1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2015 Joyent, Inc. All rights reserved.
26 * Copyright 2018 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 #include <sys/param.h>
30 #include <sys/errno.h>
31 #include <sys/vfs.h>
32 #include <sys/vnode.h>
33 #include <sys/cred.h>
34 #include <sys/cmn_err.h>
35 #include <sys/systm.h>
36 #include <sys/kmem.h>
37 #include <sys/pathname.h>
38 #include <sys/utsname.h>
39 #include <sys/debug.h>
40 #include <sys/door.h>
41 #include <sys/sdt.h>
42 #include <sys/thread.h>
43 #include <sys/avl.h>
44
45 #include <rpc/types.h>
46 #include <rpc/auth.h>
47 #include <rpc/clnt.h>
48
49 #include <nfs/nfs.h>
50 #include <nfs/export.h>
51 #include <nfs/nfs_clnt.h>
52 #include <nfs/auth.h>
53
54 static struct kmem_cache *exi_cache_handle;
55 static void exi_cache_reclaim(void *);
56 static void exi_cache_reclaim_zone(nfs_globals_t *);
57 static void exi_cache_trim(struct exportinfo *exi);
58
59 extern pri_t minclsyspri;
60
61 /* NFS auth cache statistics */
62 volatile uint_t nfsauth_cache_hit;
63 volatile uint_t nfsauth_cache_miss;
64 volatile uint_t nfsauth_cache_refresh;
65 volatile uint_t nfsauth_cache_reclaim;
66 volatile uint_t exi_cache_auth_reclaim_failed;
67 volatile uint_t exi_cache_clnt_reclaim_failed;
68
69 /*
70 * The lifetime of an auth cache entry:
71 * ------------------------------------
72 *
73 * An auth cache entry is created with both the auth_time
74 * and auth_freshness times set to the current time.
75 *
76 * Upon every client access which results in a hit, the
77 * auth_time will be updated.
78 *
79 * If a client access determines that the auth_freshness
80 * indicates that the entry is STALE, then it will be
81 * refreshed. Note that this will explicitly reset
82 * auth_time.
83 *
84 * When the REFRESH successfully occurs, then the
85 * auth_freshness is updated.
86 *
87 * There are two ways for an entry to leave the cache:
88 *
89 * 1) Purged by an action on the export (remove or changed)
90 * 2) Memory backpressure from the kernel (check against NFSAUTH_CACHE_TRIM)
91 *
92 * For 2) we check the timeout value against auth_time.
93 */
94
95 /*
96 * Number of seconds until we mark for refresh an auth cache entry.
97 */
98 #define NFSAUTH_CACHE_REFRESH 600
99
100 /*
101 * Number of idle seconds until we yield to backpressure
102 * to trim a cache entry.
103 */
104 #define NFSAUTH_CACHE_TRIM 3600
105
106 /*
107 * While we could encapuslate the exi_list inside the
108 * exi structure, we can't do that for the auth_list.
109 * So, to keep things looking clean, we keep them both
110 * in these external lists.
111 */
112 typedef struct refreshq_exi_node {
113 struct exportinfo *ren_exi;
114 list_t ren_authlist;
115 list_node_t ren_node;
116 } refreshq_exi_node_t;
117
118 typedef struct refreshq_auth_node {
119 struct auth_cache *ran_auth;
120 char *ran_netid;
121 list_node_t ran_node;
122 } refreshq_auth_node_t;
123
124 /*
125 * If there is ever a problem with loading the module, then nfsauth_fini()
126 * needs to be called to remove state. In that event, since the refreshq
127 * thread has been started, they need to work together to get rid of state.
128 */
129 typedef enum nfsauth_refreshq_thread_state {
130 REFRESHQ_THREAD_RUNNING,
131 REFRESHQ_THREAD_FINI_REQ,
132 REFRESHQ_THREAD_HALTED,
133 REFRESHQ_THREAD_NEED_CREATE
134 } nfsauth_refreshq_thread_state_t;
135
136 typedef struct nfsauth_globals {
137 kmutex_t mountd_lock;
138 door_handle_t mountd_dh;
139
140 /*
141 * Used to manipulate things on the refreshq_queue. Note that the
142 * refresh thread will effectively pop a node off of the queue,
143 * at which point it will no longer need to hold the mutex.
144 */
145 kmutex_t refreshq_lock;
146 list_t refreshq_queue;
147 kcondvar_t refreshq_cv;
148
149 /*
150 * A list_t would be overkill. These are auth_cache entries which are
151 * no longer linked to an exi. It should be the case that all of their
152 * states are NFS_AUTH_INVALID, i.e., the only way to be put on this
153 * list is iff their state indicated that they had been placed on the
154 * refreshq_queue.
155 *
156 * Note that while there is no link from the exi or back to the exi,
157 * the exi can not go away until these entries are harvested.
158 */
159 struct auth_cache *refreshq_dead_entries;
160 nfsauth_refreshq_thread_state_t refreshq_thread_state;
161
162 } nfsauth_globals_t;
163
164 static void nfsauth_free_node(struct auth_cache *);
165 static void nfsauth_refresh_thread(nfsauth_globals_t *);
166
167 static int nfsauth_cache_compar(const void *, const void *);
168
169 static nfsauth_globals_t *
nfsauth_get_zg(void)170 nfsauth_get_zg(void)
171 {
172 nfs_globals_t *ng = nfs_srv_getzg();
173 nfsauth_globals_t *nag = ng->nfs_auth;
174 ASSERT(nag != NULL);
175 return (nag);
176 }
177
178 void
mountd_args(uint_t did)179 mountd_args(uint_t did)
180 {
181 nfsauth_globals_t *nag;
182
183 nag = nfsauth_get_zg();
184 mutex_enter(&nag->mountd_lock);
185 if (nag->mountd_dh != NULL)
186 door_ki_rele(nag->mountd_dh);
187 nag->mountd_dh = door_ki_lookup(did);
188 mutex_exit(&nag->mountd_lock);
189 }
190
191 void
nfsauth_init(void)192 nfsauth_init(void)
193 {
194 exi_cache_handle = kmem_cache_create("exi_cache_handle",
195 sizeof (struct auth_cache), 0, NULL, NULL,
196 exi_cache_reclaim, NULL, NULL, 0);
197 }
198
199 void
nfsauth_fini(void)200 nfsauth_fini(void)
201 {
202 kmem_cache_destroy(exi_cache_handle);
203 }
204
205 void
nfsauth_zone_init(nfs_globals_t * ng)206 nfsauth_zone_init(nfs_globals_t *ng)
207 {
208 nfsauth_globals_t *nag;
209
210 nag = kmem_zalloc(sizeof (*nag), KM_SLEEP);
211
212 /*
213 * mountd can be restarted by smf(7). We need to make sure
214 * the updated door handle will safely make it to mountd_dh.
