xref: /illumos-gate/usr/src/uts/common/fs/nfs/nfs_client.c (revision 33efde4275d24731ef87927237b0ffb0630b6b2d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  *	Copyright (c) 1983,1984,1985,1986,1987,1988,1989  AT&T.
28  *	All rights reserved.
29  */
30 
31 /*
32  * Copyright 2018 Nexenta Systems, Inc.
33  */
34 
35 #include <sys/param.h>
36 #include <sys/types.h>
37 #include <sys/systm.h>
38 #include <sys/thread.h>
39 #include <sys/t_lock.h>
40 #include <sys/time.h>
41 #include <sys/vnode.h>
42 #include <sys/vfs.h>
43 #include <sys/errno.h>
44 #include <sys/buf.h>
45 #include <sys/stat.h>
46 #include <sys/cred.h>
47 #include <sys/kmem.h>
48 #include <sys/debug.h>
49 #include <sys/dnlc.h>
50 #include <sys/vmsystm.h>
51 #include <sys/flock.h>
52 #include <sys/share.h>
53 #include <sys/cmn_err.h>
54 #include <sys/tiuser.h>
55 #include <sys/sysmacros.h>
56 #include <sys/callb.h>
57 #include <sys/acl.h>
58 #include <sys/kstat.h>
59 #include <sys/signal.h>
60 #include <sys/list.h>
61 #include <sys/zone.h>
62 
63 #include <rpc/types.h>
64 #include <rpc/xdr.h>
65 #include <rpc/auth.h>
66 #include <rpc/clnt.h>
67 
68 #include <nfs/nfs.h>
69 #include <nfs/nfs_clnt.h>
70 #include <nfs/nfs_cmd.h>
71 
72 #include <nfs/rnode.h>
73 #include <nfs/nfs_acl.h>
74 #include <nfs/lm.h>
75 
76 #include <vm/hat.h>
77 #include <vm/as.h>
78 #include <vm/page.h>
79 #include <vm/pvn.h>
80 #include <vm/seg.h>
81 #include <vm/seg_map.h>
82 #include <vm/seg_vn.h>
83 
84 static void	nfs3_attr_cache(vnode_t *, vattr_t *, vattr_t *, hrtime_t,
85 			cred_t *);
86 static int	nfs_getattr_cache(vnode_t *, struct vattr *);
87 static int	nfs_remove_locking_id(vnode_t *, int, char *, char *, int *);
88 
89 struct mi_globals {
90 	kmutex_t	mig_lock;  /* lock protecting mig_list */
91 	list_t		mig_list;  /* list of NFS v2 or v3 mounts in zone */
92 	boolean_t	mig_destructor_called;
93 };
94 
95 static zone_key_t mi_list_key;
96 
97 /* Debugging flag for PC file shares. */
98 extern int	share_debug;
99 
100 /*
101  * Attributes caching:
102  *
103  * Attributes are cached in the rnode in struct vattr form.
104  * There is a time associated with the cached attributes (r_attrtime)
105  * which tells whether the attributes are valid. The time is initialized
106  * to the difference between current time and the modify time of the vnode
107  * when new attributes are cached. This allows the attributes for
108  * files that have changed recently to be timed out sooner than for files
109  * that have not changed for a long time. There are minimum and maximum
110  * timeout values that can be set per mount point.
111  */
112 
113 int
nfs_waitfor_purge_complete(vnode_t * vp)114 nfs_waitfor_purge_complete(vnode_t *vp)
115 {
116 	rnode_t *rp;
117 	k_sigset_t smask;
118 
119 	rp = VTOR(vp);
120 	if (rp->r_serial != NULL && rp->r_serial != curthread) {
121 		mutex_enter(&rp->r_statelock);
122 		sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
123 		while (rp->r_serial != NULL) {
124 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
125 				sigunintr(&smask);
126 				mutex_exit(&rp->r_statelock);
127 				return (EINTR);
128 			}
129 		}
130 		sigunintr(&smask);
131 		mutex_exit(&rp->r_statelock);
132 	}
133 	return (0);
134 }
135 
136 /*
137  * Validate caches by checking cached attributes. If the cached
138  * attributes have timed out, then get new attributes from the server.
139  * As a side affect, this will do cache invalidation if the attributes
140  * have changed.
141  *
142  * If the attributes have not timed out and if there is a cache
143  * invalidation being done by some other thread, then wait until that
144  * thread has completed the cache invalidation.
145  */
146 int
nfs_validate_caches(vnode_t * vp,cred_t * cr)147 nfs_validate_caches(vnode_t *vp, cred_t *cr)
148 {
149 	int error;
150 	struct vattr va;
151 
152 	if (ATTRCACHE_VALID(vp)) {
153 		error = nfs_waitfor_purge_complete(vp);
154 		if (error)
155 			return (error);
156 		return (0);
157 	}
158 
159 	va.va_mask = AT_ALL;
160 	return (nfs_getattr_otw(vp, &va, cr));
161 }
162 
163 /*
164  * Validate caches by checking cached attributes. If the cached
165  * attributes have timed out, then get new attributes from the server.
166  * As a side affect, this will do cache invalidation if the attributes
167  * have changed.
168  *
169  * If the attributes have not timed out and if there is a cache
170  * invalidation being done by some other thread, then wait until that
171  * thread has completed the cache invalidation.
172  */
173 int
nfs3_validate_caches(vnode_t * vp,cred_t * cr)174 nfs3_validate_caches(vnode_t *vp, cred_t *cr)
175 {
176 	int error;
177 	struct vattr va;
178 
179 	if (ATTRCACHE_VALID(vp)) {
180 		error = nfs_waitfor_purge_complete(vp);
181 		if (error)
182 			return (error);
183 		return (0);
184 	}
185 
186 	va.va_mask = AT_ALL;
187 	return (nfs3_getattr_otw(vp, &va, cr));
188 }
189 
190 /*
191  * Purge all of the various NFS `data' caches.
192  */
193 void
nfs_purge_caches(vnode_t * vp,int purge_dnlc,cred_t * cr)194 nfs_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr)
195 {
196 	rnode_t *rp;
197 	char *contents;
198 	int size;
199 	int error;
200 
201 	/*
202 	 * Purge the DNLC for any entries which refer to this file.
203 	 * Avoid recursive entry into dnlc_purge_vp() in case of a directory.
204 	 */
205 	rp = VTOR(vp);
206 	mutex_enter(&rp->r_statelock);
207 	if (vp->v_count > 1 &&
208 	    (vp->v_type == VDIR || purge_dnlc == NFS_PURGE_DNLC) &&
209 	    !(rp->r_flags & RINDNLCPURGE)) {
210 		/*
211 		 * Set the RINDNLCPURGE flag to prevent recursive entry
212 		 * into dnlc_purge_vp()
213 		 */
214 		if (vp->v_type == VDIR)
215 			rp->r_flags |= RINDNLCPURGE;
216 		mutex_exit(&rp->r_statelock);
217 		dnlc_purge_vp(vp);
218 		mutex_enter(&rp->r_statelock);
219 		if (rp->r_flags & RINDNLCPURGE)
220 			rp->r_flags &= ~RINDNLCPURGE;
221 	}
222 
223 	/*
224 	 * Clear any readdir state bits and purge the readlink response cache.
225 	 */
226 	contents = rp->r_symlink.contents;
227 	size = rp->r_symlink.size;
228 	rp->r_symlink.contents = NULL;
229 	mutex_exit(&rp->r_statelock);
230 
231 	if (contents != NULL) {
232 
233 		kmem_free((void *)contents, size);
234 	}
235 
236 	/*
237 	 * Flush the page cache.
238 	 */
239 	if (vn_has_cached_data(vp)) {
240 		error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL);
241 		if (error && (error == ENOSPC || error == EDQUOT)) {
242 			mutex_enter(&rp->r_statelock);
243 			if (!rp->r_error)
244 				rp->r_error = error;
245 			mutex_exit(&rp->r_statelock);
246 		}
247 	}
248 
249 	/*
250 	 * Flush the readdir response cache.
251 	 */
252 	if (HAVE_RDDIR_CACHE(rp))
253 		nfs_purge_rddir_cache(vp);
254 }
255 
256 /*
257  * Purge the readdir cache of all entries
258  */
259 void
nfs_purge_rddir_cache(vnode_t * vp)260 nfs_purge_rddir_cache(vnode_t *vp)
261 {
262 	rnode_t *rp;
263 	rddir_cache *rdc;
264 	rddir_cache *nrdc;
265 
266 	rp = VTOR(vp);
267 	mutex_enter(&rp->r_statelock);
268 	rp->r_direof = NULL;
269 	rp->r_flags &= ~RLOOKUP;
270 	rp->r_flags |= RREADDIRPLUS;
271 	rdc = avl_first(&rp->r_dir);
272 	while (rdc != NULL) {
273 		nrdc = AVL_NEXT(&rp->r_dir, rdc);
274 		avl_remove(&rp->r_dir, rdc);
275 		rddir_cache_rele(rdc);
276 		rdc = nrdc;
277 	}
278 	mutex_exit(&rp->r_statelock);
279 }
280 
281 /*
282  * Do a cache check based on the post-operation attributes.
283  * Then make them the new cached attributes.  If no attributes
284  * were returned, then mark the attributes as timed out.
285  */
286 void
nfs3_cache_post_op_attr(vnode_t * vp,post_op_attr * poap,hrtime_t t,cred_t * cr)287 nfs3_cache_post_op_attr(vnode_t *vp, post_op_attr *poap, hrtime_t t, cred_t *cr)
288 {
289 	vattr_t attr;
290 
291 	if (!poap->attributes) {
292 		PURGE_ATTRCACHE(vp);
293 		return;
294 	}
295 	(void) nfs3_cache_fattr3(vp, &poap->attr, &attr, t, cr);
296 }
297 
298 /*
299  * Same as above, but using a vattr
300  */
301 void
nfs3_cache_post_op_vattr(vnode_t * vp,post_op_vattr * poap,hrtime_t t,cred_t * cr)302 nfs3_cache_post_op_vattr(vnode_t *vp, post_op_vattr *poap, hrtime_t t,
303     cred_t *cr)
304 {
305 	if (!poap->attributes) {
306 		PURGE_ATTRCACHE(vp);
307 		return;
308 	}
309 	nfs_attr_cache(vp, poap->fres.vap, t, cr);
310 }
311 
312 /*
313  * Do a cache check based on the weak cache consistency attributes.
314  * These consist of a small set of pre-operation attributes and the
315  * full set of post-operation attributes.
316  *
317  * If we are given the pre-operation attributes, then use them to
318  * check the validity of the various caches.  Then, if we got the
319  * post-operation attributes, make them the new cached attributes.
320  * If we didn't get the post-operation attributes, then mark the
321  * attribute cache as timed out so that the next reference will
322  * cause a GETATTR to the server to refresh with the current
323  * attributes.
324  *
325  * Otherwise, if we didn't get the pre-operation attributes, but
326  * we did get the post-operation attributes, then use these
327  * attributes to check the validity of the various caches.  This
328  * will probably cause a flush of the caches because if the
329  * operation succeeded, the attributes of the object were changed
330  * in some way from the old post-operation attributes.  This
331  * should be okay because it is the safe thing to do.  After
332  * checking the data caches, then we make these the new cached
333  * attributes.
334  *
335  * Otherwise, we didn't get either the pre- or post-operation
336  * attributes.  Simply mark the attribute cache as timed out so
337  * the next reference will cause a GETATTR to the server to
338  * refresh with the current attributes.
339  *
340  * If an error occurred trying to convert the over the wire
341  * attributes to a vattr, then simply mark the attribute cache as
342  * timed out.
343  */
344 void
nfs3_cache_wcc_data(vnode_t * vp,wcc_data * wccp,hrtime_t t,cred_t * cr)345 nfs3_cache_wcc_data(vnode_t *vp, wcc_data *wccp, hrtime_t t, cred_t *cr)
346 {
347 	vattr_t bva;
348 	vattr_t ava;
349 
350 	if (wccp->after.attributes) {
351 		if (fattr3_to_vattr(vp, &wccp->after.attr, &ava)) {
352 			PURGE_ATTRCACHE(vp);
353 			return;
354 		}
355 		if (wccp->before.attributes) {
356 			bva.va_ctime.tv_sec = wccp->before.attr.ctime.seconds;
357 			bva.va_ctime.tv_nsec = wccp->before.attr.ctime.nseconds;
358 			bva.va_mtime.tv_sec = wccp->before.attr.mtime.seconds;
359 			bva.va_mtime.tv_nsec = wccp->before.attr.mtime.nseconds;
360 			bva.va_size = wccp->before.attr.size;
361 			nfs3_attr_cache(vp, &bva, &ava, t, cr);
362 		} else
363 			nfs_attr_cache(vp, &ava, t, cr);
364 	} else {
365 		PURGE_ATTRCACHE(vp);
366 	}
367 }
368 
369 /*
370  * Set attributes cache for given vnode using nfsattr.
371  *
372  * This routine does not do cache validation with the attributes.
373  *
374  * If an error occurred trying to convert the over the wire
375  * attributes to a vattr, then simply mark the attribute cache as
376  * timed out.
377  */
378 void
nfs_attrcache(vnode_t * vp,struct nfsfattr * na,hrtime_t t)379 nfs_attrcache(vnode_t *vp, struct nfsfattr *na, hrtime_t t)
380 {
381 	rnode_t *rp;
382 	struct vattr va;
383 
384 	if (!nattr_to_vattr(vp, na, &va)) {
385 		rp = VTOR(vp);
386 		mutex_enter(&rp->r_statelock);
387 		if (rp->r_mtime <= t)
388 			nfs_attrcache_va(vp, &va);
389 		mutex_exit(&rp->r_statelock);
390 	} else {
391 		PURGE_ATTRCACHE(vp);
392 	}
393 }
394 
395 /*
396  * Set attributes cache for given vnode using fattr3.
397  *
398  * This routine does not do cache validation with the attributes.
399  *
400  * If an error occurred trying to convert the over the wire
401  * attributes to a vattr, then simply mark the attribute cache as
402  * timed out.
403  */
404 void
nfs3_attrcache(vnode_t * vp,fattr3 * na,hrtime_t t)405 nfs3_attrcache(vnode_t *vp, fattr3 *na, hrtime_t t)
406 {
407 	rnode_t *rp;
408 	struct vattr va;
409 
410 	if (!fattr3_to_vattr(vp, na, &va)) {
411 		rp = VTOR(vp);
412 		mutex_enter(&rp->r_statelock);
413 		if (rp->r_mtime <= t)
414 			nfs_attrcache_va(vp, &va);
415 		mutex_exit(&rp->r_statelock);
416 	} else {
417 		PURGE_ATTRCACHE(vp);
418 	}
419 }
420 
421 /*
422  * Do a cache check based on attributes returned over the wire.  The
423  * new attributes are cached.
424  *
425  * If an error occurred trying to convert the over the wire attributes
426  * to a vattr, then just return that error.
427  *
428  * As a side affect, the vattr argument is filled in with the converted
429  * attributes.
430  */
431 int
nfs_cache_fattr(vnode_t * vp,struct nfsfattr * na,vattr_t * vap,hrtime_t t,cred_t * cr)432 nfs_cache_fattr(vnode_t *vp, struct nfsfattr *na, vattr_t *vap, hrtime_t t,
433     cred_t *cr)
434 {
435 	int error;
436 
437 	error = nattr_to_vattr(vp, na, vap);
438 	if (error)
439 		return (error);
440 	nfs_attr_cache(vp, vap, t, cr);
441 	return (0);
442 }
443 
444 /*
445  * Do a cache check based on attributes returned over the wire.  The
446  * new attributes are cached.
447  *
448  * If an error occurred trying to convert the over the wire attributes
449  * to a vattr, then just return that error.
450  *
451  * As a side affect, the vattr argument is filled in with the converted
452  * attributes.
453  */
454 int
nfs3_cache_fattr3(vnode_t * vp,fattr3 * na,vattr_t * vap,hrtime_t t,cred_t * cr)455 nfs3_cache_fattr3(vnode_t *vp, fattr3 *na, vattr_t *vap, hrtime_t t, cred_t *cr)
456 {
457 	int error;
458 
459 	error = fattr3_to_vattr(vp, na, vap);
460 	if (error)
461 		return (error);
462 	nfs_attr_cache(vp, vap, t, cr);
463 	return (0);
464 }
465 
466 /*
467  * Use the passed in virtual attributes to check to see whether the
468  * data and metadata caches are valid, cache the new attributes, and
469  * then do the cache invalidation if required.
470  *
471  * The cache validation and caching of the new attributes is done
472  * atomically via the use of the mutex, r_statelock.  If required,
473  * the cache invalidation is done atomically w.r.t. the cache
474  * validation and caching of the attributes via the pseudo lock,
475  * r_serial.
