xref: /illumos-gate/usr/src/uts/common/sys/nvme.h (revision f5f0964ce91892f7482efc86903b0ec7c7b6ba66)
1 /*
2  * This file and its contents are supplied under the terms of the
3  * Common Development and Distribution License ("CDDL"), version 1.0.
4  * You may only use this file in accordance with the terms of version
5  * 1.0 of the CDDL.
6  *
7  * A full copy of the text of the CDDL should have accompanied this
8  * source.  A copy of the CDDL is also available via the Internet at
9  * http://www.illumos.org/license/CDDL.
10  */
11 
12 /*
13  * Copyright 2016 Nexenta Systems, Inc.
14  * Copyright 2020 Joyent, Inc.
15  * Copyright 2019 Western Digital Corporation
16  * Copyright 2025 Oxide Computer Company
17  * Copyright 2022 OmniOS Community Edition (OmniOSce) Association.
18  */
19 
20 #ifndef _SYS_NVME_H
21 #define	_SYS_NVME_H
22 
23 #include <sys/types.h>
24 #include <sys/debug.h>
25 #include <sys/stddef.h>
26 
27 #ifdef _KERNEL
28 #include <sys/types32.h>
29 #else
30 #include <sys/uuid.h>
31 #include <stdint.h>
32 #endif
33 
34 /*
35  * Declarations used for communication between nvme(4D) and libnvme.
36  */
37 
38 #ifdef __cplusplus
39 extern "C" {
40 #endif
41 
42 /*
43  * NVMe ioctl definitions
44  */
45 
46 #define	NVME_IOC			(('N' << 24) | ('V' << 16) | ('M' << 8))
47 #define	NVME_IOC_CTRL_INFO		(NVME_IOC | 0)
48 #define	NVME_IOC_IDENTIFY		(NVME_IOC | 1)
49 #define	NVME_IOC_GET_LOGPAGE		(NVME_IOC | 2)
50 #define	NVME_IOC_GET_FEATURE		(NVME_IOC | 3)
51 #define	NVME_IOC_FORMAT			(NVME_IOC | 4)
52 #define	NVME_IOC_BD_DETACH		(NVME_IOC | 5)
53 #define	NVME_IOC_BD_ATTACH		(NVME_IOC | 6)
54 #define	NVME_IOC_FIRMWARE_DOWNLOAD	(NVME_IOC | 7)
55 #define	NVME_IOC_FIRMWARE_COMMIT	(NVME_IOC | 8)
56 #define	NVME_IOC_PASSTHRU		(NVME_IOC | 9)
57 #define	NVME_IOC_NS_INFO		(NVME_IOC | 10)
58 #define	NVME_IOC_LOCK			(NVME_IOC | 11)
59 #define	NVME_IOC_UNLOCK			(NVME_IOC | 12)
60 #define	NVME_IOC_CTRL_ATTACH		(NVME_IOC | 13)
61 #define	NVME_IOC_CTRL_DETACH		(NVME_IOC | 14)
62 #define	NVME_IOC_NS_CREATE		(NVME_IOC | 15)
63 #define	NVME_IOC_NS_DELETE		(NVME_IOC | 16)
64 #define	NVME_IOC_MAX			NVME_IOC_NS_DELETE
65 
66 #define	IS_NVME_IOC(x)			((x) > NVME_IOC && (x) <= NVME_IOC_MAX)
67 #define	NVME_IOC_CMD(x)			((x) & 0xff)
68 
69 /*
70  * This represents the set of all possible errors that can be returned from an
71  * ioctl. Our general rule of thumb is that we only will use an errno value to
72  * indicate that certain processing failed: a lack of privileges, bad minor, or
73  * failure to copy in and out the initial ioctl structure. However, if we get
74  * far enough that there is any other failure (including a failure to copy in
75  * and out nested data such as the identify command payload) then we will issue
76  * an error here. Put differently, our basic promise is that there should be a
77  * single straightforward meaning for any errno returned and instead all the
78  * nuance is here. Our goal is that no one should guess what of two dozen things
79  * an EINVAL might have referred to.
80  *
81  * When we are dealing with field parameters, there are three general classes of
82  * errors that we define that are common across all request structures:
83  *
84  *   <REQ>_<FIELD>_RANGE	RANGE class errors indicate that the value
85  *				passed in is outside the range that the device
86  *				supports. The range may vary based on the
87  *				specification. This is used both for issues like
88  *				bad alignment in a value (e.g. not 4-byte
89  *				aligned) or a value that is larger than the
90  *				maximum possible size. Because the namespace ID
91  *				is shared in every request in the controller and
92  *				is part of our standard ioctl handling, we use a
93  *				single set of errors for that.
94  *
95  *   <REQ>_<FIELD>_UNSUP	This indicates that the controller cannot
96  *				support any value in the given field. This is
97  *				either because the field was introduced in an
98  *				NVMe specification later than the controller
99  *				supports or because there is an explicit feature
100  *				bit that indicates whether or not this field is
101  *				valid. Entries here may or may not have a
102  *				namespace unsupported entry due to the fact that
103  *				this is command specific.
104  *
105  *  <REQ>_<FIELD>_UNUSE		This class is perhaps the weirdest. This
106  *				represents a case where a given field cannot be
107  *				set because it is not used based on the
108  *				specifics of the request. For example, if you're
109  *				getting the health log page, you may not set the
110  *				LSP or LSI for that log page, even if you have
111  *				an NVMe 1.4 controller that supports both fields
112  *				because they have no meaning. A similar example
113  *				would be setting a controller ID when it has no
114  *				meaning in a particular identify request.
115  *
116  * While every field will have a RANGE class error, some fields will not have an
117  * UNSUP or UNUSE class error depending on the specifics. A field that has
118  * always been present since NVMe 1.0 and is always valid, such as say the log
119  * page ID field for a get log page request or the length of a firmware download
120  * request, currently are always valid. It is possible that future revisions to
121  * the specification or our logic may change this.
122  */
123 typedef enum {
124 	/*
125 	 * Indicates that the command actually completed successfully.
126 	 */
127 	NVME_IOCTL_E_OK	= 0,
128 	/*
129 	 * Indicates that the controller failed the command and the controller
130 	 * specific (SC/SCT) are available. For all other errors, those fields
131 	 * are reserved.
132 	 */
133 	NVME_IOCTL_E_CTRL_ERROR,
134 	/*
135 	 * Indicates that the controller is considered "dead" by the system and
136 	 * therefore is unusable. Separately, the controller may have been
137 	 * removed from the system due to hotplug or related. In that case, the
138 	 * gone variant is used to distinguish this.
139 	 */
140 	NVME_IOCTL_E_CTRL_DEAD,
141 	NVME_IOCTL_E_CTRL_GONE,
142 	/*
143 	 * Indicates that a bad namespace was requested. This would generally
144 	 * happen when referring to a namespace that is outside of controller's
145 	 * range.
146 	 */
147 	NVME_IOCTL_E_NS_RANGE,
148 	/*
149 	 * Indicates that a namespace is not usable in this context.
150 	 */
151 	NVME_IOCTL_E_NS_UNUSE,
152 	/*
153 	 * Indicates that the requested namespace could not be used because we
154 	 * are operating on a namespace minor and asked to operate on a
155 	 * different namespace.
156 	 */
157 	NVME_IOCTL_E_MINOR_WRONG_NS,
158 	/*
159 	 * Indicates that the requested ioctl can only operate on the controller
160 	 * minor and we were on a namespace minor. This is not used for when a
161 	 * namespace is incorrectly requested otherwise.
162 	 */
163 	NVME_IOCTL_E_NOT_CTRL,
164 	/*
165 	 * Indicates that we were asked to operate on the broadcast namespace
166 	 * either because it was specified or that was how the request was
167 	 * transformed and the broadcast namespace is not supported for this
168 	 * operation.
169 	 */
170 	NVME_IOCTL_E_NO_BCAST_NS,
171 	/*
172 	 * Indicates that the operation failed because the operation requires a
173 	 * controller or namespace write lock and the caller did not have it.
174 	 */
175 	NVME_IOCTL_E_NEED_CTRL_WRLOCK,
176 	NVME_IOCTL_E_NEED_NS_WRLOCK,
177 	/*
178 	 * Indicates that the operation could not proceed because someone else
179 	 * has exclusive access currently to the controller or namespace and
180 	 * therefore this request (which does not require exclusive access)
181 	 * could not proceed.
182 	 */
183 	NVME_IOCTL_E_CTRL_LOCKED,
184 	NVME_IOCTL_E_NS_LOCKED,
185 	/*
186 	 * Indicates that a standard log page was requested that the kernel
187 	 * doesn't know about.
188 	 */
189 	NVME_IOCTL_E_UNKNOWN_LOG_PAGE,
190 	/*
191 	 * Indicates that the controller does not support the requested log
192 	 * page; however, the kernel knows about it.
193 	 */
194 	NVME_IOCTL_E_UNSUP_LOG_PAGE,
195 	/*
196 	 * Indicates that the log page's scope requires operating on something
197 	 * that isn't what was requested. For example, trying to request the
198 	 * firmware information page on a namespace.
199 	 */
200 	NVME_IOCTL_E_BAD_LOG_SCOPE,
201 	/*
202 	 * Log page fields with bad values.
203 	 */
204 	NVME_IOCTL_E_LOG_CSI_RANGE,
205 	NVME_IOCTL_E_LOG_LID_RANGE,
206 	NVME_IOCTL_E_LOG_LSP_RANGE,
207 	NVME_IOCTL_E_LOG_LSI_RANGE,
208 	NVME_IOCTL_E_LOG_RAE_RANGE,
209 	NVME_IOCTL_E_LOG_SIZE_RANGE,
210 	NVME_IOCTL_E_LOG_OFFSET_RANGE,
211 	/*
212 	 * Log page fields that may not be supported.
213 	 */
214 	NVME_IOCTL_E_LOG_CSI_UNSUP,
215 	NVME_IOCTL_E_LOG_LSP_UNSUP,
216 	NVME_IOCTL_E_LOG_LSI_UNSUP,
217 	NVME_IOCTL_E_LOG_RAE_UNSUP,
218 	NVME_IOCTL_E_LOG_OFFSET_UNSUP,
219 	/*
220 	 * Log page fields that may not be usable, depending on context.
221 	 */
222 	NVME_IOCTL_E_LOG_LSP_UNUSE,
223 	NVME_IOCTL_E_LOG_LSI_UNUSE,
224 	NVME_IOCTL_E_LOG_RAE_UNUSE,
225 	/*
226 	 * Indicates that no DMA memory was available for a request.
227 	 */
228 	NVME_IOCTL_E_NO_DMA_MEM,
229 	/*
230 	 * Indicates that there was no kernel memory avilable for the request.
231 	 */
232 	NVME_IOCTL_E_NO_KERN_MEM,
233 	/*
234 	 * Indicates that an error occurred while trying to fill out the DMA PRP
235 	 */
236 	NVME_IOCTL_E_BAD_PRP,
237 	/*
238 	 * Indicates that a pointer to user data to read from or write to was
239 	 * not valid and generated a fault. Specifically this is for items that
240 	 * an ioctl structure points to.
241 	 */
242 	NVME_IOCTL_E_BAD_USER_DATA,
243 	/*
244 	 * Indicates that the kernel does not know about the requested identify
245 	 * command.
246 	 */
247 	NVME_IOCTL_E_UNKNOWN_IDENTIFY,
248 	/*
249 	 * Indicates that the controller does not support the requested identify
250 	 * command.
251 	 */
252 	NVME_IOCTL_E_UNSUP_IDENTIFY,
253 	/*
254 	 * The following errors indicate either a bad value for a given identify
255 	 * argument. This would happen because the value is outside the
256 	 * supported range. There is no CNS or below as those are the
257 	 * higher-level errors right above this.
258 	 */
259 	NVME_IOCTL_E_IDENTIFY_CTRLID_RANGE,
260 	/*
261 	 * Next, we have the unsupported and unusable pieces. The nsid was
262 	 * supported starting in NVMe 1.0, therefore it is never unsupported.
263 	 * However, the controller ID both requires controller support and is
264 	 * not usable in several requests.
265 	 */
266 	NVME_IOCTL_E_IDENTIFY_CTRLID_UNSUP,
267 	NVME_IOCTL_E_IDENTIFY_CTRLID_UNUSE,
268 	/*
269 	 * Indicates that the controller does not support the NVMe spec's
270 	 * general vendor unique command format.
271 	 */
272 	NVME_IOCTL_E_CTRL_VUC_UNSUP,
273 	/*
274 	 * The following indicate bad values for given NVMe vendor unique
275 	 * command fields. All of the cdw1[2-5] fields are not part of this
276 	 * because there is nothing that we can validate.
277 	 */
278 	NVME_IOCTL_E_VUC_TIMEOUT_RANGE,
279 	NVME_IOCTL_E_VUC_OPCODE_RANGE,
280 	NVME_IOCTL_E_VUC_FLAGS_RANGE,
281 	NVME_IOCTL_E_VUC_IMPACT_RANGE,
282 	NVME_IOCTL_E_VUC_NDT_RANGE,
283 	/*
284 	 * These indicate that the VUC data and that the corresponding pair of
285 	 * fields do not agree with each other.
286 	 */
287 	NVME_IOCTL_E_INCONSIST_VUC_FLAGS_NDT,
288 	NVME_IOCTL_E_INCONSIST_VUC_BUF_NDT,
289 	/*
290 	 * Indicates that the operation in question did not succeed because
291 	 * blkdev failed to detach. Most often this happens because the device
292 	 * node is busy. Reasons the device node could be busy include that the
293 	 * device is in a zpool, a file system is mounted, a process has the
294 	 * block device open, etc.
295 	 */
296 	NVME_IOCTL_E_BLKDEV_DETACH,
297 	/*
298 	 * Indicates that the operation in question failed because we were
299 	 * unable to create and online a new blkdev child.
300 	 */
301 	NVME_IOCTL_E_BLKDEV_ATTACH,
302 	/*
303 	 * Indicates that the namespace requested for an attach is not supported
304 	 * by the system. This would happen due to properties of the namespace
305 	 * itself (e.g. utilizing metadata sectors).
306 	 */
307 	NVME_IOCTL_E_UNSUP_ATTACH_NS,
308 	/*
309 	 * Indicates that the format operation is not supported by the
310 	 * controller at all.
311 	 */
312 	NVME_IOCTL_E_CTRL_FORMAT_UNSUP,
313 	/*
314 	 * Indicates that the controller does not support the ability to perform
315 	 * a cryptographic secure erase.
316 	 */
317 	NVME_IOCTL_E_CTRL_CRYPTO_SE_UNSUP,
318 	/*
319 	 * Indicates that a format operation is targeting a namespace, but
320 	 * cannot be performed because it does not support formatting an
321 	 * individual namespace or performing a secure-erase of an individual
322 	 * namespace respectively.
323 	 */
324 	NVME_IOCTL_E_CTRL_NS_FORMAT_UNSUP,
325 	NVME_IOCTL_E_CTRL_NS_SE_UNSUP,
326 	/*
327 	 * The following indicate bad values for a format NVM request.
