1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
23 *
24 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
25 * All rights reserved.
26 */
27
28 /*
29 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
30 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
31 */
32
33 #include <sys/param.h>
34 #include <sys/types.h>
35 #include <sys/systm.h>
36 #include <sys/cred.h>
37 #include <sys/time.h>
38 #include <sys/vnode.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/file.h>
42 #include <sys/filio.h>
43 #include <sys/uio.h>
44 #include <sys/buf.h>
45 #include <sys/mman.h>
46 #include <sys/pathname.h>
47 #include <sys/dirent.h>
48 #include <sys/debug.h>
49 #include <sys/vmsystm.h>
50 #include <sys/fcntl.h>
51 #include <sys/flock.h>
52 #include <sys/swap.h>
53 #include <sys/errno.h>
54 #include <sys/strsubr.h>
55 #include <sys/sysmacros.h>
56 #include <sys/kmem.h>
57 #include <sys/cmn_err.h>
58 #include <sys/pathconf.h>
59 #include <sys/utsname.h>
60 #include <sys/dnlc.h>
61 #include <sys/acl.h>
62 #include <sys/atomic.h>
63 #include <sys/policy.h>
64 #include <sys/sdt.h>
65
66 #include <rpc/types.h>
67 #include <rpc/auth.h>
68 #include <rpc/clnt.h>
69
70 #include <nfs/nfs.h>
71 #include <nfs/nfs_clnt.h>
72 #include <nfs/rnode.h>
73 #include <nfs/nfs_acl.h>
74 #include <nfs/lm.h>
75
76 #include <vm/hat.h>
77 #include <vm/as.h>
78 #include <vm/page.h>
79 #include <vm/pvn.h>
80 #include <vm/seg.h>
81 #include <vm/seg_map.h>
82 #include <vm/seg_kpm.h>
83 #include <vm/seg_vn.h>
84
85 #include <fs/fs_subr.h>
86
87 #include <sys/ddi.h>
88
89 static int nfs_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
90 cred_t *);
91 static int nfswrite(vnode_t *, caddr_t, uint_t, int, cred_t *);
92 static int nfsread(vnode_t *, caddr_t, uint_t, int, size_t *, cred_t *);
93 static int nfssetattr(vnode_t *, struct vattr *, int, cred_t *);
94 static int nfslookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *);
95 static int nfslookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int);
96 static int nfsrename(vnode_t *, char *, vnode_t *, char *, cred_t *,
97 caller_context_t *);
98 static int nfsreaddir(vnode_t *, rddir_cache *, cred_t *);
99 static int nfs_bio(struct buf *, cred_t *);
100 static int nfs_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
101 page_t *[], size_t, struct seg *, caddr_t,
102 enum seg_rw, cred_t *);
103 static void nfs_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
104 cred_t *);
105 static int nfs_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
106 int, cred_t *);
107 static int nfs_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
108 int, cred_t *);
109 static void nfs_delmap_callback(struct as *, void *, uint_t);
110
111 /*
112 * Error flags used to pass information about certain special errors
113 * which need to be handled specially.
114 */
115 #define NFS_EOF -98
116
117 /*
118 * These are the vnode ops routines which implement the vnode interface to
119 * the networked file system. These routines just take their parameters,
120 * make them look networkish by putting the right info into interface structs,
121 * and then calling the appropriate remote routine(s) to do the work.
122 *
123 * Note on directory name lookup cacheing: If we detect a stale fhandle,
124 * we purge the directory cache relative to that vnode. This way, the
125 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for
126 * more details on rnode locking.
127 */
128
129 static int nfs_open(vnode_t **, int, cred_t *, caller_context_t *);
130 static int nfs_close(vnode_t *, int, int, offset_t, cred_t *,
131 caller_context_t *);
132 static int nfs_read(vnode_t *, struct uio *, int, cred_t *,
133 caller_context_t *);
134 static int nfs_write(vnode_t *, struct uio *, int, cred_t *,
135 caller_context_t *);
136 static int nfs_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
137 caller_context_t *);
138 static int nfs_getattr(vnode_t *, struct vattr *, int, cred_t *,
139 caller_context_t *);
140 static int nfs_setattr(vnode_t *, struct vattr *, int, cred_t *,
141 caller_context_t *);
142 static int nfs_access(vnode_t *, int, int, cred_t *, caller_context_t *);
143 static int nfs_accessx(void *, int, cred_t *);
144 static int nfs_readlink(vnode_t *, struct uio *, cred_t *,
145 caller_context_t *);
146 static int nfs_fsync(vnode_t *, int, cred_t *, caller_context_t *);
147 static void nfs_inactive(vnode_t *, cred_t *, caller_context_t *);
148 static int nfs_lookup(vnode_t *, char *, vnode_t **, struct pathname *,
149 int, vnode_t *, cred_t *, caller_context_t *,
150 int *, pathname_t *);
151 static int nfs_create(vnode_t *, char *, struct vattr *, enum vcexcl,
152 int, vnode_t **, cred_t *, int, caller_context_t *,
153 vsecattr_t *);
154 static int nfs_remove(vnode_t *, char *, cred_t *, caller_context_t *,
155 int);
156 static int nfs_link(vnode_t *, vnode_t *, char *, cred_t *,
157 caller_context_t *, int);
158 static int nfs_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
159 caller_context_t *, int);
160 static int nfs_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
161 cred_t *, caller_context_t *, int, vsecattr_t *);
162 static int nfs_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
163 caller_context_t *, int);
164 static int nfs_symlink(vnode_t *, char *, struct vattr *, char *,
165 cred_t *, caller_context_t *, int);
166 static int nfs_readdir(vnode_t *, struct uio *, cred_t *, int *,
167 caller_context_t *, int);
168 static int nfs_fid(vnode_t *, fid_t *, caller_context_t *);
169 static int nfs_rwlock(vnode_t *, int, caller_context_t *);
170 static void nfs_rwunlock(vnode_t *, int, caller_context_t *);
171 static int nfs_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
172 static int nfs_getpage(vnode_t *, offset_t, size_t, uint_t *,
173 page_t *[], size_t, struct seg *, caddr_t,
174 enum seg_rw, cred_t *, caller_context_t *);
175 static int nfs_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
176 caller_context_t *);
177 static int nfs_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
178 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
179 static int nfs_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
180 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
181 static int nfs_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
182 struct flk_callback *, cred_t *, caller_context_t *);
183 static int nfs_space(vnode_t *, int, struct flock64 *, int, offset_t,
184 cred_t *, caller_context_t *);
185 static int nfs_realvp(vnode_t *, vnode_t **, caller_context_t *);
186 static int nfs_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
187 uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
188 static int nfs_pathconf(vnode_t *, int, ulong_t *, cred_t *,
189 caller_context_t *);
190 static int nfs_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
191 cred_t *, caller_context_t *);
192 static int nfs_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
193 caller_context_t *);
194 static int nfs_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
195 caller_context_t *);
196 static int nfs_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
197 caller_context_t *);
198
199 struct vnodeops *nfs_vnodeops;
200
201 const fs_operation_def_t nfs_vnodeops_template[] = {
202 VOPNAME_OPEN, { .vop_open = nfs_open },
203 VOPNAME_CLOSE, { .vop_close = nfs_close },
204 VOPNAME_READ, { .vop_read = nfs_read },
205 VOPNAME_WRITE, { .vop_write = nfs_write },
206 VOPNAME_IOCTL, { .vop_ioctl = nfs_ioctl },
207 VOPNAME_GETATTR, { .vop_getattr = nfs_getattr },
208 VOPNAME_SETATTR, { .vop_setattr = nfs_setattr },
209 VOPNAME_ACCESS, { .vop_access = nfs_access },
210 VOPNAME_LOOKUP, { .vop_lookup = nfs_lookup },
211 VOPNAME_CREATE, { .vop_create = nfs_create },
212 VOPNAME_REMOVE, { .vop_remove = nfs_remove },
213 VOPNAME_LINK, { .vop_link = nfs_link },
214 VOPNAME_RENAME, { .vop_rename = nfs_rename },
215 VOPNAME_MKDIR, { .vop_mkdir = nfs_mkdir },
216 VOPNAME_RMDIR, { .vop_rmdir = nfs_rmdir },
217 VOPNAME_READDIR, { .vop_readdir = nfs_readdir },
218 VOPNAME_SYMLINK, { .vop_symlink = nfs_symlink },
219 VOPNAME_READLINK, { .vop_readlink = nfs_readlink },
220 VOPNAME_FSYNC, { .vop_fsync = nfs_fsync },
221 VOPNAME_INACTIVE, { .vop_inactive = nfs_inactive },
222 VOPNAME_FID, { .vop_fid = nfs_fid },
223 VOPNAME_RWLOCK, { .vop_rwlock = nfs_rwlock },
224 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs_rwunlock },
225 VOPNAME_SEEK, { .vop_seek = nfs_seek },
226 VOPNAME_FRLOCK, { .vop_frlock = nfs_frlock },
227 VOPNAME_SPACE, { .vop_space = nfs_space },
228 VOPNAME_REALVP, { .vop_realvp = nfs_realvp },
229 VOPNAME_GETPAGE, { .vop_getpage = nfs_getpage },
230 VOPNAME_PUTPAGE, { .vop_putpage = nfs_putpage },
231 VOPNAME_MAP, { .vop_map = nfs_map },
232 VOPNAME_ADDMAP, { .vop_addmap = nfs_addmap },
233 VOPNAME_DELMAP, { .vop_delmap = nfs_delmap },
234 VOPNAME_DUMP, { .vop_dump = nfs_dump },
235 VOPNAME_PATHCONF, { .vop_pathconf = nfs_pathconf },
236 VOPNAME_PAGEIO, { .vop_pageio = nfs_pageio },
237 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs_setsecattr },
238 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs_getsecattr },
239 VOPNAME_SHRLOCK, { .vop_shrlock = nfs_shrlock },
240 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
241 NULL, NULL
242 };
243
244 /*
245 * XXX: This is referenced in modstubs.s
246 */
247 struct vnodeops *
nfs_getvnodeops(void)248 nfs_getvnodeops(void)
249 {
250 return (nfs_vnodeops);
251 }
252
253 /* ARGSUSED */
254 static int
nfs_open(vnode_t ** vpp,int flag,cred_t * cr,caller_context_t * ct)255 nfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
256 {
257 int error;
258 struct vattr va;
259 rnode_t *rp;
260 vnode_t *vp;
261
262 vp = *vpp;
263 rp = VTOR(vp);
264 if (nfs_zone() != VTOMI(vp)->mi_zone)
265 return (EIO);
266 mutex_enter(&rp->r_statelock);
267 if (rp->r_cred == NULL) {
268 crhold(cr);
269 rp->r_cred = cr;
270 }
271 mutex_exit(&rp->r_statelock);
272
273 /*
274 * If there is no cached data or if close-to-open
275 * consistency checking is turned off, we can avoid
276 * the over the wire getattr. Otherwise, if the
277 * file system is mounted readonly, then just verify
278 * the caches are up to date using the normal mechanism.
279 * Else, if the file is not mmap'd, then just mark
280 * the attributes as timed out. They will be refreshed
281 * and the caches validated prior to being used.
282 * Else, the file system is mounted writeable so
283 * force an over the wire GETATTR in order to ensure
284 * that all cached data is valid.
285 */
286 if (vp->v_count > 1 ||
287 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) &&
288 !(VTOMI(vp)->mi_flags & MI_NOCTO))) {
289 if (vn_is_readonly(vp))
290 error = nfs_validate_caches(vp, cr);
291 else if (rp->r_mapcnt == 0 && vp->v_count == 1) {
292 PURGE_ATTRCACHE(vp);
293 error = 0;
294 } else {
295 va.va_mask = AT_ALL;
296 error = nfs_getattr_otw(vp, &va, cr);
297 }
298 } else
299 error = 0;
300
301 return (error);
302 }
303
304 /* ARGSUSED */
305 static int
nfs_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr,caller_context_t * ct)306 nfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
307 caller_context_t *ct)
308 {
309 rnode_t *rp;
310 int error;
311 struct vattr va;
312
313 /*
314 * zone_enter(2) prevents processes from changing zones with NFS files
315 * open; if we happen to get here from the wrong zone we can't do
316 * anything over the wire.
317 */
318 if (VTOMI(vp)->mi_zone != nfs_zone()) {
319 /*
320 * We could attempt to clean up locks, except we're sure
321 * that the current process didn't acquire any locks on
322 * the file: any attempt to lock a file belong to another zone
323 * will fail, and one can't lock an NFS file and then change
324 * zones, as that fails too.
325 *
326 * Returning an error here is the sane thing to do. A
327 * subsequent call to VN_RELE() which translates to a
328 * nfs_inactive() will clean up state: if the zone of the
329 * vnode's origin is still alive and kicking, an async worker
330 * thread will handle the request (from the correct zone), and
331 * everything (minus the final nfs_getattr_otw() call) should
332 * be OK. If the zone is going away nfs_async_inactive() will
333 * throw away cached pages inline.
334 */
335 return (EIO);
336 }
337
338 /*
339 * If we are using local locking for this filesystem, then
340 * release all of the SYSV style record locks. Otherwise,
341 * we are doing network locking and we need to release all
342 * of the network locks. All of the locks held by this
343 * process on this file are released no matter what the
344 * incoming reference count is.
345 */
346 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
347 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
348 cleanshares(vp, ttoproc(curthread)->p_pid);
349 } else
350 nfs_lockrelease(vp, flag, offset, cr);
351
352 if (count > 1)
353 return (0);
354
355 /*
356 * If the file has been `unlinked', then purge the
357 * DNLC so that this vnode will get reycled quicker
358 * and the .nfs* file on the server will get removed.
359 */
360 rp = VTOR(vp);
361 if (rp->r_unldvp != NULL)
362 dnlc_purge_vp(vp);
363
364 /*
365 * If the file was open for write and there are pages,
366 * then if the file system was mounted using the "no-close-
367 * to-open" semantics, then start an asynchronous flush
368 * of the all of the pages in the file.
369 * else the file system was not mounted using the "no-close-
370 * to-open" semantics, then do a synchronous flush and
371 * commit of all of the dirty and uncommitted pages.
372 *
373 * The asynchronous flush of the pages in the "nocto" path
374 * mostly just associates a cred pointer with the rnode so
375 * writes which happen later will have a better chance of
376 * working. It also starts the data being written to the
377 * server, but without unnecessarily delaying the application.
378 */
379 if ((flag & FWRITE) && vn_has_cached_data(vp)) {
380 if ((VTOMI(vp)->mi_flags & MI_NOCTO)) {
381 error = nfs_putpage(vp, (offset_t)0, 0, B_ASYNC,
382 cr, ct);
383 if (error == EAGAIN)
384 error = 0;
385 } else
386 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct);
387 if (!error) {
388 mutex_enter(&rp->r_statelock);
389 error = rp->r_error;
390 rp->r_error = 0;
391 mutex_exit(&rp->r_statelock);
392 }
393 } else {
394 mutex_enter(&rp->r_statelock);
395 error = rp->r_error;
396 rp->r_error = 0;
397 mutex_exit(&rp->r_statelock);
398 }
399
400 /*
401 * If RWRITEATTR is set, then issue an over the wire GETATTR to
402 * refresh the attribute cache with a set of attributes which
403 * weren't returned from a WRITE. This will enable the close-
404 * to-open processing to work.
405 */
406 if (rp->r_flags & RWRITEATTR)
407 (void) nfs_getattr_otw(vp, &va, cr);
408
409 return (error);
410 }
411
412 /* ARGSUSED */
413 static int
nfs_read(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)414 nfs_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
415 caller_context_t *ct)
416 {
417 rnode_t *rp;
418 u_offset_t off;
419 offset_t diff;
420 int on;
421 size_t n;
422 caddr_t base;
423 uint_t flags;
424 int error;
425 mntinfo_t *mi;
426
427 rp = VTOR(vp);
428 mi = VTOMI(vp);
429
430 if (nfs_zone() != mi->mi_zone)
431 return (EIO);
432
433 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
434
435 if (vp->v_type != VREG)
436 return (EISDIR);
437
438 if (uiop->uio_resid == 0)
439 return (0);
440
441 if (uiop->uio_loffset > MAXOFF32_T)
442 return (EFBIG);
443
444 if (uiop->uio_loffset < 0 ||
445 uiop->uio_loffset + uiop->uio_resid > MAXOFF32_T)
446 return (EINVAL);
447
448 /*
449 * Bypass VM if caching has been disabled (e.g., locking) or if
450 * using client-side direct I/O and the file is not mmap'd and
451 * there are no cached pages.
452 */
453 if ((vp->v_flag & VNOCACHE) ||
454 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
455 rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
456 !vn_has_cached_data(vp))) {
457 size_t bufsize;
458 size_t resid = 0;
459
460 /*
461 * Let's try to do read in as large a chunk as we can
462 * (Filesystem (NFS client) bsize if possible/needed).
463 * For V3, this is 32K and for V2, this is 8K.
464 */
465 bufsize = MIN(uiop->uio_resid, VTOMI(vp)->mi_curread);
466 base = kmem_alloc(bufsize, KM_SLEEP);
467 do {
468 n = MIN(uiop->uio_resid, bufsize);
469 error = nfsread(vp, base, uiop->uio_offset, n,
470 &resid, cr);
471 if (!error) {
472 n -= resid;
473 error = uiomove(base, n, UIO_READ, uiop);
474 }
475 } while (!error && uiop->uio_resid > 0 && n > 0);
476 kmem_free(base, bufsize);
477 return (error);
478 }
479
480 error = 0;
481
482 do {
483 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
484 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
485 n = MIN(MAXBSIZE - on, uiop->uio_resid);
486
487 error = nfs_validate_caches(vp, cr);
488 if (error)
489 break;
490
491 mutex_enter(&rp->r_statelock);
492 while (rp->r_flags & RINCACHEPURGE) {
493 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
494 mutex_exit(&rp->r_statelock);
495 return (EINTR);
496 }
497 }
498 diff = rp->r_size - uiop->uio_loffset;
499 mutex_exit(&rp->r_statelock);
500 if (diff <= 0)
501 break;
502 if (diff < n)
503 n = (size_t)diff;
504
505 if (vpm_enable) {
506 /*
507 * Copy data.
508 */
509 error = vpm_data_copy(vp, off + on, n, uiop,
510 1, NULL, 0, S_READ);
511 } else {
512 base = segmap_getmapflt(segkmap, vp, off + on, n,
513 1, S_READ);
514 error = uiomove(base + on, n, UIO_READ, uiop);
515 }
516
517 if (!error) {
518 /*
519 * If read a whole block or read to eof,
520 * won't need this buffer again soon.
521 */
522 mutex_enter(&rp->r_statelock);
523 if (n + on == MAXBSIZE ||
524 uiop->uio_loffset == rp->r_size)
525 flags = SM_DONTNEED;
526 else
527 flags = 0;
528 mutex_exit(&rp->r_statelock);
529 if (vpm_enable) {
530 error = vpm_sync_pages(vp, off, n, flags);
531 } else {
532 error = segmap_release(segkmap, base, flags);
533 }
534 } else {
535 if (vpm_enable) {
536 (void) vpm_sync_pages(vp, off, n, 0);
537 } else {
538 (void) segmap_release(segkmap, base, 0);
539 }
540 }
541 } while (!error && uiop->uio_resid > 0);
542
543 return (error);
544 }
545
546 /* ARGSUSED */
547 static int
nfs_write(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)548 nfs_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
549 caller_context_t *ct)
550 {
551 rnode_t *rp;
552 u_offset_t off;
553 caddr_t base;
554 uint_t flags;
555 int remainder;
556 size_t n;
557 int on;
558 int error;
559 int resid;
560 offset_t offset;
561 rlim_t limit;
562 mntinfo_t *mi;
563
564 rp = VTOR(vp);
565
566 mi = VTOMI(vp);
567 if (nfs_zone() != mi->mi_zone)
568 return (EIO);
569 if (vp->v_type != VREG)
570 return (EISDIR);
571
572 if (uiop->uio_resid == 0)
573 return (0);
574
575 if (ioflag & FAPPEND) {
576 struct vattr va;
577
578 /*
579 * Must serialize if appending.
580 */
581 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
582 nfs_rw_exit(&rp->r_rwlock);
583 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
584 INTR(vp)))
585 return (EINTR);
586 }
587
588 va.va_mask = AT_SIZE;
589 error = nfsgetattr(vp, &va, cr);
590 if (error)
591 return (error);
592 uiop->uio_loffset = va.va_size;
593 }
594
595 if (uiop->uio_loffset > MAXOFF32_T)
596 return (EFBIG);
597
598 offset = uiop->uio_loffset + uiop->uio_resid;
599
600 if (uiop->uio_loffset < 0 || offset > MAXOFF32_T)
601 return (EINVAL);
602
603 if (uiop->uio_llimit > (rlim64_t)MAXOFF32_T) {
604 limit = MAXOFF32_T;
605 } else {
606 limit = (rlim_t)uiop->uio_llimit;
607 }
608
609 /*
610 * Check to make sure that the process will not exceed
611 * its limit on file size. It is okay to write up to
612 * the limit, but not beyond. Thus, the write which
613 * reaches the limit will be short and the next write
614 * will return an error.
