1 /* $OpenBSD: umac.c,v 1.23 2023/03/07 01:30:52 djm Exp $ */
2 /* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
5 *
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
7 *
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
11 *
12 * Copyright (c) 1999-2006 Ted Krovetz
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
20 *
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
22 *
23 * ---------------------------------------------------------------------- */
24
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26 *
27 * 1) This version does not work properly on messages larger than 16MB
28 *
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
30 * aligned
31 *
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
35 * zeroed.
36 *
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public license at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44 * the third.
45 *
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
48 *
49 /////////////////////////////////////////////////////////////////////// */
50
51 /* ---------------------------------------------------------------------- */
52 /* --- User Switches ---------------------------------------------------- */
53 /* ---------------------------------------------------------------------- */
54
55 #ifndef UMAC_OUTPUT_LEN
56 #define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
57 #endif
58
59 #if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
60 UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
61 # error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
62 #endif
63
64 /* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
65 /* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
66 /* #define SSE2 0 Is SSE2 is available? */
67 /* #define RUN_TESTS 0 Run basic correctness/speed tests */
68 /* #define UMAC_AE_SUPPORT 0 Enable authenticated encryption */
69
70 /* ---------------------------------------------------------------------- */
71 /* -- Global Includes --------------------------------------------------- */
72 /* ---------------------------------------------------------------------- */
73
74 #include "includes.h"
75 #include <sys/types.h>
76 #include <string.h>
77 #include <stdarg.h>
78 #include <stdio.h>
79 #include <stdlib.h>
80 #include <stddef.h>
81
82 #include "xmalloc.h"
83 #include "umac.h"
84 #include "misc.h"
85
86 /* ---------------------------------------------------------------------- */
87 /* --- Primitive Data Types --- */
88 /* ---------------------------------------------------------------------- */
89
90 /* The following assumptions may need change on your system */
91 typedef u_int8_t UINT8; /* 1 byte */
92 typedef u_int16_t UINT16; /* 2 byte */
93 typedef u_int32_t UINT32; /* 4 byte */
94 typedef u_int64_t UINT64; /* 8 bytes */
95 typedef unsigned int UWORD; /* Register */
96
97 /* ---------------------------------------------------------------------- */
98 /* --- Constants -------------------------------------------------------- */
99 /* ---------------------------------------------------------------------- */
100
101 #define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
102
103 /* Message "words" are read from memory in an endian-specific manner. */
104 /* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
105 /* be set true if the host computer is little-endian. */
106
107 #if BYTE_ORDER == LITTLE_ENDIAN
108 #define __LITTLE_ENDIAN__ 1
109 #else
110 #define __LITTLE_ENDIAN__ 0
111 #endif
112
113 /* ---------------------------------------------------------------------- */
114 /* ---------------------------------------------------------------------- */
115 /* ----- Architecture Specific ------------------------------------------ */
116 /* ---------------------------------------------------------------------- */
117 /* ---------------------------------------------------------------------- */
118
119
120 /* ---------------------------------------------------------------------- */
121 /* ---------------------------------------------------------------------- */
122 /* ----- Primitive Routines --------------------------------------------- */
123 /* ---------------------------------------------------------------------- */
124 /* ---------------------------------------------------------------------- */
125
126
127 /* ---------------------------------------------------------------------- */
128 /* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
129 /* ---------------------------------------------------------------------- */
130
131 #define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
132
133 /* ---------------------------------------------------------------------- */
134 /* --- Endian Conversion --- Forcing assembly on some platforms */
135 /* ---------------------------------------------------------------------- */
136
137 #if (__LITTLE_ENDIAN__)
138 #define LOAD_UINT32_REVERSED(p) get_u32(p)
139 #define STORE_UINT32_REVERSED(p,v) put_u32(p,v)
140 #else
141 #define LOAD_UINT32_REVERSED(p) get_u32_le(p)
142 #define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v)
143 #endif
144
145 #define LOAD_UINT32_LITTLE(p) (get_u32_le(p))
146 #define STORE_UINT32_BIG(p,v) put_u32(p, v)
147
148 /* ---------------------------------------------------------------------- */
149 /* ---------------------------------------------------------------------- */
150 /* ----- Begin KDF & PDF Section ---------------------------------------- */
151 /* ---------------------------------------------------------------------- */
152 /* ---------------------------------------------------------------------- */
153
154 /* UMAC uses AES with 16 byte block and key lengths */
155 #define AES_BLOCK_LEN 16
156
157 /* OpenSSL's AES */
158 #ifdef WITH_OPENSSL
159 #include "openbsd-compat/openssl-compat.h"
160 #ifndef USE_BUILTIN_RIJNDAEL
161 # include <openssl/aes.h>
162 #endif
163 typedef AES_KEY aes_int_key[1];
164 #define aes_encryption(in,out,int_key) \
165 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
166 #define aes_key_setup(key,int_key) \
167 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
168 #else
169 #include "rijndael.h"
170 #define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
171 typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */
172 #define aes_encryption(in,out,int_key) \
173 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
174 #define aes_key_setup(key,int_key) \
175 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
176 UMAC_KEY_LEN*8)
177 #endif
178
179 /* The user-supplied UMAC key is stretched using AES in a counter
180 * mode to supply all random bits needed by UMAC. The kdf function takes
181 * an AES internal key representation 'key' and writes a stream of
182 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
183 * 'ndx' causes a distinct byte stream.