476  *
477  * This routine is used to do cache validation and attributes caching
478  * for operations with a single set of post operation attributes.
479  */
480 void
nfs_attr_cache(vnode_t * vp,vattr_t * vap,hrtime_t t,cred_t * cr)481 nfs_attr_cache(vnode_t *vp, vattr_t *vap, hrtime_t t, cred_t *cr)
482 {
483 	rnode_t *rp;
484 	int mtime_changed = 0;
485 	int ctime_changed = 0;
486 	vsecattr_t *vsp;
487 	int was_serial;
488 	len_t preattr_rsize;
489 	boolean_t writeattr_set = B_FALSE;
490 	boolean_t cachepurge_set = B_FALSE;
491 
492 	rp = VTOR(vp);
493 
494 	mutex_enter(&rp->r_statelock);
495 
496 	if (rp->r_serial != curthread) {
497 		klwp_t *lwp = ttolwp(curthread);
498 
499 		was_serial = 0;
500 		if (lwp != NULL)
501 			lwp->lwp_nostop++;
502 		while (rp->r_serial != NULL) {
503 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
504 				mutex_exit(&rp->r_statelock);
505 				if (lwp != NULL)
506 					lwp->lwp_nostop--;
507 				return;
508 			}
509 		}
510 		if (lwp != NULL)
511 			lwp->lwp_nostop--;
512 	} else
513 		was_serial = 1;
514 
515 	if (rp->r_mtime > t) {
516 		if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size))
517 			PURGE_ATTRCACHE_LOCKED(rp);
518 		mutex_exit(&rp->r_statelock);
519 		return;
520 	}
521 
522 	/*
523 	 * Write thread after writing data to file on remote server,
524 	 * will always set RWRITEATTR to indicate that file on remote
525 	 * server was modified with a WRITE operation and would have
526 	 * marked attribute cache as timed out. If RWRITEATTR
527 	 * is set, then do not check for mtime and ctime change.
528 	 */
529 	if (!(rp->r_flags & RWRITEATTR)) {
530 		if (!CACHE_VALID(rp, vap->va_mtime, vap->va_size))
531 			mtime_changed = 1;
532 
533 		if (rp->r_attr.va_ctime.tv_sec != vap->va_ctime.tv_sec ||
534 		    rp->r_attr.va_ctime.tv_nsec != vap->va_ctime.tv_nsec)
535 			ctime_changed = 1;
536 	} else {
537 		writeattr_set = B_TRUE;
538 	}
539 
540 	preattr_rsize = rp->r_size;
541 
542 	nfs_attrcache_va(vp, vap);
543 
544 	/*
545 	 * If we have updated filesize in nfs_attrcache_va, as soon as we
546 	 * drop statelock we will be in transition of purging all
547 	 * our caches and updating them. It is possible for another
548 	 * thread to pick this new file size and read in zeroed data.
549 	 * stall other threads till cache purge is complete.
550 	 */
551 	if ((vp->v_type == VREG) && (rp->r_size != preattr_rsize)) {
552 		/*
553 		 * If RWRITEATTR was set and we have updated the file
554 		 * size, Server's returned file size need not necessarily
555 		 * be because of this Client's WRITE. We need to purge
556 		 * all caches.
557 		 */
558 		if (writeattr_set)
559 			mtime_changed = 1;
560 
561 		if (mtime_changed && !(rp->r_flags & RINCACHEPURGE)) {
562 			rp->r_flags |= RINCACHEPURGE;
563 			cachepurge_set = B_TRUE;
564 		}
565 	}
566 
567 	if (!mtime_changed && !ctime_changed) {
568 		mutex_exit(&rp->r_statelock);
569 		return;
570 	}
571 
572 	rp->r_serial = curthread;
573 
574 	mutex_exit(&rp->r_statelock);
575 
576 	if (mtime_changed)
577 		nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
578 
579 	if ((rp->r_flags & RINCACHEPURGE) && cachepurge_set) {
580 		mutex_enter(&rp->r_statelock);
581 		rp->r_flags &= ~RINCACHEPURGE;
582 		cv_broadcast(&rp->r_cv);
583 		mutex_exit(&rp->r_statelock);
584 		cachepurge_set = B_FALSE;
585 	}
586 
587 	if (ctime_changed) {
588 		(void) nfs_access_purge_rp(rp);
589 		if (rp->r_secattr != NULL) {
590 			mutex_enter(&rp->r_statelock);
591 			vsp = rp->r_secattr;
592 			rp->r_secattr = NULL;
593 			mutex_exit(&rp->r_statelock);
594 			if (vsp != NULL)
595 				nfs_acl_free(vsp);
596 		}
597 	}
598 
599 	if (!was_serial) {
600 		mutex_enter(&rp->r_statelock);
601 		rp->r_serial = NULL;
602 		cv_broadcast(&rp->r_cv);
603 		mutex_exit(&rp->r_statelock);
604 	}
605 }
606 
607 /*
608  * Use the passed in "before" virtual attributes to check to see
609  * whether the data and metadata caches are valid, cache the "after"
610  * new attributes, and then do the cache invalidation if required.
611  *
612  * The cache validation and caching of the new attributes is done
613  * atomically via the use of the mutex, r_statelock.  If required,
614  * the cache invalidation is done atomically w.r.t. the cache
615  * validation and caching of the attributes via the pseudo lock,
616  * r_serial.
617  *
618  * This routine is used to do cache validation and attributes caching
619  * for operations with both pre operation attributes and post operation
620  * attributes.
621  */
622 static void
nfs3_attr_cache(vnode_t * vp,vattr_t * bvap,vattr_t * avap,hrtime_t t,cred_t * cr)623 nfs3_attr_cache(vnode_t *vp, vattr_t *bvap, vattr_t *avap, hrtime_t t,
624     cred_t *cr)
625 {
626 	rnode_t *rp;
627 	int mtime_changed = 0;
628 	int ctime_changed = 0;
629 	vsecattr_t *vsp;
630 	int was_serial;
631 	len_t preattr_rsize;
632 	boolean_t writeattr_set = B_FALSE;
633 	boolean_t cachepurge_set = B_FALSE;
634 
635 	rp = VTOR(vp);
636 
637 	mutex_enter(&rp->r_statelock);
638 
639 	if (rp->r_serial != curthread) {
640 		klwp_t *lwp = ttolwp(curthread);
641 
642 		was_serial = 0;
643 		if (lwp != NULL)
644 			lwp->lwp_nostop++;
645 		while (rp->r_serial != NULL) {
646 			if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
647 				mutex_exit(&rp->r_statelock);
648 				if (lwp != NULL)
649 					lwp->lwp_nostop--;
650 				return;
651 			}
652 		}
653 		if (lwp != NULL)
654 			lwp->lwp_nostop--;
655 	} else
656 		was_serial = 1;
657 
658 	if (rp->r_mtime > t) {
659 		if (!CACHE_VALID(rp, avap->va_mtime, avap->va_size))
660 			PURGE_ATTRCACHE_LOCKED(rp);
661 		mutex_exit(&rp->r_statelock);
662 		return;
663 	}
664 
665 	/*
666 	 * Write thread after writing data to file on remote server,
667 	 * will always set RWRITEATTR to indicate that file on remote
668 	 * server was modified with a WRITE operation and would have
669 	 * marked attribute cache as timed out. If RWRITEATTR
670 	 * is set, then do not check for mtime and ctime change.
671 	 */
672 	if (!(rp->r_flags & RWRITEATTR)) {
673 		if (!CACHE_VALID(rp, bvap->va_mtime, bvap->va_size))
674 			mtime_changed = 1;
675 
676 		if (rp->r_attr.va_ctime.tv_sec != bvap->va_ctime.tv_sec ||
677 		    rp->r_attr.va_ctime.tv_nsec != bvap->va_ctime.tv_nsec)
678 			ctime_changed = 1;
679 	} else {
680 		writeattr_set = B_TRUE;
681 	}
682 
683 	preattr_rsize = rp->r_size;
684 
685 	nfs_attrcache_va(vp, avap);
686 
687 	/*
688 	 * If we have updated filesize in nfs_attrcache_va, as soon as we
689 	 * drop statelock we will be in transition of purging all
690 	 * our caches and updating them. It is possible for another
691 	 * thread to pick this new file size and read in zeroed data.
692 	 * stall other threads till cache purge is complete.
693 	 */
694 	if ((vp->v_type == VREG) && (rp->r_size != preattr_rsize)) {
695 		/*
696 		 * If RWRITEATTR was set and we have updated the file
697 		 * size, Server's returned file size need not necessarily
698 		 * be because of this Client's WRITE. We need to purge
699 		 * all caches.
700 		 */
701 		if (writeattr_set)
702 			mtime_changed = 1;
703 
704 		if (mtime_changed && !(rp->r_flags & RINCACHEPURGE)) {
705 			rp->r_flags |= RINCACHEPURGE;
706 			cachepurge_set = B_TRUE;
707 		}
708 	}
709 
710 	if (!mtime_changed && !ctime_changed) {
711 		mutex_exit(&rp->r_statelock);
712 		return;
713 	}
714 
715 	rp->r_serial = curthread;
716 
717 	mutex_exit(&rp->r_statelock);
718 
719 	if (mtime_changed)
720 		nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
721 
722 	if ((rp->r_flags & RINCACHEPURGE) && cachepurge_set) {
723 		mutex_enter(&rp->r_statelock);
724 		rp->r_flags &= ~RINCACHEPURGE;
725 		cv_broadcast(&rp->r_cv);
726 		mutex_exit(&rp->r_statelock);
727 		cachepurge_set = B_FALSE;
728 	}
729 
730 	if (ctime_changed) {
731 		(void) nfs_access_purge_rp(rp);
732 		if (rp->r_secattr != NULL) {
733 			mutex_enter(&rp->r_statelock);
734 			vsp = rp->r_secattr;
735 			rp->r_secattr = NULL;
736 			mutex_exit(&rp->r_statelock);
737 			if (vsp != NULL)
738 				nfs_acl_free(vsp);
739 		}
740 	}
741 
742 	if (!was_serial) {
743 		mutex_enter(&rp->r_statelock);
744 		rp->r_serial = NULL;
745 		cv_broadcast(&rp->r_cv);
746 		mutex_exit(&rp->r_statelock);
747 	}
748 }
749 
750 /*
751  * Set attributes cache for given vnode using virtual attributes.
752  *
753  * Set the timeout value on the attribute cache and fill it
754  * with the passed in attributes.
755  *
756  * The caller must be holding r_statelock.
757  */
758 void
nfs_attrcache_va(vnode_t * vp,struct vattr * va)759 nfs_attrcache_va(vnode_t *vp, struct vattr *va)
760 {
761 	rnode_t *rp;
762 	mntinfo_t *mi;
763 	hrtime_t delta;
764 	hrtime_t now;
765 
766 	rp = VTOR(vp);
767 
768 	ASSERT(MUTEX_HELD(&rp->r_statelock));
769 
770 	now = gethrtime();
771 
772 	mi = VTOMI(vp);
773 
774 	/*
775 	 * Delta is the number of nanoseconds that we will
776 	 * cache the attributes of the file.  It is based on
777 	 * the number of nanoseconds since the last time that
778 	 * we detected a change.  The assumption is that files
779 	 * that changed recently are likely to change again.
780 	 * There is a minimum and a maximum for regular files
781 	 * and for directories which is enforced though.
782 	 *
783 	 * Using the time since last change was detected
784 	 * eliminates direct comparison or calculation
785 	 * using mixed client and server times.  NFS does
786 	 * not make any assumptions regarding the client
787 	 * and server clocks being synchronized.
788 	 */
789 	if (va->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec ||
790 	    va->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec ||
791 	    va->va_size != rp->r_attr.va_size)
792 		rp->r_mtime = now;
793 
794 	if ((mi->mi_flags & MI_NOAC) || (vp->v_flag & VNOCACHE))
795 		delta = 0;
796 	else {
797 		delta = now - rp->r_mtime;
798 		if (vp->v_type == VDIR) {
799 			if (delta < mi->mi_acdirmin)
800 				delta = mi->mi_acdirmin;
801 			else if (delta > mi->mi_acdirmax)
802 				delta = mi->mi_acdirmax;
803 		} else {
804 			if (delta < mi->mi_acregmin)
805 				delta = mi->mi_acregmin;
806 			else if (delta > mi->mi_acregmax)
807 				delta = mi->mi_acregmax;
808 		}
809 	}
810 	rp->r_attrtime = now + delta;
811 	rp->r_attr = *va;
812 	/*
813 	 * Update the size of the file if there is no cached data or if
814 	 * the cached data is clean and there is no data being written
815 	 * out.
816 	 */
817 	if (rp->r_size != va->va_size &&
818 	    (!vn_has_cached_data(vp) ||
819 	    (!(rp->r_flags & RDIRTY) && rp->r_count == 0)))
820 		rp->r_size = va->va_size;
821 	nfs_setswaplike(vp, va);
822 	rp->r_flags &= ~RWRITEATTR;
823 }
824 
825 /*
826  * Fill in attribute from the cache.
827  * If valid, then return 0 to indicate that no error occurred,
828  * otherwise return 1 to indicate that an error occurred.
829  */
830 static int
nfs_getattr_cache(vnode_t * vp,struct vattr * vap)831 nfs_getattr_cache(vnode_t *vp, struct vattr *vap)
832 {
833 	rnode_t *rp;
834 	uint_t mask = vap->va_mask;
835 
836 	rp = VTOR(vp);
837 	mutex_enter(&rp->r_statelock);
838 	if (ATTRCACHE_VALID(vp)) {
839 		/*
840 		 * Cached attributes are valid
841 		 */
842 		*vap = rp->r_attr;
843 		/*
844 		 * Set the caller's va_mask to the set of attributes
845 		 * that were requested ANDed with the attributes that
846 		 * are available.  If attributes were requested that
847 		 * are not available, those bits must be turned off
848 		 * in the callers va_mask.
849 		 */
850 		vap->va_mask &= mask;
851 		mutex_exit(&rp->r_statelock);
852 		return (0);
853 	}
854 	mutex_exit(&rp->r_statelock);
855 	return (1);
856 }
857 
858 /*
859  * Get attributes over-the-wire and update attributes cache
860  * if no error occurred in the over-the-wire operation.
861  * Return 0 if successful, otherwise error.
862  */
863 int
nfs_getattr_otw(vnode_t * vp,struct vattr * vap,cred_t * cr)864 nfs_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr)
865 {
866 	int error;
867 	struct nfsattrstat ns;
868 	int douprintf;
869 	mntinfo_t *mi;
870 	failinfo_t fi;
871 	hrtime_t t;
872 
873 	mi = VTOMI(vp);
874 	fi.vp = vp;
875 	fi.fhp = NULL;		/* no need to update, filehandle not copied */
876 	fi.copyproc = nfscopyfh;
877 	fi.lookupproc = nfslookup;
878 	fi.xattrdirproc = acl_getxattrdir2;
879 
880 	if (mi->mi_flags & MI_ACL) {
881 		error = acl_getattr2_otw(vp, vap, cr);
882 		if (mi->mi_flags & MI_ACL)
883 			return (error);
884 	}
885 
886 	douprintf = 1;
887 
888 	t = gethrtime();
889 
890 	error = rfs2call(mi, RFS_GETATTR,
891 	    xdr_fhandle, (caddr_t)VTOFH(vp),
892 	    xdr_attrstat, (caddr_t)&ns, cr,
893 	    &douprintf, &ns.ns_status, 0, &fi);
894 
895 	if (!error) {
896 		error = geterrno(ns.ns_status);
897 		if (!error)
898 			error = nfs_cache_fattr(vp, &ns.ns_attr, vap, t, cr);
899 		else {
900 			PURGE_STALE_FH(error, vp, cr);
901 		}
902 	}
903 
904 	return (error);
905 }
906 
907 /*
908  * Return either cached ot remote attributes. If get remote attr
909  * use them to check and invalidate caches, then cache the new attributes.
910  */
911 int
nfsgetattr(vnode_t * vp,struct vattr * vap,cred_t * cr)912 nfsgetattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
913 {
914 	int error;
915 	rnode_t *rp;
916 
917 	/*
918 	 * If we've got cached attributes, we're done, otherwise go
919 	 * to the server to get attributes, which will update the cache
920 	 * in the process.
921 	 */
922 	error = nfs_getattr_cache(vp, vap);
923 	if (error)
924 		error = nfs_getattr_otw(vp, vap, cr);
925 
926 	/* Return the client's view of file size */
927 	rp = VTOR(vp);
928 	mutex_enter(&rp->r_statelock);
929 	vap->va_size = rp->r_size;
930 	mutex_exit(&rp->r_statelock);
931 
932 	return (error);
933 }
934 
935 /*
936  * Get attributes over-the-wire and update attributes cache
937  * if no error occurred in the over-the-wire operation.