615 */
616 remainder = 0;
617 if (offset > limit) {
618 remainder = offset - limit;
619 uiop->uio_resid = limit - uiop->uio_offset;
620 if (uiop->uio_resid <= 0) {
621 proc_t *p = ttoproc(curthread);
622
623 uiop->uio_resid += remainder;
624 mutex_enter(&p->p_lock);
625 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
626 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
627 mutex_exit(&p->p_lock);
628 return (EFBIG);
629 }
630 }
631
632 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp)))
633 return (EINTR);
634
635 /*
636 * Bypass VM if caching has been disabled (e.g., locking) or if
637 * using client-side direct I/O and the file is not mmap'd and
638 * there are no cached pages.
639 */
640 if ((vp->v_flag & VNOCACHE) ||
641 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
642 rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
643 !vn_has_cached_data(vp))) {
644 size_t bufsize;
645 int count;
646 uint_t org_offset;
647
648 nfs_fwrite:
649 if (rp->r_flags & RSTALE) {
650 resid = uiop->uio_resid;
651 offset = uiop->uio_loffset;
652 error = rp->r_error;
653 /*
654 * A close may have cleared r_error, if so,
655 * propagate ESTALE error return properly
656 */
657 if (error == 0)
658 error = ESTALE;
659 goto bottom;
660 }
661 bufsize = MIN(uiop->uio_resid, mi->mi_curwrite);
662 base = kmem_alloc(bufsize, KM_SLEEP);
663 do {
664 resid = uiop->uio_resid;
665 offset = uiop->uio_loffset;
666 count = MIN(uiop->uio_resid, bufsize);
667 org_offset = uiop->uio_offset;
668 error = uiomove(base, count, UIO_WRITE, uiop);
669 if (!error) {
670 error = nfswrite(vp, base, org_offset,
671 count, cr);
672 }
673 } while (!error && uiop->uio_resid > 0);
674 kmem_free(base, bufsize);
675 goto bottom;
676 }
677
678 do {
679 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
680 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
681 n = MIN(MAXBSIZE - on, uiop->uio_resid);
682
683 resid = uiop->uio_resid;
684 offset = uiop->uio_loffset;
685
686 if (rp->r_flags & RSTALE) {
687 error = rp->r_error;
688 /*
689 * A close may have cleared r_error, if so,
690 * propagate ESTALE error return properly
691 */
692 if (error == 0)
693 error = ESTALE;
694 break;
695 }
696
697 /*
698 * Don't create dirty pages faster than they
699 * can be cleaned so that the system doesn't
700 * get imbalanced. If the async queue is
701 * maxed out, then wait for it to drain before
702 * creating more dirty pages. Also, wait for
703 * any threads doing pagewalks in the vop_getattr
704 * entry points so that they don't block for
705 * long periods.
706 */
707 mutex_enter(&rp->r_statelock);
708 while ((mi->mi_max_threads != 0 &&
709 rp->r_awcount > 2 * mi->mi_max_threads) ||
710 rp->r_gcount > 0) {
711 if (INTR(vp)) {
712 klwp_t *lwp = ttolwp(curthread);
713
714 if (lwp != NULL)
715 lwp->lwp_nostop++;
716 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
717 mutex_exit(&rp->r_statelock);
718 if (lwp != NULL)
719 lwp->lwp_nostop--;
720 error = EINTR;
721 goto bottom;
722 }
723 if (lwp != NULL)
724 lwp->lwp_nostop--;
725 } else
726 cv_wait(&rp->r_cv, &rp->r_statelock);
727 }
728 mutex_exit(&rp->r_statelock);
729
730 /*
731 * Touch the page and fault it in if it is not in core
732 * before segmap_getmapflt or vpm_data_copy can lock it.
733 * This is to avoid the deadlock if the buffer is mapped
734 * to the same file through mmap which we want to write.
735 */
736 uio_prefaultpages((long)n, uiop);
737
738 if (vpm_enable) {
739 /*
740 * It will use kpm mappings, so no need to
741 * pass an address.
742 */
743 error = writerp(rp, NULL, n, uiop, 0);
744 } else {
745 if (segmap_kpm) {
746 int pon = uiop->uio_loffset & PAGEOFFSET;
747 size_t pn = MIN(PAGESIZE - pon,
748 uiop->uio_resid);
749 int pagecreate;
750
751 mutex_enter(&rp->r_statelock);
752 pagecreate = (pon == 0) && (pn == PAGESIZE ||
753 uiop->uio_loffset + pn >= rp->r_size);
754 mutex_exit(&rp->r_statelock);
755
756 base = segmap_getmapflt(segkmap, vp, off + on,
757 pn, !pagecreate, S_WRITE);
758
759 error = writerp(rp, base + pon, n, uiop,
760 pagecreate);
761
762 } else {
763 base = segmap_getmapflt(segkmap, vp, off + on,
764 n, 0, S_READ);
765 error = writerp(rp, base + on, n, uiop, 0);
766 }
767 }
768
769 if (!error) {
770 if (mi->mi_flags & MI_NOAC)
771 flags = SM_WRITE;
772 else if (n + on == MAXBSIZE || IS_SWAPVP(vp)) {
773 /*
774 * Have written a whole block.
775 * Start an asynchronous write
776 * and mark the buffer to
777 * indicate that it won't be
778 * needed again soon.
779 */
780 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
781 } else
782 flags = 0;
783 if ((ioflag & (FSYNC|FDSYNC)) ||
784 (rp->r_flags & ROUTOFSPACE)) {
785 flags &= ~SM_ASYNC;
786 flags |= SM_WRITE;
787 }
788 if (vpm_enable) {
789 error = vpm_sync_pages(vp, off, n, flags);
790 } else {
791 error = segmap_release(segkmap, base, flags);
792 }
793 } else {
794 if (vpm_enable) {
795 (void) vpm_sync_pages(vp, off, n, 0);
796 } else {
797 (void) segmap_release(segkmap, base, 0);
798 }
799 /*
800 * In the event that we got an access error while
801 * faulting in a page for a write-only file just
802 * force a write.
803 */
804 if (error == EACCES)
805 goto nfs_fwrite;
806 }
807 } while (!error && uiop->uio_resid > 0);
808
809 bottom:
810 if (error) {
811 uiop->uio_resid = resid + remainder;
812 uiop->uio_loffset = offset;
813 } else
814 uiop->uio_resid += remainder;
815
816 nfs_rw_exit(&rp->r_lkserlock);
817
818 return (error);
819 }
820
821 /*
822 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
823 */
824 static int
nfs_rdwrlbn(vnode_t * vp,page_t * pp,u_offset_t off,size_t len,int flags,cred_t * cr)825 nfs_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
826 int flags, cred_t *cr)
827 {
828 struct buf *bp;
829 int error;
830
831 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
832 bp = pageio_setup(pp, len, vp, flags);
833 ASSERT(bp != NULL);
834
835 /*
836 * pageio_setup should have set b_addr to 0. This
837 * is correct since we want to do I/O on a page
838 * boundary. bp_mapin will use this addr to calculate
839 * an offset, and then set b_addr to the kernel virtual
840 * address it allocated for us.
841 */
842 ASSERT(bp->b_un.b_addr == 0);
843
844 bp->b_edev = 0;
845 bp->b_dev = 0;
846 bp->b_lblkno = lbtodb(off);
847 bp->b_file = vp;
848 bp->b_offset = (offset_t)off;
849 bp_mapin(bp);
850
851 error = nfs_bio(bp, cr);
852
853 bp_mapout(bp);
854 pageio_done(bp);
855
856 return (error);
857 }
858
859 /*
860 * Write to file. Writes to remote server in largest size
861 * chunks that the server can handle. Write is synchronous.
862 */
863 static int
nfswrite(vnode_t * vp,caddr_t base,uint_t offset,int count,cred_t * cr)864 nfswrite(vnode_t *vp, caddr_t base, uint_t offset, int count, cred_t *cr)
865 {
866 rnode_t *rp;
867 mntinfo_t *mi;
868 struct nfswriteargs wa;
869 struct nfsattrstat ns;
870 int error;
871 int tsize;
872 int douprintf;
873
874 douprintf = 1;
875
876 rp = VTOR(vp);
877 mi = VTOMI(vp);
878
879 ASSERT(nfs_zone() == mi->mi_zone);
880
881 wa.wa_args = &wa.wa_args_buf;
882 wa.wa_fhandle = *VTOFH(vp);
883
884 do {
885 tsize = MIN(mi->mi_curwrite, count);
886 wa.wa_data = base;
887 wa.wa_begoff = offset;
888 wa.wa_totcount = tsize;
889 wa.wa_count = tsize;
890 wa.wa_offset = offset;
891
892 if (mi->mi_io_kstats) {
893 mutex_enter(&mi->mi_lock);
894 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
895 mutex_exit(&mi->mi_lock);
896 }
897 wa.wa_mblk = NULL;
898 do {
899 error = rfs2call(mi, RFS_WRITE,
900 xdr_writeargs, (caddr_t)&wa,
901 xdr_attrstat, (caddr_t)&ns, cr,
902 &douprintf, &ns.ns_status, 0, NULL);
903 } while (error == ENFS_TRYAGAIN);
904 if (mi->mi_io_kstats) {
905 mutex_enter(&mi->mi_lock);
906 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
907 mutex_exit(&mi->mi_lock);
908 }
909
910 if (!error) {
911 error = geterrno(ns.ns_status);
912 /*
913 * Can't check for stale fhandle and purge caches
914 * here because pages are held by nfs_getpage.
915 * Just mark the attribute cache as timed out
916 * and set RWRITEATTR to indicate that the file
917 * was modified with a WRITE operation.
918 */
919 if (!error) {
920 count -= tsize;
921 base += tsize;
922 offset += tsize;
923 if (mi->mi_io_kstats) {
924 mutex_enter(&mi->mi_lock);
925 KSTAT_IO_PTR(mi->mi_io_kstats)->
926 writes++;
927 KSTAT_IO_PTR(mi->mi_io_kstats)->
928 nwritten += tsize;
929 mutex_exit(&mi->mi_lock);
930 }
931 lwp_stat_update(LWP_STAT_OUBLK, 1);
932 mutex_enter(&rp->r_statelock);
933 PURGE_ATTRCACHE_LOCKED(rp);
934 rp->r_flags |= RWRITEATTR;
935 mutex_exit(&rp->r_statelock);
936 }
937 }
938 } while (!error && count);
939
940 return (error);
941 }
942
943 /*
944 * Read from a file. Reads data in largest chunks our interface can handle.
945 */
946 static int
nfsread(vnode_t * vp,caddr_t base,uint_t offset,int count,size_t * residp,cred_t * cr)947 nfsread(vnode_t *vp, caddr_t base, uint_t offset,
948 int count, size_t *residp, cred_t *cr)
949 {
950 mntinfo_t *mi;
951 struct nfsreadargs ra;
952 struct nfsrdresult rr;
953 int tsize;
954 int error;
955 int douprintf;
956 failinfo_t fi;
957 rnode_t *rp;
958 struct vattr va;
959 hrtime_t t;
960
961 rp = VTOR(vp);
962 mi = VTOMI(vp);
963
964 ASSERT(nfs_zone() == mi->mi_zone);
965
966 douprintf = 1;
967
968 ra.ra_fhandle = *VTOFH(vp);
969
970 fi.vp = vp;
971 fi.fhp = (caddr_t)&ra.ra_fhandle;
972 fi.copyproc = nfscopyfh;
973 fi.lookupproc = nfslookup;
974 fi.xattrdirproc = acl_getxattrdir2;
975
976 do {
977 if (mi->mi_io_kstats) {
978 mutex_enter(&mi->mi_lock);
979 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
980 mutex_exit(&mi->mi_lock);
981 }
982
983 do {
984 tsize = MIN(mi->mi_curread, count);
985 rr.rr_data = base;
986 ra.ra_offset = offset;
987 ra.ra_totcount = tsize;
988 ra.ra_count = tsize;
989 ra.ra_data = base;
990 t = gethrtime();
991 error = rfs2call(mi, RFS_READ,
992 xdr_readargs, (caddr_t)&ra,
993 xdr_rdresult, (caddr_t)&rr, cr,
994 &douprintf, &rr.rr_status, 0, &fi);
995 } while (error == ENFS_TRYAGAIN);
996
997 if (mi->mi_io_kstats) {
998 mutex_enter(&mi->mi_lock);
999 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1000 mutex_exit(&mi->mi_lock);
1001 }
1002
1003 if (!error) {
1004 error = geterrno(rr.rr_status);
1005 if (!error) {
1006 count -= rr.rr_count;
1007 base += rr.rr_count;
1008 offset += rr.rr_count;
1009 if (mi->mi_io_kstats) {
1010 mutex_enter(&mi->mi_lock);
1011 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
1012 KSTAT_IO_PTR(mi->mi_io_kstats)->nread +=
1013 rr.rr_count;
1014 mutex_exit(&mi->mi_lock);
1015 }
1016 lwp_stat_update(LWP_STAT_INBLK, 1);
1017 }
1018 }
1019 } while (!error && count && rr.rr_count == tsize);
1020
1021 *residp = count;
1022
1023 if (!error) {
1024 /*
1025 * Since no error occurred, we have the current
1026 * attributes and we need to do a cache check and then
1027 * potentially update the cached attributes. We can't
1028 * use the normal attribute check and cache mechanisms
1029 * because they might cause a cache flush which would
1030 * deadlock. Instead, we just check the cache to see
1031 * if the attributes have changed. If it is, then we
1032 * just mark the attributes as out of date. The next
1033 * time that the attributes are checked, they will be
1034 * out of date, new attributes will be fetched, and
1035 * the page cache will be flushed. If the attributes
1036 * weren't changed, then we just update the cached
1037 * attributes with these attributes.
1038 */
1039 /*
1040 * If NFS_ACL is supported on the server, then the
1041 * attributes returned by server may have minimal
1042 * permissions sometimes denying access to users having
1043 * proper access. To get the proper attributes, mark
1044 * the attributes as expired so that they will be
1045 * regotten via the NFS_ACL GETATTR2 procedure.
1046 */
1047 error = nattr_to_vattr(vp, &rr.rr_attr, &va);
1048 mutex_enter(&rp->r_statelock);
1049 if (error || !CACHE_VALID(rp, va.va_mtime, va.va_size) ||
1050 (mi->mi_flags & MI_ACL)) {
1051 mutex_exit(&rp->r_statelock);
1052 PURGE_ATTRCACHE(vp);
1053 } else {
1054 if (rp->r_mtime <= t) {
1055 nfs_attrcache_va(vp, &va);
1056 }
1057 mutex_exit(&rp->r_statelock);
1058 }
1059 }
1060
1061 return (error);
1062 }
1063
1064 /* ARGSUSED */
1065 static int
nfs_ioctl(vnode_t * vp,int cmd,intptr_t arg,int flag,cred_t * cr,int * rvalp,caller_context_t * ct)1066 nfs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
1067 caller_context_t *ct)
1068 {
1069
1070 if (nfs_zone() != VTOMI(vp)->mi_zone)
1071 return (EIO);
1072 switch (cmd) {
1073 case _FIODIRECTIO:
1074 return (nfs_directio(vp, (int)arg, cr));
1075 default:
1076 return (ENOTTY);
1077 }
1078 }
1079
1080 /* ARGSUSED */
1081 static int
nfs_getattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)1082 nfs_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1083 caller_context_t *ct)
1084 {
1085 int error;
1086 rnode_t *rp;
1087
1088 if (nfs_zone() != VTOMI(vp)->mi_zone)
1089 return (EIO);
1090 /*
1091 * If it has been specified that the return value will
1092 * just be used as a hint, and we are only being asked
1093 * for size, fsid or rdevid, then return the client's
1094 * notion of these values without checking to make sure
1095 * that the attribute cache is up to date.
1096 * The whole point is to avoid an over the wire GETATTR
1097 * call.
1098 */
1099 rp = VTOR(vp);
1100 if (flags & ATTR_HINT) {
1101 if (vap->va_mask ==
1102 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
1103 mutex_enter(&rp->r_statelock);
1104 if (vap->va_mask | AT_SIZE)
1105 vap->va_size = rp->r_size;
1106 if (vap->va_mask | AT_FSID)
1107 vap->va_fsid = rp->r_attr.va_fsid;
1108 if (vap->va_mask | AT_RDEV)
1109 vap->va_rdev = rp->r_attr.va_rdev;
1110 mutex_exit(&rp->r_statelock);
1111 return (0);
1112 }
1113 }
1114
1115 /*
1116 * Only need to flush pages if asking for the mtime
1117 * and if there any dirty pages or any outstanding
1118 * asynchronous (write) requests for this file.
1119 */
1120 if (vap->va_mask & AT_MTIME) {
1121 if (vn_has_cached_data(vp) &&
1122 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) {
1123 mutex_enter(&rp->r_statelock);
1124 rp->r_gcount++;
1125 mutex_exit(&rp->r_statelock);
1126 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct);
1127 mutex_enter(&rp->r_statelock);
1128 if (error && (error == ENOSPC || error == EDQUOT)) {
1129 if (!rp->r_error)
1130 rp->r_error = error;
1131 }
1132 if (--rp->r_gcount == 0)
1133 cv_broadcast(&rp->r_cv);
1134 mutex_exit(&rp->r_statelock);
1135 }
1136 }
1137
1138 return (nfsgetattr(vp, vap, cr));
1139 }
1140
1141 /*ARGSUSED4*/
1142 static int
nfs_setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)1143 nfs_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1144 caller_context_t *ct)
1145 {
1146 int error;
1147 uint_t mask;
1148 struct vattr va;
1149
1150 mask = vap->va_mask;
1151
1152 if (mask & AT_NOSET)
1153 return (EINVAL);
1154
1155 if ((mask & AT_SIZE) &&
1156 vap->va_type == VREG &&
1157 vap->va_size > MAXOFF32_T)
1158 return (EFBIG);
1159
1160 if (nfs_zone() != VTOMI(vp)->mi_zone)
1161 return (EIO);
1162
1163 va.va_mask = AT_UID | AT_MODE;
1164
1165 error = nfsgetattr(vp, &va, cr);
1166 if (error)
1167 return (error);
1168
1169 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs_accessx,
1170 vp);
1171
1172 if (error)
1173 return (error);
1174
1175 error = nfssetattr(vp, vap, flags, cr);
1176
1177 if (error == 0 && (mask & AT_SIZE) && vap->va_size == 0)
1178 vnevent_truncate(vp, ct);
1179
1180 return (error);
1181 }
1182
1183 static int
nfssetattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr)1184 nfssetattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
1185 {
1186 int error;
1187 uint_t mask;
1188 struct nfssaargs args;
1189 struct nfsattrstat ns;
1190 int douprintf;
1191 rnode_t *rp;
1192 struct vattr va;
1193 mode_t omode;
1194 mntinfo_t *mi;
1195 vsecattr_t *vsp;
1196 hrtime_t t;
1197
1198 mask = vap->va_mask;
1199
1200 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
1201
1202 rp = VTOR(vp);
1203
1204 /*
1205 * Only need to flush pages if there are any pages and
1206 * if the file is marked as dirty in some fashion. The
1207 * file must be flushed so that we can accurately
1208 * determine the size of the file and the cached data
1209 * after the SETATTR returns. A file is considered to
1210 * be dirty if it is either marked with RDIRTY, has
1211 * outstanding i/o's active, or is mmap'd. In this
1212 * last case, we can't tell whether there are dirty
1213 * pages, so we flush just to be sure.
1214 */
1215 if (vn_has_cached_data(vp) &&
1216 ((rp->r_flags & RDIRTY) ||
1217 rp->r_count > 0 ||
1218 rp->r_mapcnt > 0)) {
1219 ASSERT(vp->v_type != VCHR);
1220 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
1221 if (error && (error == ENOSPC || error == EDQUOT)) {
1222 mutex_enter(&rp->r_statelock);
1223 if (!rp->r_error)
1224 rp->r_error = error;
1225 mutex_exit(&rp->r_statelock);
1226 }
1227 }
1228
1229 /*
1230 * If the system call was utime(2) or utimes(2) and the
1231 * application did not specify the times, then set the
1232 * mtime nanosecond field to 1 billion. This will get
1233 * translated from 1 billion nanoseconds to 1 million
1234 * microseconds in the over the wire request. The
1235 * server will use 1 million in the microsecond field
1236 * to tell whether both the mtime and atime should be
1237 * set to the server's current time.
1238 *
1239 * This is an overload of the protocol and should be
1240 * documented in the NFS Version 2 protocol specification.
1241 */
1242 if ((mask & AT_MTIME) && !(flags & ATTR_UTIME)) {
1243 vap->va_mtime.tv_nsec = 1000000000;
1244 if (NFS_TIME_T_OK(vap->va_mtime.tv_sec) &&
1245 NFS_TIME_T_OK(vap->va_atime.tv_sec)) {
1246 error = vattr_to_sattr(vap, &args.saa_sa);
1247 } else {
1248 /*
1249 * Use server times. vap time values will not be used.
1250 * To ensure no time overflow, make sure vap has
1251 * valid values, but retain the original values.