184 */
kdf(void * bufp,aes_int_key key,UINT8 ndx,int nbytes)185 static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
186 {
187 UINT8 in_buf[AES_BLOCK_LEN] = {0};
188 UINT8 out_buf[AES_BLOCK_LEN];
189 UINT8 *dst_buf = (UINT8 *)bufp;
190 int i;
191
192 /* Setup the initial value */
193 in_buf[AES_BLOCK_LEN-9] = ndx;
194 in_buf[AES_BLOCK_LEN-1] = i = 1;
195
196 while (nbytes >= AES_BLOCK_LEN) {
197 aes_encryption(in_buf, out_buf, key);
198 memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
199 in_buf[AES_BLOCK_LEN-1] = ++i;
200 nbytes -= AES_BLOCK_LEN;
201 dst_buf += AES_BLOCK_LEN;
202 }
203 if (nbytes) {
204 aes_encryption(in_buf, out_buf, key);
205 memcpy(dst_buf,out_buf,nbytes);
206 }
207 explicit_bzero(in_buf, sizeof(in_buf));
208 explicit_bzero(out_buf, sizeof(out_buf));
209 }
210
211 /* The final UHASH result is XOR'd with the output of a pseudorandom
212 * function. Here, we use AES to generate random output and
213 * xor the appropriate bytes depending on the last bits of nonce.
214 * This scheme is optimized for sequential, increasing big-endian nonces.
215 */
216
217 typedef struct {
218 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
219 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
220 aes_int_key prf_key; /* Expanded AES key for PDF */
221 } pdf_ctx;
222
pdf_init(pdf_ctx * pc,aes_int_key prf_key)223 static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
224 {
225 UINT8 buf[UMAC_KEY_LEN];
226
227 kdf(buf, prf_key, 0, UMAC_KEY_LEN);
228 aes_key_setup(buf, pc->prf_key);
229
230 /* Initialize pdf and cache */
231 memset(pc->nonce, 0, sizeof(pc->nonce));
232 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
233 explicit_bzero(buf, sizeof(buf));
234 }
235
pdf_gen_xor(pdf_ctx * pc,const UINT8 nonce[8],UINT8 buf[UMAC_OUTPUT_LEN])236 static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8],
237 UINT8 buf[UMAC_OUTPUT_LEN])
238 {
239 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
240 * of the AES output. If last time around we returned the ndx-1st
241 * element, then we may have the result in the cache already.
242 */
243
244 #if (UMAC_OUTPUT_LEN == 4)
245 #define LOW_BIT_MASK 3
246 #elif (UMAC_OUTPUT_LEN == 8)
247 #define LOW_BIT_MASK 1
248 #elif (UMAC_OUTPUT_LEN > 8)
249 #define LOW_BIT_MASK 0
250 #endif
251 union {
252 UINT8 tmp_nonce_lo[4];
253 UINT32 align;
254 } t;
255 #if LOW_BIT_MASK != 0
256 int ndx = nonce[7] & LOW_BIT_MASK;
257 #endif
258 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
259 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
260
261 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
262 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
263 {
264 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
265 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
266 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
267 }
268
269 #if (UMAC_OUTPUT_LEN == 4)
270 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
271 #elif (UMAC_OUTPUT_LEN == 8)
272 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
273 #elif (UMAC_OUTPUT_LEN == 12)
274 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
275 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
276 #elif (UMAC_OUTPUT_LEN == 16)
277 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
278 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
279 #endif
280 }
281
282 /* ---------------------------------------------------------------------- */
283 /* ---------------------------------------------------------------------- */
284 /* ----- Begin NH Hash Section ------------------------------------------ */
285 /* ---------------------------------------------------------------------- */
286 /* ---------------------------------------------------------------------- */
287
288 /* The NH-based hash functions used in UMAC are described in the UMAC paper
289 * and specification, both of which can be found at the UMAC website.
290 * The interface to this implementation has two
291 * versions, one expects the entire message being hashed to be passed
292 * in a single buffer and returns the hash result immediately. The second
293 * allows the message to be passed in a sequence of buffers. In the
294 * multiple-buffer interface, the client calls the routine nh_update() as
295 * many times as necessary. When there is no more data to be fed to the
296 * hash, the client calls nh_final() which calculates the hash output.
297 * Before beginning another hash calculation the nh_reset() routine
298 * must be called. The single-buffer routine, nh(), is equivalent to
299 * the sequence of calls nh_update() and nh_final(); however it is
300 * optimized and should be preferred whenever the multiple-buffer interface
301 * is not necessary. When using either interface, it is the client's
302 * responsibility to pass no more than L1_KEY_LEN bytes per hash result.
303 *
304 * The routine nh_init() initializes the nh_ctx data structure and
305 * must be called once, before any other PDF routine.
306 */
307
308 /* The "nh_aux" routines do the actual NH hashing work. They
309 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
310 * produce output for all STREAMS NH iterations in one call,
311 * allowing the parallel implementation of the streams.
312 */
313
314 #define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
315 #define L1_KEY_LEN 1024 /* Internal key bytes */
316 #define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
317 #define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
318 #define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
319 #define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
320
321 typedef struct {
322 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
323 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */
324 int next_data_empty; /* Bookkeeping variable for data buffer. */
325 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorporated. */
326 UINT64 state[STREAMS]; /* on-line state */
327 } nh_ctx;
328
329
330 #if (UMAC_OUTPUT_LEN == 4)
331
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)332 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
333 /* NH hashing primitive. Previous (partial) hash result is loaded and
334 * then stored via hp pointer. The length of the data pointed at by "dp",
335 * "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
336 * is expected to be endian compensated in memory at key setup.
