1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
24 */
25
26 /*
27 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
28 * Use is subject to license terms.
29 */
30
31 /*
32 * Copyright 1983,1984,1985,1986,1987,1988,1989 AT&T.
33 * All Rights Reserved
34 */
35
36 /*
37 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
38 */
39
40 /*
41 * Copyright (c) 2014, STRATO AG. All rights reserved.
42 */
43
44 #include <sys/param.h>
45 #include <sys/types.h>
46 #include <sys/systm.h>
47 #include <sys/cred.h>
48 #include <sys/time.h>
49 #include <sys/vnode.h>
50 #include <sys/vfs.h>
51 #include <sys/vfs_opreg.h>
52 #include <sys/file.h>
53 #include <sys/filio.h>
54 #include <sys/uio.h>
55 #include <sys/buf.h>
56 #include <sys/mman.h>
57 #include <sys/pathname.h>
58 #include <sys/dirent.h>
59 #include <sys/debug.h>
60 #include <sys/vmsystm.h>
61 #include <sys/fcntl.h>
62 #include <sys/flock.h>
63 #include <sys/swap.h>
64 #include <sys/errno.h>
65 #include <sys/strsubr.h>
66 #include <sys/sysmacros.h>
67 #include <sys/kmem.h>
68 #include <sys/cmn_err.h>
69 #include <sys/pathconf.h>
70 #include <sys/utsname.h>
71 #include <sys/dnlc.h>
72 #include <sys/acl.h>
73 #include <sys/systeminfo.h>
74 #include <sys/policy.h>
75 #include <sys/sdt.h>
76 #include <sys/list.h>
77 #include <sys/stat.h>
78 #include <sys/zone.h>
79
80 #include <rpc/types.h>
81 #include <rpc/auth.h>
82 #include <rpc/clnt.h>
83
84 #include <nfs/nfs.h>
85 #include <nfs/nfs_clnt.h>
86 #include <nfs/nfs_acl.h>
87 #include <nfs/lm.h>
88 #include <nfs/nfs4.h>
89 #include <nfs/nfs4_kprot.h>
90 #include <nfs/rnode4.h>
91 #include <nfs/nfs4_clnt.h>
92
93 #include <vm/hat.h>
94 #include <vm/as.h>
95 #include <vm/page.h>
96 #include <vm/pvn.h>
97 #include <vm/seg.h>
98 #include <vm/seg_map.h>
99 #include <vm/seg_kpm.h>
100 #include <vm/seg_vn.h>
101
102 #include <fs/fs_subr.h>
103
104 #include <sys/ddi.h>
105 #include <sys/int_fmtio.h>
106 #include <sys/fs/autofs.h>
107
108 typedef struct {
109 nfs4_ga_res_t *di_garp;
110 cred_t *di_cred;
111 hrtime_t di_time_call;
112 } dirattr_info_t;
113
114 typedef enum nfs4_acl_op {
115 NFS4_ACL_GET,
116 NFS4_ACL_SET
117 } nfs4_acl_op_t;
118
119 static struct lm_sysid *nfs4_find_sysid(mntinfo4_t *mi);
120 static int nfs4frlock_get_sysid(struct lm_sysid **, vnode_t *, flock64_t *);
121
122 static void nfs4_update_dircaches(change_info4 *, vnode_t *, vnode_t *,
123 char *, dirattr_info_t *);
124
125 static void nfs4close_otw(rnode4_t *, cred_t *, nfs4_open_owner_t *,
126 nfs4_open_stream_t *, int *, int *, nfs4_close_type_t,
127 nfs4_error_t *, int *);
128 static int nfs4_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
129 cred_t *);
130 static int nfs4write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
131 stable_how4 *);
132 static int nfs4read(vnode_t *, caddr_t, offset_t, int, size_t *,
133 cred_t *, bool_t, struct uio *);
134 static int nfs4setattr(vnode_t *, struct vattr *, int, cred_t *,
135 vsecattr_t *);
136 static int nfs4openattr(vnode_t *, vnode_t **, int, cred_t *);
137 static int nfs4lookup(vnode_t *, char *, vnode_t **, cred_t *, int);
138 static int nfs4lookup_xattr(vnode_t *, char *, vnode_t **, int, cred_t *);
139 static int nfs4lookupvalidate_otw(vnode_t *, char *, vnode_t **, cred_t *);
140 static int nfs4lookupnew_otw(vnode_t *, char *, vnode_t **, cred_t *);
141 static int nfs4mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
142 int, vnode_t **, cred_t *);
143 static int nfs4open_otw(vnode_t *, char *, struct vattr *, vnode_t **,
144 cred_t *, int, int, enum createmode4, int);
145 static int nfs4rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
146 caller_context_t *);
147 static int nfs4rename_persistent_fh(vnode_t *, char *, vnode_t *,
148 vnode_t *, char *, cred_t *, nfsstat4 *);
149 static int nfs4rename_volatile_fh(vnode_t *, char *, vnode_t *,
150 vnode_t *, char *, cred_t *, nfsstat4 *);
151 static int do_nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
152 static void nfs4readdir(vnode_t *, rddir4_cache *, cred_t *);
153 static int nfs4_bio(struct buf *, stable_how4 *, cred_t *, bool_t);
154 static int nfs4_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
155 page_t *[], size_t, struct seg *, caddr_t,
156 enum seg_rw, cred_t *);
157 static void nfs4_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
158 cred_t *);
159 static int nfs4_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
160 int, cred_t *);
161 static int nfs4_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
162 int, cred_t *);
163 static int nfs4_commit(vnode_t *, offset4, count4, cred_t *);
164 static void nfs4_set_mod(vnode_t *);
165 static void nfs4_get_commit(vnode_t *);
166 static void nfs4_get_commit_range(vnode_t *, u_offset_t, size_t);
167 static int nfs4_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
168 static int nfs4_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *, int);
169 static int nfs4_sync_commit(vnode_t *, page_t *, offset3, count3,
170 cred_t *);
171 static void do_nfs4_async_commit(vnode_t *, page_t *, offset3, count3,
172 cred_t *);
173 static int nfs4_update_attrcache(nfsstat4, nfs4_ga_res_t *,
174 hrtime_t, vnode_t *, cred_t *);
175 static int nfs4_open_non_reg_file(vnode_t **, int, cred_t *);
176 static int nfs4_safelock(vnode_t *, const struct flock64 *, cred_t *);
177 static int nfs4_lockrelease(vnode_t *, int, offset_t, cred_t *);
178 static int nfs4_block_and_wait(clock_t *);
179 static cred_t *state_to_cred(nfs4_open_stream_t *);
180 static void denied_to_flk(LOCK4denied *, flock64_t *, LOCKT4args *);
181 static pid_t lo_to_pid(lock_owner4 *);
182 static void nfs4_reinstitute_local_lock_state(vnode_t *, flock64_t *,
183 cred_t *, nfs4_lock_owner_t *);
184 static void push_reinstate(vnode_t *, int, flock64_t *, cred_t *,
185 nfs4_lock_owner_t *);
186 static int open_and_get_osp(vnode_t *, cred_t *, nfs4_open_stream_t **);
187 static void nfs4_delmap_callback(struct as *, void *, uint_t);
188 static void nfs4_free_delmapcall(nfs4_delmapcall_t *);
189 static nfs4_delmapcall_t *nfs4_init_delmapcall();
190 static int nfs4_find_and_delete_delmapcall(rnode4_t *, int *);
191 static int nfs4_is_acl_mask_valid(uint_t, nfs4_acl_op_t);
192 static int nfs4_create_getsecattr_return(vsecattr_t *, vsecattr_t *,
193 uid_t, gid_t, int);
194
195 /*
196 * Routines that implement the setting of v4 args for the misc. ops
197 */
198 static void nfs4args_lock_free(nfs_argop4 *);
199 static void nfs4args_lockt_free(nfs_argop4 *);
200 static void nfs4args_setattr(nfs_argop4 *, vattr_t *, vsecattr_t *,
201 int, rnode4_t *, cred_t *, bitmap4, int *,
202 nfs4_stateid_types_t *);
203 static void nfs4args_setattr_free(nfs_argop4 *);
204 static int nfs4args_verify(nfs_argop4 *, vattr_t *, enum nfs_opnum4,
205 bitmap4);
206 static void nfs4args_verify_free(nfs_argop4 *);
207 static void nfs4args_write(nfs_argop4 *, stable_how4, rnode4_t *, cred_t *,
208 WRITE4args **, nfs4_stateid_types_t *);
209
210 /*
211 * These are the vnode ops functions that implement the vnode interface to
212 * the networked file system. See more comments below at nfs4_vnodeops.
213 */
214 static int nfs4_open(vnode_t **, int, cred_t *, caller_context_t *);
215 static int nfs4_close(vnode_t *, int, int, offset_t, cred_t *,
216 caller_context_t *);
217 static int nfs4_read(vnode_t *, struct uio *, int, cred_t *,
218 caller_context_t *);
219 static int nfs4_write(vnode_t *, struct uio *, int, cred_t *,
220 caller_context_t *);
221 static int nfs4_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
222 caller_context_t *);
223 static int nfs4_setattr(vnode_t *, struct vattr *, int, cred_t *,
224 caller_context_t *);
225 static int nfs4_access(vnode_t *, int, int, cred_t *, caller_context_t *);
226 static int nfs4_readlink(vnode_t *, struct uio *, cred_t *,
227 caller_context_t *);
228 static int nfs4_fsync(vnode_t *, int, cred_t *, caller_context_t *);
229 static int nfs4_create(vnode_t *, char *, struct vattr *, enum vcexcl,
230 int, vnode_t **, cred_t *, int, caller_context_t *,
231 vsecattr_t *);
232 static int nfs4_remove(vnode_t *, char *, cred_t *, caller_context_t *,
233 int);
234 static int nfs4_link(vnode_t *, vnode_t *, char *, cred_t *,
235 caller_context_t *, int);
236 static int nfs4_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
237 caller_context_t *, int);
238 static int nfs4_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
239 cred_t *, caller_context_t *, int, vsecattr_t *);
240 static int nfs4_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
241 caller_context_t *, int);
242 static int nfs4_symlink(vnode_t *, char *, struct vattr *, char *,
243 cred_t *, caller_context_t *, int);
244 static int nfs4_readdir(vnode_t *, struct uio *, cred_t *, int *,
245 caller_context_t *, int);
246 static int nfs4_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
247 static int nfs4_getpage(vnode_t *, offset_t, size_t, uint_t *,
248 page_t *[], size_t, struct seg *, caddr_t,
249 enum seg_rw, cred_t *, caller_context_t *);
250 static int nfs4_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
251 caller_context_t *);
252 static int nfs4_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
253 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
254 static int nfs4_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
255 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
256 static int nfs4_cmp(vnode_t *, vnode_t *, caller_context_t *);
257 static int nfs4_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
258 struct flk_callback *, cred_t *, caller_context_t *);
259 static int nfs4_space(vnode_t *, int, struct flock64 *, int, offset_t,
260 cred_t *, caller_context_t *);
261 static int nfs4_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
262 uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
263 static int nfs4_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
264 cred_t *, caller_context_t *);
265 static void nfs4_dispose(vnode_t *, page_t *, int, int, cred_t *,
266 caller_context_t *);
267 static int nfs4_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
268 caller_context_t *);
269 /*
270 * These vnode ops are required to be called from outside this source file,
271 * e.g. by ephemeral mount stub vnode ops, and so may not be declared
272 * as static.
273 */
274 int nfs4_getattr(vnode_t *, struct vattr *, int, cred_t *,
275 caller_context_t *);
276 void nfs4_inactive(vnode_t *, cred_t *, caller_context_t *);
277 int nfs4_lookup(vnode_t *, char *, vnode_t **,
278 struct pathname *, int, vnode_t *, cred_t *,
279 caller_context_t *, int *, pathname_t *);
280 int nfs4_fid(vnode_t *, fid_t *, caller_context_t *);
281 int nfs4_rwlock(vnode_t *, int, caller_context_t *);
282 void nfs4_rwunlock(vnode_t *, int, caller_context_t *);
283 int nfs4_realvp(vnode_t *, vnode_t **, caller_context_t *);
284 int nfs4_pathconf(vnode_t *, int, ulong_t *, cred_t *,
285 caller_context_t *);
286 int nfs4_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
287 caller_context_t *);
288 int nfs4_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
289 caller_context_t *);
290
291 /*
292 * Used for nfs4_commit_vp() to indicate if we should
293 * wait on pending writes.
294 */
295 #define NFS4_WRITE_NOWAIT 0
296 #define NFS4_WRITE_WAIT 1
297
298 /*
299 * Error flags used to pass information about certain special errors
300 * which need to be handled specially.
301 */
302 #define NFS_EOF -98
303 #define NFS_VERF_MISMATCH -97
304
305 /*
306 * Flags used to differentiate between which operation drove the
307 * potential CLOSE OTW. (see nfs4_close_otw_if_necessary)
308 */
309 #define NFS4_CLOSE_OP 0x1
310 #define NFS4_DELMAP_OP 0x2
311 #define NFS4_INACTIVE_OP 0x3
312
313 #define ISVDEV(t) ((t == VBLK) || (t == VCHR) || (t == VFIFO))
314
315 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
316 #define ALIGN64(x, ptr, sz) \
317 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \
318 if (x) { \
319 x = sizeof (uint64_t) - (x); \
320 sz -= (x); \
321 ptr += (x); \
322 }
323
324 #ifdef DEBUG
325 int nfs4_client_attr_debug = 0;
326 int nfs4_client_state_debug = 0;
327 int nfs4_client_shadow_debug = 0;
328 int nfs4_client_lock_debug = 0;
329 int nfs4_seqid_sync = 0;
330 int nfs4_client_map_debug = 0;
331 static int nfs4_pageio_debug = 0;
332 int nfs4_client_inactive_debug = 0;
333 int nfs4_client_recov_debug = 0;
334 int nfs4_client_failover_debug = 0;
335 int nfs4_client_call_debug = 0;
336 int nfs4_client_lookup_debug = 0;
337 int nfs4_client_zone_debug = 0;
338 int nfs4_lost_rqst_debug = 0;
339 int nfs4_rdattrerr_debug = 0;
340 int nfs4_open_stream_debug = 0;
341
342 int nfs4read_error_inject;
343
344 static int nfs4_create_misses = 0;
345
346 static int nfs4_readdir_cache_shorts = 0;
347 static int nfs4_readdir_readahead = 0;
348
349 static int nfs4_bio_do_stop = 0;
350
351 static int nfs4_lostpage = 0; /* number of times we lost original page */
352
353 int nfs4_mmap_debug = 0;
354
355 static int nfs4_pathconf_cache_hits = 0;
356 static int nfs4_pathconf_cache_misses = 0;
357
358 int nfs4close_all_cnt;
359 int nfs4close_one_debug = 0;
360 int nfs4close_notw_debug = 0;
361
362 int denied_to_flk_debug = 0;
363 void *lockt_denied_debug;
364
365 #endif
366
367 /*
368 * In milliseconds. Should be less than half of the lease time or better,
369 * less than one second.
370 */
371 int nfs4_base_wait_time = 20;
372 int nfs4_max_base_wait_time = 1 * 1000; /* 1 sec */
373
374 /*
375 * How long to wait before trying again if OPEN_CONFIRM gets ETIMEDOUT
376 * or NFS4ERR_RESOURCE.
377 */
378 static int confirm_retry_sec = 30;
379
380 static int nfs4_lookup_neg_cache = 1;
381
382 /*
383 * number of pages to read ahead
384 * optimized for 100 base-T.
385 */
386 static int nfs4_nra = 4;
387
388 static int nfs4_do_symlink_cache = 1;
389
390 static int nfs4_pathconf_disable_cache = 0;
391
392 /*
393 * These are the vnode ops routines which implement the vnode interface to
394 * the networked file system. These routines just take their parameters,
395 * make them look networkish by putting the right info into interface structs,
396 * and then calling the appropriate remote routine(s) to do the work.
397 *
398 * Note on directory name lookup cacheing: If we detect a stale fhandle,
399 * we purge the directory cache relative to that vnode. This way, the
400 * user won't get burned by the cache repeatedly. See <nfs/rnode4.h> for
401 * more details on rnode locking.
402 */
403
404 struct vnodeops *nfs4_vnodeops;
405
406 const fs_operation_def_t nfs4_vnodeops_template[] = {
407 VOPNAME_OPEN, { .vop_open = nfs4_open },
408 VOPNAME_CLOSE, { .vop_close = nfs4_close },
409 VOPNAME_READ, { .vop_read = nfs4_read },
410 VOPNAME_WRITE, { .vop_write = nfs4_write },
411 VOPNAME_IOCTL, { .vop_ioctl = nfs4_ioctl },
412 VOPNAME_GETATTR, { .vop_getattr = nfs4_getattr },
413 VOPNAME_SETATTR, { .vop_setattr = nfs4_setattr },
414 VOPNAME_ACCESS, { .vop_access = nfs4_access },
415 VOPNAME_LOOKUP, { .vop_lookup = nfs4_lookup },
416 VOPNAME_CREATE, { .vop_create = nfs4_create },
417 VOPNAME_REMOVE, { .vop_remove = nfs4_remove },
418 VOPNAME_LINK, { .vop_link = nfs4_link },
419 VOPNAME_RENAME, { .vop_rename = nfs4_rename },
420 VOPNAME_MKDIR, { .vop_mkdir = nfs4_mkdir },
421 VOPNAME_RMDIR, { .vop_rmdir = nfs4_rmdir },
422 VOPNAME_READDIR, { .vop_readdir = nfs4_readdir },
423 VOPNAME_SYMLINK, { .vop_symlink = nfs4_symlink },
424 VOPNAME_READLINK, { .vop_readlink = nfs4_readlink },
425 VOPNAME_FSYNC, { .vop_fsync = nfs4_fsync },
426 VOPNAME_INACTIVE, { .vop_inactive = nfs4_inactive },
427 VOPNAME_FID, { .vop_fid = nfs4_fid },
428 VOPNAME_RWLOCK, { .vop_rwlock = nfs4_rwlock },
429 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs4_rwunlock },
430 VOPNAME_SEEK, { .vop_seek = nfs4_seek },
431 VOPNAME_FRLOCK, { .vop_frlock = nfs4_frlock },
432 VOPNAME_SPACE, { .vop_space = nfs4_space },
433 VOPNAME_REALVP, { .vop_realvp = nfs4_realvp },
434 VOPNAME_GETPAGE, { .vop_getpage = nfs4_getpage },
435 VOPNAME_PUTPAGE, { .vop_putpage = nfs4_putpage },
436 VOPNAME_MAP, { .vop_map = nfs4_map },
437 VOPNAME_ADDMAP, { .vop_addmap = nfs4_addmap },
438 VOPNAME_DELMAP, { .vop_delmap = nfs4_delmap },
439 /* no separate nfs4_dump */
440 VOPNAME_DUMP, { .vop_dump = nfs_dump },
441 VOPNAME_PATHCONF, { .vop_pathconf = nfs4_pathconf },
442 VOPNAME_PAGEIO, { .vop_pageio = nfs4_pageio },
443 VOPNAME_DISPOSE, { .vop_dispose = nfs4_dispose },
444 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs4_setsecattr },
445 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs4_getsecattr },
446 VOPNAME_SHRLOCK, { .vop_shrlock = nfs4_shrlock },
447 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
448 NULL, NULL
449 };
450
451 /*
452 * The following are subroutines and definitions to set args or get res
453 * for the different nfsv4 ops
454 */
455
456 void
nfs4args_lookup_free(nfs_argop4 * argop,int arglen)457 nfs4args_lookup_free(nfs_argop4 *argop, int arglen)
458 {
459 int i;
460
461 for (i = 0; i < arglen; i++) {
462 if (argop[i].argop == OP_LOOKUP) {
463 kmem_free(
464 argop[i].nfs_argop4_u.oplookup.
465 objname.utf8string_val,
466 argop[i].nfs_argop4_u.oplookup.
467 objname.utf8string_len);
468 }
469 }
470 }
471
472 static void
nfs4args_lock_free(nfs_argop4 * argop)473 nfs4args_lock_free(nfs_argop4 *argop)
474 {
475 locker4 *locker = &argop->nfs_argop4_u.oplock.locker;
476
477 if (locker->new_lock_owner == TRUE) {
478 open_to_lock_owner4 *open_owner;
479
480 open_owner = &locker->locker4_u.open_owner;
481 if (open_owner->lock_owner.owner_val != NULL) {
482 kmem_free(open_owner->lock_owner.owner_val,
483 open_owner->lock_owner.owner_len);
484 }
485 }
486 }
487
488 static void
nfs4args_lockt_free(nfs_argop4 * argop)489 nfs4args_lockt_free(nfs_argop4 *argop)
490 {
491 lock_owner4 *lowner = &argop->nfs_argop4_u.oplockt.owner;
492
493 if (lowner->owner_val != NULL) {
494 kmem_free(lowner->owner_val, lowner->owner_len);
495 }
496 }
497
498 static void
nfs4args_setattr(nfs_argop4 * argop,vattr_t * vap,vsecattr_t * vsap,int flags,rnode4_t * rp,cred_t * cr,bitmap4 supp,int * error,nfs4_stateid_types_t * sid_types)499 nfs4args_setattr(nfs_argop4 *argop, vattr_t *vap, vsecattr_t *vsap, int flags,
500 rnode4_t *rp, cred_t *cr, bitmap4 supp, int *error,
501 nfs4_stateid_types_t *sid_types)
502 {
503 fattr4 *attr = &argop->nfs_argop4_u.opsetattr.obj_attributes;
504 mntinfo4_t *mi;
505
506 argop->argop = OP_SETATTR;
507 /*
508 * The stateid is set to 0 if client is not modifying the size
509 * and otherwise to whatever nfs4_get_stateid() returns.
510 *
511 * XXX Note: nfs4_get_stateid() returns 0 if no lockowner and/or no
512 * state struct could be found for the process/file pair. We may
513 * want to change this in the future (by OPENing the file). See
514 * bug # 4474852.