1252 */
1253 timestruc_t mtime = vap->va_mtime;
1254 timestruc_t atime = vap->va_atime;
1255 time_t now;
1256
1257 now = gethrestime_sec();
1258 if (NFS_TIME_T_OK(now)) {
1259 /* Just in case server does not know of this */
1260 vap->va_mtime.tv_sec = now;
1261 vap->va_atime.tv_sec = now;
1262 } else {
1263 vap->va_mtime.tv_sec = 0;
1264 vap->va_atime.tv_sec = 0;
1265 }
1266 error = vattr_to_sattr(vap, &args.saa_sa);
1267 /* set vap times back on */
1268 vap->va_mtime = mtime;
1269 vap->va_atime = atime;
1270 }
1271 } else {
1272 /* Either do not set times or use the client specified times */
1273 error = vattr_to_sattr(vap, &args.saa_sa);
1274 }
1275 if (error) {
1276 /* req time field(s) overflow - return immediately */
1277 return (error);
1278 }
1279 args.saa_fh = *VTOFH(vp);
1280
1281 va.va_mask = AT_MODE;
1282 error = nfsgetattr(vp, &va, cr);
1283 if (error)
1284 return (error);
1285 omode = va.va_mode;
1286
1287 mi = VTOMI(vp);
1288
1289 douprintf = 1;
1290
1291 t = gethrtime();
1292
1293 error = rfs2call(mi, RFS_SETATTR,
1294 xdr_saargs, (caddr_t)&args,
1295 xdr_attrstat, (caddr_t)&ns, cr,
1296 &douprintf, &ns.ns_status, 0, NULL);
1297
1298 /*
1299 * Purge the access cache and ACL cache if changing either the
1300 * owner of the file, the group owner, or the mode. These may
1301 * change the access permissions of the file, so purge old
1302 * information and start over again.
1303 */
1304 if ((mask & (AT_UID | AT_GID | AT_MODE)) && (mi->mi_flags & MI_ACL)) {
1305 (void) nfs_access_purge_rp(rp);
1306 if (rp->r_secattr != NULL) {
1307 mutex_enter(&rp->r_statelock);
1308 vsp = rp->r_secattr;
1309 rp->r_secattr = NULL;
1310 mutex_exit(&rp->r_statelock);
1311 if (vsp != NULL)
1312 nfs_acl_free(vsp);
1313 }
1314 }
1315
1316 if (!error) {
1317 error = geterrno(ns.ns_status);
1318 if (!error) {
1319 /*
1320 * If changing the size of the file, invalidate
1321 * any local cached data which is no longer part
1322 * of the file. We also possibly invalidate the
1323 * last page in the file. We could use
1324 * pvn_vpzero(), but this would mark the page as
1325 * modified and require it to be written back to
1326 * the server for no particularly good reason.
1327 * This way, if we access it, then we bring it
1328 * back in. A read should be cheaper than a
1329 * write.
1330 */
1331 if (mask & AT_SIZE) {
1332 nfs_invalidate_pages(vp,
1333 (vap->va_size & PAGEMASK), cr);
1334 }
1335 (void) nfs_cache_fattr(vp, &ns.ns_attr, &va, t, cr);
1336 /*
1337 * If NFS_ACL is supported on the server, then the
1338 * attributes returned by server may have minimal
1339 * permissions sometimes denying access to users having
1340 * proper access. To get the proper attributes, mark
1341 * the attributes as expired so that they will be
1342 * regotten via the NFS_ACL GETATTR2 procedure.
1343 */
1344 if (mi->mi_flags & MI_ACL) {
1345 PURGE_ATTRCACHE(vp);
1346 }
1347 /*
1348 * This next check attempts to deal with NFS
1349 * servers which can not handle increasing
1350 * the size of the file via setattr. Most
1351 * of these servers do not return an error,
1352 * but do not change the size of the file.
1353 * Hence, this check and then attempt to set
1354 * the file size by writing 1 byte at the
1355 * offset of the end of the file that we need.
1356 */
1357 if ((mask & AT_SIZE) &&
1358 ns.ns_attr.na_size < (uint32_t)vap->va_size) {
1359 char zb = '\0';
1360
1361 error = nfswrite(vp, &zb,
1362 vap->va_size - sizeof (zb),
1363 sizeof (zb), cr);
1364 }
1365 /*
1366 * Some servers will change the mode to clear the setuid
1367 * and setgid bits when changing the uid or gid. The
1368 * client needs to compensate appropriately.
1369 */
1370 if (mask & (AT_UID | AT_GID)) {
1371 int terror;
1372
1373 va.va_mask = AT_MODE;
1374 terror = nfsgetattr(vp, &va, cr);
1375 if (!terror &&
1376 (((mask & AT_MODE) &&
1377 va.va_mode != vap->va_mode) ||
1378 (!(mask & AT_MODE) &&
1379 va.va_mode != omode))) {
1380 va.va_mask = AT_MODE;
1381 if (mask & AT_MODE)
1382 va.va_mode = vap->va_mode;
1383 else
1384 va.va_mode = omode;
1385 (void) nfssetattr(vp, &va, 0, cr);
1386 }
1387 }
1388 } else {
1389 PURGE_ATTRCACHE(vp);
1390 PURGE_STALE_FH(error, vp, cr);
1391 }
1392 } else {
1393 PURGE_ATTRCACHE(vp);
1394 }
1395
1396 return (error);
1397 }
1398
1399 static int
nfs_accessx(void * vp,int mode,cred_t * cr)1400 nfs_accessx(void *vp, int mode, cred_t *cr)
1401 {
1402 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone);
1403 return (nfs_access(vp, mode, 0, cr, NULL));
1404 }
1405
1406 /* ARGSUSED */
1407 static int
nfs_access(vnode_t * vp,int mode,int flags,cred_t * cr,caller_context_t * ct)1408 nfs_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
1409 {
1410 struct vattr va;
1411 int error;
1412 mntinfo_t *mi;
1413 int shift = 0;
1414
1415 mi = VTOMI(vp);
1416
1417 if (nfs_zone() != mi->mi_zone)
1418 return (EIO);
1419 if (mi->mi_flags & MI_ACL) {
1420 error = acl_access2(vp, mode, flags, cr);
1421 if (mi->mi_flags & MI_ACL)
1422 return (error);
1423 }
1424
1425 va.va_mask = AT_MODE | AT_UID | AT_GID;
1426 error = nfsgetattr(vp, &va, cr);
1427 if (error)
1428 return (error);
1429
1430 /*
1431 * Disallow write attempts on read-only
1432 * file systems, unless the file is a
1433 * device node.
1434 */
1435 if ((mode & VWRITE) && vn_is_readonly(vp) && !IS_DEVVP(vp))
1436 return (EROFS);
1437
1438 /*
1439 * Disallow attempts to access mandatory lock files.
1440 */
1441 if ((mode & (VWRITE | VREAD | VEXEC)) &&
1442 MANDLOCK(vp, va.va_mode))
1443 return (EACCES);
1444
1445 /*
1446 * Access check is based on only
1447 * one of owner, group, public.
1448 * If not owner, then check group.
1449 * If not a member of the group,
1450 * then check public access.
1451 */
1452 if (crgetuid(cr) != va.va_uid) {
1453 shift += 3;
1454 if (!groupmember(va.va_gid, cr))
1455 shift += 3;
1456 }
1457
1458 return (secpolicy_vnode_access2(cr, vp, va.va_uid,
1459 va.va_mode << shift, mode));
1460 }
1461
1462 static int nfs_do_symlink_cache = 1;
1463
1464 /* ARGSUSED */
1465 static int
nfs_readlink(vnode_t * vp,struct uio * uiop,cred_t * cr,caller_context_t * ct)1466 nfs_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
1467 {
1468 int error;
1469 struct nfsrdlnres rl;
1470 rnode_t *rp;
1471 int douprintf;
1472 failinfo_t fi;
1473
1474 /*
1475 * We want to be consistent with UFS semantics so we will return
1476 * EINVAL instead of ENXIO. This violates the XNFS spec and
1477 * the RFC 1094, which are wrong any way. BUGID 1138002.
1478 */
1479 if (vp->v_type != VLNK)
1480 return (EINVAL);
1481
1482 if (nfs_zone() != VTOMI(vp)->mi_zone)
1483 return (EIO);
1484
1485 rp = VTOR(vp);
1486 if (nfs_do_symlink_cache && rp->r_symlink.contents != NULL) {
1487 error = nfs_validate_caches(vp, cr);
1488 if (error)
1489 return (error);
1490 mutex_enter(&rp->r_statelock);
1491 if (rp->r_symlink.contents != NULL) {
1492 error = uiomove(rp->r_symlink.contents,
1493 rp->r_symlink.len, UIO_READ, uiop);
1494 mutex_exit(&rp->r_statelock);
1495 return (error);
1496 }
1497 mutex_exit(&rp->r_statelock);
1498 }
1499
1500
1501 rl.rl_data = kmem_alloc(NFS_MAXPATHLEN, KM_SLEEP);
1502
1503 fi.vp = vp;
1504 fi.fhp = NULL; /* no need to update, filehandle not copied */
1505 fi.copyproc = nfscopyfh;
1506 fi.lookupproc = nfslookup;
1507 fi.xattrdirproc = acl_getxattrdir2;
1508
1509 douprintf = 1;
1510
1511 error = rfs2call(VTOMI(vp), RFS_READLINK,
1512 xdr_readlink, (caddr_t)VTOFH(vp),
1513 xdr_rdlnres, (caddr_t)&rl, cr,
1514 &douprintf, &rl.rl_status, 0, &fi);
1515
1516 if (error) {
1517
1518 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN);
1519 return (error);
1520 }
1521
1522 error = geterrno(rl.rl_status);
1523 if (!error) {
1524 error = uiomove(rl.rl_data, (int)rl.rl_count, UIO_READ, uiop);
1525 if (nfs_do_symlink_cache && rp->r_symlink.contents == NULL) {
1526 mutex_enter(&rp->r_statelock);
1527 if (rp->r_symlink.contents == NULL) {
1528 rp->r_symlink.contents = rl.rl_data;
1529 rp->r_symlink.len = (int)rl.rl_count;
1530 rp->r_symlink.size = NFS_MAXPATHLEN;
1531 mutex_exit(&rp->r_statelock);
1532 } else {
1533 mutex_exit(&rp->r_statelock);
1534
1535 kmem_free((void *)rl.rl_data,
1536 NFS_MAXPATHLEN);
1537 }
1538 } else {
1539
1540 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN);
1541 }
1542 } else {
1543 PURGE_STALE_FH(error, vp, cr);
1544
1545 kmem_free((void *)rl.rl_data, NFS_MAXPATHLEN);
1546 }
1547
1548 /*
1549 * Conform to UFS semantics (see comment above)
1550 */
1551 return (error == ENXIO ? EINVAL : error);
1552 }
1553
1554 /*
1555 * Flush local dirty pages to stable storage on the server.
1556 *
1557 * If FNODSYNC is specified, then there is nothing to do because
1558 * metadata changes are not cached on the client before being
1559 * sent to the server.
1560 */
1561 /* ARGSUSED */
1562 static int
nfs_fsync(vnode_t * vp,int syncflag,cred_t * cr,caller_context_t * ct)1563 nfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
1564 {
1565 int error;
1566
1567 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
1568 return (0);
1569
1570 if (nfs_zone() != VTOMI(vp)->mi_zone)
1571 return (EIO);
1572
1573 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct);
1574 if (!error)
1575 error = VTOR(vp)->r_error;
1576 return (error);
1577 }
1578
1579
1580 /*
1581 * Weirdness: if the file was removed or the target of a rename
1582 * operation while it was open, it got renamed instead. Here we
1583 * remove the renamed file.
1584 */
1585 /* ARGSUSED */
1586 static void
nfs_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)1587 nfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1588 {
1589 rnode_t *rp;
1590
1591 ASSERT(vp != DNLC_NO_VNODE);
1592
1593 /*
1594 * If this is coming from the wrong zone, we let someone in the right
1595 * zone take care of it asynchronously. We can get here due to
1596 * VN_RELE() being called from pageout() or fsflush(). This call may
1597 * potentially turn into an expensive no-op if, for instance, v_count
1598 * gets incremented in the meantime, but it's still correct.
1599 */
1600 if (nfs_zone() != VTOMI(vp)->mi_zone) {
1601 nfs_async_inactive(vp, cr, nfs_inactive);
1602 return;
1603 }
1604
1605 rp = VTOR(vp);
1606 redo:
1607 if (rp->r_unldvp != NULL) {
1608 /*
1609 * Save the vnode pointer for the directory where the
1610 * unlinked-open file got renamed, then set it to NULL
1611 * to prevent another thread from getting here before
1612 * we're done with the remove. While we have the
1613 * statelock, make local copies of the pertinent rnode
1614 * fields. If we weren't to do this in an atomic way, the
1615 * the unl* fields could become inconsistent with respect
1616 * to each other due to a race condition between this
1617 * code and nfs_remove(). See bug report 1034328.
1618 */
1619 mutex_enter(&rp->r_statelock);
1620 if (rp->r_unldvp != NULL) {
1621 vnode_t *unldvp;
1622 char *unlname;
1623 cred_t *unlcred;
1624 struct nfsdiropargs da;
1625 enum nfsstat status;
1626 int douprintf;
1627 int error;
1628
1629 unldvp = rp->r_unldvp;
1630 rp->r_unldvp = NULL;
1631 unlname = rp->r_unlname;
1632 rp->r_unlname = NULL;
1633 unlcred = rp->r_unlcred;
1634 rp->r_unlcred = NULL;
1635 mutex_exit(&rp->r_statelock);
1636
1637 /*
1638 * If there are any dirty pages left, then flush
1639 * them. This is unfortunate because they just
1640 * may get thrown away during the remove operation,
1641 * but we have to do this for correctness.
1642 */
1643 if (vn_has_cached_data(vp) &&
1644 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
1645 ASSERT(vp->v_type != VCHR);
1646 error = nfs_putpage(vp, (offset_t)0, 0, 0,
1647 cr, ct);
1648 if (error) {
1649 mutex_enter(&rp->r_statelock);
1650 if (!rp->r_error)
1651 rp->r_error = error;
1652 mutex_exit(&rp->r_statelock);
1653 }
1654 }
1655
1656 /*
1657 * Do the remove operation on the renamed file
1658 */
1659 setdiropargs(&da, unlname, unldvp);
1660
1661 douprintf = 1;
1662
1663 (void) rfs2call(VTOMI(unldvp), RFS_REMOVE,
1664 xdr_diropargs, (caddr_t)&da,
1665 xdr_enum, (caddr_t)&status, unlcred,
1666 &douprintf, &status, 0, NULL);
1667
1668 if (HAVE_RDDIR_CACHE(VTOR(unldvp)))
1669 nfs_purge_rddir_cache(unldvp);
1670 PURGE_ATTRCACHE(unldvp);
1671
1672 /*
1673 * Release stuff held for the remove
1674 */
1675 VN_RELE(unldvp);
1676 kmem_free(unlname, MAXNAMELEN);
1677 crfree(unlcred);
1678 goto redo;
1679 }
1680 mutex_exit(&rp->r_statelock);
1681 }
1682
1683 rp_addfree(rp, cr);
1684 }
1685
1686 /*
1687 * Remote file system operations having to do with directory manipulation.
1688 */
1689
1690 /* ARGSUSED */
1691 static int
nfs_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)1692 nfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1693 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1694 int *direntflags, pathname_t *realpnp)
1695 {
1696 int error;
1697 vnode_t *vp;
1698 vnode_t *avp = NULL;
1699 rnode_t *drp;
1700
1701 if (nfs_zone() != VTOMI(dvp)->mi_zone)
1702 return (EPERM);
1703
1704 drp = VTOR(dvp);
1705
1706 /*
1707 * Are we looking up extended attributes? If so, "dvp" is
1708 * the file or directory for which we want attributes, and
1709 * we need a lookup of the hidden attribute directory
1710 * before we lookup the rest of the path.
1711 */
1712 if (flags & LOOKUP_XATTR) {
1713 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0);
1714 mntinfo_t *mi;
1715
1716 mi = VTOMI(dvp);
1717 if (!(mi->mi_flags & MI_EXTATTR))
1718 return (EINVAL);
1719
1720 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp)))
1721 return (EINTR);
1722
1723 (void) nfslookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr);
1724 if (avp == NULL)
1725 error = acl_getxattrdir2(dvp, &avp, cflag, cr, 0);
1726 else
1727 error = 0;
1728
1729 nfs_rw_exit(&drp->r_rwlock);
1730
1731 if (error) {
1732 if (mi->mi_flags & MI_EXTATTR)
1733 return (error);
1734 return (EINVAL);
1735 }
1736 dvp = avp;
1737 drp = VTOR(dvp);
1738 }
1739
1740 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) {
1741 error = EINTR;
1742 goto out;
1743 }
1744
1745 error = nfslookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0);
1746
1747 nfs_rw_exit(&drp->r_rwlock);
1748
1749 /*
1750 * If vnode is a device, create special vnode.
1751 */
1752 if (!error && IS_DEVVP(*vpp)) {
1753 vp = *vpp;
1754 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
1755 VN_RELE(vp);
1756 }
1757
1758 out:
1759 if (avp != NULL)
1760 VN_RELE(avp);
1761
1762 return (error);
1763 }
1764
1765 static int nfs_lookup_neg_cache = 1;
1766
1767 #ifdef DEBUG
1768 static int nfs_lookup_dnlc_hits = 0;
1769 static int nfs_lookup_dnlc_misses = 0;
1770 static int nfs_lookup_dnlc_neg_hits = 0;
1771 static int nfs_lookup_dnlc_disappears = 0;
1772 static int nfs_lookup_dnlc_lookups = 0;
1773 #endif
1774
1775 /* ARGSUSED */
1776 int
nfslookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,int rfscall_flags)1777 nfslookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1778 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags)
1779 {
1780 int error;
1781
1782 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
1783
1784 /*
1785 * If lookup is for "", just return dvp. Don't need
1786 * to send it over the wire, look it up in the dnlc,
1787 * or perform any access checks.
1788 */
1789 if (*nm == '\0') {
1790 VN_HOLD(dvp);
1791 *vpp = dvp;
1792 return (0);
1793 }
1794
1795 /*
1796 * Can't do lookups in non-directories.
1797 */
1798 if (dvp->v_type != VDIR)
1799 return (ENOTDIR);
1800
1801 /*
1802 * If we're called with RFSCALL_SOFT, it's important that
1803 * the only rfscall is one we make directly; if we permit
1804 * an access call because we're looking up "." or validating
1805 * a dnlc hit, we'll deadlock because that rfscall will not
1806 * have the RFSCALL_SOFT set.
1807 */
1808 if (rfscall_flags & RFSCALL_SOFT)
1809 goto callit;
1810
1811 /*
1812 * If lookup is for ".", just return dvp. Don't need
1813 * to send it over the wire or look it up in the dnlc,
1814 * just need to check access.
1815 */
1816 if (strcmp(nm, ".") == 0) {
1817 error = nfs_access(dvp, VEXEC, 0, cr, NULL);
1818 if (error)
1819 return (error);
1820 VN_HOLD(dvp);
1821 *vpp = dvp;
1822 return (0);
1823 }
1824
1825 /*
1826 * Lookup this name in the DNLC. If there was a valid entry,
1827 * then return the results of the lookup.
1828 */
1829 error = nfslookup_dnlc(dvp, nm, vpp, cr);
1830 if (error || *vpp != NULL)
1831 return (error);
1832
1833 callit:
1834 error = nfslookup_otw(dvp, nm, vpp, cr, rfscall_flags);
1835
1836 return (error);
1837 }
1838
1839 static int
nfslookup_dnlc(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr)1840 nfslookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
1841 {
1842 int error;
1843 vnode_t *vp;
1844
1845 ASSERT(*nm != '\0');
1846 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
1847
1848 /*
1849 * Lookup this name in the DNLC. If successful, then validate
1850 * the caches and then recheck the DNLC. The DNLC is rechecked
1851 * just in case this entry got invalidated during the call
1852 * to nfs_validate_caches.
1853 *
1854 * An assumption is being made that it is safe to say that a
1855 * file exists which may not on the server. Any operations to
1856 * the server will fail with ESTALE.
1857 */
1858 #ifdef DEBUG
1859 nfs_lookup_dnlc_lookups++;
1860 #endif
1861 vp = dnlc_lookup(dvp, nm);
1862 if (vp != NULL) {
1863 VN_RELE(vp);
1864 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) {
1865 PURGE_ATTRCACHE(dvp);
1866 }
1867 error = nfs_validate_caches(dvp, cr);
1868 if (error)
1869 return (error);
1870 vp = dnlc_lookup(dvp, nm);
1871 if (vp != NULL) {
1872 error = nfs_access(dvp, VEXEC, 0, cr, NULL);
1873 if (error) {
1874 VN_RELE(vp);
1875 return (error);
1876 }
1877 if (vp == DNLC_NO_VNODE) {
1878 VN_RELE(vp);
1879 #ifdef DEBUG
1880 nfs_lookup_dnlc_neg_hits++;
1881 #endif
1882 return (ENOENT);
1883 }
1884 *vpp = vp;
1885 #ifdef DEBUG
1886 nfs_lookup_dnlc_hits++;
1887 #endif
1888 return (0);
1889 }
1890 #ifdef DEBUG
1891 nfs_lookup_dnlc_disappears++;
1892 #endif
1893 }
1894 #ifdef DEBUG
1895 else
1896 nfs_lookup_dnlc_misses++;
1897 #endif
1898
1899 *vpp = NULL;
1900
1901 return (0);
1902 }
1903
1904 static int
nfslookup_otw(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr,int rfscall_flags)1905 nfslookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
1906 int rfscall_flags)
1907 {
1908 int error;
1909 struct nfsdiropargs da;
1910 struct nfsdiropres dr;
1911 int douprintf;
1912 failinfo_t fi;
1913 hrtime_t t;
1914
1915 ASSERT(*nm != '\0');
1916 ASSERT(dvp->v_type == VDIR);
1917 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
1918
1919 setdiropargs(&da, nm, dvp);
1920
1921 fi.vp = dvp;
1922 fi.fhp = NULL; /* no need to update, filehandle not copied */
1923 fi.copyproc = nfscopyfh;
1924 fi.lookupproc = nfslookup;
1925 fi.xattrdirproc = acl_getxattrdir2;
1926
1927 douprintf = 1;
1928
1929 t = gethrtime();
1930
1931 error = rfs2call(VTOMI(dvp), RFS_LOOKUP,
1932 xdr_diropargs, (caddr_t)&da,
1933 xdr_diropres, (caddr_t)&dr, cr,
1934 &douprintf, &dr.dr_status, rfscall_flags, &fi);
1935
1936 if (!error) {
1937 error = geterrno(dr.dr_status);
1938 if (!error) {
1939 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr,
1940 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
1941 /*
1942 * If NFS_ACL is supported on the server, then the
1943 * attributes returned by server may have minimal
1944 * permissions sometimes denying access to users having
1945 * proper access. To get the proper attributes, mark
1946 * the attributes as expired so that they will be
1947 * regotten via the NFS_ACL GETATTR2 procedure.