938  * Return 0 if successful, otherwise error.
939  */
940 int
nfs3_getattr_otw(vnode_t * vp,struct vattr * vap,cred_t * cr)941 nfs3_getattr_otw(vnode_t *vp, struct vattr *vap, cred_t *cr)
942 {
943 	int error;
944 	GETATTR3args args;
945 	GETATTR3vres res;
946 	int douprintf;
947 	failinfo_t fi;
948 	hrtime_t t;
949 
950 	args.object = *VTOFH3(vp);
951 	fi.vp = vp;
952 	fi.fhp = (caddr_t)&args.object;
953 	fi.copyproc = nfs3copyfh;
954 	fi.lookupproc = nfs3lookup;
955 	fi.xattrdirproc = acl_getxattrdir3;
956 	res.fres.vp = vp;
957 	res.fres.vap = vap;
958 
959 	douprintf = 1;
960 
961 	t = gethrtime();
962 
963 	error = rfs3call(VTOMI(vp), NFSPROC3_GETATTR,
964 	    xdr_nfs_fh3, (caddr_t)&args,
965 	    xdr_GETATTR3vres, (caddr_t)&res, cr,
966 	    &douprintf, &res.status, 0, &fi);
967 
968 	if (error)
969 		return (error);
970 
971 	error = geterrno3(res.status);
972 	if (error) {
973 		PURGE_STALE_FH(error, vp, cr);
974 		return (error);
975 	}
976 
977 	/*
978 	 * Catch status codes that indicate fattr3 to vattr translation failure
979 	 */
980 	if (res.fres.status)
981 		return (res.fres.status);
982 
983 	nfs_attr_cache(vp, vap, t, cr);
984 	return (0);
985 }
986 
987 /*
988  * Return either cached or remote attributes. If get remote attr
989  * use them to check and invalidate caches, then cache the new attributes.
990  */
991 int
nfs3getattr(vnode_t * vp,struct vattr * vap,cred_t * cr)992 nfs3getattr(vnode_t *vp, struct vattr *vap, cred_t *cr)
993 {
994 	int error;
995 	rnode_t *rp;
996 
997 	/*
998 	 * If we've got cached attributes, we're done, otherwise go
999 	 * to the server to get attributes, which will update the cache
1000 	 * in the process.
1001 	 */
1002 	error = nfs_getattr_cache(vp, vap);
1003 	if (error)
1004 		error = nfs3_getattr_otw(vp, vap, cr);
1005 
1006 	/* Return the client's view of file size */
1007 	rp = VTOR(vp);
1008 	mutex_enter(&rp->r_statelock);
1009 	vap->va_size = rp->r_size;
1010 	mutex_exit(&rp->r_statelock);
1011 
1012 	return (error);
1013 }
1014 
1015 vtype_t nf_to_vt[] = {
1016 	VNON, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK
1017 };
1018 /*
1019  * Convert NFS Version 2 over the network attributes to the local
1020  * virtual attributes.  The mapping between the UID_NOBODY/GID_NOBODY
1021  * network representation and the local representation is done here.
1022  * Returns 0 for success, error if failed due to overflow.
1023  */
1024 int
nattr_to_vattr(vnode_t * vp,struct nfsfattr * na,struct vattr * vap)1025 nattr_to_vattr(vnode_t *vp, struct nfsfattr *na, struct vattr *vap)
1026 {
1027 	/* overflow in time attributes? */
1028 #ifndef _LP64
1029 	if (!NFS2_FATTR_TIME_OK(na))
1030 		return (EOVERFLOW);
1031 #endif
1032 
1033 	vap->va_mask = AT_ALL;
1034 
1035 	if (na->na_type < NFNON || na->na_type > NFSOC)
1036 		vap->va_type = VBAD;
1037 	else
1038 		vap->va_type = nf_to_vt[na->na_type];
1039 	vap->va_mode = na->na_mode;
1040 	vap->va_uid = (na->na_uid == NFS_UID_NOBODY) ? UID_NOBODY : na->na_uid;
1041 	vap->va_gid = (na->na_gid == NFS_GID_NOBODY) ? GID_NOBODY : na->na_gid;
1042 	vap->va_fsid = vp->v_vfsp->vfs_dev;
1043 	vap->va_nodeid = na->na_nodeid;
1044 	vap->va_nlink = na->na_nlink;
1045 	vap->va_size = na->na_size;	/* keep for cache validation */
1046 	/*
1047 	 * nfs protocol defines times as unsigned so don't extend sign,
1048 	 * unless sysadmin set nfs_allow_preepoch_time.
1049 	 */
1050 	NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->na_atime.tv_sec);
1051 	vap->va_atime.tv_nsec = (uint32_t)(na->na_atime.tv_usec * 1000);
1052 	NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->na_mtime.tv_sec);
1053 	vap->va_mtime.tv_nsec = (uint32_t)(na->na_mtime.tv_usec * 1000);
1054 	NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->na_ctime.tv_sec);
1055 	vap->va_ctime.tv_nsec = (uint32_t)(na->na_ctime.tv_usec * 1000);
1056 	/*
1057 	 * Shannon's law - uncompress the received dev_t
1058 	 * if the top half of is zero indicating a response
1059 	 * from an `older style' OS. Except for when it is a
1060 	 * `new style' OS sending the maj device of zero,
1061 	 * in which case the algorithm still works because the
1062 	 * fact that it is a new style server
1063 	 * is hidden by the minor device not being greater
1064 	 * than 255 (a requirement in this case).
1065 	 */
1066 	if ((na->na_rdev & 0xffff0000) == 0)
1067 		vap->va_rdev = nfsv2_expdev(na->na_rdev);
1068 	else
1069 		vap->va_rdev = expldev(na->na_rdev);
1070 
1071 	vap->va_nblocks = na->na_blocks;
1072 	switch (na->na_type) {
1073 	case NFBLK:
1074 		vap->va_blksize = DEV_BSIZE;
1075 		break;
1076 
1077 	case NFCHR:
1078 		vap->va_blksize = MAXBSIZE;
1079 		break;
1080 
1081 	case NFSOC:
1082 	default:
1083 		vap->va_blksize = na->na_blocksize;
1084 		break;
1085 	}
1086 	/*
1087 	 * This bit of ugliness is a hack to preserve the
1088 	 * over-the-wire protocols for named-pipe vnodes.
1089 	 * It remaps the special over-the-wire type to the
1090 	 * VFIFO type. (see note in nfs.h)
1091 	 */
1092 	if (NA_ISFIFO(na)) {
1093 		vap->va_type = VFIFO;
1094 		vap->va_mode = (vap->va_mode & ~S_IFMT) | S_IFIFO;
1095 		vap->va_rdev = 0;
1096 		vap->va_blksize = na->na_blocksize;
1097 	}
1098 	vap->va_seq = 0;
1099 	return (0);
1100 }
1101 
1102 /*
1103  * Convert NFS Version 3 over the network attributes to the local
1104  * virtual attributes.  The mapping between the UID_NOBODY/GID_NOBODY
1105  * network representation and the local representation is done here.
1106  */
1107 vtype_t nf3_to_vt[] = {
1108 	VBAD, VREG, VDIR, VBLK, VCHR, VLNK, VSOCK, VFIFO
1109 };
1110 
1111 int
fattr3_to_vattr(vnode_t * vp,fattr3 * na,struct vattr * vap)1112 fattr3_to_vattr(vnode_t *vp, fattr3 *na, struct vattr *vap)
1113 {
1114 
1115 #ifndef _LP64
1116 	/* overflow in time attributes? */
1117 	if (!NFS3_FATTR_TIME_OK(na))
1118 		return (EOVERFLOW);
1119 #endif
1120 	if (!NFS3_SIZE_OK(na->size))
1121 		/* file too big */
1122 		return (EFBIG);
1123 
1124 	vap->va_mask = AT_ALL;
1125 
1126 	if (na->type < NF3REG || na->type > NF3FIFO)
1127 		vap->va_type = VBAD;
1128 	else
1129 		vap->va_type = nf3_to_vt[na->type];
1130 	vap->va_mode = na->mode;
1131 	vap->va_uid = (na->uid == NFS_UID_NOBODY) ? UID_NOBODY : (uid_t)na->uid;
1132 	vap->va_gid = (na->gid == NFS_GID_NOBODY) ? GID_NOBODY : (gid_t)na->gid;
1133 	vap->va_fsid = vp->v_vfsp->vfs_dev;
1134 	vap->va_nodeid = na->fileid;
1135 	vap->va_nlink = na->nlink;
1136 	vap->va_size = na->size;
1137 
1138 	/*
1139 	 * nfs protocol defines times as unsigned so don't extend sign,
1140 	 * unless sysadmin set nfs_allow_preepoch_time.
1141 	 */
1142 	NFS_TIME_T_CONVERT(vap->va_atime.tv_sec, na->atime.seconds);
1143 	vap->va_atime.tv_nsec = (uint32_t)na->atime.nseconds;
1144 	NFS_TIME_T_CONVERT(vap->va_mtime.tv_sec, na->mtime.seconds);
1145 	vap->va_mtime.tv_nsec = (uint32_t)na->mtime.nseconds;
1146 	NFS_TIME_T_CONVERT(vap->va_ctime.tv_sec, na->ctime.seconds);
1147 	vap->va_ctime.tv_nsec = (uint32_t)na->ctime.nseconds;
1148 
1149 	switch (na->type) {
1150 	case NF3BLK:
1151 		vap->va_rdev = makedevice(na->rdev.specdata1,
1152 		    na->rdev.specdata2);
1153 		vap->va_blksize = DEV_BSIZE;
1154 		vap->va_nblocks = 0;
1155 		break;
1156 	case NF3CHR:
1157 		vap->va_rdev = makedevice(na->rdev.specdata1,
1158 		    na->rdev.specdata2);
1159 		vap->va_blksize = MAXBSIZE;
1160 		vap->va_nblocks = 0;
1161 		break;
1162 	case NF3REG:
1163 	case NF3DIR:
1164 	case NF3LNK:
1165 		vap->va_rdev = 0;
1166 		vap->va_blksize = MAXBSIZE;
1167 		vap->va_nblocks = (u_longlong_t)
1168 		    ((na->used + (size3)DEV_BSIZE - (size3)1) /
1169 		    (size3)DEV_BSIZE);
1170 		break;
1171 	case NF3SOCK:
1172 	case NF3FIFO:
1173 	default:
1174 		vap->va_rdev = 0;
1175 		vap->va_blksize = MAXBSIZE;
1176 		vap->va_nblocks = 0;
1177 		break;
1178 	}
1179 	vap->va_seq = 0;
1180 	return (0);
1181 }
1182 
1183 /*
1184  * Asynchronous I/O parameters.  nfs_async_threads is the high-water mark
1185  * for the demand-based allocation of async threads per-mount.  The
1186  * nfs_async_timeout is the amount of time a thread will live after it
1187  * becomes idle, unless new I/O requests are received before the thread
1188  * dies.  See nfs_async_putpage and nfs_async_start.
1189  */
1190 
1191 int nfs_async_timeout = -1;	/* uninitialized */
1192 
1193 static void	nfs_async_start(struct vfs *);
1194 static void	nfs_async_pgops_start(struct vfs *);
1195 static void	nfs_async_common_start(struct vfs *, int);
1196 
1197 static void
free_async_args(struct nfs_async_reqs * args)1198 free_async_args(struct nfs_async_reqs *args)
1199 {
1200 	rnode_t *rp;
1201 
1202 	if (args->a_io != NFS_INACTIVE) {
1203 		rp = VTOR(args->a_vp);
1204 		mutex_enter(&rp->r_statelock);
1205 		rp->r_count--;
1206 		if (args->a_io == NFS_PUTAPAGE ||
1207 		    args->a_io == NFS_PAGEIO)
1208 			rp->r_awcount--;
1209 		cv_broadcast(&rp->r_cv);
1210 		mutex_exit(&rp->r_statelock);
1211 		VN_RELE(args->a_vp);
1212 	}
1213 	crfree(args->a_cred);
1214 	kmem_free(args, sizeof (*args));
1215 }
1216 
1217 /*
1218  * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and
1219  * pageout(), running in the global zone, have legitimate reasons to do
1220  * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts.  We avoid the problem by
1221  * use of a a per-mount "asynchronous requests manager thread" which is
1222  * signaled by the various asynchronous work routines when there is
1223  * asynchronous work to be done.  It is responsible for creating new
1224  * worker threads if necessary, and notifying existing worker threads
1225  * that there is work to be done.
1226  *
1227  * In other words, it will "take the specifications from the customers and
1228  * give them to the engineers."
1229  *
1230  * Worker threads die off of their own accord if they are no longer
1231  * needed.
1232  *
1233  * This thread is killed when the zone is going away or the filesystem
1234  * is being unmounted.
1235  */
1236 void
nfs_async_manager(vfs_t * vfsp)1237 nfs_async_manager(vfs_t *vfsp)
1238 {
1239 	callb_cpr_t cprinfo;
1240 	mntinfo_t *mi;
1241 	uint_t max_threads;
1242 
1243 	mi = VFTOMI(vfsp);
1244 
1245 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1246 	    "nfs_async_manager");
1247 
1248 	mutex_enter(&mi->mi_async_lock);
1249 	/*
1250 	 * We want to stash the max number of threads that this mount was
1251 	 * allowed so we can use it later when the variable is set to zero as
1252 	 * part of the zone/mount going away.
1253 	 *
1254 	 * We want to be able to create at least one thread to handle
1255 	 * asynchronous inactive calls.
1256 	 */
1257 	max_threads = MAX(mi->mi_max_threads, 1);
1258 	/*
1259 	 * We don't want to wait for mi_max_threads to go to zero, since that
1260 	 * happens as part of a failed unmount, but this thread should only
1261 	 * exit when the mount/zone is really going away.
1262 	 *
1263 	 * Once MI_ASYNC_MGR_STOP is set, no more async operations will be
1264 	 * attempted: the various _async_*() functions know to do things
1265 	 * inline if mi_max_threads == 0.  Henceforth we just drain out the
1266 	 * outstanding requests.
1267 	 *
1268 	 * Note that we still create zthreads even if we notice the zone is
1269 	 * shutting down (MI_ASYNC_MGR_STOP is set); this may cause the zone
1270 	 * shutdown sequence to take slightly longer in some cases, but
1271 	 * doesn't violate the protocol, as all threads will exit as soon as
1272 	 * they're done processing the remaining requests.
1273 	 */
1274 	for (;;) {
1275 		while (mi->mi_async_req_count > 0) {
1276 			/*
1277 			 * Paranoia: If the mount started out having
1278 			 * (mi->mi_max_threads == 0), and the value was
1279 			 * later changed (via a debugger or somesuch),
1280 			 * we could be confused since we will think we
1281 			 * can't create any threads, and the calling
1282 			 * code (which looks at the current value of
1283 			 * mi->mi_max_threads, now non-zero) thinks we
1284 			 * can.
1285 			 *
1286 			 * So, because we're paranoid, we create threads
1287 			 * up to the maximum of the original and the
1288 			 * current value. This means that future
1289 			 * (debugger-induced) lowerings of
1290 			 * mi->mi_max_threads are ignored for our
1291 			 * purposes, but who told them they could change
1292 			 * random values on a live kernel anyhow?
1293 			 */
1294 			if (mi->mi_threads[NFS_ASYNC_QUEUE] <
1295 			    MAX(mi->mi_max_threads, max_threads)) {
1296 				mi->mi_threads[NFS_ASYNC_QUEUE]++;
1297 				mutex_exit(&mi->mi_async_lock);
1298 				VFS_HOLD(vfsp);	/* hold for new thread */
1299 				(void) zthread_create(NULL, 0, nfs_async_start,
1300 				    vfsp, 0, minclsyspri);
1301 				mutex_enter(&mi->mi_async_lock);
1302 			} else if (mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] <
1303 			    NUM_ASYNC_PGOPS_THREADS) {
1304 				mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE]++;
1305 				mutex_exit(&mi->mi_async_lock);
1306 				VFS_HOLD(vfsp); /* hold for new thread */
1307 				(void) zthread_create(NULL, 0,
1308 				    nfs_async_pgops_start, vfsp, 0,
1309 				    minclsyspri);
1310 				mutex_enter(&mi->mi_async_lock);
1311 			}
1312 			NFS_WAKE_ASYNC_WORKER(mi->mi_async_work_cv);
1313 			ASSERT(mi->mi_async_req_count != 0);
1314 			mi->mi_async_req_count--;
1315 		}
1316 
1317 		mutex_enter(&mi->mi_lock);
1318 		if (mi->mi_flags & MI_ASYNC_MGR_STOP) {
1319 			mutex_exit(&mi->mi_lock);
1320 			break;
1321 		}
1322 		mutex_exit(&mi->mi_lock);
1323 
1324 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
1325 		cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock);
1326 		CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1327 	}
1328 	/*
1329 	 * Let everyone know we're done.