328 	 */
329 	NVME_IOCTL_E_FORMAT_LBAF_RANGE,
330 	NVME_IOCTL_E_FORMAT_SES_RANGE,
331 	/*
332 	 * Indicates that the requested LBA format is not supported due to its
333 	 * use of metadata.
334 	 */
335 	NVME_IOCTL_E_UNSUP_LBAF_META,
336 	/*
337 	 * Indicates that the firmware commands are not supported by the
338 	 * controller at all.
339 	 */
340 	NVME_IOCTL_E_CTRL_FW_UNSUP,
341 	/*
342 	 * Indicates that the controller has reported a firmware update
343 	 * granularity that exceeds the calculated / driver supported maximum
344 	 * DMA transfer size. As such we cannot perform this operation.
345 	 */
346 	NVME_IOCTL_E_FW_LOAD_IMPOS_GRAN,
347 	/*
348 	 * The following indicate bad values for a firmware load's length and
349 	 * offset.
350 	 */
351 	NVME_IOCTL_E_FW_LOAD_LEN_RANGE,
352 	NVME_IOCTL_E_FW_LOAD_OFFSET_RANGE,
353 	/*
354 	 * The following indicate bad values for a firmware commit's slot and
355 	 * action.
356 	 */
357 	NVME_IOCTL_E_FW_COMMIT_SLOT_RANGE,
358 	NVME_IOCTL_E_FW_COMMIT_ACTION_RANGE,
359 	/*
360 	 * Indicates that an explicit attempt was made to download an image into
361 	 * a read-only slot. Note, some instances of this cannot be caught prior
362 	 * to issuing a command to the controller (commit action 0b11 as it can
363 	 * be used whether there is or isn't a staged image) and will result in
364 	 * a controller error.
365 	 */
366 	NVME_IOCTL_E_RO_FW_SLOT,
367 	/*
368 	 * Indicates that the kernel doesn't know about the NVMe feature in
369 	 * question and therefore cannot proceed.
370 	 */
371 	NVME_IOCTL_E_UNKNOWN_FEATURE,
372 	/*
373 	 * Indicates that while the system knows about the feature in question,
374 	 * it is not supported by the controller.
375 	 */
376 	NVME_IOCTL_E_UNSUP_FEATURE,
377 	/*
378 	 * The following errors indicate a bad value for a given get feature
379 	 * field. This would happen because the value is outside the supported
380 	 * range.
381 	 */
382 	NVME_IOCTL_E_GET_FEAT_SEL_RANGE,
383 	NVME_IOCTL_E_GET_FEAT_CDW11_RANGE,
384 	NVME_IOCTL_E_GET_FEAT_DATA_RANGE,
385 	/*
386 	 * This set of errors indicate that the field is not supported. This can
387 	 * happen because a given get feature command doesn't support setting
388 	 * this value, the field isn't supported in this revision of the
389 	 * controller, or similar issues.
390 	 */
391 	NVME_IOCTL_E_GET_FEAT_SEL_UNSUP,
392 	/*
393 	 * Fields that may be circumstantially unusable.
394 	 */
395 	NVME_IOCTL_E_GET_FEAT_CDW11_UNUSE,
396 	NVME_IOCTL_E_GET_FEAT_DATA_UNUSE,
397 	/*
398 	 * The following errors indicate a bad lock type.
399 	 */
400 	NVME_IOCTL_E_BAD_LOCK_ENTITY,
401 	NVME_IOCTL_E_BAD_LOCK_LEVEL,
402 	NVME_IOCTL_E_BAD_LOCK_FLAGS,
403 	/*
404 	 * Indicates that a namespace open cannot lock or unlock a controller.
405 	 */
406 	NVME_IOCTL_E_NS_CANNOT_LOCK_CTRL,
407 	NVME_IOCTL_E_NS_CANNOT_UNLOCK_CTRL,
408 	/*
409 	 * Indicates that this lock is already held by the caller.
410 	 */
411 	NVME_IOCTL_E_LOCK_ALREADY_HELD,
412 	/*
413 	 * Indicates that we cannot take the controller lock, because the
414 	 * caller already has an active namespace lock.
415 	 */
416 	NVME_IOCTL_E_LOCK_NO_CTRL_WITH_NS,
417 	/*
418 	 * Indicates that we cannot take a namespace lock because a controller
419 	 * write lock already exists.
420 	 */
421 	NVME_IOCTL_LOCK_NO_NS_WITH_CTRL_WRLOCK,
422 	/*
423 	 * Indicates that we cannot take a namespace lock because we already
424 	 * have one.
425 	 */
426 	NVME_IOCTL_E_LOCK_NO_2ND_NS,
427 	/*
428 	 * Indicate that a blocking wait for a lock was interrupted due to a
429 	 * signal.
430 	 */
431 	NVME_IOCTL_E_LOCK_WAIT_SIGNAL,
432 	/*
433 	 * Indicates that the lock could not be acquired because it was already
434 	 * held and we were asked not to block on the lock.
435 	 */
436 	NVME_IOCTL_E_LOCK_WOULD_BLOCK,
437 	/*
438 	 * Indicates that the lock operation could not proceed because the minor
439 	 * is already blocking on another lock operation.
440 	 */
441 	NVME_IOCTL_E_LOCK_PENDING,
442 	/*
443 	 * Indicates that the requested lock could not be unlocked because it is
444 	 * not held. The minor may not hold the lock or it may be blocking for
445 	 * acquisition.
446 	 */
447 	NVME_IOCTL_E_LOCK_NOT_HELD,
448 	/*
449 	 * Indicates that the requested lock could not be unlocked because the
450 	 * namespace requested is not the namespace that is currently locked.
451 	 */
452 	NVME_IOCTL_E_LOCK_WRONG_NS,
453 	/*
454 	 * Indicates that the request could not proceed because a namespace is
455 	 * attached to blkdev. This would block a format operation, a vendor
456 	 * unique command that indicated that it would impact all namespaces,
457 	 * etc.
458 	 */
459 	NVME_IOCTL_E_NS_BLKDEV_ATTACH,
460 	/*
461 	 * Indicates that the blkdev address somehow would have overflowed our
462 	 * internal buffer.
463 	 */
464 	NVME_IOCTL_E_BD_ADDR_OVER,
465 	/*
466 	 * Indicates that Namespace Management commands are not supported by the
467 	 * controller at all.
468 	 */
469 	NVME_IOCTL_E_CTRL_NS_MGMT_UNSUP,
470 	/*
471 	 * Indicates that the request could not proceed because the namespace is
472 	 * currently attached to a controller.
473 	 */
474 	NVME_IOCTL_E_NS_CTRL_ATTACHED,
475 	NVME_IOCTL_E_NS_CTRL_NOT_ATTACHED,
476 	/*
477 	 * This indicates that the namespace ID is valid; however, there is no
478 	 * namespace actually allocated for this ID. For example, when trying to
479 	 * attach or detach a controller to an unallocated namespace.
480 	 *
481 	 * When a namespace ID is invalid, the kernel will generally instead
482 	 * return NVME_IOCTL_E_NS_RANGE.
483 	 */
484 	NVME_IOCTL_E_NS_NO_NS,
485 	/*
486 	 * Namespace Create fields with bad values
487 	 */
488 	NVME_IOCTL_E_NS_CREATE_NSZE_RANGE,
489 	NVME_IOCTL_E_NS_CREATE_NCAP_RANGE,
490 	NVME_IOCTL_E_NS_CREATE_CSI_RANGE,
491 	NVME_IOCTL_E_NS_CREATE_FLBAS_RANGE,
492 	NVME_IOCTL_E_NS_CREATE_NMIC_RANGE,
493 	/*
494 	 * Namespace Create fields with unsupported versions. Currently this can
495 	 * only apply to the CSI. Note, there aren't unusable errors yet;
496 	 * however, that'll change when we support other CSI types.
497 	 */
498 	NVME_IOCTL_E_NS_CREATE_CSI_UNSUP,
499 	/*
500 	 * We may have a valid CSI, but not support it at our end. This error
501 	 * indicates that. Similarly, the device may not support thin
502 	 * provisioning.
503 	 */
504 	NVME_IOCTL_E_DRV_CSI_UNSUP,
505 	NVME_IOCTL_E_CTRL_THIN_PROV_UNSUP
506 } nvme_ioctl_errno_t;
507 
508 /*
509  * This structure is embedded as the first item of every ioctl. It is also used
510  * directly for the following ioctls:
511  *
512  *  - blkdev attach (NVME_IOC_ATTACH)
513  *  - blkdev detach (NVME_IOC_DETACH)
514  *  - controller attach (NVME_IOC_CTRL_ATTACH)
515  *  - controller detach (NVME_IOC_CTRL_DETACH)
516  *  - namespace delete (NVME_IOC_NS_DELETE)
517  */
518 typedef struct {
519 	/*
520 	 * This allows one to specify the namespace ID that the ioctl may
521 	 * target, if it supports it. This field may be left to zero to indicate
522 	 * that the current open device (whether the controller or a namespace)
523 	 * should be targeted. If a namespace is open, a value other than 0 or
524 	 * the current namespace's ID is invalid.
525 	 */
526 	uint32_t nioc_nsid;
527 	/*
528 	 * These next three values represent a possible error that may have
529 	 * occurred. On every ioctl nioc_drv_err is set to a value from the
530 	 * nvme_ioctl_errno_t enumeration. Anything other than NVME_IOCTL_E_OK
531 	 * indicates a failure of some kind. Some error values will put
532 	 * supplemental information in sct and sc. For example,
533 	 * NVME_IOCTL_E_CTRL_ERROR uses that as a way to return the raw error
534 	 * values from the controller for someone to inspect. Others may use
535 	 * this for their own well-defined supplemental information.
536 	 */
537 	uint32_t nioc_drv_err;
538 	uint32_t nioc_ctrl_sct;
539 	uint32_t nioc_ctrl_sc;
540 } nvme_ioctl_common_t;
541 
542 /*
543  * NVMe Identify Command (NVME_IOC_IDENTIFY).
544  */
545 typedef struct {
546 	nvme_ioctl_common_t nid_common;
547 	uint32_t nid_cns;
548 	uint32_t nid_ctrlid;
549 	uintptr_t nid_data;
550 } nvme_ioctl_identify_t;
551 
552 /*
553  * The following constants describe the maximum values that may be used in
554  * various identify requests.
555  */
556 #define	NVME_IDENTIFY_MAX_CTRLID	0xffff
557 #define	NVME_IDENTIFY_MAX_NSID		0xffffffff
558 #define	NVME_IDENTIFY_MAX_CNS_1v2	0xff
559 #define	NVME_IDENTIFY_MAX_CNS_1v1	0x3
560 #define	NVME_IDENTIFY_MAX_CNS		0x1
561 
562 /*
563  * Get a specific feature (NVME_IOC_GET_FEATURE).
564  */
565 typedef struct {
566 	nvme_ioctl_common_t nigf_common;
567 	uint32_t nigf_fid;
568 	uint32_t nigf_sel;
569 	uint32_t nigf_cdw11;
570 	uintptr_t nigf_data;
571 	uint64_t nigf_len;
572 	uint32_t nigf_cdw0;
573 } nvme_ioctl_get_feature_t;
574 
575 /*
576  * Feature maximums.
577  */
578 #define	NVME_FEAT_MAX_FID	0xff
579 #define	NVME_FEAT_MAX_SEL	0x3
580 
581 /*
582  * Get a specific log page (NVME_IOC_GET_LOGPAGE). By default, unused fields
583  * should be left at zero.  the input data length is specified by nigl_len, in
584  * bytes. The NVMe specification does not provide a way for a controller to
585  * write less bytes than requested for a log page. It is undefined behavior if a
586  * log page read requests more data than is supported. If this is successful,
587  * nigl_len bytes will be copied out.
588  */
589 typedef struct {
590 	nvme_ioctl_common_t nigl_common;
591 	uint32_t nigl_csi;
592 	uint32_t nigl_lid;
593 	uint32_t nigl_lsp;
594 	uint32_t nigl_lsi;
595 	uint32_t nigl_rae;
596 	uint64_t nigl_len;
597 	uint64_t nigl_offset;
598 	uintptr_t nigl_data;
599 } nvme_ioctl_get_logpage_t;
600 
601 /*
602  * The following constants describe the maximum values for fields that used in
603  * the log page request. Note, some of these change with the version. These
604  * values are inclusive. The default max is the lowest common value. Larger
605  * values are included here. While these values are what the command set
606  * maximums are, the device driver may support smaller minimums (e.g. for size).
607  */
608 #define	NVME_LOG_MAX_LID	0xff
609 #define	NVME_LOG_MAX_LSP	0x0f
610 #define	NVME_LOG_MAX_LSP_2v0	0x7f
611 #define	NVME_LOG_MAX_LSI	0xffff
612 #define	NVME_LOG_MAX_UUID	0x7f
613 #define	NVME_LOG_MAX_CSI	0xff
614 #define	NVME_LOG_MAX_RAE	0x1
615 #define	NVME_LOG_MAX_OFFSET	UINT64_MAX
616 
617 /*
618  * These maximum size values are inclusive like the others. The fields are 12
619  * and 32-bits wide respectively, but are zero based. That is accounted for by
620  * the shifts below.
621  */
622 #define	NVME_LOG_MAX_SIZE	((1ULL << 12ULL) * 4ULL)
623 #define	NVME_LOG_MAX_SIZE_1v2	((1ULL << 32ULL) * 4ULL)
624 
625 /*
626  * Inject a vendor-specific admin command (NVME_IOC_PASSTHRU).
627  */
628 typedef struct {
629 	nvme_ioctl_common_t npc_common;	/* NSID and status */
630 	uint32_t npc_opcode;	/* Command opcode. */
631 	uint32_t npc_timeout;	/* Command timeout, in seconds. */
632 	uint32_t npc_flags;	/* Flags for the command. */
633 	uint32_t npc_impact;	/* Impact information */
634 	uint32_t npc_cdw0;	/* Command-specific result DWord 0 */
635 	uint32_t npc_cdw12;	/* Command-specific DWord 12 */
636 	uint32_t npc_cdw13;	/* Command-specific DWord 13 */
637 	uint32_t npc_cdw14;	/* Command-specific DWord 14 */
638 	uint32_t npc_cdw15;	/* Command-specific DWord 15 */
639 	uint64_t npc_buflen;	/* Size of npc_buf. */
640 	uintptr_t npc_buf;	/* I/O source or destination */
641 } nvme_ioctl_passthru_t;
642 
643 /*
644  * Constants for the passthru admin commands. Because the timeout is a kernel
645  * property, we don't include that here.