1948 */
1949 if (VTOMI(*vpp)->mi_flags & MI_ACL) {
1950 PURGE_ATTRCACHE(*vpp);
1951 }
1952 if (!(rfscall_flags & RFSCALL_SOFT))
1953 dnlc_update(dvp, nm, *vpp);
1954 } else {
1955 PURGE_STALE_FH(error, dvp, cr);
1956 if (error == ENOENT && nfs_lookup_neg_cache)
1957 dnlc_enter(dvp, nm, DNLC_NO_VNODE);
1958 }
1959 }
1960
1961 return (error);
1962 }
1963
1964 /* ARGSUSED */
1965 static int
nfs_create(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr,int lfaware,caller_context_t * ct,vsecattr_t * vsecp)1966 nfs_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
1967 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct,
1968 vsecattr_t *vsecp)
1969 {
1970 int error;
1971 struct nfscreatargs args;
1972 struct nfsdiropres dr;
1973 int douprintf;
1974 vnode_t *vp;
1975 rnode_t *rp;
1976 struct vattr vattr;
1977 rnode_t *drp;
1978 vnode_t *tempvp;
1979 hrtime_t t;
1980
1981 drp = VTOR(dvp);
1982
1983 if (nfs_zone() != VTOMI(dvp)->mi_zone)
1984 return (EPERM);
1985 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
1986 return (EINTR);
1987
1988 /*
1989 * We make a copy of the attributes because the caller does not
1990 * expect us to change what va points to.
1991 */
1992 vattr = *va;
1993
1994 /*
1995 * If the pathname is "", just use dvp. Don't need
1996 * to send it over the wire, look it up in the dnlc,
1997 * or perform any access checks.
1998 */
1999 if (*nm == '\0') {
2000 error = 0;
2001 VN_HOLD(dvp);
2002 vp = dvp;
2003 /*
2004 * If the pathname is ".", just use dvp. Don't need
2005 * to send it over the wire or look it up in the dnlc,
2006 * just need to check access.
2007 */
2008 } else if (strcmp(nm, ".") == 0) {
2009 error = nfs_access(dvp, VEXEC, 0, cr, ct);
2010 if (error) {
2011 nfs_rw_exit(&drp->r_rwlock);
2012 return (error);
2013 }
2014 VN_HOLD(dvp);
2015 vp = dvp;
2016 /*
2017 * We need to go over the wire, just to be sure whether the
2018 * file exists or not. Using the DNLC can be dangerous in
2019 * this case when making a decision regarding existence.
2020 */
2021 } else {
2022 error = nfslookup_otw(dvp, nm, &vp, cr, 0);
2023 }
2024 if (!error) {
2025 if (exclusive == EXCL)
2026 error = EEXIST;
2027 else if (vp->v_type == VDIR && (mode & VWRITE))
2028 error = EISDIR;
2029 else {
2030 /*
2031 * If vnode is a device, create special vnode.
2032 */
2033 if (IS_DEVVP(vp)) {
2034 tempvp = vp;
2035 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2036 VN_RELE(tempvp);
2037 }
2038 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
2039 if ((vattr.va_mask & AT_SIZE) &&
2040 vp->v_type == VREG) {
2041 vattr.va_mask = AT_SIZE;
2042 error = nfssetattr(vp, &vattr, 0, cr);
2043
2044 if (!error) {
2045 /*
2046 * Existing file was truncated;
2047 * emit a create event.
2048 */
2049 vnevent_create(vp, ct);
2050 }
2051 }
2052 }
2053 }
2054 nfs_rw_exit(&drp->r_rwlock);
2055 if (error) {
2056 VN_RELE(vp);
2057 } else {
2058 *vpp = vp;
2059 }
2060 return (error);
2061 }
2062
2063 ASSERT(vattr.va_mask & AT_TYPE);
2064 if (vattr.va_type == VREG) {
2065 ASSERT(vattr.va_mask & AT_MODE);
2066 if (MANDMODE(vattr.va_mode)) {
2067 nfs_rw_exit(&drp->r_rwlock);
2068 return (EACCES);
2069 }
2070 }
2071
2072 dnlc_remove(dvp, nm);
2073
2074 setdiropargs(&args.ca_da, nm, dvp);
2075
2076 /*
2077 * Decide what the group-id of the created file should be.
2078 * Set it in attribute list as advisory...then do a setattr
2079 * if the server didn't get it right the first time.
2080 */
2081 error = setdirgid(dvp, &vattr.va_gid, cr);
2082 if (error) {
2083 nfs_rw_exit(&drp->r_rwlock);
2084 return (error);
2085 }
2086 vattr.va_mask |= AT_GID;
2087
2088 /*
2089 * This is a completely gross hack to make mknod
2090 * work over the wire until we can wack the protocol
2091 */
2092 #define IFCHR 0020000 /* character special */
2093 #define IFBLK 0060000 /* block special */
2094 #define IFSOCK 0140000 /* socket */
2095
2096 /*
2097 * dev_t is uint_t in 5.x and short in 4.x. Both 4.x
2098 * supports 8 bit majors. 5.x supports 14 bit majors. 5.x supports 18
2099 * bits in the minor number where 4.x supports 8 bits. If the 5.x
2100 * minor/major numbers <= 8 bits long, compress the device
2101 * number before sending it. Otherwise, the 4.x server will not
2102 * create the device with the correct device number and nothing can be
2103 * done about this.
2104 */
2105 if (vattr.va_type == VCHR || vattr.va_type == VBLK) {
2106 dev_t d = vattr.va_rdev;
2107 dev32_t dev32;
2108
2109 if (vattr.va_type == VCHR)
2110 vattr.va_mode |= IFCHR;
2111 else
2112 vattr.va_mode |= IFBLK;
2113
2114 (void) cmpldev(&dev32, d);
2115 if (dev32 & ~((SO4_MAXMAJ << L_BITSMINOR32) | SO4_MAXMIN))
2116 vattr.va_size = (u_offset_t)dev32;
2117 else
2118 vattr.va_size = (u_offset_t)nfsv2_cmpdev(d);
2119
2120 vattr.va_mask |= AT_MODE|AT_SIZE;
2121 } else if (vattr.va_type == VFIFO) {
2122 vattr.va_mode |= IFCHR; /* xtra kludge for namedpipe */
2123 vattr.va_size = (u_offset_t)NFS_FIFO_DEV; /* blech */
2124 vattr.va_mask |= AT_MODE|AT_SIZE;
2125 } else if (vattr.va_type == VSOCK) {
2126 vattr.va_mode |= IFSOCK;
2127 /*
2128 * To avoid triggering bugs in the servers set AT_SIZE
2129 * (all other RFS_CREATE calls set this).
2130 */
2131 vattr.va_size = 0;
2132 vattr.va_mask |= AT_MODE|AT_SIZE;
2133 }
2134
2135 args.ca_sa = &args.ca_sa_buf;
2136 error = vattr_to_sattr(&vattr, args.ca_sa);
2137 if (error) {
2138 /* req time field(s) overflow - return immediately */
2139 nfs_rw_exit(&drp->r_rwlock);
2140 return (error);
2141 }
2142
2143 douprintf = 1;
2144
2145 t = gethrtime();
2146
2147 error = rfs2call(VTOMI(dvp), RFS_CREATE,
2148 xdr_creatargs, (caddr_t)&args,
2149 xdr_diropres, (caddr_t)&dr, cr,
2150 &douprintf, &dr.dr_status, 0, NULL);
2151
2152 PURGE_ATTRCACHE(dvp); /* mod time changed */
2153
2154 if (!error) {
2155 error = geterrno(dr.dr_status);
2156 if (!error) {
2157 if (HAVE_RDDIR_CACHE(drp))
2158 nfs_purge_rddir_cache(dvp);
2159 vp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr,
2160 dvp->v_vfsp, t, cr, NULL, NULL);
2161 /*
2162 * If NFS_ACL is supported on the server, then the
2163 * attributes returned by server may have minimal
2164 * permissions sometimes denying access to users having
2165 * proper access. To get the proper attributes, mark
2166 * the attributes as expired so that they will be
2167 * regotten via the NFS_ACL GETATTR2 procedure.
2168 */
2169 if (VTOMI(vp)->mi_flags & MI_ACL) {
2170 PURGE_ATTRCACHE(vp);
2171 }
2172 dnlc_update(dvp, nm, vp);
2173 rp = VTOR(vp);
2174 if (vattr.va_size == 0) {
2175 mutex_enter(&rp->r_statelock);
2176 rp->r_size = 0;
2177 mutex_exit(&rp->r_statelock);
2178 if (vn_has_cached_data(vp)) {
2179 ASSERT(vp->v_type != VCHR);
2180 nfs_invalidate_pages(vp,
2181 (u_offset_t)0, cr);
2182 }
2183 }
2184
2185 /*
2186 * Make sure the gid was set correctly.
2187 * If not, try to set it (but don't lose
2188 * any sleep over it).
2189 */
2190 if (vattr.va_gid != rp->r_attr.va_gid) {
2191 vattr.va_mask = AT_GID;
2192 (void) nfssetattr(vp, &vattr, 0, cr);
2193 }
2194
2195 /*
2196 * If vnode is a device create special vnode
2197 */
2198 if (IS_DEVVP(vp)) {
2199 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2200 VN_RELE(vp);
2201 } else
2202 *vpp = vp;
2203 } else {
2204 PURGE_STALE_FH(error, dvp, cr);
2205 }
2206 }
2207
2208 nfs_rw_exit(&drp->r_rwlock);
2209
2210 return (error);
2211 }
2212
2213 /*
2214 * Weirdness: if the vnode to be removed is open
2215 * we rename it instead of removing it and nfs_inactive
2216 * will remove the new name.
2217 */
2218 /* ARGSUSED */
2219 static int
nfs_remove(vnode_t * dvp,char * nm,cred_t * cr,caller_context_t * ct,int flags)2220 nfs_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
2221 {
2222 int error;
2223 struct nfsdiropargs da;
2224 enum nfsstat status;
2225 vnode_t *vp;
2226 char *tmpname;
2227 int douprintf;
2228 rnode_t *rp;
2229 rnode_t *drp;
2230
2231 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2232 return (EPERM);
2233 drp = VTOR(dvp);
2234 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2235 return (EINTR);
2236
2237 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2238 if (error) {
2239 nfs_rw_exit(&drp->r_rwlock);
2240 return (error);
2241 }
2242
2243 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) {
2244 VN_RELE(vp);
2245 nfs_rw_exit(&drp->r_rwlock);
2246 return (EPERM);
2247 }
2248
2249 /*
2250 * First just remove the entry from the name cache, as it
2251 * is most likely the only entry for this vp.
2252 */
2253 dnlc_remove(dvp, nm);
2254
2255 /*
2256 * If the file has a v_count > 1 then there may be more than one
2257 * entry in the name cache due multiple links or an open file,
2258 * but we don't have the real reference count so flush all
2259 * possible entries.
2260 */
2261 if (vp->v_count > 1)
2262 dnlc_purge_vp(vp);
2263
2264 /*
2265 * Now we have the real reference count on the vnode
2266 */
2267 rp = VTOR(vp);
2268 mutex_enter(&rp->r_statelock);
2269 if (vp->v_count > 1 &&
2270 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
2271 mutex_exit(&rp->r_statelock);
2272 tmpname = newname();
2273 error = nfsrename(dvp, nm, dvp, tmpname, cr, ct);
2274 if (error)
2275 kmem_free(tmpname, MAXNAMELEN);
2276 else {
2277 mutex_enter(&rp->r_statelock);
2278 if (rp->r_unldvp == NULL) {
2279 VN_HOLD(dvp);
2280 rp->r_unldvp = dvp;
2281 if (rp->r_unlcred != NULL)
2282 crfree(rp->r_unlcred);
2283 crhold(cr);
2284 rp->r_unlcred = cr;
2285 rp->r_unlname = tmpname;
2286 } else {
2287 kmem_free(rp->r_unlname, MAXNAMELEN);
2288 rp->r_unlname = tmpname;
2289 }
2290 mutex_exit(&rp->r_statelock);
2291 }
2292 } else {
2293 mutex_exit(&rp->r_statelock);
2294 /*
2295 * We need to flush any dirty pages which happen to
2296 * be hanging around before removing the file. This
2297 * shouldn't happen very often and mostly on file
2298 * systems mounted "nocto".
2299 */
2300 if (vn_has_cached_data(vp) &&
2301 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
2302 error = nfs_putpage(vp, (offset_t)0, 0, 0, cr, ct);
2303 if (error && (error == ENOSPC || error == EDQUOT)) {
2304 mutex_enter(&rp->r_statelock);
2305 if (!rp->r_error)
2306 rp->r_error = error;
2307 mutex_exit(&rp->r_statelock);
2308 }
2309 }
2310
2311 setdiropargs(&da, nm, dvp);
2312
2313 douprintf = 1;
2314
2315 error = rfs2call(VTOMI(dvp), RFS_REMOVE,
2316 xdr_diropargs, (caddr_t)&da,
2317 xdr_enum, (caddr_t)&status, cr,
2318 &douprintf, &status, 0, NULL);
2319
2320 /*
2321 * The xattr dir may be gone after last attr is removed,
2322 * so flush it from dnlc.
2323 */
2324 if (dvp->v_flag & V_XATTRDIR)
2325 dnlc_purge_vp(dvp);
2326
2327 PURGE_ATTRCACHE(dvp); /* mod time changed */
2328 PURGE_ATTRCACHE(vp); /* link count changed */
2329
2330 if (!error) {
2331 error = geterrno(status);
2332 if (!error) {
2333 if (HAVE_RDDIR_CACHE(drp))
2334 nfs_purge_rddir_cache(dvp);
2335 } else {
2336 PURGE_STALE_FH(error, dvp, cr);
2337 }
2338 }
2339 }
2340
2341 if (error == 0) {
2342 vnevent_remove(vp, dvp, nm, ct);
2343 }
2344 VN_RELE(vp);
2345
2346 nfs_rw_exit(&drp->r_rwlock);
2347
2348 return (error);
2349 }
2350
2351 /* ARGSUSED */
2352 static int
nfs_link(vnode_t * tdvp,vnode_t * svp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)2353 nfs_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
2354 caller_context_t *ct, int flags)
2355 {
2356 int error;
2357 struct nfslinkargs args;
2358 enum nfsstat status;
2359 vnode_t *realvp;
2360 int douprintf;
2361 rnode_t *tdrp;
2362
2363 if (nfs_zone() != VTOMI(tdvp)->mi_zone)
2364 return (EPERM);
2365 if (VOP_REALVP(svp, &realvp, ct) == 0)
2366 svp = realvp;
2367
2368 args.la_from = VTOFH(svp);
2369 setdiropargs(&args.la_to, tnm, tdvp);
2370
2371 tdrp = VTOR(tdvp);
2372 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp)))
2373 return (EINTR);
2374
2375 dnlc_remove(tdvp, tnm);
2376
2377 douprintf = 1;
2378
2379 error = rfs2call(VTOMI(svp), RFS_LINK,
2380 xdr_linkargs, (caddr_t)&args,
2381 xdr_enum, (caddr_t)&status, cr,
2382 &douprintf, &status, 0, NULL);
2383
2384 PURGE_ATTRCACHE(tdvp); /* mod time changed */
2385 PURGE_ATTRCACHE(svp); /* link count changed */
2386
2387 if (!error) {
2388 error = geterrno(status);
2389 if (!error) {
2390 if (HAVE_RDDIR_CACHE(tdrp))
2391 nfs_purge_rddir_cache(tdvp);
2392 }
2393 }
2394
2395 nfs_rw_exit(&tdrp->r_rwlock);
2396
2397 if (!error) {
2398 /*
2399 * Notify the source file of this link operation.
2400 */
2401 vnevent_link(svp, ct);
2402 }
2403 return (error);
2404 }
2405
2406 /* ARGSUSED */
2407 static int
nfs_rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct,int flags)2408 nfs_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
2409 caller_context_t *ct, int flags)
2410 {
2411 vnode_t *realvp;
2412
2413 if (nfs_zone() != VTOMI(odvp)->mi_zone)
2414 return (EPERM);
2415 if (VOP_REALVP(ndvp, &realvp, ct) == 0)
2416 ndvp = realvp;
2417
2418 return (nfsrename(odvp, onm, ndvp, nnm, cr, ct));
2419 }
2420
2421 /*
2422 * nfsrename does the real work of renaming in NFS Version 2.
2423 */
2424 static int
nfsrename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct)2425 nfsrename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
2426 caller_context_t *ct)
2427 {
2428 int error;
2429 enum nfsstat status;
2430 struct nfsrnmargs args;
2431 int douprintf;
2432 vnode_t *nvp = NULL;
2433 vnode_t *ovp = NULL;
2434 char *tmpname;
2435 rnode_t *rp;
2436 rnode_t *odrp;
2437 rnode_t *ndrp;
2438
2439 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone);
2440 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 ||
2441 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0)
2442 return (EINVAL);
2443
2444 odrp = VTOR(odvp);
2445 ndrp = VTOR(ndvp);
2446 if ((intptr_t)odrp < (intptr_t)ndrp) {
2447 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp)))
2448 return (EINTR);
2449 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) {
2450 nfs_rw_exit(&odrp->r_rwlock);
2451 return (EINTR);
2452 }
2453 } else {
2454 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp)))
2455 return (EINTR);
2456 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) {
2457 nfs_rw_exit(&ndrp->r_rwlock);
2458 return (EINTR);
2459 }
2460 }
2461
2462 /*
2463 * Lookup the target file. If it exists, it needs to be
2464 * checked to see whether it is a mount point and whether
2465 * it is active (open).
2466 */
2467 error = nfslookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0);
2468 if (!error) {
2469 /*
2470 * If this file has been mounted on, then just
2471 * return busy because renaming to it would remove
2472 * the mounted file system from the name space.
2473 */
2474 if (vn_mountedvfs(nvp) != NULL) {
2475 VN_RELE(nvp);
2476 nfs_rw_exit(&odrp->r_rwlock);
2477 nfs_rw_exit(&ndrp->r_rwlock);
2478 return (EBUSY);
2479 }
2480
2481 /*
2482 * Purge the name cache of all references to this vnode
2483 * so that we can check the reference count to infer
2484 * whether it is active or not.
2485 */
2486 /*
2487 * First just remove the entry from the name cache, as it
2488 * is most likely the only entry for this vp.
2489 */
2490 dnlc_remove(ndvp, nnm);
2491 /*
2492 * If the file has a v_count > 1 then there may be more
2493 * than one entry in the name cache due multiple links
2494 * or an open file, but we don't have the real reference
2495 * count so flush all possible entries.
2496 */
2497 if (nvp->v_count > 1)
2498 dnlc_purge_vp(nvp);
2499
2500 /*
2501 * If the vnode is active and is not a directory,
2502 * arrange to rename it to a
2503 * temporary file so that it will continue to be
2504 * accessible. This implements the "unlink-open-file"
2505 * semantics for the target of a rename operation.
2506 * Before doing this though, make sure that the
2507 * source and target files are not already the same.
2508 */
2509 if (nvp->v_count > 1 && nvp->v_type != VDIR) {
2510 /*
2511 * Lookup the source name.
2512 */
2513 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL,
2514 cr, 0);
2515
2516 /*
2517 * The source name *should* already exist.
2518 */
2519 if (error) {
2520 VN_RELE(nvp);
2521 nfs_rw_exit(&odrp->r_rwlock);
2522 nfs_rw_exit(&ndrp->r_rwlock);
2523 return (error);
2524 }
2525
2526 /*
2527 * Compare the two vnodes. If they are the same,
2528 * just release all held vnodes and return success.
2529 */
2530 if (ovp == nvp) {
2531 VN_RELE(ovp);
2532 VN_RELE(nvp);
2533 nfs_rw_exit(&odrp->r_rwlock);
2534 nfs_rw_exit(&ndrp->r_rwlock);
2535 return (0);
2536 }
2537
2538 /*
2539 * Can't mix and match directories and non-
2540 * directories in rename operations. We already
2541 * know that the target is not a directory. If
2542 * the source is a directory, return an error.