337 */
338 {
339 UINT64 h;
340 UWORD c = dlen / 32;
341 UINT32 *k = (UINT32 *)kp;
342 const UINT32 *d = (const UINT32 *)dp;
343 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
344 UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
345
346 h = *((UINT64 *)hp);
347 do {
348 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
349 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
350 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
351 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
352 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
353 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
354 h += MUL64((k0 + d0), (k4 + d4));
355 h += MUL64((k1 + d1), (k5 + d5));
356 h += MUL64((k2 + d2), (k6 + d6));
357 h += MUL64((k3 + d3), (k7 + d7));
358
359 d += 8;
360 k += 8;
361 } while (--c);
362 *((UINT64 *)hp) = h;
363 }
364
365 #elif (UMAC_OUTPUT_LEN == 8)
366
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)367 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
368 /* Same as previous nh_aux, but two streams are handled in one pass,
369 * reading and writing 16 bytes of hash-state per call.
370 */
371 {
372 UINT64 h1,h2;
373 UWORD c = dlen / 32;
374 UINT32 *k = (UINT32 *)kp;
375 const UINT32 *d = (const UINT32 *)dp;
376 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
377 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
378 k8,k9,k10,k11;
379
380 h1 = *((UINT64 *)hp);
381 h2 = *((UINT64 *)hp + 1);
382 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
383 do {
384 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
385 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
386 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
387 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
388 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
389 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
390
391 h1 += MUL64((k0 + d0), (k4 + d4));
392 h2 += MUL64((k4 + d0), (k8 + d4));
393
394 h1 += MUL64((k1 + d1), (k5 + d5));
395 h2 += MUL64((k5 + d1), (k9 + d5));
396
397 h1 += MUL64((k2 + d2), (k6 + d6));
398 h2 += MUL64((k6 + d2), (k10 + d6));
399
400 h1 += MUL64((k3 + d3), (k7 + d7));
401 h2 += MUL64((k7 + d3), (k11 + d7));
402
403 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
404
405 d += 8;
406 k += 8;
407 } while (--c);
408 ((UINT64 *)hp)[0] = h1;
409 ((UINT64 *)hp)[1] = h2;
410 }
411
412 #elif (UMAC_OUTPUT_LEN == 12)
413
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)414 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
415 /* Same as previous nh_aux, but two streams are handled in one pass,
416 * reading and writing 24 bytes of hash-state per call.
417 */
418 {
419 UINT64 h1,h2,h3;
420 UWORD c = dlen / 32;
421 UINT32 *k = (UINT32 *)kp;
422 const UINT32 *d = (const UINT32 *)dp;
423 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
424 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
425 k8,k9,k10,k11,k12,k13,k14,k15;
426
427 h1 = *((UINT64 *)hp);
428 h2 = *((UINT64 *)hp + 1);
429 h3 = *((UINT64 *)hp + 2);
430 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
431 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
432 do {
433 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
434 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
435 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
436 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
437 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
438 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
439
440 h1 += MUL64((k0 + d0), (k4 + d4));
441 h2 += MUL64((k4 + d0), (k8 + d4));
442 h3 += MUL64((k8 + d0), (k12 + d4));
443
444 h1 += MUL64((k1 + d1), (k5 + d5));
445 h2 += MUL64((k5 + d1), (k9 + d5));
446 h3 += MUL64((k9 + d1), (k13 + d5));
447
448 h1 += MUL64((k2 + d2), (k6 + d6));
449 h2 += MUL64((k6 + d2), (k10 + d6));
450 h3 += MUL64((k10 + d2), (k14 + d6));
451
452 h1 += MUL64((k3 + d3), (k7 + d7));
453 h2 += MUL64((k7 + d3), (k11 + d7));
454 h3 += MUL64((k11 + d3), (k15 + d7));
455
456 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
457 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
458
459 d += 8;
460 k += 8;
461 } while (--c);
462 ((UINT64 *)hp)[0] = h1;
463 ((UINT64 *)hp)[1] = h2;
464 ((UINT64 *)hp)[2] = h3;
465 }
466
467 #elif (UMAC_OUTPUT_LEN == 16)
468
nh_aux(void * kp,const void * dp,void * hp,UINT32 dlen)469 static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
470 /* Same as previous nh_aux, but two streams are handled in one pass,
471 * reading and writing 24 bytes of hash-state per call.
