xref: /freebsd/sys/net/if_ethersubr.c (revision 85967694b4590a436c56a061b397620e342784ae)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_netgraph.h"
35 #include "opt_mbuf_profiling.h"
36 #include "opt_rss.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/devctl.h>
41 #include <sys/eventhandler.h>
42 #include <sys/jail.h>
43 #include <sys/kernel.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mbuf.h>
47 #include <sys/module.h>
48 #include <sys/msan.h>
49 #include <sys/proc.h>
50 #include <sys/priv.h>
51 #include <sys/random.h>
52 #include <sys/socket.h>
53 #include <sys/sockio.h>
54 #include <sys/sysctl.h>
55 #include <sys/uuid.h>
56 #ifdef KDB
57 #include <sys/kdb.h>
58 #endif
59 
60 #include <net/ieee_oui.h>
61 #include <net/if.h>
62 #include <net/if_var.h>
63 #include <net/if_private.h>
64 #include <net/if_arp.h>
65 #include <net/netisr.h>
66 #include <net/route.h>
67 #include <net/if_llc.h>
68 #include <net/if_dl.h>
69 #include <net/if_types.h>
70 #include <net/bpf.h>
71 #include <net/ethernet.h>
72 #include <net/if_bridgevar.h>
73 #include <net/if_vlan_var.h>
74 #include <net/if_llatbl.h>
75 #include <net/pfil.h>
76 #include <net/rss_config.h>
77 #include <net/vnet.h>
78 
79 #include <netpfil/pf/pf_mtag.h>
80 
81 #if defined(INET) || defined(INET6)
82 #include <netinet/in.h>
83 #include <netinet/in_var.h>
84 #include <netinet/if_ether.h>
85 #include <netinet/ip_carp.h>
86 #include <netinet/ip_var.h>
87 #endif
88 #ifdef INET6
89 #include <netinet6/nd6.h>
90 #endif
91 #include <security/mac/mac_framework.h>
92 
93 #include <crypto/sha1.h>
94 
95 #ifdef CTASSERT
96 CTASSERT(sizeof (struct ether_header) == ETHER_ADDR_LEN * 2 + 2);
97 CTASSERT(sizeof (struct ether_addr) == ETHER_ADDR_LEN);
98 #endif
99 
100 VNET_DEFINE(pfil_head_t, link_pfil_head);	/* Packet filter hooks */
101 
102 /* netgraph node hooks for ng_ether(4) */
103 void	(*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
104 void	(*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
105 int	(*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
106 void	(*ng_ether_attach_p)(struct ifnet *ifp);
107 void	(*ng_ether_detach_p)(struct ifnet *ifp);
108 
109 void	(*vlan_input_p)(struct ifnet *, struct mbuf *);
110 
111 /* if_bridge(4) support */
112 void	(*bridge_dn_p)(struct mbuf *, struct ifnet *);
113 bool	(*bridge_same_p)(const void *, const void *);
114 void	*(*bridge_get_softc_p)(struct ifnet *);
115 
116 /* if_lagg(4) support */
117 struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *);
118 
119 static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
120 			{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
121 
122 static	int ether_resolvemulti(struct ifnet *, struct sockaddr **,
123 		struct sockaddr *);
124 static	int ether_requestencap(struct ifnet *, struct if_encap_req *);
125 
126 static inline bool ether_do_pcp(struct ifnet *, struct mbuf *);
127 
128 #define senderr(e) do { error = (e); goto bad;} while (0)
129 
130 static void
update_mbuf_csumflags(struct mbuf * src,struct mbuf * dst)131 update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
132 {
133 	int csum_flags = 0;
134 
135 	if (src->m_pkthdr.csum_flags & CSUM_IP)
136 		csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
137 	if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
138 		csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
139 	if (src->m_pkthdr.csum_flags & CSUM_SCTP)
140 		csum_flags |= CSUM_SCTP_VALID;
141 	dst->m_pkthdr.csum_flags |= csum_flags;
142 	if (csum_flags & CSUM_DATA_VALID)
143 		dst->m_pkthdr.csum_data = 0xffff;
144 }
145 
146 /*
147  * Handle link-layer encapsulation requests.
148  */
149 static int
ether_requestencap(struct ifnet * ifp,struct if_encap_req * req)150 ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
151 {
152 	struct ether_header *eh;
153 	struct arphdr *ah;
154 	uint16_t etype;
155 	const u_char *lladdr;
156 
157 	if (req->rtype != IFENCAP_LL)
158 		return (EOPNOTSUPP);
159 
160 	if (req->bufsize < ETHER_HDR_LEN)
161 		return (ENOMEM);
162 
163 	eh = (struct ether_header *)req->buf;
164 	lladdr = req->lladdr;
165 	req->lladdr_off = 0;
166 
167 	switch (req->family) {
168 	case AF_INET:
169 		etype = htons(ETHERTYPE_IP);
170 		break;
171 	case AF_INET6:
172 		etype = htons(ETHERTYPE_IPV6);
173 		break;
174 	case AF_ARP:
175 		ah = (struct arphdr *)req->hdata;
176 		ah->ar_hrd = htons(ARPHRD_ETHER);
177 
178 		switch(ntohs(ah->ar_op)) {
179 		case ARPOP_REVREQUEST:
180 		case ARPOP_REVREPLY:
181 			etype = htons(ETHERTYPE_REVARP);
182 			break;
183 		case ARPOP_REQUEST:
184 		case ARPOP_REPLY:
185 		default:
186 			etype = htons(ETHERTYPE_ARP);
187 			break;
188 		}
189 
190 		if (req->flags & IFENCAP_FLAG_BROADCAST)
191 			lladdr = ifp->if_broadcastaddr;
192 		break;
193 	default:
194 		return (EAFNOSUPPORT);
195 	}
196 
197 	memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
198 	memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
199 	memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
200 	req->bufsize = sizeof(struct ether_header);
201 
202 	return (0);
203 }
204 
205 static int
ether_resolve_addr(struct ifnet * ifp,struct mbuf * m,const struct sockaddr * dst,struct route * ro,u_char * phdr,uint32_t * pflags,struct llentry ** plle)206 ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
207 	const struct sockaddr *dst, struct route *ro, u_char *phdr,
208 	uint32_t *pflags, struct llentry **plle)
209 {
210 	uint32_t lleflags = 0;
211 	int error = 0;
212 #if defined(INET) || defined(INET6)
213 	struct ether_header *eh = (struct ether_header *)phdr;
214 	uint16_t etype;
215 #endif
216 
217 	if (plle)
218 		*plle = NULL;
219 
220 	switch (dst->sa_family) {
221 #ifdef INET
222 	case AF_INET:
223 		if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
224 			error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
225 			    plle);
226 		else {
227 			if (m->m_flags & M_BCAST)
228 				memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
229 				    ETHER_ADDR_LEN);
230 			else {
231 				const struct in_addr *a;
232 				a = &(((const struct sockaddr_in *)dst)->sin_addr);
233 				ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
234 			}
235 			etype = htons(ETHERTYPE_IP);
236 			memcpy(&eh->ether_type, &etype, sizeof(etype));
237 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
238 		}
239 		break;
240 #endif
241 #ifdef INET6
242 	case AF_INET6:
243 		if ((m->m_flags & M_MCAST) == 0) {
244 			int af = RO_GET_FAMILY(ro, dst);
245 			error = nd6_resolve(ifp, LLE_SF(af, 0), m, dst, phdr,
246 			    &lleflags, plle);
247 		} else {
248 			const struct in6_addr *a6;
249 			a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
250 			ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
251 			etype = htons(ETHERTYPE_IPV6);
252 			memcpy(&eh->ether_type, &etype, sizeof(etype));
253 			memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
254 		}
255 		break;
256 #endif
257 	default:
258 		if_printf(ifp, "can't handle af%d\n", dst->sa_family);
259 		if (m != NULL)
260 			m_freem(m);
261 		return (EAFNOSUPPORT);
262 	}
263 
264 	if (error == EHOSTDOWN) {
265 		if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
266 			error = EHOSTUNREACH;
267 	}
268 
269 	if (error != 0)
270 		return (error);
271 
272 	*pflags = RT_MAY_LOOP;
273 	if (lleflags & LLE_IFADDR)
274 		*pflags |= RT_L2_ME;
275 
276 	return (0);
277 }
278 
279 /*
280  * Ethernet output routine.