515 */
516 if (vap->va_mask & AT_SIZE) {
517
518 ASSERT(rp != NULL);
519 mi = VTOMI4(RTOV4(rp));
520
521 argop->nfs_argop4_u.opsetattr.stateid =
522 nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
523 OP_SETATTR, sid_types, FALSE);
524 } else {
525 bzero(&argop->nfs_argop4_u.opsetattr.stateid,
526 sizeof (stateid4));
527 }
528
529 *error = vattr_to_fattr4(vap, vsap, attr, flags, OP_SETATTR, supp);
530 if (*error)
531 bzero(attr, sizeof (*attr));
532 }
533
534 static void
nfs4args_setattr_free(nfs_argop4 * argop)535 nfs4args_setattr_free(nfs_argop4 *argop)
536 {
537 nfs4_fattr4_free(&argop->nfs_argop4_u.opsetattr.obj_attributes);
538 }
539
540 static int
nfs4args_verify(nfs_argop4 * argop,vattr_t * vap,enum nfs_opnum4 op,bitmap4 supp)541 nfs4args_verify(nfs_argop4 *argop, vattr_t *vap, enum nfs_opnum4 op,
542 bitmap4 supp)
543 {
544 fattr4 *attr;
545 int error = 0;
546
547 argop->argop = op;
548 switch (op) {
549 case OP_VERIFY:
550 attr = &argop->nfs_argop4_u.opverify.obj_attributes;
551 break;
552 case OP_NVERIFY:
553 attr = &argop->nfs_argop4_u.opnverify.obj_attributes;
554 break;
555 default:
556 return (EINVAL);
557 }
558 if (!error)
559 error = vattr_to_fattr4(vap, NULL, attr, 0, op, supp);
560 if (error)
561 bzero(attr, sizeof (*attr));
562 return (error);
563 }
564
565 static void
nfs4args_verify_free(nfs_argop4 * argop)566 nfs4args_verify_free(nfs_argop4 *argop)
567 {
568 switch (argop->argop) {
569 case OP_VERIFY:
570 nfs4_fattr4_free(&argop->nfs_argop4_u.opverify.obj_attributes);
571 break;
572 case OP_NVERIFY:
573 nfs4_fattr4_free(&argop->nfs_argop4_u.opnverify.obj_attributes);
574 break;
575 default:
576 break;
577 }
578 }
579
580 static void
nfs4args_write(nfs_argop4 * argop,stable_how4 stable,rnode4_t * rp,cred_t * cr,WRITE4args ** wargs_pp,nfs4_stateid_types_t * sid_tp)581 nfs4args_write(nfs_argop4 *argop, stable_how4 stable, rnode4_t *rp, cred_t *cr,
582 WRITE4args **wargs_pp, nfs4_stateid_types_t *sid_tp)
583 {
584 WRITE4args *wargs = &argop->nfs_argop4_u.opwrite;
585 mntinfo4_t *mi = VTOMI4(RTOV4(rp));
586
587 argop->argop = OP_WRITE;
588 wargs->stable = stable;
589 wargs->stateid = nfs4_get_w_stateid(cr, rp, curproc->p_pidp->pid_id,
590 mi, OP_WRITE, sid_tp);
591 wargs->mblk = NULL;
592 *wargs_pp = wargs;
593 }
594
595 void
nfs4args_copen_free(OPEN4cargs * open_args)596 nfs4args_copen_free(OPEN4cargs *open_args)
597 {
598 if (open_args->owner.owner_val) {
599 kmem_free(open_args->owner.owner_val,
600 open_args->owner.owner_len);
601 }
602 if ((open_args->opentype == OPEN4_CREATE) &&
603 (open_args->mode != EXCLUSIVE4)) {
604 nfs4_fattr4_free(&open_args->createhow4_u.createattrs);
605 }
606 }
607
608 /*
609 * XXX: This is referenced in modstubs.s
610 */
611 struct vnodeops *
nfs4_getvnodeops(void)612 nfs4_getvnodeops(void)
613 {
614 return (nfs4_vnodeops);
615 }
616
617 /*
618 * The OPEN operation opens a regular file.
619 */
620 /*ARGSUSED3*/
621 static int
nfs4_open(vnode_t ** vpp,int flag,cred_t * cr,caller_context_t * ct)622 nfs4_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
623 {
624 vnode_t *dvp = NULL;
625 rnode4_t *rp, *drp;
626 int error;
627 int just_been_created;
628 char fn[MAXNAMELEN];
629
630 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4_open: "));
631 if (nfs_zone() != VTOMI4(*vpp)->mi_zone)
632 return (EIO);
633 rp = VTOR4(*vpp);
634
635 /*
636 * Check to see if opening something besides a regular file;
637 * if so skip the OTW call
638 */
639 if ((*vpp)->v_type != VREG) {
640 error = nfs4_open_non_reg_file(vpp, flag, cr);
641 return (error);
642 }
643
644 /*
645 * XXX - would like a check right here to know if the file is
646 * executable or not, so as to skip OTW
647 */
648
649 if ((error = vtodv(*vpp, &dvp, cr, TRUE)) != 0)
650 return (error);
651
652 drp = VTOR4(dvp);
653 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
654 return (EINTR);
655
656 if ((error = vtoname(*vpp, fn, MAXNAMELEN)) != 0) {
657 nfs_rw_exit(&drp->r_rwlock);
658 return (error);
659 }
660
661 /*
662 * See if this file has just been CREATEd.
663 * If so, clear the flag and update the dnlc, which was previously
664 * skipped in nfs4_create.
665 * XXX need better serilization on this.
666 * XXX move this into the nf4open_otw call, after we have
667 * XXX acquired the open owner seqid sync.
668 */
669 mutex_enter(&rp->r_statev4_lock);
670 if (rp->created_v4) {
671 rp->created_v4 = 0;
672 mutex_exit(&rp->r_statev4_lock);
673
674 dnlc_update(dvp, fn, *vpp);
675 /* This is needed so we don't bump the open ref count */
676 just_been_created = 1;
677 } else {
678 mutex_exit(&rp->r_statev4_lock);
679 just_been_created = 0;
680 }
681
682 /*
683 * If caller specified O_TRUNC/FTRUNC, then be sure to set
684 * FWRITE (to drive successful setattr(size=0) after open)
685 */
686 if (flag & FTRUNC)
687 flag |= FWRITE;
688
689 error = nfs4open_otw(dvp, fn, NULL, vpp, cr, 0, flag, 0,
690 just_been_created);
691
692 if (!error && !((*vpp)->v_flag & VROOT))
693 dnlc_update(dvp, fn, *vpp);
694
695 nfs_rw_exit(&drp->r_rwlock);
696
697 /* release the hold from vtodv */
698 VN_RELE(dvp);
699
700 /* exchange the shadow for the master vnode, if needed */
701
702 if (error == 0 && IS_SHADOW(*vpp, rp))
703 sv_exchange(vpp);
704
705 return (error);
706 }
707
708 /*
709 * See if there's a "lost open" request to be saved and recovered.
710 */
711 static void
nfs4open_save_lost_rqst(int error,nfs4_lost_rqst_t * lost_rqstp,nfs4_open_owner_t * oop,cred_t * cr,vnode_t * vp,vnode_t * dvp,OPEN4cargs * open_args)712 nfs4open_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
713 nfs4_open_owner_t *oop, cred_t *cr, vnode_t *vp,
714 vnode_t *dvp, OPEN4cargs *open_args)
715 {
716 vfs_t *vfsp;
717 char *srccfp;
718
719 vfsp = (dvp ? dvp->v_vfsp : vp->v_vfsp);
720
721 if (error != ETIMEDOUT && error != EINTR &&
722 !NFS4_FRC_UNMT_ERR(error, vfsp)) {
723 lost_rqstp->lr_op = 0;
724 return;
725 }
726
727 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
728 "nfs4open_save_lost_rqst: error %d", error));
729
730 lost_rqstp->lr_op = OP_OPEN;
731
732 /*
733 * The vp (if it is not NULL) and dvp are held and rele'd via
734 * the recovery code. See nfs4_save_lost_rqst.
735 */
736 lost_rqstp->lr_vp = vp;
737 lost_rqstp->lr_dvp = dvp;
738 lost_rqstp->lr_oop = oop;
739 lost_rqstp->lr_osp = NULL;
740 lost_rqstp->lr_lop = NULL;
741 lost_rqstp->lr_cr = cr;
742 lost_rqstp->lr_flk = NULL;
743 lost_rqstp->lr_oacc = open_args->share_access;
744 lost_rqstp->lr_odeny = open_args->share_deny;
745 lost_rqstp->lr_oclaim = open_args->claim;
746 if (open_args->claim == CLAIM_DELEGATE_CUR) {
747 lost_rqstp->lr_ostateid =
748 open_args->open_claim4_u.delegate_cur_info.delegate_stateid;
749 srccfp = open_args->open_claim4_u.delegate_cur_info.cfile;
750 } else {
751 srccfp = open_args->open_claim4_u.cfile;
752 }
753 lost_rqstp->lr_ofile.utf8string_len = 0;
754 lost_rqstp->lr_ofile.utf8string_val = NULL;
755 (void) str_to_utf8(srccfp, &lost_rqstp->lr_ofile);
756 lost_rqstp->lr_putfirst = FALSE;
757 }
758
759 struct nfs4_excl_time {
760 uint32 seconds;
761 uint32 nseconds;
762 };
763
764 /*
765 * The OPEN operation creates and/or opens a regular file
766 *
767 * ARGSUSED
768 */
769 static int
nfs4open_otw(vnode_t * dvp,char * file_name,struct vattr * in_va,vnode_t ** vpp,cred_t * cr,int create_flag,int open_flag,enum createmode4 createmode,int file_just_been_created)770 nfs4open_otw(vnode_t *dvp, char *file_name, struct vattr *in_va,
771 vnode_t **vpp, cred_t *cr, int create_flag, int open_flag,
772 enum createmode4 createmode, int file_just_been_created)
773 {
774 rnode4_t *rp;
775 rnode4_t *drp = VTOR4(dvp);
776 vnode_t *vp = NULL;
777 vnode_t *vpi = *vpp;
778 bool_t needrecov = FALSE;
779
780 int doqueue = 1;
781
782 COMPOUND4args_clnt args;
783 COMPOUND4res_clnt res;
784 nfs_argop4 *argop;
785 nfs_resop4 *resop;
786 int argoplist_size;
787 int idx_open, idx_fattr;
788
789 GETFH4res *gf_res = NULL;
790 OPEN4res *op_res = NULL;
791 nfs4_ga_res_t *garp;
792 fattr4 *attr = NULL;
793 struct nfs4_excl_time verf;
794 bool_t did_excl_setup = FALSE;
795 int created_osp;
796
797 OPEN4cargs *open_args;
798 nfs4_open_owner_t *oop = NULL;
799 nfs4_open_stream_t *osp = NULL;
800 seqid4 seqid = 0;
801 bool_t retry_open = FALSE;
802 nfs4_recov_state_t recov_state;
803 nfs4_lost_rqst_t lost_rqst;
804 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
805 hrtime_t t;
806 int acc = 0;
807 cred_t *cred_otw = NULL; /* cred used to do the RPC call */
808 cred_t *ncr = NULL;
809
810 nfs4_sharedfh_t *otw_sfh;
811 nfs4_sharedfh_t *orig_sfh;
812 int fh_differs = 0;
813 int numops, setgid_flag;
814 int num_bseqid_retry = NFS4_NUM_RETRY_BAD_SEQID + 1;
815
816 /*
817 * Make sure we properly deal with setting the right gid on
818 * a newly created file to reflect the parent's setgid bit
819 */
820 setgid_flag = 0;
821 if (create_flag && in_va) {
822
823 /*
824 * If there is grpid mount flag used or
825 * the parent's directory has the setgid bit set
826 * _and_ the client was able to get a valid mapping
827 * for the parent dir's owner_group, we want to
828 * append NVERIFY(owner_group == dva.va_gid) and
829 * SETATTR to the CREATE compound.
830 */
831 mutex_enter(&drp->r_statelock);
832 if ((VTOMI4(dvp)->mi_flags & MI4_GRPID ||
833 drp->r_attr.va_mode & VSGID) &&
834 drp->r_attr.va_gid != GID_NOBODY) {
835 in_va->va_mask |= AT_GID;
836 in_va->va_gid = drp->r_attr.va_gid;
837 setgid_flag = 1;
838 }
839 mutex_exit(&drp->r_statelock);
840 }
841
842 /*
843 * Normal/non-create compound:
844 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new)
845 *
846 * Open(create) compound no setgid:
847 * PUTFH(dfh) + SAVEFH + OPEN(create) + GETFH + GETATTR(new) +
848 * RESTOREFH + GETATTR
849 *
850 * Open(create) setgid:
851 * PUTFH(dfh) + OPEN(create) + GETFH + GETATTR(new) +
852 * SAVEFH + PUTFH(dfh) + GETATTR(dvp) + RESTOREFH +
853 * NVERIFY(grp) + SETATTR
854 */
855 if (setgid_flag) {
856 numops = 10;
857 idx_open = 1;
858 idx_fattr = 3;
859 } else if (create_flag) {
860 numops = 7;
861 idx_open = 2;
862 idx_fattr = 4;
863 } else {
864 numops = 4;
865 idx_open = 1;
866 idx_fattr = 3;
867 }
868
869 args.array_len = numops;
870 argoplist_size = numops * sizeof (nfs_argop4);
871 argop = kmem_alloc(argoplist_size, KM_SLEEP);
872
873 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw: "
874 "open %s open flag 0x%x cred %p", file_name, open_flag,
875 (void *)cr));
876
877 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
878 if (create_flag) {
879 /*
880 * We are to create a file. Initialize the passed in vnode
881 * pointer.
882 */
883 vpi = NULL;
884 } else {
885 /*
886 * Check to see if the client owns a read delegation and is
887 * trying to open for write. If so, then return the delegation
888 * to avoid the server doing a cb_recall and returning DELAY.
889 * NB - we don't use the statev4_lock here because we'd have
890 * to drop the lock anyway and the result would be stale.
891 */
892 if ((open_flag & FWRITE) &&
893 VTOR4(vpi)->r_deleg_type == OPEN_DELEGATE_READ)
894 (void) nfs4delegreturn(VTOR4(vpi), NFS4_DR_REOPEN);
895
896 /*
897 * If the file has a delegation, then do an access check up
898 * front. This avoids having to an access check later after
899 * we've already done start_op, which could deadlock.
900 */
901 if (VTOR4(vpi)->r_deleg_type != OPEN_DELEGATE_NONE) {
902 if (open_flag & FREAD &&
903 nfs4_access(vpi, VREAD, 0, cr, NULL) == 0)
904 acc |= VREAD;
905 if (open_flag & FWRITE &&
906 nfs4_access(vpi, VWRITE, 0, cr, NULL) == 0)
907 acc |= VWRITE;
908 }
909 }
910
911 drp = VTOR4(dvp);
912
913 recov_state.rs_flags = 0;
914 recov_state.rs_num_retry_despite_err = 0;
915 cred_otw = cr;
916
917 recov_retry:
918 fh_differs = 0;
919 nfs4_error_zinit(&e);
920
921 e.error = nfs4_start_op(VTOMI4(dvp), dvp, vpi, &recov_state);
922 if (e.error) {
923 if (ncr != NULL)
924 crfree(ncr);
925 kmem_free(argop, argoplist_size);
926 return (e.error);
927 }
928
929 args.ctag = TAG_OPEN;
930 args.array_len = numops;
931 args.array = argop;
932
933 /* putfh directory fh */
934 argop[0].argop = OP_CPUTFH;
935 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
936
937 /* OPEN: either op 1 or op 2 depending upon create/setgid flags */
938 argop[idx_open].argop = OP_COPEN;
939 open_args = &argop[idx_open].nfs_argop4_u.opcopen;
940 open_args->claim = CLAIM_NULL;
941
942 /* name of file */
943 open_args->open_claim4_u.cfile = file_name;
944 open_args->owner.owner_len = 0;
945 open_args->owner.owner_val = NULL;
946
947 if (create_flag) {
948 /* CREATE a file */
949 open_args->opentype = OPEN4_CREATE;
950 open_args->mode = createmode;
951 if (createmode == EXCLUSIVE4) {
952 if (did_excl_setup == FALSE) {
953 verf.seconds = zone_get_hostid(NULL);
954 if (verf.seconds != 0)
955 verf.nseconds = newnum();
956 else {
957 timestruc_t now;
958
959 gethrestime(&now);
960 verf.seconds = now.tv_sec;
961 verf.nseconds = now.tv_nsec;
962 }
963 /*
964 * Since the server will use this value for the
965 * mtime, make sure that it can't overflow. Zero
966 * out the MSB. The actual value does not matter
967 * here, only its uniqeness.
968 */
969 verf.seconds &= INT32_MAX;
970 did_excl_setup = TRUE;
971 }
972
973 /* Now copy over verifier to OPEN4args. */
974 open_args->createhow4_u.createverf = *(uint64_t *)&verf;
975 } else {
976 int v_error;
977 bitmap4 supp_attrs;
978 servinfo4_t *svp;
979
980 attr = &open_args->createhow4_u.createattrs;
981
982 svp = drp->r_server;
983 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
984 supp_attrs = svp->sv_supp_attrs;
985 nfs_rw_exit(&svp->sv_lock);
986
987 /* GUARDED4 or UNCHECKED4 */
988 v_error = vattr_to_fattr4(in_va, NULL, attr, 0, OP_OPEN,
989 supp_attrs);
990 if (v_error) {
991 bzero(attr, sizeof (*attr));
992 nfs4args_copen_free(open_args);
993 nfs4_end_op(VTOMI4(dvp), dvp, vpi,
994 &recov_state, FALSE);
995 if (ncr != NULL)
996 crfree(ncr);
997 kmem_free(argop, argoplist_size);
998 return (v_error);
999 }
1000 }
1001 } else {
1002 /* NO CREATE */
1003 open_args->opentype = OPEN4_NOCREATE;
1004 }
1005
1006 if (recov_state.rs_sp != NULL) {
1007 mutex_enter(&recov_state.rs_sp->s_lock);
1008 open_args->owner.clientid = recov_state.rs_sp->clientid;
1009 mutex_exit(&recov_state.rs_sp->s_lock);
1010 } else {
1011 /* XXX should we just fail here? */
1012 open_args->owner.clientid = 0;
1013 }
1014
1015 /*
1016 * This increments oop's ref count or creates a temporary 'just_created'
1017 * open owner that will become valid when this OPEN/OPEN_CONFIRM call
1018 * completes.
1019 */
1020 mutex_enter(&VTOMI4(dvp)->mi_lock);
1021
1022 /* See if a permanent or just created open owner exists */
1023 oop = find_open_owner_nolock(cr, NFS4_JUST_CREATED, VTOMI4(dvp));
1024 if (!oop) {
1025 /*
1026 * This open owner does not exist so create a temporary
1027 * just created one.
1028 */
1029 oop = create_open_owner(cr, VTOMI4(dvp));
1030 ASSERT(oop != NULL);
1031 }
1032 mutex_exit(&VTOMI4(dvp)->mi_lock);
1033
1034 /* this length never changes, do alloc before seqid sync */
1035 open_args->owner.owner_len = sizeof (oop->oo_name);
1036 open_args->owner.owner_val =
1037 kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
1038
1039 e.error = nfs4_start_open_seqid_sync(oop, VTOMI4(dvp));
1040 if (e.error == EAGAIN) {
1041 open_owner_rele(oop);
1042 nfs4args_copen_free(open_args);
1043 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
1044 if (ncr != NULL) {
1045 crfree(ncr);
1046 ncr = NULL;
1047 }
1048 goto recov_retry;
1049 }
1050
1051 /* Check to see if we need to do the OTW call */
1052 if (!create_flag) {
1053 if (!nfs4_is_otw_open_necessary(oop, open_flag, vpi,
1054 file_just_been_created, &e.error, acc, &recov_state)) {
1055
1056 /*
1057 * The OTW open is not necessary. Either
1058 * the open can succeed without it (eg.
1059 * delegation, error == 0) or the open
1060 * must fail due to an access failure
1061 * (error != 0). In either case, tidy
1062 * up and return.
1063 */
1064
1065 nfs4_end_open_seqid_sync(oop);
1066 open_owner_rele(oop);
1067 nfs4args_copen_free(open_args);
1068 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, FALSE);
1069 if (ncr != NULL)
1070 crfree(ncr);
1071 kmem_free(argop, argoplist_size);
1072 return (e.error);
1073 }
1074 }
1075
1076 bcopy(&oop->oo_name, open_args->owner.owner_val,
1077 open_args->owner.owner_len);
1078
1079 seqid = nfs4_get_open_seqid(oop) + 1;
1080 open_args->seqid = seqid;
1081 open_args->share_access = 0;
1082 if (open_flag & FREAD)
1083 open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
1084 if (open_flag & FWRITE)
1085 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
1086 open_args->share_deny = OPEN4_SHARE_DENY_NONE;
1087
1088
1089
1090 /*
1091 * getfh w/sanity check for idx_open/idx_fattr
1092 */
1093 ASSERT((idx_open + 1) == (idx_fattr - 1));
1094 argop[idx_open + 1].argop = OP_GETFH;
1095
1096 /* getattr */
1097 argop[idx_fattr].argop = OP_GETATTR;
1098 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1099 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1100
1101 if (setgid_flag) {
1102 vattr_t _v;
1103 servinfo4_t *svp;
1104 bitmap4 supp_attrs;
1105
1106 svp = drp->r_server;
1107 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
1108 supp_attrs = svp->sv_supp_attrs;
1109 nfs_rw_exit(&svp->sv_lock);
1110
1111 /*
1112 * For setgid case, we need to:
1113 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
1114 */
1115 argop[4].argop = OP_SAVEFH;
1116
1117 argop[5].argop = OP_CPUTFH;
1118 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
1119
1120 argop[6].argop = OP_GETATTR;
1121 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1122 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1123
1124 argop[7].argop = OP_RESTOREFH;
1125
1126 /*
1127 * nverify
1128 */
1129 _v.va_mask = AT_GID;
1130 _v.va_gid = in_va->va_gid;
1131 if (!(e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
1132 supp_attrs))) {
1133
1134 /*
1135 * setattr
1136 *
1137 * We _know_ we're not messing with AT_SIZE or
1138 * AT_XTIME, so no need for stateid or flags.
1139 * Also we specify NULL rp since we're only
1140 * interested in setting owner_group attributes.
1141 */
1142 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr,
1143 supp_attrs, &e.error, 0);
1144 if (e.error)
1145 nfs4args_verify_free(&argop[8]);
1146 }
1147
1148 if (e.error) {
1149 /*
1150 * XXX - Revisit the last argument to nfs4_end_op()
1151 * once 5020486 is fixed.
1152 */
1153 nfs4_end_open_seqid_sync(oop);
1154 open_owner_rele(oop);
1155 nfs4args_copen_free(open_args);
1156 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, TRUE);
1157 if (ncr != NULL)
1158 crfree(ncr);
1159 kmem_free(argop, argoplist_size);
1160 return (e.error);
1161 }
1162 } else if (create_flag) {
1163 argop[1].argop = OP_SAVEFH;
1164
1165 argop[5].argop = OP_RESTOREFH;
1166
1167 argop[6].argop = OP_GETATTR;
1168 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1169 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
1170 }
1171
1172 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
1173 "nfs4open_otw: %s call, nm %s, rp %s",
1174 needrecov ? "recov" : "first", file_name,
1175 rnode4info(VTOR4(dvp))));
1176
1177 t = gethrtime();
1178
1179 rfs4call(VTOMI4(dvp), &args, &res, cred_otw, &doqueue, 0, &e);
1180
1181 if (!e.error && nfs4_need_to_bump_seqid(&res))
1182 nfs4_set_open_seqid(seqid, oop, args.ctag);
1183
1184 needrecov = nfs4_needs_recovery(&e, TRUE, dvp->v_vfsp);
1185
1186 if (e.error || needrecov) {
1187 bool_t abort = FALSE;
1188
1189 if (needrecov) {
1190 nfs4_bseqid_entry_t *bsep = NULL;
1191
1192 nfs4open_save_lost_rqst(e.error, &lost_rqst, oop,
1193 cred_otw, vpi, dvp, open_args);
1194
1195 if (!e.error && res.status == NFS4ERR_BAD_SEQID) {
1196 bsep = nfs4_create_bseqid_entry(oop, NULL,
1197 vpi, 0, args.ctag, open_args->seqid);
1198 num_bseqid_retry--;
1199 }
1200
1201 abort = nfs4_start_recovery(&e, VTOMI4(dvp), dvp, vpi,
1202 NULL, lost_rqst.lr_op == OP_OPEN ?
1203 &lost_rqst : NULL, OP_OPEN, bsep, NULL, NULL);
1204
1205 if (bsep)
1206 kmem_free(bsep, sizeof (*bsep));
1207 /* give up if we keep getting BAD_SEQID */
1208 if (num_bseqid_retry == 0)
1209 abort = TRUE;
1210 if (abort == TRUE && e.error == 0)
1211 e.error = geterrno4(res.status);
1212 }
1213 nfs4_end_open_seqid_sync(oop);
1214 open_owner_rele(oop);
1215 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1216 nfs4args_copen_free(open_args);
1217 if (setgid_flag) {
1218 nfs4args_verify_free(&argop[8]);
1219 nfs4args_setattr_free(&argop[9]);
1220 }
1221 if (!e.error)
1222 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1223 if (ncr != NULL) {
1224 crfree(ncr);
1225 ncr = NULL;
1226 }
1227 if (!needrecov || abort == TRUE || e.error == EINTR ||
1228 NFS4_FRC_UNMT_ERR(e.error, dvp->v_vfsp)) {
1229 kmem_free(argop, argoplist_size);
1230 return (e.error);
1231 }
1232 goto recov_retry;
1233 }
1234
1235 /*
1236 * Will check and update lease after checking the rflag for
1237 * OPEN_CONFIRM in the successful OPEN call.