472 */
473 {
474 UINT64 h1,h2,h3,h4;
475 UWORD c = dlen / 32;
476 UINT32 *k = (UINT32 *)kp;
477 const UINT32 *d = (const UINT32 *)dp;
478 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
479 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
480 k8,k9,k10,k11,k12,k13,k14,k15,
481 k16,k17,k18,k19;
482
483 h1 = *((UINT64 *)hp);
484 h2 = *((UINT64 *)hp + 1);
485 h3 = *((UINT64 *)hp + 2);
486 h4 = *((UINT64 *)hp + 3);
487 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
488 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
489 do {
490 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
491 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
492 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
493 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
494 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
495 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
496 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
497
498 h1 += MUL64((k0 + d0), (k4 + d4));
499 h2 += MUL64((k4 + d0), (k8 + d4));
500 h3 += MUL64((k8 + d0), (k12 + d4));
501 h4 += MUL64((k12 + d0), (k16 + d4));
502
503 h1 += MUL64((k1 + d1), (k5 + d5));
504 h2 += MUL64((k5 + d1), (k9 + d5));
505 h3 += MUL64((k9 + d1), (k13 + d5));
506 h4 += MUL64((k13 + d1), (k17 + d5));
507
508 h1 += MUL64((k2 + d2), (k6 + d6));
509 h2 += MUL64((k6 + d2), (k10 + d6));
510 h3 += MUL64((k10 + d2), (k14 + d6));
511 h4 += MUL64((k14 + d2), (k18 + d6));
512
513 h1 += MUL64((k3 + d3), (k7 + d7));
514 h2 += MUL64((k7 + d3), (k11 + d7));
515 h3 += MUL64((k11 + d3), (k15 + d7));
516 h4 += MUL64((k15 + d3), (k19 + d7));
517
518 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
519 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
520 k8 = k16; k9 = k17; k10 = k18; k11 = k19;
521
522 d += 8;
523 k += 8;
524 } while (--c);
525 ((UINT64 *)hp)[0] = h1;
526 ((UINT64 *)hp)[1] = h2;
527 ((UINT64 *)hp)[2] = h3;
528 ((UINT64 *)hp)[3] = h4;
529 }
530
531 /* ---------------------------------------------------------------------- */
532 #endif /* UMAC_OUTPUT_LENGTH */
533 /* ---------------------------------------------------------------------- */
534
535
536 /* ---------------------------------------------------------------------- */
537
nh_transform(nh_ctx * hc,const UINT8 * buf,UINT32 nbytes)538 static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
539 /* This function is a wrapper for the primitive NH hash functions. It takes
540 * as argument "hc" the current hash context and a buffer which must be a
541 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
542 * appropriately according to how much message has been hashed already.
543 */
544 {
545 UINT8 *key;
546
547 key = hc->nh_key + hc->bytes_hashed;
548 nh_aux(key, buf, hc->state, nbytes);
549 }
550
551 /* ---------------------------------------------------------------------- */
552
553 #if (__LITTLE_ENDIAN__)
endian_convert(void * buf,UWORD bpw,UINT32 num_bytes)554 static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
555 /* We endian convert the keys on little-endian computers to */
556 /* compensate for the lack of big-endian memory reads during hashing. */
557 {
558 UWORD iters = num_bytes / bpw;
559 if (bpw == 4) {
560 UINT32 *p = (UINT32 *)buf;
561 do {
562 *p = LOAD_UINT32_REVERSED(p);
563 p++;
564 } while (--iters);
565 } else if (bpw == 8) {
566 UINT32 *p = (UINT32 *)buf;
567 UINT32 t;
568 do {
569 t = LOAD_UINT32_REVERSED(p+1);
570 p[1] = LOAD_UINT32_REVERSED(p);
571 p[0] = t;
572 p += 2;
573 } while (--iters);
574 }
575 }
576 #define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
577 #else
578 #define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
579 #endif
580
581 /* ---------------------------------------------------------------------- */
582
nh_reset(nh_ctx * hc)583 static void nh_reset(nh_ctx *hc)
584 /* Reset nh_ctx to ready for hashing of new data */
585 {
586 hc->bytes_hashed = 0;
587 hc->next_data_empty = 0;
588 hc->state[0] = 0;
589 #if (UMAC_OUTPUT_LEN >= 8)
590 hc->state[1] = 0;
591 #endif
592 #if (UMAC_OUTPUT_LEN >= 12)
593 hc->state[2] = 0;
594 #endif
595 #if (UMAC_OUTPUT_LEN == 16)
596 hc->state[3] = 0;
597 #endif
598
599 }
600
601 /* ---------------------------------------------------------------------- */
602
nh_init(nh_ctx * hc,aes_int_key prf_key)603 static void nh_init(nh_ctx *hc, aes_int_key prf_key)
604 /* Generate nh_key, endian convert and reset to be ready for hashing. */
605 {
606 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
607 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
608 nh_reset(hc);
609 }
610
611 /* ---------------------------------------------------------------------- */
612
nh_update(nh_ctx * hc,const UINT8 * buf,UINT32 nbytes)613 static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
614 /* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
615 /* even multiple of HASH_BUF_BYTES. */
616 {
617 UINT32 i,j;
618
619 j = hc->next_data_empty;
620 if ((j + nbytes) >= HASH_BUF_BYTES) {
621 if (j) {
622 i = HASH_BUF_BYTES - j;
623 memcpy(hc->data+j, buf, i);
624 nh_transform(hc,hc->data,HASH_BUF_BYTES);
625 nbytes -= i;
626 buf += i;
627 hc->bytes_hashed += HASH_BUF_BYTES;
628 }
629 if (nbytes >= HASH_BUF_BYTES) {
630 i = nbytes & ~(HASH_BUF_BYTES - 1);
631 nh_transform(hc, buf, i);
632 nbytes -= i;
633 buf += i;
634 hc->bytes_hashed += i;
635 }
636 j = 0;
637 }
638 memcpy(hc->data + j, buf, nbytes);
639 hc->next_data_empty = j + nbytes;
640 }
641
642 /* ---------------------------------------------------------------------- */
643
zero_pad(UINT8 * p,int nbytes)644 static void zero_pad(UINT8 *p, int nbytes)
645 {
646 /* Write "nbytes" of zeroes, beginning at "p" */
647 if (nbytes >= (int)sizeof(UWORD)) {
648 while ((ptrdiff_t)p % sizeof(UWORD)) {
649 *p = 0;
650 nbytes--;
651 p++;
652 }
653 while (nbytes >= (int)sizeof(UWORD)) {
654 *(UWORD *)p = 0;
655 nbytes -= sizeof(UWORD);
656 p += sizeof(UWORD);
657 }
658 }
659 while (nbytes) {
660 *p = 0;
661 nbytes--;
662 p++;
663 }
664 }
665
666 /* ---------------------------------------------------------------------- */
667
nh_final(nh_ctx * hc,UINT8 * result)668 static void nh_final(nh_ctx *hc, UINT8 *result)
669 /* After passing some number of data buffers to nh_update() for integration
670 * into an NH context, nh_final is called to produce a hash result. If any
671 * bytes are in the buffer hc->data, incorporate them into the
672 * NH context. Finally, add into the NH accumulation "state" the total number
673 * of bits hashed. The resulting numbers are written to the buffer "result".