281  * Encapsulate a packet of type family for the local net.
282  * Use trailer local net encapsulation if enough data in first
283  * packet leaves a multiple of 512 bytes of data in remainder.
284  */
285 int
ether_output(struct ifnet * ifp,struct mbuf * m,const struct sockaddr * dst,struct route * ro)286 ether_output(struct ifnet *ifp, struct mbuf *m,
287 	const struct sockaddr *dst, struct route *ro)
288 {
289 	int error = 0;
290 	char linkhdr[ETHER_HDR_LEN], *phdr;
291 	struct ether_header *eh;
292 	struct pf_mtag *t;
293 	bool loop_copy;
294 	int hlen;	/* link layer header length */
295 	uint32_t pflags;
296 	struct llentry *lle = NULL;
297 	int addref = 0;
298 
299 	phdr = NULL;
300 	pflags = 0;
301 	if (ro != NULL) {
302 		/* XXX BPF uses ro_prepend */
303 		if (ro->ro_prepend != NULL) {
304 			phdr = ro->ro_prepend;
305 			hlen = ro->ro_plen;
306 		} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
307 			if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
308 				lle = ro->ro_lle;
309 				if (lle != NULL &&
310 				    (lle->la_flags & LLE_VALID) == 0) {
311 					LLE_FREE(lle);
312 					lle = NULL;	/* redundant */
313 					ro->ro_lle = NULL;
314 				}
315 				if (lle == NULL) {
316 					/* if we lookup, keep cache */
317 					addref = 1;
318 				} else
319 					/*
320 					 * Notify LLE code that
321 					 * the entry was used
322 					 * by datapath.
323 					 */
324 					llentry_provide_feedback(lle);
325 			}
326 			if (lle != NULL) {
327 				phdr = lle->r_linkdata;
328 				hlen = lle->r_hdrlen;
329 				pflags = lle->r_flags;
330 			}
331 		}
332 	}
333 
334 #ifdef MAC
335 	error = mac_ifnet_check_transmit(ifp, m);
336 	if (error)
337 		senderr(error);
338 #endif
339 
340 	M_PROFILE(m);
341 	if (ifp->if_flags & IFF_MONITOR)
342 		senderr(ENETDOWN);
343 	if (!((ifp->if_flags & IFF_UP) &&
344 	    (ifp->if_drv_flags & IFF_DRV_RUNNING)))
345 		senderr(ENETDOWN);
346 
347 	if (phdr == NULL) {
348 		/* No prepend data supplied. Try to calculate ourselves. */
349 		phdr = linkhdr;
350 		hlen = ETHER_HDR_LEN;
351 		error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
352 		    addref ? &lle : NULL);
353 		if (addref && lle != NULL)
354 			ro->ro_lle = lle;
355 		if (error != 0)
356 			return (error == EWOULDBLOCK ? 0 : error);
357 	}
358 
359 	if ((pflags & RT_L2_ME) != 0) {
360 		update_mbuf_csumflags(m, m);
361 		return (if_simloop(ifp, m, RO_GET_FAMILY(ro, dst), 0));
362 	}
363 	loop_copy = (pflags & RT_MAY_LOOP) != 0;
364 
365 	/*
366 	 * Add local net header.  If no space in first mbuf,
367 	 * allocate another.
368 	 *
369 	 * Note that we do prepend regardless of RT_HAS_HEADER flag.
370 	 * This is done because BPF code shifts m_data pointer
371 	 * to the end of ethernet header prior to calling if_output().
372 	 */
373 	M_PREPEND(m, hlen, M_NOWAIT);
374 	if (m == NULL)
375 		senderr(ENOBUFS);
376 	if ((pflags & RT_HAS_HEADER) == 0) {
377 		eh = mtod(m, struct ether_header *);
378 		memcpy(eh, phdr, hlen);
379 	}
380 
381 	/*
382 	 * If a simplex interface, and the packet is being sent to our
383 	 * Ethernet address or a broadcast address, loopback a copy.
384 	 * XXX To make a simplex device behave exactly like a duplex
385 	 * device, we should copy in the case of sending to our own
386 	 * ethernet address (thus letting the original actually appear
387 	 * on the wire). However, we don't do that here for security
388 	 * reasons and compatibility with the original behavior.
389 	 */
390 	if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
391 	    ((t = pf_find_mtag(m)) == NULL || !t->routed)) {
392 		struct mbuf *n;
393 
394 		/*
395 		 * Because if_simloop() modifies the packet, we need a
396 		 * writable copy through m_dup() instead of a readonly
397 		 * one as m_copy[m] would give us. The alternative would
398 		 * be to modify if_simloop() to handle the readonly mbuf,
399 		 * but performancewise it is mostly equivalent (trading
400 		 * extra data copying vs. extra locking).
401 		 *
402 		 * XXX This is a local workaround.  A number of less
403 		 * often used kernel parts suffer from the same bug.
404 		 * See PR kern/105943 for a proposed general solution.
405 		 */
406 		if ((n = m_dup(m, M_NOWAIT)) != NULL) {
407 			update_mbuf_csumflags(m, n);
408 			(void)if_simloop(ifp, n, RO_GET_FAMILY(ro, dst), hlen);
409 		} else
410 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
411 	}
412 
413        /*
414 	* Bridges require special output handling.