215 */
216 mutex_init(&nag->mountd_lock, NULL, MUTEX_DEFAULT, NULL);
217 mutex_init(&nag->refreshq_lock, NULL, MUTEX_DEFAULT, NULL);
218 list_create(&nag->refreshq_queue, sizeof (refreshq_exi_node_t),
219 offsetof(refreshq_exi_node_t, ren_node));
220 cv_init(&nag->refreshq_cv, NULL, CV_DEFAULT, NULL);
221 nag->refreshq_thread_state = REFRESHQ_THREAD_NEED_CREATE;
222
223 ng->nfs_auth = nag;
224 }
225
226 void
nfsauth_zone_shutdown(nfs_globals_t * ng)227 nfsauth_zone_shutdown(nfs_globals_t *ng)
228 {
229 refreshq_exi_node_t *ren;
230 nfsauth_globals_t *nag = ng->nfs_auth;
231
232 /* Prevent the nfsauth_refresh_thread from getting new work */
233 mutex_enter(&nag->refreshq_lock);
234 if (nag->refreshq_thread_state == REFRESHQ_THREAD_RUNNING) {
235 nag->refreshq_thread_state = REFRESHQ_THREAD_FINI_REQ;
236 cv_broadcast(&nag->refreshq_cv);
237
238 /* Wait for nfsauth_refresh_thread() to exit */
239 while (nag->refreshq_thread_state != REFRESHQ_THREAD_HALTED)
240 cv_wait(&nag->refreshq_cv, &nag->refreshq_lock);
241 }
242 mutex_exit(&nag->refreshq_lock);
243
244 /*
245 * Walk the exi_list and in turn, walk the auth_lists and free all
246 * lists. In addition, free INVALID auth_cache entries.
247 */
248 while ((ren = list_remove_head(&nag->refreshq_queue))) {
249 refreshq_auth_node_t *ran;
250
251 while ((ran = list_remove_head(&ren->ren_authlist)) != NULL) {
252 struct auth_cache *p = ran->ran_auth;
253 if (p->auth_state == NFS_AUTH_INVALID)
254 nfsauth_free_node(p);
255 strfree(ran->ran_netid);
256 kmem_free(ran, sizeof (*ran));
257 }
258
259 list_destroy(&ren->ren_authlist);
260 exi_rele(ren->ren_exi);
261 kmem_free(ren, sizeof (*ren));
262 }
263 }
264
265 void
nfsauth_zone_fini(nfs_globals_t * ng)266 nfsauth_zone_fini(nfs_globals_t *ng)
267 {
268 nfsauth_globals_t *nag = ng->nfs_auth;
269
270 ng->nfs_auth = NULL;
271
272 list_destroy(&nag->refreshq_queue);
273 cv_destroy(&nag->refreshq_cv);
274 mutex_destroy(&nag->refreshq_lock);
275 mutex_destroy(&nag->mountd_lock);
276 /* Extra cleanup. */
277 if (nag->mountd_dh != NULL)
278 door_ki_rele(nag->mountd_dh);
279 kmem_free(nag, sizeof (*nag));
280 }
281
282 /*
283 * Convert the address in a netbuf to
284 * a hash index for the auth_cache table.
285 */
286 static int
hash(struct netbuf * a)287 hash(struct netbuf *a)
288 {
289 int i, h = 0;
290
291 for (i = 0; i < a->len; i++)
292 h ^= a->buf[i];
293
294 return (h & (AUTH_TABLESIZE - 1));
295 }
296
297 /*
298 * Mask out the components of an
299 * address that do not identify
300 * a host. For socket addresses the
301 * masking gets rid of the port number.
302 */
303 static void
addrmask(struct netbuf * addr,struct netbuf * mask)304 addrmask(struct netbuf *addr, struct netbuf *mask)
305 {
306 int i;
307
308 for (i = 0; i < addr->len; i++)
309 addr->buf[i] &= mask->buf[i];
310 }
311
312 /*
313 * nfsauth4_access is used for NFS V4 auth checking. Besides doing
314 * the common nfsauth_access(), it will check if the client can
315 * have a limited access to this vnode even if the security flavor
316 * used does not meet the policy.
317 */
318 int
nfsauth4_access(struct exportinfo * exi,vnode_t * vp,struct svc_req * req,cred_t * cr,uid_t * uid,gid_t * gid,uint_t * ngids,gid_t ** gids)319 nfsauth4_access(struct exportinfo *exi, vnode_t *vp, struct svc_req *req,
320 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
321 {
322 int access;
323
324 access = nfsauth_access(exi, req, cr, uid, gid, ngids, gids);
325
326 /*
327 * There are cases that the server needs to allow the client
328 * to have a limited view.
329 *
330 * e.g.
331 * /export is shared as "sec=sys,rw=dfs-test-4,sec=krb5,rw"
332 * /export/home is shared as "sec=sys,rw"
333 *
334 * When the client mounts /export with sec=sys, the client
335 * would get a limited view with RO access on /export to see
336 * "home" only because the client is allowed to access
337 * /export/home with auth_sys.
338 */
339 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
340 /*
341 * Allow ro permission with LIMITED view if there is a
342 * sub-dir exported under vp.
343 */
344 if (has_visible(exi, vp))
345 return (NFSAUTH_LIMITED);
346 }
347
348 return (access);
349 }
350
351 static void
sys_log(const char * msg)352 sys_log(const char *msg)
353 {
354 static time_t tstamp = 0;
355 time_t now;
356
357 /*
358 * msg is shown (at most) once per minute
359 */
360 now = gethrestime_sec();
361 if ((tstamp + 60) < now) {
362 tstamp = now;
363 cmn_err(CE_WARN, msg);
364 }
365 }
366
367 /*
368 * Callup to the mountd to get access information in the kernel.
369 */
370 static bool_t
nfsauth_retrieve(nfsauth_globals_t * nag,struct exportinfo * exi,char * req_netid,int flavor,struct netbuf * addr,int * access,cred_t * clnt_cred,uid_t * srv_uid,gid_t * srv_gid,uint_t * srv_gids_cnt,gid_t ** srv_gids)371 nfsauth_retrieve(nfsauth_globals_t *nag, struct exportinfo *exi,
372 char *req_netid, int flavor, struct netbuf *addr, int *access,
373 cred_t *clnt_cred, uid_t *srv_uid, gid_t *srv_gid, uint_t *srv_gids_cnt,
374 gid_t **srv_gids)
375 {
376 varg_t varg = {0};
377 nfsauth_res_t res = {0};
378 XDR xdrs;
379 size_t absz;
380 caddr_t abuf;
381 int last = 0;
382 door_arg_t da;
383 door_info_t di;
384 door_handle_t dh;
385 uint_t ntries = 0;
386
387 /*
388 * No entry in the cache for this client/flavor
389 * so we need to call the nfsauth service in the
390 * mount daemon.
391 */
392
393 varg.vers = V_PROTO;
394 varg.arg_u.arg.cmd = NFSAUTH_ACCESS;
395 varg.arg_u.arg.areq.req_client.n_len = addr->len;
396 varg.arg_u.arg.areq.req_client.n_bytes = addr->buf;
397 varg.arg_u.arg.areq.req_netid = req_netid;
398 varg.arg_u.arg.areq.req_path = exi->exi_export.ex_path;
399 varg.arg_u.arg.areq.req_flavor = flavor;
400 varg.arg_u.arg.areq.req_clnt_uid = crgetuid(clnt_cred);
401 varg.arg_u.arg.areq.req_clnt_gid = crgetgid(clnt_cred);
402 varg.arg_u.arg.areq.req_clnt_gids.len = crgetngroups(clnt_cred);
403 varg.arg_u.arg.areq.req_clnt_gids.val = (gid_t *)crgetgroups(clnt_cred);
404
405 DTRACE_PROBE1(nfsserv__func__nfsauth__varg, varg_t *, &varg);
406
407 /*
408 * Setup the XDR stream for encoding the arguments. Notice that
409 * in addition to the args having variable fields (req_netid and
410 * req_path), the argument data structure is itself versioned,
411 * so we need to make sure we can size the arguments buffer
412 * appropriately to encode all the args. If we can't get sizing
413 * info _or_ properly encode the arguments, there's really no
414 * point in continuting, so we fail the request.