674 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
675 */
676 {
677 int nh_len, nbits;
678
679 if (hc->next_data_empty != 0) {
680 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
681 ~(L1_PAD_BOUNDARY - 1));
682 zero_pad(hc->data + hc->next_data_empty,
683 nh_len - hc->next_data_empty);
684 nh_transform(hc, hc->data, nh_len);
685 hc->bytes_hashed += hc->next_data_empty;
686 } else if (hc->bytes_hashed == 0) {
687 nh_len = L1_PAD_BOUNDARY;
688 zero_pad(hc->data, L1_PAD_BOUNDARY);
689 nh_transform(hc, hc->data, nh_len);
690 }
691
692 nbits = (hc->bytes_hashed << 3);
693 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
694 #if (UMAC_OUTPUT_LEN >= 8)
695 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
696 #endif
697 #if (UMAC_OUTPUT_LEN >= 12)
698 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
699 #endif
700 #if (UMAC_OUTPUT_LEN == 16)
701 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
702 #endif
703 nh_reset(hc);
704 }
705
706 /* ---------------------------------------------------------------------- */
707
nh(nh_ctx * hc,const UINT8 * buf,UINT32 padded_len,UINT32 unpadded_len,UINT8 * result)708 static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
709 UINT32 unpadded_len, UINT8 *result)
710 /* All-in-one nh_update() and nh_final() equivalent.
711 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
712 * well aligned
713 */
714 {
715 UINT32 nbits;
716
717 /* Initialize the hash state */
718 nbits = (unpadded_len << 3);
719
720 ((UINT64 *)result)[0] = nbits;
721 #if (UMAC_OUTPUT_LEN >= 8)
722 ((UINT64 *)result)[1] = nbits;
723 #endif
724 #if (UMAC_OUTPUT_LEN >= 12)
725 ((UINT64 *)result)[2] = nbits;
726 #endif
727 #if (UMAC_OUTPUT_LEN == 16)
728 ((UINT64 *)result)[3] = nbits;
729 #endif
730
731 nh_aux(hc->nh_key, buf, result, padded_len);
732 }
733
734 /* ---------------------------------------------------------------------- */
735 /* ---------------------------------------------------------------------- */
736 /* ----- Begin UHASH Section -------------------------------------------- */
737 /* ---------------------------------------------------------------------- */
738 /* ---------------------------------------------------------------------- */
739
740 /* UHASH is a multi-layered algorithm. Data presented to UHASH is first
741 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
742 * unless the initial data to be hashed is short. After the polynomial-
743 * layer, an inner-product hash is used to produce the final UHASH output.
744 *
745 * UHASH provides two interfaces, one all-at-once and another where data
746 * buffers are presented sequentially. In the sequential interface, the
747 * UHASH client calls the routine uhash_update() as many times as necessary.
748 * When there is no more data to be fed to UHASH, the client calls
749 * uhash_final() which
750 * calculates the UHASH output. Before beginning another UHASH calculation
751 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
752 * uhash(), is equivalent to the sequence of calls uhash_update() and
753 * uhash_final(); however it is optimized and should be
754 * used whenever the sequential interface is not necessary.
755 *
756 * The routine uhash_init() initializes the uhash_ctx data structure and
757 * must be called once, before any other UHASH routine.
758 */
759
760 /* ---------------------------------------------------------------------- */
761 /* ----- Constants and uhash_ctx ---------------------------------------- */
762 /* ---------------------------------------------------------------------- */
763
764 /* ---------------------------------------------------------------------- */
765 /* ----- Poly hash and Inner-Product hash Constants --------------------- */
766 /* ---------------------------------------------------------------------- */
767
768 /* Primes and masks */
769 #define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
770 #define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
771 #define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
772
773
774 /* ---------------------------------------------------------------------- */
775
776 typedef struct uhash_ctx {
777 nh_ctx hash; /* Hash context for L1 NH hash */
778 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
779 UINT64 poly_accum[STREAMS]; /* poly hash result */
780 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
781 UINT32 ip_trans[STREAMS]; /* Inner-product translation */
782 UINT32 msg_len; /* Total length of data passed */
783 /* to uhash */
784 } uhash_ctx;
785 typedef struct uhash_ctx *uhash_ctx_t;
786
787 /* ---------------------------------------------------------------------- */
788
789
790 /* The polynomial hashes use Horner's rule to evaluate a polynomial one
791 * word at a time. As described in the specification, poly32 and poly64
792 * require keys from special domains. The following implementations exploit
793 * the special domains to avoid overflow. The results are not guaranteed to
794 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
795 * patches any errant values.
