * URI has expired or request specified to not use 827 * the cached version, unlink the URI from the hash 828 * chain, release all locks, release the hash ref 829 * on the URI, and last look it up again. 830 * 831 * Note, this will cause all variants of the named 832 * URI to be purged. 833 */ 834 if (puri != NULL) { 835 puri->hash = uri->hash; 836 } else { 837 hp->list = uri->hash; 838 } 839 mutex_exit(&hp->lock); 840 atomic_dec_32(&uri_hash_cnt[cur]); 841 rw_exit(&uri_hash_access); 842 if (ruri->nocache) 843 nl7c_uri_purge++; 844 else 845 nl7c_uri_expire++; 846 REF_RELE(uri); 847 goto again; 848 } 849 if (uri->scheme != NULL) { 850 /* 851 * URI has scheme private qualifier(s), if request 852 * URI doesn't or if no match skip this URI. 853 */ 854 if (ruri->scheme == NULL || 855 ! nl7c_http_cmp(uri->scheme, ruri->scheme)) 856 goto nexturi; 857 } else if (ruri->scheme != NULL) { 858 /* 859 * URI doesn't have scheme private qualifiers but 860 * request URI does, no match, skip this URI. 861 */ 862 goto nexturi; 863 } 864 /* 865 * Have a match, ready URI for return, first put a reference 866 * hold on the URI, if this URI is currently being processed 867 * then have to wait for the processing to be completed and 868 * redo the lookup, else return it. 869 */ 870 REF_HOLD(uri); 871 mutex_enter(&uri->proclock); 872 if (uri->proc != NULL) { 873 /* The URI is being processed, wait for completion */ 874 mutex_exit(&hp->lock); 875 rw_exit(&uri_hash_access); 876 if (! nonblocking && 877 cv_wait_sig(&uri->waiting, &uri->proclock)) { 878 /* 879 * URI has been processed but things may 880 * have changed while we were away so do 881 * most everything again. 882 */ 883 mutex_exit(&uri->proclock); 884 REF_RELE(uri); 885 goto again; 886 } else { 887 /* 888 * A nonblocking socket or an interrupted 889 * cv_wait_sig() in the first case can't 890 * block waiting for the processing of the 891 * uri hash hit uri to complete, in both 892 * cases just return failure to lookup. 893 */ 894 mutex_exit(&uri->proclock); 895 REF_RELE(uri); 896 return (NULL); 897 } 898 } 899 mutex_exit(&uri->proclock); 900 uri->hit++; 901 mutex_exit(&hp->lock); 902 rw_exit(&uri_hash_access); 903 return (uri); 904 nexturi: 905 puri = uri; 906 } 907 mutex_exit(&hp->lock); 908 if (cur != new && uri_hash_ab[new] != NULL) { 909 /* 910 * Not found in current hash and have a new hash so 911 * check the new hash next. 912 */ 913 cur = new; 914 goto nexthash; 915 } 916 add: 917 if (! add) { 918 /* Lookup only so return failure */ 919 rw_exit(&uri_hash_access); 920 return (NULL); 921 } 922 /* 923 * URI not hashed, finish intialization of the 924 * request URI, add it to the hash, return it. 925 */ 926 ruri->hit = 0; 927 ruri->expire = -1; 928 ruri->response.sz = 0; 929 ruri->proc = (struct sonode *)~NULL; 930 cv_init(&ruri->waiting, NULL, CV_DEFAULT, NULL); 931 mutex_init(&ruri->proclock, NULL, MUTEX_DEFAULT, NULL); 932 uri_add(ruri, RW_READER, nonblocking); 933 /* uri_add() has done rw_exit(&uri_hash_access) */ 934 return (ruri); 935 } 936 937 /* 938 * Reclaim URIs until max cache size threshold has been reached. 939 * 940 * A CLOCK based reclaim modified with a history (hit counter) counter. 941 */ 942 943 static void 944 nl7c_uri_reclaim(void) 945 { 946 uri_hash_t *hp, *start, *pend; 947 uri_desc_t *uri; 948 uri_desc_t *puri; 949 uint32_t cur; 950 uint32_t new; 951 952 nl7c_uri_reclaim_calls++; 953 again: 954 rw_enter(&uri_hash_access, RW_WRITER); 955 cur = uri_hash_which; 956 new = cur ? 0 : 1; 957 next: 958 hp = uri_hash_lru[cur]; 959 start = hp; 960 pend = &uri_hash_ab[cur][uri_hash_sz[cur]]; 961 while (nl7c_uri_bytes > nl7c_uri_max) { 962 puri = NULL; 963 for (uri = hp->list; uri != NULL; uri = uri->hash) { 964 if (uri->hit != 0) { 965 /* 966 * Decrement URI activity counter and skip. 967 */ 968 uri->hit--; 969 puri = uri; 970 continue; 971 } 972 if (uri->proc != NULL) { 973 /* 974 * Currently being processed by a socket, skip. 975 */ 976 continue; 977 } 978 /* 979 * Found a candidate, no hit(s) since added or last 980 * reclaim pass, unlink from it's hash chain, update 981 * lru scan pointer, drop lock, ref release it. 982 */ 983 URI_HASH_UNLINK(cur, new, hp, puri, uri); 984 if (cur == uri_hash_which) { 985 if (++hp == pend) { 986 /* Wrap pointer */ 987 hp = uri_hash_ab[cur]; 988 } 989 uri_hash_lru[cur] = hp; 990 } 991 rw_exit(&uri_hash_access); 992 REF_RELE(uri); 993 nl7c_uri_reclaim_cnt++; 994 goto again; 995 } 996 if (++hp == pend) { 997 /* Wrap pointer */ 998 hp = uri_hash_ab[cur]; 999 } 1000 if (hp == start) { 1001 if (cur != new && uri_hash_ab[new] != NULL) { 1002 /* 1003 * Done with the current hash and have a 1004 * new hash so check the new hash next. 1005 */ 1006 cur = new; 1007 goto next; 1008 } 1009 } 1010 } 1011 rw_exit(&uri_hash_access); 1012 } 1013 1014 /* 1015 * Called for a socket which is being freed prior to close, e.g. errored. 