415 */
416 if ((absz = xdr_sizeof(xdr_varg, &varg)) == 0) {
417 *access = NFSAUTH_DENIED;
418 return (FALSE);
419 }
420
421 abuf = (caddr_t)kmem_alloc(absz, KM_SLEEP);
422 xdrmem_create(&xdrs, abuf, absz, XDR_ENCODE);
423 if (!xdr_varg(&xdrs, &varg)) {
424 XDR_DESTROY(&xdrs);
425 goto fail;
426 }
427 XDR_DESTROY(&xdrs);
428
429 /*
430 * Prepare the door arguments
431 *
432 * We don't know the size of the message the daemon
433 * will pass back to us. By setting rbuf to NULL,
434 * we force the door code to allocate a buf of the
435 * appropriate size. We must set rsize > 0, however,
436 * else the door code acts as if no response was
437 * expected and doesn't pass the data to us.
438 */
439 da.data_ptr = (char *)abuf;
440 da.data_size = absz;
441 da.desc_ptr = NULL;
442 da.desc_num = 0;
443 da.rbuf = NULL;
444 da.rsize = 1;
445
446 retry:
447 mutex_enter(&nag->mountd_lock);
448 dh = nag->mountd_dh;
449 if (dh != NULL)
450 door_ki_hold(dh);
451 mutex_exit(&nag->mountd_lock);
452
453 if (dh == NULL) {
454 /*
455 * The rendezvous point has not been established yet!
456 * This could mean that either mountd(8) has not yet
457 * been started or that _this_ routine nuked the door
458 * handle after receiving an EINTR for a REVOKED door.
459 *
460 * Returning NFSAUTH_DROP will cause the NFS client
461 * to retransmit the request, so let's try to be more
462 * rescillient and attempt for ntries before we bail.
463 */
464 if (++ntries % NFSAUTH_DR_TRYCNT) {
465 delay(hz);
466 goto retry;
467 }
468
469 kmem_free(abuf, absz);
470
471 sys_log("nfsauth: mountd has not established door");
472 *access = NFSAUTH_DROP;
473 return (FALSE);
474 }
475
476 ntries = 0;
477
478 /*
479 * Now that we've got what we need, place the call.
480 */
481 switch (door_ki_upcall_limited(dh, &da, NULL, SIZE_MAX, 0)) {
482 case 0: /* Success */
483 door_ki_rele(dh);
484
485 if (da.data_ptr == NULL && da.data_size == 0) {
486 /*
487 * The door_return that contained the data
488 * failed! We're here because of the 2nd
489 * door_return (w/o data) such that we can
490 * get control of the thread (and exit
491 * gracefully).
492 */
493 DTRACE_PROBE1(nfsserv__func__nfsauth__door__nil,
494 door_arg_t *, &da);
495 goto fail;
496 }
497
498 break;
499
500 case EAGAIN:
501 /*
502 * Server out of resources; back off for a bit
503 */
504 door_ki_rele(dh);
505 delay(hz);
506 goto retry;
507 /* NOTREACHED */
508
509 case EINTR:
510 if (!door_ki_info(dh, &di)) {
511 door_ki_rele(dh);
512
513 if (di.di_attributes & DOOR_REVOKED) {
514 /*
515 * The server barfed and revoked
516 * the (existing) door on us; we
517 * want to wait to give smf(7) a
518 * chance to restart mountd(8)
519 * and establish a new door handle.
520 */
521 mutex_enter(&nag->mountd_lock);
522 if (dh == nag->mountd_dh) {
523 door_ki_rele(nag->mountd_dh);
524 nag->mountd_dh = NULL;
525 }
526 mutex_exit(&nag->mountd_lock);
527 delay(hz);
528 goto retry;
529 }
530 /*
531 * If the door was _not_ revoked on us,
532 * then more than likely we took an INTR,
533 * so we need to fail the operation.
534 */
535 goto fail;
536 }
537 /*
538 * The only failure that can occur from getting
539 * the door info is EINVAL, so we let the code
540 * below handle it.
541 */
542 /* FALLTHROUGH */
543
544 case EBADF:
545 case EINVAL:
546 default:
547 /*
548 * If we have a stale door handle, give smf a last
549 * chance to start it by sleeping for a little bit.
550 * If we're still hosed, we'll fail the call.
551 *
552 * Since we're going to reacquire the door handle
553 * upon the retry, we opt to sleep for a bit and
554 * _not_ to clear mountd_dh. If mountd restarted
555 * and was able to set mountd_dh, we should see
556 * the new instance; if not, we won't get caught
557 * up in the retry/DELAY loop.
558 */
559 door_ki_rele(dh);
560 if (!last) {
561 delay(hz);
562 last++;
563 goto retry;
564 }
565 sys_log("nfsauth: stale mountd door handle");
566 goto fail;
567 }
568
569 ASSERT(da.rbuf != NULL);
570
571 /*
572 * No door errors encountered; setup the XDR stream for decoding
573 * the results. If we fail to decode the results, we've got no
574 * other recourse than to fail the request.
575 */
576 xdrmem_create(&xdrs, da.rbuf, da.rsize, XDR_DECODE);
577 if (!xdr_nfsauth_res(&xdrs, &res)) {
578 xdr_free(xdr_nfsauth_res, (char *)&res);
579 XDR_DESTROY(&xdrs);
580 kmem_free(da.rbuf, da.rsize);
581 goto fail;
582 }
583 XDR_DESTROY(&xdrs);
584 kmem_free(da.rbuf, da.rsize);
585
586 DTRACE_PROBE1(nfsserv__func__nfsauth__results, nfsauth_res_t *, &res);
587 switch (res.stat) {
588 case NFSAUTH_DR_OKAY:
589 *access = res.ares.auth_perm;
590 *srv_uid = res.ares.auth_srv_uid;
591 *srv_gid = res.ares.auth_srv_gid;
592
593 if ((*srv_gids_cnt = res.ares.auth_srv_gids.len) != 0) {
594 *srv_gids = kmem_alloc(*srv_gids_cnt *
595 sizeof (gid_t), KM_SLEEP);
596 bcopy(res.ares.auth_srv_gids.val, *srv_gids,
597 *srv_gids_cnt * sizeof (gid_t));
598 } else {
599 *srv_gids = NULL;
600 }
601
602 break;
603
604 case NFSAUTH_DR_EFAIL:
605 case NFSAUTH_DR_DECERR:
606 case NFSAUTH_DR_BADCMD:
607 default:
608 xdr_free(xdr_nfsauth_res, (char *)&res);
609 fail:
610 *access = NFSAUTH_DENIED;
611 kmem_free(abuf, absz);
612 return (FALSE);
613 /* NOTREACHED */
614 }
615
616 xdr_free(xdr_nfsauth_res, (char *)&res);
617 kmem_free(abuf, absz);
618
619 return (TRUE);
620 }
621
622 static void
nfsauth_refresh_thread(nfsauth_globals_t * nag)623 nfsauth_refresh_thread(nfsauth_globals_t *nag)
624 {
625 refreshq_exi_node_t *ren;
626 refreshq_auth_node_t *ran;
627
628 struct exportinfo *exi;
629
630 int access;
631 bool_t retrieval;
632
633 callb_cpr_t cprinfo;
634
635 CALLB_CPR_INIT(&cprinfo, &nag->refreshq_lock, callb_generic_cpr,
636 "nfsauth_refresh");
637
638 for (;;) {
639 mutex_enter(&nag->refreshq_lock);
640 if (nag->refreshq_thread_state != REFRESHQ_THREAD_RUNNING) {
641 /* Keep the hold on the lock! */
642 break;
643 }
644
645 ren = list_remove_head(&nag->refreshq_queue);
646 if (ren == NULL) {
647 CALLB_CPR_SAFE_BEGIN(&cprinfo);
648 cv_wait(&nag->refreshq_cv, &nag->refreshq_lock);
649 CALLB_CPR_SAFE_END(&cprinfo, &nag->refreshq_lock);
650 mutex_exit(&nag->refreshq_lock);
651 continue;
652 }
653 mutex_exit(&nag->refreshq_lock);
654
655 exi = ren->ren_exi;
656 ASSERT(exi != NULL);
657
658 /*
659 * Since the ren was removed from the refreshq_queue above,
660 * this is the only thread aware about the ren existence, so we
661 * have the exclusive ownership of it and we do not need to
662 * protect it by any lock.