646  */
647 #define	NVME_PASSTHRU_MIN_ADMIN_OPC	0xc0
648 #define	NVME_PASSTHRU_MAX_ADMIN_OPC	0xff
649 
650 /* Flags for NVMe passthru commands. */
651 #define	NVME_PASSTHRU_READ	0x1 /* Read from device */
652 #define	NVME_PASSTHRU_WRITE	0x2 /* Write to device */
653 
654 /*
655  * Impact information for NVMe passthru commands. The current impact flags are
656  * defined as follows:
657  *
658  * NVME_IMPACT_NS	This implies that one or all of the namespaces may be
659  *			changed. This command will rescan all namespace after
660  *			this occurs and update our state as a result. However,
661  *			this requires that all such namespaces not be attached
662  *			to blkdev to continue.
663  */
664 #define	NVME_IMPACT_NS		0x01
665 
666 
667 /*
668  * Firmware download (NVME_IOC_FIRMWARE_DOWNLOAD).
669  */
670 typedef struct {
671 	nvme_ioctl_common_t fwl_common;
672 	uintptr_t fwl_buf;
673 	uint64_t fwl_len;
674 	uint64_t fwl_off;
675 } nvme_ioctl_fw_load_t;
676 
677 /*
678  * Firmware commit (NVME_IOC_FIRMWARE_COMMIT). This was previously called
679  * firmware activate in earlier specification revisions.
680  */
681 typedef struct {
682 	nvme_ioctl_common_t fwc_common;
683 	uint32_t fwc_slot;
684 	uint32_t fwc_action;
685 } nvme_ioctl_fw_commit_t;
686 
687 /*
688  * Format NVM command (NVME_IOC_FORMAT)
689  */
690 typedef struct {
691 	nvme_ioctl_common_t nif_common;
692 	uint32_t nif_lbaf;
693 	uint32_t nif_ses;
694 } nvme_ioctl_format_t;
695 
696 typedef enum {
697 	NVME_LOCK_E_CTRL = 1,
698 	NVME_LOCK_E_NS
699 } nvme_lock_ent_t;
700 
701 typedef enum {
702 	NVME_LOCK_L_READ	= 1,
703 	NVME_LOCK_L_WRITE
704 } nvme_lock_level_t;
705 
706 typedef enum {
707 	NVME_LOCK_F_DONT_BLOCK	= 1 << 0
708 } nvme_lock_flags_t;
709 
710 /*
711  * Lock structure (NVME_IOC_LOCK).
712  */
713 typedef struct {
714 	nvme_ioctl_common_t nil_common;
715 	nvme_lock_ent_t nil_ent;
716 	nvme_lock_level_t nil_level;
717 	nvme_lock_flags_t nil_flags;
718 } nvme_ioctl_lock_t;
719 
720 /*
721  * Unlock structure (NVME_IOC_UNLOCK).
722  */
723 typedef struct {
724 	nvme_ioctl_common_t niu_common;
725 	nvme_lock_ent_t niu_ent;
726 } nvme_ioctl_unlock_t;
727 
728 /*
729  * Namespace Management related structures and constants. Note, namespace
730  * controller attach, controller detach, and namespace delete all use the common
731  * ioctl structure at this time.
732  */
733 #define	NVME_NS_ATTACH_CTRL_ATTACH	0
734 #define	NVME_NS_ATTACH_CTRL_DETACH	1
735 
736 /*
737  * Constants related to fields here. These represent the specifications maximum
738  * size, even though there are additional constraints placed on it by the driver
739  * (e.g. we only allow creating a namespace with the NVM CSI).
740  */
741 #define	NVME_NS_MGMT_MAX_CSI	0xff
742 #define	NVME_NS_MGMT_MAX_FLBAS	0xf
743 #define	NVME_NS_MGMT_NMIC_MASK	0x1
744 
745 /*
746  * Logical values for namespace multipath I/O and sharing capabilities (NMIC).
747  */
748 typedef enum {
749 	/*
750 	 * Indicates that no NVMe namespace sharing is permitted between
751 	 * controllers.
752 	 */
753 	NVME_NS_NMIC_T_NONE	= 0,
754 	/*
755 	 * Indicates that namespace sharing is allowed between controllers. This
756 	 * is equivalent to the SHRNS bit being set.
757 	 */
758 	NVME_NS_NMIC_T_SHARED,
759 	/*
760 	 * Indicates that this is a dispersed namespace. A dispersed namespace
761 	 * implies a shared namespace and indicates that DISNS and SHRNS are
762 	 * both set.
763 	 */
764 	NVME_NS_NMIC_T_DISPERSED
765 } nvme_ns_nmic_t;
766 
767 /*
768  * Namespace create structure (NVME_IOC_NS_CREATE).
769  */
770 typedef struct {
771 	nvme_ioctl_common_t nnc_common;
772 	uint64_t nnc_nsze;
773 	uint64_t nnc_ncap;
774 	uint32_t nnc_csi;
775 	uint32_t nnc_flbas;
776 	uint32_t nnc_nmic;
777 	uint32_t nnc_nsid;
778 } nvme_ioctl_ns_create_t;
779 
780 /*
781  * 32-bit ioctl structures. These must be packed to be 4 bytes to get the proper
782  * ILP32 sizing.
783  */
784 #if defined(_KERNEL) && defined(_SYSCALL32)
785 #pragma pack(4)
786 typedef struct {
787 	nvme_ioctl_common_t nid_common;
788 	uint32_t nid_cns;
789 	uint32_t nid_ctrlid;
790 	uintptr32_t nid_data;
791 } nvme_ioctl_identify32_t;
792 
793 typedef struct {
794 	nvme_ioctl_common_t nigf_common;
795 	uint32_t nigf_fid;
796 	uint32_t nigf_sel;
797 	uint32_t nigf_cdw11;
798 	uintptr32_t nigf_data;
799 	uint64_t nigf_len;
800 	uint32_t nigf_cdw0;
801 } nvme_ioctl_get_feature32_t;
802 
803 typedef struct {
804 	nvme_ioctl_common_t nigl_common;
805 	uint32_t nigl_csi;
806 	uint32_t nigl_lid;
807 	uint32_t nigl_lsp;
808 	uint32_t nigl_lsi;
809 	uint32_t nigl_rae;
810 	uint64_t nigl_len;
811 	uint64_t nigl_offset;
812 	uintptr32_t nigl_data;
813 } nvme_ioctl_get_logpage32_t;
814 
815 typedef struct {
816 	nvme_ioctl_common_t npc_common;	/* NSID and status */
817 	uint32_t npc_opcode;	/* Command opcode. */
818 	uint32_t npc_timeout;	/* Command timeout, in seconds. */
819 	uint32_t npc_flags;	/* Flags for the command. */
820 	uint32_t npc_impact;	/* Impact information */
821 	uint32_t npc_cdw0;	/* Command-specific result DWord 0 */
822 	uint32_t npc_cdw12;	/* Command-specific DWord 12 */
823 	uint32_t npc_cdw13;	/* Command-specific DWord 13 */
824 	uint32_t npc_cdw14;	/* Command-specific DWord 14 */
825 	uint32_t npc_cdw15;	/* Command-specific DWord 15 */
826 	uint64_t npc_buflen;	/* Size of npc_buf. */
827 	uintptr32_t npc_buf;	/* I/O source or destination */
828 } nvme_ioctl_passthru32_t;
829 
830 typedef struct {
831 	nvme_ioctl_common_t fwl_common;
832 	uintptr32_t fwl_buf;
833 	uint64_t fwl_len;
834 	uint64_t fwl_off;
835 } nvme_ioctl_fw_load32_t;
836 #pragma pack()	/* pack(4) */
837 #endif	/* _KERNEL && _SYSCALL32 */
838 
839 /*
840  * NVMe capabilities. This is a set of fields that come from the controller's
841  * PCIe register space.
842  */
843 typedef struct {
844 	uint32_t cap_mpsmax;		/* Memory Page Size Maximum */
845 	uint32_t cap_mpsmin;		/* Memory Page Size Minimum */
846 } nvme_capabilities_t;
847 
848 /*
849  * NVMe version
850  */
851 typedef struct {
852 	uint16_t v_minor;
853 	uint16_t v_major;
854 } nvme_version_t;
855 
856 #define	NVME_VERSION_ATLEAST(v, maj, min) \
857 	(((v)->v_major) > (maj) || \
858 	((v)->v_major == (maj) && (v)->v_minor >= (min)))
859 
860 #define	NVME_VERSION_HIGHER(v, maj, min) \
861 	(((v)->v_major) > (maj) || \
862 	((v)->v_major == (maj) && (v)->v_minor > (min)))
863 
864 /*
865  * NVMe Namespace related constants. The maximum NSID is determined by the
866  * identify controller data structure.
867  */
868 #define	NVME_NSID_MIN	1
869 #define	NVME_NSID_BCAST	0xffffffff
870 
871 #pragma pack(1)
872 
873 typedef struct {
874 	uint64_t lo;
875 	uint64_t hi;
876 } nvme_uint128_t;
877 
878 /*
879  * NVMe Identify data structures
880  */
881 
882 #define	NVME_IDENTIFY_BUFSIZE	4096	/* buffer size for Identify */
883 
884 /* NVMe Identify parameters (cdw10) */
885 #define	NVME_IDENTIFY_NSID		0x0	/* Identify Namespace */
886 #define	NVME_IDENTIFY_CTRL		0x1	/* Identify Controller */
887 #define	NVME_IDENTIFY_NSID_LIST		0x2	/* List Active Namespaces */
888 #define	NVME_IDENTIFY_NSID_DESC		0x3	/* Namespace ID Descriptors */
889 
890 #define	NVME_IDENTIFY_NSID_ALLOC_LIST	0x10	/* List Allocated NSID */
891 #define	NVME_IDENTIFY_NSID_ALLOC	0x11	/* Identify Allocated NSID */
892 #define	NVME_IDENTIFY_NSID_CTRL_LIST	0x12	/* List Controllers on NSID */
893 #define	NVME_IDENTIFY_CTRL_LIST		0x13	/* Controller List */
894 #define	NVME_IDENTIFY_PRIMARY_CAPS	0x14	/* Primary Controller Caps */
895 
896 
897 /* NVMe Queue Entry Size bitfield */
898 typedef struct {
899 	uint8_t qes_min:4;		/* minimum entry size */
900 	uint8_t qes_max:4;		/* maximum entry size */
901 } nvme_idctl_qes_t;
902 
903 /* NVMe Power State Descriptor */
904 typedef struct {
905 	uint16_t psd_mp;		/* Maximum Power */
906 	uint8_t psd_rsvd1;
907 	uint8_t psd_mps:1;		/* Max Power Scale (1.1) */
908 	uint8_t psd_nops:1;		/* Non-Operational State (1.1) */
909 	uint8_t psd_rsvd2:6;
910 	uint32_t psd_enlat;		/* Entry Latency */
911 	uint32_t psd_exlat;		/* Exit Latency */
912 	uint8_t psd_rrt:5;		/* Relative Read Throughput */
913 	uint8_t psd_rsvd3:3;
914 	uint8_t psd_rrl:5;		/* Relative Read Latency */
915 	uint8_t psd_rsvd4:3;
916 	uint8_t psd_rwt:5;		/* Relative Write Throughput */
917 	uint8_t	psd_rsvd5:3;
918 	uint8_t psd_rwl:5;		/* Relative Write Latency */
919 	uint8_t psd_rsvd6:3;
920 	uint16_t psd_idlp;		/* Idle Power (1.2) */
921 	uint8_t psd_rsvd7:6;
922 	uint8_t psd_ips:2;		/* Idle Power Scale (1.2) */
923 	uint8_t psd_rsvd8;
924 	uint16_t psd_actp;		/* Active Power (1.2) */
925 	uint8_t psd_apw:3;		/* Active Power Workload (1.2) */
926 	uint8_t psd_rsvd9:3;
927 	uint8_t psd_aps:2;		/* Active Power Scale */
928 	uint8_t psd_rsvd10[9];
929 } nvme_idctl_psd_t;
930 
931 #define	NVME_SERIAL_SZ	20
932 #define	NVME_MODEL_SZ	40
933 #define	NVME_FWVER_SZ	8
934 
935 /* NVMe Identify Controller Data Structure */
936 typedef struct {
937 	/* Controller Capabilities & Features */
938 	uint16_t id_vid;		/* PCI vendor ID */
939 	uint16_t id_ssvid;		/* PCI subsystem vendor ID */
940 	char id_serial[NVME_SERIAL_SZ];	/* Serial Number */
941 	char id_model[NVME_MODEL_SZ];	/* Model Number */
942 	char id_fwrev[NVME_FWVER_SZ];	/* Firmware Revision */
943 	uint8_t id_rab;			/* Recommended Arbitration Burst */
944 	uint8_t id_oui[3];		/* vendor IEEE OUI */
945 	struct {			/* Multi-Interface Capabilities */
946 		uint8_t m_multi_pci:1;	/* HW has multiple PCIe interfaces */
947 		uint8_t m_multi_ctrl:1; /* HW has multiple controllers (1.1) */
948 		uint8_t m_sr_iov:1;	/* Controller is SR-IOV virt fn (1.1) */
949 		uint8_t m_anar_sup:1;	/* ANA Reporting Supported (1.4) */
950 		uint8_t m_rsvd:4;
951 	} id_mic;
952 	uint8_t	id_mdts;		/* Maximum Data Transfer Size */
953 	uint16_t id_cntlid;		/* Unique Controller Identifier (1.1) */
954 	/* Added in NVMe 1.2 */
955 	uint32_t id_ver;		/* Version (1.2) */
956 	uint32_t id_rtd3r;		/* RTD3 Resume Latency (1.2) */
957 	uint32_t id_rtd3e;		/* RTD3 Entry Latency (1.2) */
958 	struct {
959 		uint32_t oaes_rsvd0:8;
960 		uint32_t oaes_nsan:1;	/* Namespace Attribute Notices (1.2) */
961 		uint32_t oaes_fwact:1;	/* Firmware Activation Notices (1.2) */
962 		uint32_t oaes_rsvd1:1;
963 		uint32_t oaes_ansacn:1;	/* Asymmetric NS Access Change (1.4) */
964 		uint32_t oaes_plat:1;	/* Predictable Lat Event Agg. (1.4) */
965 		uint32_t oaes_lbasi:1;	/* LBA Status Information (1.4) */
966 		uint32_t oaes_egeal:1;	/* Endurance Group Event Agg. (1.4) */
967 		uint32_t oaes_rsvd2:17;
968 	} id_oaes;
969 	struct {
970 		uint32_t ctrat_hid:1;	/* 128-bit Host Identifier (1.2)  */
971 		uint32_t ctrat_nops:1;	/* Non-Operational Power State (1.3) */
972 		uint32_t ctrat_nvmset:1; /* NVMe Sets (1.4) */
973 		uint32_t ctrat_rrl:1;	/* Read Recovery Levels (1.4) */
974 		uint32_t ctrat_engrp:1; /* Endurance Groups (1.4) */
975 		uint32_t ctrat_plm:1;	/* Predictable Latency Mode (1.4) */
976 		uint32_t ctrat_tbkas:1;	/* Traffic Based Keep Alive (1.4) */
977 		uint32_t ctrat_nsg:1;	/* Namespace Granularity (1.4) */
978 		uint32_t ctrat_sqass:1;	/* SQ Associations (1.4) */