1016 */ 1017 1018 void 1019 nl7c_urifree(struct sonode *so) 1020 { 1021 sotpi_info_t *sti = SOTOTPI(so); 1022 uri_desc_t *uri = (uri_desc_t *)sti->sti_nl7c_uri; 1023 1024 sti->sti_nl7c_uri = NULL; 1025 if (uri->hash != URI_TEMP) { 1026 uri_delete(uri); 1027 mutex_enter(&uri->proclock); 1028 uri->proc = NULL; 1029 if (CV_HAS_WAITERS(&uri->waiting)) { 1030 cv_broadcast(&uri->waiting); 1031 } 1032 mutex_exit(&uri->proclock); 1033 nl7c_uri_free++; 1034 } else { 1035 /* No proclock as uri exclusively owned by so */ 1036 uri->proc = NULL; 1037 nl7c_uri_temp_free++; 1038 } 1039 REF_RELE(uri); 1040 } 1041 1042 /* 1043 * ... 1044 * 1045 * < 0 need more data 1046 * 1047 * 0 parse complete 1048 * 1049 * > 0 parse error 1050 */ 1051 1052 volatile uint64_t nl7c_resp_pfail = 0; 1053 volatile uint64_t nl7c_resp_ntemp = 0; 1054 volatile uint64_t nl7c_resp_pass = 0; 1055 1056 static int 1057 nl7c_resp_parse(struct sonode *so, uri_desc_t *uri, char *data, int sz) 1058 { 1059 if (! nl7c_http_response(&data, &data[sz], uri, so)) { 1060 if (data == NULL) { 1061 /* Parse fail */ 1062 goto pfail; 1063 } 1064 /* More data */ 1065 data = NULL; 1066 } else if (data == NULL) { 1067 goto pass; 1068 } 1069 if (uri->hash != URI_TEMP && uri->nocache) { 1070 /* 1071 * After response parse now no cache, 1072 * delete it from cache, wakeup any 1073 * waiters on this URI, make URI_TEMP. 1074 */ 1075 uri_delete(uri); 1076 mutex_enter(&uri->proclock); 1077 if (CV_HAS_WAITERS(&uri->waiting)) { 1078 cv_broadcast(&uri->waiting); 1079 } 1080 mutex_exit(&uri->proclock); 1081 uri->hash = URI_TEMP; 1082 nl7c_uri_temp_mk++; 1083 } 1084 if (data == NULL) { 1085 /* More data needed */ 1086 return (-1); 1087 } 1088 /* Success */ 1089 return (0); 1090 1091 pfail: 1092 nl7c_resp_pfail++; 1093 return (EINVAL); 1094 1095 pass: 1096 nl7c_resp_pass++; 1097 return (ENOTSUP); 1098 } 1099 1100 /* 1101 * Called to sink application response data, the processing of the data 1102 * is the same for a cached or temp URI (i.e. a URI for which we aren't 1103 * going to cache the URI but want to parse it for detecting response 1104 * data end such that for a persistent connection we can parse the next 1105 * request). 1106 * 1107 * On return 0 is returned for sink success, > 0 on error, and < 0 on 1108 * no so URI (note, data not sinked). 1109 */ 1110 1111 int 1112 nl7c_data(struct sonode *so, uio_t *uio) 1113 { 1114 sotpi_info_t *sti = SOTOTPI(so); 1115 uri_desc_t *uri = (uri_desc_t *)sti->sti_nl7c_uri; 1116 iovec_t *iov; 1117 int cnt; 1118 int sz = uio->uio_resid; 1119 char *data, *alloc; 1120 char *bp; 1121 uri_rd_t *rdp; 1122 boolean_t first; 1123 int error, perror; 1124 1125 nl7c_uri_data++; 1126 1127 if (uri == NULL) { 1128 /* Socket & NL7C out of sync, disable NL7C */ 1129 sti->sti_nl7c_flags = 0; 1130 nl7c_uri_NULL1++; 1131 return (-1); 1132 } 1133 1134 if (sti->sti_nl7c_flags & NL7C_WAITWRITE) { 1135 sti->sti_nl7c_flags &= ~NL7C_WAITWRITE; 1136 first = B_TRUE; 1137 } else { 1138 first = B_FALSE; 1139 } 1140 1141 alloc = kmem_alloc(sz, KM_SLEEP); 1142 URI_RD_ADD(uri, rdp, sz, -1); 1143 if (rdp == NULL) { 1144 error = ENOMEM; 1145 goto fail; 1146 } 1147 1148 if (uri->hash != URI_TEMP && uri->count > nca_max_cache_size) { 1149 uri_delete(uri); 1150 uri->hash = URI_TEMP; 1151 } 1152 data = alloc; 1153 alloc = NULL; 1154 rdp->data.kmem = data; 1155 atomic_add_64(&nl7c_uri_bytes, sz); 1156 1157 bp = data; 1158 while (uio->uio_resid > 0) { 1159 iov = uio->uio_iov; 1160 if ((cnt = iov->iov_len) == 0) { 1161 goto next; 1162 } 1163 cnt = MIN(cnt, uio->uio_resid); 1164 error = xcopyin(iov->iov_base, bp, cnt); 1165 if (error) 1166 goto fail; 1167 1168 iov->iov_base += cnt; 1169 iov->iov_len -= cnt; 1170 uio->uio_resid -= cnt; 1171 uio->uio_loffset += cnt; 1172 bp += cnt; 1173 next: 1174 