663 */
664 while ((ran = list_remove_head(&ren->ren_authlist))) {
665 uid_t uid;
666 gid_t gid;
667 uint_t ngids;
668 gid_t *gids;
669 struct auth_cache *p = ran->ran_auth;
670 char *netid = ran->ran_netid;
671
672 ASSERT(p != NULL);
673 ASSERT(netid != NULL);
674
675 kmem_free(ran, sizeof (refreshq_auth_node_t));
676
677 mutex_enter(&p->auth_lock);
678
679 /*
680 * Once the entry goes INVALID, it can not change
681 * state.
682 *
683 * No need to refresh entries also in a case we are
684 * just shutting down.
685 *
686 * In general, there is no need to hold the
687 * refreshq_lock to test the refreshq_thread_state. We
688 * do hold it at other places because there is some
689 * related thread synchronization (or some other tasks)
690 * close to the refreshq_thread_state check.
691 *
692 * The check for the refreshq_thread_state value here
693 * is purely advisory to allow the faster
694 * nfsauth_refresh_thread() shutdown. In a case we
695 * will miss such advisory, nothing catastrophic
696 * happens: we will just spin longer here before the
697 * shutdown.
698 */
699 if (p->auth_state == NFS_AUTH_INVALID ||
700 nag->refreshq_thread_state !=
701 REFRESHQ_THREAD_RUNNING) {
702 mutex_exit(&p->auth_lock);
703
704 if (p->auth_state == NFS_AUTH_INVALID)
705 nfsauth_free_node(p);
706
707 strfree(netid);
708
709 continue;
710 }
711
712 /*
713 * Make sure the state is valid. Note that once we
714 * change the state to NFS_AUTH_REFRESHING, no other
715 * thread will be able to work on this entry.
716 */
717 ASSERT(p->auth_state == NFS_AUTH_STALE);
718
719 p->auth_state = NFS_AUTH_REFRESHING;
720 mutex_exit(&p->auth_lock);
721
722 DTRACE_PROBE2(nfsauth__debug__cache__refresh,
723 struct exportinfo *, exi,
724 struct auth_cache *, p);
725
726 /*
727 * The first caching of the access rights
728 * is done with the netid pulled out of the
729 * request from the client. All subsequent
730 * users of the cache may or may not have
731 * the same netid. It doesn't matter. So
732 * when we refresh, we simply use the netid
733 * of the request which triggered the
734 * refresh attempt.
735 */
736 retrieval = nfsauth_retrieve(nag, exi, netid,
737 p->auth_flavor, &p->auth_clnt->authc_addr, &access,
738 p->auth_clnt_cred, &uid, &gid, &ngids, &gids);
739
740 /*
741 * This can only be set in one other place
742 * and the state has to be NFS_AUTH_FRESH.
743 */
744 strfree(netid);
745
746 mutex_enter(&p->auth_lock);
747 if (p->auth_state == NFS_AUTH_INVALID) {
748 mutex_exit(&p->auth_lock);
749 nfsauth_free_node(p);
750 if (retrieval == TRUE)
751 kmem_free(gids, ngids * sizeof (gid_t));
752 } else {
753 /*
754 * If we got an error, do not reset the
755 * time. This will cause the next access
756 * check for the client to reschedule this
757 * node.
758 */
759 if (retrieval == TRUE) {
760 p->auth_access = access;
761
762 p->auth_srv_uid = uid;
763 p->auth_srv_gid = gid;
764 kmem_free(p->auth_srv_gids,
765 p->auth_srv_ngids * sizeof (gid_t));
766 p->auth_srv_ngids = ngids;
767 p->auth_srv_gids = gids;
768
769 p->auth_freshness = gethrestime_sec();
770 }
771 p->auth_state = NFS_AUTH_FRESH;
772
773 cv_broadcast(&p->auth_cv);
774 mutex_exit(&p->auth_lock);
775 }
776 }
777
778 list_destroy(&ren->ren_authlist);
779 exi_rele(ren->ren_exi);
780 kmem_free(ren, sizeof (refreshq_exi_node_t));
781 }
782
783 nag->refreshq_thread_state = REFRESHQ_THREAD_HALTED;
784 cv_broadcast(&nag->refreshq_cv);
785 CALLB_CPR_EXIT(&cprinfo);
786 DTRACE_PROBE(nfsauth__nfsauth__refresh__thread__exit);
787 zthread_exit();
788 }
789
790 int
nfsauth_cache_clnt_compar(const void * v1,const void * v2)791 nfsauth_cache_clnt_compar(const void *v1, const void *v2)
792 {
793 int c;
794
795 const struct auth_cache_clnt *a1 = (const struct auth_cache_clnt *)v1;
796 const struct auth_cache_clnt *a2 = (const struct auth_cache_clnt *)v2;
797
798 if (a1->authc_addr.len < a2->authc_addr.len)
799 return (-1);
800 if (a1->authc_addr.len > a2->authc_addr.len)
801 return (1);
802
803 c = memcmp(a1->authc_addr.buf, a2->authc_addr.buf, a1->authc_addr.len);
804 if (c < 0)
805 return (-1);
806 if (c > 0)
807 return (1);
808
809 return (0);
810 }
811
812 static int
nfsauth_cache_compar(const void * v1,const void * v2)813 nfsauth_cache_compar(const void *v1, const void *v2)
814 {
815 int c;
816
817 const struct auth_cache *a1 = (const struct auth_cache *)v1;
818 const struct auth_cache *a2 = (const struct auth_cache *)v2;
819
820 if (a1->auth_flavor < a2->auth_flavor)
821 return (-1);
822 if (a1->auth_flavor > a2->auth_flavor)
823 return (1);
824
825 if (crgetuid(a1->auth_clnt_cred) < crgetuid(a2->auth_clnt_cred))
826 return (-1);
827 if (crgetuid(a1->auth_clnt_cred) > crgetuid(a2->auth_clnt_cred))
828 return (1);
829
830 if (crgetgid(a1->auth_clnt_cred) < crgetgid(a2->auth_clnt_cred))
831 return (-1);
832 if (crgetgid(a1->auth_clnt_cred) > crgetgid(a2->auth_clnt_cred))
833 return (1);
834
835 if (crgetngroups(a1->auth_clnt_cred) < crgetngroups(a2->auth_clnt_cred))
836 return (-1);
837 if (crgetngroups(a1->auth_clnt_cred) > crgetngroups(a2->auth_clnt_cred))
838 return (1);
839
840 c = memcmp(crgetgroups(a1->auth_clnt_cred),
841 crgetgroups(a2->auth_clnt_cred), crgetngroups(a1->auth_clnt_cred));
842 if (c < 0)
843 return (-1);
844 if (c > 0)
845 return (1);
846
847 return (0);
848 }
849
850 /*
851 * Get the access information from the cache or callup to the mountd
852 * to get and cache the access information in the kernel.