1238 */
1239 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
1240
1241 /*
1242 * XXX what if we're crossing mount points from server1:/drp
1243 * to server2:/drp/rp.
1244 */
1245
1246 /* Signal our end of use of the open seqid */
1247 nfs4_end_open_seqid_sync(oop);
1248
1249 /*
1250 * This will destroy the open owner if it was just created,
1251 * and no one else has put a reference on it.
1252 */
1253 open_owner_rele(oop);
1254 if (create_flag && (createmode != EXCLUSIVE4) &&
1255 res.status == NFS4ERR_BADOWNER)
1256 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);
1257
1258 e.error = geterrno4(res.status);
1259 nfs4args_copen_free(open_args);
1260 if (setgid_flag) {
1261 nfs4args_verify_free(&argop[8]);
1262 nfs4args_setattr_free(&argop[9]);
1263 }
1264 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1265 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1266 /*
1267 * If the reply is NFS4ERR_ACCESS, it may be because
1268 * we are root (no root net access). If the real uid
1269 * is not root, then retry with the real uid instead.
1270 */
1271 if (ncr != NULL) {
1272 crfree(ncr);
1273 ncr = NULL;
1274 }
1275 if (res.status == NFS4ERR_ACCESS &&
1276 (ncr = crnetadjust(cred_otw)) != NULL) {
1277 cred_otw = ncr;
1278 goto recov_retry;
1279 }
1280 kmem_free(argop, argoplist_size);
1281 return (e.error);
1282 }
1283
1284 resop = &res.array[idx_open]; /* open res */
1285 op_res = &resop->nfs_resop4_u.opopen;
1286
1287 #ifdef DEBUG
1288 /*
1289 * verify attrset bitmap
1290 */
1291 if (create_flag &&
1292 (createmode == UNCHECKED4 || createmode == GUARDED4)) {
1293 /* make sure attrset returned is what we asked for */
1294 /* XXX Ignore this 'error' for now */
1295 if (attr->attrmask != op_res->attrset)
1296 /* EMPTY */;
1297 }
1298 #endif
1299
1300 if (op_res->rflags & OPEN4_RESULT_LOCKTYPE_POSIX) {
1301 mutex_enter(&VTOMI4(dvp)->mi_lock);
1302 VTOMI4(dvp)->mi_flags |= MI4_POSIX_LOCK;
1303 mutex_exit(&VTOMI4(dvp)->mi_lock);
1304 }
1305
1306 resop = &res.array[idx_open + 1]; /* getfh res */
1307 gf_res = &resop->nfs_resop4_u.opgetfh;
1308
1309 otw_sfh = sfh4_get(&gf_res->object, VTOMI4(dvp));
1310
1311 /*
1312 * The open stateid has been updated on the server but not
1313 * on the client yet. There is a path: makenfs4node->nfs4_attr_cache->
1314 * flush_pages->VOP_PUTPAGE->...->nfs4write where we will issue an OTW
1315 * WRITE call. That, however, will use the old stateid, so go ahead
1316 * and upate the open stateid now, before any call to makenfs4node.
1317 */
1318 if (vpi) {
1319 nfs4_open_stream_t *tmp_osp;
1320 rnode4_t *tmp_rp = VTOR4(vpi);
1321
1322 tmp_osp = find_open_stream(oop, tmp_rp);
1323 if (tmp_osp) {
1324 tmp_osp->open_stateid = op_res->stateid;
1325 mutex_exit(&tmp_osp->os_sync_lock);
1326 open_stream_rele(tmp_osp, tmp_rp);
1327 }
1328
1329 /*
1330 * We must determine if the file handle given by the otw open
1331 * is the same as the file handle which was passed in with
1332 * *vpp. This case can be reached if the file we are trying
1333 * to open has been removed and another file has been created
1334 * having the same file name. The passed in vnode is released
1335 * later.
1336 */
1337 orig_sfh = VTOR4(vpi)->r_fh;
1338 fh_differs = nfs4cmpfh(&orig_sfh->sfh_fh, &otw_sfh->sfh_fh);
1339 }
1340
1341 garp = &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res;
1342
1343 if (create_flag || fh_differs) {
1344 int rnode_err = 0;
1345
1346 vp = makenfs4node(otw_sfh, garp, dvp->v_vfsp, t, cr,
1347 dvp, fn_get(VTOSV(dvp)->sv_name, file_name, otw_sfh));
1348
1349 if (e.error)
1350 PURGE_ATTRCACHE4(vp);
1351 /*
1352 * For the newly created vp case, make sure the rnode
1353 * isn't bad before using it.
1354 */
1355 mutex_enter(&(VTOR4(vp))->r_statelock);
1356 if (VTOR4(vp)->r_flags & R4RECOVERR)
1357 rnode_err = EIO;
1358 mutex_exit(&(VTOR4(vp))->r_statelock);
1359
1360 if (rnode_err) {
1361 nfs4_end_open_seqid_sync(oop);
1362 nfs4args_copen_free(open_args);
1363 if (setgid_flag) {
1364 nfs4args_verify_free(&argop[8]);
1365 nfs4args_setattr_free(&argop[9]);
1366 }
1367 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1368 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
1369 needrecov);
1370 open_owner_rele(oop);
1371 VN_RELE(vp);
1372 if (ncr != NULL)
1373 crfree(ncr);
1374 sfh4_rele(&otw_sfh);
1375 kmem_free(argop, argoplist_size);
1376 return (EIO);
1377 }
1378 } else {
1379 vp = vpi;
1380 }
1381 sfh4_rele(&otw_sfh);
1382
1383 /*
1384 * It seems odd to get a full set of attrs and then not update
1385 * the object's attrcache in the non-create case. Create case uses
1386 * the attrs since makenfs4node checks to see if the attrs need to
1387 * be updated (and then updates them). The non-create case should
1388 * update attrs also.
1389 */
1390 if (! create_flag && ! fh_differs && !e.error) {
1391 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
1392 }
1393
1394 nfs4_error_zinit(&e);
1395 if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
1396 /* This does not do recovery for vp explicitly. */
1397 nfs4open_confirm(vp, &seqid, &op_res->stateid, cred_otw, FALSE,
1398 &retry_open, oop, FALSE, &e, &num_bseqid_retry);
1399
1400 if (e.error || e.stat) {
1401 nfs4_end_open_seqid_sync(oop);
1402 nfs4args_copen_free(open_args);
1403 if (setgid_flag) {
1404 nfs4args_verify_free(&argop[8]);
1405 nfs4args_setattr_free(&argop[9]);
1406 }
1407 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1408 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state,
1409 needrecov);
1410 open_owner_rele(oop);
1411 if (create_flag || fh_differs) {
1412 /* rele the makenfs4node */
1413 VN_RELE(vp);
1414 }
1415 if (ncr != NULL) {
1416 crfree(ncr);
1417 ncr = NULL;
1418 }
1419 if (retry_open == TRUE) {
1420 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1421 "nfs4open_otw: retry the open since OPEN "
1422 "CONFIRM failed with error %d stat %d",
1423 e.error, e.stat));
1424 if (create_flag && createmode == GUARDED4) {
1425 NFS4_DEBUG(nfs4_client_recov_debug,
1426 (CE_NOTE, "nfs4open_otw: switch "
1427 "createmode from GUARDED4 to "
1428 "UNCHECKED4"));
1429 createmode = UNCHECKED4;
1430 }
1431 goto recov_retry;
1432 }
1433 if (!e.error) {
1434 if (create_flag && (createmode != EXCLUSIVE4) &&
1435 e.stat == NFS4ERR_BADOWNER)
1436 nfs4_log_badowner(VTOMI4(dvp), OP_OPEN);
1437
1438 e.error = geterrno4(e.stat);
1439 }
1440 kmem_free(argop, argoplist_size);
1441 return (e.error);
1442 }
1443 }
1444
1445 rp = VTOR4(vp);
1446
1447 mutex_enter(&rp->r_statev4_lock);
1448 if (create_flag)
1449 rp->created_v4 = 1;
1450 mutex_exit(&rp->r_statev4_lock);
1451
1452 mutex_enter(&oop->oo_lock);
1453 /* Doesn't matter if 'oo_just_created' already was set as this */
1454 oop->oo_just_created = NFS4_PERM_CREATED;
1455 if (oop->oo_cred_otw)
1456 crfree(oop->oo_cred_otw);
1457 oop->oo_cred_otw = cred_otw;
1458 crhold(oop->oo_cred_otw);
1459 mutex_exit(&oop->oo_lock);
1460
1461 /* returns with 'os_sync_lock' held */
1462 osp = find_or_create_open_stream(oop, rp, &created_osp);
1463 if (!osp) {
1464 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
1465 "nfs4open_otw: failed to create an open stream"));
1466 NFS4_DEBUG(nfs4_seqid_sync, (CE_NOTE, "nfs4open_otw: "
1467 "signal our end of use of the open seqid"));
1468
1469 nfs4_end_open_seqid_sync(oop);
1470 open_owner_rele(oop);
1471 nfs4args_copen_free(open_args);
1472 if (setgid_flag) {
1473 nfs4args_verify_free(&argop[8]);
1474 nfs4args_setattr_free(&argop[9]);
1475 }
1476 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1477 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1478 if (create_flag || fh_differs)
1479 VN_RELE(vp);
1480 if (ncr != NULL)
1481 crfree(ncr);
1482
1483 kmem_free(argop, argoplist_size);
1484 return (EINVAL);
1485
1486 }
1487
1488 osp->open_stateid = op_res->stateid;
1489
1490 if (open_flag & FREAD)
1491 osp->os_share_acc_read++;
1492 if (open_flag & FWRITE)
1493 osp->os_share_acc_write++;
1494 osp->os_share_deny_none++;
1495
1496 /*
1497 * Need to reset this bitfield for the possible case where we were
1498 * going to OTW CLOSE the file, got a non-recoverable error, and before
1499 * we could retry the CLOSE, OPENed the file again.
1500 */
1501 ASSERT(osp->os_open_owner->oo_seqid_inuse);
1502 osp->os_final_close = 0;
1503 osp->os_force_close = 0;
1504 #ifdef DEBUG
1505 if (osp->os_failed_reopen)
1506 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE, "nfs4open_otw:"
1507 " clearing os_failed_reopen for osp %p, cr %p, rp %s",
1508 (void *)osp, (void *)cr, rnode4info(rp)));
1509 #endif
1510 osp->os_failed_reopen = 0;
1511
1512 mutex_exit(&osp->os_sync_lock);
1513
1514 nfs4_end_open_seqid_sync(oop);
1515
1516 if (created_osp && recov_state.rs_sp != NULL) {
1517 mutex_enter(&recov_state.rs_sp->s_lock);
1518 nfs4_inc_state_ref_count_nolock(recov_state.rs_sp, VTOMI4(dvp));
1519 mutex_exit(&recov_state.rs_sp->s_lock);
1520 }
1521
1522 /* get rid of our reference to find oop */
1523 open_owner_rele(oop);
1524
1525 open_stream_rele(osp, rp);
1526
1527 /* accept delegation, if any */
1528 nfs4_delegation_accept(rp, CLAIM_NULL, op_res, garp, cred_otw);
1529
1530 nfs4_end_op(VTOMI4(dvp), dvp, vpi, &recov_state, needrecov);
1531
1532 if (createmode == EXCLUSIVE4 &&
1533 (in_va->va_mask & ~(AT_GID | AT_SIZE))) {
1534 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4open_otw:"
1535 " EXCLUSIVE4: sending a SETATTR"));
1536 /*
1537 * If doing an exclusive create, then generate
1538 * a SETATTR to set the initial attributes.
1539 * Try to set the mtime and the atime to the
1540 * server's current time. It is somewhat
1541 * expected that these fields will be used to
1542 * store the exclusive create cookie. If not,
1543 * server implementors will need to know that
1544 * a SETATTR will follow an exclusive create
1545 * and the cookie should be destroyed if
1546 * appropriate.
1547 *
1548 * The AT_GID and AT_SIZE bits are turned off
1549 * so that the SETATTR request will not attempt
1550 * to process these. The gid will be set
1551 * separately if appropriate. The size is turned
1552 * off because it is assumed that a new file will
1553 * be created empty and if the file wasn't empty,
1554 * then the exclusive create will have failed
1555 * because the file must have existed already.
1556 * Therefore, no truncate operation is needed.
1557 */
1558 in_va->va_mask &= ~(AT_GID | AT_SIZE);
1559 in_va->va_mask |= (AT_MTIME | AT_ATIME);
1560
1561 e.error = nfs4setattr(vp, in_va, 0, cr, NULL);
1562 if (e.error) {
1563 nfs4_error_t err;
1564
1565 /*
1566 * Couldn't correct the attributes of
1567 * the newly created file and the
1568 * attributes are wrong. Remove the
1569 * file and return an error to the
1570 * application.
1571 */
1572 /* XXX will this take care of client state ? */
1573 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
1574 "nfs4open_otw: EXCLUSIVE4: error %d on SETATTR:"
1575 " remove file", e.error));
1576
1577 /*
1578 * The file is currently open so try to close it first.
1579 *
1580 * If we do not close the file explicitly here then the
1581 * VN_RELE() would do an (implicit and asynchronous)
1582 * close for us. But such async close could race with
1583 * the nfs4_remove() below. If the async close is
1584 * slower than nfs4_remove() then nfs4_remove()
1585 * wouldn't remove the file but rename it to .nfsXXXX
1586 * instead.
1587 */
1588 nfs4close_one(vp, NULL, cr, open_flag, NULL, &err,
1589 CLOSE_NORM, 0, 0, 0);
1590 VN_RELE(vp);
1591 (void) nfs4_remove(dvp, file_name, cr, NULL, 0);
1592
1593 /*
1594 * Since we've reled the vnode and removed
1595 * the file we now need to return the error.
1596 * At this point we don't want to update the
1597 * dircaches, call nfs4_waitfor_purge_complete
1598 * or set vpp to vp so we need to skip these
1599 * as well.
1600 */
1601 goto skip_update_dircaches;
1602 }
1603 }
1604
1605 /*
1606 * If we created or found the correct vnode, due to create_flag or
1607 * fh_differs being set, then update directory cache attribute, readdir
1608 * and dnlc caches.
1609 */
1610 if (create_flag || fh_differs) {
1611 dirattr_info_t dinfo, *dinfop;
1612
1613 /*
1614 * Make sure getattr succeeded before using results.
1615 * note: op 7 is getattr(dir) for both flavors of
1616 * open(create).
1617 */
1618 if (create_flag && res.status == NFS4_OK) {
1619 dinfo.di_time_call = t;
1620 dinfo.di_cred = cr;
1621 dinfo.di_garp =
1622 &res.array[6].nfs_resop4_u.opgetattr.ga_res;
1623 dinfop = &dinfo;
1624 } else {
1625 dinfop = NULL;
1626 }
1627
1628 nfs4_update_dircaches(&op_res->cinfo, dvp, vp, file_name,
1629 dinfop);
1630 }
1631
1632 /*
1633 * If the page cache for this file was flushed from actions
1634 * above, it was done asynchronously and if that is true,
1635 * there is a need to wait here for it to complete. This must
1636 * be done outside of start_fop/end_fop.
1637 */
1638 (void) nfs4_waitfor_purge_complete(vp);
1639
1640 /*
1641 * It is implicit that we are in the open case (create_flag == 0) since
1642 * fh_differs can only be set to a non-zero value in the open case.
1643 */
1644 if (fh_differs != 0 && vpi != NULL)
1645 VN_RELE(vpi);
1646
1647 /*
1648 * Be sure to set *vpp to the correct value before returning.
1649 */
1650 *vpp = vp;
1651
1652 skip_update_dircaches:
1653
1654 nfs4args_copen_free(open_args);
1655 if (setgid_flag) {
1656 nfs4args_verify_free(&argop[8]);
1657 nfs4args_setattr_free(&argop[9]);
1658 }
1659 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1660
1661 if (ncr)
1662 crfree(ncr);
1663 kmem_free(argop, argoplist_size);
1664 return (e.error);
1665 }
1666
1667 /*
1668 * Reopen an open instance. cf. nfs4open_otw().
1669 *
1670 * Errors are returned by the nfs4_error_t parameter.
1671 * - ep->error contains an errno value or zero.
1672 * - if it is zero, ep->stat is set to an NFS status code, if any.
1673 * If the file could not be reopened, but the caller should continue, the
1674 * file is marked dead and no error values are returned. If the caller
1675 * should stop recovering open files and start over, either the ep->error
1676 * value or ep->stat will indicate an error (either something that requires
1677 * recovery or EAGAIN). Note that some recovery (e.g., expired volatile
1678 * filehandles) may be handled silently by this routine.
1679 * - if it is EINTR, ETIMEDOUT, or NFS4_FRC_UNMT_ERR, recovery for lost state
1680 * will be started, so the caller should not do it.
1681 *
1682 * Gotos:
1683 * - kill_file : reopen failed in such a fashion to constitute marking the
1684 * file dead and setting the open stream's 'os_failed_reopen' as 1. This
1685 * is for cases where recovery is not possible.
1686 * - failed_reopen : same as above, except that the file has already been
1687 * marked dead, so no need to do it again.
1688 * - bailout : reopen failed but we are able to recover and retry the reopen -
1689 * either within this function immediately or via the calling function.
1690 */
1691
1692 void
nfs4_reopen(vnode_t * vp,nfs4_open_stream_t * osp,nfs4_error_t * ep,open_claim_type4 claim,bool_t frc_use_claim_previous,bool_t is_recov)1693 nfs4_reopen(vnode_t *vp, nfs4_open_stream_t *osp, nfs4_error_t *ep,
1694 open_claim_type4 claim, bool_t frc_use_claim_previous,
1695 bool_t is_recov)
1696 {
1697 COMPOUND4args_clnt args;
1698 COMPOUND4res_clnt res;
1699 nfs_argop4 argop[4];
1700 nfs_resop4 *resop;
1701 OPEN4res *op_res = NULL;
1702 OPEN4cargs *open_args;
1703 GETFH4res *gf_res;
1704 rnode4_t *rp = VTOR4(vp);
1705 int doqueue = 1;
1706 cred_t *cr = NULL, *cred_otw = NULL;
1707 nfs4_open_owner_t *oop = NULL;
1708 seqid4 seqid;
1709 nfs4_ga_res_t *garp;
1710 char fn[MAXNAMELEN];
1711 nfs4_recov_state_t recov = {NULL, 0};
1712 nfs4_lost_rqst_t lost_rqst;
1713 mntinfo4_t *mi = VTOMI4(vp);
1714 bool_t abort;
1715 char *failed_msg = "";
1716 int fh_different;
1717 hrtime_t t;
1718 nfs4_bseqid_entry_t *bsep = NULL;
1719
1720 ASSERT(nfs4_consistent_type(vp));
1721 ASSERT(nfs_zone() == mi->mi_zone);
1722
1723 nfs4_error_zinit(ep);
1724
1725 /* this is the cred used to find the open owner */
1726 cr = state_to_cred(osp);
1727 if (cr == NULL) {
1728 failed_msg = "Couldn't reopen: no cred";
1729 goto kill_file;
1730 }
1731 /* use this cred for OTW operations */
1732 cred_otw = nfs4_get_otw_cred(cr, mi, osp->os_open_owner);
1733
1734 top:
1735 nfs4_error_zinit(ep);
1736
1737 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED) {
1738 /* File system has been unmounted, quit */
1739 ep->error = EIO;
1740 failed_msg = "Couldn't reopen: file system has been unmounted";
1741 goto kill_file;
1742 }
1743
1744 oop = osp->os_open_owner;
1745
1746 ASSERT(oop != NULL);
1747 if (oop == NULL) { /* be defensive in non-DEBUG */
1748 failed_msg = "can't reopen: no open owner";
1749 goto kill_file;
1750 }
1751 open_owner_hold(oop);
1752
1753 ep->error = nfs4_start_open_seqid_sync(oop, mi);
1754 if (ep->error) {
1755 open_owner_rele(oop);
1756 oop = NULL;
1757 goto bailout;
1758 }
1759
1760 /*
1761 * If the rnode has a delegation and the delegation has been
1762 * recovered and the server didn't request a recall and the caller
1763 * didn't specifically ask for CLAIM_PREVIOUS (nfs4frlock during
1764 * recovery) and the rnode hasn't been marked dead, then install
1765 * the delegation stateid in the open stream. Otherwise, proceed
1766 * with a CLAIM_PREVIOUS or CLAIM_NULL OPEN.
1767 */
1768 mutex_enter(&rp->r_statev4_lock);
1769 if (rp->r_deleg_type != OPEN_DELEGATE_NONE &&
1770 !rp->r_deleg_return_pending &&
1771 (rp->r_deleg_needs_recovery == OPEN_DELEGATE_NONE) &&
1772 !rp->r_deleg_needs_recall &&
1773 claim != CLAIM_DELEGATE_CUR && !frc_use_claim_previous &&
1774 !(rp->r_flags & R4RECOVERR)) {
1775 mutex_enter(&osp->os_sync_lock);
1776 osp->os_delegation = 1;
1777 osp->open_stateid = rp->r_deleg_stateid;
1778 mutex_exit(&osp->os_sync_lock);
1779 mutex_exit(&rp->r_statev4_lock);
1780 goto bailout;
1781 }
1782 mutex_exit(&rp->r_statev4_lock);
1783
1784 /*
1785 * If the file failed recovery, just quit. This failure need not
1786 * affect other reopens, so don't return an error.
1787 */
1788 mutex_enter(&rp->r_statelock);
1789 if (rp->r_flags & R4RECOVERR) {
1790 mutex_exit(&rp->r_statelock);
1791 ep->error = 0;
1792 goto failed_reopen;
1793 }
1794 mutex_exit(&rp->r_statelock);
1795
1796 /*
1797 * argop is empty here
1798 *
1799 * PUTFH, OPEN, GETATTR
1800 */
1801 args.ctag = TAG_REOPEN;
1802 args.array_len = 4;
1803 args.array = argop;
1804
1805 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
1806 "nfs4_reopen: file is type %d, id %s",
1807 vp->v_type, rnode4info(VTOR4(vp))));
1808
1809 argop[0].argop = OP_CPUTFH;
1810
1811 if (claim != CLAIM_PREVIOUS) {
1812 /*
1813 * if this is a file mount then
1814 * use the mntinfo parentfh
1815 */
1816 argop[0].nfs_argop4_u.opcputfh.sfh =
1817 (vp->v_flag & VROOT) ? mi->mi_srvparentfh :
1818 VTOSV(vp)->sv_dfh;
1819 } else {
1820 /* putfh fh to reopen */
1821 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
1822 }
1823
1824 argop[1].argop = OP_COPEN;
1825 open_args = &argop[1].nfs_argop4_u.opcopen;
1826 open_args->claim = claim;
1827
1828 if (claim == CLAIM_NULL) {
1829
1830 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
1831 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
1832 "failed for vp 0x%p for CLAIM_NULL with %m",
1833 (void *)vp);
1834 failed_msg = "Couldn't reopen: vtoname failed for "
1835 "CLAIM_NULL";
1836 /* nothing allocated yet */
1837 goto kill_file;
1838 }
1839
1840 open_args->open_claim4_u.cfile = fn;
1841 } else if (claim == CLAIM_PREVIOUS) {
1842
1843 /*
1844 * We have two cases to deal with here:
1845 * 1) We're being called to reopen files in order to satisfy
1846 * a lock operation request which requires us to explicitly
1847 * reopen files which were opened under a delegation. If
1848 * we're in recovery, we *must* use CLAIM_PREVIOUS. In
1849 * that case, frc_use_claim_previous is TRUE and we must
1850 * use the rnode's current delegation type (r_deleg_type).
1851 * 2) We're reopening files during some form of recovery.
1852 * In this case, frc_use_claim_previous is FALSE and we
1853 * use the delegation type appropriate for recovery
1854 * (r_deleg_needs_recovery).