uio->uio_iov++; 1175 uio->uio_iovcnt--; 1176 } 1177 1178 /* Successfull sink of data, response parse the data */ 1179 perror = nl7c_resp_parse(so, uri, data, sz); 1180 1181 /* Send the data out the connection */ 1182 error = uri_rd_response(so, uri, rdp, first); 1183 if (error) 1184 goto fail; 1185 1186 /* Success */ 1187 if (perror == 0 && 1188 ((uri->respclen == URI_LEN_NOVALUE && 1189 uri->resplen == URI_LEN_NOVALUE) || 1190 uri->count >= uri->resplen)) { 1191 /* 1192 * No more data needed and no pending response 1193 * data or current data count >= response length 1194 * so close the URI processing for this so. 1195 */ 1196 nl7c_close(so); 1197 if (! (sti->sti_nl7c_flags & NL7C_SOPERSIST)) { 1198 /* Not a persistent connection */ 1199 sti->sti_nl7c_flags = 0; 1200 } 1201 } 1202 1203 return (0); 1204 1205 fail: 1206 if (alloc != NULL) { 1207 kmem_free(alloc, sz); 1208 } 1209 sti->sti_nl7c_flags = 0; 1210 nl7c_urifree(so); 1211 1212 return (error); 1213 } 1214 1215 /* 1216 * Called to read data from file "*fp" at offset "*off" of length "*len" 1217 * for a maximum of "*max_rem" bytes. 1218 * 1219 * On success a pointer to the kmem_alloc()ed file data is returned, "*off" 1220 * and "*len" are updated for the acutal number of bytes read and "*max_rem" 1221 * is updated with the number of bytes remaining to be read. 1222 * 1223 * Else, "NULL" is returned. 1224 */ 1225 1226 static char * 1227 nl7c_readfile(file_t *fp, u_offset_t *off, int *len, int max, int *ret) 1228 { 1229 vnode_t *vp = fp->f_vnode; 1230 int flg = 0; 1231 size_t size = MIN(*len, max); 1232 char *data; 1233 int error; 1234 uio_t uio; 1235 iovec_t iov; 1236 1237 (void) VOP_RWLOCK(vp, flg, NULL); 1238 1239 if (*off > MAXOFFSET_T) { 1240 VOP_RWUNLOCK(vp, flg, NULL); 1241 *ret = EFBIG; 1242 return (NULL); 1243 } 1244 1245 if (*off + size > MAXOFFSET_T) 1246 size = (ssize32_t)(MAXOFFSET_T - *off); 1247 1248 data = kmem_alloc(size, KM_SLEEP); 1249 1250 iov.iov_base = data; 1251 iov.iov_len = size; 1252 uio.uio_loffset = *off; 1253 uio.uio_iov = &iov; 1254 uio.uio_iovcnt = 1; 1255 uio.uio_resid = size; 1256 uio.uio_segflg = UIO_SYSSPACE; 1257 uio.uio_llimit = MAXOFFSET_T; 1258 uio.uio_fmode = fp->f_flag; 1259 1260 error = VOP_READ(vp, &uio, fp->f_flag, fp->f_cred, NULL); 1261 VOP_RWUNLOCK(vp, flg, NULL); 1262 *ret = error; 1263 if (error) { 1264 kmem_free(data, size); 1265 return (NULL); 1266 } 1267 *len = size; 1268 *off += size; 1269 return (data); 1270 } 1271 1272 /* 1273 * Called to sink application response sendfilev, as with nl7c_data() above 1274 * all the data will be processed by NL7C unless there's an error. 1275 */ 1276 1277 int 1278 nl7c_sendfilev(struct sonode *so, u_offset_t *fileoff, sendfilevec_t *sfvp, 1279 int sfvc, ssize_t *xfer) 1280 { 1281 sotpi_info_t *sti = SOTOTPI(so); 1282 uri_desc_t *uri = (uri_desc_t *)sti->sti_nl7c_uri; 1283 file_t *fp = NULL; 1284 vnode_t *vp = NULL; 1285 char *data = NULL; 1286 u_offset_t off; 1287 int len; 1288 int cnt; 1289 int total_count = 0; 1290 char *alloc; 1291 uri_rd_t *rdp; 1292 int max; 1293 int perror; 1294 int error = 0; 1295 boolean_t first = B_TRUE; 1296 1297 nl7c_uri_sendfilev++; 1298 1299 if (uri == NULL) { 1300 /* Socket & NL7C out of sync, disable NL7C */ 1301 sti->sti_nl7c_flags = 0; 1302 nl7c_uri_NULL2++; 1303 return (0); 1304 } 1305 1306 if (sti->sti_nl7c_flags & NL7C_WAITWRITE) 1307 sti->sti_nl7c_flags &= ~NL7C_WAITWRITE; 1308 1309 while (sfvc-- > 0) { 1310 /* 1311 * off - the current sfv read file offset or user address. 1312 * 1313 * len - the current sfv length in bytes. 1314 * 1315 * cnt - number of bytes kmem_alloc()ed. 1316 * 1317 * alloc - the kmem_alloc()ed buffer of size "cnt". 1318 * 1319 * data - copy of "alloc" used for post alloc references. 1320 * 1321 * fp - the current sfv file_t pointer. 1322 * 1323 * vp - the current "*vp" vnode_t pointer. 1324 * 1325 * Note, for "data" and "fp" and "vp" a NULL value is used 1326 * when not allocated such that the common failure path "fail" 1327 * is used. 1328 */ 1329 off = sfvp->sfv_off; 1330 len = sfvp->sfv_len; 1331 cnt = len; 1332 1333 if (len == 0) { 1334 sfvp++; 1335 continue; 1336 } 1337 1338 if (sfvp->sfv_fd == SFV_FD_SELF) { 1339 /* 1340 * User memory, copyin() all the bytes. 