1330 	 */
1331 	mi->mi_manager_thread = NULL;
1332 	cv_broadcast(&mi->mi_async_cv);
1333 
1334 	/*
1335 	 * There is no explicit call to mutex_exit(&mi->mi_async_lock)
1336 	 * since CALLB_CPR_EXIT is actually responsible for releasing
1337 	 * 'mi_async_lock'.
1338 	 */
1339 	CALLB_CPR_EXIT(&cprinfo);
1340 	VFS_RELE(vfsp);	/* release thread's hold */
1341 	zthread_exit();
1342 }
1343 
1344 /*
1345  * Signal (and wait for) the async manager thread to clean up and go away.
1346  */
1347 void
nfs_async_manager_stop(vfs_t * vfsp)1348 nfs_async_manager_stop(vfs_t *vfsp)
1349 {
1350 	mntinfo_t *mi = VFTOMI(vfsp);
1351 
1352 	mutex_enter(&mi->mi_async_lock);
1353 	mutex_enter(&mi->mi_lock);
1354 	mi->mi_flags |= MI_ASYNC_MGR_STOP;
1355 	mutex_exit(&mi->mi_lock);
1356 	cv_broadcast(&mi->mi_async_reqs_cv);
1357 	while (mi->mi_manager_thread != NULL)
1358 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1359 	mutex_exit(&mi->mi_async_lock);
1360 }
1361 
1362 int
nfs_async_readahead(vnode_t * vp,u_offset_t blkoff,caddr_t addr,struct seg * seg,cred_t * cr,void (* readahead)(vnode_t *,u_offset_t,caddr_t,struct seg *,cred_t *))1363 nfs_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr,
1364     struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *,
1365     u_offset_t, caddr_t, struct seg *, cred_t *))
1366 {
1367 	rnode_t *rp;
1368 	mntinfo_t *mi;
1369 	struct nfs_async_reqs *args;
1370 
1371 	rp = VTOR(vp);
1372 	ASSERT(rp->r_freef == NULL);
1373 
1374 	mi = VTOMI(vp);
1375 
1376 	/*
1377 	 * If addr falls in a different segment, don't bother doing readahead.
1378 	 */
1379 	if (addr >= seg->s_base + seg->s_size)
1380 		return (-1);
1381 
1382 	/*
1383 	 * If we can't allocate a request structure, punt on the readahead.
1384 	 */
1385 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1386 		return (-1);
1387 
1388 	/*
1389 	 * If a lock operation is pending, don't initiate any new
1390 	 * readaheads.  Otherwise, bump r_count to indicate the new
1391 	 * asynchronous I/O.
1392 	 */
1393 	if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) {
1394 		kmem_free(args, sizeof (*args));
1395 		return (-1);
1396 	}
1397 	mutex_enter(&rp->r_statelock);
1398 	rp->r_count++;
1399 	mutex_exit(&rp->r_statelock);
1400 	nfs_rw_exit(&rp->r_lkserlock);
1401 
1402 	args->a_next = NULL;
1403 #ifdef DEBUG
1404 	args->a_queuer = curthread;
1405 #endif
1406 	VN_HOLD(vp);
1407 	args->a_vp = vp;
1408 	ASSERT(cr != NULL);
1409 	crhold(cr);
1410 	args->a_cred = cr;
1411 	args->a_io = NFS_READ_AHEAD;
1412 	args->a_nfs_readahead = readahead;
1413 	args->a_nfs_blkoff = blkoff;
1414 	args->a_nfs_seg = seg;
1415 	args->a_nfs_addr = addr;
1416 
1417 	mutex_enter(&mi->mi_async_lock);
1418 
1419 	/*
1420 	 * If asyncio has been disabled, don't bother readahead.
1421 	 */
1422 	if (mi->mi_max_threads == 0) {
1423 		mutex_exit(&mi->mi_async_lock);
1424 		goto noasync;
1425 	}
1426 
1427 	/*
1428 	 * Link request structure into the async list and
1429 	 * wakeup async thread to do the i/o.
1430 	 */
1431 	if (mi->mi_async_reqs[NFS_READ_AHEAD] == NULL) {
1432 		mi->mi_async_reqs[NFS_READ_AHEAD] = args;
1433 		mi->mi_async_tail[NFS_READ_AHEAD] = args;
1434 	} else {
1435 		mi->mi_async_tail[NFS_READ_AHEAD]->a_next = args;
1436 		mi->mi_async_tail[NFS_READ_AHEAD] = args;
1437 	}
1438 
1439 	if (mi->mi_io_kstats) {
1440 		mutex_enter(&mi->mi_lock);
1441 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1442 		mutex_exit(&mi->mi_lock);
1443 	}
1444 
1445 	mi->mi_async_req_count++;
1446 	ASSERT(mi->mi_async_req_count != 0);
1447 	cv_signal(&mi->mi_async_reqs_cv);
1448 	mutex_exit(&mi->mi_async_lock);
1449 	return (0);
1450 
1451 noasync:
1452 	mutex_enter(&rp->r_statelock);
1453 	rp->r_count--;
1454 	cv_broadcast(&rp->r_cv);
1455 	mutex_exit(&rp->r_statelock);
1456 	VN_RELE(vp);
1457 	crfree(cr);
1458 	kmem_free(args, sizeof (*args));
1459 	return (-1);
1460 }
1461 
1462 int
nfs_async_putapage(vnode_t * vp,page_t * pp,u_offset_t off,size_t len,int flags,cred_t * cr,int (* putapage)(vnode_t *,page_t *,u_offset_t,size_t,int,cred_t *))1463 nfs_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
1464     int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *,
1465     u_offset_t, size_t, int, cred_t *))
1466 {
1467 	rnode_t *rp;
1468 	mntinfo_t *mi;
1469 	struct nfs_async_reqs *args;
1470 
1471 	ASSERT(flags & B_ASYNC);
1472 	ASSERT(vp->v_vfsp != NULL);
1473 
1474 	rp = VTOR(vp);
1475 	ASSERT(rp->r_count > 0);
1476 
1477 	mi = VTOMI(vp);
1478 
1479 	/*
1480 	 * If we can't allocate a request structure, do the putpage
1481 	 * operation synchronously in this thread's context.
1482 	 */
1483 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1484 		goto noasync;
1485 
1486 	args->a_next = NULL;
1487 #ifdef DEBUG
1488 	args->a_queuer = curthread;
1489 #endif
1490 	VN_HOLD(vp);
1491 	args->a_vp = vp;
1492 	ASSERT(cr != NULL);
1493 	crhold(cr);
1494 	args->a_cred = cr;
1495 	args->a_io = NFS_PUTAPAGE;
1496 	args->a_nfs_putapage = putapage;
1497 	args->a_nfs_pp = pp;
1498 	args->a_nfs_off = off;
1499 	args->a_nfs_len = (uint_t)len;
1500 	args->a_nfs_flags = flags;
1501 
1502 	mutex_enter(&mi->mi_async_lock);
1503 
1504 	/*
1505 	 * If asyncio has been disabled, then make a synchronous request.
1506 	 * This check is done a second time in case async io was diabled
1507 	 * while this thread was blocked waiting for memory pressure to
1508 	 * reduce or for the queue to drain.
1509 	 */
1510 	if (mi->mi_max_threads == 0) {
1511 		mutex_exit(&mi->mi_async_lock);
1512 		goto noasync;
1513 	}
1514 
1515 	/*
1516 	 * Link request structure into the async list and
1517 	 * wakeup async thread to do the i/o.
1518 	 */
1519 	if (mi->mi_async_reqs[NFS_PUTAPAGE] == NULL) {
1520 		mi->mi_async_reqs[NFS_PUTAPAGE] = args;
1521 		mi->mi_async_tail[NFS_PUTAPAGE] = args;
1522 	} else {
1523 		mi->mi_async_tail[NFS_PUTAPAGE]->a_next = args;
1524 		mi->mi_async_tail[NFS_PUTAPAGE] = args;
1525 	}
1526 
1527 	mutex_enter(&rp->r_statelock);
1528 	rp->r_count++;
1529 	rp->r_awcount++;
1530 	mutex_exit(&rp->r_statelock);
1531 
1532 	if (mi->mi_io_kstats) {
1533 		mutex_enter(&mi->mi_lock);
1534 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1535 		mutex_exit(&mi->mi_lock);
1536 	}
1537 
1538 	mi->mi_async_req_count++;
1539 	ASSERT(mi->mi_async_req_count != 0);
1540 	cv_signal(&mi->mi_async_reqs_cv);
1541 	mutex_exit(&mi->mi_async_lock);
1542 	return (0);
1543 
1544 noasync:
1545 	if (args != NULL) {
1546 		VN_RELE(vp);
1547 		crfree(cr);
1548 		kmem_free(args, sizeof (*args));
1549 	}
1550 
1551 	if (curproc == proc_pageout || curproc == proc_fsflush) {
1552 		/*
1553 		 * If we get here in the context of the pageout/fsflush,
1554 		 * we refuse to do a sync write, because this may hang
1555 		 * pageout (and the machine). In this case, we just
1556 		 * re-mark the page as dirty and punt on the page.
1557 		 *
1558 		 * Make sure B_FORCE isn't set.  We can re-mark the
1559 		 * pages as dirty and unlock the pages in one swoop by
1560 		 * passing in B_ERROR to pvn_write_done().  However,
1561 		 * we should make sure B_FORCE isn't set - we don't
1562 		 * want the page tossed before it gets written out.
1563 		 */
1564 		if (flags & B_FORCE)
1565 			flags &= ~(B_INVAL | B_FORCE);
1566 		pvn_write_done(pp, flags | B_ERROR);
1567 		return (0);
1568 	}
1569 	if (nfs_zone() != mi->mi_zone) {
1570 		/*
1571 		 * So this was a cross-zone sync putpage.  We pass in B_ERROR
1572 		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1573 		 * them.
1574 		 *
1575 		 * We don't want to clear B_FORCE here as the caller presumably
1576 		 * knows what they're doing if they set it.
1577 		 */
1578 		pvn_write_done(pp, flags | B_ERROR);
1579 		return (EPERM);
1580 	}
1581 	return ((*putapage)(vp, pp, off, len, flags, cr));
1582 }
1583 
1584 int
nfs_async_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr,int (* pageio)(vnode_t *,page_t *,u_offset_t,size_t,int,cred_t *))1585 nfs_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
1586     int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1587     size_t, int, cred_t *))
1588 {
1589 	rnode_t *rp;
1590 	mntinfo_t *mi;
1591 	struct nfs_async_reqs *args;
1592 
1593 	ASSERT(flags & B_ASYNC);
1594 	ASSERT(vp->v_vfsp != NULL);
1595 
1596 	rp = VTOR(vp);
1597 	ASSERT(rp->r_count > 0);
1598 
1599 	mi = VTOMI(vp);
1600 
1601 	/*
1602 	 * If we can't allocate a request structure, do the pageio
1603 	 * request synchronously in this thread's context.
1604 	 */
1605 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1606 		goto noasync;
1607 
1608 	args->a_next = NULL;
1609 #ifdef DEBUG
1610 	args->a_queuer = curthread;
1611 #endif
1612 	VN_HOLD(vp);
1613 	args->a_vp = vp;
1614 	ASSERT(cr != NULL);
1615 	crhold(cr);
1616 	args->a_cred = cr;
1617 	args->a_io = NFS_PAGEIO;
1618 	args->a_nfs_pageio = pageio;
1619 	args->a_nfs_pp = pp;
1620 	args->a_nfs_off = io_off;
1621 	args->a_nfs_len = (uint_t)io_len;
1622 	args->a_nfs_flags = flags;
1623 
1624 	mutex_enter(&mi->mi_async_lock);
1625 
1626 	/*
1627 	 * If asyncio has been disabled, then make a synchronous request.
1628 	 * This check is done a second time in case async io was diabled
1629 	 * while this thread was blocked waiting for memory pressure to
1630 	 * reduce or for the queue to drain.
1631 	 */
1632 	if (mi->mi_max_threads == 0) {
1633 		mutex_exit(&mi->mi_async_lock);
1634 		goto noasync;
1635 	}
1636 
1637 	/*
1638 	 * Link request structure into the async list and
1639 	 * wakeup async thread to do the i/o.
1640 	 */
1641 	if (mi->mi_async_reqs[NFS_PAGEIO] == NULL) {
1642 		mi->mi_async_reqs[NFS_PAGEIO] = args;
1643 		mi->mi_async_tail[NFS_PAGEIO] = args;
1644 	} else {
1645 		mi->mi_async_tail[NFS_PAGEIO]->a_next = args;
1646 		mi->mi_async_tail[NFS_PAGEIO] = args;
1647 	}
1648 
1649 	mutex_enter(&rp->r_statelock);
1650 	rp->r_count++;
1651 	rp->r_awcount++;
1652 	mutex_exit(&rp->r_statelock);
1653 
1654 	if (mi->mi_io_kstats) {
1655 		mutex_enter(&mi->mi_lock);
1656 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1657 		mutex_exit(&mi->mi_lock);
1658 	}
1659 
1660 	mi->mi_async_req_count++;
1661 	ASSERT(mi->mi_async_req_count != 0);
1662 	cv_signal(&mi->mi_async_reqs_cv);
1663 	mutex_exit(&mi->mi_async_lock);
1664 	return (0);
1665 
1666 noasync:
1667 	if (args != NULL) {
1668 		VN_RELE(vp);
1669 		crfree(cr);
1670 		kmem_free(args, sizeof (*args));
1671 	}
1672 
1673 	/*
1674 	 * If we can't do it ASYNC, for reads we do nothing (but cleanup
1675 	 * the page list), for writes we do it synchronously, except for
1676 	 * proc_pageout/proc_fsflush as described below.
1677 	 */
1678 	if (flags & B_READ) {
1679 		pvn_read_done(pp, flags | B_ERROR);
1680 		return (0);
1681 	}
1682 
1683 	if (curproc == proc_pageout || curproc == proc_fsflush) {
1684 		/*
1685 		 * If we get here in the context of the pageout/fsflush,
1686 		 * we refuse to do a sync write, because this may hang
1687 		 * pageout/fsflush (and the machine). In this case, we just
1688 		 * re-mark the page as dirty and punt on the page.
1689 		 *
1690 		 * Make sure B_FORCE isn't set.  We can re-mark the
1691 		 * pages as dirty and unlock the pages in one swoop by
1692 		 * passing in B_ERROR to pvn_write_done().  However,
1693 		 * we should make sure B_FORCE isn't set - we don't
1694 		 * want the page tossed before it gets written out.
1695 		 */
1696 		if (flags & B_FORCE)
1697 			flags &= ~(B_INVAL | B_FORCE);
1698 		pvn_write_done(pp, flags | B_ERROR);
1699 		return (0);
1700 	}
1701 
1702 	if (nfs_zone() != mi->mi_zone) {
1703 		/*
1704 		 * So this was a cross-zone sync pageio.  We pass in B_ERROR
1705 		 * to pvn_write_done() to re-mark the pages as dirty and unlock
1706 		 * them.
1707 		 *
1708 		 * We don't want to clear B_FORCE here as the caller presumably
1709 		 * knows what they're doing if they set it.
1710 		 */
1711 		pvn_write_done(pp, flags | B_ERROR);
1712 		return (EPERM);
1713 	}
1714 	return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1715 }
1716 
1717 void
nfs_async_readdir(vnode_t * vp,rddir_cache * rdc,cred_t * cr,int (* readdir)(vnode_t *,rddir_cache *,cred_t *))1718 nfs_async_readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr,
1719     int (*readdir)(vnode_t *, rddir_cache *, cred_t *))
1720 {
1721 	rnode_t *rp;
1722 	mntinfo_t *mi;
1723 	struct nfs_async_reqs *args;
1724 
1725 	rp = VTOR(vp);
1726 	ASSERT(rp->r_freef == NULL);
1727 
1728 	mi = VTOMI(vp);
1729 
1730 	/*
1731 	 * If we can't allocate a request structure, do the readdir
1732 	 * operation synchronously in this thread's context.