415 	*/
416 	if (ifp->if_bridge) {
417 		BRIDGE_OUTPUT(ifp, m, error);
418 		return (error);
419 	}
420 
421 #if defined(INET) || defined(INET6)
422 	if (ifp->if_carp &&
423 	    (error = (*carp_output_p)(ifp, m, dst)))
424 		goto bad;
425 #endif
426 
427 	/* Handle ng_ether(4) processing, if any */
428 	if (ifp->if_l2com != NULL) {
429 		KASSERT(ng_ether_output_p != NULL,
430 		    ("ng_ether_output_p is NULL"));
431 		if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
432 bad:			if (m != NULL)
433 				m_freem(m);
434 			return (error);
435 		}
436 		if (m == NULL)
437 			return (0);
438 	}
439 
440 	/* Continue with link-layer output */
441 	return ether_output_frame(ifp, m);
442 }
443 
444 static bool
ether_set_pcp(struct mbuf ** mp,struct ifnet * ifp,uint8_t pcp)445 ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
446 {
447 	struct ether_8021q_tag qtag;
448 	struct ether_header *eh;
449 
450 	eh = mtod(*mp, struct ether_header *);
451 	if (eh->ether_type == htons(ETHERTYPE_VLAN) ||
452 	    eh->ether_type == htons(ETHERTYPE_QINQ)) {
453 		(*mp)->m_flags &= ~M_VLANTAG;
454 		return (true);
455 	}
456 
457 	qtag.vid = 0;
458 	qtag.pcp = pcp;
459 	qtag.proto = ETHERTYPE_VLAN;
460 	if (ether_8021q_frame(mp, ifp, ifp, &qtag))
461 		return (true);
462 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
463 	return (false);
464 }
465 
466 /*
467  * Ethernet link layer output routine to send a raw frame to the device.
468  *
469  * This assumes that the 14 byte Ethernet header is present and contiguous
470  * in the first mbuf (if BRIDGE'ing).
471  */
472 int
ether_output_frame(struct ifnet * ifp,struct mbuf * m)473 ether_output_frame(struct ifnet *ifp, struct mbuf *m)
474 {
475 	if (ether_do_pcp(ifp, m) && !ether_set_pcp(&m, ifp, ifp->if_pcp))
476 		return (0);
477 
478 	if (PFIL_HOOKED_OUT(V_link_pfil_head))
479 		switch (pfil_mbuf_out(V_link_pfil_head, &m, ifp, NULL)) {
480 		case PFIL_DROPPED:
481 			return (EACCES);
482 		case PFIL_CONSUMED:
483 			return (0);
484 		}
485 
486 #ifdef EXPERIMENTAL
487 #if defined(INET6) && defined(INET)
488 	/* draft-ietf-6man-ipv6only-flag */
489 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
490 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
491 		struct ether_header *eh;
492 
493 		eh = mtod(m, struct ether_header *);
494 		switch (ntohs(eh->ether_type)) {
495 		case ETHERTYPE_IP:
496 		case ETHERTYPE_ARP:
497 		case ETHERTYPE_REVARP:
498 			m_freem(m);
499 			return (EAFNOSUPPORT);
500 			/* NOTREACHED */
501 			break;
502 		};
503 	}
504 #endif
505 #endif
506 
507 	/*
508 	 * Queue message on interface, update output statistics if successful,
509 	 * and start output if interface not yet active.
510 	 *
511 	 * If KMSAN is enabled, use it to verify that the data does not contain
512 	 * any uninitialized bytes.
513 	 */
514 	kmsan_check_mbuf(m, "ether_output");
515 	return ((ifp->if_transmit)(ifp, m));
516 }
517 
518 /*
519  * Process a received Ethernet packet; the packet is in the
520  * mbuf chain m with the ethernet header at the front.
521  */
522 static void
ether_input_internal(struct ifnet * ifp,struct mbuf * m)523 ether_input_internal(struct ifnet *ifp, struct mbuf *m)
524 {
525 	struct ether_header *eh;
526 	u_short etype;
527 
528 	if ((ifp->if_flags & IFF_UP) == 0) {
529 		m_freem(m);
530 		return;
531 	}
532 #ifdef DIAGNOSTIC
533 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
534 		if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
535 		m_freem(m);
536 		return;
537 	}
538 #endif
539 	if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
540 		/* Drivers should pullup and ensure the mbuf is valid */
541 		if_printf(ifp, "discard frame w/o leading ethernet "
542 				"header (len %d pkt len %d)\n",
543 				m->m_len, m->m_pkthdr.len);
544 		if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
545 		m_freem(m);
546 		return;
547 	}
548 	eh = mtod(m, struct ether_header *);
549 	etype = ntohs(eh->ether_type);
550 	random_harvest_queue_ether(m, sizeof(*m));
551 
552 #ifdef EXPERIMENTAL
553 #if defined(INET6) && defined(INET)
554 	/* draft-ietf-6man-ipv6only-flag */
555 	/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
556 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
557 		switch (etype) {
558 		case ETHERTYPE_IP:
559 		case ETHERTYPE_ARP:
560 		case ETHERTYPE_REVARP:
561 			m_freem(m);
562 			return;
563 			/* NOTREACHED */
564 			break;
565 		};
566 	}
567 #endif
568 #endif
569 
570 	CURVNET_SET_QUIET(ifp->if_vnet);
571 
572 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
573 		if (ETHER_IS_BROADCAST(eh->ether_dhost))
574 			m->m_flags |= M_BCAST;
575 		else
576 			m->m_flags |= M_MCAST;
577 		if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
578 	}
579 
580 #ifdef MAC
581 	/*
582 	 * Tag the mbuf with an appropriate MAC label before any other
583 	 * consumers can get to it.
584 	 */
585 	mac_ifnet_create_mbuf(ifp, m);
586 #endif
587 
588 	/*
589 	 * Give bpf a chance at the packet.
590 	 */
591 	ETHER_BPF_MTAP(ifp, m);
592 
593 	if (!(ifp->if_capenable & IFCAP_HWSTATS))
594 		if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
595 
596 	/* Allow monitor mode to claim this frame, after stats are updated. */
597 	if (ifp->if_flags & IFF_MONITOR) {
598 		m_freem(m);
599 		CURVNET_RESTORE();
600 		return;
601 	}
602 
603 	/* Handle input from a lagg(4) port */
604 	if (ifp->if_type == IFT_IEEE8023ADLAG) {
605 		KASSERT(lagg_input_ethernet_p != NULL,
606 		    ("%s: if_lagg not loaded!", __func__));
607 		m = (*lagg_input_ethernet_p)(ifp, m);
608 		if (m != NULL)
609 			ifp = m->m_pkthdr.rcvif;
610 		else {
611 			CURVNET_RESTORE();
612 			return;
613 		}
614 	}
615 
616 	/*
617 	 * If the hardware did not process an 802.1Q tag, do this now,
618 	 * to allow 802.1P priority frames to be passed to the main input
619 	 * path correctly.