1855 */
1856 mutex_enter(&rp->r_statev4_lock);
1857 open_args->open_claim4_u.delegate_type =
1858 frc_use_claim_previous ?
1859 rp->r_deleg_type :
1860 rp->r_deleg_needs_recovery;
1861 mutex_exit(&rp->r_statev4_lock);
1862
1863 } else if (claim == CLAIM_DELEGATE_CUR) {
1864
1865 if ((ep->error = vtoname(vp, fn, MAXNAMELEN)) != 0) {
1866 nfs_cmn_err(ep->error, CE_WARN, "nfs4_reopen: vtoname "
1867 "failed for vp 0x%p for CLAIM_DELEGATE_CUR "
1868 "with %m", (void *)vp);
1869 failed_msg = "Couldn't reopen: vtoname failed for "
1870 "CLAIM_DELEGATE_CUR";
1871 /* nothing allocated yet */
1872 goto kill_file;
1873 }
1874
1875 mutex_enter(&rp->r_statev4_lock);
1876 open_args->open_claim4_u.delegate_cur_info.delegate_stateid =
1877 rp->r_deleg_stateid;
1878 mutex_exit(&rp->r_statev4_lock);
1879
1880 open_args->open_claim4_u.delegate_cur_info.cfile = fn;
1881 }
1882 open_args->opentype = OPEN4_NOCREATE;
1883 open_args->owner.clientid = mi2clientid(mi);
1884 open_args->owner.owner_len = sizeof (oop->oo_name);
1885 open_args->owner.owner_val =
1886 kmem_alloc(open_args->owner.owner_len, KM_SLEEP);
1887 bcopy(&oop->oo_name, open_args->owner.owner_val,
1888 open_args->owner.owner_len);
1889 open_args->share_access = 0;
1890 open_args->share_deny = 0;
1891
1892 mutex_enter(&osp->os_sync_lock);
1893 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE, "nfs4_reopen: osp %p rp "
1894 "%p: read acc %"PRIu64" write acc %"PRIu64": open ref count %d: "
1895 "mmap read %"PRIu64" mmap write %"PRIu64" claim %d ",
1896 (void *)osp, (void *)rp, osp->os_share_acc_read,
1897 osp->os_share_acc_write, osp->os_open_ref_count,
1898 osp->os_mmap_read, osp->os_mmap_write, claim));
1899
1900 if (osp->os_share_acc_read || osp->os_mmap_read)
1901 open_args->share_access |= OPEN4_SHARE_ACCESS_READ;
1902 if (osp->os_share_acc_write || osp->os_mmap_write)
1903 open_args->share_access |= OPEN4_SHARE_ACCESS_WRITE;
1904 if (osp->os_share_deny_read)
1905 open_args->share_deny |= OPEN4_SHARE_DENY_READ;
1906 if (osp->os_share_deny_write)
1907 open_args->share_deny |= OPEN4_SHARE_DENY_WRITE;
1908 mutex_exit(&osp->os_sync_lock);
1909
1910 seqid = nfs4_get_open_seqid(oop) + 1;
1911 open_args->seqid = seqid;
1912
1913 /* Construct the getfh part of the compound */
1914 argop[2].argop = OP_GETFH;
1915
1916 /* Construct the getattr part of the compound */
1917 argop[3].argop = OP_GETATTR;
1918 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
1919 argop[3].nfs_argop4_u.opgetattr.mi = mi;
1920
1921 t = gethrtime();
1922
1923 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);
1924
1925 if (ep->error) {
1926 if (!is_recov && !frc_use_claim_previous &&
1927 (ep->error == EINTR || ep->error == ETIMEDOUT ||
1928 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp))) {
1929 nfs4open_save_lost_rqst(ep->error, &lost_rqst, oop,
1930 cred_otw, vp, NULL, open_args);
1931 abort = nfs4_start_recovery(ep,
1932 VTOMI4(vp), vp, NULL, NULL,
1933 lost_rqst.lr_op == OP_OPEN ?
1934 &lost_rqst : NULL, OP_OPEN, NULL, NULL, NULL);
1935 nfs4args_copen_free(open_args);
1936 goto bailout;
1937 }
1938
1939 nfs4args_copen_free(open_args);
1940
1941 if (ep->error == EACCES && cred_otw != cr) {
1942 crfree(cred_otw);
1943 cred_otw = cr;
1944 crhold(cred_otw);
1945 nfs4_end_open_seqid_sync(oop);
1946 open_owner_rele(oop);
1947 oop = NULL;
1948 goto top;
1949 }
1950 if (ep->error == ETIMEDOUT)
1951 goto bailout;
1952 failed_msg = "Couldn't reopen: rpc error";
1953 goto kill_file;
1954 }
1955
1956 if (nfs4_need_to_bump_seqid(&res))
1957 nfs4_set_open_seqid(seqid, oop, args.ctag);
1958
1959 switch (res.status) {
1960 case NFS4_OK:
1961 if (recov.rs_flags & NFS4_RS_DELAY_MSG) {
1962 mutex_enter(&rp->r_statelock);
1963 rp->r_delay_interval = 0;
1964 mutex_exit(&rp->r_statelock);
1965 }
1966 break;
1967 case NFS4ERR_BAD_SEQID:
1968 bsep = nfs4_create_bseqid_entry(oop, NULL, vp, 0,
1969 args.ctag, open_args->seqid);
1970
1971 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
1972 NULL, lost_rqst.lr_op == OP_OPEN ? &lost_rqst :
1973 NULL, OP_OPEN, bsep, NULL, NULL);
1974
1975 nfs4args_copen_free(open_args);
1976 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1977 nfs4_end_open_seqid_sync(oop);
1978 open_owner_rele(oop);
1979 oop = NULL;
1980 kmem_free(bsep, sizeof (*bsep));
1981
1982 goto kill_file;
1983 case NFS4ERR_NO_GRACE:
1984 nfs4args_copen_free(open_args);
1985 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1986 nfs4_end_open_seqid_sync(oop);
1987 open_owner_rele(oop);
1988 oop = NULL;
1989 if (claim == CLAIM_PREVIOUS) {
1990 /*
1991 * Retry as a plain open. We don't need to worry about
1992 * checking the changeinfo: it is acceptable for a
1993 * client to re-open a file and continue processing
1994 * (in the absence of locks).
1995 */
1996 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1997 "nfs4_reopen: CLAIM_PREVIOUS: NFS4ERR_NO_GRACE; "
1998 "will retry as CLAIM_NULL"));
1999 claim = CLAIM_NULL;
2000 nfs4_mi_kstat_inc_no_grace(mi);
2001 goto top;
2002 }
2003 failed_msg =
2004 "Couldn't reopen: tried reclaim outside grace period. ";
2005 goto kill_file;
2006 case NFS4ERR_GRACE:
2007 nfs4_set_grace_wait(mi);
2008 nfs4args_copen_free(open_args);
2009 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2010 nfs4_end_open_seqid_sync(oop);
2011 open_owner_rele(oop);
2012 oop = NULL;
2013 ep->error = nfs4_wait_for_grace(mi, &recov);
2014 if (ep->error != 0)
2015 goto bailout;
2016 goto top;
2017 case NFS4ERR_DELAY:
2018 nfs4_set_delay_wait(vp);
2019 nfs4args_copen_free(open_args);
2020 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2021 nfs4_end_open_seqid_sync(oop);
2022 open_owner_rele(oop);
2023 oop = NULL;
2024 ep->error = nfs4_wait_for_delay(vp, &recov);
2025 nfs4_mi_kstat_inc_delay(mi);
2026 if (ep->error != 0)
2027 goto bailout;
2028 goto top;
2029 case NFS4ERR_FHEXPIRED:
2030 /* recover filehandle and retry */
2031 abort = nfs4_start_recovery(ep,
2032 mi, vp, NULL, NULL, NULL, OP_OPEN, NULL, NULL, NULL);
2033 nfs4args_copen_free(open_args);
2034 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2035 nfs4_end_open_seqid_sync(oop);
2036 open_owner_rele(oop);
2037 oop = NULL;
2038 if (abort == FALSE)
2039 goto top;
2040 failed_msg = "Couldn't reopen: recovery aborted";
2041 goto kill_file;
2042 case NFS4ERR_RESOURCE:
2043 case NFS4ERR_STALE_CLIENTID:
2044 case NFS4ERR_WRONGSEC:
2045 case NFS4ERR_EXPIRED:
2046 /*
2047 * Do not mark the file dead and let the calling
2048 * function initiate recovery.
2049 */
2050 nfs4args_copen_free(open_args);
2051 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2052 nfs4_end_open_seqid_sync(oop);
2053 open_owner_rele(oop);
2054 oop = NULL;
2055 goto bailout;
2056 case NFS4ERR_ACCESS:
2057 if (cred_otw != cr) {
2058 crfree(cred_otw);
2059 cred_otw = cr;
2060 crhold(cred_otw);
2061 nfs4args_copen_free(open_args);
2062 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2063 nfs4_end_open_seqid_sync(oop);
2064 open_owner_rele(oop);
2065 oop = NULL;
2066 goto top;
2067 }
2068 /* fall through */
2069 default:
2070 NFS4_DEBUG(nfs4_client_failover_debug, (CE_NOTE,
2071 "nfs4_reopen: r_server 0x%p, mi_curr_serv 0x%p, rnode %s",
2072 (void*)VTOR4(vp)->r_server, (void*)mi->mi_curr_serv,
2073 rnode4info(VTOR4(vp))));
2074 failed_msg = "Couldn't reopen: NFSv4 error";
2075 nfs4args_copen_free(open_args);
2076 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2077 goto kill_file;
2078 }
2079
2080 resop = &res.array[1]; /* open res */
2081 op_res = &resop->nfs_resop4_u.opopen;
2082
2083 garp = &res.array[3].nfs_resop4_u.opgetattr.ga_res;
2084
2085 /*
2086 * Check if the path we reopened really is the same
2087 * file. We could end up in a situation where the file
2088 * was removed and a new file created with the same name.
2089 */
2090 resop = &res.array[2];
2091 gf_res = &resop->nfs_resop4_u.opgetfh;
2092 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
2093 fh_different = (nfs4cmpfh(&rp->r_fh->sfh_fh, &gf_res->object) != 0);
2094 if (fh_different) {
2095 if (mi->mi_fh_expire_type == FH4_PERSISTENT ||
2096 mi->mi_fh_expire_type & FH4_NOEXPIRE_WITH_OPEN) {
2097 /* Oops, we don't have the same file */
2098 if (mi->mi_fh_expire_type == FH4_PERSISTENT)
2099 failed_msg = "Couldn't reopen: Persistent "
2100 "file handle changed";
2101 else
2102 failed_msg = "Couldn't reopen: Volatile "
2103 "(no expire on open) file handle changed";
2104
2105 nfs4args_copen_free(open_args);
2106 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2107 nfs_rw_exit(&mi->mi_fh_lock);
2108 goto kill_file;
2109
2110 } else {
2111 /*
2112 * We have volatile file handles that don't compare.
2113 * If the fids are the same then we assume that the
2114 * file handle expired but the rnode still refers to
2115 * the same file object.
2116 *
2117 * First check that we have fids or not.
2118 * If we don't we have a dumb server so we will
2119 * just assume every thing is ok for now.
2120 */
2121 if (!ep->error && garp->n4g_va.va_mask & AT_NODEID &&
2122 rp->r_attr.va_mask & AT_NODEID &&
2123 rp->r_attr.va_nodeid != garp->n4g_va.va_nodeid) {
2124 /*
2125 * We have fids, but they don't
2126 * compare. So kill the file.
2127 */
2128 failed_msg =
2129 "Couldn't reopen: file handle changed"
2130 " due to mismatched fids";
2131 nfs4args_copen_free(open_args);
2132 (void) xdr_free(xdr_COMPOUND4res_clnt,
2133 (caddr_t)&res);
2134 nfs_rw_exit(&mi->mi_fh_lock);
2135 goto kill_file;
2136 } else {
2137 /*
2138 * We have volatile file handles that refers
2139 * to the same file (at least they have the
2140 * same fid) or we don't have fids so we
2141 * can't tell. :(. We'll be a kind and accepting
2142 * client so we'll update the rnode's file
2143 * handle with the otw handle.
2144 *
2145 * We need to drop mi->mi_fh_lock since
2146 * sh4_update acquires it. Since there is
2147 * only one recovery thread there is no
2148 * race.
2149 */
2150 nfs_rw_exit(&mi->mi_fh_lock);
2151 sfh4_update(rp->r_fh, &gf_res->object);
2152 }
2153 }
2154 } else {
2155 nfs_rw_exit(&mi->mi_fh_lock);
2156 }
2157
2158 ASSERT(nfs4_consistent_type(vp));
2159
2160 /*
2161 * If the server wanted an OPEN_CONFIRM but that fails, just start
2162 * over. Presumably if there is a persistent error it will show up
2163 * when we resend the OPEN.
2164 */
2165 if (op_res->rflags & OPEN4_RESULT_CONFIRM) {
2166 bool_t retry_open = FALSE;
2167
2168 nfs4open_confirm(vp, &seqid, &op_res->stateid,
2169 cred_otw, is_recov, &retry_open,
2170 oop, FALSE, ep, NULL);
2171 if (ep->error || ep->stat) {
2172 nfs4args_copen_free(open_args);
2173 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2174 nfs4_end_open_seqid_sync(oop);
2175 open_owner_rele(oop);
2176 oop = NULL;
2177 goto top;
2178 }
2179 }
2180
2181 mutex_enter(&osp->os_sync_lock);
2182 osp->open_stateid = op_res->stateid;
2183 osp->os_delegation = 0;
2184 /*
2185 * Need to reset this bitfield for the possible case where we were
2186 * going to OTW CLOSE the file, got a non-recoverable error, and before
2187 * we could retry the CLOSE, OPENed the file again.
2188 */
2189 ASSERT(osp->os_open_owner->oo_seqid_inuse);
2190 osp->os_final_close = 0;
2191 osp->os_force_close = 0;
2192 if (claim == CLAIM_DELEGATE_CUR || claim == CLAIM_PREVIOUS)
2193 osp->os_dc_openacc = open_args->share_access;
2194 mutex_exit(&osp->os_sync_lock);
2195
2196 nfs4_end_open_seqid_sync(oop);
2197
2198 /* accept delegation, if any */
2199 nfs4_delegation_accept(rp, claim, op_res, garp, cred_otw);
2200
2201 nfs4args_copen_free(open_args);
2202
2203 nfs4_attr_cache(vp, garp, t, cr, TRUE, NULL);
2204
2205 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2206
2207 ASSERT(nfs4_consistent_type(vp));
2208
2209 open_owner_rele(oop);
2210 crfree(cr);
2211 crfree(cred_otw);
2212 return;
2213
2214 kill_file:
2215 nfs4_fail_recov(vp, failed_msg, ep->error, ep->stat);
2216 failed_reopen:
2217 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
2218 "nfs4_reopen: setting os_failed_reopen for osp %p, cr %p, rp %s",
2219 (void *)osp, (void *)cr, rnode4info(rp)));
2220 mutex_enter(&osp->os_sync_lock);
2221 osp->os_failed_reopen = 1;
2222 mutex_exit(&osp->os_sync_lock);
2223 bailout:
2224 if (oop != NULL) {
2225 nfs4_end_open_seqid_sync(oop);
2226 open_owner_rele(oop);
2227 }
2228 if (cr != NULL)
2229 crfree(cr);
2230 if (cred_otw != NULL)
2231 crfree(cred_otw);
2232 }
2233
2234 /* for . and .. OPENs */
2235 /* ARGSUSED */
2236 static int
nfs4_open_non_reg_file(vnode_t ** vpp,int flag,cred_t * cr)2237 nfs4_open_non_reg_file(vnode_t **vpp, int flag, cred_t *cr)
2238 {
2239 rnode4_t *rp;
2240 nfs4_ga_res_t gar;
2241
2242 ASSERT(nfs_zone() == VTOMI4(*vpp)->mi_zone);
2243
2244 /*
2245 * If close-to-open consistency checking is turned off or
2246 * if there is no cached data, we can avoid
2247 * the over the wire getattr. Otherwise, force a
2248 * call to the server to get fresh attributes and to
2249 * check caches. This is required for close-to-open
2250 * consistency.
2251 */
2252 rp = VTOR4(*vpp);
2253 if (VTOMI4(*vpp)->mi_flags & MI4_NOCTO ||
2254 (rp->r_dir == NULL && !nfs4_has_pages(*vpp)))
2255 return (0);
2256
2257 return (nfs4_getattr_otw(*vpp, &gar, cr, 0));
2258 }
2259
2260 /*
2261 * CLOSE a file
2262 */
2263 /* ARGSUSED */
2264 static int
nfs4_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr,caller_context_t * ct)2265 nfs4_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
2266 caller_context_t *ct)
2267 {
2268 rnode4_t *rp;
2269 int error = 0;
2270 int r_error = 0;
2271 int n4error = 0;
2272 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
2273
2274 /*
2275 * Remove client state for this (lockowner, file) pair.
2276 * Issue otw v4 call to have the server do the same.
2277 */
2278
2279 rp = VTOR4(vp);
2280
2281 /*
2282 * zone_enter(2) prevents processes from changing zones with NFS files
2283 * open; if we happen to get here from the wrong zone we can't do
2284 * anything over the wire.
2285 */
2286 if (VTOMI4(vp)->mi_zone != nfs_zone()) {
2287 /*
2288 * We could attempt to clean up locks, except we're sure
2289 * that the current process didn't acquire any locks on
2290 * the file: any attempt to lock a file belong to another zone
2291 * will fail, and one can't lock an NFS file and then change
2292 * zones, as that fails too.
2293 *
2294 * Returning an error here is the sane thing to do. A
2295 * subsequent call to VN_RELE() which translates to a
2296 * nfs4_inactive() will clean up state: if the zone of the
2297 * vnode's origin is still alive and kicking, the inactive
2298 * thread will handle the request (from the correct zone), and
2299 * everything (minus the OTW close call) should be OK. If the
2300 * zone is going away nfs4_async_inactive() will throw away
2301 * delegations, open streams and cached pages inline.
2302 */
2303 return (EIO);
2304 }
2305
2306 /*
2307 * If we are using local locking for this filesystem, then
2308 * release all of the SYSV style record locks. Otherwise,
2309 * we are doing network locking and we need to release all
2310 * of the network locks. All of the locks held by this
2311 * process on this file are released no matter what the
2312 * incoming reference count is.
2313 */
2314 if (VTOMI4(vp)->mi_flags & MI4_LLOCK) {
2315 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
2316 cleanshares(vp, ttoproc(curthread)->p_pid);
2317 } else
2318 e.error = nfs4_lockrelease(vp, flag, offset, cr);
2319
2320 if (e.error) {
2321 struct lm_sysid *lmsid;
2322 lmsid = nfs4_find_sysid(VTOMI4(vp));
2323 if (lmsid == NULL) {
2324 DTRACE_PROBE2(unknown__sysid, int, e.error,
2325 vnode_t *, vp);
2326 } else {
2327 cleanlocks(vp, ttoproc(curthread)->p_pid,
2328 (lm_sysidt(lmsid) | LM_SYSID_CLIENT));
2329
2330 lm_rel_sysid(lmsid);
2331 }
2332 return (e.error);
2333 }
2334
2335 if (count > 1)
2336 return (0);
2337
2338 /*
2339 * If the file has been `unlinked', then purge the
2340 * DNLC so that this vnode will get reycled quicker
2341 * and the .nfs* file on the server will get removed.
2342 */
2343 if (rp->r_unldvp != NULL)
2344 dnlc_purge_vp(vp);
2345
2346 /*
2347 * If the file was open for write and there are pages,
2348 * do a synchronous flush and commit of all of the
2349 * dirty and uncommitted pages.
2350 */
2351 ASSERT(!e.error);
2352 if ((flag & FWRITE) && nfs4_has_pages(vp))
2353 error = nfs4_putpage_commit(vp, 0, 0, cr);
2354
2355 mutex_enter(&rp->r_statelock);
2356 r_error = rp->r_error;
2357 rp->r_error = 0;
2358 mutex_exit(&rp->r_statelock);
2359
2360 /*
2361 * If this file type is one for which no explicit 'open' was
2362 * done, then bail now (ie. no need for protocol 'close'). If
2363 * there was an error w/the vm subsystem, return _that_ error,
2364 * otherwise, return any errors that may've been reported via
2365 * the rnode.
2366 */
2367 if (vp->v_type != VREG)
2368 return (error ? error : r_error);
2369
2370 /*
2371 * The sync putpage commit may have failed above, but since
2372 * we're working w/a regular file, we need to do the protocol
2373 * 'close' (nfs4close_one will figure out if an otw close is
2374 * needed or not). Report any errors _after_ doing the protocol
2375 * 'close'.
2376 */
2377 nfs4close_one(vp, NULL, cr, flag, NULL, &e, CLOSE_NORM, 0, 0, 0);
2378 n4error = e.error ? e.error : geterrno4(e.stat);
2379
2380 /*
2381 * Error reporting prio (Hi -> Lo)
2382 *
2383 * i) nfs4_putpage_commit (error)
2384 * ii) rnode's (r_error)
2385 * iii) nfs4close_one (n4error)
2386 */
2387 return (error ? error : (r_error ? r_error : n4error));
2388 }
2389
2390 /*
2391 * Initialize *lost_rqstp.
2392 */
2393
2394 static void
nfs4close_save_lost_rqst(int error,nfs4_lost_rqst_t * lost_rqstp,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,cred_t * cr,vnode_t * vp)2395 nfs4close_save_lost_rqst(int error, nfs4_lost_rqst_t *lost_rqstp,
2396 nfs4_open_owner_t *oop, nfs4_open_stream_t *osp, cred_t *cr,
2397 vnode_t *vp)
2398 {
2399 if (error != ETIMEDOUT && error != EINTR &&
2400 !NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
2401 lost_rqstp->lr_op = 0;
2402 return;
2403 }
2404
2405 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
2406 "nfs4close_save_lost_rqst: error %d", error));
2407
2408 lost_rqstp->lr_op = OP_CLOSE;
2409 /*
2410 * The vp is held and rele'd via the recovery code.
2411 * See nfs4_save_lost_rqst.
2412 */
2413 lost_rqstp->lr_vp = vp;
2414 lost_rqstp->lr_dvp = NULL;
2415 lost_rqstp->lr_oop = oop;
2416 lost_rqstp->lr_osp = osp;
2417 ASSERT(osp != NULL);
2418 ASSERT(mutex_owned(&osp->os_sync_lock));
2419 osp->os_pending_close = 1;
2420 lost_rqstp->lr_lop = NULL;
2421 lost_rqstp->lr_cr = cr;
2422 lost_rqstp->lr_flk = NULL;
2423 lost_rqstp->lr_putfirst = FALSE;
2424 }
2425
2426 /*
2427 * Assumes you already have the open seqid sync grabbed as well as the
2428 * 'os_sync_lock'. Note: this will release the open seqid sync and
2429 * 'os_sync_lock' if client recovery starts. Calling functions have to
2430 * be prepared to handle this.
2431 *
2432 * 'recov' is returned as 1 if the CLOSE operation detected client recovery
2433 * was needed and was started, and that the calling function should retry
2434 * this function; otherwise it is returned as 0.
2435 *
2436 * Errors are returned via the nfs4_error_t parameter.