853 */
854 static int
nfsauth_cache_get(struct exportinfo * exi,struct svc_req * req,int flavor,cred_t * cr,uid_t * uid,gid_t * gid,uint_t * ngids,gid_t ** gids)855 nfsauth_cache_get(struct exportinfo *exi, struct svc_req *req, int flavor,
856 cred_t *cr, uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
857 {
858 nfsauth_globals_t *nag;
859 struct netbuf *taddrmask;
860 struct netbuf addr; /* temporary copy of client's address */
861 const struct netbuf *claddr;
862 avl_tree_t *tree;
863 struct auth_cache ac; /* used as a template for avl_find() */
864 struct auth_cache_clnt *c;
865 struct auth_cache_clnt acc; /* used as a template for avl_find() */
866 struct auth_cache *p = NULL;
867 int access;
868
869 uid_t tmpuid;
870 gid_t tmpgid;
871 uint_t tmpngids;
872 gid_t *tmpgids;
873
874 avl_index_t where; /* used for avl_find()/avl_insert() */
875
876 ASSERT(cr != NULL);
877
878 ASSERT3P(curzone->zone_id, ==, exi->exi_zoneid);
879 nag = nfsauth_get_zg();
880
881 /*
882 * Now check whether this client already
883 * has an entry for this flavor in the cache
884 * for this export.
885 * Get the caller's address, mask off the
886 * parts of the address that do not identify
887 * the host (port number, etc), and then hash
888 * it to find the chain of cache entries.
889 */
890
891 claddr = svc_getrpccaller(req->rq_xprt);
892 addr = *claddr;
893 if (claddr->len != 0) {
894 addr.buf = kmem_alloc(addr.maxlen, KM_SLEEP);
895 bcopy(claddr->buf, addr.buf, claddr->len);
896 } else {
897 addr.buf = NULL;
898 }
899
900 SVC_GETADDRMASK(req->rq_xprt, SVC_TATTR_ADDRMASK, (void **)&taddrmask);
901 ASSERT(taddrmask != NULL);
902 addrmask(&addr, taddrmask);
903
904 acc.authc_addr = addr;
905
906 tree = exi->exi_cache[hash(&addr)];
907
908 rw_enter(&exi->exi_cache_lock, RW_READER);
909 c = (struct auth_cache_clnt *)avl_find(tree, &acc, NULL);
910
911 if (c == NULL) {
912 struct auth_cache_clnt *nc;
913
914 rw_exit(&exi->exi_cache_lock);
915
916 nc = kmem_alloc(sizeof (*nc), KM_NOSLEEP_LAZY);
917 if (nc == NULL)
918 goto retrieve;
919
920 /*
921 * Initialize the new auth_cache_clnt
922 */
923 nc->authc_addr = addr;
924 nc->authc_addr.buf = kmem_alloc(addr.maxlen, KM_NOSLEEP_LAZY);
925 if (addr.maxlen != 0 && nc->authc_addr.buf == NULL) {
926 kmem_free(nc, sizeof (*nc));
927 goto retrieve;
928 }
929 bcopy(addr.buf, nc->authc_addr.buf, addr.len);
930 rw_init(&nc->authc_lock, NULL, RW_DEFAULT, NULL);
931 avl_create(&nc->authc_tree, nfsauth_cache_compar,
932 sizeof (struct auth_cache),
933 offsetof(struct auth_cache, auth_link));
934
935 rw_enter(&exi->exi_cache_lock, RW_WRITER);
936 c = (struct auth_cache_clnt *)avl_find(tree, &acc, &where);
937 if (c == NULL) {
938 avl_insert(tree, nc, where);
939 rw_downgrade(&exi->exi_cache_lock);
940 c = nc;
941 } else {
942 rw_downgrade(&exi->exi_cache_lock);
943
944 avl_destroy(&nc->authc_tree);
945 rw_destroy(&nc->authc_lock);
946 kmem_free(nc->authc_addr.buf, nc->authc_addr.maxlen);
947 kmem_free(nc, sizeof (*nc));
948 }
949 }
950
951 ASSERT(c != NULL);
952
953 rw_enter(&c->authc_lock, RW_READER);
954
955 ac.auth_flavor = flavor;
956 ac.auth_clnt_cred = cr;
957
958 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, NULL);
959
960 if (p == NULL) {
961 struct auth_cache *np;
962
963 rw_exit(&c->authc_lock);
964
965 np = kmem_cache_alloc(exi_cache_handle, KM_NOSLEEP_LAZY);
966 if (np == NULL) {
967 rw_exit(&exi->exi_cache_lock);
968 goto retrieve;
969 }
970
971 /*
972 * Initialize the new auth_cache
973 */
974 np->auth_clnt = c;
975 np->auth_flavor = flavor;
976 np->auth_clnt_cred = crdup(cr);
977 np->auth_srv_ngids = 0;
978 np->auth_srv_gids = NULL;
979 np->auth_time = np->auth_freshness = gethrestime_sec();
980 np->auth_state = NFS_AUTH_NEW;
981 mutex_init(&np->auth_lock, NULL, MUTEX_DEFAULT, NULL);
982 cv_init(&np->auth_cv, NULL, CV_DEFAULT, NULL);
983
984 rw_enter(&c->authc_lock, RW_WRITER);
985 rw_exit(&exi->exi_cache_lock);
986
987 p = (struct auth_cache *)avl_find(&c->authc_tree, &ac, &where);
988 if (p == NULL) {
989 avl_insert(&c->authc_tree, np, where);
990 rw_downgrade(&c->authc_lock);
991 p = np;
992 } else {
993 rw_downgrade(&c->authc_lock);
994
995 cv_destroy(&np->auth_cv);
996 mutex_destroy(&np->auth_lock);
997 crfree(np->auth_clnt_cred);
998 kmem_cache_free(exi_cache_handle, np);
999 }
1000 } else {
1001 rw_exit(&exi->exi_cache_lock);
1002 }
1003
1004 mutex_enter(&p->auth_lock);
1005 rw_exit(&c->authc_lock);
1006
1007 /*
1008 * If the entry is in the WAITING state then some other thread is just
1009 * retrieving the required info. The entry was either NEW, or the list
1010 * of client's supplemental groups is going to be changed (either by
1011 * this thread, or by some other thread). We need to wait until the
1012 * nfsauth_retrieve() is done.