620 	 */
621 	if ((m->m_flags & M_VLANTAG) == 0 &&
622 	    ((etype == ETHERTYPE_VLAN) || (etype == ETHERTYPE_QINQ))) {
623 		struct ether_vlan_header *evl;
624 
625 		if (m->m_len < sizeof(*evl) &&
626 		    (m = m_pullup(m, sizeof(*evl))) == NULL) {
627 #ifdef DIAGNOSTIC
628 			if_printf(ifp, "cannot pullup VLAN header\n");
629 #endif
630 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
631 			CURVNET_RESTORE();
632 			return;
633 		}
634 
635 		evl = mtod(m, struct ether_vlan_header *);
636 		m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
637 		m->m_flags |= M_VLANTAG;
638 
639 		bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
640 		    ETHER_HDR_LEN - ETHER_TYPE_LEN);
641 		m_adj(m, ETHER_VLAN_ENCAP_LEN);
642 		eh = mtod(m, struct ether_header *);
643 	}
644 
645 	M_SETFIB(m, ifp->if_fib);
646 
647 	/* Allow ng_ether(4) to claim this frame. */
648 	if (ifp->if_l2com != NULL) {
649 		KASSERT(ng_ether_input_p != NULL,
650 		    ("%s: ng_ether_input_p is NULL", __func__));
651 		m->m_flags &= ~M_PROMISC;
652 		(*ng_ether_input_p)(ifp, &m);
653 		if (m == NULL) {
654 			CURVNET_RESTORE();
655 			return;
656 		}
657 		eh = mtod(m, struct ether_header *);
658 	}
659 
660 	/*
661 	 * Allow if_bridge(4) to claim this frame.
662 	 *
663 	 * The BRIDGE_INPUT() macro will update ifp if the bridge changed it
664 	 * and the frame should be delivered locally.
665 	 *
666 	 * If M_BRIDGE_INJECT is set, the packet was received directly by the
667 	 * bridge via netmap, so "ifp" is the bridge itself and the packet
668 	 * should be re-examined.
669 	 */
670 	if (ifp->if_bridge != NULL || (m->m_flags & M_BRIDGE_INJECT) != 0) {
671 		m->m_flags &= ~M_PROMISC;
672 		BRIDGE_INPUT(ifp, m);
673 		if (m == NULL) {
674 			CURVNET_RESTORE();
675 			return;
676 		}
677 		eh = mtod(m, struct ether_header *);
678 	}
679 
680 #if defined(INET) || defined(INET6)
681 	/*
682 	 * Clear M_PROMISC on frame so that carp(4) will see it when the
683 	 * mbuf flows up to Layer 3.
684 	 * FreeBSD's implementation of carp(4) uses the inprotosw
685 	 * to dispatch IPPROTO_CARP. carp(4) also allocates its own
686 	 * Ethernet addresses of the form 00:00:5e:00:01:xx, which
687 	 * is outside the scope of the M_PROMISC test below.
688 	 * TODO: Maintain a hash table of ethernet addresses other than
689 	 * ether_dhost which may be active on this ifp.
690 	 */
691 	if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
692 		m->m_flags &= ~M_PROMISC;
693 	} else
694 #endif
695 	{
696 		/*
697 		 * If the frame received was not for our MAC address, set the
698 		 * M_PROMISC flag on the mbuf chain. The frame may need to
699 		 * be seen by the rest of the Ethernet input path in case of
700 		 * re-entry (e.g. bridge, vlan, netgraph) but should not be
701 		 * seen by upper protocol layers.
702 		 */
703 		if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
704 		    bcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
705 			m->m_flags |= M_PROMISC;
706 	}
707 
708 	ether_demux(ifp, m);
709 	CURVNET_RESTORE();
710 }
711 
712 /*
713  * Ethernet input dispatch; by default, direct dispatch here regardless of
714  * global configuration.  However, if RSS is enabled, hook up RSS affinity
715  * so that when deferred or hybrid dispatch is enabled, we can redistribute
716  * load based on RSS.
717  *
718  * XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
719  * not it had already done work distribution via multi-queue.  Then we could
720  * direct dispatch in the event load balancing was already complete and
721  * handle the case of interfaces with different capabilities better.
722  *
723  * XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
724  * at multiple layers?
725  *
726  * XXXRW: For now, enable all this only if RSS is compiled in, although it
727  * works fine without RSS.  Need to characterise the performance overhead
728  * of the detour through the netisr code in the event the result is always
729  * direct dispatch.
730  */
731 static void
ether_nh_input(struct mbuf * m)732 ether_nh_input(struct mbuf *m)
733 {
734 
735 	M_ASSERTPKTHDR(m);
736 	KASSERT(m->m_pkthdr.rcvif != NULL,
737 	    ("%s: NULL interface pointer", __func__));
738 	ether_input_internal(m->m_pkthdr.rcvif, m);
739 }
740 
741 static struct netisr_handler	ether_nh = {
742 	.nh_name = "ether",
743 	.nh_handler = ether_nh_input,
744 	.nh_proto = NETISR_ETHER,
745 #ifdef RSS
746 	.nh_policy = NETISR_POLICY_CPU,
747 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
748 	.nh_m2cpuid = rss_m2cpuid,
749 #else
750 	.nh_policy = NETISR_POLICY_SOURCE,
751 	.nh_dispatch = NETISR_DISPATCH_DIRECT,
752 #endif
753 };
754 
755 static void
ether_init(__unused void * arg)756 ether_init(__unused void *arg)
757 {
758 
759 	netisr_register(&ether_nh);
760 }
761 SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
762 
763 static void
vnet_ether_init(const __unused void * arg)764 vnet_ether_init(const __unused void *arg)
765 {
766 	struct pfil_head_args args;
767 
768 	args.pa_version = PFIL_VERSION;
769 	args.pa_flags = PFIL_IN | PFIL_OUT;
770 	args.pa_type = PFIL_TYPE_ETHERNET;
771 	args.pa_headname = PFIL_ETHER_NAME;
772 	V_link_pfil_head = pfil_head_register(&args);
773 
774 #ifdef VIMAGE
775 	netisr_register_vnet(&ether_nh);
776 #endif
777 }
778 VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
779     vnet_ether_init, NULL);
780 
781 #ifdef VIMAGE
782 static void
vnet_ether_pfil_destroy(const __unused void * arg)783 vnet_ether_pfil_destroy(const __unused void *arg)
784 {
785 
786 	pfil_head_unregister(V_link_pfil_head);
787 }
788 VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
789     vnet_ether_pfil_destroy, NULL);
790 
791 static void
vnet_ether_destroy(__unused void * arg)792 vnet_ether_destroy(__unused void *arg)
793 {
794 
795 	netisr_unregister_vnet(&ether_nh);
796 }
797 VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
798     vnet_ether_destroy, NULL);
799 #endif
800 
801 static void
ether_input(struct ifnet * ifp,struct mbuf * m)802 ether_input(struct ifnet *ifp, struct mbuf *m)
803 {
804 	struct epoch_tracker et;
805 	struct mbuf *mn;
806 	bool needs_epoch;
807 
808 	needs_epoch = (ifp->if_flags & IFF_NEEDSEPOCH);
809 #ifdef INVARIANTS
810 	/*
811 	 * This temporary code is here to prevent epoch unaware and unmarked
812 	 * drivers to panic the system.  Once all drivers are taken care of,
813 	 * the whole INVARIANTS block should go away.