2437 */
2438 static void
nfs4close_otw(rnode4_t * rp,cred_t * cred_otw,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,int * recov,int * did_start_seqid_syncp,nfs4_close_type_t close_type,nfs4_error_t * ep,int * have_sync_lockp)2439 nfs4close_otw(rnode4_t *rp, cred_t *cred_otw, nfs4_open_owner_t *oop,
2440 nfs4_open_stream_t *osp, int *recov, int *did_start_seqid_syncp,
2441 nfs4_close_type_t close_type, nfs4_error_t *ep, int *have_sync_lockp)
2442 {
2443 COMPOUND4args_clnt args;
2444 COMPOUND4res_clnt res;
2445 CLOSE4args *close_args;
2446 nfs_resop4 *resop;
2447 nfs_argop4 argop[3];
2448 int doqueue = 1;
2449 mntinfo4_t *mi;
2450 seqid4 seqid;
2451 vnode_t *vp;
2452 bool_t needrecov = FALSE;
2453 nfs4_lost_rqst_t lost_rqst;
2454 hrtime_t t;
2455
2456 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);
2457
2458 ASSERT(MUTEX_HELD(&osp->os_sync_lock));
2459
2460 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw"));
2461
2462 /* Only set this to 1 if recovery is started */
2463 *recov = 0;
2464
2465 /* do the OTW call to close the file */
2466
2467 if (close_type == CLOSE_RESEND)
2468 args.ctag = TAG_CLOSE_LOST;
2469 else if (close_type == CLOSE_AFTER_RESEND)
2470 args.ctag = TAG_CLOSE_UNDO;
2471 else
2472 args.ctag = TAG_CLOSE;
2473
2474 args.array_len = 3;
2475 args.array = argop;
2476
2477 vp = RTOV4(rp);
2478
2479 mi = VTOMI4(vp);
2480
2481 /* putfh target fh */
2482 argop[0].argop = OP_CPUTFH;
2483 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
2484
2485 argop[1].argop = OP_GETATTR;
2486 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
2487 argop[1].nfs_argop4_u.opgetattr.mi = mi;
2488
2489 argop[2].argop = OP_CLOSE;
2490 close_args = &argop[2].nfs_argop4_u.opclose;
2491
2492 seqid = nfs4_get_open_seqid(oop) + 1;
2493
2494 close_args->seqid = seqid;
2495 close_args->open_stateid = osp->open_stateid;
2496
2497 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
2498 "nfs4close_otw: %s call, rp %s", needrecov ? "recov" : "first",
2499 rnode4info(rp)));
2500
2501 t = gethrtime();
2502
2503 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, ep);
2504
2505 if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
2506 nfs4_set_open_seqid(seqid, oop, args.ctag);
2507 }
2508
2509 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
2510 if (ep->error && !needrecov) {
2511 /*
2512 * if there was an error and no recovery is to be done
2513 * then then set up the file to flush its cache if
2514 * needed for the next caller.
2515 */
2516 mutex_enter(&rp->r_statelock);
2517 PURGE_ATTRCACHE4_LOCKED(rp);
2518 rp->r_flags &= ~R4WRITEMODIFIED;
2519 mutex_exit(&rp->r_statelock);
2520 return;
2521 }
2522
2523 if (needrecov) {
2524 bool_t abort;
2525 nfs4_bseqid_entry_t *bsep = NULL;
2526
2527 if (close_type != CLOSE_RESEND)
2528 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
2529 osp, cred_otw, vp);
2530
2531 if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
2532 bsep = nfs4_create_bseqid_entry(oop, NULL, vp,
2533 0, args.ctag, close_args->seqid);
2534
2535 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
2536 "nfs4close_otw: initiating recovery. error %d "
2537 "res.status %d", ep->error, res.status));
2538
2539 /*
2540 * Drop the 'os_sync_lock' here so we don't hit
2541 * a potential recursive mutex_enter via an
2542 * 'open_stream_hold()'.
2543 */
2544 mutex_exit(&osp->os_sync_lock);
2545 *have_sync_lockp = 0;
2546 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
2547 (close_type != CLOSE_RESEND &&
2548 lost_rqst.lr_op == OP_CLOSE) ? &lost_rqst : NULL,
2549 OP_CLOSE, bsep, NULL, NULL);
2550
2551 /* drop open seq sync, and let the calling function regrab it */
2552 nfs4_end_open_seqid_sync(oop);
2553 *did_start_seqid_syncp = 0;
2554
2555 if (bsep)
2556 kmem_free(bsep, sizeof (*bsep));
2557 /*
2558 * For signals, the caller wants to quit, so don't say to
2559 * retry. For forced unmount, if it's a user thread, it
2560 * wants to quit. If it's a recovery thread, the retry
2561 * will happen higher-up on the call stack. Either way,
2562 * don't say to retry.
2563 */
2564 if (abort == FALSE && ep->error != EINTR &&
2565 !NFS4_FRC_UNMT_ERR(ep->error, mi->mi_vfsp) &&
2566 close_type != CLOSE_RESEND &&
2567 close_type != CLOSE_AFTER_RESEND)
2568 *recov = 1;
2569 else
2570 *recov = 0;
2571
2572 if (!ep->error)
2573 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2574 return;
2575 }
2576
2577 if (res.status) {
2578 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2579 return;
2580 }
2581
2582 mutex_enter(&rp->r_statev4_lock);
2583 rp->created_v4 = 0;
2584 mutex_exit(&rp->r_statev4_lock);
2585
2586 resop = &res.array[2];
2587 osp->open_stateid = resop->nfs_resop4_u.opclose.open_stateid;
2588 osp->os_valid = 0;
2589
2590 /*
2591 * This removes the reference obtained at OPEN; ie, when the
2592 * open stream structure was created.
2593 *
2594 * We don't have to worry about calling 'open_stream_rele'
2595 * since we our currently holding a reference to the open
2596 * stream which means the count cannot go to 0 with this
2597 * decrement.
2598 */
2599 ASSERT(osp->os_ref_count >= 2);
2600 osp->os_ref_count--;
2601
2602 if (ep->error == 0) {
2603 mutex_exit(&osp->os_sync_lock);
2604 *have_sync_lockp = 0;
2605
2606 nfs4_attr_cache(vp,
2607 &res.array[1].nfs_resop4_u.opgetattr.ga_res,
2608 t, cred_otw, TRUE, NULL);
2609 }
2610
2611 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE, "nfs4close_otw:"
2612 " returning %d", ep->error));
2613
2614 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
2615 }
2616
2617 /* ARGSUSED */
2618 static int
nfs4_read(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)2619 nfs4_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2620 caller_context_t *ct)
2621 {
2622 rnode4_t *rp;
2623 u_offset_t off;
2624 offset_t diff;
2625 uint_t on;
2626 uint_t n;
2627 caddr_t base;
2628 uint_t flags;
2629 int error;
2630 mntinfo4_t *mi;
2631
2632 rp = VTOR4(vp);
2633
2634 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
2635
2636 if (IS_SHADOW(vp, rp))
2637 vp = RTOV4(rp);
2638
2639 if (vp->v_type != VREG)
2640 return (EISDIR);
2641
2642 mi = VTOMI4(vp);
2643
2644 if (nfs_zone() != mi->mi_zone)
2645 return (EIO);
2646
2647 if (uiop->uio_resid == 0)
2648 return (0);
2649
2650 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
2651 return (EINVAL);
2652
2653 mutex_enter(&rp->r_statelock);
2654 if (rp->r_flags & R4RECOVERRP)
2655 error = (rp->r_error ? rp->r_error : EIO);
2656 else
2657 error = 0;
2658 mutex_exit(&rp->r_statelock);
2659 if (error)
2660 return (error);
2661
2662 /*
2663 * Bypass VM if caching has been disabled (e.g., locking) or if
2664 * using client-side direct I/O and the file is not mmap'd and
2665 * there are no cached pages.
2666 */
2667 if ((vp->v_flag & VNOCACHE) ||
2668 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
2669 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
2670 size_t resid = 0;
2671
2672 return (nfs4read(vp, NULL, uiop->uio_loffset,
2673 uiop->uio_resid, &resid, cr, FALSE, uiop));
2674 }
2675
2676 error = 0;
2677
2678 do {
2679 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
2680 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
2681 n = MIN(MAXBSIZE - on, uiop->uio_resid);
2682
2683 if (error = nfs4_validate_caches(vp, cr))
2684 break;
2685
2686 mutex_enter(&rp->r_statelock);
2687 while (rp->r_flags & R4INCACHEPURGE) {
2688 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
2689 mutex_exit(&rp->r_statelock);
2690 return (EINTR);
2691 }
2692 }
2693 diff = rp->r_size - uiop->uio_loffset;
2694 mutex_exit(&rp->r_statelock);
2695 if (diff <= 0)
2696 break;
2697 if (diff < n)
2698 n = (uint_t)diff;
2699
2700 if (vpm_enable) {
2701 /*
2702 * Copy data.
2703 */
2704 error = vpm_data_copy(vp, off + on, n, uiop,
2705 1, NULL, 0, S_READ);
2706 } else {
2707 base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
2708 S_READ);
2709
2710 error = uiomove(base + on, n, UIO_READ, uiop);
2711 }
2712
2713 if (!error) {
2714 /*
2715 * If read a whole block or read to eof,
2716 * won't need this buffer again soon.
2717 */
2718 mutex_enter(&rp->r_statelock);
2719 if (n + on == MAXBSIZE ||
2720 uiop->uio_loffset == rp->r_size)
2721 flags = SM_DONTNEED;
2722 else
2723 flags = 0;
2724 mutex_exit(&rp->r_statelock);
2725 if (vpm_enable) {
2726 error = vpm_sync_pages(vp, off, n, flags);
2727 } else {
2728 error = segmap_release(segkmap, base, flags);
2729 }
2730 } else {
2731 if (vpm_enable) {
2732 (void) vpm_sync_pages(vp, off, n, 0);
2733 } else {
2734 (void) segmap_release(segkmap, base, 0);
2735 }
2736 }
2737 } while (!error && uiop->uio_resid > 0);
2738
2739 return (error);
2740 }
2741
2742 /* ARGSUSED */
2743 static int
nfs4_write(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)2744 nfs4_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
2745 caller_context_t *ct)
2746 {
2747 rlim64_t limit = uiop->uio_llimit;
2748 rnode4_t *rp;
2749 u_offset_t off;
2750 caddr_t base;
2751 uint_t flags;
2752 int remainder;
2753 size_t n;
2754 int on;
2755 int error;
2756 int resid;
2757 u_offset_t offset;
2758 mntinfo4_t *mi;
2759 uint_t bsize;
2760
2761 rp = VTOR4(vp);
2762
2763 if (IS_SHADOW(vp, rp))
2764 vp = RTOV4(rp);
2765
2766 if (vp->v_type != VREG)
2767 return (EISDIR);
2768
2769 mi = VTOMI4(vp);
2770
2771 if (nfs_zone() != mi->mi_zone)
2772 return (EIO);
2773
2774 if (uiop->uio_resid == 0)
2775 return (0);
2776
2777 mutex_enter(&rp->r_statelock);
2778 if (rp->r_flags & R4RECOVERRP)
2779 error = (rp->r_error ? rp->r_error : EIO);
2780 else
2781 error = 0;
2782 mutex_exit(&rp->r_statelock);
2783 if (error)
2784 return (error);
2785
2786 if (ioflag & FAPPEND) {
2787 struct vattr va;
2788
2789 /*
2790 * Must serialize if appending.
2791 */
2792 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
2793 nfs_rw_exit(&rp->r_rwlock);
2794 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
2795 INTR4(vp)))
2796 return (EINTR);
2797 }
2798
2799 va.va_mask = AT_SIZE;
2800 error = nfs4getattr(vp, &va, cr);
2801 if (error)
2802 return (error);
2803 uiop->uio_loffset = va.va_size;
2804 }
2805
2806 offset = uiop->uio_loffset + uiop->uio_resid;
2807
2808 if (uiop->uio_loffset < (offset_t)0 || offset < 0)
2809 return (EINVAL);
2810
2811 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
2812 limit = MAXOFFSET_T;
2813
2814 /*
2815 * Check to make sure that the process will not exceed
2816 * its limit on file size. It is okay to write up to
2817 * the limit, but not beyond. Thus, the write which
2818 * reaches the limit will be short and the next write
2819 * will return an error.
2820 */
2821 remainder = 0;
2822 if (offset > uiop->uio_llimit) {
2823 remainder = offset - uiop->uio_llimit;
2824 uiop->uio_resid = uiop->uio_llimit - uiop->uio_loffset;
2825 if (uiop->uio_resid <= 0) {
2826 proc_t *p = ttoproc(curthread);
2827
2828 uiop->uio_resid += remainder;
2829 mutex_enter(&p->p_lock);
2830 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
2831 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
2832 mutex_exit(&p->p_lock);
2833 return (EFBIG);
2834 }
2835 }
2836
2837 /* update the change attribute, if we have a write delegation */
2838
2839 mutex_enter(&rp->r_statev4_lock);
2840 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE)
2841 rp->r_deleg_change++;
2842
2843 mutex_exit(&rp->r_statev4_lock);
2844
2845 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, INTR4(vp)))
2846 return (EINTR);
2847
2848 /*
2849 * Bypass VM if caching has been disabled (e.g., locking) or if
2850 * using client-side direct I/O and the file is not mmap'd and
2851 * there are no cached pages.
2852 */
2853 if ((vp->v_flag & VNOCACHE) ||
2854 (((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO)) &&
2855 rp->r_mapcnt == 0 && rp->r_inmap == 0 && !nfs4_has_pages(vp))) {
2856 size_t bufsize;
2857 int count;
2858 u_offset_t org_offset;
2859 stable_how4 stab_comm;
2860 nfs4_fwrite:
2861 if (rp->r_flags & R4STALE) {
2862 resid = uiop->uio_resid;
2863 offset = uiop->uio_loffset;
2864 error = rp->r_error;
2865 /*
2866 * A close may have cleared r_error, if so,
2867 * propagate ESTALE error return properly
2868 */
2869 if (error == 0)
2870 error = ESTALE;
2871 goto bottom;
2872 }
2873
2874 bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
2875 base = kmem_alloc(bufsize, KM_SLEEP);
2876 do {
2877 if (ioflag & FDSYNC)
2878 stab_comm = DATA_SYNC4;
2879 else
2880 stab_comm = FILE_SYNC4;
2881 resid = uiop->uio_resid;
2882 offset = uiop->uio_loffset;
2883 count = MIN(uiop->uio_resid, bufsize);
2884 org_offset = uiop->uio_loffset;
2885 error = uiomove(base, count, UIO_WRITE, uiop);
2886 if (!error) {
2887 error = nfs4write(vp, base, org_offset,
2888 count, cr, &stab_comm);
2889 if (!error) {
2890 mutex_enter(&rp->r_statelock);
2891 if (rp->r_size < uiop->uio_loffset)
2892 rp->r_size = uiop->uio_loffset;
2893 mutex_exit(&rp->r_statelock);
2894 }
2895 }
2896 } while (!error && uiop->uio_resid > 0);
2897 kmem_free(base, bufsize);
2898 goto bottom;
2899 }
2900
2901 bsize = vp->v_vfsp->vfs_bsize;
2902
2903 do {
2904 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
2905 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
2906 n = MIN(MAXBSIZE - on, uiop->uio_resid);
2907
2908 resid = uiop->uio_resid;
2909 offset = uiop->uio_loffset;
2910
2911 if (rp->r_flags & R4STALE) {
2912 error = rp->r_error;
2913 /*
2914 * A close may have cleared r_error, if so,
2915 * propagate ESTALE error return properly
2916 */
2917 if (error == 0)
2918 error = ESTALE;
2919 break;
2920 }
2921
2922 /*
2923 * Don't create dirty pages faster than they
2924 * can be cleaned so that the system doesn't
2925 * get imbalanced. If the async queue is
2926 * maxed out, then wait for it to drain before
2927 * creating more dirty pages. Also, wait for
2928 * any threads doing pagewalks in the vop_getattr
2929 * entry points so that they don't block for
2930 * long periods.
2931 */
2932 mutex_enter(&rp->r_statelock);
2933 while ((mi->mi_max_threads != 0 &&
2934 rp->r_awcount > 2 * mi->mi_max_threads) ||
2935 rp->r_gcount > 0) {
2936 if (INTR4(vp)) {
2937 klwp_t *lwp = ttolwp(curthread);
2938
2939 if (lwp != NULL)
2940 lwp->lwp_nostop++;
2941 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
2942 mutex_exit(&rp->r_statelock);
2943 if (lwp != NULL)
2944 lwp->lwp_nostop--;
2945 error = EINTR;
2946 goto bottom;
2947 }
2948 if (lwp != NULL)
2949 lwp->lwp_nostop--;
2950 } else
2951 cv_wait(&rp->r_cv, &rp->r_statelock);
2952 }
2953 mutex_exit(&rp->r_statelock);
2954
2955 /*
2956 * Touch the page and fault it in if it is not in core
2957 * before segmap_getmapflt or vpm_data_copy can lock it.
2958 * This is to avoid the deadlock if the buffer is mapped
2959 * to the same file through mmap which we want to write.
2960 */
2961 uio_prefaultpages((long)n, uiop);
2962
2963 if (vpm_enable) {
2964 /*
2965 * It will use kpm mappings, so no need to
2966 * pass an address.
2967 */
2968 error = writerp4(rp, NULL, n, uiop, 0);
2969 } else {
2970 if (segmap_kpm) {
2971 int pon = uiop->uio_loffset & PAGEOFFSET;
2972 size_t pn = MIN(PAGESIZE - pon,
2973 uiop->uio_resid);
2974 int pagecreate;
2975
2976 mutex_enter(&rp->r_statelock);
2977 pagecreate = (pon == 0) && (pn == PAGESIZE ||
2978 uiop->uio_loffset + pn >= rp->r_size);
2979 mutex_exit(&rp->r_statelock);
2980
2981 base = segmap_getmapflt(segkmap, vp, off + on,
2982 pn, !pagecreate, S_WRITE);
2983
2984 error = writerp4(rp, base + pon, n, uiop,
2985 pagecreate);
2986
2987 } else {
2988 base = segmap_getmapflt(segkmap, vp, off + on,
2989 n, 0, S_READ);
2990 error = writerp4(rp, base + on, n, uiop, 0);
2991 }
2992 }
2993
2994 if (!error) {
2995 if (mi->mi_flags & MI4_NOAC)
2996 flags = SM_WRITE;
2997 else if ((uiop->uio_loffset % bsize) == 0 ||
2998 IS_SWAPVP(vp)) {
2999 /*
3000 * Have written a whole block.
3001 * Start an asynchronous write
3002 * and mark the buffer to
3003 * indicate that it won't be
3004 * needed again soon.
3005 */
3006 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
3007 } else
3008 flags = 0;
3009 if ((ioflag & (FSYNC|FDSYNC)) ||
3010 (rp->r_flags & R4OUTOFSPACE)) {
3011 flags &= ~SM_ASYNC;
3012 flags |= SM_WRITE;
3013 }
3014 if (vpm_enable) {
3015 error = vpm_sync_pages(vp, off, n, flags);
3016 } else {
3017 error = segmap_release(segkmap, base, flags);
3018 }
3019 } else {
3020 if (vpm_enable) {
3021 (void) vpm_sync_pages(vp, off, n, 0);
3022 } else {
3023 (void) segmap_release(segkmap, base, 0);
3024 }
3025 /*
3026 * In the event that we got an access error while
3027 * faulting in a page for a write-only file just
3028 * force a write.
3029 */
3030 if (error == EACCES)
3031 goto nfs4_fwrite;
3032 }
3033 } while (!error && uiop->uio_resid > 0);
3034
3035 bottom:
3036 if (error) {
3037 uiop->uio_resid = resid + remainder;
3038 uiop->uio_loffset = offset;
3039 } else {
3040 uiop->uio_resid += remainder;
3041
3042 mutex_enter(&rp->r_statev4_lock);
3043 if (rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
3044 gethrestime(&rp->r_attr.va_mtime);
3045 rp->r_attr.va_ctime = rp->r_attr.va_mtime;
3046 }
3047 mutex_exit(&rp->r_statev4_lock);
3048 }
3049
3050 nfs_rw_exit(&rp->r_lkserlock);
3051
3052 return (error);
3053 }
3054
3055 /*
3056 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
3057 */
3058 static int
nfs4_rdwrlbn(vnode_t * vp,page_t * pp,u_offset_t off,size_t len,int flags,cred_t * cr)3059 nfs4_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
3060 int flags, cred_t *cr)
3061 {
3062 struct buf *bp;
3063 int error;
3064 page_t *savepp;
3065 uchar_t fsdata;
3066 stable_how4 stab_comm;
3067
3068 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
3069 bp = pageio_setup(pp, len, vp, flags);
3070 ASSERT(bp != NULL);
3071
3072 /*
3073 * pageio_setup should have set b_addr to 0. This
3074 * is correct since we want to do I/O on a page
3075 * boundary. bp_mapin will use this addr to calculate
3076 * an offset, and then set b_addr to the kernel virtual
3077 * address it allocated for us.
3078 */
3079 ASSERT(bp->b_un.b_addr == 0);
3080
3081 bp->b_edev = 0;
3082 bp->b_dev = 0;
3083 bp->b_lblkno = lbtodb(off);
3084 bp->b_file = vp;
3085 bp->b_offset = (offset_t)off;
3086 bp_mapin(bp);
3087
3088 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
3089 freemem > desfree)
3090 stab_comm = UNSTABLE4;
3091 else
3092 stab_comm = FILE_SYNC4;
3093
3094 error = nfs4_bio(bp, &stab_comm, cr, FALSE);
3095
3096 bp_mapout(bp);
3097 pageio_done(bp);
3098
3099 if (stab_comm == UNSTABLE4)
3100 fsdata = C_DELAYCOMMIT;
3101 else
3102 fsdata = C_NOCOMMIT;
3103
3104 savepp = pp;
3105 do {
3106 pp->p_fsdata = fsdata;
3107 } while ((pp = pp->p_next) != savepp);
3108
3109 return (error);
3110 }
3111
3112 /*
3113 */
3114 static int
nfs4rdwr_check_osid(vnode_t * vp,nfs4_error_t * ep,cred_t * cr)3115 nfs4rdwr_check_osid(vnode_t *vp, nfs4_error_t *ep, cred_t *cr)
3116 {
3117 nfs4_open_owner_t *oop;
3118 nfs4_open_stream_t *osp;
3119 rnode4_t *rp = VTOR4(vp);
3120 mntinfo4_t *mi = VTOMI4(vp);
3121 int reopen_needed;
3122
3123 ASSERT(nfs_zone() == mi->mi_zone);
3124
3125
3126 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
3127 if (!oop)
3128 return (EIO);
3129
3130 /* returns with 'os_sync_lock' held */
3131 osp = find_open_stream(oop, rp);
3132 if (!osp) {
3133 open_owner_rele(oop);
3134 return (EIO);
3135 }
3136
3137 if (osp->os_failed_reopen) {
3138 mutex_exit(&osp->os_sync_lock);
3139 open_stream_rele(osp, rp);
3140 open_owner_rele(oop);
3141 return (EIO);
3142 }
3143
3144 /*
3145 * Determine whether a reopen is needed. If this
3146 * is a delegation open stream, then the os_delegation bit
3147 * should be set.
3148 */
3149
3150 reopen_needed = osp->os_delegation;
3151
3152 mutex_exit(&osp->os_sync_lock);
3153 open_owner_rele(oop);
3154
3155 if (reopen_needed) {
3156 nfs4_error_zinit(ep);
3157 nfs4_reopen(vp, osp, ep, CLAIM_NULL, FALSE, FALSE);
3158 mutex_enter(&osp->os_sync_lock);
3159 if (ep->error || ep->stat || osp->os_failed_reopen) {
3160 mutex_exit(&osp->os_sync_lock);
3161 open_stream_rele(osp, rp);
3162 return (EIO);
3163 }
3164 mutex_exit(&osp->os_sync_lock);
3165 }
3166 open_stream_rele(osp, rp);
3167
3168 return (0);
3169 }
3170
3171 /*
3172 * Write to file. Writes to remote server in largest size
3173 * chunks that the server can handle. Write is synchronous.