1341 */ 1342 alloc = kmem_alloc(cnt, KM_SLEEP); 1343 error = xcopyin((caddr_t)(uintptr_t)off, alloc, cnt); 1344 if (error) 1345 goto fail; 1346 } else { 1347 /* 1348 * File descriptor, prefetch some bytes. 1349 */ 1350 if ((fp = getf(sfvp->sfv_fd)) == NULL) { 1351 error = EBADF; 1352 goto fail; 1353 } 1354 if ((fp->f_flag & FREAD) == 0) { 1355 error = EACCES; 1356 goto fail; 1357 } 1358 vp = fp->f_vnode; 1359 if (vp->v_type != VREG) { 1360 error = EINVAL; 1361 goto fail; 1362 } 1363 VN_HOLD(vp); 1364 1365 /* Read max_rem bytes from file for prefetch */ 1366 if (nl7c_use_kmem) { 1367 max = cnt; 1368 } else { 1369 max = MAXBSIZE * nl7c_file_prefetch; 1370 } 1371 alloc = nl7c_readfile(fp, &off, &cnt, max, &error); 1372 if (alloc == NULL) 1373 goto fail; 1374 1375 releasef(sfvp->sfv_fd); 1376 fp = NULL; 1377 } 1378 URI_RD_ADD(uri, rdp, cnt, -1); 1379 if (rdp == NULL) { 1380 error = ENOMEM; 1381 goto fail; 1382 } 1383 data = alloc; 1384 alloc = NULL; 1385 rdp->data.kmem = data; 1386 total_count += cnt; 1387 if (uri->hash != URI_TEMP && total_count > nca_max_cache_size) { 1388 uri_delete(uri); 1389 uri->hash = URI_TEMP; 1390 } 1391 1392 /* Response parse */ 1393 perror = nl7c_resp_parse(so, uri, data, len); 1394 1395 /* Send kmem data out the connection */ 1396 error = uri_rd_response(so, uri, rdp, first); 1397 1398 if (error) 1399 goto fail; 1400 1401 if (sfvp->sfv_fd != SFV_FD_SELF) { 1402 /* 1403 * File descriptor, if any bytes left save vnode_t. 1404 */ 1405 if (len > cnt) { 1406 /* More file data so add it */ 1407 URI_RD_ADD(uri, rdp, len - cnt, off); 1408 if (rdp == NULL) { 1409 error = ENOMEM; 1410 goto fail; 1411 } 1412 rdp->data.vnode = vp; 1413 1414 /* Send vnode data out the connection */ 1415 error = uri_rd_response(so, uri, rdp, first); 1416 } else { 1417 /* All file data fit in the prefetch */ 1418 VN_RELE(vp); 1419 } 1420 *fileoff += len; 1421 vp = NULL; 1422 } 1423 *xfer += len; 1424 sfvp++; 1425 1426 if (first) 1427 first = B_FALSE; 1428 } 1429 if (total_count > 0) { 1430 atomic_add_64(&nl7c_uri_bytes, total_count); 1431 } 1432 if (perror == 0 && 1433 ((uri->respclen == URI_LEN_NOVALUE && 1434 uri->resplen == URI_LEN_NOVALUE) || 1435 uri->count >= uri->resplen)) { 1436 /* 1437 * No more data needed and no pending response 1438 * data or current data count >= response length 1439 * so close the URI processing for this so. 1440 */ 1441 nl7c_close(so); 1442 if (! (sti->sti_nl7c_flags & NL7C_SOPERSIST)) { 1443 /* Not a persistent connection */ 1444 sti->sti_nl7c_flags = 0; 1445 } 1446 } 1447 1448 return (0); 1449 1450 fail: 1451 if (error == EPIPE) 1452 tsignal(curthread, SIGPIPE); 1453 1454 if (alloc != NULL) 1455 kmem_free(data, len); 1456 1457 if (vp != NULL) 1458 VN_RELE(vp); 1459 1460 if (fp != NULL) 1461 releasef(sfvp->sfv_fd); 1462 1463 if (total_count > 0) { 1464 atomic_add_64(&nl7c_uri_bytes, total_count); 1465 } 1466 1467 sti->sti_nl7c_flags = 0; 1468 nl7c_urifree(so); 1469 1470 return (error); 1471 } 1472 1473 /* 1474 * Called for a socket which is closing or when an application has 1475 * completed sending all the response data (i.e. for a persistent 1476 * connection called once for each completed application response). 1477 */ 1478 1479 void 1480 nl7c_close(struct sonode *so) 1481 { 1482 sotpi_info_t *sti = SOTOTPI(so); 1483 uri_desc_t *uri = (uri_desc_t *)sti->sti_nl7c_uri; 1484 1485 if (uri == NULL) { 1486 /* 1487 * No URI being processed so might be a listen()er 1488 * if so do any cleanup, else nothing more to do. 1489 */ 1490 if (so->so_state & SS_ACCEPTCONN) { 1491 (void) nl7c_close_addr(so); 1492 } 1493 return; 1494 } 1495 sti->sti_nl7c_uri = NULL; 1496 if (uri->hash != URI_TEMP) { 1497 mutex_enter(&uri->proclock); 1498 uri->proc = NULL; 1499 if (CV_HAS_WAITERS(&uri->waiting)) { 1500 cv_broadcast(&uri->waiting); 1501 } 1502 mutex_exit(&uri->proclock); 1503 nl7c_uri_close++; 1504 } else { 1505 /* No proclock as uri exclusively owned by so */ 1506 uri->proc = NULL; 1507 nl7c_uri_temp_close++; 1508 } 1509 REF_RELE(uri); 1510 if (nl7c_uri_max > 0 && nl7c_uri_bytes > nl7c_uri_max) { 1511 nl7c_uri_reclaim(); 1512 } 1513 } 1514 1515 /* 1516 * The uri_segmap_t ref_t inactive function called on the last REF_RELE(), 1517 * release the segmap mapping. Note, the uri_segmap_t will be freed by 1518 * REF_RELE() on return. 