796 */
797
poly64(UINT64 cur,UINT64 key,UINT64 data)798 static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
799 {
800 UINT32 key_hi = (UINT32)(key >> 32),
801 key_lo = (UINT32)key,
802 cur_hi = (UINT32)(cur >> 32),
803 cur_lo = (UINT32)cur,
804 x_lo,
805 x_hi;
806 UINT64 X,T,res;
807
808 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
809 x_lo = (UINT32)X;
810 x_hi = (UINT32)(X >> 32);
811
812 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
813
814 T = ((UINT64)x_lo << 32);
815 res += T;
816 if (res < T)
817 res += 59;
818
819 res += data;
820 if (res < data)
821 res += 59;
822
823 return res;
824 }
825
826
827 /* Although UMAC is specified to use a ramped polynomial hash scheme, this
828 * implementation does not handle all ramp levels. Because we don't handle
829 * the ramp up to p128 modulus in this implementation, we are limited to
830 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
831 * bytes input to UMAC per tag, ie. 16MB).
832 */
poly_hash(uhash_ctx_t hc,UINT32 data_in[])833 static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
834 {
835 int i;
836 UINT64 *data=(UINT64*)data_in;
837
838 for (i = 0; i < STREAMS; i++) {
839 if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
840 hc->poly_accum[i] = poly64(hc->poly_accum[i],
841 hc->poly_key_8[i], p64 - 1);
842 hc->poly_accum[i] = poly64(hc->poly_accum[i],
843 hc->poly_key_8[i], (data[i] - 59));
844 } else {
845 hc->poly_accum[i] = poly64(hc->poly_accum[i],
846 hc->poly_key_8[i], data[i]);
847 }
848 }
849 }
850
851
852 /* ---------------------------------------------------------------------- */
853
854
855 /* The final step in UHASH is an inner-product hash. The poly hash
856 * produces a result not necessarily WORD_LEN bytes long. The inner-
857 * product hash breaks the polyhash output into 16-bit chunks and
858 * multiplies each with a 36 bit key.
859 */
860
ip_aux(UINT64 t,UINT64 * ipkp,UINT64 data)861 static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
862 {
863 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
864 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
865 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
866 t = t + ipkp[3] * (UINT64)(UINT16)(data);
867
868 return t;
869 }
870
ip_reduce_p36(UINT64 t)871 static UINT32 ip_reduce_p36(UINT64 t)
872 {
873 /* Divisionless modular reduction */
874 UINT64 ret;
875
876 ret = (t & m36) + 5 * (t >> 36);
877 if (ret >= p36)
878 ret -= p36;
879
880 /* return least significant 32 bits */
881 return (UINT32)(ret);
882 }
883
884
885 /* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
886 * the polyhash stage is skipped and ip_short is applied directly to the
887 * NH output.
888 */
ip_short(uhash_ctx_t ahc,UINT8 * nh_res,u_char * res)889 static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
890 {
891 UINT64 t;
892 UINT64 *nhp = (UINT64 *)nh_res;
893
894 t = ip_aux(0,ahc->ip_keys, nhp[0]);
895 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
896 #if (UMAC_OUTPUT_LEN >= 8)
897 t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
898 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
899 #endif
900 #if (UMAC_OUTPUT_LEN >= 12)
901 t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
902 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
903 #endif
904 #if (UMAC_OUTPUT_LEN == 16)
905 t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
906 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
907 #endif
908 }
909
910 /* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
911 * the polyhash stage is not skipped and ip_long is applied to the
912 * polyhash output.
913 */
ip_long(uhash_ctx_t ahc,u_char * res)914 static void ip_long(uhash_ctx_t ahc, u_char *res)
915 {
916 int i;
917 UINT64 t;
918
919 for (i = 0; i < STREAMS; i++) {
920 /* fix polyhash output not in Z_p64 */
921 if (ahc->poly_accum[i] >= p64)
922 ahc->poly_accum[i] -= p64;
923 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
924 STORE_UINT32_BIG((UINT32 *)res+i,
925 ip_reduce_p36(t) ^ ahc->ip_trans[i]);
926 }
927 }
928
929
930 /* ---------------------------------------------------------------------- */
931
932 /* ---------------------------------------------------------------------- */
933
934 /* Reset uhash context for next hash session */
uhash_reset(uhash_ctx_t pc)935 static int uhash_reset(uhash_ctx_t pc)
936 {
937 nh_reset(&pc->hash);
938 pc->msg_len = 0;
939 pc->poly_accum[0] = 1;
940 #if (UMAC_OUTPUT_LEN >= 8)
941 pc->poly_accum[1] = 1;
942 #endif
943 #if (UMAC_OUTPUT_LEN >= 12)
944 pc->poly_accum[2] = 1;
945 #endif
946 #if (UMAC_OUTPUT_LEN == 16)
947 pc->poly_accum[3] = 1;
948 #endif
949 return 1;
950 }
951
952 /* ---------------------------------------------------------------------- */
953
954 /* Given a pointer to the internal key needed by kdf() and a uhash context,
955 * initialize the NH context and generate keys needed for poly and inner-
956 * product hashing. All keys are endian adjusted in memory so that native
957 * loads cause correct keys to be in registers during calculation.