1733 	 */
1734 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1735 		goto noasync;
1736 
1737 	args->a_next = NULL;
1738 #ifdef DEBUG
1739 	args->a_queuer = curthread;
1740 #endif
1741 	VN_HOLD(vp);
1742 	args->a_vp = vp;
1743 	ASSERT(cr != NULL);
1744 	crhold(cr);
1745 	args->a_cred = cr;
1746 	args->a_io = NFS_READDIR;
1747 	args->a_nfs_readdir = readdir;
1748 	args->a_nfs_rdc = rdc;
1749 
1750 	mutex_enter(&mi->mi_async_lock);
1751 
1752 	/*
1753 	 * If asyncio has been disabled, then make a synchronous request.
1754 	 */
1755 	if (mi->mi_max_threads == 0) {
1756 		mutex_exit(&mi->mi_async_lock);
1757 		goto noasync;
1758 	}
1759 
1760 	/*
1761 	 * Link request structure into the async list and
1762 	 * wakeup async thread to do the i/o.
1763 	 */
1764 	if (mi->mi_async_reqs[NFS_READDIR] == NULL) {
1765 		mi->mi_async_reqs[NFS_READDIR] = args;
1766 		mi->mi_async_tail[NFS_READDIR] = args;
1767 	} else {
1768 		mi->mi_async_tail[NFS_READDIR]->a_next = args;
1769 		mi->mi_async_tail[NFS_READDIR] = args;
1770 	}
1771 
1772 	mutex_enter(&rp->r_statelock);
1773 	rp->r_count++;
1774 	mutex_exit(&rp->r_statelock);
1775 
1776 	if (mi->mi_io_kstats) {
1777 		mutex_enter(&mi->mi_lock);
1778 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1779 		mutex_exit(&mi->mi_lock);
1780 	}
1781 
1782 	mi->mi_async_req_count++;
1783 	ASSERT(mi->mi_async_req_count != 0);
1784 	cv_signal(&mi->mi_async_reqs_cv);
1785 	mutex_exit(&mi->mi_async_lock);
1786 	return;
1787 
1788 noasync:
1789 	if (args != NULL) {
1790 		VN_RELE(vp);
1791 		crfree(cr);
1792 		kmem_free(args, sizeof (*args));
1793 	}
1794 
1795 	rdc->entries = NULL;
1796 	mutex_enter(&rp->r_statelock);
1797 	ASSERT(rdc->flags & RDDIR);
1798 	rdc->flags &= ~RDDIR;
1799 	rdc->flags |= RDDIRREQ;
1800 	/*
1801 	 * Check the flag to see if RDDIRWAIT is set. If RDDIRWAIT
1802 	 * is set, wakeup the thread sleeping in cv_wait_sig().
1803 	 * The woken up thread will reset the flag to RDDIR and will
1804 	 * continue with the readdir opeartion.
1805 	 */
1806 	if (rdc->flags & RDDIRWAIT) {
1807 		rdc->flags &= ~RDDIRWAIT;
1808 		cv_broadcast(&rdc->cv);
1809 	}
1810 	mutex_exit(&rp->r_statelock);
1811 	rddir_cache_rele(rdc);
1812 }
1813 
1814 void
nfs_async_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr,void (* commit)(vnode_t *,page_t *,offset3,count3,cred_t *))1815 nfs_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
1816     cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3, cred_t *))
1817 {
1818 	rnode_t *rp;
1819 	mntinfo_t *mi;
1820 	struct nfs_async_reqs *args;
1821 	page_t *pp;
1822 
1823 	rp = VTOR(vp);
1824 	mi = VTOMI(vp);
1825 
1826 	/*
1827 	 * If we can't allocate a request structure, do the commit
1828 	 * operation synchronously in this thread's context.
1829 	 */
1830 	if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1831 		goto noasync;
1832 
1833 	args->a_next = NULL;
1834 #ifdef DEBUG
1835 	args->a_queuer = curthread;
1836 #endif
1837 	VN_HOLD(vp);
1838 	args->a_vp = vp;
1839 	ASSERT(cr != NULL);
1840 	crhold(cr);
1841 	args->a_cred = cr;
1842 	args->a_io = NFS_COMMIT;
1843 	args->a_nfs_commit = commit;
1844 	args->a_nfs_plist = plist;
1845 	args->a_nfs_offset = offset;
1846 	args->a_nfs_count = count;
1847 
1848 	mutex_enter(&mi->mi_async_lock);
1849 
1850 	/*
1851 	 * If asyncio has been disabled, then make a synchronous request.
1852 	 * This check is done a second time in case async io was diabled
1853 	 * while this thread was blocked waiting for memory pressure to
1854 	 * reduce or for the queue to drain.
1855 	 */
1856 	if (mi->mi_max_threads == 0) {
1857 		mutex_exit(&mi->mi_async_lock);
1858 		goto noasync;
1859 	}
1860 
1861 	/*
1862 	 * Link request structure into the async list and
1863 	 * wakeup async thread to do the i/o.
1864 	 */
1865 	if (mi->mi_async_reqs[NFS_COMMIT] == NULL) {
1866 		mi->mi_async_reqs[NFS_COMMIT] = args;
1867 		mi->mi_async_tail[NFS_COMMIT] = args;
1868 	} else {
1869 		mi->mi_async_tail[NFS_COMMIT]->a_next = args;
1870 		mi->mi_async_tail[NFS_COMMIT] = args;
1871 	}
1872 
1873 	mutex_enter(&rp->r_statelock);
1874 	rp->r_count++;
1875 	mutex_exit(&rp->r_statelock);
1876 
1877 	if (mi->mi_io_kstats) {
1878 		mutex_enter(&mi->mi_lock);
1879 		kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1880 		mutex_exit(&mi->mi_lock);
1881 	}
1882 
1883 	mi->mi_async_req_count++;
1884 	ASSERT(mi->mi_async_req_count != 0);
1885 	cv_signal(&mi->mi_async_reqs_cv);
1886 	mutex_exit(&mi->mi_async_lock);
1887 	return;
1888 
1889 noasync:
1890 	if (args != NULL) {
1891 		VN_RELE(vp);
1892 		crfree(cr);
1893 		kmem_free(args, sizeof (*args));
1894 	}
1895 
1896 	if (curproc == proc_pageout || curproc == proc_fsflush ||
1897 	    nfs_zone() != mi->mi_zone) {
1898 		while (plist != NULL) {
1899 			pp = plist;
1900 			page_sub(&plist, pp);
1901 			pp->p_fsdata = C_COMMIT;
1902 			page_unlock(pp);
1903 		}
1904 		return;
1905 	}
1906 	(*commit)(vp, plist, offset, count, cr);
1907 }
1908 
1909 void
nfs_async_inactive(vnode_t * vp,cred_t * cr,void (* inactive)(vnode_t *,cred_t *,caller_context_t *))1910 nfs_async_inactive(vnode_t *vp, cred_t *cr,
1911     void (*inactive)(vnode_t *, cred_t *, caller_context_t *))
1912 {
1913 	mntinfo_t *mi;
1914 	struct nfs_async_reqs *args;
1915 
1916 	mi = VTOMI(vp);
1917 
1918 	args = kmem_alloc(sizeof (*args), KM_SLEEP);
1919 	args->a_next = NULL;
1920 #ifdef DEBUG
1921 	args->a_queuer = curthread;
1922 #endif
1923 	args->a_vp = vp;
1924 	ASSERT(cr != NULL);
1925 	crhold(cr);
1926 	args->a_cred = cr;
1927 	args->a_io = NFS_INACTIVE;
1928 	args->a_nfs_inactive = inactive;
1929 
1930 	/*
1931 	 * Note that we don't check mi->mi_max_threads here, since we
1932 	 * *need* to get rid of this vnode regardless of whether someone
1933 	 * set nfs3_max_threads/nfs_max_threads to zero in /etc/system.
1934 	 *
1935 	 * The manager thread knows about this and is willing to create
1936 	 * at least one thread to accommodate us.
1937 	 */
1938 	mutex_enter(&mi->mi_async_lock);
1939 	if (mi->mi_manager_thread == NULL) {
1940 		rnode_t *rp = VTOR(vp);
1941 
1942 		mutex_exit(&mi->mi_async_lock);
1943 		crfree(cr);	/* drop our reference */
1944 		kmem_free(args, sizeof (*args));
1945 		/*
1946 		 * We can't do an over-the-wire call since we're in the wrong
1947 		 * zone, so we need to clean up state as best we can and then
1948 		 * throw away the vnode.
1949 		 */
1950 		mutex_enter(&rp->r_statelock);
1951 		if (rp->r_unldvp != NULL) {
1952 			vnode_t *unldvp;
1953 			char *unlname;
1954 			cred_t *unlcred;
1955 
1956 			unldvp = rp->r_unldvp;
1957 			rp->r_unldvp = NULL;
1958 			unlname = rp->r_unlname;
1959 			rp->r_unlname = NULL;
1960 			unlcred = rp->r_unlcred;
1961 			rp->r_unlcred = NULL;
1962 			mutex_exit(&rp->r_statelock);
1963 
1964 			VN_RELE(unldvp);
1965 			kmem_free(unlname, MAXNAMELEN);
1966 			crfree(unlcred);
1967 		} else {
1968 			mutex_exit(&rp->r_statelock);
1969 		}
1970 		/*
1971 		 * No need to explicitly throw away any cached pages.  The
1972 		 * eventual rinactive() will attempt a synchronous
1973 		 * VOP_PUTPAGE() which will immediately fail since the request
1974 		 * is coming from the wrong zone, and then will proceed to call
1975 		 * nfs_invalidate_pages() which will clean things up for us.
1976 		 */
1977 		rp_addfree(VTOR(vp), cr);
1978 		return;
1979 	}
1980 
1981 	if (mi->mi_async_reqs[NFS_INACTIVE] == NULL) {
1982 		mi->mi_async_reqs[NFS_INACTIVE] = args;
1983 	} else {
1984 		mi->mi_async_tail[NFS_INACTIVE]->a_next = args;
1985 	}
1986 	mi->mi_async_tail[NFS_INACTIVE] = args;
1987 	/*
1988 	 * Don't increment r_count, since we're trying to get rid of the vnode.
1989 	 */
1990 
1991 	mi->mi_async_req_count++;
1992 	ASSERT(mi->mi_async_req_count != 0);
1993 	cv_signal(&mi->mi_async_reqs_cv);
1994 	mutex_exit(&mi->mi_async_lock);
1995 }
1996 
1997 static void
nfs_async_start(struct vfs * vfsp)1998 nfs_async_start(struct vfs *vfsp)
1999 {
2000 	nfs_async_common_start(vfsp, NFS_ASYNC_QUEUE);
2001 }
2002 
2003 static void
nfs_async_pgops_start(struct vfs * vfsp)2004 nfs_async_pgops_start(struct vfs *vfsp)
2005 {
2006 	nfs_async_common_start(vfsp, NFS_ASYNC_PGOPS_QUEUE);
2007 }
2008 
2009 /*
2010  * The async queues for each mounted file system are arranged as a
2011  * set of queues, one for each async i/o type.  Requests are taken
2012  * from the queues in a round-robin fashion.  A number of consecutive
2013  * requests are taken from each queue before moving on to the next
2014  * queue.  This functionality may allow the NFS Version 2 server to do
2015  * write clustering, even if the client is mixing writes and reads
2016  * because it will take multiple write requests from the queue
2017  * before processing any of the other async i/o types.
2018  *
2019  * XXX The nfs_async_common_start thread is unsafe in the light of the present
2020  * model defined by cpr to suspend the system. Specifically over the
2021  * wire calls are cpr-unsafe. The thread should be reevaluated in
2022  * case of future updates to the cpr model.
2023  */
2024 static void
nfs_async_common_start(struct vfs * vfsp,int async_queue)2025 nfs_async_common_start(struct vfs *vfsp, int async_queue)
2026 {
2027 	struct nfs_async_reqs *args;
2028 	mntinfo_t *mi = VFTOMI(vfsp);
2029 	clock_t time_left = 1;
2030 	callb_cpr_t cprinfo;
2031 	int i;
2032 	int async_types;
2033 	kcondvar_t *async_work_cv;
2034 
2035 	if (async_queue == NFS_ASYNC_QUEUE) {
2036 		async_types = NFS_ASYNC_TYPES;
2037 		async_work_cv = &mi->mi_async_work_cv[NFS_ASYNC_QUEUE];
2038 	} else {
2039 		async_types = NFS_ASYNC_PGOPS_TYPES;
2040 		async_work_cv = &mi->mi_async_work_cv[NFS_ASYNC_PGOPS_QUEUE];
2041 	}
2042 
2043 	/*
2044 	 * Dynamic initialization of nfs_async_timeout to allow nfs to be
2045 	 * built in an implementation independent manner.
2046 	 */
2047 	if (nfs_async_timeout == -1)
2048 		nfs_async_timeout = NFS_ASYNC_TIMEOUT;
2049 
2050 	CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas");
2051 
2052 	mutex_enter(&mi->mi_async_lock);
2053 	for (;;) {
2054 		/*
2055 		 * Find the next queue containing an entry.  We start
2056 		 * at the current queue pointer and then round robin
2057 		 * through all of them until we either find a non-empty
2058 		 * queue or have looked through all of them.
2059 		 */
2060 		for (i = 0; i < async_types; i++) {
2061 			args = *mi->mi_async_curr[async_queue];
2062 			if (args != NULL)
2063 				break;
2064 			mi->mi_async_curr[async_queue]++;
2065 			if (mi->mi_async_curr[async_queue] ==
2066 			    &mi->mi_async_reqs[async_types]) {
2067 				mi->mi_async_curr[async_queue] =
2068 				    &mi->mi_async_reqs[0];
2069 			}
2070 		}
2071 		/*
2072 		 * If we didn't find a entry, then block until woken up
2073 		 * again and then look through the queues again.
2074 		 */
2075 		if (args == NULL) {
2076 			/*
2077 			 * Exiting is considered to be safe for CPR as well
2078 			 */
2079 			CALLB_CPR_SAFE_BEGIN(&cprinfo);
2080 
2081 			/*
2082 			 * Wakeup thread waiting to unmount the file
2083 			 * system only if all async threads are inactive.
2084 			 *
2085 			 * If we've timed-out and there's nothing to do,
2086 			 * then get rid of this thread.
2087 			 */
2088 			if (mi->mi_max_threads == 0 || time_left <= 0) {
2089 				--mi->mi_threads[async_queue];
2090 
2091 				if (mi->mi_threads[NFS_ASYNC_QUEUE] == 0 &&
2092 				    mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] == 0)
2093 					cv_signal(&mi->mi_async_cv);
2094 				CALLB_CPR_EXIT(&cprinfo);
2095 				VFS_RELE(vfsp);	/* release thread's hold */
2096 				zthread_exit();
2097 				/* NOTREACHED */
2098 			}
2099 			time_left = cv_reltimedwait(async_work_cv,
2100 			    &mi->mi_async_lock, nfs_async_timeout,
2101 			    TR_CLOCK_TICK);
2102 
2103 			CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
2104 
2105 			continue;
2106 		}
2107 		time_left = 1;
2108 
2109 		/*
2110 		 * Remove the request from the async queue and then
2111 		 * update the current async request queue pointer.  If
2112 		 * the current queue is empty or we have removed enough
2113 		 * consecutive entries from it, then reset the counter
2114 		 * for this queue and then move the current pointer to
2115 		 * the next queue.
2116 		 */
2117 		*mi->mi_async_curr[async_queue] = args->a_next;
2118 		if (*mi->mi_async_curr[async_queue] == NULL ||
2119 		    --mi->mi_async_clusters[args->a_io] == 0) {
2120 			mi->mi_async_clusters[args->a_io] =
2121 			    mi->mi_async_init_clusters;
2122 			mi->mi_async_curr[async_queue]++;
2123 			if (mi->mi_async_curr[async_queue] ==
2124 			    &mi->mi_async_reqs[async_types]) {
2125 				mi->mi_async_curr[async_queue] =
2126 				    &mi->mi_async_reqs[0];
2127 			}
2128 		}
2129 
2130 		if (args->a_io != NFS_INACTIVE && mi->mi_io_kstats) {
2131 			mutex_enter(&mi->mi_lock);
2132 			kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
2133 			mutex_exit(&mi->mi_lock);
2134 		}
2135 
2136 		mutex_exit(&mi->mi_async_lock);
2137 
2138 		/*
2139 		 * Obtain arguments from the async request structure.