2543 */
2544 if (ovp->v_type == VDIR) {
2545 VN_RELE(ovp);
2546 VN_RELE(nvp);
2547 nfs_rw_exit(&odrp->r_rwlock);
2548 nfs_rw_exit(&ndrp->r_rwlock);
2549 return (ENOTDIR);
2550 }
2551
2552 /*
2553 * The target file exists, is not the same as
2554 * the source file, and is active. Link it
2555 * to a temporary filename to avoid having
2556 * the server removing the file completely.
2557 */
2558 tmpname = newname();
2559 error = nfs_link(ndvp, nvp, tmpname, cr, NULL, 0);
2560 if (error == EOPNOTSUPP) {
2561 error = nfs_rename(ndvp, nnm, ndvp, tmpname,
2562 cr, NULL, 0);
2563 }
2564 if (error) {
2565 kmem_free(tmpname, MAXNAMELEN);
2566 VN_RELE(ovp);
2567 VN_RELE(nvp);
2568 nfs_rw_exit(&odrp->r_rwlock);
2569 nfs_rw_exit(&ndrp->r_rwlock);
2570 return (error);
2571 }
2572 rp = VTOR(nvp);
2573 mutex_enter(&rp->r_statelock);
2574 if (rp->r_unldvp == NULL) {
2575 VN_HOLD(ndvp);
2576 rp->r_unldvp = ndvp;
2577 if (rp->r_unlcred != NULL)
2578 crfree(rp->r_unlcred);
2579 crhold(cr);
2580 rp->r_unlcred = cr;
2581 rp->r_unlname = tmpname;
2582 } else {
2583 kmem_free(rp->r_unlname, MAXNAMELEN);
2584 rp->r_unlname = tmpname;
2585 }
2586 mutex_exit(&rp->r_statelock);
2587 }
2588 }
2589
2590 if (ovp == NULL) {
2591 /*
2592 * When renaming directories to be a subdirectory of a
2593 * different parent, the dnlc entry for ".." will no
2594 * longer be valid, so it must be removed.
2595 *
2596 * We do a lookup here to determine whether we are renaming
2597 * a directory and we need to check if we are renaming
2598 * an unlinked file. This might have already been done
2599 * in previous code, so we check ovp == NULL to avoid
2600 * doing it twice.
2601 */
2602
2603 error = nfslookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0);
2604
2605 /*
2606 * The source name *should* already exist.
2607 */
2608 if (error) {
2609 nfs_rw_exit(&odrp->r_rwlock);
2610 nfs_rw_exit(&ndrp->r_rwlock);
2611 if (nvp) {
2612 VN_RELE(nvp);
2613 }
2614 return (error);
2615 }
2616 ASSERT(ovp != NULL);
2617 }
2618
2619 dnlc_remove(odvp, onm);
2620 dnlc_remove(ndvp, nnm);
2621
2622 setdiropargs(&args.rna_from, onm, odvp);
2623 setdiropargs(&args.rna_to, nnm, ndvp);
2624
2625 douprintf = 1;
2626
2627 error = rfs2call(VTOMI(odvp), RFS_RENAME,
2628 xdr_rnmargs, (caddr_t)&args,
2629 xdr_enum, (caddr_t)&status, cr,
2630 &douprintf, &status, 0, NULL);
2631
2632 PURGE_ATTRCACHE(odvp); /* mod time changed */
2633 PURGE_ATTRCACHE(ndvp); /* mod time changed */
2634
2635 if (!error) {
2636 error = geterrno(status);
2637 if (!error) {
2638 if (HAVE_RDDIR_CACHE(odrp))
2639 nfs_purge_rddir_cache(odvp);
2640 if (HAVE_RDDIR_CACHE(ndrp))
2641 nfs_purge_rddir_cache(ndvp);
2642 /*
2643 * when renaming directories to be a subdirectory of a
2644 * different parent, the dnlc entry for ".." will no
2645 * longer be valid, so it must be removed
2646 */
2647 rp = VTOR(ovp);
2648 if (ndvp != odvp) {
2649 if (ovp->v_type == VDIR) {
2650 dnlc_remove(ovp, "..");
2651 if (HAVE_RDDIR_CACHE(rp))
2652 nfs_purge_rddir_cache(ovp);
2653 }
2654 }
2655
2656 /*
2657 * If we are renaming the unlinked file, update the
2658 * r_unldvp and r_unlname as needed.
2659 */
2660 mutex_enter(&rp->r_statelock);
2661 if (rp->r_unldvp != NULL) {
2662 if (strcmp(rp->r_unlname, onm) == 0) {
2663 (void) strncpy(rp->r_unlname,
2664 nnm, MAXNAMELEN);
2665 rp->r_unlname[MAXNAMELEN - 1] = '\0';
2666
2667 if (ndvp != rp->r_unldvp) {
2668 VN_RELE(rp->r_unldvp);
2669 rp->r_unldvp = ndvp;
2670 VN_HOLD(ndvp);
2671 }
2672 }
2673 }
2674 mutex_exit(&rp->r_statelock);
2675 } else {
2676 /*
2677 * System V defines rename to return EEXIST, not
2678 * ENOTEMPTY if the target directory is not empty.
2679 * Over the wire, the error is NFSERR_ENOTEMPTY
2680 * which geterrno maps to ENOTEMPTY.
2681 */
2682 if (error == ENOTEMPTY)
2683 error = EEXIST;
2684 }
2685 }
2686
2687 if (error == 0) {
2688 if (nvp)
2689 vnevent_rename_dest(nvp, ndvp, nnm, ct);
2690
2691 if (odvp != ndvp)
2692 vnevent_rename_dest_dir(ndvp, ct);
2693
2694 ASSERT(ovp != NULL);
2695 vnevent_rename_src(ovp, odvp, onm, ct);
2696 }
2697
2698 if (nvp) {
2699 VN_RELE(nvp);
2700 }
2701 VN_RELE(ovp);
2702
2703 nfs_rw_exit(&odrp->r_rwlock);
2704 nfs_rw_exit(&ndrp->r_rwlock);
2705
2706 return (error);
2707 }
2708
2709 /* ARGSUSED */
2710 static int
nfs_mkdir(vnode_t * dvp,char * nm,struct vattr * va,vnode_t ** vpp,cred_t * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)2711 nfs_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
2712 caller_context_t *ct, int flags, vsecattr_t *vsecp)
2713 {
2714 int error;
2715 struct nfscreatargs args;
2716 struct nfsdiropres dr;
2717 int douprintf;
2718 rnode_t *drp;
2719 hrtime_t t;
2720
2721 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2722 return (EPERM);
2723
2724 setdiropargs(&args.ca_da, nm, dvp);
2725
2726 /*
2727 * Decide what the group-id and set-gid bit of the created directory
2728 * should be. May have to do a setattr to get the gid right.
2729 */
2730 error = setdirgid(dvp, &va->va_gid, cr);
2731 if (error)
2732 return (error);
2733 error = setdirmode(dvp, &va->va_mode, cr);
2734 if (error)
2735 return (error);
2736 va->va_mask |= AT_MODE|AT_GID;
2737
2738 args.ca_sa = &args.ca_sa_buf;
2739 error = vattr_to_sattr(va, args.ca_sa);
2740 if (error) {
2741 /* req time field(s) overflow - return immediately */
2742 return (error);
2743 }
2744
2745 drp = VTOR(dvp);
2746 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2747 return (EINTR);
2748
2749 dnlc_remove(dvp, nm);
2750
2751 douprintf = 1;
2752
2753 t = gethrtime();
2754
2755 error = rfs2call(VTOMI(dvp), RFS_MKDIR,
2756 xdr_creatargs, (caddr_t)&args,
2757 xdr_diropres, (caddr_t)&dr, cr,
2758 &douprintf, &dr.dr_status, 0, NULL);
2759
2760 PURGE_ATTRCACHE(dvp); /* mod time changed */
2761
2762 if (!error) {
2763 error = geterrno(dr.dr_status);
2764 if (!error) {
2765 if (HAVE_RDDIR_CACHE(drp))
2766 nfs_purge_rddir_cache(dvp);
2767 /*
2768 * The attributes returned by RFS_MKDIR can not
2769 * be depended upon, so mark the attribute cache
2770 * as purged. A subsequent GETATTR will get the
2771 * correct attributes from the server.
2772 */
2773 *vpp = makenfsnode(&dr.dr_fhandle, &dr.dr_attr,
2774 dvp->v_vfsp, t, cr, NULL, NULL);
2775 PURGE_ATTRCACHE(*vpp);
2776 dnlc_update(dvp, nm, *vpp);
2777
2778 /*
2779 * Make sure the gid was set correctly.
2780 * If not, try to set it (but don't lose
2781 * any sleep over it).
2782 */
2783 if (va->va_gid != VTOR(*vpp)->r_attr.va_gid) {
2784 va->va_mask = AT_GID;
2785 (void) nfssetattr(*vpp, va, 0, cr);
2786 }
2787 } else {
2788 PURGE_STALE_FH(error, dvp, cr);
2789 }
2790 }
2791
2792 nfs_rw_exit(&drp->r_rwlock);
2793
2794 return (error);
2795 }
2796
2797 /* ARGSUSED */
2798 static int
nfs_rmdir(vnode_t * dvp,char * nm,vnode_t * cdir,cred_t * cr,caller_context_t * ct,int flags)2799 nfs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
2800 caller_context_t *ct, int flags)
2801 {
2802 int error;
2803 enum nfsstat status;
2804 struct nfsdiropargs da;
2805 vnode_t *vp;
2806 int douprintf;
2807 rnode_t *drp;
2808
2809 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2810 return (EPERM);
2811 drp = VTOR(dvp);
2812 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2813 return (EINTR);
2814
2815 /*
2816 * Attempt to prevent a rmdir(".") from succeeding.
2817 */
2818 error = nfslookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2819 if (error) {
2820 nfs_rw_exit(&drp->r_rwlock);
2821 return (error);
2822 }
2823
2824 if (vp == cdir) {
2825 VN_RELE(vp);
2826 nfs_rw_exit(&drp->r_rwlock);
2827 return (EINVAL);
2828 }
2829
2830 setdiropargs(&da, nm, dvp);
2831
2832 /*
2833 * First just remove the entry from the name cache, as it
2834 * is most likely an entry for this vp.
2835 */
2836 dnlc_remove(dvp, nm);
2837
2838 /*
2839 * If there vnode reference count is greater than one, then
2840 * there may be additional references in the DNLC which will
2841 * need to be purged. First, trying removing the entry for
2842 * the parent directory and see if that removes the additional
2843 * reference(s). If that doesn't do it, then use dnlc_purge_vp
2844 * to completely remove any references to the directory which
2845 * might still exist in the DNLC.
2846 */
2847 if (vp->v_count > 1) {
2848 dnlc_remove(vp, "..");
2849 if (vp->v_count > 1)
2850 dnlc_purge_vp(vp);
2851 }
2852
2853 douprintf = 1;
2854
2855 error = rfs2call(VTOMI(dvp), RFS_RMDIR,
2856 xdr_diropargs, (caddr_t)&da,
2857 xdr_enum, (caddr_t)&status, cr,
2858 &douprintf, &status, 0, NULL);
2859
2860 PURGE_ATTRCACHE(dvp); /* mod time changed */
2861
2862 if (error) {
2863 VN_RELE(vp);
2864 nfs_rw_exit(&drp->r_rwlock);
2865 return (error);
2866 }
2867
2868 error = geterrno(status);
2869 if (!error) {
2870 if (HAVE_RDDIR_CACHE(drp))
2871 nfs_purge_rddir_cache(dvp);
2872 if (HAVE_RDDIR_CACHE(VTOR(vp)))
2873 nfs_purge_rddir_cache(vp);
2874 } else {
2875 PURGE_STALE_FH(error, dvp, cr);
2876 /*
2877 * System V defines rmdir to return EEXIST, not
2878 * ENOTEMPTY if the directory is not empty. Over
2879 * the wire, the error is NFSERR_ENOTEMPTY which
2880 * geterrno maps to ENOTEMPTY.
2881 */
2882 if (error == ENOTEMPTY)
2883 error = EEXIST;
2884 }
2885
2886 if (error == 0) {
2887 vnevent_rmdir(vp, dvp, nm, ct);
2888 }
2889 VN_RELE(vp);
2890
2891 nfs_rw_exit(&drp->r_rwlock);
2892
2893 return (error);
2894 }
2895
2896 /* ARGSUSED */
2897 static int
nfs_symlink(vnode_t * dvp,char * lnm,struct vattr * tva,char * tnm,cred_t * cr,caller_context_t * ct,int flags)2898 nfs_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
2899 caller_context_t *ct, int flags)
2900 {
2901 int error;
2902 struct nfsslargs args;
2903 enum nfsstat status;
2904 int douprintf;
2905 rnode_t *drp;
2906
2907 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2908 return (EPERM);
2909 setdiropargs(&args.sla_from, lnm, dvp);
2910 args.sla_sa = &args.sla_sa_buf;
2911 error = vattr_to_sattr(tva, args.sla_sa);
2912 if (error) {
2913 /* req time field(s) overflow - return immediately */
2914 return (error);
2915 }
2916 args.sla_tnm = tnm;
2917
2918 drp = VTOR(dvp);
2919 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2920 return (EINTR);
2921
2922 dnlc_remove(dvp, lnm);
2923
2924 douprintf = 1;
2925
2926 error = rfs2call(VTOMI(dvp), RFS_SYMLINK,
2927 xdr_slargs, (caddr_t)&args,
2928 xdr_enum, (caddr_t)&status, cr,
2929 &douprintf, &status, 0, NULL);
2930
2931 PURGE_ATTRCACHE(dvp); /* mod time changed */
2932
2933 if (!error) {
2934 error = geterrno(status);
2935 if (!error) {
2936 if (HAVE_RDDIR_CACHE(drp))
2937 nfs_purge_rddir_cache(dvp);
2938 } else {
2939 PURGE_STALE_FH(error, dvp, cr);
2940 }
2941 }
2942
2943 nfs_rw_exit(&drp->r_rwlock);
2944
2945 return (error);
2946 }
2947
2948 #ifdef DEBUG
2949 static int nfs_readdir_cache_hits = 0;
2950 static int nfs_readdir_cache_shorts = 0;
2951 static int nfs_readdir_cache_waits = 0;
2952 static int nfs_readdir_cache_misses = 0;
2953 static int nfs_readdir_readahead = 0;
2954 #endif
2955
2956 static int nfs_shrinkreaddir = 0;
2957
2958 /*
2959 * Read directory entries.
2960 * There are some weird things to look out for here. The uio_offset
2961 * field is either 0 or it is the offset returned from a previous
2962 * readdir. It is an opaque value used by the server to find the
2963 * correct directory block to read. The count field is the number
2964 * of blocks to read on the server. This is advisory only, the server
2965 * may return only one block's worth of entries. Entries may be compressed
2966 * on the server.
2967 */
2968 /* ARGSUSED */
2969 static int
nfs_readdir(vnode_t * vp,struct uio * uiop,cred_t * cr,int * eofp,caller_context_t * ct,int flags)2970 nfs_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
2971 caller_context_t *ct, int flags)
2972 {
2973 int error;
2974 size_t count;
2975 rnode_t *rp;
2976 rddir_cache *rdc;
2977 rddir_cache *nrdc;
2978 rddir_cache *rrdc;
2979 #ifdef DEBUG
2980 int missed;
2981 #endif
2982 rddir_cache srdc;
2983 avl_index_t where;
2984
2985 rp = VTOR(vp);
2986
2987 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
2988 if (nfs_zone() != VTOMI(vp)->mi_zone)
2989 return (EIO);
2990 /*
2991 * Make sure that the directory cache is valid.
2992 */
2993 if (HAVE_RDDIR_CACHE(rp)) {
2994 if (nfs_disable_rddir_cache) {
2995 /*
2996 * Setting nfs_disable_rddir_cache in /etc/system
2997 * allows interoperability with servers that do not
2998 * properly update the attributes of directories.
2999 * Any cached information gets purged before an
3000 * access is made to it.
3001 */
3002 nfs_purge_rddir_cache(vp);
3003 } else {
3004 error = nfs_validate_caches(vp, cr);
3005 if (error)
3006 return (error);
3007 }
3008 }
3009
3010 /*
3011 * UGLINESS: SunOS 3.2 servers apparently cannot always handle an
3012 * RFS_READDIR request with rda_count set to more than 0x400. So
3013 * we reduce the request size here purely for compatibility.
3014 *
3015 * In general, this is no longer required. However, if a server
3016 * is discovered which can not handle requests larger than 1024,
3017 * nfs_shrinkreaddir can be set to 1 to enable this backwards
3018 * compatibility.
3019 *
3020 * In any case, the request size is limited to NFS_MAXDATA bytes.
3021 */
3022 count = MIN(uiop->uio_iov->iov_len,
3023 nfs_shrinkreaddir ? 0x400 : NFS_MAXDATA);
3024
3025 nrdc = NULL;
3026 #ifdef DEBUG
3027 missed = 0;
3028 #endif
3029 top:
3030 /*
3031 * Short circuit last readdir which always returns 0 bytes.
3032 * This can be done after the directory has been read through
3033 * completely at least once. This will set r_direof which
3034 * can be used to find the value of the last cookie.
3035 */
3036 mutex_enter(&rp->r_statelock);
3037 if (rp->r_direof != NULL &&
3038 uiop->uio_offset == rp->r_direof->nfs_ncookie) {
3039 mutex_exit(&rp->r_statelock);
3040 #ifdef DEBUG
3041 nfs_readdir_cache_shorts++;
3042 #endif
3043 if (eofp)
3044 *eofp = 1;
3045 if (nrdc != NULL)
3046 rddir_cache_rele(nrdc);
3047 return (0);
3048 }
3049 /*
3050 * Look for a cache entry. Cache entries are identified
3051 * by the NFS cookie value and the byte count requested.
3052 */
3053 srdc.nfs_cookie = uiop->uio_offset;
3054 srdc.buflen = count;
3055 rdc = avl_find(&rp->r_dir, &srdc, &where);
3056 if (rdc != NULL) {
3057 rddir_cache_hold(rdc);
3058 /*
3059 * If the cache entry is in the process of being
3060 * filled in, wait until this completes. The
3061 * RDDIRWAIT bit is set to indicate that someone
3062 * is waiting and then the thread currently
3063 * filling the entry is done, it should do a
3064 * cv_broadcast to wakeup all of the threads
3065 * waiting for it to finish.
3066 */
3067 if (rdc->flags & RDDIR) {
3068 nfs_rw_exit(&rp->r_rwlock);
3069 rdc->flags |= RDDIRWAIT;
3070 #ifdef DEBUG
3071 nfs_readdir_cache_waits++;
3072 #endif
3073 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) {
3074 /*
3075 * We got interrupted, probably
3076 * the user typed ^C or an alarm
3077 * fired. We free the new entry
3078 * if we allocated one.
3079 */
3080 mutex_exit(&rp->r_statelock);
3081 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3082 RW_READER, FALSE);
3083 rddir_cache_rele(rdc);
3084 if (nrdc != NULL)
3085 rddir_cache_rele(nrdc);
3086 return (EINTR);
3087 }
3088 mutex_exit(&rp->r_statelock);
3089 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3090 RW_READER, FALSE);
3091 rddir_cache_rele(rdc);
3092 goto top;
3093 }
3094 /*
3095 * Check to see if a readdir is required to
3096 * fill the entry. If so, mark this entry
3097 * as being filled, remove our reference,
3098 * and branch to the code to fill the entry.
3099 */
3100 if (rdc->flags & RDDIRREQ) {
3101 rdc->flags &= ~RDDIRREQ;
3102 rdc->flags |= RDDIR;
3103 if (nrdc != NULL)
3104 rddir_cache_rele(nrdc);
3105 nrdc = rdc;
3106 mutex_exit(&rp->r_statelock);
3107 goto bottom;
3108 }
3109 #ifdef DEBUG
3110 if (!missed)
3111 nfs_readdir_cache_hits++;
3112 #endif
3113 /*
3114 * If an error occurred while attempting
3115 * to fill the cache entry, just return it.
3116 */
3117 if (rdc->error) {
3118 error = rdc->error;
3119 mutex_exit(&rp->r_statelock);
3120 rddir_cache_rele(rdc);
3121 if (nrdc != NULL)
3122 rddir_cache_rele(nrdc);
3123 return (error);
3124 }
3125
3126 /*
3127 * The cache entry is complete and good,
3128 * copyout the dirent structs to the calling
3129 * thread.
3130 */
3131 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop);
3132
3133 /*
3134 * If no error occurred during the copyout,
3135 * update the offset in the uio struct to
3136 * contain the value of the next cookie
3137 * and set the eof value appropriately.
3138 */
3139 if (!error) {
3140 uiop->uio_offset = rdc->nfs_ncookie;
3141 if (eofp)
3142 *eofp = rdc->eof;
3143 }
3144
3145 /*
3146 * Decide whether to do readahead. Don't if
3147 * have already read to the end of directory.
3148 */
3149 if (rdc->eof) {
3150 rp->r_direof = rdc;
3151 mutex_exit(&rp->r_statelock);
3152 rddir_cache_rele(rdc);
3153 if (nrdc != NULL)
3154 rddir_cache_rele(nrdc);
3155 return (error);
3156 }
3157
3158 /*
3159 * Check to see whether we found an entry
3160 * for the readahead. If so, we don't need
3161 * to do anything further, so free the new
3162 * entry if one was allocated. Otherwise,
3163 * allocate a new entry, add it to the cache,
3164 * and then initiate an asynchronous readdir
3165 * operation to fill it.