958 */
uhash_init(uhash_ctx_t ahc,aes_int_key prf_key)959 static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
960 {
961 int i;
962 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
963
964 /* Zero the entire uhash context */
965 memset(ahc, 0, sizeof(uhash_ctx));
966
967 /* Initialize the L1 hash */
968 nh_init(&ahc->hash, prf_key);
969
970 /* Setup L2 hash variables */
971 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
972 for (i = 0; i < STREAMS; i++) {
973 /* Fill keys from the buffer, skipping bytes in the buffer not
974 * used by this implementation. Endian reverse the keys if on a
975 * little-endian computer.
976 */
977 memcpy(ahc->poly_key_8+i, buf+24*i, 8);
978 endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
979 /* Mask the 64-bit keys to their special domain */
980 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
981 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
982 }
983
984 /* Setup L3-1 hash variables */
985 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
986 for (i = 0; i < STREAMS; i++)
987 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
988 4*sizeof(UINT64));
989 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
990 sizeof(ahc->ip_keys));
991 for (i = 0; i < STREAMS*4; i++)
992 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
993
994 /* Setup L3-2 hash variables */
995 /* Fill buffer with index 4 key */
996 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
997 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
998 STREAMS * sizeof(UINT32));
999 explicit_bzero(buf, sizeof(buf));
1000 }
1001
1002 /* ---------------------------------------------------------------------- */
1003
1004 #if 0
1005 static uhash_ctx_t uhash_alloc(u_char key[])
1006 {
1007 /* Allocate memory and force to a 16-byte boundary. */
1008 uhash_ctx_t ctx;
1009 u_char bytes_to_add;
1010 aes_int_key prf_key;
1011
1012 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1013 if (ctx) {
1014 if (ALLOC_BOUNDARY) {
1015 bytes_to_add = ALLOC_BOUNDARY -
1016 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1017 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1018 *((u_char *)ctx - 1) = bytes_to_add;
1019 }
1020 aes_key_setup(key,prf_key);
1021 uhash_init(ctx, prf_key);
1022 }
1023 return (ctx);
1024 }
1025 #endif
1026
1027 /* ---------------------------------------------------------------------- */
1028
1029 #if 0
1030 static int uhash_free(uhash_ctx_t ctx)
1031 {
1032 /* Free memory allocated by uhash_alloc */
1033 u_char bytes_to_sub;
1034
1035 if (ctx) {
1036 if (ALLOC_BOUNDARY) {
1037 bytes_to_sub = *((u_char *)ctx - 1);
1038 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1039 }
1040 free(ctx);
1041 }
1042 return (1);
1043 }
1044 #endif
1045 /* ---------------------------------------------------------------------- */
1046
uhash_update(uhash_ctx_t ctx,const u_char * input,long len)1047 static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
1048 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1049 * hash each one with NH, calling the polyhash on each NH output.
1050 */
1051 {
1052 UWORD bytes_hashed, bytes_remaining;
1053 UINT64 result_buf[STREAMS];
1054 UINT8 *nh_result = (UINT8 *)&result_buf;
1055
1056 if (ctx->msg_len + len <= L1_KEY_LEN) {
1057 nh_update(&ctx->hash, (const UINT8 *)input, len);
1058 ctx->msg_len += len;
1059 } else {
1060
1061 bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1062 if (ctx->msg_len == L1_KEY_LEN)
1063 bytes_hashed = L1_KEY_LEN;
1064
1065 if (bytes_hashed + len >= L1_KEY_LEN) {
1066
1067 /* If some bytes have been passed to the hash function */
1068 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1069 /* bytes to complete the current nh_block. */
1070 if (bytes_hashed) {
1071 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
1072 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
1073 nh_final(&ctx->hash, nh_result);
1074 ctx->msg_len += bytes_remaining;
1075 poly_hash(ctx,(UINT32 *)nh_result);
1076 len -= bytes_remaining;
1077 input += bytes_remaining;
1078 }
1079
1080 /* Hash directly from input stream if enough bytes */
1081 while (len >= L1_KEY_LEN) {
1082 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
1083 L1_KEY_LEN, nh_result);
1084 ctx->msg_len += L1_KEY_LEN;
1085 len -= L1_KEY_LEN;
1086 input += L1_KEY_LEN;
1087 poly_hash(ctx,(UINT32 *)nh_result);
1088 }
1089 }
1090
1091 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1092 if (len) {
1093 nh_update(&ctx->hash, (const UINT8 *)input, len);
1094 ctx->msg_len += len;
1095 }
1096 }
1097
1098 return (1);
1099 }
1100
1101 /* ---------------------------------------------------------------------- */
1102
uhash_final(uhash_ctx_t ctx,u_char * res)1103 static int uhash_final(uhash_ctx_t ctx, u_char *res)
1104 /* Incorporate any pending data, pad, and generate tag */
1105 {
1106 UINT64 result_buf[STREAMS];
1107 UINT8 *nh_result = (UINT8 *)&result_buf;
1108
1109 if (ctx->msg_len > L1_KEY_LEN) {
1110 if (ctx->msg_len % L1_KEY_LEN) {
1111 nh_final(&ctx->hash, nh_result);
1112 poly_hash(ctx,(UINT32 *)nh_result);
1113 }
1114 ip_long(ctx, res);
1115 } else {
1116 nh_final(&ctx->hash, nh_result);
1117 ip_short(ctx,nh_result, res);
1118 }
1119 uhash_reset(ctx);
1120 return (1);
1121 }
1122
1123 /* ---------------------------------------------------------------------- */
1124
1125 #if 0
1126 static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1127 /* assumes that msg is in a writable buffer of length divisible by */
1128 /* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1129 {
1130 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1131 UINT32 nh_len;
1132 int extra_zeroes_needed;
1133
1134 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1135 * the polyhash.