979 		uint32_t ctrat_uuid:1;	/* UUID List (1.4) */
980 		uint32_t ctrat_rsvd:22;
981 	} id_ctratt;
982 	uint16_t id_rrls;		/* Read Recovery Levels (1.4) */
983 	uint8_t id_rsvd_cc[111-102];
984 	uint8_t id_cntrltype;		/* Controller Type (1.4) */
985 	uint8_t id_frguid[16];		/* FRU GUID (1.3) */
986 	uint16_t id_crdt1;		/* Command Retry Delay Time 1 (1.4) */
987 	uint16_t id_crdt2;		/* Command Retry Delay Time 2 (1.4) */
988 	uint16_t id_crdt3;		/* Command Retry Delay Time 3 (1.4) */
989 	uint8_t id_rsvd2_cc[240 - 134];
990 	uint8_t id_rsvd_nvmemi[253 - 240];
991 	/* NVMe-MI region */
992 	struct {			/* NVMe Subsystem Report */
993 		uint8_t nvmsr_nvmesd:1;	/* NVMe Storage Device */
994 		uint8_t nvmsr_nvmee:1;	/* NVMe Enclosure */
995 		uint8_t nvmsr_rsvd:6;
996 	} id_nvmsr;
997 	struct {			/* VPD Write Cycle Information */
998 		uint8_t vwci_crem:7;	/* Write Cycles Remaining */
999 		uint8_t vwci_valid:1;	/* Write Cycles Remaining Valid */
1000 	} id_vpdwc;
1001 	struct {			/* Management Endpoint Capabilities */
1002 		uint8_t mec_smbusme:1;	/* SMBus Port Management Endpoint */
1003 		uint8_t mec_pcieme:1;	/* PCIe Port Management Endpoint */
1004 		uint8_t mec_rsvd:6;
1005 	} id_mec;
1006 
1007 	/* Admin Command Set Attributes */
1008 	struct {			/* Optional Admin Command Support */
1009 		uint16_t oa_security:1;	/* Security Send & Receive */
1010 		uint16_t oa_format:1;	/* Format NVM */
1011 		uint16_t oa_firmware:1;	/* Firmware Activate & Download */
1012 		uint16_t oa_nsmgmt:1;	/* Namespace Management (1.2) */
1013 		uint16_t oa_selftest:1;	/* Self Test (1.3) */
1014 		uint16_t oa_direct:1;	/* Directives (1.3) */
1015 		uint16_t oa_nvmemi:1;	/* MI-Send/Recv (1.3) */
1016 		uint16_t oa_virtmgmt:1;	/* Virtualization Management (1.3) */
1017 		uint16_t oa_doorbell:1;	/* Doorbell Buffer Config (1.3) */
1018 		uint16_t oa_lbastat:1;	/* LBA Status (1.4) */
1019 		uint16_t oa_rsvd:6;
1020 	} id_oacs;
1021 	uint8_t	id_acl;			/* Abort Command Limit */
1022 	uint8_t id_aerl;		/* Asynchronous Event Request Limit */
1023 	struct {			/* Firmware Updates */
1024 		uint8_t fw_readonly:1;	/* Slot 1 is Read-Only */
1025 		uint8_t	fw_nslot:3;	/* number of firmware slots */
1026 		uint8_t fw_norst:1;	/* Activate w/o reset (1.2) */
1027 		uint8_t fw_rsvd:3;
1028 	} id_frmw;
1029 	struct {			/* Log Page Attributes */
1030 		uint8_t lp_smart:1;	/* SMART/Health information per NS */
1031 		uint8_t lp_cmdeff:1;	/* Command Effects (1.2) */
1032 		uint8_t lp_extsup:1;	/* Extended Get Log Page (1.2) */
1033 		uint8_t lp_telemetry:1;	/* Telemetry Log Pages (1.3) */
1034 		uint8_t lp_persist:1;	/* Persistent Log Page (1.4) */
1035 		uint8_t lp_rsvd:3;
1036 	} id_lpa;
1037 	uint8_t id_elpe;		/* Error Log Page Entries */
1038 	uint8_t	id_npss;		/* Number of Power States */
1039 	struct {			/* Admin Vendor Specific Command Conf */
1040 		uint8_t av_spec:1;	/* use format from spec */
1041 		uint8_t av_rsvd:7;
1042 	} id_avscc;
1043 	struct {			/* Autonomous Power State Trans (1.1) */
1044 		uint8_t ap_sup:1;	/* APST supported (1.1) */
1045 		uint8_t ap_rsvd:7;
1046 	} id_apsta;
1047 	uint16_t ap_wctemp;		/* Warning Composite Temp. (1.2) */
1048 	uint16_t ap_cctemp;		/* Critical Composite Temp. (1.2) */
1049 	uint16_t ap_mtfa;		/* Maximum Firmware Activation (1.2) */
1050 	uint32_t ap_hmpre;		/* Host Memory Buf Pref Size (1.2) */
1051 	uint32_t ap_hmmin;		/* Host Memory Buf Min Size (1.2) */
1052 	nvme_uint128_t ap_tnvmcap;	/* Total NVM Capacity in Bytes (1.2) */
1053 	nvme_uint128_t ap_unvmcap;	/* Unallocated NVM Capacity (1.2) */
1054 	struct {			/* Replay Protected Mem. Block (1.2) */
1055 		uint32_t rpmbs_units:3;	/* Number of targets */
1056 		uint32_t rpmbs_auth:3;	/* Auth method */
1057 		uint32_t rpmbs_rsvd:10;
1058 		uint32_t rpmbs_tot:8;	/* Total size in 128KB */
1059 		uint32_t rpmbs_acc:8;	/* Access size in 512B */
1060 	} ap_rpmbs;
1061 	/* Added in NVMe 1.3 */
1062 	uint16_t ap_edstt;		/* Ext. Device Self-test time (1.3) */
1063 	struct {			/* Device Self-test Options */
1064 		uint8_t dsto_sub:1;	/* Subsystem level self-test (1.3) */
1065 		uint8_t dsto_rsvd:7;
1066 	} ap_dsto;
1067 	uint8_t ap_fwug;		/* Firmware Update Granularity (1.3) */
1068 	uint16_t ap_kas;		/* Keep Alive Support (1.2) */
1069 	struct {			/* Host Thermal Management (1.3) */
1070 		uint16_t hctma_hctm:1;	/* Host Controlled (1.3) */
1071 		uint16_t hctma_rsvd:15;
1072 	} ap_hctma;
1073 	uint16_t ap_mntmt;		/* Minimum Thermal Temperature (1.3) */
1074 	uint16_t ap_mxtmt;		/* Maximum Thermal Temperature (1.3) */
1075 	struct {			/* Sanitize Caps */
1076 		uint32_t san_ces:1;	/* Crypto Erase Support (1.3) */
1077 		uint32_t san_bes:1;	/* Block Erase Support (1.3) */
1078 		uint32_t san_ows:1;	/* Overwite Support (1.3) */
1079 		uint32_t san_rsvd:26;
1080 		uint32_t san_ndi:1;	/* No-deallocate Inhibited (1.4) */
1081 		uint32_t san_nodmmas:2;	/* No-Deallocate Modifies Media (1.4) */
1082 	} ap_sanitize;
1083 	uint32_t ap_hmminds;		/* Host Mem Buf Min Desc Entry (1.4) */
1084 	uint16_t ap_hmmaxd;		/* How Mem Max Desc Entries (1.4) */
1085 	uint16_t ap_nsetidmax;		/* Max NVMe set identifier (1.4) */
1086 	uint16_t ap_engidmax;		/* Max Endurance Group ID (1.4) */
1087 	uint8_t ap_anatt;		/* ANA Transition Time (1.4) */
1088 	struct {			/* Asymmetric Namespace Access Caps */
1089 		uint8_t anacap_opt:1;	/* Optimized State (1.4) */
1090 		uint8_t anacap_unopt:1;	/* Un-optimized State (1.4) */
1091 		uint8_t anacap_inacc:1;	/* Inaccessible State (1.4) */
1092 		uint8_t anacap_ploss:1;	/* Persistent Loss (1.4) */
1093 		uint8_t anacap_chg:1;	/* Change State (1.4 ) */
1094 		uint8_t anacap_rsvd:1;
1095 		uint8_t anacap_grpns:1;	/* ID Changes with NS Attach (1.4) */
1096 		uint8_t anacap_grpid:1;	/* Supports Group ID (1.4) */
1097 	} ap_anacap;
1098 	uint32_t ap_anagrpmax;		/* ANA Group ID Max (1.4) */
1099 	uint32_t ap_nanagrpid;		/* Number of ANA Group IDs (1.4) */
1100 	uint32_t ap_pels;		/* Persistent Event Log Size (1.4) */
1101 	uint8_t id_rsvd_ac[512 - 356];
1102 
1103 	/* NVM Command Set Attributes */
1104 	nvme_idctl_qes_t id_sqes;	/* Submission Queue Entry Size */
1105 	nvme_idctl_qes_t id_cqes;	/* Completion Queue Entry Size */
1106 	uint16_t id_maxcmd;		/* Max Outstanding Commands (1.3) */
1107 	uint32_t id_nn;			/* Number of Namespaces */
1108 	struct {			/* Optional NVM Command Support */
1109 		uint16_t on_compare:1;	/* Compare */
1110 		uint16_t on_wr_unc:1;	/* Write Uncorrectable */
1111 		uint16_t on_dset_mgmt:1; /* Dataset Management */
1112 		uint16_t on_wr_zero:1;	/* Write Zeros (1.1) */
1113 		uint16_t on_save:1;	/* Save/Select in Get/Set Feat (1.1) */
1114 		uint16_t on_reserve:1;	/* Reservations (1.1) */
1115 		uint16_t on_ts:1;	/* Timestamp (1.3) */
1116 		uint16_t on_verify:1;	/* Verify (1.4) */
1117 		uint16_t on_rsvd:8;
1118 	} id_oncs;
1119 	struct {			/* Fused Operation Support */
1120 		uint16_t f_cmp_wr:1;	/* Compare and Write */
1121 		uint16_t f_rsvd:15;
1122 	} id_fuses;
1123 	struct {			/* Format NVM Attributes */
1124 		uint8_t fn_format:1;	/* Format applies to all NS */
1125 		uint8_t fn_sec_erase:1;	/* Secure Erase applies to all NS */
1126 		uint8_t fn_crypt_erase:1; /* Cryptographic Erase supported */
1127 		uint8_t fn_rsvd:5;
1128 	} id_fna;
1129 	struct {			/* Volatile Write Cache */
1130 		uint8_t vwc_present:1;	/* Volatile Write Cache present */
1131 		uint8_t vwc_nsflush:2;	/* Flush with NS ffffffff (1.4) */
1132 		uint8_t rsvd:5;
1133 	} id_vwc;
1134 	uint16_t id_awun;		/* Atomic Write Unit Normal */
1135 	uint16_t id_awupf;		/* Atomic Write Unit Power Fail */
1136 	struct {			/* NVM Vendor Specific Command Conf */
1137 		uint8_t nv_spec:1;	/* use format from spec */
1138 		uint8_t nv_rsvd:7;
1139 	} id_nvscc;
1140 	struct {			/* Namespace Write Protection Caps */
1141 		uint8_t nwpc_base:1;	/* Base support (1.4) */
1142 		uint8_t nwpc_wpupc:1;	/* Write prot until power cycle (1.4) */
1143 		uint8_t nwpc_permwp:1;	/* Permanent write prot (1.4) */
1144 		uint8_t nwpc_rsvd:5;
1145 	} id_nwpc;
1146 	uint16_t id_acwu;		/* Atomic Compare & Write Unit (1.1) */
1147 	uint16_t id_rsvd_nc_3;
1148 	struct {			/* SGL Support (1.1) */
1149 		uint16_t sgl_sup:2;	/* SGL Supported in NVM cmds (1.3) */
1150 		uint16_t sgl_keyed:1;	/* Keyed SGL Support (1.2) */
1151 		uint16_t sgl_rsvd1:13;
1152 		uint16_t sgl_bucket:1;	/* SGL Bit Bucket supported (1.1) */
1153 		uint16_t sgl_balign:1;	/* SGL Byte Aligned (1.2) */
1154 		uint16_t sgl_sglgtd:1;	/* SGL Length Longer than Data (1.2) */
1155 		uint16_t sgl_mptr:1;	/* SGL MPTR w/ SGL (1.2) */
1156 		uint16_t sgl_offset:1;	/* SGL Address is offset (1.2) */
1157 		uint16_t sgl_tport:1;	/* Transport SGL Data Block (1.4) */
1158 		uint16_t sgl_rsvd2:10;
1159 	} id_sgls;
1160 	uint32_t id_mnan;		/* Maximum Number of Allowed NSes */
1161 	uint8_t id_rsvd_nc_4[768 - 544];
1162 
1163 	/* I/O Command Set Attributes */
1164 	uint8_t id_subnqn[1024 - 768];	/* Subsystem Qualified Name (1.2.1+) */
1165 	uint8_t id_rsvd_ioc[1792 - 1024];
1166 	uint8_t id_nvmof[2048 - 1792];	/* NVMe over Fabrics */
1167 
1168 	/* Power State Descriptors */
1169 	nvme_idctl_psd_t id_psd[32];
1170 
1171 	/* Vendor Specific */
1172 	uint8_t id_vs[1024];
1173 } nvme_identify_ctrl_t;
1174 
1175 /*
1176  * NVMe Controller Types
1177  */
1178 #define	NVME_CNTRLTYPE_RSVD	0
1179 #define	NVME_CNTRLTYPE_IO	1
1180 #define	NVME_CNTRLTYPE_DISC	2
1181 #define	NVME_CNTRLTYPE_ADMIN	3
1182 
1183 /*
1184  * RPMBS Authentication Types
1185  */
1186 #define	NVME_RPMBS_AUTH_HMAC_SHA256	0
1187 
1188 /*
1189  * NODMMAS Values
1190  */
1191 #define	NVME_NODMMAS_UNDEF	0x00
1192 #define	NVME_NODMMAS_NOMOD	0x01
1193 #define	NVME_NODMMAS_DOMOD	0x02
1194 
1195 /*
1196  * VWC NSID flushes
1197  */
1198 #define	NVME_VWCNS_UNKNOWN	0x00
1199 #define	NVME_VWCNS_UNSUP	0x02
1200 #define	NVME_VWCNS_SUP		0x03
1201 
1202 /*
1203  * SGL Support Values
1204  */
1205 #define	NVME_SGL_UNSUP		0x00
1206 #define	NVME_SGL_SUP_UNALIGN	0x01
1207 #define	NVME_SGL_SUP_ALIGN	0x02
1208 
1209 /* NVMe Identify Namespace LBA Format */
1210 typedef struct {
1211 	uint16_t lbaf_ms;		/* Metadata Size */
1212 	uint8_t lbaf_lbads;		/* LBA Data Size */
1213 	uint8_t lbaf_rp:2;		/* Relative Performance */
1214 	uint8_t lbaf_rsvd1:6;
1215 } nvme_idns_lbaf_t;
1216 
1217 #define	NVME_MAX_LBAF	16
1218 
1219 /* NVMe Identify Namespace Data Structure */
1220 typedef struct {
1221 	uint64_t id_nsize;		/* Namespace Size */
1222 	uint64_t id_ncap;		/* Namespace Capacity */
1223 	uint64_t id_nuse;		/* Namespace Utilization */
1224 	struct {			/* Namespace Features */
1225 		uint8_t f_thin:1;	/* Thin Provisioning */
1226 		uint8_t f_nsabp:1;	/* Namespace atomics (1.2) */
1227 		uint8_t f_dae:1;	/* Deallocated errors supported (1.2) */
1228 		uint8_t f_uidreuse:1;	/* GUID reuse impossible (1.3) */
1229 		uint8_t f_optperf:1;	/* Namespace I/O opt (1.4) */
1230 		uint8_t f_rsvd:3;
1231 	} id_nsfeat;
1232 	uint8_t id_nlbaf;		/* Number of LBA formats */
1233 	struct {			/* Formatted LBA size */
1234 		uint8_t lba_format:4;	/* LBA format */
1235 		uint8_t lba_extlba:1;	/* extended LBA (includes metadata) */
1236 		uint8_t lba_rsvd:3;