814 	 */
815 	if (!needs_epoch && !in_epoch(net_epoch_preempt)) {
816 		static bool printedonce;
817 
818 		needs_epoch = true;
819 		if (!printedonce) {
820 			printedonce = true;
821 			if_printf(ifp, "called %s w/o net epoch! "
822 			    "PLEASE file a bug report.", __func__);
823 #ifdef KDB
824 			kdb_backtrace();
825 #endif
826 		}
827 	}
828 #endif
829 
830 	/*
831 	 * The drivers are allowed to pass in a chain of packets linked with
832 	 * m_nextpkt. We split them up into separate packets here and pass
833 	 * them up. This allows the drivers to amortize the receive lock.
834 	 */
835 	CURVNET_SET_QUIET(ifp->if_vnet);
836 	if (__predict_false(needs_epoch))
837 		NET_EPOCH_ENTER(et);
838 	while (m) {
839 		mn = m->m_nextpkt;
840 		m->m_nextpkt = NULL;
841 
842 		/*
843 		 * We will rely on rcvif being set properly in the deferred
844 		 * context, so assert it is correct here.
845 		 */
846 		MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
847 		KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
848 		    "rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
849 		netisr_dispatch(NETISR_ETHER, m);
850 		m = mn;
851 	}
852 	if (__predict_false(needs_epoch))
853 		NET_EPOCH_EXIT(et);
854 	CURVNET_RESTORE();
855 }
856 
857 /*
858  * Upper layer processing for a received Ethernet packet.
859  */
860 void
ether_demux(struct ifnet * ifp,struct mbuf * m)861 ether_demux(struct ifnet *ifp, struct mbuf *m)
862 {
863 	struct ether_header *eh;
864 	int i, isr;
865 	u_short ether_type;
866 
867 	NET_EPOCH_ASSERT();
868 	KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
869 
870 	/* Do not grab PROMISC frames in case we are re-entered. */
871 	if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) {
872 		i = pfil_mbuf_in(V_link_pfil_head, &m, ifp, NULL);
873 		if (i != PFIL_PASS)
874 			return;
875 	}
876 
877 	eh = mtod(m, struct ether_header *);
878 	ether_type = ntohs(eh->ether_type);
879 
880 	/*
881 	 * If this frame has a VLAN tag other than 0, call vlan_input()
882 	 * if its module is loaded. Otherwise, drop.
883 	 */
884 	if ((m->m_flags & M_VLANTAG) &&
885 	    EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
886 		if (ifp->if_vlantrunk == NULL) {
887 			if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
888 			m_freem(m);
889 			return;
890 		}
891 		KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
892 		    __func__));
893 		/* Clear before possibly re-entering ether_input(). */
894 		m->m_flags &= ~M_PROMISC;
895 		(*vlan_input_p)(ifp, m);
896 		return;
897 	}
898 
899 	/*
900 	 * Pass promiscuously received frames to the upper layer if the user
901 	 * requested this by setting IFF_PPROMISC. Otherwise, drop them.
902 	 */
903 	if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
904 		m_freem(m);
905 		return;
906 	}
907 
908 	/*
909 	 * Reset layer specific mbuf flags to avoid confusing upper layers.
910 	 */
911 	m->m_flags &= ~M_VLANTAG;
912 	m_clrprotoflags(m);
913 
914 	/*
915 	 * Dispatch frame to upper layer.
916 	 */
917 	switch (ether_type) {
918 #ifdef INET
919 	case ETHERTYPE_IP:
920 		isr = NETISR_IP;
921 		break;
922 
923 	case ETHERTYPE_ARP:
924 		if (ifp->if_flags & IFF_NOARP) {
925 			/* Discard packet if ARP is disabled on interface */
926 			m_freem(m);
927 			return;
928 		}
929 		isr = NETISR_ARP;
930 		break;
931 #endif
932 #ifdef INET6
933 	case ETHERTYPE_IPV6:
934 		isr = NETISR_IPV6;
935 		break;
936 #endif
937 	default:
938 		goto discard;
939 	}
940 
941 	/* Strip off Ethernet header. */
942 	m_adj(m, ETHER_HDR_LEN);
943 
944 	netisr_dispatch(isr, m);
945 	return;
946 
947 discard:
948 	/*
949 	 * Packet is to be discarded.  If netgraph is present,
950 	 * hand the packet to it for last chance processing;
951 	 * otherwise dispose of it.
952 	 */
953 	if (ifp->if_l2com != NULL) {
954 		KASSERT(ng_ether_input_orphan_p != NULL,
955 		    ("ng_ether_input_orphan_p is NULL"));
956 		(*ng_ether_input_orphan_p)(ifp, m);
957 		return;
958 	}
959 	m_freem(m);
960 }
961 
962 /*
963  * Convert Ethernet address to printable (loggable) representation.
964  * This routine is for compatibility; it's better to just use
965  *
966  *	printf("%6D", <pointer to address>, ":");
967  *
968  * since there's no static buffer involved.