1013 */
1014 while (p->auth_state == NFS_AUTH_WAITING)
1015 cv_wait(&p->auth_cv, &p->auth_lock);
1016
1017 /*
1018 * Here the entry cannot be in WAITING or INVALID state.
1019 */
1020 ASSERT(p->auth_state != NFS_AUTH_WAITING);
1021 ASSERT(p->auth_state != NFS_AUTH_INVALID);
1022
1023 /*
1024 * If the cache entry is not valid yet, we need to retrieve the
1025 * info ourselves.
1026 */
1027 if (p->auth_state == NFS_AUTH_NEW) {
1028 bool_t res;
1029 /*
1030 * NFS_AUTH_NEW is the default output auth_state value in a
1031 * case we failed somewhere below.
1032 */
1033 auth_state_t state = NFS_AUTH_NEW;
1034
1035 p->auth_state = NFS_AUTH_WAITING;
1036 mutex_exit(&p->auth_lock);
1037 kmem_free(addr.buf, addr.maxlen);
1038 addr = p->auth_clnt->authc_addr;
1039
1040 nfsauth_cache_miss++;
1041
1042 res = nfsauth_retrieve(nag, exi, svc_getnetid(req->rq_xprt),
1043 flavor, &addr, &access, cr, &tmpuid, &tmpgid, &tmpngids,
1044 &tmpgids);
1045
1046 p->auth_access = access;
1047 p->auth_time = p->auth_freshness = gethrestime_sec();
1048
1049 if (res == TRUE) {
1050 if (uid != NULL)
1051 *uid = tmpuid;
1052 if (gid != NULL)
1053 *gid = tmpgid;
1054 if (ngids != NULL && gids != NULL) {
1055 *ngids = tmpngids;
1056 *gids = tmpgids;
1057
1058 /*
1059 * We need a copy of gids for the
1060 * auth_cache entry
1061 */
1062 tmpgids = kmem_alloc(tmpngids * sizeof (gid_t),
1063 KM_NOSLEEP_LAZY);
1064 if (tmpgids != NULL)
1065 bcopy(*gids, tmpgids,
1066 tmpngids * sizeof (gid_t));
1067 }
1068
1069 if (tmpgids != NULL || tmpngids == 0) {
1070 p->auth_srv_uid = tmpuid;
1071 p->auth_srv_gid = tmpgid;
1072 p->auth_srv_ngids = tmpngids;
1073 p->auth_srv_gids = tmpgids;
1074
1075 state = NFS_AUTH_FRESH;
1076 }
1077 }
1078
1079 /*
1080 * Set the auth_state and notify waiters.
1081 */
1082 mutex_enter(&p->auth_lock);
1083 p->auth_state = state;
1084 cv_broadcast(&p->auth_cv);
1085 mutex_exit(&p->auth_lock);
1086 } else {
1087 uint_t nach;
1088 time_t refresh;
1089
1090 refresh = gethrestime_sec() - p->auth_freshness;
1091
1092 p->auth_time = gethrestime_sec();
1093
1094 if (uid != NULL)
1095 *uid = p->auth_srv_uid;
1096 if (gid != NULL)
1097 *gid = p->auth_srv_gid;
1098 if (ngids != NULL && gids != NULL) {
1099 if ((*ngids = p->auth_srv_ngids) != 0) {
1100 size_t sz = *ngids * sizeof (gid_t);
1101 *gids = kmem_alloc(sz, KM_SLEEP);
1102 bcopy(p->auth_srv_gids, *gids, sz);
1103 } else {
1104 *gids = NULL;
1105 }
1106 }
1107
1108 access = p->auth_access;
1109
1110 if ((refresh > NFSAUTH_CACHE_REFRESH) &&
1111 p->auth_state == NFS_AUTH_FRESH) {
1112 refreshq_auth_node_t *ran;
1113 uint_t nacr;
1114
1115 p->auth_state = NFS_AUTH_STALE;
1116 mutex_exit(&p->auth_lock);
1117
1118 nacr = ++nfsauth_cache_refresh;
1119 DTRACE_PROBE3(nfsauth__debug__cache__stale,
1120 struct exportinfo *, exi,
1121 struct auth_cache *, p,
1122 uint_t, nacr);
1123
1124 ran = kmem_alloc(sizeof (refreshq_auth_node_t),
1125 KM_SLEEP);
1126 ran->ran_auth = p;
1127 ran->ran_netid = strdup(svc_getnetid(req->rq_xprt));
1128
1129 mutex_enter(&nag->refreshq_lock);
1130
1131 if (nag->refreshq_thread_state ==
1132 REFRESHQ_THREAD_NEED_CREATE) {
1133 /* Launch nfsauth refresh thread */
1134 nag->refreshq_thread_state =
1135 REFRESHQ_THREAD_RUNNING;
1136 (void) zthread_create(NULL, 0,
1137 nfsauth_refresh_thread, nag, 0,
1138 minclsyspri);
1139 }
1140
1141 /*
1142 * We should not add a work queue item if the thread
1143 * is not accepting them.
1144 */
1145 if (nag->refreshq_thread_state ==
1146 REFRESHQ_THREAD_RUNNING) {
1147 refreshq_exi_node_t *ren;
1148
1149 /*
1150 * Is there an existing exi_list?
1151 */
1152 for (ren = list_head(&nag->refreshq_queue);
1153 ren != NULL;
1154 ren = list_next(&nag->refreshq_queue,
1155 ren)) {
1156 if (ren->ren_exi == exi) {
1157 list_insert_tail(
1158 &ren->ren_authlist, ran);
1159 break;
1160 }
1161 }
1162
1163 if (ren == NULL) {
1164 ren = kmem_alloc(
1165 sizeof (refreshq_exi_node_t),
1166 KM_SLEEP);
1167
1168 exi_hold(exi);
1169 ren->ren_exi = exi;
1170
1171 list_create(&ren->ren_authlist,
1172 sizeof (refreshq_auth_node_t),
1173 offsetof(refreshq_auth_node_t,
1174 ran_node));
1175
1176 list_insert_tail(&ren->ren_authlist,
1177 ran);
1178 list_insert_tail(&nag->refreshq_queue,
1179 ren);
1180 }
1181
1182 cv_broadcast(&nag->refreshq_cv);
1183 } else {
1184 strfree(ran->ran_netid);
1185 kmem_free(ran, sizeof (refreshq_auth_node_t));
1186 }
1187
1188 mutex_exit(&nag->refreshq_lock);
1189 } else {
1190 mutex_exit(&p->auth_lock);
1191 }
1192
1193 nach = ++nfsauth_cache_hit;
1194 DTRACE_PROBE2(nfsauth__debug__cache__hit,
1195 uint_t, nach,
1196 time_t, refresh);
1197
1198 kmem_free(addr.buf, addr.maxlen);
1199 }
1200
1201 return (access);
1202
1203 retrieve:
1204
1205 /*
1206 * Retrieve the required data without caching.