2140 		 */
2141 		if (args->a_io == NFS_READ_AHEAD && mi->mi_max_threads > 0) {
2142 			(*args->a_nfs_readahead)(args->a_vp, args->a_nfs_blkoff,
2143 			    args->a_nfs_addr, args->a_nfs_seg,
2144 			    args->a_cred);
2145 		} else if (args->a_io == NFS_PUTAPAGE) {
2146 			(void) (*args->a_nfs_putapage)(args->a_vp,
2147 			    args->a_nfs_pp, args->a_nfs_off,
2148 			    args->a_nfs_len, args->a_nfs_flags,
2149 			    args->a_cred);
2150 		} else if (args->a_io == NFS_PAGEIO) {
2151 			(void) (*args->a_nfs_pageio)(args->a_vp,
2152 			    args->a_nfs_pp, args->a_nfs_off,
2153 			    args->a_nfs_len, args->a_nfs_flags,
2154 			    args->a_cred);
2155 		} else if (args->a_io == NFS_READDIR) {
2156 			(void) ((*args->a_nfs_readdir)(args->a_vp,
2157 			    args->a_nfs_rdc, args->a_cred));
2158 		} else if (args->a_io == NFS_COMMIT) {
2159 			(*args->a_nfs_commit)(args->a_vp, args->a_nfs_plist,
2160 			    args->a_nfs_offset, args->a_nfs_count,
2161 			    args->a_cred);
2162 		} else if (args->a_io == NFS_INACTIVE) {
2163 			(*args->a_nfs_inactive)(args->a_vp, args->a_cred, NULL);
2164 		}
2165 
2166 		/*
2167 		 * Now, release the vnode and free the credentials
2168 		 * structure.
2169 		 */
2170 		free_async_args(args);
2171 		/*
2172 		 * Reacquire the mutex because it will be needed above.
2173 		 */
2174 		mutex_enter(&mi->mi_async_lock);
2175 	}
2176 }
2177 
2178 void
nfs_async_stop(struct vfs * vfsp)2179 nfs_async_stop(struct vfs *vfsp)
2180 {
2181 	mntinfo_t *mi = VFTOMI(vfsp);
2182 
2183 	/*
2184 	 * Wait for all outstanding async operations to complete and for the
2185 	 * worker threads to exit.
2186 	 */
2187 	mutex_enter(&mi->mi_async_lock);
2188 	mi->mi_max_threads = 0;
2189 	NFS_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
2190 	while (mi->mi_threads[NFS_ASYNC_QUEUE] != 0 ||
2191 	    mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] != 0)
2192 		cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
2193 	mutex_exit(&mi->mi_async_lock);
2194 }
2195 
2196 /*
2197  * nfs_async_stop_sig:
2198  * Wait for all outstanding putpage operation to complete. If a signal
2199  * is deliver we will abort and return non-zero. If we can put all the
2200  * pages we will return 0. This routine is called from nfs_unmount and
2201  * nfs3_unmount to make these operations interruptible.
2202  */
2203 int
nfs_async_stop_sig(struct vfs * vfsp)2204 nfs_async_stop_sig(struct vfs *vfsp)
2205 {
2206 	mntinfo_t *mi = VFTOMI(vfsp);
2207 	ushort_t omax;
2208 	int rval;
2209 
2210 	/*
2211 	 * Wait for all outstanding async operations to complete and for the
2212 	 * worker threads to exit.
2213 	 */
2214 	mutex_enter(&mi->mi_async_lock);
2215 	omax = mi->mi_max_threads;
2216 	mi->mi_max_threads = 0;
2217 	/*
2218 	 * Tell all the worker threads to exit.
2219 	 */
2220 	NFS_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
2221 	while (mi->mi_threads[NFS_ASYNC_QUEUE] != 0 ||
2222 	    mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] != 0) {
2223 		if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock))
2224 			break;
2225 	}
2226 	rval = (mi->mi_threads[NFS_ASYNC_QUEUE] != 0 ||
2227 	    mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE]  != 0); /* Interrupted */
2228 	if (rval)
2229 		mi->mi_max_threads = omax;
2230 	mutex_exit(&mi->mi_async_lock);
2231 
2232 	return (rval);
2233 }
2234 
2235 int
writerp(rnode_t * rp,caddr_t base,int tcount,struct uio * uio,int pgcreated)2236 writerp(rnode_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2237 {
2238 	int pagecreate;
2239 	int n;
2240 	int saved_n;
2241 	caddr_t saved_base;
2242 	u_offset_t offset;
2243 	int error;
2244 	int sm_error;
2245 	vnode_t *vp = RTOV(rp);
2246 
2247 	ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
2248 	ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));
2249 	if (!vpm_enable) {
2250 		ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
2251 	}
2252 
2253 	/*
2254 	 * Move bytes in at most PAGESIZE chunks. We must avoid
2255 	 * spanning pages in uiomove() because page faults may cause
2256 	 * the cache to be invalidated out from under us. The r_size is not
2257 	 * updated until after the uiomove. If we push the last page of a
2258 	 * file before r_size is correct, we will lose the data written past
2259 	 * the current (and invalid) r_size.
2260 	 */
2261 	do {
2262 		offset = uio->uio_loffset;
2263 		pagecreate = 0;
2264 
2265 		/*
2266 		 * n is the number of bytes required to satisfy the request
2267 		 *   or the number of bytes to fill out the page.
2268 		 */
2269 		n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount);
2270 
2271 		/*
2272 		 * Check to see if we can skip reading in the page
2273 		 * and just allocate the memory.  We can do this
2274 		 * if we are going to rewrite the entire mapping
2275 		 * or if we are going to write to or beyond the current
2276 		 * end of file from the beginning of the mapping.
2277 		 *
2278 		 * The read of r_size is now protected by r_statelock.
2279 		 */
2280 		mutex_enter(&rp->r_statelock);
2281 		/*
2282 		 * When pgcreated is nonzero the caller has already done
2283 		 * a segmap_getmapflt with forcefault 0 and S_WRITE. With
2284 		 * segkpm this means we already have at least one page
2285 		 * created and mapped at base.
2286 		 */
2287 		pagecreate = pgcreated ||
2288 		    ((offset & PAGEOFFSET) == 0 &&
2289 		    (n == PAGESIZE || ((offset + n) >= rp->r_size)));
2290 
2291 		mutex_exit(&rp->r_statelock);
2292 		if (!vpm_enable && pagecreate) {
2293 			/*
2294 			 * The last argument tells segmap_pagecreate() to
2295 			 * always lock the page, as opposed to sometimes
2296 			 * returning with the page locked. This way we avoid a
2297 			 * fault on the ensuing uiomove(), but also
2298 			 * more importantly (to fix bug 1094402) we can
2299 			 * call segmap_fault() to unlock the page in all
2300 			 * cases. An alternative would be to modify
2301 			 * segmap_pagecreate() to tell us when it is
2302 			 * locking a page, but that's a fairly major
2303 			 * interface change.
2304 			 */
2305 			if (pgcreated == 0)
2306 				(void) segmap_pagecreate(segkmap, base,
2307 				    (uint_t)n, 1);
2308 			saved_base = base;
2309 			saved_n = n;
2310 		}
2311 
2312 		/*
2313 		 * The number of bytes of data in the last page can not
2314 		 * be accurately be determined while page is being
2315 		 * uiomove'd to and the size of the file being updated.
2316 		 * Thus, inform threads which need to know accurately
2317 		 * how much data is in the last page of the file.  They
2318 		 * will not do the i/o immediately, but will arrange for
2319 		 * the i/o to happen later when this modify operation
2320 		 * will have finished.
2321 		 */
2322 		ASSERT(!(rp->r_flags & RMODINPROGRESS));
2323 		mutex_enter(&rp->r_statelock);
2324 		rp->r_flags |= RMODINPROGRESS;
2325 		rp->r_modaddr = (offset & MAXBMASK);
2326 		mutex_exit(&rp->r_statelock);
2327 
2328 		if (vpm_enable) {
2329 			/*
2330 			 * Copy data. If new pages are created, part of
2331 			 * the page that is not written will be initizliazed
2332 			 * with zeros.
2333 			 */
2334 			error = vpm_data_copy(vp, offset, n, uio,
2335 			    !pagecreate, NULL, 0, S_WRITE);
2336 		} else {
2337 			error = uiomove(base, n, UIO_WRITE, uio);
2338 		}
2339 
2340 		/*
2341 		 * r_size is the maximum number of
2342 		 * bytes known to be in the file.
2343 		 * Make sure it is at least as high as the
2344 		 * first unwritten byte pointed to by uio_loffset.
2345 		 */
2346 		mutex_enter(&rp->r_statelock);
2347 		if (rp->r_size < uio->uio_loffset)
2348 			rp->r_size = uio->uio_loffset;
2349 		rp->r_flags &= ~RMODINPROGRESS;
2350 		rp->r_flags |= RDIRTY;
2351 		mutex_exit(&rp->r_statelock);
2352 
2353 		/* n = # of bytes written */
2354 		n = (int)(uio->uio_loffset - offset);
2355 
2356 		if (!vpm_enable) {
2357 			base += n;
2358 		}
2359 		tcount -= n;
2360 		/*
2361 		 * If we created pages w/o initializing them completely,
2362 		 * we need to zero the part that wasn't set up.
2363 		 * This happens on a most EOF write cases and if
2364 		 * we had some sort of error during the uiomove.
2365 		 */
2366 		if (!vpm_enable && pagecreate) {
2367 			if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
2368 				(void) kzero(base, PAGESIZE - n);
2369 
2370 			if (pgcreated) {
2371 				/*
2372 				 * Caller is responsible for this page,
2373 				 * it was not created in this loop.
2374 				 */
2375 				pgcreated = 0;
2376 			} else {
2377 				/*
2378 				 * For bug 1094402: segmap_pagecreate locks
2379 				 * page. Unlock it. This also unlocks the
2380 				 * pages allocated by page_create_va() in
2381 				 * segmap_pagecreate().
2382 				 */
2383 				sm_error = segmap_fault(kas.a_hat, segkmap,
2384 				    saved_base, saved_n,
2385 				    F_SOFTUNLOCK, S_WRITE);
2386 				if (error == 0)
2387 					error = sm_error;
2388 			}
2389 		}
2390 	} while (tcount > 0 && error == 0);
2391 
2392 	return (error);
2393 }
2394 
2395 int
nfs_putpages(vnode_t * vp,u_offset_t off,size_t len,int flags,cred_t * cr)2396 nfs_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2397 {
2398 	rnode_t *rp;
2399 	page_t *pp;
2400 	u_offset_t eoff;
2401 	u_offset_t io_off;
2402 	size_t io_len;
2403 	int error;
2404 	int rdirty;
2405 	int err;
2406 
2407 	rp = VTOR(vp);
2408 	ASSERT(rp->r_count > 0);
2409 
2410 	if (!vn_has_cached_data(vp))
2411 		return (0);
2412 
2413 	ASSERT(vp->v_type != VCHR);
2414 
2415 	/*
2416 	 * If ROUTOFSPACE is set, then all writes turn into B_INVAL
2417 	 * writes.  B_FORCE is set to force the VM system to actually
2418 	 * invalidate the pages, even if the i/o failed.  The pages
2419 	 * need to get invalidated because they can't be written out
2420 	 * because there isn't any space left on either the server's
2421 	 * file system or in the user's disk quota.  The B_FREE bit
2422 	 * is cleared to avoid confusion as to whether this is a
2423 	 * request to place the page on the freelist or to destroy
2424 	 * it.
2425 	 */
2426 	if ((rp->r_flags & ROUTOFSPACE) ||
2427 	    (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
2428 		flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
2429 
2430 	if (len == 0) {
2431 		/*
2432 		 * If doing a full file synchronous operation, then clear
2433 		 * the RDIRTY bit.  If a page gets dirtied while the flush
2434 		 * is happening, then RDIRTY will get set again.  The
2435 		 * RDIRTY bit must get cleared before the flush so that
2436 		 * we don't lose this information.
2437 		 *
2438 		 * If there are no full file async write operations
2439 		 * pending and RDIRTY bit is set, clear it.
2440 		 */
2441 		if (off == (u_offset_t)0 &&
2442 		    !(flags & B_ASYNC) &&
2443 		    (rp->r_flags & RDIRTY)) {
2444 			mutex_enter(&rp->r_statelock);
2445 			rdirty = (rp->r_flags & RDIRTY);
2446 			rp->r_flags &= ~RDIRTY;
2447 			mutex_exit(&rp->r_statelock);
2448 		} else if (flags & B_ASYNC && off == (u_offset_t)0) {
2449 			mutex_enter(&rp->r_statelock);
2450 			if (rp->r_flags & RDIRTY && rp->r_awcount == 0) {
2451 				rdirty = (rp->r_flags & RDIRTY);
2452 				rp->r_flags &= ~RDIRTY;
2453 			}
2454 			mutex_exit(&rp->r_statelock);
2455 		} else
2456 			rdirty = 0;
2457 
2458 		/*
2459 		 * Search the entire vp list for pages >= off, and flush
2460 		 * the dirty pages.
2461 		 */
2462 		error = pvn_vplist_dirty(vp, off, rp->r_putapage,
2463 		    flags, cr);
2464 
2465 		/*
2466 		 * If an error occurred and the file was marked as dirty
2467 		 * before and we aren't forcibly invalidating pages, then
2468 		 * reset the RDIRTY flag.
2469 		 */
2470 		if (error && rdirty &&
2471 		    (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
2472 			mutex_enter(&rp->r_statelock);
2473 			rp->r_flags |= RDIRTY;
2474 			mutex_exit(&rp->r_statelock);
2475 		}
2476 	} else {
2477 		/*
2478 		 * Do a range from [off...off + len) looking for pages
2479 		 * to deal with.
2480 		 */
2481 		error = 0;
2482 #ifdef lint
2483 		io_len = 0;
2484 #endif
2485 		eoff = off + len;
2486 		mutex_enter(&rp->r_statelock);
2487 		for (io_off = off; io_off < eoff && io_off < rp->r_size;
2488 		    io_off += io_len) {
2489 			mutex_exit(&rp->r_statelock);
2490 			/*
2491 			 * If we are not invalidating, synchronously
2492 			 * freeing or writing pages use the routine
2493 			 * page_lookup_nowait() to prevent reclaiming
2494 			 * them from the free list.
2495 			 */
2496 			if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
2497 				pp = page_lookup(vp, io_off,
2498 				    (flags & (B_INVAL | B_FREE)) ?
2499 				    SE_EXCL : SE_SHARED);
2500 			} else {
2501 				pp = page_lookup_nowait(vp, io_off,
2502 				    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2503 			}
2504 
2505 			if (pp == NULL || !pvn_getdirty(pp, flags))
2506 				io_len = PAGESIZE;
2507 			else {
2508 				err = (*rp->r_putapage)(vp, pp, &io_off,
2509 				    &io_len, flags, cr);
2510 				if (!error)
2511 					error = err;
2512 				/*
2513 				 * "io_off" and "io_len" are returned as
2514 				 * the range of pages we actually wrote.
2515 				 * This allows us to skip ahead more quickly
2516 				 * since several pages may've been dealt
2517 				 * with by this iteration of the loop.
2518 				 */
2519 			}
2520 			mutex_enter(&rp->r_statelock);
2521 		}
2522 		mutex_exit(&rp->r_statelock);
2523 	}
2524 
2525 	return (error);
2526 }
2527 
2528 void
nfs_invalidate_pages(vnode_t * vp,u_offset_t off,cred_t * cr)2529 nfs_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
2530 {
2531 	rnode_t *rp;
2532 
2533 	rp = VTOR(vp);
2534 	mutex_enter(&rp->r_statelock);
2535 	while (rp->r_flags & RTRUNCATE)
2536 		cv_wait(&rp->r_cv, &rp->r_statelock);
2537 	rp->r_flags |= RTRUNCATE;
2538 	if (off == (u_offset_t)0) {
2539 		rp->r_flags &= ~RDIRTY;
2540 		if (!(rp->r_flags & RSTALE))
2541 			rp->r_error = 0;
2542 	}
2543 	rp->r_truncaddr = off;
2544 	mutex_exit(&rp->r_statelock);
2545 	(void) pvn_vplist_dirty(vp, off, rp->r_putapage,
2546 	    B_INVAL | B_TRUNC, cr);
2547 	mutex_enter(&rp->r_statelock);
2548 	rp->r_flags &= ~RTRUNCATE;
2549 	cv_broadcast(&rp->r_cv);
2550 	mutex_exit(&rp->r_statelock);
2551 }
2552 
2553 static int nfs_write_error_to_cons_only = 0;
2554 #define	MSG(x)	(nfs_write_error_to_cons_only ? (x) : (x) + 1)
2555 
2556 /*
2557  * Print a file handle
2558  */
2559 void
nfs_printfhandle(nfs_fhandle * fhp)2560 nfs_printfhandle(nfs_fhandle *fhp)
2561 {
2562 	int *ip;
2563 	char *buf;
2564 	size_t bufsize;
2565 	char *cp;
2566 
2567 	/*
2568 	 * 13 == "(file handle:"
2569 	 * maximum of NFS_FHANDLE / sizeof (*ip) elements in fh_buf times
2570 	 *	1 == ' '
2571 	 *	8 == maximum strlen of "%x"
2572 	 * 3 == ")\n\0"
2573 	 */
2574 	bufsize = 13 + ((NFS_FHANDLE_LEN / sizeof (*ip)) * (1 + 8)) + 3;
2575 	buf = kmem_alloc(bufsize, KM_NOSLEEP);
2576 	if (buf == NULL)
2577 		return;
2578 
2579 	cp = buf;
2580 	(void) strcpy(cp, "(file handle:");
2581 	while (*cp != '\0')
2582 		cp++;
2583 	for (ip = (int *)fhp->fh_buf;
2584 	    ip < (int *)&fhp->fh_buf[fhp->fh_len];
2585 	    ip++) {
2586 		(void) sprintf(cp, " %x", *ip);
2587 		while (*cp != '\0')
2588 			cp++;
2589 	}
2590 	(void) strcpy(cp, ")\n");
2591 
2592 	zcmn_err(getzoneid(), CE_CONT, MSG("^%s"), buf);
2593 
2594 	kmem_free(buf, bufsize);
2595 }
2596 
2597 /*
2598  * Notify the system administrator that an NFS write error has
2599  * occurred.