1237 	} id_flbas;
1238 	struct {			/* Metadata Capabilities */
1239 		uint8_t mc_extlba:1;	/* extended LBA transfers */
1240 		uint8_t mc_separate:1;	/* separate metadata transfers */
1241 		uint8_t mc_rsvd:6;
1242 	} id_mc;
1243 	struct {			/* Data Protection Capabilities */
1244 		uint8_t dp_type1:1;	/* Protection Information Type 1 */
1245 		uint8_t dp_type2:1;	/* Protection Information Type 2 */
1246 		uint8_t dp_type3:1;	/* Protection Information Type 3 */
1247 		uint8_t dp_first:1;	/* first 8 bytes of metadata */
1248 		uint8_t dp_last:1;	/* last 8 bytes of metadata */
1249 		uint8_t dp_rsvd:3;
1250 	} id_dpc;
1251 	struct {			/* Data Protection Settings */
1252 		uint8_t dp_pinfo:3;	/* Protection Information enabled */
1253 		uint8_t dp_first:1;	/* first 8 bytes of metadata */
1254 		uint8_t dp_rsvd:4;
1255 	} id_dps;
1256 	struct {			/* NS Multi-Path/Sharing Cap (1.1) */
1257 		uint8_t nm_shared:1;	/* NS is shared (1.1) */
1258 		uint8_t nm_rsvd:7;
1259 	} id_nmic;
1260 	struct {			/* Reservation Capabilities (1.1) */
1261 		uint8_t rc_persist:1;	/* Persist Through Power Loss (1.1) */
1262 		uint8_t rc_wr_excl:1;	/* Write Exclusive (1.1) */
1263 		uint8_t rc_excl:1;	/* Exclusive Access (1.1) */
1264 		uint8_t rc_wr_excl_r:1;	/* Wr Excl - Registrants Only (1.1) */
1265 		uint8_t rc_excl_r:1;	/* Excl Acc - Registrants Only (1.1) */
1266 		uint8_t rc_wr_excl_a:1;	/* Wr Excl - All Registrants (1.1) */
1267 		uint8_t rc_excl_a:1;	/* Excl Acc - All Registrants (1.1) */
1268 		uint8_t rc_ign_ekey:1;	/* Ignore Existing Key (1.3) */
1269 	} id_rescap;
1270 	struct {			/* Format Progress Indicator (1.2) */
1271 		uint8_t fpi_remp:7;	/* Percent NVM Format Remaining (1.2) */
1272 		uint8_t fpi_sup:1;	/* Supported (1.2) */
1273 	} id_fpi;
1274 	uint8_t id_dfleat;		/* Deallocate Log. Block (1.3) */
1275 	uint16_t id_nawun;		/* Atomic Write Unit Normal (1.2) */
1276 	uint16_t id_nawupf;		/* Atomic Write Unit Power Fail (1.2) */
1277 	uint16_t id_nacwu;		/* Atomic Compare & Write Unit (1.2) */
1278 	uint16_t id_nabsn;		/* Atomic Boundary Size Normal (1.2) */
1279 	uint16_t id_nbao;		/* Atomic Boundary Offset (1.2) */
1280 	uint16_t id_nabspf;		/* Atomic Boundary Size Fail (1.2) */
1281 	uint16_t id_noiob;		/* Optimal I/O Bondary (1.3) */
1282 	nvme_uint128_t id_nvmcap;	/* NVM Capacity */
1283 	uint16_t id_npwg;		/* NS Pref. Write Gran. (1.4) */
1284 	uint16_t id_npwa;		/* NS Pref. Write Align. (1.4) */
1285 	uint16_t id_npdg;		/* NS Pref. Deallocate Gran. (1.4) */
1286 	uint16_t id_npda;		/* NS Pref. Deallocate Align. (1.4) */
1287 	uint16_t id_nows;		/* NS. Optimal Write Size (1.4) */
1288 	uint8_t id_rsvd1[92 - 74];
1289 	uint32_t id_anagrpid;		/* ANA Group Identifier (1.4) */
1290 	uint8_t id_rsvd2[99 - 96];
1291 	struct {
1292 		uint8_t nsa_wprot:1;	/* Write Protected (1.4) */
1293 		uint8_t nsa_rsvd:7;
1294 	} id_nsattr;
1295 	uint16_t id_nvmsetid;		/* NVM Set Identifier (1.4) */
1296 	uint16_t id_endgid;		/* Endurance Group Identifier (1.4) */
1297 	uint8_t id_nguid[16];		/* Namespace GUID (1.2) */
1298 	uint8_t id_eui64[8];		/* IEEE Extended Unique Id (1.1) */
1299 	nvme_idns_lbaf_t id_lbaf[NVME_MAX_LBAF];	/* LBA Formats */
1300 
1301 	uint8_t id_rsvd3[384 - 192];
1302 
1303 	uint8_t id_vs[4096 - 384];	/* Vendor Specific */
1304 } nvme_identify_nsid_t;
1305 
1306 /* NVMe Identify Namespace ID List */
1307 typedef struct {
1308 					/* Ordered list of Namespace IDs */
1309 	uint32_t nl_nsid[NVME_IDENTIFY_BUFSIZE / sizeof (uint32_t)];
1310 } nvme_identify_nsid_list_t;
1311 
1312 /* NVME Identify Controller ID List */
1313 typedef struct {
1314 	uint16_t	cl_nid;		/* Number of controller entries */
1315 					/* unique controller identifiers */
1316 	uint16_t	cl_ctlid[NVME_IDENTIFY_BUFSIZE / sizeof (uint16_t) - 1];
1317 } nvme_identify_ctrl_list_t;
1318 
1319 /* NVMe Identify Namespace Descriptor */
1320 typedef struct {
1321 	uint8_t nd_nidt;		/* Namespace Identifier Type */
1322 	uint8_t nd_nidl;		/* Namespace Identifier Length */
1323 	uint8_t nd_resv[2];
1324 	uint8_t nd_nid[];		/* Namespace Identifier */
1325 } nvme_identify_nsid_desc_t;
1326 
1327 #define	NVME_NSID_DESC_EUI64	1
1328 #define	NVME_NSID_DESC_NGUID	2
1329 #define	NVME_NSID_DESC_NUUID	3
1330 #define	NVME_NSID_DESC_MIN	NVME_NSID_DESC_EUI64
1331 #define	NVME_NSID_DESC_MAX	NVME_NSID_DESC_NUUID
1332 
1333 #define	NVME_NSID_DESC_LEN_EUI64	8
1334 #define	NVME_NSID_DESC_LEN_NGUID	16
1335 #define	NVME_NSID_DESC_LEN_NUUID	UUID_LEN
1336 
1337 /* NVMe Identify Primary Controller Capabilities */
1338 typedef struct {
1339 	uint16_t	nipc_cntlid;	/* Controller ID */
1340 	uint16_t	nipc_portid;	/* Port Identifier */
1341 	uint8_t		nipc_crt;	/* Controller Resource Types */
1342 	uint8_t		nipc_rsvd0[32 - 5];
1343 	uint32_t	nipc_vqfrt;	/* VQ Resources Flexible Total */
1344 	uint32_t	nipc_vqrfa;	/* VQ Resources Flexible Assigned */
1345 	uint16_t	nipc_vqrfap;	/* VQ Resources to Primary */
1346 	uint16_t	nipc_vqprt;	/* VQ Resources Private Total */
1347 	uint16_t	nipc_vqfrsm;	/* VQ Resources Secondary Max */
1348 	uint16_t	nipc_vqgran;	/* VQ Flexible Resource Gran */
1349 	uint8_t		nipc_rvsd1[64 - 48];
1350 	uint32_t	nipc_vifrt;	/* VI Flexible total */
1351 	uint32_t	nipc_virfa;	/* VI Flexible Assigned */
1352 	uint16_t	nipc_virfap;	/* VI Flexible Allocated to Primary */
1353 	uint16_t	nipc_viprt;	/* VI Resources Private Total */
1354 	uint16_t	nipc_vifrsm;	/* VI Resources Secondary Max */
1355 	uint16_t	nipc_vigran;	/* VI Flexible Granularity */
1356 	uint8_t		nipc_rsvd2[4096 - 80];
1357 } nvme_identify_primary_caps_t;
1358 
1359 /*
1360  * NVMe completion queue entry status field
1361  */
1362 typedef struct {
1363 	uint16_t sf_p:1;		/* Phase Tag */
1364 	uint16_t sf_sc:8;		/* Status Code */
1365 	uint16_t sf_sct:3;		/* Status Code Type */
1366 	uint16_t sf_rsvd2:2;
1367 	uint16_t sf_m:1;		/* More */
1368 	uint16_t sf_dnr:1;		/* Do Not Retry */
1369 } nvme_cqe_sf_t;
1370 
1371 
1372 /*
1373  * NVMe Get Log Page
1374  */
1375 #define	NVME_LOGPAGE_SUP	0x00	/* Supported Logs (2.0) */
1376 #define	NVME_LOGPAGE_ERROR	0x01	/* Error Information */
1377 #define	NVME_LOGPAGE_HEALTH	0x02	/* SMART/Health Information */
1378 #define	NVME_LOGPAGE_FWSLOT	0x03	/* Firmware Slot Information */
1379 #define	NVME_LOGPAGE_NSCHANGE	0x04	/* Changed namespace (1.2) */
1380 #define	NVME_LOGPAGE_CMDSUP	0x05	/* Cmds. Supported and Effects (1.3) */
1381 #define	NVME_LOGPAGE_SELFTEST	0x06	/* Device self-test (1.3) */
1382 #define	NVME_LOGPAGE_TELMHOST	0x07	/* Telemetry Host-Initiated */
1383 #define	NVME_LOGPAGE_TELMCTRL	0x08	/* Telemetry Controller-Initiated */
1384 #define	NVME_LOGPAGE_ENDGRP	0x09	/* Endurance Group Information (1.4) */
1385 #define	NVME_LOGPAGE_PLATSET	0x0a	/* Predictable Lat. per NVM Set (1.4) */
1386 #define	NVME_LOGPAGE_PLATAGG	0x0b	/* Predictable Lat. Event Agg (1.4) */
1387 #define	NVME_LOGPAGE_ASYMNS	0x0c	/* Asymmetric Namespace Access (1.4) */
1388 #define	NVME_LOGPAGE_PEV	0x0d	/* Persistent Event Log (1.4) */
1389 #define	NVME_LOGPAGE_LBASTS	0x0e	/* LBA Status Information (1.4) */
1390 #define	NVME_LOGPAGE_ENDAGG	0x0f	/* Endurance Group Event Agg. (1.4) */
1391 
1392 #define	NVME_LOGPAGE_VEND_MIN	0xc0
1393 #define	NVME_LOGPAGE_VEND_MAX	0xff
1394 
1395 /*
1396  * Supported Log Pages (2.0). There is one entry of an nvme_logsup_t that then
1397  * exists on a per-log basis.
1398  */
1399 
1400 /*
1401  * The NVMe Log Identifier specific parameter field. Currently there is only one
1402  * defined field for the persistent event log (pel).
1403  */
1404 typedef union {
1405 	uint16_t nsl_lidsp;		/* Raw Value */
1406 	struct {			/* Persistent Event Log */
1407 		uint16_t nsl_ec512:1;
1408 		uint16_t nsl_pel_rsvd0p1:15;
1409 	} nsl_pel;
1410 } nvme_suplog_lidsp_t;
1411 
1412 typedef struct {
1413 	uint16_t ns_lsupp:1;
1414 	uint16_t ns_ios:1;
1415 	uint16_t ns_rsvd0p2:14;
1416 	nvme_suplog_lidsp_t ns_lidsp;
1417 } nvme_suplog_t;
1418 
1419 CTASSERT(sizeof (nvme_suplog_lidsp_t) == 2);
1420 CTASSERT(sizeof (nvme_suplog_t) == 4);
1421 
1422 typedef struct {
1423 	nvme_suplog_t	nl_logs[256];
1424 } nvme_suplog_log_t;
1425 
1426 CTASSERT(sizeof (nvme_suplog_log_t) == 1024);
1427 
1428 /*
1429  * SMART / Health information
1430  */
1431 typedef struct {
1432 	uint64_t el_count;		/* Error Count */
1433 	uint16_t el_sqid;		/* Submission Queue ID */
1434 	uint16_t el_cid;		/* Command ID */
1435 	nvme_cqe_sf_t el_sf;		/* Status Field */
1436 	uint8_t	el_byte;		/* Parameter Error Location byte */
1437 	uint8_t	el_bit:3;		/* Parameter Error Location bit */
1438 	uint8_t el_rsvd1:5;
1439 	uint64_t el_lba;		/* Logical Block Address */
1440 	uint32_t el_nsid;		/* Namespace ID */
1441 	uint8_t	el_vendor;		/* Vendor Specific Information avail */
1442 	uint8_t el_rsvd2[64 - 29];
1443 } nvme_error_log_entry_t;
1444 
1445 typedef struct {
1446 	struct {			/* Critical Warning */
1447 		uint8_t cw_avail:1;	/* available space too low */
1448 		uint8_t cw_temp:1;	/* temperature too high */
1449 		uint8_t cw_reliab:1;	/* degraded reliability */
1450 		uint8_t cw_readonly:1;	/* media is read-only */
1451 		uint8_t cw_volatile:1;	/* volatile memory backup failed */
1452 		uint8_t cw_rsvd:3;
1453 	} hl_crit_warn;
1454 	uint16_t hl_temp;		/* Temperature */
1455 	uint8_t hl_avail_spare;		/* Available Spare */
1456 	uint8_t hl_avail_spare_thr;	/* Available Spare Threshold */
1457 	uint8_t hl_used;		/* Percentage Used */
1458 	uint8_t hl_rsvd1[32 - 6];
1459 	nvme_uint128_t hl_data_read;	/* Data Units Read */
1460 	nvme_uint128_t hl_data_write;	/* Data Units Written */
1461 	nvme_uint128_t hl_host_read;	/* Host Read Commands */
1462 	nvme_uint128_t hl_host_write;	/* Host Write Commands */
1463 	nvme_uint128_t hl_ctrl_busy;	/* Controller Busy Time */
1464 	nvme_uint128_t hl_power_cycles;	/* Power Cycles */
1465 	nvme_uint128_t hl_power_on_hours; /* Power On Hours */
1466 	nvme_uint128_t hl_unsafe_shutdn; /* Unsafe Shutdowns */
1467 	nvme_uint128_t hl_media_errors;	/* Media Errors */
1468 	nvme_uint128_t hl_errors_logged; /* Number of errors logged */
1469 	/* Added in NVMe 1.2 */
1470 	uint32_t hl_warn_temp_time;	/* Warning Composite Temp Time */
1471 	uint32_t hl_crit_temp_time;	/* Critical Composite Temp Time */
1472 	uint16_t hl_temp_sensor_1;	/* Temperature Sensor 1 */
1473 	uint16_t hl_temp_sensor_2;	/* Temperature Sensor 2 */
1474 	uint16_t hl_temp_sensor_3;	/* Temperature Sensor 3 */
1475 	uint16_t hl_temp_sensor_4;	/* Temperature Sensor 4 */
1476 	uint16_t hl_temp_sensor_5;	/* Temperature Sensor 5 */
1477 	uint16_t hl_temp_sensor_6;	/* Temperature Sensor 6 */
1478 	uint16_t hl_temp_sensor_7;	/* Temperature Sensor 7 */
1479 	uint16_t hl_temp_sensor_8;	/* Temperature Sensor 8 */
1480 	/* Added in NVMe 1.3 */
1481 	uint32_t hl_tmtemp_1_tc;	/* Thermal Mgmt Temp 1 Transition # */
1482 	uint32_t hl_tmtemp_2_tc;	/* Thermal Mgmt Temp 1 Transition # */
1483 	uint32_t hl_tmtemp_1_time;	/* Time in Thermal Mgmt Temp 1 */
1484 	uint32_t hl_tmtemp_2_time;	/* Time in Thermal Mgmt Temp 2 */
1485 	uint8_t hl_rsvd2[512 - 232];
1486 } nvme_health_log_t;
1487 
1488 /*
1489  * The NVMe spec allows for up to seven firmware slots.