3174 */
3175 static int
nfs4write(vnode_t * vp,caddr_t base,u_offset_t offset,int count,cred_t * cr,stable_how4 * stab_comm)3176 nfs4write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
3177 stable_how4 *stab_comm)
3178 {
3179 mntinfo4_t *mi;
3180 COMPOUND4args_clnt args;
3181 COMPOUND4res_clnt res;
3182 WRITE4args *wargs;
3183 WRITE4res *wres;
3184 nfs_argop4 argop[2];
3185 nfs_resop4 *resop;
3186 int tsize;
3187 stable_how4 stable;
3188 rnode4_t *rp;
3189 int doqueue = 1;
3190 bool_t needrecov;
3191 nfs4_recov_state_t recov_state;
3192 nfs4_stateid_types_t sid_types;
3193 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3194 int recov;
3195
3196 rp = VTOR4(vp);
3197 mi = VTOMI4(vp);
3198
3199 ASSERT(nfs_zone() == mi->mi_zone);
3200
3201 stable = *stab_comm;
3202 *stab_comm = FILE_SYNC4;
3203
3204 needrecov = FALSE;
3205 recov_state.rs_flags = 0;
3206 recov_state.rs_num_retry_despite_err = 0;
3207 nfs4_init_stateid_types(&sid_types);
3208
3209 /* Is curthread the recovery thread? */
3210 mutex_enter(&mi->mi_lock);
3211 recov = (mi->mi_recovthread == curthread);
3212 mutex_exit(&mi->mi_lock);
3213
3214 recov_retry:
3215 args.ctag = TAG_WRITE;
3216 args.array_len = 2;
3217 args.array = argop;
3218
3219 if (!recov) {
3220 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3221 &recov_state, NULL);
3222 if (e.error)
3223 return (e.error);
3224 }
3225
3226 /* 0. putfh target fh */
3227 argop[0].argop = OP_CPUTFH;
3228 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3229
3230 /* 1. write */
3231 nfs4args_write(&argop[1], stable, rp, cr, &wargs, &sid_types);
3232
3233 do {
3234
3235 wargs->offset = (offset4)offset;
3236 wargs->data_val = base;
3237
3238 if (mi->mi_io_kstats) {
3239 mutex_enter(&mi->mi_lock);
3240 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3241 mutex_exit(&mi->mi_lock);
3242 }
3243
3244 if ((vp->v_flag & VNOCACHE) ||
3245 (rp->r_flags & R4DIRECTIO) ||
3246 (mi->mi_flags & MI4_DIRECTIO))
3247 tsize = MIN(mi->mi_stsize, count);
3248 else
3249 tsize = MIN(mi->mi_curwrite, count);
3250 wargs->data_len = (uint_t)tsize;
3251 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3252
3253 if (mi->mi_io_kstats) {
3254 mutex_enter(&mi->mi_lock);
3255 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3256 mutex_exit(&mi->mi_lock);
3257 }
3258
3259 if (!recov) {
3260 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3261 if (e.error && !needrecov) {
3262 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3263 &recov_state, needrecov);
3264 return (e.error);
3265 }
3266 } else {
3267 if (e.error)
3268 return (e.error);
3269 }
3270
3271 /*
3272 * Do handling of OLD_STATEID outside
3273 * of the normal recovery framework.
3274 *
3275 * If write receives a BAD stateid error while using a
3276 * delegation stateid, retry using the open stateid (if it
3277 * exists). If it doesn't have an open stateid, reopen the
3278 * file first, then retry.
3279 */
3280 if (!e.error && res.status == NFS4ERR_OLD_STATEID &&
3281 sid_types.cur_sid_type != SPEC_SID) {
3282 nfs4_save_stateid(&wargs->stateid, &sid_types);
3283 if (!recov)
3284 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3285 &recov_state, needrecov);
3286 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3287 goto recov_retry;
3288 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
3289 sid_types.cur_sid_type == DEL_SID) {
3290 nfs4_save_stateid(&wargs->stateid, &sid_types);
3291 mutex_enter(&rp->r_statev4_lock);
3292 rp->r_deleg_return_pending = TRUE;
3293 mutex_exit(&rp->r_statev4_lock);
3294 if (nfs4rdwr_check_osid(vp, &e, cr)) {
3295 if (!recov)
3296 nfs4_end_fop(mi, vp, NULL, OH_WRITE,
3297 &recov_state, needrecov);
3298 (void) xdr_free(xdr_COMPOUND4res_clnt,
3299 (caddr_t)&res);
3300 return (EIO);
3301 }
3302 if (!recov)
3303 nfs4_end_fop(mi, vp, NULL, OH_WRITE,
3304 &recov_state, needrecov);
3305 /* hold needed for nfs4delegreturn_thread */
3306 VN_HOLD(vp);
3307 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
3308 NFS4_DR_DISCARD), FALSE);
3309 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3310 goto recov_retry;
3311 }
3312
3313 if (needrecov) {
3314 bool_t abort;
3315
3316 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3317 "nfs4write: client got error %d, res.status %d"
3318 ", so start recovery", e.error, res.status));
3319
3320 abort = nfs4_start_recovery(&e,
3321 VTOMI4(vp), vp, NULL, &wargs->stateid,
3322 NULL, OP_WRITE, NULL, NULL, NULL);
3323 if (!e.error) {
3324 e.error = geterrno4(res.status);
3325 (void) xdr_free(xdr_COMPOUND4res_clnt,
3326 (caddr_t)&res);
3327 }
3328 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3329 &recov_state, needrecov);
3330 if (abort == FALSE)
3331 goto recov_retry;
3332 return (e.error);
3333 }
3334
3335 if (res.status) {
3336 e.error = geterrno4(res.status);
3337 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3338 if (!recov)
3339 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3340 &recov_state, needrecov);
3341 return (e.error);
3342 }
3343
3344 resop = &res.array[1]; /* write res */
3345 wres = &resop->nfs_resop4_u.opwrite;
3346
3347 if ((int)wres->count > tsize) {
3348 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3349
3350 zcmn_err(getzoneid(), CE_WARN,
3351 "nfs4write: server wrote %u, requested was %u",
3352 (int)wres->count, tsize);
3353 if (!recov)
3354 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE,
3355 &recov_state, needrecov);
3356 return (EIO);
3357 }
3358 if (wres->committed == UNSTABLE4) {
3359 *stab_comm = UNSTABLE4;
3360 if (wargs->stable == DATA_SYNC4 ||
3361 wargs->stable == FILE_SYNC4) {
3362 (void) xdr_free(xdr_COMPOUND4res_clnt,
3363 (caddr_t)&res);
3364 zcmn_err(getzoneid(), CE_WARN,
3365 "nfs4write: server %s did not commit "
3366 "to stable storage",
3367 rp->r_server->sv_hostname);
3368 if (!recov)
3369 nfs4_end_fop(VTOMI4(vp), vp, NULL,
3370 OH_WRITE, &recov_state, needrecov);
3371 return (EIO);
3372 }
3373 }
3374
3375 tsize = (int)wres->count;
3376 count -= tsize;
3377 base += tsize;
3378 offset += tsize;
3379 if (mi->mi_io_kstats) {
3380 mutex_enter(&mi->mi_lock);
3381 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
3382 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
3383 tsize;
3384 mutex_exit(&mi->mi_lock);
3385 }
3386 lwp_stat_update(LWP_STAT_OUBLK, 1);
3387 mutex_enter(&rp->r_statelock);
3388 if (rp->r_flags & R4HAVEVERF) {
3389 if (rp->r_writeverf != wres->writeverf) {
3390 nfs4_set_mod(vp);
3391 rp->r_writeverf = wres->writeverf;
3392 }
3393 } else {
3394 rp->r_writeverf = wres->writeverf;
3395 rp->r_flags |= R4HAVEVERF;
3396 }
3397 PURGE_ATTRCACHE4_LOCKED(rp);
3398 rp->r_flags |= R4WRITEMODIFIED;
3399 gethrestime(&rp->r_attr.va_mtime);
3400 rp->r_attr.va_ctime = rp->r_attr.va_mtime;
3401 mutex_exit(&rp->r_statelock);
3402 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3403 } while (count);
3404
3405 if (!recov)
3406 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_WRITE, &recov_state,
3407 needrecov);
3408
3409 return (e.error);
3410 }
3411
3412 /*
3413 * Read from a file. Reads data in largest chunks our interface can handle.
3414 */
3415 static int
nfs4read(vnode_t * vp,caddr_t base,offset_t offset,int count,size_t * residp,cred_t * cr,bool_t async,struct uio * uiop)3416 nfs4read(vnode_t *vp, caddr_t base, offset_t offset, int count,
3417 size_t *residp, cred_t *cr, bool_t async, struct uio *uiop)
3418 {
3419 mntinfo4_t *mi;
3420 COMPOUND4args_clnt args;
3421 COMPOUND4res_clnt res;
3422 READ4args *rargs;
3423 nfs_argop4 argop[2];
3424 int tsize;
3425 int doqueue;
3426 rnode4_t *rp;
3427 int data_len;
3428 bool_t is_eof;
3429 bool_t needrecov = FALSE;
3430 nfs4_recov_state_t recov_state;
3431 nfs4_stateid_types_t sid_types;
3432 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3433
3434 rp = VTOR4(vp);
3435 mi = VTOMI4(vp);
3436 doqueue = 1;
3437
3438 ASSERT(nfs_zone() == mi->mi_zone);
3439
3440 args.ctag = async ? TAG_READAHEAD : TAG_READ;
3441
3442 args.array_len = 2;
3443 args.array = argop;
3444
3445 nfs4_init_stateid_types(&sid_types);
3446
3447 recov_state.rs_flags = 0;
3448 recov_state.rs_num_retry_despite_err = 0;
3449
3450 recov_retry:
3451 e.error = nfs4_start_fop(mi, vp, NULL, OH_READ,
3452 &recov_state, NULL);
3453 if (e.error)
3454 return (e.error);
3455
3456 /* putfh target fh */
3457 argop[0].argop = OP_CPUTFH;
3458 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3459
3460 /* read */
3461 argop[1].argop = OP_READ;
3462 rargs = &argop[1].nfs_argop4_u.opread;
3463 rargs->stateid = nfs4_get_stateid(cr, rp, curproc->p_pidp->pid_id, mi,
3464 OP_READ, &sid_types, async);
3465
3466 do {
3467 if (mi->mi_io_kstats) {
3468 mutex_enter(&mi->mi_lock);
3469 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
3470 mutex_exit(&mi->mi_lock);
3471 }
3472
3473 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
3474 "nfs4read: %s call, rp %s",
3475 needrecov ? "recov" : "first",
3476 rnode4info(rp)));
3477
3478 if ((vp->v_flag & VNOCACHE) ||
3479 (rp->r_flags & R4DIRECTIO) ||
3480 (mi->mi_flags & MI4_DIRECTIO))
3481 tsize = MIN(mi->mi_tsize, count);
3482 else
3483 tsize = MIN(mi->mi_curread, count);
3484
3485 rargs->offset = (offset4)offset;
3486 rargs->count = (count4)tsize;
3487 rargs->res_data_val_alt = NULL;
3488 rargs->res_mblk = NULL;
3489 rargs->res_uiop = NULL;
3490 rargs->res_maxsize = 0;
3491 rargs->wlist = NULL;
3492
3493 if (uiop)
3494 rargs->res_uiop = uiop;
3495 else
3496 rargs->res_data_val_alt = base;
3497 rargs->res_maxsize = tsize;
3498
3499 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3500 #ifdef DEBUG
3501 if (nfs4read_error_inject) {
3502 res.status = nfs4read_error_inject;
3503 nfs4read_error_inject = 0;
3504 }
3505 #endif
3506
3507 if (mi->mi_io_kstats) {
3508 mutex_enter(&mi->mi_lock);
3509 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
3510 mutex_exit(&mi->mi_lock);
3511 }
3512
3513 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3514 if (e.error != 0 && !needrecov) {
3515 nfs4_end_fop(mi, vp, NULL, OH_READ,
3516 &recov_state, needrecov);
3517 return (e.error);
3518 }
3519
3520 /*
3521 * Do proper retry for OLD and BAD stateid errors outside
3522 * of the normal recovery framework. There are two differences
3523 * between async and sync reads. The first is that we allow
3524 * retry on BAD_STATEID for async reads, but not sync reads.
3525 * The second is that we mark the file dead for a failed
3526 * attempt with a special stateid for sync reads, but just
3527 * return EIO for async reads.
3528 *
3529 * If a sync read receives a BAD stateid error while using a
3530 * delegation stateid, retry using the open stateid (if it
3531 * exists). If it doesn't have an open stateid, reopen the
3532 * file first, then retry.
3533 */
3534 if (e.error == 0 && (res.status == NFS4ERR_OLD_STATEID ||
3535 res.status == NFS4ERR_BAD_STATEID) && async) {
3536 nfs4_end_fop(mi, vp, NULL, OH_READ,
3537 &recov_state, needrecov);
3538 if (sid_types.cur_sid_type == SPEC_SID) {
3539 (void) xdr_free(xdr_COMPOUND4res_clnt,
3540 (caddr_t)&res);
3541 return (EIO);
3542 }
3543 nfs4_save_stateid(&rargs->stateid, &sid_types);
3544 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3545 goto recov_retry;
3546 } else if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3547 !async && sid_types.cur_sid_type != SPEC_SID) {
3548 nfs4_save_stateid(&rargs->stateid, &sid_types);
3549 nfs4_end_fop(mi, vp, NULL, OH_READ,
3550 &recov_state, needrecov);
3551 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3552 goto recov_retry;
3553 } else if (e.error == 0 && res.status == NFS4ERR_BAD_STATEID &&
3554 sid_types.cur_sid_type == DEL_SID) {
3555 nfs4_save_stateid(&rargs->stateid, &sid_types);
3556 mutex_enter(&rp->r_statev4_lock);
3557 rp->r_deleg_return_pending = TRUE;
3558 mutex_exit(&rp->r_statev4_lock);
3559 if (nfs4rdwr_check_osid(vp, &e, cr)) {
3560 nfs4_end_fop(mi, vp, NULL, OH_READ,
3561 &recov_state, needrecov);
3562 (void) xdr_free(xdr_COMPOUND4res_clnt,
3563 (caddr_t)&res);
3564 return (EIO);
3565 }
3566 nfs4_end_fop(mi, vp, NULL, OH_READ,
3567 &recov_state, needrecov);
3568 /* hold needed for nfs4delegreturn_thread */
3569 VN_HOLD(vp);
3570 nfs4delegreturn_async(rp, (NFS4_DR_PUSH|NFS4_DR_REOPEN|
3571 NFS4_DR_DISCARD), FALSE);
3572 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3573 goto recov_retry;
3574 }
3575 if (needrecov) {
3576 bool_t abort;
3577
3578 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3579 "nfs4read: initiating recovery\n"));
3580 abort = nfs4_start_recovery(&e,
3581 mi, vp, NULL, &rargs->stateid,
3582 NULL, OP_READ, NULL, NULL, NULL);
3583 nfs4_end_fop(mi, vp, NULL, OH_READ,
3584 &recov_state, needrecov);
3585 /*
3586 * Do not retry if we got OLD_STATEID using a special
3587 * stateid. This avoids looping with a broken server.
3588 */
3589 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
3590 sid_types.cur_sid_type == SPEC_SID)
3591 abort = TRUE;
3592
3593 if (abort == FALSE) {
3594 /*
3595 * Need to retry all possible stateids in
3596 * case the recovery error wasn't stateid
3597 * related or the stateids have become
3598 * stale (server reboot).
3599 */
3600 nfs4_init_stateid_types(&sid_types);
3601 (void) xdr_free(xdr_COMPOUND4res_clnt,
3602 (caddr_t)&res);
3603 goto recov_retry;
3604 }
3605
3606 if (!e.error) {
3607 e.error = geterrno4(res.status);
3608 (void) xdr_free(xdr_COMPOUND4res_clnt,
3609 (caddr_t)&res);
3610 }
3611 return (e.error);
3612 }
3613
3614 if (res.status) {
3615 e.error = geterrno4(res.status);
3616 nfs4_end_fop(mi, vp, NULL, OH_READ,
3617 &recov_state, needrecov);
3618 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3619 return (e.error);
3620 }
3621
3622 data_len = res.array[1].nfs_resop4_u.opread.data_len;
3623 count -= data_len;
3624 if (base)
3625 base += data_len;
3626 offset += data_len;
3627 if (mi->mi_io_kstats) {
3628 mutex_enter(&mi->mi_lock);
3629 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
3630 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += data_len;
3631 mutex_exit(&mi->mi_lock);
3632 }
3633 lwp_stat_update(LWP_STAT_INBLK, 1);
3634 is_eof = res.array[1].nfs_resop4_u.opread.eof;
3635 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3636
3637 } while (count && !is_eof);
3638
3639 *residp = count;
3640
3641 nfs4_end_fop(mi, vp, NULL, OH_READ, &recov_state, needrecov);
3642
3643 return (e.error);
3644 }
3645
3646 /* ARGSUSED */
3647 static int
nfs4_ioctl(vnode_t * vp,int cmd,intptr_t arg,int flag,cred_t * cr,int * rvalp,caller_context_t * ct)3648 nfs4_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
3649 caller_context_t *ct)
3650 {
3651 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3652 return (EIO);
3653 switch (cmd) {
3654 case _FIODIRECTIO:
3655 return (nfs4_directio(vp, (int)arg, cr));
3656 default:
3657 return (ENOTTY);
3658 }
3659 }
3660
3661 /* ARGSUSED */
3662 int
nfs4_getattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)3663 nfs4_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3664 caller_context_t *ct)
3665 {
3666 int error;
3667 rnode4_t *rp = VTOR4(vp);
3668
3669 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3670 return (EIO);
3671 /*
3672 * If it has been specified that the return value will
3673 * just be used as a hint, and we are only being asked
3674 * for size, fsid or rdevid, then return the client's
3675 * notion of these values without checking to make sure
3676 * that the attribute cache is up to date.
3677 * The whole point is to avoid an over the wire GETATTR
3678 * call.
3679 */
3680 if (flags & ATTR_HINT) {
3681 if (!(vap->va_mask & ~(AT_SIZE | AT_FSID | AT_RDEV))) {
3682 mutex_enter(&rp->r_statelock);
3683 if (vap->va_mask & AT_SIZE)
3684 vap->va_size = rp->r_size;
3685 if (vap->va_mask & AT_FSID)
3686 vap->va_fsid = rp->r_attr.va_fsid;
3687 if (vap->va_mask & AT_RDEV)
3688 vap->va_rdev = rp->r_attr.va_rdev;
3689 mutex_exit(&rp->r_statelock);
3690 return (0);
3691 }
3692 }
3693
3694 /*
3695 * Only need to flush pages if asking for the mtime
3696 * and if there any dirty pages or any outstanding
3697 * asynchronous (write) requests for this file.
3698 */
3699 if (vap->va_mask & AT_MTIME) {
3700 rp = VTOR4(vp);
3701 if (nfs4_has_pages(vp)) {
3702 mutex_enter(&rp->r_statev4_lock);
3703 if (rp->r_deleg_type != OPEN_DELEGATE_WRITE) {
3704 mutex_exit(&rp->r_statev4_lock);
3705 if (rp->r_flags & R4DIRTY ||
3706 rp->r_awcount > 0) {
3707 mutex_enter(&rp->r_statelock);
3708 rp->r_gcount++;
3709 mutex_exit(&rp->r_statelock);
3710 error =
3711 nfs4_putpage(vp, (u_offset_t)0,
3712 0, 0, cr, NULL);
3713 mutex_enter(&rp->r_statelock);
3714 if (error && (error == ENOSPC ||
3715 error == EDQUOT)) {
3716 if (!rp->r_error)
3717 rp->r_error = error;
3718 }
3719 if (--rp->r_gcount == 0)
3720 cv_broadcast(&rp->r_cv);
3721 mutex_exit(&rp->r_statelock);
3722 }
3723 } else {
3724 mutex_exit(&rp->r_statev4_lock);
3725 }
3726 }
3727 }
3728 return (nfs4getattr(vp, vap, cr));
3729 }
3730
3731 int
nfs4_compare_modes(mode_t from_server,mode_t on_client)3732 nfs4_compare_modes(mode_t from_server, mode_t on_client)
3733 {
3734 /*
3735 * If these are the only two bits cleared
3736 * on the server then return 0 (OK) else
3737 * return 1 (BAD).
3738 */
3739 on_client &= ~(S_ISUID|S_ISGID);
3740 if (on_client == from_server)
3741 return (0);
3742 else
3743 return (1);
3744 }
3745
3746 /*ARGSUSED4*/
3747 static int
nfs4_setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)3748 nfs4_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3749 caller_context_t *ct)
3750 {
3751 int error;
3752
3753 if (vap->va_mask & AT_NOSET)
3754 return (EINVAL);
3755
3756 if (nfs_zone() != VTOMI4(vp)->mi_zone)
3757 return (EIO);
3758
3759 /*
3760 * Don't call secpolicy_vnode_setattr, the client cannot
3761 * use its cached attributes to make security decisions
3762 * as the server may be faking mode bits or mapping uid/gid.
3763 * Always just let the server to the checking.
3764 * If we provide the ability to remove basic priviledges
3765 * to setattr (e.g. basic without chmod) then we will
3766 * need to add a check here before calling the server.
3767 */
3768 error = nfs4setattr(vp, vap, flags, cr, NULL);
3769
3770 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0)
3771 vnevent_truncate(vp, ct);
3772
3773 return (error);
3774 }
3775
3776 /*
3777 * To replace the "guarded" version 3 setattr, we use two types of compound
3778 * setattr requests:
3779 * 1. The "normal" setattr, used when the size of the file isn't being
3780 * changed - { Putfh <fh>; Setattr; Getattr }/
3781 * 2. If the size is changed, precede Setattr with: Getattr; Verify
3782 * with only ctime as the argument. If the server ctime differs from
3783 * what is cached on the client, the verify will fail, but we would
3784 * already have the ctime from the preceding getattr, so just set it
3785 * and retry. Thus the compound here is - { Putfh <fh>; Getattr; Verify;
3786 * Setattr; Getattr }.
3787 *
3788 * The vsecattr_t * input parameter will be non-NULL if ACLs are being set in
3789 * this setattr and NULL if they are not.
3790 */
3791 static int
nfs4setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,vsecattr_t * vsap)3792 nfs4setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
3793 vsecattr_t *vsap)
3794 {
3795 COMPOUND4args_clnt args;
3796 COMPOUND4res_clnt res, *resp = NULL;
3797 nfs4_ga_res_t *garp = NULL;
3798 int numops = 3; /* { Putfh; Setattr; Getattr } */
3799 nfs_argop4 argop[5];
3800 int verify_argop = -1;
3801 int setattr_argop = 1;
3802 nfs_resop4 *resop;
3803 vattr_t va;
3804 rnode4_t *rp;
3805 int doqueue = 1;
3806 uint_t mask = vap->va_mask;
3807 mode_t omode;
3808 vsecattr_t *vsp;
3809 timestruc_t ctime;
3810 bool_t needrecov = FALSE;
3811 nfs4_recov_state_t recov_state;
3812 nfs4_stateid_types_t sid_types;
3813 stateid4 stateid;
3814 hrtime_t t;
3815 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3816 servinfo4_t *svp;
3817 bitmap4 supp_attrs;
3818
3819 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
3820 rp = VTOR4(vp);
3821 nfs4_init_stateid_types(&sid_types);
3822
3823 /*
3824 * Only need to flush pages if there are any pages and
3825 * if the file is marked as dirty in some fashion. The
3826 * file must be flushed so that we can accurately
3827 * determine the size of the file and the cached data
3828 * after the SETATTR returns. A file is considered to
3829 * be dirty if it is either marked with R4DIRTY, has
3830 * outstanding i/o's active, or is mmap'd. In this
3831 * last case, we can't tell whether there are dirty
3832 * pages, so we flush just to be sure.