1136 */
1137 if (len <= L1_KEY_LEN) {
1138 if (len == 0) /* If zero length messages will not */
1139 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
1140 else
1141 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1142 extra_zeroes_needed = nh_len - len;
1143 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1144 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1145 ip_short(ahc,nh_result, res);
1146 } else {
1147 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1148 * output to poly_hash().
1149 */
1150 do {
1151 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1152 poly_hash(ahc,(UINT32 *)nh_result);
1153 len -= L1_KEY_LEN;
1154 msg += L1_KEY_LEN;
1155 } while (len >= L1_KEY_LEN);
1156 if (len) {
1157 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1158 extra_zeroes_needed = nh_len - len;
1159 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1160 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1161 poly_hash(ahc,(UINT32 *)nh_result);
1162 }
1163
1164 ip_long(ahc, res);
1165 }
1166
1167 uhash_reset(ahc);
1168 return 1;
1169 }
1170 #endif
1171
1172 /* ---------------------------------------------------------------------- */
1173 /* ---------------------------------------------------------------------- */
1174 /* ----- Begin UMAC Section --------------------------------------------- */
1175 /* ---------------------------------------------------------------------- */
1176 /* ---------------------------------------------------------------------- */
1177
1178 /* The UMAC interface has two interfaces, an all-at-once interface where
1179 * the entire message to be authenticated is passed to UMAC in one buffer,
1180 * and a sequential interface where the message is presented a little at a
1181 * time. The all-at-once is more optimized than the sequential version and
1182 * should be preferred when the sequential interface is not required.
1183 */
1184 struct umac_ctx {
1185 uhash_ctx hash; /* Hash function for message compression */
1186 pdf_ctx pdf; /* PDF for hashed output */
1187 void *free_ptr; /* Address to free this struct via */
1188 } umac_ctx;
1189
1190 /* ---------------------------------------------------------------------- */
1191
1192 #if 0
1193 int umac_reset(struct umac_ctx *ctx)
1194 /* Reset the hash function to begin a new authentication. */
1195 {
1196 uhash_reset(&ctx->hash);
1197 return (1);
1198 }
1199 #endif
1200
1201 /* ---------------------------------------------------------------------- */
1202
umac_delete(struct umac_ctx * ctx)1203 int umac_delete(struct umac_ctx *ctx)
1204 /* Deallocate the ctx structure */
1205 {
1206 if (ctx) {
1207 if (ALLOC_BOUNDARY)
1208 ctx = (struct umac_ctx *)ctx->free_ptr;
1209 freezero(ctx, sizeof(*ctx) + ALLOC_BOUNDARY);
1210 }
1211 return (1);
1212 }
1213
1214 /* ---------------------------------------------------------------------- */
1215
umac_new(const u_char key[])1216 struct umac_ctx *umac_new(const u_char key[])
1217 /* Dynamically allocate a umac_ctx struct, initialize variables,
1218 * generate subkeys from key. Align to 16-byte boundary.
1219 */
1220 {
1221 struct umac_ctx *ctx, *octx;
1222 size_t bytes_to_add;
1223 aes_int_key prf_key;
1224
1225 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
1226 if (ctx) {
1227 if (ALLOC_BOUNDARY) {
1228 bytes_to_add = ALLOC_BOUNDARY -
1229 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1230 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1231 }
1232 ctx->free_ptr = octx;
1233 aes_key_setup(key, prf_key);
1234 pdf_init(&ctx->pdf, prf_key);
1235 uhash_init(&ctx->hash, prf_key);
1236 explicit_bzero(prf_key, sizeof(prf_key));
1237 }
1238
1239 return (ctx);
1240 }
1241
1242 /* ---------------------------------------------------------------------- */
1243
umac_final(struct umac_ctx * ctx,u_char tag[],const u_char nonce[8])1244 int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
1245 /* Incorporate any pending data, pad, and generate tag */
1246 {
1247 uhash_final(&ctx->hash, (u_char *)tag);
1248 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
1249
1250 return (1);
1251 }
1252
1253 /* ---------------------------------------------------------------------- */
1254
umac_update(struct umac_ctx * ctx,const u_char * input,long len)1255 int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
1256 /* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1257 /* hash each one, calling the PDF on the hashed output whenever the hash- */
1258 /* output buffer is full. */
1259 {
1260 uhash_update(&ctx->hash, input, len);
1261 return (1);
1262 }
1263
1264 /* ---------------------------------------------------------------------- */
1265
1266 #if 0
1267 int umac(struct umac_ctx *ctx, u_char *input,
1268 long len, u_char tag[],
1269 u_char nonce[8])
1270 /* All-in-one version simply calls umac_update() and umac_final(). */
1271 {
1272 uhash(&ctx->hash, input, len, (u_char *)tag);
1273 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1274
1275 return (1);
1276 }
1277 #endif
1278
1279 /* ---------------------------------------------------------------------- */
1280 /* ---------------------------------------------------------------------- */
1281 /* ----- End UMAC Section ----------------------------------------------- */
1282 /* ---------------------------------------------------------------------- */
1283 /* ---------------------------------------------------------------------- */
1284