1519 */ 1520 1521 void 1522 uri_segmap_inactive(uri_segmap_t *smp) 1523 { 1524 if (!segmap_kpm) { 1525 (void) segmap_fault(kas.a_hat, segkmap, smp->base, 1526 smp->len, F_SOFTUNLOCK, S_OTHER); 1527 } 1528 (void) segmap_release(segkmap, smp->base, SM_DONTNEED); 1529 VN_RELE(smp->vp); 1530 } 1531 1532 /* 1533 * The call-back for desballoc()ed mblk_t's, if a segmap mapped mblk_t 1534 * release the reference, one per desballoc() of a segmap page, if a rd_t 1535 * mapped mblk_t release the reference, one per desballoc() of a uri_desc_t, 1536 * last kmem free the uri_desb_t. 1537 */ 1538 1539 static void 1540 uri_desb_free(uri_desb_t *desb) 1541 { 1542 if (desb->segmap != NULL) { 1543 REF_RELE(desb->segmap); 1544 } 1545 REF_RELE(desb->uri); 1546 kmem_cache_free(uri_desb_kmc, desb); 1547 } 1548 1549 /* 1550 * Segmap map up to a page of a uri_rd_t file descriptor. 1551 */ 1552 1553 uri_segmap_t * 1554 uri_segmap_map(uri_rd_t *rdp, int bytes) 1555 { 1556 uri_segmap_t *segmap = kmem_cache_alloc(uri_segmap_kmc, KM_SLEEP); 1557 int len = MIN(rdp->sz, MAXBSIZE); 1558 1559 if (len > bytes) 1560 len = bytes; 1561 1562 REF_INIT(segmap, 1, uri_segmap_inactive, uri_segmap_kmc); 1563 segmap->len = len; 1564 VN_HOLD(rdp->data.vnode); 1565 segmap->vp = rdp->data.vnode; 1566 1567 segmap->base = segmap_getmapflt(segkmap, segmap->vp, rdp->off, len, 1568 segmap_kpm ? SM_FAULT : 0, S_READ); 1569 1570 if (segmap_fault(kas.a_hat, segkmap, segmap->base, len, 1571 F_SOFTLOCK, S_READ) != 0) { 1572 REF_RELE(segmap); 1573 return (NULL); 1574 } 1575 return (segmap); 1576 } 1577 1578 /* 1579 * Chop up the kernel virtual memory area *data of size *sz bytes for 1580 * a maximum of *bytes bytes into an besballoc()ed mblk_t chain using 1581 * the given template uri_desb_t *temp of max_mblk bytes per. 1582 * 1583 * The values of *data, *sz, and *bytes are updated on return, the 1584 * mblk_t chain is returned. 1585 */ 1586 1587 static mblk_t * 1588 uri_desb_chop( 1589 char **data, 1590 size_t *sz, 1591 int *bytes, 1592 uri_desb_t *temp, 1593 int max_mblk, 1594 char *eoh, 1595 mblk_t *persist 1596 ) 1597 { 1598 char *ldata = *data; 1599 size_t lsz = *sz; 1600 int lbytes = bytes ? *bytes : lsz; 1601 uri_desb_t *desb; 1602 mblk_t *mp = NULL; 1603 mblk_t *nmp, *pmp = NULL; 1604 int msz; 1605 1606 if (lbytes == 0 && lsz == 0) 1607 return (NULL); 1608 1609 while (lbytes > 0 && lsz > 0) { 1610 msz = MIN(lbytes, max_mblk); 1611 msz = MIN(msz, lsz); 1612 if (persist && eoh >= ldata && eoh < &ldata[msz]) { 1613 msz = (eoh - ldata); 1614 pmp = persist; 1615 persist = NULL; 1616 if (msz == 0) { 1617 nmp = pmp; 1618 pmp = NULL; 1619 goto zero; 1620 } 1621 } 1622 desb = kmem_cache_alloc(uri_desb_kmc, KM_SLEEP); 1623 REF_HOLD(temp->uri); 1624 if (temp->segmap) { 1625 REF_HOLD(temp->segmap); 1626 } 1627 bcopy(temp, desb, sizeof (*desb)); 1628 desb->frtn.free_arg = (caddr_t)desb; 1629 nmp = desballoc((uchar_t *)ldata, msz, BPRI_HI, &desb->frtn); 1630 if (nmp == NULL) { 1631 if (temp->segmap) { 1632 REF_RELE(temp->segmap); 1633 } 1634 REF_RELE(temp->uri); 1635 if (mp != NULL) { 1636 mp->b_next = NULL; 1637 freemsg(mp); 1638 } 1639 if (persist != NULL) { 1640 freeb(persist); 1641 } 1642 return (NULL); 1643 } 1644 nmp->b_wptr += msz; 1645 zero: 1646 if (mp != NULL) { 1647 mp->b_next->b_cont = nmp; 1648 } else { 1649 mp = nmp; 1650 } 1651 if (pmp != NULL) { 1652 nmp->b_cont = pmp; 1653 nmp = pmp; 1654 pmp = NULL; 1655 } 1656 mp->b_next = nmp; 1657 ldata += msz; 1658 lsz -= msz; 1659 lbytes -= msz; 1660 } 1661 *data = ldata; 1662 *sz = lsz; 1663 if (bytes) 1664 *bytes = lbytes; 1665 return (mp); 1666 } 1667 1668 /* 1669 * Experimential noqwait (i.e. no canput()/qwait() checks), just send 1670 * the entire mblk_t chain down without flow-control checks. 1671 */ 1672 1673 static int 1674 kstrwritempnoqwait(struct vnode *vp, mblk_t *mp) 1675 { 1676 struct stdata *stp; 1677 int error = 0; 1678 1679 ASSERT(vp->v_stream); 1680 stp = vp->v_stream; 1681 1682 /* Fast check of flags before acquiring the lock */ 1683 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 1684 mutex_enter(&stp->sd_lock); 1685 error = strgeterr(stp, STWRERR|STRHUP|STPLEX, 0); 1686 mutex_exit(&stp->sd_lock); 1687 if (error != 0) { 1688 if (!