1490  */
1491 #define	NVME_MAX_FWSLOTS	7
1492 
1493 typedef struct {
1494 	/* Active Firmware Slot */
1495 	uint8_t fw_afi:3;
1496 	uint8_t fw_rsvd1:1;
1497 	/* Next Active Firmware Slot */
1498 	uint8_t fw_next:3;
1499 	uint8_t fw_rsvd2:1;
1500 	uint8_t fw_rsvd3[7];
1501 	/* Firmware Revision / Slot */
1502 	char fw_frs[NVME_MAX_FWSLOTS][NVME_FWVER_SZ];
1503 	uint8_t fw_rsvd4[512 - 64];
1504 } nvme_fwslot_log_t;
1505 
1506 /*
1507  * The NVMe spec specifies that the changed namespace list contains up to
1508  * 1024 entries.
1509  */
1510 #define	NVME_NSCHANGE_LIST_SIZE	1024
1511 
1512 typedef struct {
1513 	uint32_t	nscl_ns[NVME_NSCHANGE_LIST_SIZE];
1514 } nvme_nschange_list_t;
1515 
1516 /*
1517  * Commands Supported and Effects log page and information structure. This was
1518  * an optional log page added in NVMe 1.2.
1519  */
1520 typedef struct {
1521 	uint8_t cmd_csupp:1;	/* Command supported */
1522 	uint8_t cmd_lbcc:1;	/* Logical block content change */
1523 	uint8_t cmd_ncc:1;	/* Namespace capability change */
1524 	uint8_t cmd_nic:1;	/* Namespace inventory change */
1525 	uint8_t cmd_ccc:1;	/* Controller capability change */
1526 	uint8_t cmd_rsvd0p5:3;
1527 	uint8_t cmd_rsvd1;
1528 	uint16_t cmd_cse:3;	/* Command submission and execution */
1529 	uint16_t cmd_uuid:1;	/* UUID select supported, 1.4 */
1530 	uint16_t cmd_csp:12;	/* Command Scope, 2.0 */
1531 } nvme_cmdeff_t;
1532 
1533 CTASSERT(sizeof (nvme_cmdeff_t) == 4);
1534 
1535 typedef enum {
1536 	NVME_CMDEFF_CSP_NS		= 1 << 0,
1537 	NVME_CMDEFF_CSP_CTRL		= 1 << 1,
1538 	NVME_CMDEFF_CSP_SET		= 1 << 2,
1539 	NVME_CMDEFF_CSP_ENDURANCE	= 1 << 3,
1540 	NVME_CMDEFF_CSP_DOMAIN		= 1 << 4,
1541 	NVME_CMDEFF_CSP_NVM		= 1 << 5
1542 } nvme_cmdeff_csp_t;
1543 
1544 typedef enum {
1545 	NVME_CMDEFF_CSE_NONE	= 0,
1546 	NVME_CMDEFF_CSE_NS,
1547 	NVME_CMDEFF_CSE_CTRL
1548 } nvme_cmdeff_cse_t;
1549 
1550 typedef struct {
1551 	nvme_cmdeff_t	cme_admin[256];
1552 	nvme_cmdeff_t	cme_io[256];
1553 	uint8_t		cme_rsvd2048[2048];
1554 } nvme_cmdeff_log_t;
1555 
1556 CTASSERT(sizeof (nvme_cmdeff_log_t) == 4096);
1557 CTASSERT(offsetof(nvme_cmdeff_log_t, cme_rsvd2048) == 2048);
1558 
1559 /*
1560  * Persistent Event Log Header. This log was added in NVMe 1.4. It begins with a
1561  * 512 byte header which is defined below. It uses the log specific parameter to
1562  * determine how to access it. Internally the drive contains the notion of a
1563  * context that must be released and accessed.
1564  */
1565 typedef struct {
1566 	uint8_t		pel_lid;	/* Log Identifier */
1567 	uint8_t		pel_rsvd1[3];
1568 	uint32_t	pel_tnev;	/* Total Number of Events */
1569 	uint64_t	pel_tll;	/* Total Log Length */
1570 	uint8_t		pel_lrev;	/* Log Revision */
1571 	uint8_t		pel_rsvd17[1];
1572 	uint16_t	pel_lhl;	/* Log Header Length */
1573 	uint64_t	pel_tstmp;	/* Timestamp */
1574 	nvme_uint128_t	pel_poh;	/* Power on Hours */
1575 	uint64_t	pel_pwrcc;	/* Power Cycle Count */
1576 	uint16_t	pel_vid;	/* PCI Vendor ID */
1577 	uint16_t	pel_ssvid;	/* PCI Subsystem Vendor ID */
1578 	uint8_t		pel_sn[NVME_SERIAL_SZ];	/* Serial Number */
1579 	uint8_t		pel_mn[NVME_MODEL_SZ];	/* Model Number */
1580 	uint8_t		pel_subnqn[372 - 116];	/* NVM Subsystem Qual. Name */
1581 	uint16_t	pel_gnum;	/* Generation Number (2.0) */
1582 	struct {			/* Reporting Context Info (2.0) */
1583 		uint16_t pel_rcpid;	/* Port Identifier */
1584 		uint16_t pel_rcpit:2;	/* Port Identifier Type */
1585 		uint16_t pel_rce:1;	/* Reporting Context Exists */
1586 		uint16_t pel_rsvd19:13;
1587 	} pel_rci;
1588 	uint8_t		pel_rsvd378[480 - 378];
1589 	uint8_t		pel_seb[32];	/* Supported Events Bitmap */
1590 	uint8_t		pel_data[];
1591 } nvme_pev_log_t;
1592 
1593 /*
1594  * This enum represents the bit index for various features in the supported
1595  * events bitmap.
1596  */
1597 typedef enum {
1598 	NVME_SEB_SHLSES	= 1,	/* SMART / Health Log */
1599 	NVME_SEB_FCES = 2,	/* Firmware Commit */
1600 	NVME_SEB_TCES = 3,	/* Timestamp Change */
1601 	NVME_SEB_PRES = 4,	/* Power-on or Reset */
1602 	NVME_SEB_NSHEES = 5,	/* NVM Subsystem Hardware Error */
1603 	NVME_SEB_CNES = 6,	/* Change Namespace */
1604 	NVME_SEB_FNSES = 7,	/* Format NVM Start */
1605 	NVME_SEB_FNCES = 8,	/* Format NVM Completion */
1606 	NVME_SEB_SSES = 9,	/* Sanitize Start */
1607 	NVME_SEB_SCES = 10,	/* Sanitize Completion */
1608 	NVME_SEB_SFES = 11,	/* Set Feature */
1609 	NVME_SEB_TLCES = 12,	/* Telemetry Log Create */
1610 	NVME_SEB_TEES = 13,	/* Thermal Excursion */
1611 	NVME_SEB_SMVES = 14,	/* Sanitize Media Verification (2.1) */
1612 	NVME_SEB_VSES = 222,	/* Vendor Specific */
1613 	NVME_SEB_TCG = 223	/* TCG */
1614 } nvme_pev_seb_t;
1615 
1616 /*
1617  * Log specific fields for the persistent event log. These are required by the
1618  * log.
1619  */
1620 typedef enum {
1621 	/*
1622 	 * Read the persistent event log, presumes that a context has already
1623 	 * been established.
1624 	 */
1625 	NVME_PEV_LSP_READ	= 0,
1626 	/*
1627 	 * Establish a new context and then read a portion of the event log. Any
1628 	 * prior existing context must already have been released.
1629 	 */
1630 	NVME_PEV_LSP_EST_CTX_READ,
1631 	/*
1632 	 * Releases the persistent event log context. It is legal for this
1633 	 * context to already have been released.
1634 	 */
1635 	NVME_PEV_LSP_REL_CTX,
1636 	/*
1637 	 * This establishes a context and reads the fixed 512 bytes. The
1638 	 * controller is supposed to ignore any offset and length fields and
1639 	 * always read 512 bytes regardless. This is present starting in NVMe
1640 	 * 2.0.
1641 	 */
1642 	NVME_PEV_LSP_EST_CTX_READ_512
1643 } nvme_pev_log_lsp_t;
1644 
1645 #ifndef __CHECKER__
1646 CTASSERT(sizeof (nvme_pev_log_t) == 512);
1647 CTASSERT(offsetof(nvme_pev_log_t, pel_gnum) == 372);
1648 #endif
1649 
1650 /*
1651  * NVMe Format NVM
1652  */
1653 #define	NVME_FRMT_SES_NONE	0
1654 #define	NVME_FRMT_SES_USER	1
1655 #define	NVME_FRMT_SES_CRYPTO	2
1656 #define	NVME_FRMT_MAX_SES	2
1657 
1658 #define	NVME_FRMT_MAX_LBAF	15
1659 
1660 typedef union {
1661 	struct {
1662 		uint32_t fm_lbaf:4;		/* LBA Format */
1663 		uint32_t fm_ms:1;		/* Metadata Settings */
1664 		uint32_t fm_pi:3;		/* Protection Information */
1665 		uint32_t fm_pil:1;		/* Prot. Information Location */
1666 		uint32_t fm_ses:3;		/* Secure Erase Settings */
1667 		uint32_t fm_resvd:20;
1668 	} b;
1669 	uint32_t r;
1670 } nvme_format_nvm_t;
1671 
1672 
1673 /*
1674  * NVMe Get / Set Features
1675  */
1676 #define	NVME_FEAT_ARBITRATION	0x1	/* Command Arbitration */
1677 #define	NVME_FEAT_POWER_MGMT	0x2	/* Power Management */
1678 #define	NVME_FEAT_LBA_RANGE	0x3	/* LBA Range Type */
1679 #define	NVME_FEAT_TEMPERATURE	0x4	/* Temperature Threshold */
1680 #define	NVME_FEAT_ERROR		0x5	/* Error Recovery */
1681 #define	NVME_FEAT_WRITE_CACHE	0x6	/* Volatile Write Cache */
1682 #define	NVME_FEAT_NQUEUES	0x7	/* Number of Queues */
1683 #define	NVME_FEAT_INTR_COAL	0x8	/* Interrupt Coalescing */
1684 #define	NVME_FEAT_INTR_VECT	0x9	/* Interrupt Vector Configuration */
1685 #define	NVME_FEAT_WRITE_ATOM	0xa	/* Write Atomicity */
1686 #define	NVME_FEAT_ASYNC_EVENT	0xb	/* Asynchronous Event Configuration */
1687 #define	NVME_FEAT_AUTO_PST	0xc	/* Autonomous Power State Transition */
1688 					/* (1.1) */
1689 
1690 #define	NVME_FEAT_PROGRESS	0x80	/* Software Progress Marker */
1691 
1692 /*
1693  * This enumeration represents the capabilities in the Get Features select / Set
1694  * Features save options. This was introduced in NVMe 1.1 and the values below
1695  * match the specification. An optional feature in the identify controller data
1696  * structure is set to indicate that this is supported (id_oncs.on_save).