3833 */
3834 if (nfs4_has_pages(vp) &&
3835 ((rp->r_flags & R4DIRTY) ||
3836 rp->r_count > 0 ||
3837 rp->r_mapcnt > 0)) {
3838 ASSERT(vp->v_type != VCHR);
3839 e.error = nfs4_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
3840 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
3841 mutex_enter(&rp->r_statelock);
3842 if (!rp->r_error)
3843 rp->r_error = e.error;
3844 mutex_exit(&rp->r_statelock);
3845 }
3846 }
3847
3848 if (mask & AT_SIZE) {
3849 /*
3850 * Verification setattr compound for non-deleg AT_SIZE:
3851 * { Putfh; Getattr; Verify; Setattr; Getattr }
3852 * Set ctime local here (outside the do_again label)
3853 * so that subsequent retries (after failed VERIFY)
3854 * will use ctime from GETATTR results (from failed
3855 * verify compound) as VERIFY arg.
3856 * If file has delegation, then VERIFY(time_metadata)
3857 * is of little added value, so don't bother.
3858 */
3859 mutex_enter(&rp->r_statev4_lock);
3860 if (rp->r_deleg_type == OPEN_DELEGATE_NONE ||
3861 rp->r_deleg_return_pending) {
3862 numops = 5;
3863 ctime = rp->r_attr.va_ctime;
3864 }
3865 mutex_exit(&rp->r_statev4_lock);
3866 }
3867
3868 recov_state.rs_flags = 0;
3869 recov_state.rs_num_retry_despite_err = 0;
3870
3871 args.ctag = TAG_SETATTR;
3872 do_again:
3873 recov_retry:
3874 setattr_argop = numops - 2;
3875
3876 args.array = argop;
3877 args.array_len = numops;
3878
3879 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
3880 if (e.error)
3881 return (e.error);
3882
3883
3884 /* putfh target fh */
3885 argop[0].argop = OP_CPUTFH;
3886 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
3887
3888 if (numops == 5) {
3889 /*
3890 * We only care about the ctime, but need to get mtime
3891 * and size for proper cache update.
3892 */
3893 /* getattr */
3894 argop[1].argop = OP_GETATTR;
3895 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
3896 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
3897
3898 /* verify - set later in loop */
3899 verify_argop = 2;
3900 }
3901
3902 /* setattr */
3903 svp = rp->r_server;
3904 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3905 supp_attrs = svp->sv_supp_attrs;
3906 nfs_rw_exit(&svp->sv_lock);
3907
3908 nfs4args_setattr(&argop[setattr_argop], vap, vsap, flags, rp, cr,
3909 supp_attrs, &e.error, &sid_types);
3910 stateid = argop[setattr_argop].nfs_argop4_u.opsetattr.stateid;
3911 if (e.error) {
3912 /* req time field(s) overflow - return immediately */
3913 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
3914 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
3915 opsetattr.obj_attributes);
3916 return (e.error);
3917 }
3918 omode = rp->r_attr.va_mode;
3919
3920 /* getattr */
3921 argop[numops-1].argop = OP_GETATTR;
3922 argop[numops-1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
3923 /*
3924 * If we are setting the ACL (indicated only by vsap != NULL), request
3925 * the ACL in this getattr. The ACL returned from this getattr will be
3926 * used in updating the ACL cache.
3927 */
3928 if (vsap != NULL)
3929 argop[numops-1].nfs_argop4_u.opgetattr.attr_request |=
3930 FATTR4_ACL_MASK;
3931 argop[numops-1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
3932
3933 /*
3934 * setattr iterates if the object size is set and the cached ctime
3935 * does not match the file ctime. In that case, verify the ctime first.
3936 */
3937
3938 do {
3939 if (verify_argop != -1) {
3940 /*
3941 * Verify that the ctime match before doing setattr.
3942 */
3943 va.va_mask = AT_CTIME;
3944 va.va_ctime = ctime;
3945 svp = rp->r_server;
3946 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
3947 supp_attrs = svp->sv_supp_attrs;
3948 nfs_rw_exit(&svp->sv_lock);
3949 e.error = nfs4args_verify(&argop[verify_argop], &va,
3950 OP_VERIFY, supp_attrs);
3951 if (e.error) {
3952 /* req time field(s) overflow - return */
3953 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3954 needrecov);
3955 break;
3956 }
3957 }
3958
3959 doqueue = 1;
3960
3961 t = gethrtime();
3962
3963 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);
3964
3965 /*
3966 * Purge the access cache and ACL cache if changing either the
3967 * owner of the file, the group owner, or the mode. These may
3968 * change the access permissions of the file, so purge old
3969 * information and start over again.
3970 */
3971 if (mask & (AT_UID | AT_GID | AT_MODE)) {
3972 (void) nfs4_access_purge_rp(rp);
3973 if (rp->r_secattr != NULL) {
3974 mutex_enter(&rp->r_statelock);
3975 vsp = rp->r_secattr;
3976 rp->r_secattr = NULL;
3977 mutex_exit(&rp->r_statelock);
3978 if (vsp != NULL)
3979 nfs4_acl_free_cache(vsp);
3980 }
3981 }
3982
3983 /*
3984 * If res.array_len == numops, then everything succeeded,
3985 * except for possibly the final getattr. If only the
3986 * last getattr failed, give up, and don't try recovery.
3987 */
3988 if (res.array_len == numops) {
3989 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
3990 needrecov);
3991 if (! e.error)
3992 resp = &res;
3993 break;
3994 }
3995
3996 /*
3997 * if either rpc call failed or completely succeeded - done
3998 */
3999 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4000 if (e.error) {
4001 PURGE_ATTRCACHE4(vp);
4002 if (!needrecov) {
4003 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4004 needrecov);
4005 break;
4006 }
4007 }
4008
4009 /*
4010 * Do proper retry for OLD_STATEID outside of the normal
4011 * recovery framework.
4012 */
4013 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
4014 sid_types.cur_sid_type != SPEC_SID &&
4015 sid_types.cur_sid_type != NO_SID) {
4016 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4017 needrecov);
4018 nfs4_save_stateid(&stateid, &sid_types);
4019 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4020 opsetattr.obj_attributes);
4021 if (verify_argop != -1) {
4022 nfs4args_verify_free(&argop[verify_argop]);
4023 verify_argop = -1;
4024 }
4025 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4026 goto recov_retry;
4027 }
4028
4029 if (needrecov) {
4030 bool_t abort;
4031
4032 abort = nfs4_start_recovery(&e,
4033 VTOMI4(vp), vp, NULL, NULL, NULL,
4034 OP_SETATTR, NULL, NULL, NULL);
4035 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4036 needrecov);
4037 /*
4038 * Do not retry if we failed with OLD_STATEID using
4039 * a special stateid. This is done to avoid looping
4040 * with a broken server.
4041 */
4042 if (e.error == 0 && res.status == NFS4ERR_OLD_STATEID &&
4043 (sid_types.cur_sid_type == SPEC_SID ||
4044 sid_types.cur_sid_type == NO_SID))
4045 abort = TRUE;
4046 if (!e.error) {
4047 if (res.status == NFS4ERR_BADOWNER)
4048 nfs4_log_badowner(VTOMI4(vp),
4049 OP_SETATTR);
4050
4051 e.error = geterrno4(res.status);
4052 (void) xdr_free(xdr_COMPOUND4res_clnt,
4053 (caddr_t)&res);
4054 }
4055 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4056 opsetattr.obj_attributes);
4057 if (verify_argop != -1) {
4058 nfs4args_verify_free(&argop[verify_argop]);
4059 verify_argop = -1;
4060 }
4061 if (abort == FALSE) {
4062 /*
4063 * Need to retry all possible stateids in
4064 * case the recovery error wasn't stateid
4065 * related or the stateids have become
4066 * stale (server reboot).
4067 */
4068 nfs4_init_stateid_types(&sid_types);
4069 goto recov_retry;
4070 }
4071 return (e.error);
4072 }
4073
4074 /*
4075 * Need to call nfs4_end_op before nfs4getattr to
4076 * avoid potential nfs4_start_op deadlock. See RFE
4077 * 4777612. Calls to nfs4_invalidate_pages() and
4078 * nfs4_purge_stale_fh() might also generate over the
4079 * wire calls which my cause nfs4_start_op() deadlock.
4080 */
4081 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
4082
4083 /*
4084 * Check to update lease.
4085 */
4086 resp = &res;
4087 if (res.status == NFS4_OK) {
4088 break;
4089 }
4090
4091 /*
4092 * Check if verify failed to see if try again
4093 */
4094 if ((verify_argop == -1) || (res.array_len != 3)) {
4095 /*
4096 * can't continue...
4097 */
4098 if (res.status == NFS4ERR_BADOWNER)
4099 nfs4_log_badowner(VTOMI4(vp), OP_SETATTR);
4100
4101 e.error = geterrno4(res.status);
4102 } else {
4103 /*
4104 * When the verify request fails, the client ctime is
4105 * not in sync with the server. This is the same as
4106 * the version 3 "not synchronized" error, and we
4107 * handle it in a similar manner (XXX do we need to???).
4108 * Use the ctime returned in the first getattr for
4109 * the input to the next verify.
4110 * If we couldn't get the attributes, then we give up
4111 * because we can't complete the operation as required.
4112 */
4113 garp = &res.array[1].nfs_resop4_u.opgetattr.ga_res;
4114 }
4115 if (e.error) {
4116 PURGE_ATTRCACHE4(vp);
4117 nfs4_purge_stale_fh(e.error, vp, cr);
4118 } else {
4119 /*
4120 * retry with a new verify value
4121 */
4122 ctime = garp->n4g_va.va_ctime;
4123 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4124 resp = NULL;
4125 }
4126 if (!e.error) {
4127 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4128 opsetattr.obj_attributes);
4129 if (verify_argop != -1) {
4130 nfs4args_verify_free(&argop[verify_argop]);
4131 verify_argop = -1;
4132 }
4133 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4134 goto do_again;
4135 }
4136 } while (!e.error);
4137
4138 if (e.error) {
4139 /*
4140 * If we are here, rfs4call has an irrecoverable error - return
4141 */
4142 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4143 opsetattr.obj_attributes);
4144 if (verify_argop != -1) {
4145 nfs4args_verify_free(&argop[verify_argop]);
4146 verify_argop = -1;
4147 }
4148 if (resp)
4149 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
4150 return (e.error);
4151 }
4152
4153
4154
4155 /*
4156 * If changing the size of the file, invalidate
4157 * any local cached data which is no longer part
4158 * of the file. We also possibly invalidate the
4159 * last page in the file. We could use
4160 * pvn_vpzero(), but this would mark the page as
4161 * modified and require it to be written back to
4162 * the server for no particularly good reason.
4163 * This way, if we access it, then we bring it
4164 * back in. A read should be cheaper than a
4165 * write.
4166 */
4167 if (mask & AT_SIZE) {
4168 nfs4_invalidate_pages(vp, (vap->va_size & PAGEMASK), cr);
4169 }
4170
4171 /* either no error or one of the postop getattr failed */
4172
4173 /*
4174 * XXX Perform a simplified version of wcc checking. Instead of
4175 * have another getattr to get pre-op, just purge cache if
4176 * any of the ops prior to and including the getattr failed.
4177 * If the getattr succeeded then update the attrcache accordingly.
4178 */
4179
4180 garp = NULL;
4181 if (res.status == NFS4_OK) {
4182 /*
4183 * Last getattr
4184 */
4185 resop = &res.array[numops - 1];
4186 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
4187 }
4188 /*
4189 * In certain cases, nfs4_update_attrcache() will purge the attrcache,
4190 * rather than filling it. See the function itself for details.
4191 */
4192 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
4193 if (garp != NULL) {
4194 if (garp->n4g_resbmap & FATTR4_ACL_MASK) {
4195 nfs4_acl_fill_cache(rp, &garp->n4g_vsa);
4196 vs_ace4_destroy(&garp->n4g_vsa);
4197 } else {
4198 if (vsap != NULL) {
4199 /*
4200 * The ACL was supposed to be set and to be
4201 * returned in the last getattr of this
4202 * compound, but for some reason the getattr
4203 * result doesn't contain the ACL. In this
4204 * case, purge the ACL cache.
4205 */
4206 if (rp->r_secattr != NULL) {
4207 mutex_enter(&rp->r_statelock);
4208 vsp = rp->r_secattr;
4209 rp->r_secattr = NULL;
4210 mutex_exit(&rp->r_statelock);
4211 if (vsp != NULL)
4212 nfs4_acl_free_cache(vsp);
4213 }
4214 }
4215 }
4216 }
4217
4218 if (res.status == NFS4_OK && (mask & AT_SIZE)) {
4219 /*
4220 * Set the size, rather than relying on getting it updated
4221 * via a GETATTR. With delegations the client tries to
4222 * suppress GETATTR calls.
4223 */
4224 mutex_enter(&rp->r_statelock);
4225 rp->r_size = vap->va_size;
4226 mutex_exit(&rp->r_statelock);
4227 }
4228
4229 /*
4230 * Can free up request args and res
4231 */
4232 nfs4_fattr4_free(&argop[setattr_argop].nfs_argop4_u.
4233 opsetattr.obj_attributes);
4234 if (verify_argop != -1) {
4235 nfs4args_verify_free(&argop[verify_argop]);
4236 verify_argop = -1;
4237 }
4238 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4239
4240 /*
4241 * Some servers will change the mode to clear the setuid
4242 * and setgid bits when changing the uid or gid. The
4243 * client needs to compensate appropriately.
4244 */
4245 if (mask & (AT_UID | AT_GID)) {
4246 int terror, do_setattr;
4247
4248 do_setattr = 0;
4249 va.va_mask = AT_MODE;
4250 terror = nfs4getattr(vp, &va, cr);
4251 if (!terror &&
4252 (((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
4253 (!(mask & AT_MODE) && va.va_mode != omode))) {
4254 va.va_mask = AT_MODE;
4255 if (mask & AT_MODE) {
4256 /*
4257 * We asked the mode to be changed and what
4258 * we just got from the server in getattr is
4259 * not what we wanted it to be, so set it now.
4260 */
4261 va.va_mode = vap->va_mode;
4262 do_setattr = 1;
4263 } else {
4264 /*
4265 * We did not ask the mode to be changed,
4266 * Check to see that the server just cleared
4267 * I_SUID and I_GUID from it. If not then
4268 * set mode to omode with UID/GID cleared.
4269 */
4270 if (nfs4_compare_modes(va.va_mode, omode)) {
4271 omode &= ~(S_ISUID|S_ISGID);
4272 va.va_mode = omode;
4273 do_setattr = 1;
4274 }
4275 }
4276
4277 if (do_setattr)
4278 (void) nfs4setattr(vp, &va, 0, cr, NULL);
4279 }
4280 }
4281
4282 return (e.error);
4283 }
4284
4285 /* ARGSUSED */
4286 static int
nfs4_access(vnode_t * vp,int mode,int flags,cred_t * cr,caller_context_t * ct)4287 nfs4_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
4288 {
4289 COMPOUND4args_clnt args;
4290 COMPOUND4res_clnt res;
4291 int doqueue;
4292 uint32_t acc, resacc, argacc;
4293 rnode4_t *rp;
4294 cred_t *cred, *ncr, *ncrfree = NULL;
4295 nfs4_access_type_t cacc;
4296 int num_ops;
4297 nfs_argop4 argop[3];
4298 nfs_resop4 *resop;
4299 bool_t needrecov = FALSE, do_getattr;
4300 nfs4_recov_state_t recov_state;
4301 int rpc_error;
4302 hrtime_t t;
4303 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4304 mntinfo4_t *mi = VTOMI4(vp);
4305
4306 if (nfs_zone() != mi->mi_zone)
4307 return (EIO);
4308
4309 acc = 0;
4310 if (mode & VREAD)
4311 acc |= ACCESS4_READ;
4312 if (mode & VWRITE) {
4313 if ((vp->v_vfsp->vfs_flag & VFS_RDONLY) && !ISVDEV(vp->v_type))
4314 return (EROFS);
4315 if (vp->v_type == VDIR)
4316 acc |= ACCESS4_DELETE;
4317 acc |= ACCESS4_MODIFY | ACCESS4_EXTEND;
4318 }
4319 if (mode & VEXEC) {
4320 if (vp->v_type == VDIR)
4321 acc |= ACCESS4_LOOKUP;
4322 else
4323 acc |= ACCESS4_EXECUTE;
4324 }
4325
4326 if (VTOR4(vp)->r_acache != NULL) {
4327 e.error = nfs4_validate_caches(vp, cr);
4328 if (e.error)
4329 return (e.error);
4330 }
4331
4332 rp = VTOR4(vp);
4333 if (vp->v_type == VDIR)
4334 argacc = ACCESS4_READ | ACCESS4_DELETE | ACCESS4_MODIFY |
4335 ACCESS4_EXTEND | ACCESS4_LOOKUP;
4336 else
4337 argacc = ACCESS4_READ | ACCESS4_MODIFY | ACCESS4_EXTEND |
4338 ACCESS4_EXECUTE;
4339 recov_state.rs_flags = 0;
4340 recov_state.rs_num_retry_despite_err = 0;
4341
4342 cred = cr;
4343 /*
4344 * ncr and ncrfree both initially
4345 * point to the memory area returned
4346 * by crnetadjust();
4347 * ncrfree not NULL when exiting means
4348 * that we need to release it
4349 */
4350 ncr = crnetadjust(cred);
4351 ncrfree = ncr;
4352
4353 tryagain:
4354 cacc = nfs4_access_check(rp, acc, cred);
4355 if (cacc == NFS4_ACCESS_ALLOWED) {
4356 if (ncrfree != NULL)
4357 crfree(ncrfree);
4358 return (0);
4359 }
4360 if (cacc == NFS4_ACCESS_DENIED) {
4361 /*
4362 * If the cred can be adjusted, try again
4363 * with the new cred.
4364 */
4365 if (ncr != NULL) {
4366 cred = ncr;
4367 ncr = NULL;
4368 goto tryagain;
4369 }
4370 if (ncrfree != NULL)
4371 crfree(ncrfree);
4372 return (EACCES);
4373 }
4374
4375 recov_retry:
4376 /*
4377 * Don't take with r_statev4_lock here. r_deleg_type could
4378 * change as soon as lock is released. Since it is an int,
4379 * there is no atomicity issue.
4380 */
4381 do_getattr = (rp->r_deleg_type == OPEN_DELEGATE_NONE);
4382 num_ops = do_getattr ? 3 : 2;
4383
4384 args.ctag = TAG_ACCESS;
4385
4386 args.array_len = num_ops;
4387 args.array = argop;
4388
4389 if (e.error = nfs4_start_fop(mi, vp, NULL, OH_ACCESS,
4390 &recov_state, NULL)) {
4391 if (ncrfree != NULL)
4392 crfree(ncrfree);
4393 return (e.error);
4394 }
4395
4396 /* putfh target fh */
4397 argop[0].argop = OP_CPUTFH;
4398 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
4399
4400 /* access */
4401 argop[1].argop = OP_ACCESS;
4402 argop[1].nfs_argop4_u.opaccess.access = argacc;
4403
4404 /* getattr */
4405 if (do_getattr) {
4406 argop[2].argop = OP_GETATTR;
4407 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
4408 argop[2].nfs_argop4_u.opgetattr.mi = mi;
4409 }
4410
4411 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
4412 "nfs4_access: %s call, rp %s", needrecov ? "recov" : "first",
4413 rnode4info(VTOR4(vp))));
4414
4415 doqueue = 1;
4416 t = gethrtime();
4417 rfs4call(VTOMI4(vp), &args, &res, cred, &doqueue, 0, &e);
4418 rpc_error = e.error;
4419
4420 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4421 if (needrecov) {
4422 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
4423 "nfs4_access: initiating recovery\n"));
4424
4425 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
4426 NULL, OP_ACCESS, NULL, NULL, NULL) == FALSE) {
4427 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_ACCESS,
4428 &recov_state, needrecov);
4429 if (!e.error)
4430 (void) xdr_free(xdr_COMPOUND4res_clnt,
4431 (caddr_t)&res);
4432 goto recov_retry;
4433 }
4434 }
4435 nfs4_end_fop(mi, vp, NULL, OH_ACCESS, &recov_state, needrecov);
4436
4437 if (e.error)
4438 goto out;
4439
4440 if (res.status) {
4441 e.error = geterrno4(res.status);
4442 /*
4443 * This might generate over the wire calls throught
4444 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4445 * here to avoid a deadlock.
4446 */
4447 nfs4_purge_stale_fh(e.error, vp, cr);
4448 goto out;
4449 }
4450 resop = &res.array[1]; /* access res */
4451
4452 resacc = resop->nfs_resop4_u.opaccess.access;
4453
4454 if (do_getattr) {
4455 resop++; /* getattr res */
4456 nfs4_attr_cache(vp, &resop->nfs_resop4_u.opgetattr.ga_res,
4457 t, cr, FALSE, NULL);
4458 }
4459
4460 if (!e.error) {
4461 nfs4_access_cache(rp, argacc, resacc, cred);
4462 /*
4463 * we just cached results with cred; if cred is the
4464 * adjusted credentials from crnetadjust, we do not want
4465 * to release them before exiting: hence setting ncrfree
4466 * to NULL
4467 */
4468 if (cred != cr)
4469 ncrfree = NULL;
4470 /* XXX check the supported bits too? */
4471 if ((acc & resacc) != acc) {
4472 /*
4473 * The following code implements the semantic
4474 * that a setuid root program has *at least* the
4475 * permissions of the user that is running the
4476 * program. See rfs3call() for more portions
4477 * of the implementation of this functionality.
4478 */
4479 /* XXX-LP */
4480 if (ncr != NULL) {
4481 (void) xdr_free(xdr_COMPOUND4res_clnt,
4482 (caddr_t)&res);
4483 cred = ncr;
4484 ncr = NULL;
4485 goto tryagain;
4486 }
4487 e.error = EACCES;
4488 }
4489 }
4490
4491 out:
4492 if (!rpc_error)
4493 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4494
4495 if (ncrfree != NULL)
4496 crfree(ncrfree);
4497
4498 return (e.error);
4499 }
4500
4501 /* ARGSUSED */
4502 static int
nfs4_readlink(vnode_t * vp,struct uio * uiop,cred_t * cr,caller_context_t * ct)4503 nfs4_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
4504 {
4505 COMPOUND4args_clnt args;
4506 COMPOUND4res_clnt res;
4507 int doqueue;
4508 rnode4_t *rp;
4509 nfs_argop4 argop[3];
4510 nfs_resop4 *resop;
4511 READLINK4res *lr_res;
4512 nfs4_ga_res_t *garp;
4513 uint_t len;
4514 char *linkdata;
4515 bool_t needrecov = FALSE;
4516 nfs4_recov_state_t recov_state;
4517 hrtime_t t;
4518 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4519
4520 if (nfs_zone() != VTOMI4(vp)->mi_zone)
4521 return (EIO);
4522 /*
4523 * Can't readlink anything other than a symbolic link.