(stp->sd_flag & STPLEX) && 1689 (stp->sd_wput_opt & SW_SIGPIPE)) { 1690 error = EPIPE; 1691 } 1692 return (error); 1693 } 1694 } 1695 putnext(stp->sd_wrq, mp); 1696 return (0); 1697 } 1698 1699 /* 1700 * Send the URI uri_desc_t *uri response uri_rd_t *rdp out the socket_t *so. 1701 */ 1702 1703 static int 1704 uri_rd_response(struct sonode *so, 1705 uri_desc_t *uri, 1706 uri_rd_t *rdp, 1707 boolean_t first) 1708 { 1709 vnode_t *vp = SOTOV(so); 1710 int max_mblk = (int)vp->v_stream->sd_maxblk; 1711 int wsz; 1712 mblk_t *mp, *wmp, *persist; 1713 int write_bytes; 1714 uri_rd_t rd; 1715 uri_desb_t desb; 1716 uri_segmap_t *segmap = NULL; 1717 char *segmap_data; 1718 size_t segmap_sz; 1719 int error; 1720 int fflg = ((so->so_state & SS_NDELAY) ? FNDELAY : 0) | 1721 ((so->so_state & SS_NONBLOCK) ? FNONBLOCK : 0); 1722 1723 1724 /* Initialize template uri_desb_t */ 1725 desb.frtn.free_func = uri_desb_free; 1726 desb.frtn.free_arg = NULL; 1727 desb.uri = uri; 1728 1729 /* Get a local copy of the rd_t */ 1730 bcopy(rdp, &rd, sizeof (rd)); 1731 do { 1732 if (first) { 1733 /* 1734 * For first kstrwrite() enough data to get 1735 * things going, note non blocking version of 1736 * kstrwrite() will be used below. 1737 */ 1738 write_bytes = P2ROUNDUP((max_mblk * 4), 1739 MAXBSIZE * nl7c_file_prefetch); 1740 } else { 1741 if ((write_bytes = so->so_sndbuf) == 0) 1742 write_bytes = vp->v_stream->sd_qn_maxpsz; 1743 ASSERT(write_bytes > 0); 1744 write_bytes = P2ROUNDUP(write_bytes, MAXBSIZE); 1745 } 1746 /* 1747 * Chop up to a write_bytes worth of data. 1748 */ 1749 wmp = NULL; 1750 wsz = write_bytes; 1751 do { 1752 if (rd.sz == 0) 1753 break; 1754 if (rd.off == -1) { 1755 if (uri->eoh >= rd.data.kmem && 1756 uri->eoh < &rd.data.kmem[rd.sz]) { 1757 persist = nl7c_http_persist(so); 1758 } else { 1759 persist = NULL; 1760 } 1761 desb.segmap = NULL; 1762 mp = uri_desb_chop(&rd.data.kmem, &rd.sz, 1763 &wsz, &desb, max_mblk, uri->eoh, persist); 1764 if (mp == NULL) { 1765 error = ENOMEM; 1766 goto invalidate; 1767 } 1768 } else { 1769 if (segmap == NULL) { 1770 segmap = uri_segmap_map(&rd, 1771 write_bytes); 1772 if (segmap == NULL) { 1773 error = ENOMEM; 1774 goto invalidate; 1775 } 1776 desb.segmap = segmap; 1777 segmap_data = segmap->base; 1778 segmap_sz = segmap->len; 1779 } 1780 mp = uri_desb_chop(&segmap_data, &segmap_sz, 1781 &wsz, &desb, max_mblk, NULL, NULL); 1782 if (mp == NULL) { 1783 error = ENOMEM; 1784 goto invalidate; 1785 } 1786 if (segmap_sz == 0) { 1787 rd.sz -= segmap->len; 1788 rd.off += segmap->len; 1789 REF_RELE(segmap); 1790 segmap = NULL; 1791 } 1792 } 1793 if (wmp == NULL) { 1794 wmp = mp; 1795 } else { 1796 wmp->b_next->b_cont = mp; 1797 wmp->b_next = mp->b_next; 1798 mp->b_next = NULL; 1799 } 1800 } while (wsz > 0 && rd.sz > 0); 1801 1802 wmp->b_next = NULL; 1803 if (first) { 1804 /* First kstrwrite(), use noqwait */ 1805 if ((error = kstrwritempnoqwait(vp, wmp)) != 0) 1806 goto invalidate; 1807 /* 1808 * For the rest of the kstrwrite()s use SO_SNDBUF 1809 * worth of data at a time, note these kstrwrite()s 1810 * may (will) block one or more times. 1811 */ 1812 first = B_FALSE; 1813 } else { 1814 if ((error = kstrwritemp(vp, wmp, fflg)) != 0) { 1815 if (error == EAGAIN) { 1816 nl7c_uri_rd_EAGAIN++; 1817 if ((error = 1818 kstrwritempnoqwait(vp, wmp)) != 0) 1819 goto invalidate; 1820 } else 1821 goto invalidate; 1822 } 1823 } 1824 } while (rd.sz > 0); 1825 1826 return (0); 1827 1828 invalidate: 1829 if (segmap) { 1830 REF_RELE(segmap); 1831 } 1832 if (wmp) 1833 freemsg(wmp); 1834 1835 return (error); 1836 } 1837 1838 /* 1839 * Send the URI uri_desc_t *uri response out the socket_t *so. 1840 */ 1841 1842 static int 1843 uri_response(struct sonode *so, uri_desc_t *uri) 1844 { 1845 uri_rd_t *rdp = &uri->response; 1846 boolean_t first = B_TRUE; 1847 int error; 1848 1849 while (rdp != NULL) { 1850 error = uri_rd_response(so, uri, rdp, first); 1851 if (error != 0) { 1852 goto invalidate; 1853 } 1854 first = B_FALSE; 1855 rdp = rdp->next; 1856 } 1857 return (0); 1858 1859 invalidate: 1860 if (uri->hash != URI_TEMP) 1861 uri_delete(uri); 1862 return (error); 1863 } 1864 1865 /* 1866 * The pchars[] array is indexed by a char to determine if it's a 1867 * valid URI path component chararcter where: 1868 * 1869 * pchar = unreserved | escaped | 1870 * ":" | "@" | "&" | "=" | "+" | "$" | "," 1871 * 1872 * unreserved = alphanum | mark 1873 * 1874 * alphanum = alpha | digit 1875 * 1876 * alpha = lowalpha | upalpha 1877 * 1878 * lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | 1879 * "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | 1880 * "q" | "r" | "s" | "t" | "u" | "v" | "w" | "x" | 1881 * "y" | "z" 1882 * 1883 * upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | 1884 * "I" | "J" | "K" | "L" | "M" | "N" | "O" | "P" | 1885 * "Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | 1886 * "Y" | "Z" 1887 * 1888 * digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | 1889 * "8" | "9" 1890 * 1891 * mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | "(" | ")" 1892 * 1893 * escaped = "%" hex hex 1894 * hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | 1895 * "a" | "b" | "c" | "d" | "e" | "f" 1896 */ 1897 1898 static char pchars[] = { 1899 0, 0, 0, 0, 0, 0, 0, 0, /* 0x00 - 0x07 */ 1900 0, 0, 0, 0, 0, 0, 0, 0, /* 0x08 - 0x0F */ 1901 0, 0, 0, 0, 0, 0, 0, 0, /* 0x10 - 0x17 */ 1902 0, 0, 0, 0, 0, 0, 0, 0, /* 0x18 - 0x1F */ 1903 0, 1, 0, 0, 1, 1, 1, 1, /* 0x20 - 0x27 */ 1904 0, 0, 1, 1, 1, 1, 1, 1, /* 0x28 - 0x2F */ 1905 1, 1, 1, 1, 1, 1, 1, 1, /* 0x30 - 0x37 */ 1906 1, 1, 1, 0, 0, 1, 0, 0, /* 0x38 - 0x3F */ 1907 1, 1, 1, 1, 1, 1, 1, 1, /* 0x40 - 0x47 */ 1908 1, 1, 1, 1, 1, 1, 1, 1, /* 0x48 - 0x4F */ 1909 1, 1, 1, 1, 1, 1, 1, 1, /* 0x50 - 0x57 */ 1910 1, 1, 1, 0, 0, 0, 0, 1, /* 0x58 - 0x5F */ 1911 0, 1, 1, 1, 1, 1, 1, 1, /* 0x60 - 0x67 */ 1912 1, 1, 1, 1, 1, 1, 1, 1, /* 0x68 - 0x6F */ 1913 1, 1, 1, 1, 1, 1, 1, 1, /* 0x70 - 0x77 */ 1914 1, 1, 1, 0, 0, 0, 1, 0 /* 0x78 - 0x7F */ 1915 }; 1916 1917 #define PCHARS_MASK 0x7F 1918 1919 /* 1920 * This is the main L7 request message parse, we are called each time 1921 * new data is availble for a socket, each time a single buffer of the 1922 * entire message to date is given. 1923 * 1924 * Here we parse the request looking for the URI, parse it, and if a 1925 * supported scheme call the scheme parser to commplete the parse of any 1926 * headers which may further qualify the identity of the requested object 1927 * then lookup it up in the URI hash. 1928 * 1929 * Return B_TRUE for more processing. 1930 * 1931 * Note, at this time the parser supports the generic message format as 1932 * specified in RFC 822 with potentional limitations as specified in RFC 1933 * 2616 for HTTP messages. 1934 * 1935 * Note, the caller supports an mblk_t chain, for now the parser(s) 1936 * require the complete header in a single mblk_t. This is the common 1937 * case and certainly for high performance environments, if at a future 1938 * date mblk_t chains are important the parse can be reved to process 1939 * mblk_t chains. 1940 */ 1941 1942 boolean_t 1943 nl7c_parse(struct sonode *so, boolean_t nonblocking, boolean_t *ret) 1944 { 1945 sotpi_info_t *sti = SOTOTPI(so); 1946 char *cp = (char *)sti->sti_nl7c_rcv_mp->b_rptr; 1947 char *ep = (char *)sti->sti_nl7c_rcv_mp->b_wptr; 1948 char *get = "GET "; 1949 char *post = "POST "; 1950 char c; 1951 char *uris; 1952 uri_desc_t *uri = NULL; 1953 uri_desc_t *ruri = NULL; 1954 mblk_t *reqmp; 1955 uint32_t hv = 0; 1956 1957 if ((reqmp = dupb(sti->sti_nl7c_rcv_mp)) == NULL) { 1958 nl7c_uri_pass_dupbfail++; 1959 goto pass; 1960 } 1961 /* 1962 * Allocate and initialize minimumal state for the request 1963 * uri_desc_t, in the cache hit case this uri_desc_t will 1964 * be freed. 1965 */ 1966 uri = kmem_cache_alloc(nl7c_uri_kmc, KM_SLEEP); 1967 REF_INIT(uri, 1, nl7c_uri_inactive, nl7c_uri_kmc); 1968 uri->hash = NULL; 1969 uri->tail = NULL; 1970 uri->scheme = NULL; 1971 uri->count = 0; 1972 uri->reqmp = reqmp; 1973 1974 /* 1975 * Set request time to current time. 1976 */ 1977 sti->sti_nl7c_rtime = gethrestime_sec(); 1978 1979 /* 1980 * Parse the Request-Line for the URI. 1981 * 1982 * For backwards HTTP version compatable reasons skip any leading 1983 * CRLF (or CR or LF) line terminator(s) preceding Request-Line. 1984 */ 1985 while (cp < ep && (*cp == '\r' || *cp == '\n')) { 1986 cp++; 1987 } 1988 while (cp < ep && *get == *cp) { 1989 get++; 1990 cp++; 1991 } 1992 if (*get != 0) { 1993 /* Note a "GET", check for "POST" */ 1994 while (cp < ep && *post == *cp) { 1995 post++; 1996 cp++; 1997 } 1998 if (*post != 0) { 1999 if (cp == ep) { 2000 nl7c_uri_more_get++; 2001 goto more; 2002 } 2003 /* Not a "GET" or a "POST", just pass */ 2004 nl7c_uri_pass_method++; 2005 goto pass; 2006 } 2007 /* "POST", don't cache but still may want to parse */ 2008 uri->hash = URI_TEMP; 2009 } 2010 /* 2011 * Skip over URI path char(s) and save start and past end pointers. 