969  */
970 char *
ether_sprintf(const u_char * ap)971 ether_sprintf(const u_char *ap)
972 {
973 	static char etherbuf[18];
974 	snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
975 	return (etherbuf);
976 }
977 
978 /*
979  * Perform common duties while attaching to interface list
980  */
981 void
ether_ifattach(struct ifnet * ifp,const u_int8_t * lla)982 ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
983 {
984 	int i;
985 	struct ifaddr *ifa;
986 	struct sockaddr_dl *sdl;
987 
988 	ifp->if_addrlen = ETHER_ADDR_LEN;
989 	ifp->if_hdrlen = ETHER_HDR_LEN;
990 	ifp->if_mtu = ETHERMTU;
991 	if_attach(ifp);
992 	ifp->if_output = ether_output;
993 	ifp->if_input = ether_input;
994 	ifp->if_resolvemulti = ether_resolvemulti;
995 	ifp->if_requestencap = ether_requestencap;
996 #ifdef VIMAGE
997 	ifp->if_reassign = ether_reassign;
998 #endif
999 	if (ifp->if_baudrate == 0)
1000 		ifp->if_baudrate = IF_Mbps(10);		/* just a default */
1001 	ifp->if_broadcastaddr = etherbroadcastaddr;
1002 
1003 	ifa = ifp->if_addr;
1004 	KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
1005 	sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1006 	sdl->sdl_type = IFT_ETHER;
1007 	sdl->sdl_alen = ifp->if_addrlen;
1008 	bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
1009 
1010 	if (ifp->if_hw_addr != NULL)
1011 		bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
1012 
1013 	bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
1014 	if (ng_ether_attach_p != NULL)
1015 		(*ng_ether_attach_p)(ifp);
1016 
1017 	/* Announce Ethernet MAC address if non-zero. */
1018 	for (i = 0; i < ifp->if_addrlen; i++)
1019 		if (lla[i] != 0)
1020 			break;
1021 	if (i != ifp->if_addrlen)
1022 		if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
1023 
1024 	uuid_ether_add(LLADDR(sdl));
1025 
1026 	/* Add necessary bits are setup; announce it now. */
1027 	EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
1028 	if (IS_DEFAULT_VNET(curvnet))
1029 		devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
1030 }
1031 
1032 /*
1033  * Perform common duties while detaching an Ethernet interface
1034  */
1035 void
ether_ifdetach(struct ifnet * ifp)1036 ether_ifdetach(struct ifnet *ifp)
1037 {
1038 	struct sockaddr_dl *sdl;
1039 
1040 	sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
1041 	uuid_ether_del(LLADDR(sdl));
1042 
1043 	if (ifp->if_l2com != NULL) {
1044 		KASSERT(ng_ether_detach_p != NULL,
1045 		    ("ng_ether_detach_p is NULL"));
1046 		(*ng_ether_detach_p)(ifp);
1047 	}
1048 
1049 	bpfdetach(ifp);
1050 	if_detach(ifp);
1051 }
1052 
1053 #ifdef VIMAGE
1054 void
ether_reassign(struct ifnet * ifp,struct vnet * new_vnet,char * unused __unused)1055 ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
1056 {
1057 
1058 	if (ifp->if_l2com != NULL) {
1059 		KASSERT(ng_ether_detach_p != NULL,
1060 		    ("ng_ether_detach_p is NULL"));
1061 		(*ng_ether_detach_p)(ifp);
1062 	}
1063 
1064 	if (ng_ether_attach_p != NULL) {
1065 		CURVNET_SET_QUIET(new_vnet);
1066 		(*ng_ether_attach_p)(ifp);
1067 		CURVNET_RESTORE();
1068 	}
1069 }
1070 #endif
1071 
1072 SYSCTL_DECL(_net_link);
1073 SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1074     "Ethernet");
1075 
1076 #if 0
1077 /*
1078  * This is for reference.  We have a table-driven version
1079  * of the little-endian crc32 generator, which is faster
1080  * than the double-loop.
1081  */
1082 uint32_t
1083 ether_crc32_le(const uint8_t *buf, size_t len)
1084 {
1085 	size_t i;
1086 	uint32_t crc;
1087 	int bit;
1088 	uint8_t data;
1089 
1090 	crc = 0xffffffff;	/* initial value */
1091 
1092 	for (i = 0; i < len; i++) {
1093 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1094 			carry = (crc ^ data) & 1;
1095 			crc >>= 1;
1096 			if (carry)
1097 				crc = (crc ^ ETHER_CRC_POLY_LE);
1098 		}
1099 	}
1100 
1101 	return (crc);
1102 }
1103 #else
1104 uint32_t
ether_crc32_le(const uint8_t * buf,size_t len)1105 ether_crc32_le(const uint8_t *buf, size_t len)
1106 {
1107 	static const uint32_t crctab[] = {
1108 		0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1109 		0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1110 		0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1111 		0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1112 	};
1113 	size_t i;
1114 	uint32_t crc;
1115 
1116 	crc = 0xffffffff;	/* initial value */
1117 
1118 	for (i = 0; i < len; i++) {
1119 		crc ^= buf[i];
1120 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1121 		crc = (crc >> 4) ^ crctab[crc & 0xf];
1122 	}
1123 
1124 	return (crc);
1125 }
1126 #endif
1127 
1128 uint32_t
ether_crc32_be(const uint8_t * buf,size_t len)1129 ether_crc32_be(const uint8_t *buf, size_t len)
1130 {
1131 	size_t i;
1132 	uint32_t crc, carry;
1133 	int bit;
1134 	uint8_t data;
1135 
1136 	crc = 0xffffffff;	/* initial value */
1137 
1138 	for (i = 0; i < len; i++) {
1139 		for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1140 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1141 			crc <<= 1;
1142 			if (carry)
1143 				crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1144 		}
1145 	}
1146 
1147 	return (crc);
1148 }
1149 
1150 int
ether_ioctl(struct ifnet * ifp,u_long command,caddr_t data)1151 ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1152 {
1153 	struct ifaddr *ifa = (struct ifaddr *) data;
1154 	struct ifreq *ifr = (struct ifreq *) data;
1155 	int error = 0;
1156 
1157 	switch (command) {
1158 	case SIOCSIFADDR:
1159 		ifp->if_flags |= IFF_UP;
1160 
1161 		switch (ifa->ifa_addr->sa_family) {
1162 #ifdef INET
1163 		case AF_INET:
1164 			ifp->if_init(ifp->if_softc);	/* before arpwhohas */
1165 			arp_ifinit(ifp, ifa);
1166 			break;
1167 #endif
1168 		default:
1169 			ifp->if_init(ifp->if_softc);
1170 			break;
1171 		}
1172 		break;
1173 
1174 	case SIOCGIFADDR:
1175 		bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1176 		    ETHER_ADDR_LEN);
1177 		break;
1178 
1179 	case SIOCSIFMTU:
1180 		/*
1181 		 * Set the interface MTU.