1697  */
1698 typedef enum {
1699 	NVME_FEATURE_SEL_CURRENT	= 0,
1700 	NVME_FEATURE_SEL_DEFAULT,
1701 	NVME_FEATURE_SEL_SAVED,
1702 	NVME_FEATURE_SEL_SUPPORTED
1703 } nvme_feature_sel_t;
1704 
1705 typedef union {
1706 	struct {
1707 		uint32_t gt_fid:8;	/* Feature ID */
1708 		uint32_t gt_sel:3;	/* Select */
1709 		uint32_t gt_rsvd:21;
1710 	} b;
1711 	uint32_t r;
1712 } nvme_get_features_dw10_t;
1713 
1714 /* Arbitration Feature */
1715 typedef union {
1716 	struct {
1717 		uint8_t arb_ab:3;	/* Arbitration Burst */
1718 		uint8_t arb_rsvd:5;
1719 		uint8_t arb_lpw;	/* Low Priority Weight */
1720 		uint8_t arb_mpw;	/* Medium Priority Weight */
1721 		uint8_t arb_hpw;	/* High Priority Weight */
1722 	} b;
1723 	uint32_t r;
1724 } nvme_arbitration_t;
1725 
1726 /* Power Management Feature */
1727 typedef union {
1728 	struct {
1729 		uint32_t pm_ps:5;	/* Power State */
1730 		uint32_t pm_rsvd:27;
1731 	} b;
1732 	uint32_t r;
1733 } nvme_power_mgmt_t;
1734 
1735 /* LBA Range Type Feature */
1736 typedef union {
1737 	struct {
1738 		uint32_t lr_num:6;	/* Number of LBA ranges */
1739 		uint32_t lr_rsvd:26;
1740 	} b;
1741 	uint32_t r;
1742 } nvme_lba_range_type_t;
1743 
1744 typedef struct {
1745 	uint8_t lr_type;		/* Type */
1746 	struct {			/* Attributes */
1747 		uint8_t lr_write:1;	/* may be overwritten */
1748 		uint8_t lr_hidden:1;	/* hidden from OS/EFI/BIOS */
1749 		uint8_t lr_rsvd1:6;
1750 	} lr_attr;
1751 	uint8_t lr_rsvd2[14];
1752 	uint64_t lr_slba;		/* Starting LBA */
1753 	uint64_t lr_nlb;		/* Number of Logical Blocks */
1754 	uint8_t lr_guid[16];		/* Unique Identifier */
1755 	uint8_t lr_rsvd3[16];
1756 } nvme_lba_range_t;
1757 
1758 #define	NVME_LBA_RANGE_BUFSIZE	4096
1759 
1760 /* Temperature Threshold Feature */
1761 typedef union {
1762 	struct {
1763 		uint16_t tt_tmpth;	/* Temperature Threshold */
1764 		uint16_t tt_tmpsel:4;	/* Temperature Select */
1765 		uint16_t tt_thsel:2;	/* Temperature Type */
1766 		uint16_t tt_resv:10;
1767 	} b;
1768 	uint32_t r;
1769 } nvme_temp_threshold_t;
1770 
1771 #define	NVME_TEMP_THRESH_MAX_SENSOR	8
1772 #define	NVME_TEMP_THRESH_ALL	0xf
1773 #define	NVME_TEMP_THRESH_OVER	0x00
1774 #define	NVME_TEMP_THRESH_UNDER	0x01
1775 
1776 /* Error Recovery Feature */
1777 typedef union {
1778 	struct {
1779 		uint16_t er_tler;	/* Time-Limited Error Recovery */
1780 		uint16_t er_rsvd;
1781 	} b;
1782 	uint32_t r;
1783 } nvme_error_recovery_t;
1784 
1785 /* Volatile Write Cache Feature */
1786 typedef union {
1787 	struct {
1788 		uint32_t wc_wce:1;	/* Volatile Write Cache Enable */
1789 		uint32_t wc_rsvd:31;
1790 	} b;
1791 	uint32_t r;
1792 } nvme_write_cache_t;
1793 
1794 /* Number of Queues Feature */
1795 typedef union {
1796 	struct {
1797 		uint16_t nq_nsq;	/* Number of Submission Queues */
1798 		uint16_t nq_ncq;	/* Number of Completion Queues */
1799 	} b;
1800 	uint32_t r;
1801 } nvme_nqueues_t;
1802 
1803 /* Interrupt Coalescing Feature */
1804 typedef union {
1805 	struct {
1806 		uint8_t ic_thr;		/* Aggregation Threshold */
1807 		uint8_t ic_time;	/* Aggregation Time */
1808 		uint16_t ic_rsvd;
1809 	} b;
1810 	uint32_t r;
1811 } nvme_intr_coal_t;
1812 
1813 /* Interrupt Configuration Features */
1814 typedef union {
1815 	struct {
1816 		uint16_t iv_iv;		/* Interrupt Vector */
1817 		uint16_t iv_cd:1;	/* Coalescing Disable */
1818 		uint16_t iv_rsvd:15;
1819 	} b;
1820 	uint32_t r;
1821 } nvme_intr_vect_t;
1822 
1823 /* Write Atomicity Feature */
1824 typedef union {
1825 	struct {
1826 		uint32_t wa_dn:1;	/* Disable Normal */
1827 		uint32_t wa_rsvd:31;
1828 	} b;
1829 	uint32_t r;
1830 } nvme_write_atomicity_t;
1831 
1832 /* Asynchronous Event Configuration Feature */
1833 typedef union {
1834 	struct {
1835 		uint8_t aec_avail:1;	/* Available space too low */
1836 		uint8_t aec_temp:1;	/* Temperature too high */
1837 		uint8_t aec_reliab:1;	/* Degraded reliability */
1838 		uint8_t aec_readonly:1;	/* Media is read-only */
1839 		uint8_t aec_volatile:1;	/* Volatile memory backup failed */
1840 		uint8_t aec_rsvd1:3;
1841 		uint8_t aec_nsan:1;	/* Namespace attribute notices (1.2) */
1842 		uint8_t aec_fwact:1;	/* Firmware activation notices (1.2) */
1843 		uint8_t aec_telln:1;	/* Telemetry log notices (1.3) */
1844 		uint8_t aec_ansacn:1;	/* Asymm. NS access change (1.4) */
1845 		uint8_t aec_plat:1;	/* Predictable latency ev. agg. (1.4) */
1846 		uint8_t aec_lbasi:1;	/* LBA status information (1.4) */
1847 		uint8_t aec_egeal:1;	/* Endurance group ev. agg. (1.4) */
1848 		uint8_t aec_rsvd2:1;
1849 		uint8_t aec_rsvd3[2];
1850 	} b;
1851 	uint32_t r;
1852 } nvme_async_event_conf_t;
1853 
1854 /* Autonomous Power State Transition Feature (1.1) */
1855 typedef union {
1856 	struct {
1857 		uint32_t apst_apste:1;	/* APST enabled */
1858 		uint32_t apst_rsvd:31;
1859 	} b;
1860 	uint32_t r;
1861 } nvme_auto_power_state_trans_t;
1862 
1863 typedef struct {
1864 	uint32_t apst_rsvd1:3;
1865 	uint32_t apst_itps:5;	/* Idle Transition Power State */
1866 	uint32_t apst_itpt:24;	/* Idle Time Prior to Transition */
1867 	uint32_t apst_rsvd2;
1868 } nvme_auto_power_state_t;
1869 
1870 #define	NVME_AUTO_PST_BUFSIZE	256
1871 
1872 /* Software Progress Marker Feature */
1873 typedef union {
1874 	struct {
1875 		uint8_t spm_pbslc;	/* Pre-Boot Software Load Count */
1876 		uint8_t spm_rsvd[3];
1877 	} b;
1878 	uint32_t r;
1879 } nvme_software_progress_marker_t;
1880 
1881 /*
1882  * Firmware Commit - Command Dword 10
1883  */
1884 #define	NVME_FWC_SAVE		0x0	/* Save image only */
1885 #define	NVME_FWC_SAVE_ACTIVATE	0x1	/* Save and activate at next reset */
1886 #define	NVME_FWC_ACTIVATE	0x2	/* Activate slot at next reset */
1887 #define	NVME_FWC_ACTIVATE_IMMED	0x3	/* Activate slot immediately */
1888 
1889 /*
1890  * Firmware slot number is only 3 bits, and zero is not allowed.
1891  * Valid range is 1 to 7.
1892  */
1893 #define	NVME_FW_SLOT_MIN	1U	/* lowest allowable slot number ... */
1894 #define	NVME_FW_SLOT_MAX	7U	/* ... and highest */
1895 
1896 /*
1897  * Some constants to make verification of DWORD variables and arguments easier.
1898  * A DWORD is 4 bytes.
1899  */
1900 #define	NVME_DWORD_SHIFT	2
1901 #define	NVME_DWORD_SIZE		(1 << NVME_DWORD_SHIFT)
1902 #define	NVME_DWORD_MASK		(NVME_DWORD_SIZE - 1)
1903 
1904 /*
1905  * The maximum offset a firmware image segment can be loaded at is the number
1906  * of DWORDS in a 32 bit field. The maximum length of such a segment is the
1907  * same. Expressed in bytes it is:
1908  */
1909 #define	NVME_FW_OFFSETB_MAX	((u_longlong_t)UINT32_MAX << NVME_DWORD_SHIFT)
1910 #define	NVME_FW_LENB_MAX	NVME_FW_OFFSETB_MAX
1911 
1912 typedef union {
1913 	struct {
1914 		uint32_t fc_slot:3;	/* Firmware slot */
1915 		uint32_t fc_action:3;	/* Commit action */
1916 		uint32_t fc_rsvd:26;
1917 	} b;
1918 	uint32_t r;
1919 } nvme_firmware_commit_dw10_t;
1920 
1921 #pragma pack() /* pack(1) */
1922 
1923 /* NVMe completion status code type */
1924 #define	NVME_CQE_SCT_GENERIC	0	/* Generic Command Status */
1925 #define	NVME_CQE_SCT_SPECIFIC	1	/* Command Specific Status */
1926 #define	NVME_CQE_SCT_INTEGRITY	2	/* Media and Data Integrity Errors */
1927 #define	NVME_CQE_SCT_PATH	3	/* Path Related Status (1.4) */
1928 #define	NVME_CQE_SCT_VENDOR	7	/* Vendor Specific */
1929 
1930 /*
1931  * Status code ranges
1932  */
1933 #define	NVME_CQE_SC_GEN_MIN		0x00
1934 #define	NVME_CQE_SC_GEN_MAX		0x7f
1935 #define	NVME_CQE_SC_CSI_MIN		0x80
1936 #define	NVME_CQE_SC_CSI_MAX		0xbf
1937 #define	NVME_CQE_SC_VEND_MIN		0xc0
1938 #define	NVME_CQE_SC_VEND_MAX		0xff
1939 
1940 /* NVMe completion status code (generic) */
1941 #define	NVME_CQE_SC_GEN_SUCCESS		0x0	/* Successful Completion */
1942 #define	NVME_CQE_SC_GEN_INV_OPC		0x1	/* Invalid Command Opcode */
1943 #define	NVME_CQE_SC_GEN_INV_FLD		0x2	/* Invalid Field in Command */
1944 #define	NVME_CQE_SC_GEN_ID_CNFL		0x3	/* Command ID Conflict */
1945 #define	NVME_CQE_SC_GEN_DATA_XFR_ERR	0x4	/* Data Transfer Error */
1946 #define	NVME_CQE_SC_GEN_ABORT_PWRLOSS	0x5	/* Cmds Aborted / Pwr Loss */
1947 #define	NVME_CQE_SC_GEN_INTERNAL_ERR	0x6	/* Internal Error */
1948 #define	NVME_CQE_SC_GEN_ABORT_REQUEST	0x7	/* Command Abort Requested */
1949 #define	NVME_CQE_SC_GEN_ABORT_SQ_DEL	0x8	/* Cmd Aborted / SQ deletion */
1950 #define	NVME_CQE_SC_GEN_ABORT_FUSE_FAIL	0x9	/* Cmd Aborted / Failed Fused */
1951 #define	NVME_CQE_SC_GEN_ABORT_FUSE_MISS	0xa	/* Cmd Aborted / Missing Fusd */
1952 #define	NVME_CQE_SC_GEN_INV_NS		0xb	/* Inval Namespace or Format */
1953 #define	NVME_CQE_SC_GEN_CMD_SEQ_ERR	0xc	/* Command Sequence Error */
1954 #define	NVME_CQE_SC_GEN_INV_SGL_LAST	0xd	/* Inval SGL Last Seg Desc */
1955 #define	NVME_CQE_SC_GEN_INV_SGL_NUM	0xe	/* Inval Number of SGL Desc */
1956 #define	NVME_CQE_SC_GEN_INV_DSGL_LEN	0xf	/* Data SGL Length Invalid */
1957 #define	NVME_CQE_SC_GEN_INV_MSGL_LEN	0x10	/* Metadata SGL Length Inval */
1958 #define	NVME_CQE_SC_GEN_INV_SGL_DESC	0x11	/* SGL Descriptor Type Inval */
1959 /* Added in NVMe 1.2 */
1960 #define	NVME_CQE_SC_GEN_INV_USE_CMB	0x12	/* Inval use of Ctrl Mem Buf */
1961 #define	NVME_CQE_SC_GEN_INV_PRP_OFF	0x13	/* PRP Offset Invalid */
1962 #define	NVME_CQE_SC_GEN_AWU_EXCEEDED	0x14	/* Atomic Write Unit Exceeded */
1963 #define	NVME_CQE_SC_GEN_OP_DENIED	0x15	/* Operation Denied */
1964 #define	NVME_CQE_SC_GEN_INV_SGL_OFF	0x16	/* SGL Offset Invalid */
1965 #define	NVME_CQE_SC_GEN_INV_SGL_ST	0x17	/* SGL Sub type Invalid */
1966 #define	NVME_CQE_SC_GEN_INCON_HOSTID	0x18	/* Host ID Inconsistent fmt */
1967 #define	NVME_CQE_SC_GEN_KA_EXP		0x19	/* Keep Alive Timer Expired */
1968 #define	NVME_CQE_SC_GEN_INV_KA_TO	0x1a	/* Keep Alive Timeout Invalid */
1969 /* Added in NVMe 1.3 */
1970 #define	NVME_CQE_SC_GEN_ABORT_PREEMPT	0x1b	/* Cmd aborted due to preempt */
1971 #define	NVME_CQE_SC_GEN_SANITIZE_FAIL	0x1c	/* Sanitize Failed */
1972 #define	NVME_CQE_SC_GEN_SANITIZING	0x1d	/* Sanitize in Progress */
1973 #define	NVME_CQE_SC_GEN_INV_SGL_GRAN	0x1e	/* SGL Data Block Gran. Inval */
1974 #define	NVME_CQE_SC_GEN_NO_CMD_Q_CMD	0x1f	/* Command not sup for CMB Q */
1975 /* Added in NVMe 1.4 */
1976 #define	NVME_CQE_SC_GEN_NS_RDONLY	0x20	/* Namespace is write prot. */
1977 #define	NVME_CQE_SC_GEN_CMD_INTR	0x21	/* Command Interrupted */
1978 #define	NVME_CQE_SC_GEN_TRANSIENT	0x22	/* Transient Transport Error */
1979 /* Added in NVMe 2.0 */
1980 #define	NVME_CQE_SC_GEN_CMD_LOCK	0x23	/* Command/Feature Lockdown */
1981 #define	NVME_CQE_SC_ADM_MEDIA_NR	0x24	/* Admin Cmd Media Not Ready */
1982 
1983 /* NVMe completion status code (generic NVM commands) */
1984 #define	NVME_CQE_SC_GEN_NVM_LBA_RANGE	0x80	/* LBA Out Of Range */
1985 #define	NVME_CQE_SC_GEN_NVM_CAP_EXC	0x81	/* Capacity Exceeded */
1986 #define	NVME_CQE_SC_GEN_NVM_NS_NOTRDY	0x82	/* Namespace Not Ready */
1987 #define	NVME_CQE_SC_GEN_NVM_RSV_CNFLCT	0x83	/* Reservation Conflict */
1988 #define	NVME_CQE_SC_GEN_NVM_FORMATTING	0x84	/* Format in progress (1.2) */
1989 /* Added in NVMe 2.0 */
1990 #define	NVME_CQE_SC_GEN_KEY_INV_VAL	0x85	/* Invalid value size */