2012 */ 2013 uris = cp; 2014 while (cp < ep && (c = *cp) != ' ' && c != '\r') { 2015 if (c == '?') { 2016 /* Don't cache but still may want to parse */ 2017 uri->hash = URI_TEMP; 2018 } 2019 CHASH(hv, c); 2020 cp++; 2021 } 2022 if (c != '\r' && cp == ep) { 2023 nl7c_uri_more_eol++; 2024 goto more; 2025 } 2026 /* 2027 * Request-Line URI parsed, pass the rest of the request on 2028 * to the the http scheme parse. 2029 */ 2030 uri->path.cp = uris; 2031 uri->path.ep = cp; 2032 uri->hvalue = hv; 2033 if (! nl7c_http_request(&cp, ep, uri, so) || cp == NULL) { 2034 /* 2035 * Parse not successful or pass on request, the pointer 2036 * to the parse pointer "cp" is overloaded such that ! NULL 2037 * for more data and NULL for bad parse of request or pass. 2038 */ 2039 if (cp != NULL) { 2040 nl7c_uri_more_http++; 2041 goto more; 2042 } 2043 nl7c_uri_pass_http++; 2044 goto pass; 2045 } 2046 if (uri->nocache) { 2047 uri->hash = URI_TEMP; 2048 (void) uri_lookup(uri, B_FALSE, nonblocking); 2049 } else if (uri->hash == URI_TEMP) { 2050 uri->nocache = B_TRUE; 2051 (void) uri_lookup(uri, B_FALSE, nonblocking); 2052 } 2053 2054 if (uri->hash == URI_TEMP) { 2055 if (sti->sti_nl7c_flags & NL7C_SOPERSIST) { 2056 /* Temporary URI so skip hash processing */ 2057 nl7c_uri_request++; 2058 nl7c_uri_temp++; 2059 goto temp; 2060 } 2061 /* Not persistent so not interested in the response */ 2062 nl7c_uri_pass_temp++; 2063 goto pass; 2064 } 2065 /* 2066 * Check the URI hash for a cached response, save the request 2067 * uri in case we need it below. 2068 */ 2069 ruri = uri; 2070 if ((uri = uri_lookup(uri, B_TRUE, nonblocking)) == NULL) { 2071 /* 2072 * Failed to lookup due to nonblocking wait required, 2073 * interrupted cv_wait_sig(), KM_NOSLEEP memory alloc 2074 * failure, ... Just pass on this request. 2075 */ 2076 nl7c_uri_pass_addfail++; 2077 goto pass; 2078 } 2079 nl7c_uri_request++; 2080 if (uri->response.sz > 0) { 2081 /* 2082 * We have the response cached, update recv mblk rptr 2083 * to reflect the data consumed in parse. 2084 */ 2085 mblk_t *mp = sti->sti_nl7c_rcv_mp; 2086 2087 if (cp == (char *)mp->b_wptr) { 2088 sti->sti_nl7c_rcv_mp = mp->b_cont; 2089 mp->b_cont = NULL; 2090 freeb(mp); 2091 } else { 2092 mp->b_rptr = (unsigned char *)cp; 2093 } 2094 nl7c_uri_hit++; 2095 /* If logging enabled log request */ 2096 if (nl7c_logd_enabled) { 2097 ipaddr_t faddr; 2098 2099 if (so->so_family == AF_INET) { 2100 /* Only support IPv4 addrs */ 2101 faddr = ((struct sockaddr_in *) 2102 sti->sti_faddr_sa) ->sin_addr.s_addr; 2103 } else { 2104 faddr = 0; 2105 } 2106 /* XXX need to pass response type, e.g. 200, 304 */ 2107 nl7c_logd_log(ruri, uri, sti->sti_nl7c_rtime, faddr); 2108 } 2109 2110 /* If conditional request check for substitute response */ 2111 if (ruri->conditional) { 2112 uri = nl7c_http_cond(ruri, uri); 2113 } 2114 2115 /* 2116 * Release reference on request URI, send the response out 2117 * the socket, release reference on response uri, set the 2118 * *ret value to B_TRUE to indicate request was consumed 2119 * then return B_FALSE to indcate no more data needed. 2120 */ 2121 REF_RELE(ruri); 2122 (void) uri_response(so, uri); 2123 REF_RELE(uri); 2124 *ret = B_TRUE; 2125 return (B_FALSE); 2126 } 2127 /* 2128 * Miss the cache, the request URI is in the cache waiting for 2129 * application write-side data to fill it. 2130 */ 2131 nl7c_uri_miss++; 2132 temp: 2133 /* 2134 * A miss or temp URI for which response data is needed, link 2135 * uri to so and so to uri, set WAITWRITE in the so such that 2136 * read-side processing is suspended (so the next read() gets 2137 * the request data) until a write() is processed by NL7C. 2138 * 2139 * Note, sti->sti_nl7c_uri now owns the REF_INIT() ref. 2140 */ 2141 uri->proc = so; 2142 sti->sti_nl7c_uri = uri; 2143 sti->sti_nl7c_flags |= NL7C_WAITWRITE; 2144 *ret = B_FALSE; 2145 return (B_FALSE); 2146 2147 more: 2148 /* More data is needed, note fragmented recv not supported */ 2149 nl7c_uri_more++; 2150 2151 pass: 2152 /* Pass on this request */ 2153 nl7c_uri_pass++; 2154 nl7c_uri_request++; 2155 if (ruri != NULL) { 2156 REF_RELE(ruri); 2157 } 2158 if (uri) { 2159 REF_RELE(uri); 2160 } 2161 sti->sti_nl7c_flags = 0; 2162 *ret = B_FALSE; 2163 return (B_FALSE); 2164 } 2165