1182 		 */
1183 		if (ifr->ifr_mtu > ETHERMTU) {
1184 			error = EINVAL;
1185 		} else {
1186 			ifp->if_mtu = ifr->ifr_mtu;
1187 		}
1188 		break;
1189 
1190 	case SIOCSLANPCP:
1191 		error = priv_check(curthread, PRIV_NET_SETLANPCP);
1192 		if (error != 0)
1193 			break;
1194 		if (ifr->ifr_lan_pcp > 7 &&
1195 		    ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
1196 			error = EINVAL;
1197 		} else {
1198 			ifp->if_pcp = ifr->ifr_lan_pcp;
1199 			/* broadcast event about PCP change */
1200 			EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1201 		}
1202 		break;
1203 
1204 	case SIOCGLANPCP:
1205 		ifr->ifr_lan_pcp = ifp->if_pcp;
1206 		break;
1207 
1208 	default:
1209 		error = EINVAL;			/* XXX netbsd has ENOTTY??? */
1210 		break;
1211 	}
1212 	return (error);
1213 }
1214 
1215 static int
ether_resolvemulti(struct ifnet * ifp,struct sockaddr ** llsa,struct sockaddr * sa)1216 ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1217 	struct sockaddr *sa)
1218 {
1219 	struct sockaddr_dl *sdl;
1220 #ifdef INET
1221 	struct sockaddr_in *sin;
1222 #endif
1223 #ifdef INET6
1224 	struct sockaddr_in6 *sin6;
1225 #endif
1226 	u_char *e_addr;
1227 
1228 	switch(sa->sa_family) {
1229 	case AF_LINK:
1230 		/*
1231 		 * No mapping needed. Just check that it's a valid MC address.
1232 		 */
1233 		sdl = (struct sockaddr_dl *)sa;
1234 		e_addr = LLADDR(sdl);
1235 		if (!ETHER_IS_MULTICAST(e_addr))
1236 			return EADDRNOTAVAIL;
1237 		*llsa = NULL;
1238 		return 0;
1239 
1240 #ifdef INET
1241 	case AF_INET:
1242 		sin = (struct sockaddr_in *)sa;
1243 		if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1244 			return EADDRNOTAVAIL;
1245 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1246 		sdl->sdl_alen = ETHER_ADDR_LEN;
1247 		e_addr = LLADDR(sdl);
1248 		ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1249 		*llsa = (struct sockaddr *)sdl;
1250 		return 0;
1251 #endif
1252 #ifdef INET6
1253 	case AF_INET6:
1254 		sin6 = (struct sockaddr_in6 *)sa;
1255 		if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1256 			/*
1257 			 * An IP6 address of 0 means listen to all
1258 			 * of the Ethernet multicast address used for IP6.
1259 			 * (This is used for multicast routers.)
1260 			 */
1261 			ifp->if_flags |= IFF_ALLMULTI;
1262 			*llsa = NULL;
1263 			return 0;
1264 		}
1265 		if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1266 			return EADDRNOTAVAIL;
1267 		sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1268 		sdl->sdl_alen = ETHER_ADDR_LEN;
1269 		e_addr = LLADDR(sdl);
1270 		ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1271 		*llsa = (struct sockaddr *)sdl;
1272 		return 0;
1273 #endif
1274 
1275 	default:
1276 		/*
1277 		 * Well, the text isn't quite right, but it's the name
1278 		 * that counts...
1279 		 */
1280 		return EAFNOSUPPORT;
1281 	}
1282 }
1283 
1284 static moduledata_t ether_mod = {
1285 	.name = "ether",
1286 };
1287 
1288 void
ether_vlan_mtap(struct bpf_if * bp,struct mbuf * m,void * data,u_int dlen)1289 ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1290 {
1291 	struct ether_vlan_header vlan;
1292 	struct mbuf mv, mb;
1293 
1294 	KASSERT((m->m_flags & M_VLANTAG) != 0,
1295 	    ("%s: vlan information not present", __func__));
1296 	KASSERT(m->m_len >= sizeof(struct ether_header),
1297 	    ("%s: mbuf not large enough for header", __func__));
1298 	bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1299 	vlan.evl_proto = vlan.evl_encap_proto;
1300 	vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1301 	vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1302 	m->m_len -= sizeof(struct ether_header);
1303 	m->m_data += sizeof(struct ether_header);
1304 	/*
1305 	 * If a data link has been supplied by the caller, then we will need to
1306 	 * re-create a stack allocated mbuf chain with the following structure:
1307 	 *
1308 	 * (1) mbuf #1 will contain the supplied data link
1309 	 * (2) mbuf #2 will contain the vlan header
1310 	 * (3) mbuf #3 will contain the original mbuf's packet data
1311 	 *
1312 	 * Otherwise, submit the packet and vlan header via bpf_mtap2().
1313 	 */
1314 	if (data != NULL) {
1315 		mv.m_next = m;
1316 		mv.m_data = (caddr_t)&vlan;
1317 		mv.m_len = sizeof(vlan);
1318 		mb.m_next = &mv;
1319 		mb.m_data = data;
1320 		mb.m_len = dlen;
1321 		bpf_mtap(bp, &mb);
1322 	} else
1323 		bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1324 	m->m_len += sizeof(struct ether_header);
1325 	m->m_data -= sizeof(struct ether_header);
1326 }
1327 
1328 struct mbuf *
ether_vlanencap_proto(struct mbuf * m,uint16_t tag,uint16_t proto)1329 ether_vlanencap_proto(struct mbuf *m, uint16_t tag, uint16_t proto)
1330 {
1331 	struct ether_vlan_header *evl;
1332 
1333 	M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1334 	if (m == NULL)
1335 		return (NULL);
1336 	/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1337 
1338 	if (m->m_len < sizeof(*evl)) {
1339 		m = m_pullup(m, sizeof(*evl));
1340 		if (m == NULL)
1341 			return (NULL);
1342 	}
1343 
1344 	/*
1345 	 * Transform the Ethernet header into an Ethernet header
1346 	 * with 802.1Q encapsulation.
1347 	 */
1348 	evl = mtod(m, struct ether_vlan_header *);
1349 	bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1350 	    (char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1351 	evl->evl_encap_proto = htons(proto);
1352 	evl->evl_tag = htons(tag);
1353 	return (m);
1354 }
1355 
1356 void
ether_bpf_mtap_if(struct ifnet * ifp,struct mbuf * m)1357 ether_bpf_mtap_if(struct ifnet *ifp, struct mbuf *m)
1358 {
1359 	if (bpf_peers_present(ifp->if_bpf)) {
1360 		M_ASSERTVALID(m);
1361 		if ((m->m_flags & M_VLANTAG) != 0)
1362 			ether_vlan_mtap(ifp->if_bpf, m, NULL, 0);
1363 		else
1364 			bpf_mtap(ifp->if_bpf, m);
1365 	}
1366 }
1367 
1368 static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1369     "IEEE 802.1Q VLAN");
1370 static SYSCTL_NODE(_net_link_vlan, PF_LINK, link,
1371     CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1372     "for consistency");
1373 
1374 VNET_DEFINE_STATIC(int, soft_pad);
1375 #define	V_soft_pad	VNET(soft_pad)
1376 SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
1377     &VNET_NAME(soft_pad), 0,
1378     "pad short frames before tagging");
1379 
1380 /*
1381  * For now, make preserving PCP via an mbuf tag optional, as it increases
1382  * per-packet memory allocations and frees.  In the future, it would be
1383  * preferable to reuse ether_vtag for this, or similar.