2600  */
2601 
2602 /* seconds between ENOSPC/EDQUOT messages */
2603 clock_t nfs_write_error_interval = 5;
2604 
2605 void
nfs_write_error(vnode_t * vp,int error,cred_t * cr)2606 nfs_write_error(vnode_t *vp, int error, cred_t *cr)
2607 {
2608 	mntinfo_t *mi;
2609 	clock_t now;
2610 
2611 	mi = VTOMI(vp);
2612 	/*
2613 	 * In case of forced unmount or zone shutdown, do not print any
2614 	 * messages since it can flood the console with error messages.
2615 	 */
2616 	if (FS_OR_ZONE_GONE(mi->mi_vfsp))
2617 		return;
2618 
2619 	/*
2620 	 * No use in flooding the console with ENOSPC
2621 	 * messages from the same file system.
2622 	 */
2623 	now = ddi_get_lbolt();
2624 	if ((error != ENOSPC && error != EDQUOT) ||
2625 	    now - mi->mi_printftime > 0) {
2626 		zoneid_t zoneid = mi->mi_zone->zone_id;
2627 
2628 #ifdef DEBUG
2629 		nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
2630 		    mi->mi_vers, VTOR(vp)->r_server->sv_hostname, NULL);
2631 #else
2632 		nfs_perror(error, "NFS write error on host %s: %m.\n",
2633 		    VTOR(vp)->r_server->sv_hostname, NULL);
2634 #endif
2635 		if (error == ENOSPC || error == EDQUOT) {
2636 			zcmn_err(zoneid, CE_CONT,
2637 			    MSG("^File: userid=%d, groupid=%d\n"),
2638 			    crgetuid(cr), crgetgid(cr));
2639 			if (crgetuid(CRED()) != crgetuid(cr) ||
2640 			    crgetgid(CRED()) != crgetgid(cr)) {
2641 				zcmn_err(zoneid, CE_CONT,
2642 				    MSG("^User: userid=%d, groupid=%d\n"),
2643 				    crgetuid(CRED()), crgetgid(CRED()));
2644 			}
2645 			mi->mi_printftime = now +
2646 			    nfs_write_error_interval * hz;
2647 		}
2648 		nfs_printfhandle(&VTOR(vp)->r_fh);
2649 #ifdef DEBUG
2650 		if (error == EACCES) {
2651 			zcmn_err(zoneid, CE_CONT,
2652 			    MSG("^nfs_bio: cred is%s kcred\n"),
2653 			    cr == kcred ? "" : " not");
2654 		}
2655 #endif
2656 	}
2657 }
2658 
2659 /* ARGSUSED */
2660 static void *
nfs_mi_init(zoneid_t zoneid)2661 nfs_mi_init(zoneid_t zoneid)
2662 {
2663 	struct mi_globals *mig;
2664 
2665 	mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
2666 	mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
2667 	list_create(&mig->mig_list, sizeof (mntinfo_t),
2668 	    offsetof(mntinfo_t, mi_zone_node));
2669 	mig->mig_destructor_called = B_FALSE;
2670 	return (mig);
2671 }
2672 
2673 /*
2674  * Callback routine to tell all NFS mounts in the zone to stop creating new
2675  * threads.  Existing threads should exit.
2676  */
2677 /* ARGSUSED */
2678 static void
nfs_mi_shutdown(zoneid_t zoneid,void * data)2679 nfs_mi_shutdown(zoneid_t zoneid, void *data)
2680 {
2681 	struct mi_globals *mig = data;
2682 	mntinfo_t *mi;
2683 
2684 	ASSERT(mig != NULL);
2685 again:
2686 	mutex_enter(&mig->mig_lock);
2687 	for (mi = list_head(&mig->mig_list); mi != NULL;
2688 	    mi = list_next(&mig->mig_list, mi)) {
2689 
2690 		/*
2691 		 * If we've done the shutdown work for this FS, skip.
2692 		 * Once we go off the end of the list, we're done.
2693 		 */
2694 		if (mi->mi_flags & MI_DEAD)
2695 			continue;
2696 
2697 		/*
2698 		 * We will do work, so not done.  Get a hold on the FS.
2699 		 */
2700 		VFS_HOLD(mi->mi_vfsp);
2701 
2702 		/*
2703 		 * purge the DNLC for this filesystem
2704 		 */
2705 		(void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
2706 
2707 		mutex_enter(&mi->mi_async_lock);
2708 		/*
2709 		 * Tell existing async worker threads to exit.
2710 		 */
2711 		mi->mi_max_threads = 0;
2712 		NFS_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
2713 		/*
2714 		 * Set MI_ASYNC_MGR_STOP so the async manager thread starts
2715 		 * getting ready to exit when it's done with its current work.
2716 		 * Also set MI_DEAD to note we've acted on this FS.
2717 		 */
2718 		mutex_enter(&mi->mi_lock);
2719 		mi->mi_flags |= (MI_ASYNC_MGR_STOP|MI_DEAD);
2720 		mutex_exit(&mi->mi_lock);
2721 		/*
2722 		 * Wake up the async manager thread.
2723 		 */
2724 		cv_broadcast(&mi->mi_async_reqs_cv);
2725 		mutex_exit(&mi->mi_async_lock);
2726 
2727 		/*
2728 		 * Drop lock and release FS, which may change list, then repeat.
2729 		 * We're done when every mi has been done or the list is empty.
2730 		 */
2731 		mutex_exit(&mig->mig_lock);
2732 		VFS_RELE(mi->mi_vfsp);
2733 		goto again;
2734 	}
2735 	mutex_exit(&mig->mig_lock);
2736 }
2737 
2738 static void
nfs_mi_free_globals(struct mi_globals * mig)2739 nfs_mi_free_globals(struct mi_globals *mig)
2740 {
2741 	list_destroy(&mig->mig_list);	/* makes sure the list is empty */
2742 	mutex_destroy(&mig->mig_lock);
2743 	kmem_free(mig, sizeof (*mig));
2744 
2745 }
2746 
2747 /* ARGSUSED */
2748 static void
nfs_mi_destroy(zoneid_t zoneid,void * data)2749 nfs_mi_destroy(zoneid_t zoneid, void *data)
2750 {
2751 	struct mi_globals *mig = data;
2752 
2753 	ASSERT(mig != NULL);
2754 	mutex_enter(&mig->mig_lock);
2755 	if (list_head(&mig->mig_list) != NULL) {
2756 		/* Still waiting for VFS_FREEVFS() */
2757 		mig->mig_destructor_called = B_TRUE;
2758 		mutex_exit(&mig->mig_lock);
2759 		return;
2760 	}
2761 	nfs_mi_free_globals(mig);
2762 }
2763 
2764 /*
2765  * Add an NFS mount to the per-zone list of NFS mounts.
2766  */
2767 void
nfs_mi_zonelist_add(mntinfo_t * mi)2768 nfs_mi_zonelist_add(mntinfo_t *mi)
2769 {
2770 	struct mi_globals *mig;
2771 
2772 	mig = zone_getspecific(mi_list_key, mi->mi_zone);
2773 	mutex_enter(&mig->mig_lock);
2774 	list_insert_head(&mig->mig_list, mi);
2775 	mutex_exit(&mig->mig_lock);
2776 }
2777 
2778 /*
2779  * Remove an NFS mount from the per-zone list of NFS mounts.
2780  */
2781 static void
nfs_mi_zonelist_remove(mntinfo_t * mi)2782 nfs_mi_zonelist_remove(mntinfo_t *mi)
2783 {
2784 	struct mi_globals *mig;
2785 
2786 	mig = zone_getspecific(mi_list_key, mi->mi_zone);
2787 	mutex_enter(&mig->mig_lock);
2788 	list_remove(&mig->mig_list, mi);
2789 	/*
2790 	 * We can be called asynchronously by VFS_FREEVFS() after the zone
2791 	 * shutdown/destroy callbacks have executed; if so, clean up the zone's
2792 	 * mi globals.
2793 	 */
2794 	if (list_head(&mig->mig_list) == NULL &&
2795 	    mig->mig_destructor_called == B_TRUE) {
2796 		nfs_mi_free_globals(mig);
2797 		return;
2798 	}
2799 	mutex_exit(&mig->mig_lock);
2800 }
2801 
2802 /*
2803  * NFS Client initialization routine.  This routine should only be called
2804  * once.  It performs the following tasks:
2805  *	- Initalize all global locks
2806  *	- Call sub-initialization routines (localize access to variables)
2807  */
2808 int
nfs_clntinit(void)2809 nfs_clntinit(void)
2810 {
2811 #ifdef DEBUG
2812 	static boolean_t nfs_clntup = B_FALSE;
2813 #endif
2814 	int error;
2815 
2816 #ifdef DEBUG
2817 	ASSERT(nfs_clntup == B_FALSE);
2818 #endif
2819 
2820 	error = nfs_subrinit();
2821 	if (error)
2822 		return (error);
2823 
2824 	error = nfs_vfsinit();
2825 	if (error) {
2826 		/*
2827 		 * Cleanup nfs_subrinit() work
2828 		 */
2829 		nfs_subrfini();
2830 		return (error);
2831 	}
2832 	zone_key_create(&mi_list_key, nfs_mi_init, nfs_mi_shutdown,
2833 	    nfs_mi_destroy);
2834 
2835 	nfs4_clnt_init();
2836 
2837 	nfscmd_init();
2838 
2839 #ifdef DEBUG
2840 	nfs_clntup = B_TRUE;
2841 #endif
2842 
2843 	return (0);
2844 }
2845 
2846 /*
2847  * This routine is only called if the NFS Client has been initialized but
2848  * the module failed to be installed. This routine will cleanup the previously
2849  * allocated/initialized work.
2850  */
2851 void
nfs_clntfini(void)2852 nfs_clntfini(void)
2853 {
2854 	(void) zone_key_delete(mi_list_key);
2855 	nfs_subrfini();
2856 	nfs_vfsfini();
2857 	nfs4_clnt_fini();
2858 	nfscmd_fini();
2859 }
2860 
2861 /*
2862  * nfs_lockrelease:
2863  *
2864  * Release any locks on the given vnode that are held by the current
2865  * process.
2866  */
2867 void
nfs_lockrelease(vnode_t * vp,int flag,offset_t offset,cred_t * cr)2868 nfs_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr)
2869 {
2870 	flock64_t ld;
2871 	struct shrlock shr;
2872 	char *buf;
2873 	int remote_lock_possible;
2874 	int ret;
2875 
2876 	ASSERT((uintptr_t)vp > KERNELBASE);
2877 
2878 	/*
2879 	 * Generate an explicit unlock operation for the entire file.  As a
2880 	 * partial optimization, only generate the unlock if there is a
2881 	 * lock registered for the file.  We could check whether this
2882 	 * particular process has any locks on the file, but that would
2883 	 * require the local locking code to provide yet another query
2884 	 * routine.  Note that no explicit synchronization is needed here.
2885 	 * At worst, flk_has_remote_locks() will return a false positive,
2886 	 * in which case the unlock call wastes time but doesn't harm
2887 	 * correctness.
2888 	 *
2889 	 * In addition, an unlock request is generated if the process
2890 	 * is listed as possibly having a lock on the file because the
2891 	 * server and client lock managers may have gotten out of sync.
2892 	 * N.B. It is important to make sure nfs_remove_locking_id() is
2893 	 * called here even if flk_has_remote_locks(vp) reports true.
2894 	 * If it is not called and there is an entry on the process id
2895 	 * list, that entry will never get removed.
2896 	 */
2897 	remote_lock_possible = nfs_remove_locking_id(vp, RLMPL_PID,
2898 	    (char *)&(ttoproc(curthread)->p_pid), NULL, NULL);
2899 	if (remote_lock_possible || flk_has_remote_locks(vp)) {
2900 		ld.l_type = F_UNLCK;	/* set to unlock entire file */
2901 		ld.l_whence = 0;	/* unlock from start of file */
2902 		ld.l_start = 0;
2903 		ld.l_len = 0;		/* do entire file */
2904 		ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL, cr,
2905 		    NULL);
2906 
2907 		if (ret != 0) {
2908 			/*
2909 			 * If VOP_FRLOCK fails, make sure we unregister
2910 			 * local locks before we continue.
2911 			 */
2912 			ld.l_pid = ttoproc(curthread)->p_pid;
2913 			lm_register_lock_locally(vp, NULL, &ld, flag, offset);
2914 #ifdef DEBUG
2915 			nfs_perror(ret,
2916 			    "NFS lock release error on vp %p: %m.\n",
2917 			    (void *)vp, NULL);
2918 #endif
2919 		}
2920 
2921 		/*
2922 		 * The call to VOP_FRLOCK may put the pid back on the
2923 		 * list.  We need to remove it.
2924 		 */
2925 		(void) nfs_remove_locking_id(vp, RLMPL_PID,
2926 		    (char *)&(ttoproc(curthread)->p_pid), NULL, NULL);
2927 	}
2928 
2929 	/*
2930 	 * As long as the vp has a share matching our pid,
2931 	 * pluck it off and unshare it.  There are circumstances in
2932 	 * which the call to nfs_remove_locking_id() may put the
2933 	 * owner back on the list, in which case we simply do a
2934 	 * redundant and harmless unshare.
2935 	 */
2936 	buf = kmem_alloc(MAX_SHR_OWNER_LEN, KM_SLEEP);
2937 	while (nfs_remove_locking_id(vp, RLMPL_OWNER,
2938 	    (char *)NULL, buf, &shr.s_own_len)) {
2939 		shr.s_owner = buf;
2940 		shr.s_access = 0;
2941 		shr.s_deny = 0;
2942 		shr.s_sysid = 0;
2943 		shr.s_pid = curproc->p_pid;
2944 
2945 		ret = VOP_SHRLOCK(vp, F_UNSHARE, &shr, flag, cr, NULL);
2946 #ifdef DEBUG
2947 		if (ret != 0) {
2948 			nfs_perror(ret,
2949 			    "NFS share release error on vp %p: %m.\n",
2950 			    (void *)vp, NULL);
2951 		}
2952 #endif
2953 	}
2954 	kmem_free(buf, MAX_SHR_OWNER_LEN);
2955 }
2956 
2957 /*
2958  * nfs_lockcompletion:
2959  *
2960  * If the vnode has a lock that makes it unsafe to cache the file, mark it
2961  * as non cachable (set VNOCACHE bit).
2962  */
2963 
2964 void
nfs_lockcompletion(vnode_t * vp,int cmd)2965 nfs_lockcompletion(vnode_t *vp, int cmd)
2966 {
2967 #ifdef DEBUG
2968 	rnode_t *rp = VTOR(vp);
2969 
2970 	ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2971 #endif
2972 
2973 	if (cmd == F_SETLK || cmd == F_SETLKW) {
2974 		if (!lm_safemap(vp)) {
2975 			mutex_enter(&vp->v_lock);
2976 			vp->v_flag |= VNOCACHE;
2977 			mutex_exit(&vp->v_lock);
2978 		} else {
2979 			mutex_enter(&vp->v_lock);
2980 			vp->v_flag &= ~VNOCACHE;
2981 			mutex_exit(&vp->v_lock);
2982 		}
2983 	}
2984 	/*
2985 	 * The cached attributes of the file are stale after acquiring
2986 	 * the lock on the file. They were updated when the file was
2987 	 * opened, but not updated when the lock was acquired. Therefore the
2988 	 * cached attributes are invalidated after the lock is obtained.
2989 	 */
2990 	PURGE_ATTRCACHE(vp);
2991 }
2992 
2993 /*
2994  * The lock manager holds state making it possible for the client
2995  * and server to be out of sync.  For example, if the response from
2996  * the server granting a lock request is lost, the server will think
2997  * the lock is granted and the client will think the lock is lost.