3166 */
3167 srdc.nfs_cookie = rdc->nfs_ncookie;
3168 srdc.buflen = count;
3169 rrdc = avl_find(&rp->r_dir, &srdc, &where);
3170 if (rrdc != NULL) {
3171 if (nrdc != NULL)
3172 rddir_cache_rele(nrdc);
3173 } else {
3174 if (nrdc != NULL)
3175 rrdc = nrdc;
3176 else {
3177 rrdc = rddir_cache_alloc(KM_NOSLEEP);
3178 }
3179 if (rrdc != NULL) {
3180 rrdc->nfs_cookie = rdc->nfs_ncookie;
3181 rrdc->buflen = count;
3182 avl_insert(&rp->r_dir, rrdc, where);
3183 rddir_cache_hold(rrdc);
3184 mutex_exit(&rp->r_statelock);
3185 rddir_cache_rele(rdc);
3186 #ifdef DEBUG
3187 nfs_readdir_readahead++;
3188 #endif
3189 nfs_async_readdir(vp, rrdc, cr, nfsreaddir);
3190 return (error);
3191 }
3192 }
3193
3194 mutex_exit(&rp->r_statelock);
3195 rddir_cache_rele(rdc);
3196 return (error);
3197 }
3198
3199 /*
3200 * Didn't find an entry in the cache. Construct a new empty
3201 * entry and link it into the cache. Other processes attempting
3202 * to access this entry will need to wait until it is filled in.
3203 *
3204 * Since kmem_alloc may block, another pass through the cache
3205 * will need to be taken to make sure that another process
3206 * hasn't already added an entry to the cache for this request.
3207 */
3208 if (nrdc == NULL) {
3209 mutex_exit(&rp->r_statelock);
3210 nrdc = rddir_cache_alloc(KM_SLEEP);
3211 nrdc->nfs_cookie = uiop->uio_offset;
3212 nrdc->buflen = count;
3213 goto top;
3214 }
3215
3216 /*
3217 * Add this entry to the cache.
3218 */
3219 avl_insert(&rp->r_dir, nrdc, where);
3220 rddir_cache_hold(nrdc);
3221 mutex_exit(&rp->r_statelock);
3222
3223 bottom:
3224 #ifdef DEBUG
3225 missed = 1;
3226 nfs_readdir_cache_misses++;
3227 #endif
3228 /*
3229 * Do the readdir.
3230 */
3231 error = nfsreaddir(vp, nrdc, cr);
3232
3233 /*
3234 * If this operation failed, just return the error which occurred.
3235 */
3236 if (error != 0)
3237 return (error);
3238
3239 /*
3240 * Since the RPC operation will have taken sometime and blocked
3241 * this process, another pass through the cache will need to be
3242 * taken to find the correct cache entry. It is possible that
3243 * the correct cache entry will not be there (although one was
3244 * added) because the directory changed during the RPC operation
3245 * and the readdir cache was flushed. In this case, just start
3246 * over. It is hoped that this will not happen too often... :-)
3247 */
3248 nrdc = NULL;
3249 goto top;
3250 /* NOTREACHED */
3251 }
3252
3253 static int
nfsreaddir(vnode_t * vp,rddir_cache * rdc,cred_t * cr)3254 nfsreaddir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
3255 {
3256 int error;
3257 struct nfsrddirargs rda;
3258 struct nfsrddirres rd;
3259 rnode_t *rp;
3260 mntinfo_t *mi;
3261 uint_t count;
3262 int douprintf;
3263 failinfo_t fi, *fip;
3264
3265 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
3266 count = rdc->buflen;
3267
3268 rp = VTOR(vp);
3269 mi = VTOMI(vp);
3270
3271 rda.rda_fh = *VTOFH(vp);
3272 rda.rda_offset = rdc->nfs_cookie;
3273
3274 /*
3275 * NFS client failover support
3276 * suppress failover unless we have a zero cookie
3277 */
3278 if (rdc->nfs_cookie == (off_t)0) {
3279 fi.vp = vp;
3280 fi.fhp = (caddr_t)&rda.rda_fh;
3281 fi.copyproc = nfscopyfh;
3282 fi.lookupproc = nfslookup;
3283 fi.xattrdirproc = acl_getxattrdir2;
3284 fip = &fi;
3285 } else {
3286 fip = NULL;
3287 }
3288
3289 rd.rd_entries = kmem_alloc(rdc->buflen, KM_SLEEP);
3290 rd.rd_size = count;
3291 rd.rd_offset = rda.rda_offset;
3292
3293 douprintf = 1;
3294
3295 if (mi->mi_io_kstats) {
3296 mutex_enter(&mi->mi_lock);
3297 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3298 mutex_exit(&mi->mi_lock);
3299 }
3300
3301 do {
3302 rda.rda_count = MIN(count, mi->mi_curread);
3303 error = rfs2call(mi, RFS_READDIR,
3304 xdr_rddirargs, (caddr_t)&rda,
3305 xdr_getrddirres, (caddr_t)&rd, cr,
3306 &douprintf, &rd.rd_status, 0, fip);
3307 } while (error == ENFS_TRYAGAIN);
3308
3309 if (mi->mi_io_kstats) {
3310 mutex_enter(&mi->mi_lock);
3311 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3312 mutex_exit(&mi->mi_lock);
3313 }
3314
3315 /*
3316 * Since we are actually doing a READDIR RPC, we must have
3317 * exclusive access to the cache entry being filled. Thus,
3318 * it is safe to update all fields except for the flags
3319 * field. The r_statelock in the rnode must be held to
3320 * prevent two different threads from simultaneously
3321 * attempting to update the flags field. This can happen
3322 * if we are turning off RDDIR and the other thread is
3323 * trying to set RDDIRWAIT.
3324 */
3325 ASSERT(rdc->flags & RDDIR);
3326 if (!error) {
3327 error = geterrno(rd.rd_status);
3328 if (!error) {
3329 rdc->nfs_ncookie = rd.rd_offset;
3330 rdc->eof = rd.rd_eof ? 1 : 0;
3331 rdc->entlen = rd.rd_size;
3332 ASSERT(rdc->entlen <= rdc->buflen);
3333 #ifdef DEBUG
3334 rdc->entries = rddir_cache_buf_alloc(rdc->buflen,
3335 KM_SLEEP);
3336 #else
3337 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
3338 #endif
3339 bcopy(rd.rd_entries, rdc->entries, rdc->entlen);
3340 rdc->error = 0;
3341 if (mi->mi_io_kstats) {
3342 mutex_enter(&mi->mi_lock);
3343 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
3344 KSTAT_IO_PTR(mi->mi_io_kstats)->nread +=
3345 rd.rd_size;
3346 mutex_exit(&mi->mi_lock);
3347 }
3348 } else {
3349 PURGE_STALE_FH(error, vp, cr);
3350 }
3351 }
3352 if (error) {
3353 rdc->entries = NULL;
3354 rdc->error = error;
3355 }
3356 kmem_free(rd.rd_entries, rdc->buflen);
3357
3358 mutex_enter(&rp->r_statelock);
3359 rdc->flags &= ~RDDIR;
3360 if (rdc->flags & RDDIRWAIT) {
3361 rdc->flags &= ~RDDIRWAIT;
3362 cv_broadcast(&rdc->cv);
3363 }
3364 if (error)
3365 rdc->flags |= RDDIRREQ;
3366 mutex_exit(&rp->r_statelock);
3367
3368 rddir_cache_rele(rdc);
3369
3370 return (error);
3371 }
3372
3373 #ifdef DEBUG
3374 static int nfs_bio_do_stop = 0;
3375 #endif
3376
3377 static int
nfs_bio(struct buf * bp,cred_t * cr)3378 nfs_bio(struct buf *bp, cred_t *cr)
3379 {
3380 rnode_t *rp = VTOR(bp->b_vp);
3381 int count;
3382 int error;
3383 cred_t *cred;
3384 uint_t offset;
3385
3386 DTRACE_IO1(start, struct buf *, bp);
3387
3388 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone);
3389 offset = dbtob(bp->b_blkno);
3390
3391 if (bp->b_flags & B_READ) {
3392 mutex_enter(&rp->r_statelock);
3393 if (rp->r_cred != NULL) {
3394 cred = rp->r_cred;
3395 crhold(cred);
3396 } else {
3397 rp->r_cred = cr;
3398 crhold(cr);
3399 cred = cr;
3400 crhold(cred);
3401 }
3402 mutex_exit(&rp->r_statelock);
3403 read_again:
3404 error = bp->b_error = nfsread(bp->b_vp, bp->b_un.b_addr,
3405 offset, bp->b_bcount, &bp->b_resid, cred);
3406
3407 crfree(cred);
3408 if (!error) {
3409 if (bp->b_resid) {
3410 /*
3411 * Didn't get it all because we hit EOF,
3412 * zero all the memory beyond the EOF.
3413 */
3414 /* bzero(rdaddr + */
3415 bzero(bp->b_un.b_addr +
3416 bp->b_bcount - bp->b_resid, bp->b_resid);
3417 }
3418 mutex_enter(&rp->r_statelock);
3419 if (bp->b_resid == bp->b_bcount &&
3420 offset >= rp->r_size) {
3421 /*
3422 * We didn't read anything at all as we are
3423 * past EOF. Return an error indicator back
3424 * but don't destroy the pages (yet).
3425 */
3426 error = NFS_EOF;
3427 }
3428 mutex_exit(&rp->r_statelock);
3429 } else if (error == EACCES) {
3430 mutex_enter(&rp->r_statelock);
3431 if (cred != cr) {
3432 if (rp->r_cred != NULL)
3433 crfree(rp->r_cred);
3434 rp->r_cred = cr;
3435 crhold(cr);
3436 cred = cr;
3437 crhold(cred);
3438 mutex_exit(&rp->r_statelock);
3439 goto read_again;
3440 }
3441 mutex_exit(&rp->r_statelock);
3442 }
3443 } else {
3444 if (!(rp->r_flags & RSTALE)) {
3445 mutex_enter(&rp->r_statelock);
3446 if (rp->r_cred != NULL) {
3447 cred = rp->r_cred;
3448 crhold(cred);
3449 } else {
3450 rp->r_cred = cr;
3451 crhold(cr);
3452 cred = cr;
3453 crhold(cred);
3454 }
3455 mutex_exit(&rp->r_statelock);
3456 write_again:
3457 mutex_enter(&rp->r_statelock);
3458 count = MIN(bp->b_bcount, rp->r_size - offset);
3459 mutex_exit(&rp->r_statelock);
3460 if (count < 0)
3461 cmn_err(CE_PANIC, "nfs_bio: write count < 0");
3462 #ifdef DEBUG
3463 if (count == 0) {
3464 zcmn_err(getzoneid(), CE_WARN,
3465 "nfs_bio: zero length write at %d",
3466 offset);
3467 nfs_printfhandle(&rp->r_fh);
3468 if (nfs_bio_do_stop)
3469 debug_enter("nfs_bio");
3470 }
3471 #endif
3472 error = nfswrite(bp->b_vp, bp->b_un.b_addr, offset,
3473 count, cred);
3474 if (error == EACCES) {
3475 mutex_enter(&rp->r_statelock);
3476 if (cred != cr) {
3477 if (rp->r_cred != NULL)
3478 crfree(rp->r_cred);
3479 rp->r_cred = cr;
3480 crhold(cr);
3481 crfree(cred);
3482 cred = cr;
3483 crhold(cred);
3484 mutex_exit(&rp->r_statelock);
3485 goto write_again;
3486 }
3487 mutex_exit(&rp->r_statelock);
3488 }
3489 bp->b_error = error;
3490 if (error && error != EINTR) {
3491 /*
3492 * Don't print EDQUOT errors on the console.
3493 * Don't print asynchronous EACCES errors.
3494 * Don't print EFBIG errors.
3495 * Print all other write errors.
3496 */
3497 if (error != EDQUOT && error != EFBIG &&
3498 (error != EACCES ||
3499 !(bp->b_flags & B_ASYNC)))
3500 nfs_write_error(bp->b_vp, error, cred);
3501 /*
3502 * Update r_error and r_flags as appropriate.
3503 * If the error was ESTALE, then mark the
3504 * rnode as not being writeable and save
3505 * the error status. Otherwise, save any
3506 * errors which occur from asynchronous
3507 * page invalidations. Any errors occurring
3508 * from other operations should be saved
3509 * by the caller.
3510 */
3511 mutex_enter(&rp->r_statelock);
3512 if (error == ESTALE) {
3513 rp->r_flags |= RSTALE;
3514 if (!rp->r_error)
3515 rp->r_error = error;
3516 } else if (!rp->r_error &&
3517 (bp->b_flags &
3518 (B_INVAL|B_FORCE|B_ASYNC)) ==
3519 (B_INVAL|B_FORCE|B_ASYNC)) {
3520 rp->r_error = error;
3521 }
3522 mutex_exit(&rp->r_statelock);
3523 }
3524 crfree(cred);
3525 } else {
3526 error = rp->r_error;
3527 /*
3528 * A close may have cleared r_error, if so,
3529 * propagate ESTALE error return properly
3530 */
3531 if (error == 0)
3532 error = ESTALE;
3533 }
3534 }
3535
3536 if (error != 0 && error != NFS_EOF)
3537 bp->b_flags |= B_ERROR;
3538
3539 DTRACE_IO1(done, struct buf *, bp);
3540
3541 return (error);
3542 }
3543
3544 /* ARGSUSED */
3545 static int
nfs_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)3546 nfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
3547 {
3548 struct nfs_fid *fp;
3549 rnode_t *rp;
3550
3551 rp = VTOR(vp);
3552
3553 if (fidp->fid_len < (sizeof (struct nfs_fid) - sizeof (short))) {
3554 fidp->fid_len = sizeof (struct nfs_fid) - sizeof (short);
3555 return (ENOSPC);
3556 }
3557 fp = (struct nfs_fid *)fidp;
3558 fp->nf_pad = 0;
3559 fp->nf_len = sizeof (struct nfs_fid) - sizeof (short);
3560 bcopy(rp->r_fh.fh_buf, fp->nf_data, NFS_FHSIZE);
3561 return (0);
3562 }
3563
3564 /* ARGSUSED2 */
3565 static int
nfs_rwlock(vnode_t * vp,int write_lock,caller_context_t * ctp)3566 nfs_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
3567 {
3568 rnode_t *rp = VTOR(vp);
3569
3570 if (!write_lock) {
3571 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
3572 return (V_WRITELOCK_FALSE);
3573 }
3574
3575 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) {
3576 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
3577 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp))
3578 return (V_WRITELOCK_FALSE);
3579 nfs_rw_exit(&rp->r_rwlock);
3580 }
3581
3582 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
3583 return (V_WRITELOCK_TRUE);
3584 }
3585
3586 /* ARGSUSED */
3587 static void
nfs_rwunlock(vnode_t * vp,int write_lock,caller_context_t * ctp)3588 nfs_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
3589 {
3590 rnode_t *rp = VTOR(vp);
3591
3592 nfs_rw_exit(&rp->r_rwlock);
3593 }
3594
3595 /* ARGSUSED */
3596 static int
nfs_seek(vnode_t * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)3597 nfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
3598 {
3599
3600 /*
3601 * Because we stuff the readdir cookie into the offset field
3602 * someone may attempt to do an lseek with the cookie which
3603 * we want to succeed.
3604 */
3605 if (vp->v_type == VDIR)
3606 return (0);
3607 if (*noffp < 0 || *noffp > MAXOFF32_T)
3608 return (EINVAL);
3609 return (0);
3610 }
3611
3612 /*
3613 * number of NFS_MAXDATA blocks to read ahead
3614 * optimized for 100 base-T.
3615 */
3616 static int nfs_nra = 4;
3617
3618 #ifdef DEBUG
3619 static int nfs_lostpage = 0; /* number of times we lost original page */
3620 #endif
3621
3622 /*
3623 * Return all the pages from [off..off+len) in file
3624 */
3625 /* ARGSUSED */
3626 static int
nfs_getpage(vnode_t * vp,offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr,caller_context_t * ct)3627 nfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
3628 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3629 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
3630 {
3631 rnode_t *rp;
3632 int error;
3633 mntinfo_t *mi;
3634
3635 if (vp->v_flag & VNOMAP)
3636 return (ENOSYS);
3637
3638 ASSERT(off <= MAXOFF32_T);
3639 if (nfs_zone() != VTOMI(vp)->mi_zone)
3640 return (EIO);
3641 if (protp != NULL)
3642 *protp = PROT_ALL;
3643
3644 /*
3645 * Now valididate that the caches are up to date.
3646 */
3647 error = nfs_validate_caches(vp, cr);
3648 if (error)
3649 return (error);
3650
3651 rp = VTOR(vp);
3652 mi = VTOMI(vp);
3653 retry:
3654 mutex_enter(&rp->r_statelock);
3655
3656 /*
3657 * Don't create dirty pages faster than they
3658 * can be cleaned so that the system doesn't
3659 * get imbalanced. If the async queue is
3660 * maxed out, then wait for it to drain before
3661 * creating more dirty pages. Also, wait for
3662 * any threads doing pagewalks in the vop_getattr
3663 * entry points so that they don't block for
3664 * long periods.
3665 */
3666 if (rw == S_CREATE) {
3667 while ((mi->mi_max_threads != 0 &&
3668 rp->r_awcount > 2 * mi->mi_max_threads) ||
3669 rp->r_gcount > 0)
3670 cv_wait(&rp->r_cv, &rp->r_statelock);
3671 }
3672
3673 /*
3674 * If we are getting called as a side effect of an nfs_write()
3675 * operation the local file size might not be extended yet.
3676 * In this case we want to be able to return pages of zeroes.
3677 */
3678 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
3679 mutex_exit(&rp->r_statelock);
3680 return (EFAULT); /* beyond EOF */
3681 }
3682
3683 mutex_exit(&rp->r_statelock);
3684
3685 error = pvn_getpages(nfs_getapage, vp, off, len, protp, pl, plsz,
3686 seg, addr, rw, cr);
3687
3688 switch (error) {
3689 case NFS_EOF:
3690 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
3691 goto retry;
3692 case ESTALE:
3693 PURGE_STALE_FH(error, vp, cr);
3694 }
3695
3696 return (error);
3697 }
3698
3699 /*
3700 * Called from pvn_getpages to get a particular page.
3701 */
3702 /* ARGSUSED */
3703 static int
nfs_getapage(vnode_t * vp,u_offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr)3704 nfs_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
3705 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
3706 enum seg_rw rw, cred_t *cr)
3707 {
3708 rnode_t *rp;
3709 uint_t bsize;
3710 struct buf *bp;
3711 page_t *pp;
3712 u_offset_t lbn;
3713 u_offset_t io_off;
3714 u_offset_t blkoff;
3715 u_offset_t rablkoff;
3716 size_t io_len;
3717 uint_t blksize;
3718 int error;
3719 int readahead;
3720 int readahead_issued = 0;
3721 int ra_window; /* readahead window */
3722 page_t *pagefound;
3723
3724 if (nfs_zone() != VTOMI(vp)->mi_zone)
3725 return (EIO);
3726 rp = VTOR(vp);
3727 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
3728
3729 reread:
3730 bp = NULL;
3731 pp = NULL;
3732 pagefound = NULL;
3733
3734 if (pl != NULL)
3735 pl[0] = NULL;
3736
3737 error = 0;
3738 lbn = off / bsize;
3739 blkoff = lbn * bsize;
3740
3741 /*
3742 * Queueing up the readahead before doing the synchronous read
3743 * results in a significant increase in read throughput because
3744 * of the increased parallelism between the async threads and
3745 * the process context.
3746 */
3747 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
3748 rw != S_CREATE &&
3749 !(vp->v_flag & VNOCACHE)) {
3750 mutex_enter(&rp->r_statelock);
3751
3752 /*
3753 * Calculate the number of readaheads to do.
3754 * a) No readaheads at offset = 0.
3755 * b) Do maximum(nfs_nra) readaheads when the readahead
3756 * window is closed.
3757 * c) Do readaheads between 1 to (nfs_nra - 1) depending
3758 * upon how far the readahead window is open or close.
3759 * d) No readaheads if rp->r_nextr is not within the scope
3760 * of the readahead window (random i/o).
3761 */
3762
3763 if (off == 0)
3764 readahead = 0;
3765 else if (blkoff == rp->r_nextr)
3766 readahead = nfs_nra;
3767 else if (rp->r_nextr > blkoff &&
3768 ((ra_window = (rp->r_nextr - blkoff) / bsize)
3769 <= (nfs_nra - 1)))
3770 readahead = nfs_nra - ra_window;
3771 else
3772 readahead = 0;
3773
3774 rablkoff = rp->r_nextr;
3775 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
3776 mutex_exit(&rp->r_statelock);
3777 if (nfs_async_readahead(vp, rablkoff + bsize,
3778 addr + (rablkoff + bsize - off), seg, cr,
3779 nfs_readahead) < 0) {
3780 mutex_enter(&rp->r_statelock);
3781 break;
3782 }
3783 readahead--;
3784 rablkoff += bsize;
3785 /*
3786 * Indicate that we did a readahead so
3787 * readahead offset is not updated
3788 * by the synchronous read below.
3789 */
3790 readahead_issued = 1;
3791 mutex_enter(&rp->r_statelock);
3792 /*
3793 * set readahead offset to
3794 * offset of last async readahead
3795 * request.