1991 #define	NVME_CQE_SC_GEN_KEY_INV_KEY	0x86	/* Invalid key size */
1992 #define	NVME_CQE_SC_GEN_KEY_ENOENT	0x87	/* KV Key Does Not Exist */
1993 #define	NVME_CQE_SC_GEN_KEY_UNRECOV	0x88	/* Unrecovered Error */
1994 #define	NVME_CQE_SC_GEN_KEY_EXISTS	0x89	/* Key already exists */
1995 
1996 /* NVMe completion status code (command specific) */
1997 #define	NVME_CQE_SC_SPC_INV_CQ		0x0	/* Completion Queue Invalid */
1998 #define	NVME_CQE_SC_SPC_INV_QID		0x1	/* Invalid Queue Identifier */
1999 #define	NVME_CQE_SC_SPC_MAX_QSZ_EXC	0x2	/* Max Queue Size Exceeded */
2000 #define	NVME_CQE_SC_SPC_ABRT_CMD_EXC	0x3	/* Abort Cmd Limit Exceeded */
2001 #define	NVME_CQE_SC_SPC_ASYNC_EVREQ_EXC	0x5	/* Async Event Request Limit */
2002 #define	NVME_CQE_SC_SPC_INV_FW_SLOT	0x6	/* Invalid Firmware Slot */
2003 #define	NVME_CQE_SC_SPC_INV_FW_IMG	0x7	/* Invalid Firmware Image */
2004 #define	NVME_CQE_SC_SPC_INV_INT_VECT	0x8	/* Invalid Interrupt Vector */
2005 #define	NVME_CQE_SC_SPC_INV_LOG_PAGE	0x9	/* Invalid Log Page */
2006 #define	NVME_CQE_SC_SPC_INV_FORMAT	0xa	/* Invalid Format */
2007 #define	NVME_CQE_SC_SPC_FW_RESET	0xb	/* FW Application Reset Reqd */
2008 #define	NVME_CQE_SC_SPC_INV_Q_DEL	0xc	/* Invalid Queue Deletion */
2009 #define	NVME_CQE_SC_SPC_FEAT_SAVE	0xd	/* Feature Id Not Saveable */
2010 #define	NVME_CQE_SC_SPC_FEAT_CHG	0xe	/* Feature Not Changeable */
2011 #define	NVME_CQE_SC_SPC_FEAT_NS_SPEC	0xf	/* Feature Not Namespace Spec */
2012 /* Added in NVMe 1.2 */
2013 #define	NVME_CQE_SC_SPC_FW_NSSR		0x10	/* FW Application NSSR Reqd */
2014 #define	NVME_CQE_SC_SPC_FW_NEXT_RESET	0x11	/* FW Application Next Reqd */
2015 #define	NVME_CQE_SC_SPC_FW_MTFA		0x12	/* FW Application Exceed MTFA */
2016 #define	NVME_CQE_SC_SPC_FW_PROHIBITED	0x13	/* FW Application Prohibited */
2017 #define	NVME_CQE_SC_SPC_FW_OVERLAP	0x14	/* Overlapping FW ranges */
2018 #define	NVME_CQE_SC_SPC_NS_INSUF_CAP	0x15	/* NS Insufficient Capacity */
2019 #define	NVME_CQE_SC_SPC_NS_NO_ID	0x16	/* NS ID Unavailable */
2020 /* 0x17 is reserved */
2021 #define	NVME_CQE_SC_SPC_NS_ATTACHED	0x18	/* NS Already Attached */
2022 #define	NVME_CQE_SC_SPC_NS_PRIV		0x19	/* NS is private */
2023 #define	NVME_CQE_SC_SPC_NS_NOT_ATTACH	0x1a	/* NS Not Attached */
2024 #define	NVME_CQE_SC_SPC_THIN_ENOTSUP	0x1b	/* Thin Provisioning ENOTSUP */
2025 #define	NVME_CQE_SC_SPC_INV_CTRL_LIST	0x1c	/* Controller list invalid */
2026 /* Added in NVMe 1.3 */
2027 #define	NVME_CQE_SC_SPC_SELF_TESTING	0x1d	/* Self-test in progress */
2028 #define	NVME_CQE_SC_SPC_NO_BP_WRITE	0x1e	/* No Boot Partition Write */
2029 #define	NVME_CQE_SC_SPC_INV_CTRL_ID	0x1f	/* Invalid Controller Id */
2030 #define	NVME_CQE_SC_SPC_INV_SEC_CTRL	0x20	/* Invalid Sec. Ctrl state */
2031 #define	NVME_CQE_SC_SPC_INV_CTRL_NRSRC	0x21	/* Inv. # Ctrl Resources */
2032 #define	NVME_CQE_SC_SPC_INV_RSRC_ID	0x22	/* Inv. Resource ID */
2033 /* Added in NVMe 1.4 */
2034 #define	NVME_CQE_SC_SPC_NO_SAN_PMR	0x23	/* Sanitize prohib. w/ pmem */
2035 #define	NVME_CQE_SC_SPC_INV_ANA_GID	0x24	/* Invalid ANA group ID */
2036 #define	NVME_CQE_SC_SPC_ANA_ATTACH	0x25	/* ANA Attach Failed */
2037 /* Added in NVMe 2.0 */
2038 #define	NVME_CQE_SC_SPC_INSUF_CAP	0x26	/* Insufficient Capacity */
2039 #define	NVME_CQE_SC_SPC_NS_ATTACH_LIM	0x27	/* NS Attach Limit Exceeded */
2040 #define	NVME_CQE_SC_SPC_LOCKDOWN_UNSUP	0x28	/* Prohib Cmd Exec Not Sup */
2041 #define	NVME_CQE_SC_SPC_UNSUP_IO_CMD	0x29	/* I/O Command set not sup */
2042 #define	NVME_CQE_SC_SPC_DIS_IO_CMD	0x2a	/* I/O Command set not enab */
2043 #define	NVME_CQE_SC_SPC_INV_CMD_COMBO	0x2b	/* I/O command set combo rej */
2044 #define	NVME_CQE_SC_SPC_INV_IO_CMD	0x2c	/* Invalid I/O command set */
2045 #define	NVME_CQE_SC_SPC_UNAVAIL_ID	0x2d	/* Unavailable ID */
2046 
2047 
2048 /* NVMe completion status code (I/O command specific) */
2049 #define	NVME_CQE_SC_SPC_NVM_CNFL_ATTR	0x80	/* Conflicting Attributes */
2050 #define	NVME_CQE_SC_SPC_NVM_INV_PROT	0x81	/* Invalid Protection */
2051 #define	NVME_CQE_SC_SPC_NVM_READONLY	0x82	/* Write to Read Only Range */
2052 /* Added in 2.0 */
2053 #define	NVME_CQE_SC_SPC_IO_LIMIT	0x83	/* Cmd Size Limit Exceeded */
2054 /* 0x84 to 0xb7 are reserved */
2055 #define	NVME_CQE_SC_SPC_ZONE_BDRY_ERR	0xb8	/* Zoned Boundary Error */
2056 #define	NVME_CQE_SC_SPC_ZONE_FULL	0xb9	/* Zone is Full */
2057 #define	NVME_CQE_SC_SPC_ZONE_RDONLY	0xba	/* Zone is Read Only */
2058 #define	NVME_CQE_SC_SPC_ZONE_OFFLINE	0xbb	/* Zone is Offline */
2059 #define	NVME_CQE_SC_SPC_ZONE_INV_WRITE	0xbc	/* Zone Invalid Write */
2060 #define	NVME_CQE_SC_SPC_ZONE_ACT	0xbd	/* Too May Active Zones */
2061 #define	NVME_CQE_SC_SPC_ZONE_OPEN	0xbe	/* Too May Open Zones */
2062 #define	NVME_CQE_SC_SPC_INV_ZONE_TRANS	0xbf	/* Invalid Zone State Trans */
2063 
2064 /* NVMe completion status code (data / metadata integrity) */
2065 #define	NVME_CQE_SC_INT_NVM_WRITE	0x80	/* Write Fault */
2066 #define	NVME_CQE_SC_INT_NVM_READ	0x81	/* Unrecovered Read Error */
2067 #define	NVME_CQE_SC_INT_NVM_GUARD	0x82	/* Guard Check Error */
2068 #define	NVME_CQE_SC_INT_NVM_APPL_TAG	0x83	/* Application Tag Check Err */
2069 #define	NVME_CQE_SC_INT_NVM_REF_TAG	0x84	/* Reference Tag Check Err */
2070 #define	NVME_CQE_SC_INT_NVM_COMPARE	0x85	/* Compare Failure */
2071 #define	NVME_CQE_SC_INT_NVM_ACCESS	0x86	/* Access Denied */
2072 /* Added in 1.2 */
2073 #define	NVME_CQE_SC_INT_NVM_DEALLOC	0x87	/* Dealloc Log Block */
2074 /* Added in 2.0 */
2075 #define	NVME_CQE_SC_INT_NVM_TAG		0x88	/* End-to-End Storage Tag Err */
2076 
2077 /* NVMe completion status code (path related) */
2078 /* Added in NVMe 1.4 */
2079 #define	NVME_CQE_SC_PATH_INT_ERR	0x00	/* Internal Path Error */
2080 #define	NVME_CQE_SC_PATH_AA_PLOSS	0x01	/* Asym Access Pers Loss */
2081 #define	NVME_CQE_SC_PATH_AA_INACC	0x02	/* Asym Access Inaccessible */
2082 #define	NVME_CQE_SC_PATH_AA_TRANS	0x03	/* Asym Access Transition */
2083 #define	NVME_CQE_SC_PATH_CTRL_ERR	0x60	/* Controller Path Error */
2084 #define	NVME_CQE_SC_PATH_HOST_ERR	0x70	/* Host Path Error */
2085 #define	NVME_CQE_SC_PATH_HOST_ABRT	0x71	/* Cmd aborted by host */
2086 
2087 /*
2088  * Controller information (NVME_IOC_CTRL_INFO). This is a consolidation of misc.
2089  * information that we want to know about a controller.
2090  */
2091 typedef struct {
2092 	nvme_ioctl_common_t nci_common;
2093 	nvme_identify_ctrl_t nci_ctrl_id;
2094 	nvme_identify_nsid_t nci_common_ns;
2095 	nvme_version_t nci_vers;
2096 	nvme_capabilities_t nci_caps;
2097 	uint32_t nci_nintrs;
2098 } nvme_ioctl_ctrl_info_t;
2099 
2100 /*
2101  * NVME namespace states.
2102  *
2103  * The values are defined entirely by the driver. Some states correspond to
2104  * namespace states described by the NVMe specification r1.3 section 6.1, others
2105  * are specific to the implementation of this driver. These are present in the
2106  * nvme_ns_kinfo_t that is used with the NVME_IOC_NS_INFO ioctl. Devices that
2107  * support Namespace Management have the ability to transition through these
2108  * states directly. Devices without it may be able to have namespaces in these
2109  * states depending on the version.
2110  *
2111  * The states are as follows:
2112  * - UNALLOCATED: The namespace ID exists, but has no corresponding NVM
2113  *   allocation as per the NVMe spec. It leaves this state with an NVMe
2114  *   Namespace Management NS create command: NVME_IOC_NS_CREATE.
2115  *
2116  * - ALLOCATED: The namespace exists in the controller as per the NVMe spec. It
2117  *   becomes ACTIVE (or IGNORED) by performing a controller attach comand:
2118  *   NVME_IOC_CTRL_ATTACH. It becomes unallocated by performing an NVMe
2119  *   Namespace Management NS delete command: NVME_IOC_NS_DELETE.
2120  *
2121  * - ACTIVE: The namespace exists and is attached to this controller as per the
2122  *   NVMe spec. From the hardware's perspective the namespace is usable.
2123  *
2124  *   Not all namespaces are supported by the kernel. For example, a namespace
2125  *   may use features that the NVMe device driver does not support such as
2126  *   end-to-end data protection features or a different command set.
2127  *
2128  *   When a namespace enters the active state, we will immediately evaluate
2129  *   whether or not we can support a block device (via blkdev(4D)) on this
2130  *   namespace. If we can, then we will immediately advance to the NOT_IGNORED
2131  *   state. Otherwise, to transition to the NOT_IGNORED state, the namespace
2132  *   must be formatted with the FORMAT NVM command with supported settings. The
2133  *   namespace can transition back to the ALLOCATED state by performing a
2134  *   NVME_IOC_CTRL_DETACH ioctl.
2135  *
2136  * - NOT_IGNORED: The namespace is active from the controller perspective and is
2137  *   formatted with settings that would support blkdev(4D) being attached;
2138  *   however, there is no blkdev(4D) instance currently attached. A device
2139  *   transitions from the NOT_IGNORED to the ATTACHED state by actively
2140  *   attaching a blkdev(4D) instance to the namespace through the
2141  *   NVME_IOC_BD_ATTACH ioctl. A namespace can transition back to the ACTIVE
2142  *   state by issuing a FORMAT NVM command with unsupported settings. It can
2143  *   also go to the ALLOCATED state by performing the NVME_IOC_CTRL_DETACH
2144  *   ioctl.
2145  *
2146  * - ATTACHED: the driver has attached a blkdev(4D) instance to this namespace
2147  *   and it is usable as a block device. Certain operations such as a FORMAT NVM
2148  *   or similar are rejected during this state. The device can go back to ACTIVE
2149  *   with the NVME_IOC_BD_DETACH ioctl.
2150  */
2151 typedef enum {
2152 	NVME_NS_STATE_UNALLOCATED = 0,
2153 	NVME_NS_STATE_ALLOCATED,
2154 	NVME_NS_STATE_ACTIVE,
2155 	NVME_NS_STATE_NOT_IGNORED,
2156 	NVME_NS_STATE_ATTACHED
2157 } nvme_ns_state_t;
2158 
2159 #define	NVME_NS_NSTATES	5
2160 
2161 /*
2162  * This is the maximum length of the NVMe namespace's blkdev address. This is
2163  * only valid in the structure with the NVME_NS_STATE_ATTACHED flag is set.
2164  * Otherwise the entry will be all zeros. This is useful when you need to
2165  * determine what the corresponding blkdev instance in libdevinfo for the
2166  * device.
2167  */
2168 #define	NVME_BLKDEV_NAMELEN	128
2169 
2170 /*
2171  * Namespace Information (NVME_IOC_NS_INFO).
2172  */
2173 typedef struct {
2174 	nvme_ioctl_common_t nni_common;
2175 	nvme_ns_state_t	nni_state;
2176 	char nni_addr[NVME_BLKDEV_NAMELEN];
2177 	nvme_identify_nsid_t nni_id;
2178 } nvme_ioctl_ns_info_t;
2179 
2180 /*
2181  * NVMe Command Set Identifiers. This was added in NVMe 2.0, but in all the
2182  * places it was required to be specified, the default value of 0 indicates the
2183  * traditional NVM command set.
2184  */
2185 typedef enum {
2186 	NVME_CSI_NVM	= 0,
2187 	NVME_CSI_KV,
2188 	NVME_CSI_ZNS
2189 } nvme_csi_t;
2190 
2191 #ifdef __cplusplus
2192 }
2193 #endif
2194 
2195 #endif /* _SYS_NVME_H */
2196