1207 */
1208
1209 ASSERT(p == NULL);
1210
1211 nfsauth_cache_miss++;
1212
1213 if (nfsauth_retrieve(nag, exi, svc_getnetid(req->rq_xprt), flavor,
1214 &addr, &access, cr, &tmpuid, &tmpgid, &tmpngids, &tmpgids)) {
1215 if (uid != NULL)
1216 *uid = tmpuid;
1217 if (gid != NULL)
1218 *gid = tmpgid;
1219 if (ngids != NULL && gids != NULL) {
1220 *ngids = tmpngids;
1221 *gids = tmpgids;
1222 } else {
1223 kmem_free(tmpgids, tmpngids * sizeof (gid_t));
1224 }
1225 }
1226
1227 kmem_free(addr.buf, addr.maxlen);
1228
1229 return (access);
1230 }
1231
1232 /*
1233 * Check if the requesting client has access to the filesystem with
1234 * a given nfs flavor number which is an explicitly shared flavor.
1235 */
1236 int
nfsauth4_secinfo_access(struct exportinfo * exi,struct svc_req * req,int flavor,int perm,cred_t * cr)1237 nfsauth4_secinfo_access(struct exportinfo *exi, struct svc_req *req,
1238 int flavor, int perm, cred_t *cr)
1239 {
1240 int access;
1241
1242 if (! (perm & M_4SEC_EXPORTED)) {
1243 return (NFSAUTH_DENIED);
1244 }
1245
1246 /*
1247 * Optimize if there are no lists
1248 */
1249 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0) {
1250 perm &= ~M_4SEC_EXPORTED;
1251 if (perm == M_RO)
1252 return (NFSAUTH_RO);
1253 if (perm == M_RW)
1254 return (NFSAUTH_RW);
1255 }
1256
1257 access = nfsauth_cache_get(exi, req, flavor, cr, NULL, NULL, NULL,
1258 NULL);
1259
1260 return (access);
1261 }
1262
1263 int
nfsauth_access(struct exportinfo * exi,struct svc_req * req,cred_t * cr,uid_t * uid,gid_t * gid,uint_t * ngids,gid_t ** gids)1264 nfsauth_access(struct exportinfo *exi, struct svc_req *req, cred_t *cr,
1265 uid_t *uid, gid_t *gid, uint_t *ngids, gid_t **gids)
1266 {
1267 int access, mapaccess;
1268 struct secinfo *sp;
1269 int i, flavor, perm;
1270 int authnone_entry = -1;
1271
1272 /*
1273 * By default root is mapped to anonymous user.
1274 * This might get overriden later in nfsauth_cache_get().
1275 */
1276 if (crgetuid(cr) == 0) {
1277 if (uid != NULL)
1278 *uid = exi->exi_export.ex_anon;
1279 if (gid != NULL)
1280 *gid = exi->exi_export.ex_anon;
1281 } else {
1282 if (uid != NULL)
1283 *uid = crgetuid(cr);
1284 if (gid != NULL)
1285 *gid = crgetgid(cr);
1286 }
1287
1288 if (ngids != NULL)
1289 *ngids = 0;
1290 if (gids != NULL)
1291 *gids = NULL;
1292
1293 /*
1294 * Get the nfs flavor number from xprt.
1295 */
1296 flavor = (int)(uintptr_t)req->rq_xprt->xp_cookie;
1297
1298 /*
1299 * First check the access restrictions on the filesystem. If
1300 * there are no lists associated with this flavor then there's no
1301 * need to make an expensive call to the nfsauth service or to
1302 * cache anything.
1303 */
1304
1305 sp = exi->exi_export.ex_secinfo;
1306 for (i = 0; i < exi->exi_export.ex_seccnt; i++) {
1307 if (flavor != sp[i].s_secinfo.sc_nfsnum) {
1308 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE)
1309 authnone_entry = i;
1310 continue;
1311 }
1312 break;
1313 }
1314
1315 mapaccess = 0;
1316
1317 if (i >= exi->exi_export.ex_seccnt) {
1318 /*
1319 * Flavor not found, but use AUTH_NONE if it exists
1320 */
1321 if (authnone_entry == -1)
1322 return (NFSAUTH_DENIED);
1323 flavor = AUTH_NONE;
1324 mapaccess = NFSAUTH_MAPNONE;
1325 i = authnone_entry;
1326 }
1327
1328 /*
1329 * If the flavor is in the ex_secinfo list, but not an explicitly
1330 * shared flavor by the user, it is a result of the nfsv4 server
1331 * namespace setup. We will grant an RO permission similar for
1332 * a pseudo node except that this node is a shared one.
1333 *
1334 * e.g. flavor in (flavor) indicates that it is not explictly
1335 * shared by the user:
1336 *
1337 * / (sys, krb5)
1338 * |
1339 * export #share -o sec=sys (krb5)
1340 * |
1341 * secure #share -o sec=krb5
1342 *
1343 * In this case, when a krb5 request coming in to access
1344 * /export, RO permission is granted.
1345 */
1346 if (!(sp[i].s_flags & M_4SEC_EXPORTED))
1347 return (mapaccess | NFSAUTH_RO);
1348
1349 /*
1350 * Optimize if there are no lists.
1351 * We cannot optimize for AUTH_SYS with NGRPS (16) supplemental groups.
1352 */
1353 perm = sp[i].s_flags;
1354 if ((perm & (M_ROOT | M_NONE | M_MAP)) == 0 && (ngroups_max <= NGRPS ||
1355 flavor != AUTH_SYS || crgetngroups(cr) < NGRPS)) {
1356 perm &= ~M_4SEC_EXPORTED;
1357 if (perm == M_RO)
1358 return (mapaccess | NFSAUTH_RO);
1359 if (perm == M_RW)
1360 return (mapaccess | NFSAUTH_RW);
1361 }
1362
1363 access = nfsauth_cache_get(exi, req, flavor, cr, uid, gid, ngids, gids);
1364
1365 /*
1366 * For both NFSAUTH_DENIED and NFSAUTH_WRONGSEC we do not care about
1367 * the supplemental groups.
1368 */
1369 if (access & NFSAUTH_DENIED || access & NFSAUTH_WRONGSEC) {
1370 if (ngids != NULL && gids != NULL) {
1371 kmem_free(*gids, *ngids * sizeof (gid_t));
1372 *ngids = 0;
1373 *gids = NULL;
1374 }
1375 }
1376
1377 /*
1378 * Client's security flavor doesn't match with "ro" or
1379 * "rw" list. Try again using AUTH_NONE if present.
1380 */
1381 if ((access & NFSAUTH_WRONGSEC) && (flavor != AUTH_NONE)) {
1382 /*
1383 * Have we already encountered AUTH_NONE ?
1384 */
1385 if (authnone_entry != -1) {
1386 mapaccess = NFSAUTH_MAPNONE;
1387 access = nfsauth_cache_get(exi, req, AUTH_NONE, cr,
1388 NULL, NULL, NULL, NULL);
1389 } else {
1390 /*
1391 * Check for AUTH_NONE presence.