3796 */
3797 rp->r_nextr = rablkoff;
3798 }
3799 mutex_exit(&rp->r_statelock);
3800 }
3801
3802 again:
3803 if ((pagefound = page_exists(vp, off)) == NULL) {
3804 if (pl == NULL) {
3805 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr,
3806 nfs_readahead);
3807 } else if (rw == S_CREATE) {
3808 /*
3809 * Block for this page is not allocated, or the offset
3810 * is beyond the current allocation size, or we're
3811 * allocating a swap slot and the page was not found,
3812 * so allocate it and return a zero page.
3813 */
3814 if ((pp = page_create_va(vp, off,
3815 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
3816 cmn_err(CE_PANIC, "nfs_getapage: page_create");
3817 io_len = PAGESIZE;
3818 mutex_enter(&rp->r_statelock);
3819 rp->r_nextr = off + PAGESIZE;
3820 mutex_exit(&rp->r_statelock);
3821 } else {
3822 /*
3823 * Need to go to server to get a BLOCK, exception to
3824 * that being while reading at offset = 0 or doing
3825 * random i/o, in that case read only a PAGE.
3826 */
3827 mutex_enter(&rp->r_statelock);
3828 if (blkoff < rp->r_size &&
3829 blkoff + bsize >= rp->r_size) {
3830 /*
3831 * If only a block or less is left in
3832 * the file, read all that is remaining.
3833 */
3834 if (rp->r_size <= off) {
3835 /*
3836 * Trying to access beyond EOF,
3837 * set up to get at least one page.
3838 */
3839 blksize = off + PAGESIZE - blkoff;
3840 } else
3841 blksize = rp->r_size - blkoff;
3842 } else if ((off == 0) ||
3843 (off != rp->r_nextr && !readahead_issued)) {
3844 blksize = PAGESIZE;
3845 blkoff = off; /* block = page here */
3846 } else
3847 blksize = bsize;
3848 mutex_exit(&rp->r_statelock);
3849
3850 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
3851 &io_len, blkoff, blksize, 0);
3852
3853 /*
3854 * Some other thread has entered the page,
3855 * so just use it.
3856 */
3857 if (pp == NULL)
3858 goto again;
3859
3860 /*
3861 * Now round the request size up to page boundaries.
3862 * This ensures that the entire page will be
3863 * initialized to zeroes if EOF is encountered.
3864 */
3865 io_len = ptob(btopr(io_len));
3866
3867 bp = pageio_setup(pp, io_len, vp, B_READ);
3868 ASSERT(bp != NULL);
3869
3870 /*
3871 * pageio_setup should have set b_addr to 0. This
3872 * is correct since we want to do I/O on a page
3873 * boundary. bp_mapin will use this addr to calculate
3874 * an offset, and then set b_addr to the kernel virtual
3875 * address it allocated for us.
3876 */
3877 ASSERT(bp->b_un.b_addr == 0);
3878
3879 bp->b_edev = 0;
3880 bp->b_dev = 0;
3881 bp->b_lblkno = lbtodb(io_off);
3882 bp->b_file = vp;
3883 bp->b_offset = (offset_t)off;
3884 bp_mapin(bp);
3885
3886 /*
3887 * If doing a write beyond what we believe is EOF,
3888 * don't bother trying to read the pages from the
3889 * server, we'll just zero the pages here. We
3890 * don't check that the rw flag is S_WRITE here
3891 * because some implementations may attempt a
3892 * read access to the buffer before copying data.
3893 */
3894 mutex_enter(&rp->r_statelock);
3895 if (io_off >= rp->r_size && seg == segkmap) {
3896 mutex_exit(&rp->r_statelock);
3897 bzero(bp->b_un.b_addr, io_len);
3898 } else {
3899 mutex_exit(&rp->r_statelock);
3900 error = nfs_bio(bp, cr);
3901 }
3902
3903 /*
3904 * Unmap the buffer before freeing it.
3905 */
3906 bp_mapout(bp);
3907 pageio_done(bp);
3908
3909 if (error == NFS_EOF) {
3910 /*
3911 * If doing a write system call just return
3912 * zeroed pages, else user tried to get pages
3913 * beyond EOF, return error. We don't check
3914 * that the rw flag is S_WRITE here because
3915 * some implementations may attempt a read
3916 * access to the buffer before copying data.
3917 */
3918 if (seg == segkmap)
3919 error = 0;
3920 else
3921 error = EFAULT;
3922 }
3923
3924 if (!readahead_issued && !error) {
3925 mutex_enter(&rp->r_statelock);
3926 rp->r_nextr = io_off + io_len;
3927 mutex_exit(&rp->r_statelock);
3928 }
3929 }
3930 }
3931
3932 out:
3933 if (pl == NULL)
3934 return (error);
3935
3936 if (error) {
3937 if (pp != NULL)
3938 pvn_read_done(pp, B_ERROR);
3939 return (error);
3940 }
3941
3942 if (pagefound) {
3943 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
3944
3945 /*
3946 * Page exists in the cache, acquire the appropriate lock.
3947 * If this fails, start all over again.
3948 */
3949 if ((pp = page_lookup(vp, off, se)) == NULL) {
3950 #ifdef DEBUG
3951 nfs_lostpage++;
3952 #endif
3953 goto reread;
3954 }
3955 pl[0] = pp;
3956 pl[1] = NULL;
3957 return (0);
3958 }
3959
3960 if (pp != NULL)
3961 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
3962
3963 return (error);
3964 }
3965
3966 static void
nfs_readahead(vnode_t * vp,u_offset_t blkoff,caddr_t addr,struct seg * seg,cred_t * cr)3967 nfs_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
3968 cred_t *cr)
3969 {
3970 int error;
3971 page_t *pp;
3972 u_offset_t io_off;
3973 size_t io_len;
3974 struct buf *bp;
3975 uint_t bsize, blksize;
3976 rnode_t *rp = VTOR(vp);
3977
3978 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
3979
3980 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
3981
3982 mutex_enter(&rp->r_statelock);
3983 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
3984 /*
3985 * If less than a block left in file read less
3986 * than a block.
3987 */
3988 blksize = rp->r_size - blkoff;
3989 } else
3990 blksize = bsize;
3991 mutex_exit(&rp->r_statelock);
3992
3993 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
3994 &io_off, &io_len, blkoff, blksize, 1);
3995 /*
3996 * The isra flag passed to the kluster function is 1, we may have
3997 * gotten a return value of NULL for a variety of reasons (# of free
3998 * pages < minfree, someone entered the page on the vnode etc). In all
3999 * cases, we want to punt on the readahead.
4000 */
4001 if (pp == NULL)
4002 return;
4003
4004 /*
4005 * Now round the request size up to page boundaries.
4006 * This ensures that the entire page will be
4007 * initialized to zeroes if EOF is encountered.
4008 */
4009 io_len = ptob(btopr(io_len));
4010
4011 bp = pageio_setup(pp, io_len, vp, B_READ);
4012 ASSERT(bp != NULL);
4013
4014 /*
4015 * pageio_setup should have set b_addr to 0. This is correct since
4016 * we want to do I/O on a page boundary. bp_mapin() will use this addr
4017 * to calculate an offset, and then set b_addr to the kernel virtual
4018 * address it allocated for us.
4019 */
4020 ASSERT(bp->b_un.b_addr == 0);
4021
4022 bp->b_edev = 0;
4023 bp->b_dev = 0;
4024 bp->b_lblkno = lbtodb(io_off);
4025 bp->b_file = vp;
4026 bp->b_offset = (offset_t)blkoff;
4027 bp_mapin(bp);
4028
4029 /*
4030 * If doing a write beyond what we believe is EOF, don't bother trying
4031 * to read the pages from the server, we'll just zero the pages here.
4032 * We don't check that the rw flag is S_WRITE here because some
4033 * implementations may attempt a read access to the buffer before
4034 * copying data.
4035 */
4036 mutex_enter(&rp->r_statelock);
4037 if (io_off >= rp->r_size && seg == segkmap) {
4038 mutex_exit(&rp->r_statelock);
4039 bzero(bp->b_un.b_addr, io_len);
4040 error = 0;
4041 } else {
4042 mutex_exit(&rp->r_statelock);
4043 error = nfs_bio(bp, cr);
4044 if (error == NFS_EOF)
4045 error = 0;
4046 }
4047
4048 /*
4049 * Unmap the buffer before freeing it.
4050 */
4051 bp_mapout(bp);
4052 pageio_done(bp);
4053
4054 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
4055
4056 /*
4057 * In case of error set readahead offset
4058 * to the lowest offset.
4059 * pvn_read_done() calls VN_DISPOSE to destroy the pages
4060 */
4061 if (error && rp->r_nextr > io_off) {
4062 mutex_enter(&rp->r_statelock);
4063 if (rp->r_nextr > io_off)
4064 rp->r_nextr = io_off;
4065 mutex_exit(&rp->r_statelock);
4066 }
4067 }
4068
4069 /*
4070 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
4071 * If len == 0, do from off to EOF.
4072 *
4073 * The normal cases should be len == 0 && off == 0 (entire vp list),
4074 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
4075 * (from pageout).
4076 */
4077 /* ARGSUSED */
4078 static int
nfs_putpage(vnode_t * vp,offset_t off,size_t len,int flags,cred_t * cr,caller_context_t * ct)4079 nfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4080 caller_context_t *ct)
4081 {
4082 int error;
4083 rnode_t *rp;
4084
4085 ASSERT(cr != NULL);
4086
4087 /*
4088 * XXX - Why should this check be made here?
4089 */
4090 if (vp->v_flag & VNOMAP)
4091 return (ENOSYS);
4092
4093 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp))
4094 return (0);
4095
4096 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
4097 return (EIO);
4098 ASSERT(off <= MAXOFF32_T);
4099
4100 rp = VTOR(vp);
4101 mutex_enter(&rp->r_statelock);
4102 rp->r_count++;
4103 mutex_exit(&rp->r_statelock);
4104 error = nfs_putpages(vp, off, len, flags, cr);
4105 mutex_enter(&rp->r_statelock);
4106 rp->r_count--;
4107 cv_broadcast(&rp->r_cv);
4108 mutex_exit(&rp->r_statelock);
4109
4110 return (error);
4111 }
4112
4113 /*
4114 * Write out a single page, possibly klustering adjacent dirty pages.
4115 */
4116 int
nfs_putapage(vnode_t * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,cred_t * cr)4117 nfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
4118 int flags, cred_t *cr)
4119 {
4120 u_offset_t io_off;
4121 u_offset_t lbn_off;
4122 u_offset_t lbn;
4123 size_t io_len;
4124 uint_t bsize;
4125 int error;
4126 rnode_t *rp;
4127
4128 ASSERT(!vn_is_readonly(vp));
4129 ASSERT(pp != NULL);
4130 ASSERT(cr != NULL);
4131 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone);
4132
4133 rp = VTOR(vp);
4134 ASSERT(rp->r_count > 0);
4135
4136 ASSERT(pp->p_offset <= MAXOFF32_T);
4137
4138 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4139 lbn = pp->p_offset / bsize;
4140 lbn_off = lbn * bsize;
4141
4142 /*
4143 * Find a kluster that fits in one block, or in
4144 * one page if pages are bigger than blocks. If
4145 * there is less file space allocated than a whole
4146 * page, we'll shorten the i/o request below.
4147 */
4148 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
4149 roundup(bsize, PAGESIZE), flags);
4150
4151 /*
4152 * pvn_write_kluster shouldn't have returned a page with offset
4153 * behind the original page we were given. Verify that.
4154 */
4155 ASSERT((pp->p_offset / bsize) >= lbn);
4156
4157 /*
4158 * Now pp will have the list of kept dirty pages marked for
4159 * write back. It will also handle invalidation and freeing
4160 * of pages that are not dirty. Check for page length rounding
4161 * problems.
4162 */
4163 if (io_off + io_len > lbn_off + bsize) {
4164 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
4165 io_len = lbn_off + bsize - io_off;
4166 }
4167 /*
4168 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
4169 * consistent value of r_size. RMODINPROGRESS is set in writerp().
4170 * When RMODINPROGRESS is set it indicates that a uiomove() is in
4171 * progress and the r_size has not been made consistent with the
4172 * new size of the file. When the uiomove() completes the r_size is
4173 * updated and the RMODINPROGRESS flag is cleared.
4174 *
4175 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
4176 * consistent value of r_size. Without this handshaking, it is
4177 * possible that nfs(3)_bio() picks up the old value of r_size
4178 * before the uiomove() in writerp() completes. This will result
4179 * in the write through nfs(3)_bio() being dropped.
4180 *
4181 * More precisely, there is a window between the time the uiomove()
4182 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
4183 * operation intervenes in this window, the page will be picked up,
4184 * because it is dirty (it will be unlocked, unless it was
4185 * pagecreate'd). When the page is picked up as dirty, the dirty
4186 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is
4187 * checked. This will still be the old size. Therefore the page will
4188 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
4189 * the page will be found to be clean and the write will be dropped.
4190 */
4191 if (rp->r_flags & RMODINPROGRESS) {
4192 mutex_enter(&rp->r_statelock);
4193 if ((rp->r_flags & RMODINPROGRESS) &&
4194 rp->r_modaddr + MAXBSIZE > io_off &&
4195 rp->r_modaddr < io_off + io_len) {
4196 page_t *plist;
4197 /*
4198 * A write is in progress for this region of the file.
4199 * If we did not detect RMODINPROGRESS here then this
4200 * path through nfs_putapage() would eventually go to
4201 * nfs(3)_bio() and may not write out all of the data
4202 * in the pages. We end up losing data. So we decide
4203 * to set the modified bit on each page in the page
4204 * list and mark the rnode with RDIRTY. This write
4205 * will be restarted at some later time.
4206 */
4207 plist = pp;
4208 while (plist != NULL) {
4209 pp = plist;
4210 page_sub(&plist, pp);
4211 hat_setmod(pp);
4212 page_io_unlock(pp);
4213 page_unlock(pp);
4214 }
4215 rp->r_flags |= RDIRTY;
4216 mutex_exit(&rp->r_statelock);
4217 if (offp)
4218 *offp = io_off;
4219 if (lenp)
4220 *lenp = io_len;
4221 return (0);
4222 }
4223 mutex_exit(&rp->r_statelock);
4224 }
4225
4226 if (flags & B_ASYNC) {
4227 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr,
4228 nfs_sync_putapage);
4229 } else
4230 error = nfs_sync_putapage(vp, pp, io_off, io_len, flags, cr);
4231
4232 if (offp)
4233 *offp = io_off;
4234 if (lenp)
4235 *lenp = io_len;
4236 return (error);
4237 }
4238
4239 static int
nfs_sync_putapage(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)4240 nfs_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
4241 int flags, cred_t *cr)
4242 {
4243 int error;
4244 rnode_t *rp;
4245
4246 flags |= B_WRITE;
4247
4248 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4249 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
4250
4251 rp = VTOR(vp);
4252
4253 if ((error == ENOSPC || error == EDQUOT || error == EACCES) &&
4254 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
4255 if (!(rp->r_flags & ROUTOFSPACE)) {
4256 mutex_enter(&rp->r_statelock);
4257 rp->r_flags |= ROUTOFSPACE;
4258 mutex_exit(&rp->r_statelock);
4259 }
4260 flags |= B_ERROR;
4261 pvn_write_done(pp, flags);
4262 /*
4263 * If this was not an async thread, then try again to
4264 * write out the pages, but this time, also destroy
4265 * them whether or not the write is successful. This
4266 * will prevent memory from filling up with these
4267 * pages and destroying them is the only alternative
4268 * if they can't be written out.
4269 *
4270 * Don't do this if this is an async thread because
4271 * when the pages are unlocked in pvn_write_done,
4272 * some other thread could have come along, locked
4273 * them, and queued for an async thread. It would be
4274 * possible for all of the async threads to be tied
4275 * up waiting to lock the pages again and they would
4276 * all already be locked and waiting for an async
4277 * thread to handle them. Deadlock.
4278 */
4279 if (!(flags & B_ASYNC)) {
4280 error = nfs_putpage(vp, io_off, io_len,
4281 B_INVAL | B_FORCE, cr, NULL);
4282 }
4283 } else {
4284 if (error)
4285 flags |= B_ERROR;
4286 else if (rp->r_flags & ROUTOFSPACE) {
4287 mutex_enter(&rp->r_statelock);
4288 rp->r_flags &= ~ROUTOFSPACE;
4289 mutex_exit(&rp->r_statelock);
4290 }
4291 pvn_write_done(pp, flags);
4292 }
4293
4294 return (error);
4295 }
4296
4297 /* ARGSUSED */
4298 static int
nfs_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)4299 nfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4300 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4301 caller_context_t *ct)
4302 {
4303 struct segvn_crargs vn_a;
4304 int error;
4305 rnode_t *rp;
4306 struct vattr va;
4307
4308 if (nfs_zone() != VTOMI(vp)->mi_zone)
4309 return (EIO);
4310
4311 if (vp->v_flag & VNOMAP)
4312 return (ENOSYS);
4313
4314 if (off > MAXOFF32_T)
4315 return (EFBIG);
4316
4317 if (off < 0 || off + len < 0)
4318 return (ENXIO);
4319
4320 if (vp->v_type != VREG)
4321 return (ENODEV);
4322
4323 /*
4324 * If there is cached data and if close-to-open consistency
4325 * checking is not turned off and if the file system is not
4326 * mounted readonly, then force an over the wire getattr.
4327 * Otherwise, just invoke nfsgetattr to get a copy of the
4328 * attributes. The attribute cache will be used unless it
4329 * is timed out and if it is, then an over the wire getattr
4330 * will be issued.
4331 */
4332 va.va_mask = AT_ALL;
4333 if (vn_has_cached_data(vp) &&
4334 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp))
4335 error = nfs_getattr_otw(vp, &va, cr);
4336 else
4337 error = nfsgetattr(vp, &va, cr);
4338 if (error)
4339 return (error);
4340
4341 /*
4342 * Check to see if the vnode is currently marked as not cachable.
4343 * This means portions of the file are locked (through VOP_FRLOCK).
4344 * In this case the map request must be refused. We use
4345 * rp->r_lkserlock to avoid a race with concurrent lock requests.
4346 */
4347 rp = VTOR(vp);
4348
4349 /*
4350 * Atomically increment r_inmap after acquiring r_rwlock. The
4351 * idea here is to acquire r_rwlock to block read/write and
4352 * not to protect r_inmap. r_inmap will inform nfs_read/write()
4353 * that we are in nfs_map(). Now, r_rwlock is acquired in order
4354 * and we can prevent the deadlock that would have occurred
4355 * when nfs_addmap() would have acquired it out of order.
4356 *
4357 * Since we are not protecting r_inmap by any lock, we do not
4358 * hold any lock when we decrement it. We atomically decrement
4359 * r_inmap after we release r_lkserlock.
4360 */
4361
4362 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp)))
4363 return (EINTR);
4364 atomic_inc_uint(&rp->r_inmap);
4365 nfs_rw_exit(&rp->r_rwlock);
4366
4367 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) {
4368 atomic_dec_uint(&rp->r_inmap);
4369 return (EINTR);
4370 }
4371 if (vp->v_flag & VNOCACHE) {
4372 error = EAGAIN;
4373 goto done;
4374 }
4375
4376 /*
4377 * Don't allow concurrent locks and mapping if mandatory locking is
4378 * enabled.
4379 */
4380 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) &&
4381 MANDLOCK(vp, va.va_mode)) {
4382 error = EAGAIN;
4383 goto done;
4384 }
4385
4386 as_rangelock(as);
4387 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4388 if (error != 0) {
4389 as_rangeunlock(as);
4390 goto done;
4391 }
4392
4393 vn_a.vp = vp;
4394 vn_a.offset = off;
4395 vn_a.type = (flags & MAP_TYPE);
4396 vn_a.prot = (uchar_t)prot;
4397 vn_a.maxprot = (uchar_t)maxprot;
4398 vn_a.flags = (flags & ~MAP_TYPE);
4399 vn_a.cred = cr;
4400 vn_a.amp = NULL;
4401 vn_a.szc = 0;
4402 vn_a.lgrp_mem_policy_flags = 0;
4403
4404 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4405 as_rangeunlock(as);
4406
4407 done:
4408 nfs_rw_exit(&rp->r_lkserlock);
4409 atomic_dec_uint(&rp->r_inmap);
4410 return (error);
4411 }
4412
4413 /* ARGSUSED */
4414 static int
nfs_addmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)4415 nfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4416 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4417 caller_context_t *ct)
4418 {
4419 rnode_t *rp;
4420
4421 if (vp->v_flag & VNOMAP)
4422 return (ENOSYS);
4423 if (nfs_zone() != VTOMI(vp)->mi_zone)
4424 return (EIO);
4425
4426 rp = VTOR(vp);
4427 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
4428
4429 return (0);
4430 }
4431
4432 /* ARGSUSED */
4433 static int
nfs_frlock(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,struct flk_callback * flk_cbp,cred_t * cr,caller_context_t * ct)4434 nfs_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag, offset_t offset,
4435 struct flk_callback *flk_cbp, cred_t *cr, caller_context_t *ct)
4436 {
4437 netobj lm_fh;
4438 int rc;
4439 u_offset_t start, end;
4440 rnode_t *rp;
4441 int error = 0, intr = INTR(vp);
4442
4443 /* check for valid cmd parameter */
4444 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW)
4445 return (EINVAL);
4446 if (nfs_zone() != VTOMI(vp)->mi_zone)
4447 return (EIO);
4448
4449 /* Verify l_type. */
4450 switch (bfp->l_type) {
4451 case F_RDLCK:
4452 if (cmd != F_GETLK && !(flag & FREAD))
4453 return (EBADF);
4454 break;
4455 case F_WRLCK:
4456 if (cmd != F_GETLK && !(flag & FWRITE))
4457 return (EBADF);
4458 break;
4459 case F_UNLCK:
4460 intr = 0;
4461 break;
4462
4463 default:
4464 return (EINVAL);
4465 }
4466
4467 /* check the validity of the lock range */
4468 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
4469 return (rc);
4470 if (rc = flk_check_lock_data(start, end, MAXOFF32_T))
4471 return (rc);
4472
4473 /*
4474 * If the filesystem is mounted using local locking, pass the
4475 * request off to the local locking code.