1384  */
1385 VNET_DEFINE(int, vlan_mtag_pcp) = 0;
1386 #define	V_vlan_mtag_pcp	VNET(vlan_mtag_pcp)
1387 SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW | CTLFLAG_VNET,
1388     &VNET_NAME(vlan_mtag_pcp), 0,
1389     "Retain VLAN PCP information as packets are passed up the stack");
1390 
1391 static inline bool
ether_do_pcp(struct ifnet * ifp,struct mbuf * m)1392 ether_do_pcp(struct ifnet *ifp, struct mbuf *m)
1393 {
1394 	if (ifp->if_type == IFT_L2VLAN)
1395 		return (false);
1396 	if (ifp->if_pcp != IFNET_PCP_NONE || (m->m_flags & M_VLANTAG) != 0)
1397 		return (true);
1398 	if (V_vlan_mtag_pcp &&
1399 	    m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL) != NULL)
1400 		return (true);
1401 	return (false);
1402 }
1403 
1404 bool
ether_8021q_frame(struct mbuf ** mp,struct ifnet * ife,struct ifnet * p,const struct ether_8021q_tag * qtag)1405 ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
1406     const struct ether_8021q_tag *qtag)
1407 {
1408 	struct m_tag *mtag;
1409 	int n;
1410 	uint16_t tag;
1411 	uint8_t pcp = qtag->pcp;
1412 	static const char pad[8];	/* just zeros */
1413 
1414 	/*
1415 	 * Pad the frame to the minimum size allowed if told to.
1416 	 * This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1417 	 * paragraph C.4.4.3.b.  It can help to work around buggy
1418 	 * bridges that violate paragraph C.4.4.3.a from the same
1419 	 * document, i.e., fail to pad short frames after untagging.
1420 	 * E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1421 	 * untagging it will produce a 62-byte frame, which is a runt
1422 	 * and requires padding.  There are VLAN-enabled network
1423 	 * devices that just discard such runts instead or mishandle
1424 	 * them somehow.
1425 	 */
1426 	if (V_soft_pad && p->if_type == IFT_ETHER) {
1427 		for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
1428 		     n > 0; n -= sizeof(pad)) {
1429 			if (!m_append(*mp, min(n, sizeof(pad)), pad))
1430 				break;
1431 		}
1432 		if (n > 0) {
1433 			m_freem(*mp);
1434 			*mp = NULL;
1435 			if_printf(ife, "cannot pad short frame");
1436 			return (false);
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * If PCP is set in mbuf, use it
1442 	 */
1443 	if ((*mp)->m_flags & M_VLANTAG) {
1444 		pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag);
1445 	}
1446 
1447 	/*
1448 	 * If underlying interface can do VLAN tag insertion itself,
1449 	 * just pass the packet along. However, we need some way to
1450 	 * tell the interface where the packet came from so that it
1451 	 * knows how to find the VLAN tag to use, so we attach a
1452 	 * packet tag that holds it.
1453 	 */
1454 	if (V_vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
1455 	    MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1456 		tag = EVL_MAKETAG(qtag->vid, *(uint8_t *)(mtag + 1), 0);
1457 	else
1458 		tag = EVL_MAKETAG(qtag->vid, pcp, 0);
1459 	if ((p->if_capenable & IFCAP_VLAN_HWTAGGING) &&
1460 	    (qtag->proto == ETHERTYPE_VLAN)) {
1461 		(*mp)->m_pkthdr.ether_vtag = tag;
1462 		(*mp)->m_flags |= M_VLANTAG;
1463 	} else {
1464 		*mp = ether_vlanencap_proto(*mp, tag, qtag->proto);
1465 		if (*mp == NULL) {
1466 			if_printf(ife, "unable to prepend 802.1Q header");
1467 			return (false);
1468 		}
1469 		(*mp)->m_flags &= ~M_VLANTAG;
1470 	}
1471 	return (true);
1472 }
1473 
1474 /*
1475  * Allocate an address from the FreeBSD Foundation OUI.  This uses a
1476  * cryptographic hash function on the containing jail's name, UUID and the
1477  * interface name to attempt to provide a unique but stable address.
1478  * Pseudo-interfaces which require a MAC address should use this function to
1479  * allocate non-locally-administered addresses.
1480  */
1481 void
ether_gen_addr_byname(const char * nameunit,struct ether_addr * hwaddr)1482 ether_gen_addr_byname(const char *nameunit, struct ether_addr *hwaddr)
1483 {
1484 	SHA1_CTX ctx;
1485 	char *buf;
1486 	char uuid[HOSTUUIDLEN + 1];
1487 	uint64_t addr;
1488 	int i, sz;
1489 	char digest[SHA1_RESULTLEN];
1490 	char jailname[MAXHOSTNAMELEN];
1491 
1492 	getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid));
1493 	if (strncmp(uuid, DEFAULT_HOSTUUID, sizeof(uuid)) == 0) {
1494 		/* Fall back to a random mac address. */
1495 		goto rando;
1496 	}
1497 
1498 	/* If each (vnet) jail would also have a unique hostuuid this would not
1499 	 * be necessary. */
1500 	getjailname(curthread->td_ucred, jailname, sizeof(jailname));
1501 	sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, nameunit,
1502 	    jailname);
1503 	if (sz < 0) {
1504 		/* Fall back to a random mac address. */
1505 		goto rando;
1506 	}
1507 
1508 	SHA1Init(&ctx);
1509 	SHA1Update(&ctx, buf, sz);
1510 	SHA1Final(digest, &ctx);
1511 	free(buf, M_TEMP);
1512 
1513 	addr = ((digest[0] << 16) | (digest[1] << 8) | digest[2]) &
1514 	    OUI_FREEBSD_GENERATED_MASK;
1515 	addr = OUI_FREEBSD(addr);
1516 	for (i = 0; i < ETHER_ADDR_LEN; ++i) {
1517 		hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) &
1518 		    0xFF;
1519 	}
1520 
1521 	return;
1522 rando:
1523 	arc4rand(hwaddr, sizeof(*hwaddr), 0);
1524 	/* Unicast */
1525 	hwaddr->octet[0] &= 0xFE;
1526 	/* Locally administered. */
1527 	hwaddr->octet[0] |= 0x02;
1528 }
1529 
1530 void
ether_gen_addr(struct ifnet * ifp,struct ether_addr * hwaddr)1531 ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr)
1532 {
1533 	ether_gen_addr_byname(if_name(ifp), hwaddr);
1534 }
1535 
1536 DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1537 MODULE_VERSION(ether, 1);
1538