2998  * The client can tell when it is not positive if it is in sync with
2999  * the server.
3000  *
3001  * To deal with this, a list of processes for which the client is
3002  * not sure if the server holds a lock is attached to the rnode.
3003  * When such a process closes the rnode, an unlock request is sent
3004  * to the server to unlock the entire file.
3005  *
3006  * The list is kept as a singularly linked NULL terminated list.
3007  * Because it is only added to under extreme error conditions, the
3008  * list shouldn't get very big.  DEBUG kernels print a message if
3009  * the list gets bigger than nfs_lmpl_high_water.  This is arbitrarily
3010  * choosen to be 8, but can be tuned at runtime.
3011  */
3012 #ifdef DEBUG
3013 /* int nfs_lmpl_high_water = 8; */
3014 int nfs_lmpl_high_water = 128;
3015 int nfs_cnt_add_locking_id = 0;
3016 int nfs_len_add_locking_id = 0;
3017 #endif /* DEBUG */
3018 
3019 /*
3020  * Record that the nfs lock manager server may be holding a lock on
3021  * a vnode for a process.
3022  *
3023  * Because the nfs lock manager server holds state, it is possible
3024  * for the server to get out of sync with the client.  This routine is called
3025  * from the client when it is no longer sure if the server is in sync
3026  * with the client.  nfs_lockrelease() will then notice this and send
3027  * an unlock request when the file is closed
3028  */
3029 void
nfs_add_locking_id(vnode_t * vp,pid_t pid,int type,char * id,int len)3030 nfs_add_locking_id(vnode_t *vp, pid_t pid, int type, char *id, int len)
3031 {
3032 	rnode_t *rp;
3033 	lmpl_t *new;
3034 	lmpl_t *cur;
3035 	lmpl_t **lmplp;
3036 #ifdef DEBUG
3037 	int list_len = 1;
3038 #endif /* DEBUG */
3039 
3040 #ifdef DEBUG
3041 	++nfs_cnt_add_locking_id;
3042 #endif /* DEBUG */
3043 	/*
3044 	 * allocate new lmpl_t now so we don't sleep
3045 	 * later after grabbing mutexes
3046 	 */
3047 	ASSERT(len < MAX_SHR_OWNER_LEN);
3048 	new = kmem_alloc(sizeof (*new), KM_SLEEP);
3049 	new->lmpl_type = type;
3050 	new->lmpl_pid = pid;
3051 	new->lmpl_owner = kmem_alloc(len, KM_SLEEP);
3052 	bcopy(id, new->lmpl_owner, len);
3053 	new->lmpl_own_len = len;
3054 	new->lmpl_next = (lmpl_t *)NULL;
3055 #ifdef DEBUG
3056 	if (type == RLMPL_PID) {
3057 		ASSERT(len == sizeof (pid_t));
3058 		ASSERT(pid == *(pid_t *)new->lmpl_owner);
3059 	} else {
3060 		ASSERT(type == RLMPL_OWNER);
3061 	}
3062 #endif
3063 
3064 	rp = VTOR(vp);
3065 	mutex_enter(&rp->r_statelock);
3066 
3067 	/*
3068 	 * Add this id to the list for this rnode only if the
3069 	 * rnode is active and the id is not already there.
3070 	 */
3071 	ASSERT(rp->r_flags & RHASHED);
3072 	lmplp = &(rp->r_lmpl);
3073 	for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) {
3074 		if (cur->lmpl_pid == pid &&
3075 		    cur->lmpl_type == type &&
3076 		    cur->lmpl_own_len == len &&
3077 		    bcmp(cur->lmpl_owner, new->lmpl_owner, len) == 0) {
3078 			kmem_free(new->lmpl_owner, len);
3079 			kmem_free(new, sizeof (*new));
3080 			break;
3081 		}
3082 		lmplp = &cur->lmpl_next;
3083 #ifdef DEBUG
3084 		++list_len;
3085 #endif /* DEBUG */
3086 	}
3087 	if (cur == (lmpl_t *)NULL) {
3088 		*lmplp = new;
3089 #ifdef DEBUG
3090 		if (list_len > nfs_len_add_locking_id) {
3091 			nfs_len_add_locking_id = list_len;
3092 		}
3093 		if (list_len > nfs_lmpl_high_water) {
3094 			cmn_err(CE_WARN, "nfs_add_locking_id: long list "
3095 			    "vp=%p is %d", (void *)vp, list_len);
3096 		}
3097 #endif /* DEBUG */
3098 	}
3099 
3100 #ifdef DEBUG
3101 	if (share_debug) {
3102 		int nitems = 0;
3103 		int npids = 0;
3104 		int nowners = 0;
3105 
3106 		/*
3107 		 * Count the number of things left on r_lmpl after the remove.
3108 		 */
3109 		for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL;
3110 		    cur = cur->lmpl_next) {
3111 			nitems++;
3112 			if (cur->lmpl_type == RLMPL_PID) {
3113 				npids++;
3114 			} else if (cur->lmpl_type == RLMPL_OWNER) {
3115 				nowners++;
3116 			} else {
3117 				cmn_err(CE_PANIC, "nfs_add_locking_id: "
3118 				    "unrecognized lmpl_type %d",
3119 				    cur->lmpl_type);
3120 			}
3121 		}
3122 
3123 		cmn_err(CE_CONT, "nfs_add_locking_id(%s): %d PIDs + %d "
3124 		    "OWNs = %d items left on r_lmpl\n",
3125 		    (type == RLMPL_PID) ? "P" : "O", npids, nowners, nitems);
3126 	}
3127 #endif
3128 
3129 	mutex_exit(&rp->r_statelock);
3130 }
3131 
3132 /*
3133  * Remove an id from the lock manager id list.
3134  *
3135  * If the id is not in the list return 0.  If it was found and
3136  * removed, return 1.
3137  */
3138 static int
nfs_remove_locking_id(vnode_t * vp,int type,char * id,char * rid,int * rlen)3139 nfs_remove_locking_id(vnode_t *vp, int type, char *id, char *rid, int *rlen)
3140 {
3141 	lmpl_t *cur;
3142 	lmpl_t **lmplp;
3143 	rnode_t *rp;
3144 	int rv = 0;
3145 
3146 	ASSERT(type == RLMPL_PID || type == RLMPL_OWNER);
3147 
3148 	rp = VTOR(vp);
3149 
3150 	mutex_enter(&rp->r_statelock);
3151 	ASSERT(rp->r_flags & RHASHED);
3152 	lmplp = &(rp->r_lmpl);
3153 
3154 	/*
3155 	 * Search through the list and remove the entry for this id
3156 	 * if it is there.  The special case id == NULL allows removal
3157 	 * of the first share on the r_lmpl list belonging to the
3158 	 * current process (if any), without regard to further details
3159 	 * of its identity.
3160 	 */
3161 	for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL; cur = cur->lmpl_next) {
3162 		if (cur->lmpl_type == type &&
3163 		    cur->lmpl_pid == curproc->p_pid &&
3164 		    (id == (char *)NULL ||
3165 		    bcmp(cur->lmpl_owner, id, cur->lmpl_own_len) == 0)) {
3166 			*lmplp = cur->lmpl_next;
3167 			ASSERT(cur->lmpl_own_len < MAX_SHR_OWNER_LEN);
3168 			if (rid != NULL) {
3169 				bcopy(cur->lmpl_owner, rid, cur->lmpl_own_len);
3170 				*rlen = cur->lmpl_own_len;
3171 			}
3172 			kmem_free(cur->lmpl_owner, cur->lmpl_own_len);
3173 			kmem_free(cur, sizeof (*cur));
3174 			rv = 1;
3175 			break;
3176 		}
3177 		lmplp = &cur->lmpl_next;
3178 	}
3179 
3180 #ifdef DEBUG
3181 	if (share_debug) {
3182 		int nitems = 0;
3183 		int npids = 0;
3184 		int nowners = 0;
3185 
3186 		/*
3187 		 * Count the number of things left on r_lmpl after the remove.
3188 		 */
3189 		for (cur = rp->r_lmpl; cur != (lmpl_t *)NULL;
3190 		    cur = cur->lmpl_next) {
3191 			nitems++;
3192 			if (cur->lmpl_type == RLMPL_PID) {
3193 				npids++;
3194 			} else if (cur->lmpl_type == RLMPL_OWNER) {
3195 				nowners++;
3196 			} else {
3197 				cmn_err(CE_PANIC,
3198 				    "nrli: unrecognized lmpl_type %d",
3199 				    cur->lmpl_type);
3200 			}
3201 		}
3202 
3203 		cmn_err(CE_CONT,
3204 		"nrli(%s): %d PIDs + %d OWNs = %d items left on r_lmpl\n",
3205 		    (type == RLMPL_PID) ? "P" : "O",
3206 		    npids,
3207 		    nowners,
3208 		    nitems);
3209 	}
3210 #endif
3211 
3212 	mutex_exit(&rp->r_statelock);
3213 	return (rv);
3214 }
3215 
3216 void
nfs_free_mi(mntinfo_t * mi)3217 nfs_free_mi(mntinfo_t *mi)
3218 {
3219 	ASSERT(mi->mi_flags & MI_ASYNC_MGR_STOP);
3220 	ASSERT(mi->mi_manager_thread == NULL);
3221 	ASSERT(mi->mi_threads[NFS_ASYNC_QUEUE] == 0 &&
3222 	    mi->mi_threads[NFS_ASYNC_PGOPS_QUEUE] == 0);
3223 
3224 	/*
3225 	 * Remove the node from the global list before we start tearing it down.
3226 	 */
3227 	nfs_mi_zonelist_remove(mi);
3228 	if (mi->mi_klmconfig) {
3229 		lm_free_config(mi->mi_klmconfig);
3230 		kmem_free(mi->mi_klmconfig, sizeof (struct knetconfig));
3231 	}
3232 	mutex_destroy(&mi->mi_lock);
3233 	mutex_destroy(&mi->mi_remap_lock);
3234 	mutex_destroy(&mi->mi_async_lock);
3235 	mutex_destroy(&mi->mi_rnodes_lock);
3236 	cv_destroy(&mi->mi_failover_cv);
3237 	cv_destroy(&mi->mi_async_work_cv[NFS_ASYNC_QUEUE]);
3238 	cv_destroy(&mi->mi_async_work_cv[NFS_ASYNC_PGOPS_QUEUE]);
3239 	cv_destroy(&mi->mi_async_reqs_cv);
3240 	cv_destroy(&mi->mi_async_cv);
3241 	list_destroy(&mi->mi_rnodes);
3242 	zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFS);
3243 	kmem_free(mi, sizeof (*mi));
3244 }
3245 
3246 static int
mnt_kstat_update(kstat_t * ksp,int rw)3247 mnt_kstat_update(kstat_t *ksp, int rw)
3248 {
3249 	mntinfo_t *mi;
3250 	struct mntinfo_kstat *mik;
3251 	vfs_t *vfsp;
3252 	int i;
3253 
3254 	/* this is a read-only kstat. Bail out on a write */
3255 	if (rw == KSTAT_WRITE)
3256 		return (EACCES);
3257 
3258 	/*
3259 	 * We don't want to wait here as kstat_chain_lock could be held by
3260 	 * dounmount(). dounmount() takes vfs_reflock before the chain lock
3261 	 * and thus could lead to a deadlock.
3262 	 */
3263 	vfsp = (struct vfs *)ksp->ks_private;
3264 
3265 
3266 	mi = VFTOMI(vfsp);
3267 
3268 	mik = (struct mntinfo_kstat *)ksp->ks_data;
3269 
3270 	(void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);
3271 	mik->mik_vers = (uint32_t)mi->mi_vers;
3272 	mik->mik_flags = mi->mi_flags;
3273 	mik->mik_secmod = mi->mi_curr_serv->sv_secdata->secmod;
3274 	mik->mik_curread = (uint32_t)mi->mi_curread;
3275 	mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
3276 	mik->mik_retrans = mi->mi_retrans;
3277 	mik->mik_timeo = mi->mi_timeo;
3278 	mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
3279 	mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
3280 	mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
3281 	mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
3282 	for (i = 0; i < NFS_CALLTYPES + 1; i++) {
3283 		mik->mik_timers[i].srtt = (uint32_t)mi->mi_timers[i].rt_srtt;
3284 		mik->mik_timers[i].deviate =
3285 		    (uint32_t)mi->mi_timers[i].rt_deviate;
3286 		mik->mik_timers[i].rtxcur =
3287 		    (uint32_t)mi->mi_timers[i].rt_rtxcur;
3288 	}
3289 	mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
3290 	mik->mik_failover = (uint32_t)mi->mi_failover;
3291 	mik->mik_remap = (uint32_t)mi->mi_remap;
3292 	(void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);
3293 
3294 	return (0);
3295 }
3296 
3297 void
nfs_mnt_kstat_init(struct vfs * vfsp)3298 nfs_mnt_kstat_init(struct vfs *vfsp)
3299 {
3300 	mntinfo_t *mi = VFTOMI(vfsp);
3301 
3302 	/*
3303 	 * Create the version specific kstats.
3304 	 *
3305 	 * PSARC 2001/697 Contract Private Interface
3306 	 * All nfs kstats are under SunMC contract
3307 	 * Please refer to the PSARC listed above and contact
3308 	 * SunMC before making any changes!
3309 	 *
3310 	 * Changes must be reviewed by Solaris File Sharing
3311 	 * Changes must be communicated to contract-2001-697@sun.com
3312 	 *
3313 	 */
3314 
3315 	mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
3316 	    NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
3317 	if (mi->mi_io_kstats) {
3318 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
3319 			kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
3320 		mi->mi_io_kstats->ks_lock = &mi->mi_lock;
3321 		kstat_install(mi->mi_io_kstats);
3322 	}
3323 
3324 	if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
3325 	    getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
3326 	    sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
3327 		if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
3328 			kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
3329 		mi->mi_ro_kstats->ks_update = mnt_kstat_update;
3330 		mi->mi_ro_kstats->ks_private = (void *)vfsp;
3331 		kstat_install(mi->mi_ro_kstats);
3332 	}
3333 }
3334 
3335 nfs_delmapcall_t *
nfs_init_delmapcall()3336 nfs_init_delmapcall()
3337 {
3338 	nfs_delmapcall_t	*delmap_call;
3339 
3340 	delmap_call = kmem_alloc(sizeof (nfs_delmapcall_t), KM_SLEEP);
3341 	delmap_call->call_id = curthread;
3342 	delmap_call->error = 0;
3343 
3344 	return (delmap_call);
3345 }
3346 
3347 void
nfs_free_delmapcall(nfs_delmapcall_t * delmap_call)3348 nfs_free_delmapcall(nfs_delmapcall_t *delmap_call)
3349 {
3350 	kmem_free(delmap_call, sizeof (nfs_delmapcall_t));
3351 }
3352 
3353 /*
3354  * Searches for the current delmap caller (based on curthread) in the list of
3355  * callers.  If it is found, we remove it and free the delmap caller.
3356  * Returns:
3357  *	0 if the caller wasn't found
3358  *	1 if the caller was found, removed and freed.  *errp is set to what
3359  *	the result of the delmap was.
3360  */
3361 int
nfs_find_and_delete_delmapcall(rnode_t * rp,int * errp)3362 nfs_find_and_delete_delmapcall(rnode_t *rp, int *errp)
3363 {
3364 	nfs_delmapcall_t	*delmap_call;
3365 
3366 	/*
3367 	 * If the list doesn't exist yet, we create it and return
3368 	 * that the caller wasn't found.  No list = no callers.
3369 	 */
3370 	mutex_enter(&rp->r_statelock);
3371 	if (!(rp->r_flags & RDELMAPLIST)) {
3372 		/* The list does not exist */
3373 		list_create(&rp->r_indelmap, sizeof (nfs_delmapcall_t),
3374 		    offsetof(nfs_delmapcall_t, call_node));
3375 		rp->r_flags |= RDELMAPLIST;
3376 		mutex_exit(&rp->r_statelock);
3377 		return (0);
3378 	} else {
3379 		/* The list exists so search it */
3380 		for (delmap_call = list_head(&rp->r_indelmap);
3381 		    delmap_call != NULL;
3382 		    delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
3383 			if (delmap_call->call_id == curthread) {
3384 				/* current caller is in the list */
3385 				*errp = delmap_call->error;
3386 				list_remove(&rp->r_indelmap, delmap_call);
3387 				mutex_exit(&rp->r_statelock);
3388 				nfs_free_delmapcall(delmap_call);
3389 				return (1);
3390 			}
3391 		}
3392 	}
3393 	mutex_exit(&rp->r_statelock);
3394 	return (0);
3395 }
3396