4476 */
4477 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
4478 if (offset > MAXOFF32_T)
4479 return (EFBIG);
4480 if (cmd == F_SETLK || cmd == F_SETLKW) {
4481 /*
4482 * For complete safety, we should be holding
4483 * r_lkserlock. However, we can't call
4484 * lm_safelock and then fs_frlock while
4485 * holding r_lkserlock, so just invoke
4486 * lm_safelock and expect that this will
4487 * catch enough of the cases.
4488 */
4489 if (!lm_safelock(vp, bfp, cr))
4490 return (EAGAIN);
4491 }
4492 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4493 }
4494
4495 rp = VTOR(vp);
4496
4497 /*
4498 * Check whether the given lock request can proceed, given the
4499 * current file mappings.
4500 */
4501 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
4502 return (EINTR);
4503 if (cmd == F_SETLK || cmd == F_SETLKW) {
4504 if (!lm_safelock(vp, bfp, cr)) {
4505 rc = EAGAIN;
4506 goto done;
4507 }
4508 }
4509
4510 /*
4511 * Flush the cache after waiting for async I/O to finish. For new
4512 * locks, this is so that the process gets the latest bits from the
4513 * server. For unlocks, this is so that other clients see the
4514 * latest bits once the file has been unlocked. If currently dirty
4515 * pages can't be flushed, then don't allow a lock to be set. But
4516 * allow unlocks to succeed, to avoid having orphan locks on the
4517 * server.
4518 */
4519 if (cmd != F_GETLK) {
4520 mutex_enter(&rp->r_statelock);
4521 while (rp->r_count > 0) {
4522 if (intr) {
4523 klwp_t *lwp = ttolwp(curthread);
4524
4525 if (lwp != NULL)
4526 lwp->lwp_nostop++;
4527 if (cv_wait_sig(&rp->r_cv, &rp->r_statelock)
4528 == 0) {
4529 if (lwp != NULL)
4530 lwp->lwp_nostop--;
4531 rc = EINTR;
4532 break;
4533 }
4534 if (lwp != NULL)
4535 lwp->lwp_nostop--;
4536 } else
4537 cv_wait(&rp->r_cv, &rp->r_statelock);
4538 }
4539 mutex_exit(&rp->r_statelock);
4540 if (rc != 0)
4541 goto done;
4542 error = nfs_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
4543 if (error) {
4544 if (error == ENOSPC || error == EDQUOT) {
4545 mutex_enter(&rp->r_statelock);
4546 if (!rp->r_error)
4547 rp->r_error = error;
4548 mutex_exit(&rp->r_statelock);
4549 }
4550 if (bfp->l_type != F_UNLCK) {
4551 rc = ENOLCK;
4552 goto done;
4553 }
4554 }
4555 }
4556
4557 lm_fh.n_len = sizeof (fhandle_t);
4558 lm_fh.n_bytes = (char *)VTOFH(vp);
4559
4560 /*
4561 * Call the lock manager to do the real work of contacting
4562 * the server and obtaining the lock.
4563 */
4564 rc = lm_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh, flk_cbp);
4565
4566 if (rc == 0)
4567 nfs_lockcompletion(vp, cmd);
4568
4569 done:
4570 nfs_rw_exit(&rp->r_lkserlock);
4571 return (rc);
4572 }
4573
4574 /*
4575 * Free storage space associated with the specified vnode. The portion
4576 * to be freed is specified by bfp->l_start and bfp->l_len (already
4577 * normalized to a "whence" of 0).
4578 *
4579 * This is an experimental facility whose continued existence is not
4580 * guaranteed. Currently, we only support the special case
4581 * of l_len == 0, meaning free to end of file.
4582 */
4583 /* ARGSUSED */
4584 static int
nfs_space(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)4585 nfs_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
4586 offset_t offset, cred_t *cr, caller_context_t *ct)
4587 {
4588 int error;
4589
4590 ASSERT(vp->v_type == VREG);
4591 if (cmd != F_FREESP)
4592 return (EINVAL);
4593
4594 if (offset > MAXOFF32_T)
4595 return (EFBIG);
4596
4597 if ((bfp->l_start > MAXOFF32_T) || (bfp->l_end > MAXOFF32_T) ||
4598 (bfp->l_len > MAXOFF32_T))
4599 return (EFBIG);
4600
4601 if (nfs_zone() != VTOMI(vp)->mi_zone)
4602 return (EIO);
4603
4604 error = convoff(vp, bfp, 0, offset);
4605 if (!error) {
4606 ASSERT(bfp->l_start >= 0);
4607 if (bfp->l_len == 0) {
4608 struct vattr va;
4609
4610 /*
4611 * ftruncate should not change the ctime and
4612 * mtime if we truncate the file to its
4613 * previous size.
4614 */
4615 va.va_mask = AT_SIZE;
4616 error = nfsgetattr(vp, &va, cr);
4617 if (error || va.va_size == bfp->l_start)
4618 return (error);
4619 va.va_mask = AT_SIZE;
4620 va.va_size = bfp->l_start;
4621 error = nfssetattr(vp, &va, 0, cr);
4622
4623 if (error == 0 && bfp->l_start == 0)
4624 vnevent_truncate(vp, ct);
4625 } else
4626 error = EINVAL;
4627 }
4628
4629 return (error);
4630 }
4631
4632 /* ARGSUSED */
4633 static int
nfs_realvp(vnode_t * vp,vnode_t ** vpp,caller_context_t * ct)4634 nfs_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
4635 {
4636
4637 return (EINVAL);
4638 }
4639
4640 /*
4641 * Setup and add an address space callback to do the work of the delmap call.
4642 * The callback will (and must be) deleted in the actual callback function.
4643 *
4644 * This is done in order to take care of the problem that we have with holding
4645 * the address space's a_lock for a long period of time (e.g. if the NFS server
4646 * is down). Callbacks will be executed in the address space code while the
4647 * a_lock is not held. Holding the address space's a_lock causes things such
4648 * as ps and fork to hang because they are trying to acquire this lock as well.
4649 */
4650 /* ARGSUSED */
4651 static int
nfs_delmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)4652 nfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4653 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4654 caller_context_t *ct)
4655 {
4656 int caller_found;
4657 int error;
4658 rnode_t *rp;
4659 nfs_delmap_args_t *dmapp;
4660 nfs_delmapcall_t *delmap_call;
4661
4662 if (vp->v_flag & VNOMAP)
4663 return (ENOSYS);
4664 /*
4665 * A process may not change zones if it has NFS pages mmap'ed
4666 * in, so we can't legitimately get here from the wrong zone.
4667 */
4668 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4669
4670 rp = VTOR(vp);
4671
4672 /*
4673 * The way that the address space of this process deletes its mapping
4674 * of this file is via the following call chains:
4675 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap()
4676 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs_delmap()
4677 *
4678 * With the use of address space callbacks we are allowed to drop the
4679 * address space lock, a_lock, while executing the NFS operations that
4680 * need to go over the wire. Returning EAGAIN to the caller of this
4681 * function is what drives the execution of the callback that we add
4682 * below. The callback will be executed by the address space code
4683 * after dropping the a_lock. When the callback is finished, since
4684 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
4685 * is called again on the same segment to finish the rest of the work
4686 * that needs to happen during unmapping.
4687 *
4688 * This action of calling back into the segment driver causes
4689 * nfs_delmap() to get called again, but since the callback was
4690 * already executed at this point, it already did the work and there
4691 * is nothing left for us to do.
4692 *
4693 * To Summarize:
4694 * - The first time nfs_delmap is called by the current thread is when
4695 * we add the caller associated with this delmap to the delmap caller
4696 * list, add the callback, and return EAGAIN.
4697 * - The second time in this call chain when nfs_delmap is called we
4698 * will find this caller in the delmap caller list and realize there
4699 * is no more work to do thus removing this caller from the list and
4700 * returning the error that was set in the callback execution.
4701 */
4702 caller_found = nfs_find_and_delete_delmapcall(rp, &error);
4703 if (caller_found) {
4704 /*
4705 * 'error' is from the actual delmap operations. To avoid
4706 * hangs, we need to handle the return of EAGAIN differently
4707 * since this is what drives the callback execution.
4708 * In this case, we don't want to return EAGAIN and do the
4709 * callback execution because there are none to execute.
4710 */
4711 if (error == EAGAIN)
4712 return (0);
4713 else
4714 return (error);
4715 }
4716
4717 /* current caller was not in the list */
4718 delmap_call = nfs_init_delmapcall();
4719
4720 mutex_enter(&rp->r_statelock);
4721 list_insert_tail(&rp->r_indelmap, delmap_call);
4722 mutex_exit(&rp->r_statelock);
4723
4724 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP);
4725
4726 dmapp->vp = vp;
4727 dmapp->off = off;
4728 dmapp->addr = addr;
4729 dmapp->len = len;
4730 dmapp->prot = prot;
4731 dmapp->maxprot = maxprot;
4732 dmapp->flags = flags;
4733 dmapp->cr = cr;
4734 dmapp->caller = delmap_call;
4735
4736 error = as_add_callback(as, nfs_delmap_callback, dmapp,
4737 AS_UNMAP_EVENT, addr, len, KM_SLEEP);
4738
4739 return (error ? error : EAGAIN);
4740 }
4741
4742 /*
4743 * Remove some pages from an mmap'd vnode. Just update the
4744 * count of pages. If doing close-to-open, then flush all
4745 * of the pages associated with this file. Otherwise, start
4746 * an asynchronous page flush to write out any dirty pages.
4747 * This will also associate a credential with the rnode which
4748 * can be used to write the pages.
4749 */
4750 /* ARGSUSED */
4751 static void
nfs_delmap_callback(struct as * as,void * arg,uint_t event)4752 nfs_delmap_callback(struct as *as, void *arg, uint_t event)
4753 {
4754 int error;
4755 rnode_t *rp;
4756 mntinfo_t *mi;
4757 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg;
4758
4759 rp = VTOR(dmapp->vp);
4760 mi = VTOMI(dmapp->vp);
4761
4762 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
4763 ASSERT(rp->r_mapcnt >= 0);
4764
4765 /*
4766 * Initiate a page flush if there are pages, the file system
4767 * was not mounted readonly, the segment was mapped shared, and
4768 * the pages themselves were writeable.
4769 */
4770 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) &&
4771 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
4772 mutex_enter(&rp->r_statelock);
4773 rp->r_flags |= RDIRTY;
4774 mutex_exit(&rp->r_statelock);
4775 /*
4776 * If this is a cross-zone access a sync putpage won't work, so
4777 * the best we can do is try an async putpage. That seems
4778 * better than something more draconian such as discarding the
4779 * dirty pages.
4780 */
4781 if ((mi->mi_flags & MI_NOCTO) ||
4782 nfs_zone() != mi->mi_zone)
4783 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len,
4784 B_ASYNC, dmapp->cr, NULL);
4785 else
4786 error = nfs_putpage(dmapp->vp, dmapp->off, dmapp->len,
4787 0, dmapp->cr, NULL);
4788 if (!error) {
4789 mutex_enter(&rp->r_statelock);
4790 error = rp->r_error;
4791 rp->r_error = 0;
4792 mutex_exit(&rp->r_statelock);
4793 }
4794 } else
4795 error = 0;
4796
4797 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO))
4798 (void) nfs_putpage(dmapp->vp, dmapp->off, dmapp->len,
4799 B_INVAL, dmapp->cr, NULL);
4800
4801 dmapp->caller->error = error;
4802 (void) as_delete_callback(as, arg);
4803 kmem_free(dmapp, sizeof (nfs_delmap_args_t));
4804 }
4805
4806 /* ARGSUSED */
4807 static int
nfs_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)4808 nfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4809 caller_context_t *ct)
4810 {
4811 int error = 0;
4812
4813 if (nfs_zone() != VTOMI(vp)->mi_zone)
4814 return (EIO);
4815 /*
4816 * This looks a little weird because it's written in a general
4817 * manner but we make little use of cases. If cntl() ever gets
4818 * widely used, the outer switch will make more sense.
4819 */
4820
4821 switch (cmd) {
4822
4823 /*
4824 * Large file spec - need to base answer new query with
4825 * hardcoded constant based on the protocol.
4826 */
4827 case _PC_FILESIZEBITS:
4828 *valp = 32;
4829 return (0);
4830
4831 case _PC_LINK_MAX:
4832 case _PC_NAME_MAX:
4833 case _PC_PATH_MAX:
4834 case _PC_SYMLINK_MAX:
4835 case _PC_CHOWN_RESTRICTED:
4836 case _PC_NO_TRUNC: {
4837 mntinfo_t *mi;
4838 struct pathcnf *pc;
4839
4840 if ((mi = VTOMI(vp)) == NULL || (pc = mi->mi_pathconf) == NULL)
4841 return (EINVAL);
4842 error = _PC_ISSET(cmd, pc->pc_mask); /* error or bool */
4843 switch (cmd) {
4844 case _PC_LINK_MAX:
4845 *valp = pc->pc_link_max;
4846 break;
4847 case _PC_NAME_MAX:
4848 *valp = pc->pc_name_max;
4849 break;
4850 case _PC_PATH_MAX:
4851 case _PC_SYMLINK_MAX:
4852 *valp = pc->pc_path_max;
4853 break;
4854 case _PC_CHOWN_RESTRICTED:
4855 /*
4856 * if we got here, error is really a boolean which
4857 * indicates whether cmd is set or not.
4858 */
4859 *valp = error ? 1 : 0; /* see above */
4860 error = 0;
4861 break;
4862 case _PC_NO_TRUNC:
4863 /*
4864 * if we got here, error is really a boolean which
4865 * indicates whether cmd is set or not.
4866 */
4867 *valp = error ? 1 : 0; /* see above */
4868 error = 0;
4869 break;
4870 }
4871 return (error ? EINVAL : 0);
4872 }
4873
4874 case _PC_XATTR_EXISTS:
4875 *valp = 0;
4876 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
4877 vnode_t *avp;
4878 rnode_t *rp;
4879 mntinfo_t *mi = VTOMI(vp);
4880
4881 if (!(mi->mi_flags & MI_EXTATTR))
4882 return (0);
4883
4884 rp = VTOR(vp);
4885 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER,
4886 INTR(vp)))
4887 return (EINTR);
4888
4889 error = nfslookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr);
4890 if (error || avp == NULL)
4891 error = acl_getxattrdir2(vp, &avp, 0, cr, 0);
4892
4893 nfs_rw_exit(&rp->r_rwlock);
4894
4895 if (error == 0 && avp != NULL) {
4896 error = do_xattr_exists_check(avp, valp, cr);
4897 VN_RELE(avp);
4898 }
4899 }
4900 return (error ? EINVAL : 0);
4901
4902 case _PC_ACL_ENABLED:
4903 *valp = _ACL_ACLENT_ENABLED;
4904 return (0);
4905
4906 default:
4907 return (EINVAL);
4908 }
4909 }
4910
4911 /*
4912 * Called by async thread to do synchronous pageio. Do the i/o, wait
4913 * for it to complete, and cleanup the page list when done.
4914 */
4915 static int
nfs_sync_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)4916 nfs_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
4917 int flags, cred_t *cr)
4918 {
4919 int error;
4920
4921 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4922 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
4923 if (flags & B_READ)
4924 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
4925 else
4926 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
4927 return (error);
4928 }
4929
4930 /* ARGSUSED */
4931 static int
nfs_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr,caller_context_t * ct)4932 nfs_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
4933 int flags, cred_t *cr, caller_context_t *ct)
4934 {
4935 int error;
4936 rnode_t *rp;
4937
4938 if (pp == NULL)
4939 return (EINVAL);
4940
4941 if (io_off > MAXOFF32_T)
4942 return (EFBIG);
4943 if (nfs_zone() != VTOMI(vp)->mi_zone)
4944 return (EIO);
4945 rp = VTOR(vp);
4946 mutex_enter(&rp->r_statelock);
4947 rp->r_count++;
4948 mutex_exit(&rp->r_statelock);
4949
4950 if (flags & B_ASYNC) {
4951 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr,
4952 nfs_sync_pageio);
4953 } else
4954 error = nfs_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
4955 mutex_enter(&rp->r_statelock);
4956 rp->r_count--;
4957 cv_broadcast(&rp->r_cv);
4958 mutex_exit(&rp->r_statelock);
4959 return (error);
4960 }
4961
4962 /* ARGSUSED */
4963 static int
nfs_setsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)4964 nfs_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
4965 caller_context_t *ct)
4966 {
4967 int error;
4968 mntinfo_t *mi;
4969
4970 mi = VTOMI(vp);
4971
4972 if (nfs_zone() != mi->mi_zone)
4973 return (EIO);
4974 if (mi->mi_flags & MI_ACL) {
4975 error = acl_setacl2(vp, vsecattr, flag, cr);
4976 if (mi->mi_flags & MI_ACL)
4977 return (error);
4978 }
4979
4980 return (ENOSYS);
4981 }
4982
4983 /* ARGSUSED */
4984 static int
nfs_getsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)4985 nfs_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
4986 caller_context_t *ct)
4987 {
4988 int error;
4989 mntinfo_t *mi;
4990
4991 mi = VTOMI(vp);
4992
4993 if (nfs_zone() != mi->mi_zone)
4994 return (EIO);
4995 if (mi->mi_flags & MI_ACL) {
4996 error = acl_getacl2(vp, vsecattr, flag, cr);
4997 if (mi->mi_flags & MI_ACL)
4998 return (error);
4999 }
5000
5001 return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
5002 }
5003
5004 /* ARGSUSED */
5005 static int
nfs_shrlock(vnode_t * vp,int cmd,struct shrlock * shr,int flag,cred_t * cr,caller_context_t * ct)5006 nfs_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
5007 caller_context_t *ct)
5008 {
5009 int error;
5010 struct shrlock nshr;
5011 struct nfs_owner nfs_owner;
5012 netobj lm_fh;
5013
5014 if (nfs_zone() != VTOMI(vp)->mi_zone)
5015 return (EIO);
5016
5017 /*
5018 * check for valid cmd parameter
5019 */
5020 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
5021 return (EINVAL);
5022
5023 /*
5024 * Check access permissions
5025 */
5026 if (cmd == F_SHARE &&
5027 (((shr->s_access & F_RDACC) && !(flag & FREAD)) ||
5028 ((shr->s_access & F_WRACC) && !(flag & FWRITE))))
5029 return (EBADF);
5030
5031 /*
5032 * If the filesystem is mounted using local locking, pass the
5033 * request off to the local share code.
5034 */
5035 if (VTOMI(vp)->mi_flags & MI_LLOCK)
5036 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
5037
5038 switch (cmd) {
5039 case F_SHARE:
5040 case F_UNSHARE:
5041 lm_fh.n_len = sizeof (fhandle_t);
5042 lm_fh.n_bytes = (char *)VTOFH(vp);
5043
5044 /*
5045 * If passed an owner that is too large to fit in an
5046 * nfs_owner it is likely a recursive call from the
5047 * lock manager client and pass it straight through. If
5048 * it is not a nfs_owner then simply return an error.
5049 */
5050 if (shr->s_own_len > sizeof (nfs_owner.lowner)) {
5051 if (((struct nfs_owner *)shr->s_owner)->magic !=
5052 NFS_OWNER_MAGIC)
5053 return (EINVAL);
5054
5055 if (error = lm_shrlock(vp, cmd, shr, flag, &lm_fh)) {
5056 error = set_errno(error);
5057 }
5058 return (error);
5059 }
5060 /*
5061 * Remote share reservations owner is a combination of
5062 * a magic number, hostname, and the local owner
5063 */
5064 bzero(&nfs_owner, sizeof (nfs_owner));
5065 nfs_owner.magic = NFS_OWNER_MAGIC;
5066 (void) strncpy(nfs_owner.hname, uts_nodename(),
5067 sizeof (nfs_owner.hname));
5068 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len);
5069 nshr.s_access = shr->s_access;
5070 nshr.s_deny = shr->s_deny;
5071 nshr.s_sysid = 0;
5072 nshr.s_pid = ttoproc(curthread)->p_pid;
5073 nshr.s_own_len = sizeof (nfs_owner);
5074 nshr.s_owner = (caddr_t)&nfs_owner;
5075
5076 if (error = lm_shrlock(vp, cmd, &nshr, flag, &lm_fh)) {
5077 error = set_errno(error);
5078 }
5079
5080 break;
5081
5082 case F_HASREMOTELOCKS:
5083 /*
5084 * NFS client can't store remote locks itself
5085 */
5086 shr->s_access = 0;
5087 error = 0;
5088 break;
5089
5090 default:
5091 error = EINVAL;
5092 break;
5093 }
5094
5095 return (error);
5096 }
5097