1392 */
1393 for (; i < exi->exi_export.ex_seccnt; i++) {
1394 if (sp[i].s_secinfo.sc_nfsnum == AUTH_NONE) {
1395 mapaccess = NFSAUTH_MAPNONE;
1396 access = nfsauth_cache_get(exi, req,
1397 AUTH_NONE, cr, NULL, NULL, NULL,
1398 NULL);
1399 break;
1400 }
1401 }
1402 }
1403 }
1404
1405 if (access & NFSAUTH_DENIED)
1406 access = NFSAUTH_DENIED;
1407
1408 return (access | mapaccess);
1409 }
1410
1411 static void
nfsauth_free_clnt_node(struct auth_cache_clnt * p)1412 nfsauth_free_clnt_node(struct auth_cache_clnt *p)
1413 {
1414 void *cookie = NULL;
1415 struct auth_cache *node;
1416
1417 while ((node = avl_destroy_nodes(&p->authc_tree, &cookie)) != NULL)
1418 nfsauth_free_node(node);
1419 avl_destroy(&p->authc_tree);
1420
1421 kmem_free(p->authc_addr.buf, p->authc_addr.maxlen);
1422 rw_destroy(&p->authc_lock);
1423
1424 kmem_free(p, sizeof (*p));
1425 }
1426
1427 static void
nfsauth_free_node(struct auth_cache * p)1428 nfsauth_free_node(struct auth_cache *p)
1429 {
1430 crfree(p->auth_clnt_cred);
1431 kmem_free(p->auth_srv_gids, p->auth_srv_ngids * sizeof (gid_t));
1432 mutex_destroy(&p->auth_lock);
1433 cv_destroy(&p->auth_cv);
1434 kmem_cache_free(exi_cache_handle, p);
1435 }
1436
1437 /*
1438 * Free the nfsauth cache for a given export
1439 */
1440 void
nfsauth_cache_free(struct exportinfo * exi)1441 nfsauth_cache_free(struct exportinfo *exi)
1442 {
1443 int i;
1444
1445 /*
1446 * The only way we got here was with an exi_rele, which means that no
1447 * auth cache entry is being refreshed.
1448 */
1449
1450 for (i = 0; i < AUTH_TABLESIZE; i++) {
1451 avl_tree_t *tree = exi->exi_cache[i];
1452 void *cookie = NULL;
1453 struct auth_cache_clnt *node;
1454
1455 while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
1456 nfsauth_free_clnt_node(node);
1457 }
1458 }
1459
1460 /*
1461 * Called by the kernel memory allocator when memory is low.
1462 * Free unused cache entries. If that's not enough, the VM system
1463 * will call again for some more.
1464 *
1465 * This needs to operate on all zones, so we take a reader lock
1466 * on the list of zones and walk the list. This is OK here
1467 * becuase exi_cache_trim doesn't block or cause new objects
1468 * to be allocated (basically just frees lots of stuff).
1469 * Use care if nfssrv_globals_rwl is taken as reader in any
1470 * other cases because it will block nfs_server_zone_init
1471 * and nfs_server_zone_fini, which enter as writer.
1472 */
1473 /*ARGSUSED*/
1474 void
exi_cache_reclaim(void * cdrarg)1475 exi_cache_reclaim(void *cdrarg)
1476 {
1477 nfs_globals_t *ng;
1478
1479 rw_enter(&nfssrv_globals_rwl, RW_READER);
1480
1481 ng = list_head(&nfssrv_globals_list);
1482 while (ng != NULL) {
1483 exi_cache_reclaim_zone(ng);
1484 ng = list_next(&nfssrv_globals_list, ng);
1485 }
1486
1487 rw_exit(&nfssrv_globals_rwl);
1488 }
1489
1490 static void
exi_cache_reclaim_zone(nfs_globals_t * ng)1491 exi_cache_reclaim_zone(nfs_globals_t *ng)
1492 {
1493 int i;
1494 struct exportinfo *exi;
1495 nfs_export_t *ne = ng->nfs_export;
1496
1497 rw_enter(&ne->exported_lock, RW_READER);
1498
1499 for (i = 0; i < EXPTABLESIZE; i++) {
1500 for (exi = ne->exptable[i]; exi; exi = exi->fid_hash.next)
1501 exi_cache_trim(exi);
1502 }
1503
1504 rw_exit(&ne->exported_lock);
1505
1506 nfsauth_cache_reclaim++;
1507 }
1508
1509 static void
exi_cache_trim(struct exportinfo * exi)1510 exi_cache_trim(struct exportinfo *exi)
1511 {
1512 struct auth_cache_clnt *c;
1513 struct auth_cache_clnt *nextc;
1514 struct auth_cache *p;
1515 struct auth_cache *next;
1516 int i;
1517 time_t stale_time;
1518 avl_tree_t *tree;
1519
1520 for (i = 0; i < AUTH_TABLESIZE; i++) {
1521 tree = exi->exi_cache[i];
1522 stale_time = gethrestime_sec() - NFSAUTH_CACHE_TRIM;
1523 rw_enter(&exi->exi_cache_lock, RW_READER);
1524
1525 /*
1526 * Free entries that have not been
1527 * used for NFSAUTH_CACHE_TRIM seconds.
1528 */
1529 for (c = avl_first(tree); c != NULL; c = AVL_NEXT(tree, c)) {
1530 /*
1531 * We are being called by the kmem subsystem to reclaim
1532 * memory so don't block if we can't get the lock.
1533 */
1534 if (rw_tryenter(&c->authc_lock, RW_WRITER) == 0) {
1535 exi_cache_auth_reclaim_failed++;
1536 rw_exit(&exi->exi_cache_lock);
1537 return;
1538 }
1539
1540 for (p = avl_first(&c->authc_tree); p != NULL;
1541 p = next) {
1542 next = AVL_NEXT(&c->authc_tree, p);
1543
1544 ASSERT(p->auth_state != NFS_AUTH_INVALID);
1545
1546 mutex_enter(&p->auth_lock);
1547
1548 /*
1549 * We won't trim recently used and/or WAITING
1550 * entries.
1551 */
1552 if (p->auth_time > stale_time ||
1553 p->auth_state == NFS_AUTH_WAITING) {
1554 mutex_exit(&p->auth_lock);
1555 continue;
1556 }
1557
1558 DTRACE_PROBE1(nfsauth__debug__trim__state,
1559 auth_state_t, p->auth_state);
1560
1561 /*
1562 * STALE and REFRESHING entries needs to be
1563 * marked INVALID only because they are
1564 * referenced by some other structures or
1565 * threads. They will be freed later.
1566 */
1567 if (p->auth_state == NFS_AUTH_STALE ||
1568 p->auth_state == NFS_AUTH_REFRESHING) {
1569 p->auth_state = NFS_AUTH_INVALID;
1570 mutex_exit(&p->auth_lock);
1571
1572 avl_remove(&c->authc_tree, p);
1573 } else {
1574 mutex_exit(&p->auth_lock);
1575
1576 avl_remove(&c->authc_tree, p);
1577 nfsauth_free_node(p);
1578 }
1579 }
1580 rw_exit(&c->authc_lock);
1581 }
1582
1583 if (rw_tryupgrade(&exi->exi_cache_lock) == 0) {
1584 rw_exit(&exi->exi_cache_lock);
1585 exi_cache_clnt_reclaim_failed++;
1586 continue;
1587 }
1588
1589 for (c = avl_first(tree); c != NULL; c = nextc) {
1590 nextc = AVL_NEXT(tree, c);
1591
1592 if (avl_is_empty(&c->authc_tree) == B_FALSE)
1593 continue;
1594
1595 avl_remove(tree, c);
1596
1597 nfsauth_free_clnt_node(c);
1598 }
1599
1600 rw_exit(&exi->exi_cache_lock);
1601 }
1602 }
1603