4524 */
4525 if (vp->v_type != VLNK)
4526 return (EINVAL);
4527
4528 rp = VTOR4(vp);
4529 if (nfs4_do_symlink_cache && rp->r_symlink.contents != NULL) {
4530 e.error = nfs4_validate_caches(vp, cr);
4531 if (e.error)
4532 return (e.error);
4533 mutex_enter(&rp->r_statelock);
4534 if (rp->r_symlink.contents != NULL) {
4535 e.error = uiomove(rp->r_symlink.contents,
4536 rp->r_symlink.len, UIO_READ, uiop);
4537 mutex_exit(&rp->r_statelock);
4538 return (e.error);
4539 }
4540 mutex_exit(&rp->r_statelock);
4541 }
4542 recov_state.rs_flags = 0;
4543 recov_state.rs_num_retry_despite_err = 0;
4544
4545 recov_retry:
4546 args.array_len = 3;
4547 args.array = argop;
4548 args.ctag = TAG_READLINK;
4549
4550 e.error = nfs4_start_op(VTOMI4(vp), vp, NULL, &recov_state);
4551 if (e.error) {
4552 return (e.error);
4553 }
4554
4555 /* 0. putfh symlink fh */
4556 argop[0].argop = OP_CPUTFH;
4557 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
4558
4559 /* 1. readlink */
4560 argop[1].argop = OP_READLINK;
4561
4562 /* 2. getattr */
4563 argop[2].argop = OP_GETATTR;
4564 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
4565 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
4566
4567 doqueue = 1;
4568
4569 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
4570 "nfs4_readlink: %s call, rp %s", needrecov ? "recov" : "first",
4571 rnode4info(VTOR4(vp))));
4572
4573 t = gethrtime();
4574
4575 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, &e);
4576
4577 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
4578 if (needrecov) {
4579 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
4580 "nfs4_readlink: initiating recovery\n"));
4581
4582 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
4583 NULL, OP_READLINK, NULL, NULL, NULL) == FALSE) {
4584 if (!e.error)
4585 (void) xdr_free(xdr_COMPOUND4res_clnt,
4586 (caddr_t)&res);
4587
4588 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state,
4589 needrecov);
4590 goto recov_retry;
4591 }
4592 }
4593
4594 nfs4_end_op(VTOMI4(vp), vp, NULL, &recov_state, needrecov);
4595
4596 if (e.error)
4597 return (e.error);
4598
4599 /*
4600 * There is an path in the code below which calls
4601 * nfs4_purge_stale_fh(), which may generate otw calls through
4602 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
4603 * here to avoid nfs4_start_op() deadlock.
4604 */
4605
4606 if (res.status && (res.array_len < args.array_len)) {
4607 /*
4608 * either Putfh or Link failed
4609 */
4610 e.error = geterrno4(res.status);
4611 nfs4_purge_stale_fh(e.error, vp, cr);
4612 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4613 return (e.error);
4614 }
4615
4616 resop = &res.array[1]; /* readlink res */
4617 lr_res = &resop->nfs_resop4_u.opreadlink;
4618
4619 /*
4620 * treat symlink names as data
4621 */
4622 linkdata = utf8_to_str((utf8string *)&lr_res->link, &len, NULL);
4623 if (linkdata != NULL) {
4624 int uio_len = len - 1;
4625 /* len includes null byte, which we won't uiomove */
4626 e.error = uiomove(linkdata, uio_len, UIO_READ, uiop);
4627 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
4628 mutex_enter(&rp->r_statelock);
4629 if (rp->r_symlink.contents == NULL) {
4630 rp->r_symlink.contents = linkdata;
4631 rp->r_symlink.len = uio_len;
4632 rp->r_symlink.size = len;
4633 mutex_exit(&rp->r_statelock);
4634 } else {
4635 mutex_exit(&rp->r_statelock);
4636 kmem_free(linkdata, len);
4637 }
4638 } else {
4639 kmem_free(linkdata, len);
4640 }
4641 }
4642 if (res.status == NFS4_OK) {
4643 resop++; /* getattr res */
4644 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
4645 }
4646 e.error = nfs4_update_attrcache(res.status, garp, t, vp, cr);
4647
4648 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
4649
4650 /*
4651 * The over the wire error for attempting to readlink something
4652 * other than a symbolic link is ENXIO. However, we need to
4653 * return EINVAL instead of ENXIO, so we map it here.
4654 */
4655 return (e.error == ENXIO ? EINVAL : e.error);
4656 }
4657
4658 /*
4659 * Flush local dirty pages to stable storage on the server.
4660 *
4661 * If FNODSYNC is specified, then there is nothing to do because
4662 * metadata changes are not cached on the client before being
4663 * sent to the server.
4664 */
4665 /* ARGSUSED */
4666 static int
nfs4_fsync(vnode_t * vp,int syncflag,cred_t * cr,caller_context_t * ct)4667 nfs4_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
4668 {
4669 int error;
4670
4671 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
4672 return (0);
4673 if (nfs_zone() != VTOMI4(vp)->mi_zone)
4674 return (EIO);
4675 error = nfs4_putpage_commit(vp, (offset_t)0, 0, cr);
4676 if (!error)
4677 error = VTOR4(vp)->r_error;
4678 return (error);
4679 }
4680
4681 /*
4682 * Weirdness: if the file was removed or the target of a rename
4683 * operation while it was open, it got renamed instead. Here we
4684 * remove the renamed file.
4685 */
4686 /* ARGSUSED */
4687 void
nfs4_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)4688 nfs4_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4689 {
4690 rnode4_t *rp;
4691
4692 ASSERT(vp != DNLC_NO_VNODE);
4693
4694 rp = VTOR4(vp);
4695
4696 if (IS_SHADOW(vp, rp)) {
4697 sv_inactive(vp);
4698 return;
4699 }
4700
4701 /*
4702 * If this is coming from the wrong zone, we let someone in the right
4703 * zone take care of it asynchronously. We can get here due to
4704 * VN_RELE() being called from pageout() or fsflush(). This call may
4705 * potentially turn into an expensive no-op if, for instance, v_count
4706 * gets incremented in the meantime, but it's still correct.
4707 */
4708 if (nfs_zone() != VTOMI4(vp)->mi_zone) {
4709 nfs4_async_inactive(vp, cr);
4710 return;
4711 }
4712
4713 /*
4714 * Some of the cleanup steps might require over-the-wire
4715 * operations. Since VOP_INACTIVE can get called as a result of
4716 * other over-the-wire operations (e.g., an attribute cache update
4717 * can lead to a DNLC purge), doing those steps now would lead to a
4718 * nested call to the recovery framework, which can deadlock. So
4719 * do any over-the-wire cleanups asynchronously, in a separate
4720 * thread.
4721 */
4722
4723 mutex_enter(&rp->r_os_lock);
4724 mutex_enter(&rp->r_statelock);
4725 mutex_enter(&rp->r_statev4_lock);
4726
4727 if (vp->v_type == VREG && list_head(&rp->r_open_streams) != NULL) {
4728 mutex_exit(&rp->r_statev4_lock);
4729 mutex_exit(&rp->r_statelock);
4730 mutex_exit(&rp->r_os_lock);
4731 nfs4_async_inactive(vp, cr);
4732 return;
4733 }
4734
4735 if (rp->r_deleg_type == OPEN_DELEGATE_READ ||
4736 rp->r_deleg_type == OPEN_DELEGATE_WRITE) {
4737 mutex_exit(&rp->r_statev4_lock);
4738 mutex_exit(&rp->r_statelock);
4739 mutex_exit(&rp->r_os_lock);
4740 nfs4_async_inactive(vp, cr);
4741 return;
4742 }
4743
4744 if (rp->r_unldvp != NULL) {
4745 mutex_exit(&rp->r_statev4_lock);
4746 mutex_exit(&rp->r_statelock);
4747 mutex_exit(&rp->r_os_lock);
4748 nfs4_async_inactive(vp, cr);
4749 return;
4750 }
4751 mutex_exit(&rp->r_statev4_lock);
4752 mutex_exit(&rp->r_statelock);
4753 mutex_exit(&rp->r_os_lock);
4754
4755 rp4_addfree(rp, cr);
4756 }
4757
4758 /*
4759 * nfs4_inactive_otw - nfs4_inactive, plus over-the-wire calls to free up
4760 * various bits of state. The caller must not refer to vp after this call.
4761 */
4762
4763 void
nfs4_inactive_otw(vnode_t * vp,cred_t * cr)4764 nfs4_inactive_otw(vnode_t *vp, cred_t *cr)
4765 {
4766 rnode4_t *rp = VTOR4(vp);
4767 nfs4_recov_state_t recov_state;
4768 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
4769 vnode_t *unldvp;
4770 char *unlname;
4771 cred_t *unlcred;
4772 COMPOUND4args_clnt args;
4773 COMPOUND4res_clnt res, *resp;
4774 nfs_argop4 argop[2];
4775 int doqueue;
4776 #ifdef DEBUG
4777 char *name;
4778 #endif
4779
4780 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
4781 ASSERT(!IS_SHADOW(vp, rp));
4782
4783 #ifdef DEBUG
4784 name = fn_name(VTOSV(vp)->sv_name);
4785 NFS4_DEBUG(nfs4_client_inactive_debug, (CE_NOTE, "nfs4_inactive_otw: "
4786 "release vnode %s", name));
4787 kmem_free(name, MAXNAMELEN);
4788 #endif
4789
4790 if (vp->v_type == VREG) {
4791 bool_t recov_failed = FALSE;
4792
4793 e.error = nfs4close_all(vp, cr);
4794 if (e.error) {
4795 /* Check to see if recovery failed */
4796 mutex_enter(&(VTOMI4(vp)->mi_lock));
4797 if (VTOMI4(vp)->mi_flags & MI4_RECOV_FAIL)
4798 recov_failed = TRUE;
4799 mutex_exit(&(VTOMI4(vp)->mi_lock));
4800 if (!recov_failed) {
4801 mutex_enter(&rp->r_statelock);
4802 if (rp->r_flags & R4RECOVERR)
4803 recov_failed = TRUE;
4804 mutex_exit(&rp->r_statelock);
4805 }
4806 if (recov_failed) {
4807 NFS4_DEBUG(nfs4_client_recov_debug,
4808 (CE_NOTE, "nfs4_inactive_otw: "
4809 "close failed (recovery failure)"));
4810 }
4811 }
4812 }
4813
4814 redo:
4815 if (rp->r_unldvp == NULL) {
4816 rp4_addfree(rp, cr);
4817 return;
4818 }
4819
4820 /*
4821 * Save the vnode pointer for the directory where the
4822 * unlinked-open file got renamed, then set it to NULL
4823 * to prevent another thread from getting here before
4824 * we're done with the remove. While we have the
4825 * statelock, make local copies of the pertinent rnode
4826 * fields. If we weren't to do this in an atomic way, the
4827 * the unl* fields could become inconsistent with respect
4828 * to each other due to a race condition between this
4829 * code and nfs_remove(). See bug report 1034328.
4830 */
4831 mutex_enter(&rp->r_statelock);
4832 if (rp->r_unldvp == NULL) {
4833 mutex_exit(&rp->r_statelock);
4834 rp4_addfree(rp, cr);
4835 return;
4836 }
4837
4838 unldvp = rp->r_unldvp;
4839 rp->r_unldvp = NULL;
4840 unlname = rp->r_unlname;
4841 rp->r_unlname = NULL;
4842 unlcred = rp->r_unlcred;
4843 rp->r_unlcred = NULL;
4844 mutex_exit(&rp->r_statelock);
4845
4846 /*
4847 * If there are any dirty pages left, then flush
4848 * them. This is unfortunate because they just
4849 * may get thrown away during the remove operation,
4850 * but we have to do this for correctness.
4851 */
4852 if (nfs4_has_pages(vp) &&
4853 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
4854 ASSERT(vp->v_type != VCHR);
4855 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, NULL);
4856 if (e.error) {
4857 mutex_enter(&rp->r_statelock);
4858 if (!rp->r_error)
4859 rp->r_error = e.error;
4860 mutex_exit(&rp->r_statelock);
4861 }
4862 }
4863
4864 recov_state.rs_flags = 0;
4865 recov_state.rs_num_retry_despite_err = 0;
4866 recov_retry_remove:
4867 /*
4868 * Do the remove operation on the renamed file
4869 */
4870 args.ctag = TAG_INACTIVE;
4871
4872 /*
4873 * Remove ops: putfh dir; remove
4874 */
4875 args.array_len = 2;
4876 args.array = argop;
4877
4878 e.error = nfs4_start_op(VTOMI4(unldvp), unldvp, NULL, &recov_state);
4879 if (e.error) {
4880 kmem_free(unlname, MAXNAMELEN);
4881 crfree(unlcred);
4882 VN_RELE(unldvp);
4883 /*
4884 * Try again; this time around r_unldvp will be NULL, so we'll
4885 * just call rp4_addfree() and return.
4886 */
4887 goto redo;
4888 }
4889
4890 /* putfh directory */
4891 argop[0].argop = OP_CPUTFH;
4892 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(unldvp)->r_fh;
4893
4894 /* remove */
4895 argop[1].argop = OP_CREMOVE;
4896 argop[1].nfs_argop4_u.opcremove.ctarget = unlname;
4897
4898 doqueue = 1;
4899 resp = &res;
4900
4901 #if 0 /* notyet */
4902 /*
4903 * Can't do this yet. We may be being called from
4904 * dnlc_purge_XXX while that routine is holding a
4905 * mutex lock to the nc_rele list. The calls to
4906 * nfs3_cache_wcc_data may result in calls to
4907 * dnlc_purge_XXX. This will result in a deadlock.
4908 */
4909 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
4910 if (e.error) {
4911 PURGE_ATTRCACHE4(unldvp);
4912 resp = NULL;
4913 } else if (res.status) {
4914 e.error = geterrno4(res.status);
4915 PURGE_ATTRCACHE4(unldvp);
4916 /*
4917 * This code is inactive right now
4918 * but if made active there should
4919 * be a nfs4_end_op() call before
4920 * nfs4_purge_stale_fh to avoid start_op()
4921 * deadlock. See BugId: 4948726
4922 */
4923 nfs4_purge_stale_fh(error, unldvp, cr);
4924 } else {
4925 nfs_resop4 *resop;
4926 REMOVE4res *rm_res;
4927
4928 resop = &res.array[1];
4929 rm_res = &resop->nfs_resop4_u.opremove;
4930 /*
4931 * Update directory cache attribute,
4932 * readdir and dnlc caches.
4933 */
4934 nfs4_update_dircaches(&rm_res->cinfo, unldvp, NULL, NULL, NULL);
4935 }
4936 #else
4937 rfs4call(VTOMI4(unldvp), &args, &res, unlcred, &doqueue, 0, &e);
4938
4939 PURGE_ATTRCACHE4(unldvp);
4940 #endif
4941
4942 if (nfs4_needs_recovery(&e, FALSE, unldvp->v_vfsp)) {
4943 if (nfs4_start_recovery(&e, VTOMI4(unldvp), unldvp, NULL,
4944 NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
4945 if (!e.error)
4946 (void) xdr_free(xdr_COMPOUND4res_clnt,
4947 (caddr_t)&res);
4948 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL,
4949 &recov_state, TRUE);
4950 goto recov_retry_remove;
4951 }
4952 }
4953 nfs4_end_op(VTOMI4(unldvp), unldvp, NULL, &recov_state, FALSE);
4954
4955 /*
4956 * Release stuff held for the remove
4957 */
4958 VN_RELE(unldvp);
4959 if (!e.error && resp)
4960 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
4961
4962 kmem_free(unlname, MAXNAMELEN);
4963 crfree(unlcred);
4964 goto redo;
4965 }
4966
4967 /*
4968 * Remote file system operations having to do with directory manipulation.
4969 */
4970 /* ARGSUSED3 */
4971 int
nfs4_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)4972 nfs4_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
4973 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
4974 int *direntflags, pathname_t *realpnp)
4975 {
4976 int error;
4977 vnode_t *vp, *avp = NULL;
4978 rnode4_t *drp;
4979
4980 *vpp = NULL;
4981 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
4982 return (EPERM);
4983 /*
4984 * if LOOKUP_XATTR, must replace dvp (object) with
4985 * object's attrdir before continuing with lookup
4986 */
4987 if (flags & LOOKUP_XATTR) {
4988 error = nfs4lookup_xattr(dvp, nm, &avp, flags, cr);
4989 if (error)
4990 return (error);
4991
4992 dvp = avp;
4993
4994 /*
4995 * If lookup is for "", just return dvp now. The attrdir
4996 * has already been activated (from nfs4lookup_xattr), and
4997 * the caller will RELE the original dvp -- not
4998 * the attrdir. So, set vpp and return.
4999 * Currently, when the LOOKUP_XATTR flag is
5000 * passed to VOP_LOOKUP, the name is always empty, and
5001 * shortcircuiting here avoids 3 unneeded lock/unlock
5002 * pairs.
5003 *
5004 * If a non-empty name was provided, then it is the
5005 * attribute name, and it will be looked up below.
5006 */
5007 if (*nm == '\0') {
5008 *vpp = dvp;
5009 return (0);
5010 }
5011
5012 /*
5013 * The vfs layer never sends a name when asking for the
5014 * attrdir, so we should never get here (unless of course
5015 * name is passed at some time in future -- at which time
5016 * we'll blow up here).
5017 */
5018 ASSERT(0);
5019 }
5020
5021 drp = VTOR4(dvp);
5022 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
5023 return (EINTR);
5024
5025 error = nfs4lookup(dvp, nm, vpp, cr, 0);
5026 nfs_rw_exit(&drp->r_rwlock);
5027
5028 /*
5029 * If vnode is a device, create special vnode.
5030 */
5031 if (!error && ISVDEV((*vpp)->v_type)) {
5032 vp = *vpp;
5033 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
5034 VN_RELE(vp);
5035 }
5036
5037 return (error);
5038 }
5039
5040 /* ARGSUSED */
5041 static int
nfs4lookup_xattr(vnode_t * dvp,char * nm,vnode_t ** vpp,int flags,cred_t * cr)5042 nfs4lookup_xattr(vnode_t *dvp, char *nm, vnode_t **vpp, int flags, cred_t *cr)
5043 {
5044 int error;
5045 rnode4_t *drp;
5046 int cflag = ((flags & CREATE_XATTR_DIR) != 0);
5047 mntinfo4_t *mi;
5048
5049 mi = VTOMI4(dvp);
5050 if (!(mi->mi_vfsp->vfs_flag & VFS_XATTR) &&
5051 !vfs_has_feature(mi->mi_vfsp, VFSFT_SYSATTR_VIEWS))
5052 return (EINVAL);
5053
5054 drp = VTOR4(dvp);
5055 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp)))
5056 return (EINTR);
5057
5058 mutex_enter(&drp->r_statelock);
5059 /*
5060 * If the server doesn't support xattrs just return EINVAL
5061 */
5062 if (drp->r_xattr_dir == NFS4_XATTR_DIR_NOTSUPP) {
5063 mutex_exit(&drp->r_statelock);
5064 nfs_rw_exit(&drp->r_rwlock);
5065 return (EINVAL);
5066 }
5067
5068 /*
5069 * If there is a cached xattr directory entry,
5070 * use it as long as the attributes are valid. If the
5071 * attributes are not valid, take the simple approach and
5072 * free the cached value and re-fetch a new value.
5073 *
5074 * We don't negative entry cache for now, if we did we
5075 * would need to check if the file has changed on every
5076 * lookup. But xattrs don't exist very often and failing
5077 * an openattr is not much more expensive than and NVERIFY or GETATTR
5078 * so do an openattr over the wire for now.
5079 */
5080 if (drp->r_xattr_dir != NULL) {
5081 if (ATTRCACHE4_VALID(dvp)) {
5082 VN_HOLD(drp->r_xattr_dir);
5083 *vpp = drp->r_xattr_dir;
5084 mutex_exit(&drp->r_statelock);
5085 nfs_rw_exit(&drp->r_rwlock);
5086 return (0);
5087 }
5088 VN_RELE(drp->r_xattr_dir);
5089 drp->r_xattr_dir = NULL;
5090 }
5091 mutex_exit(&drp->r_statelock);
5092
5093 error = nfs4openattr(dvp, vpp, cflag, cr);
5094
5095 nfs_rw_exit(&drp->r_rwlock);
5096
5097 return (error);
5098 }
5099
5100 static int
nfs4lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr,int skipdnlc)5101 nfs4lookup(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr, int skipdnlc)
5102 {
5103 int error;
5104 rnode4_t *drp;
5105
5106 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5107
5108 /*
5109 * If lookup is for "", just return dvp. Don't need
5110 * to send it over the wire, look it up in the dnlc,
5111 * or perform any access checks.
5112 */
5113 if (*nm == '\0') {
5114 VN_HOLD(dvp);
5115 *vpp = dvp;
5116 return (0);
5117 }
5118
5119 /*
5120 * Can't do lookups in non-directories.
5121 */
5122 if (dvp->v_type != VDIR)
5123 return (ENOTDIR);
5124
5125 /*
5126 * If lookup is for ".", just return dvp. Don't need
5127 * to send it over the wire or look it up in the dnlc,
5128 * just need to check access.
5129 */
5130 if (nm[0] == '.' && nm[1] == '\0') {
5131 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5132 if (error)
5133 return (error);
5134 VN_HOLD(dvp);
5135 *vpp = dvp;
5136 return (0);
5137 }
5138
5139 drp = VTOR4(dvp);
5140 if (!(drp->r_flags & R4LOOKUP)) {
5141 mutex_enter(&drp->r_statelock);
5142 drp->r_flags |= R4LOOKUP;
5143 mutex_exit(&drp->r_statelock);
5144 }
5145
5146 *vpp = NULL;
5147 /*
5148 * Lookup this name in the DNLC. If there is no entry
5149 * lookup over the wire.
5150 */
5151 if (!skipdnlc)
5152 *vpp = dnlc_lookup(dvp, nm);
5153 if (*vpp == NULL) {
5154 /*
5155 * We need to go over the wire to lookup the name.
5156 */
5157 return (nfs4lookupnew_otw(dvp, nm, vpp, cr));
5158 }
5159
5160 /*
5161 * We hit on the dnlc
5162 */
5163 if (*vpp != DNLC_NO_VNODE ||
5164 (dvp->v_vfsp->vfs_flag & VFS_RDONLY)) {
5165 /*
5166 * But our attrs may not be valid.
5167 */
5168 if (ATTRCACHE4_VALID(dvp)) {
5169 error = nfs4_waitfor_purge_complete(dvp);
5170 if (error) {
5171 VN_RELE(*vpp);
5172 *vpp = NULL;
5173 return (error);
5174 }
5175
5176 /*
5177 * If after the purge completes, check to make sure
5178 * our attrs are still valid.
5179 */
5180 if (ATTRCACHE4_VALID(dvp)) {
5181 /*
5182 * If we waited for a purge we may have
5183 * lost our vnode so look it up again.
5184 */
5185 VN_RELE(*vpp);
5186 *vpp = dnlc_lookup(dvp, nm);
5187 if (*vpp == NULL)
5188 return (nfs4lookupnew_otw(dvp,
5189 nm, vpp, cr));
5190
5191 /*
5192 * The access cache should almost always hit
5193 */
5194 error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5195
5196 if (error) {
5197 VN_RELE(*vpp);
5198 *vpp = NULL;
5199 return (error);
5200 }
5201 if (*vpp == DNLC_NO_VNODE) {
5202 VN_RELE(*vpp);
5203 *vpp = NULL;
5204 return (ENOENT);
5205 }
5206 return (0);
5207 }
5208 }
5209 }
5210
5211 ASSERT(*vpp != NULL);
5212
5213 /*
5214 * We may have gotten here we have one of the following cases:
5215 * 1) vpp != DNLC_NO_VNODE, our attrs have timed out so we
5216 * need to validate them.
5217 * 2) vpp == DNLC_NO_VNODE, a negative entry that we always
5218 * must validate.
5219 *
5220 * Go to the server and check if the directory has changed, if
5221 * it hasn't we are done and can use the dnlc entry.
5222 */
5223 return (nfs4lookupvalidate_otw(dvp, nm, vpp, cr));
5224 }
5225
5226 /*
5227 * Go to the server and check if the directory has changed, if
5228 * it hasn't we are done and can use the dnlc entry. If it
5229 * has changed we get a new copy of its attributes and check
5230 * the access for VEXEC, then relookup the filename and
5231 * get its filehandle and attributes.
5232 *
5233 * PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR
5234 * if the NVERIFY failed we must
5235 * purge the caches
5236 * cache new attributes (will set r_time_attr_inval)
5237 * cache new access
5238 * recheck VEXEC access
5239 * add name to dnlc, possibly negative
5240 * if LOOKUP succeeded
5241 * cache new attributes
5242 * else
5243 * set a new r_time_attr_inval for dvp
5244 * check to make sure we have access
5245 *
5246 * The vpp returned is the vnode passed in if the directory is valid,
5247 * a new vnode if successful lookup, or NULL on error.
5248 */
5249 static int
nfs4lookupvalidate_otw(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr)5250 nfs4lookupvalidate_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
5251 {
5252 COMPOUND4args_clnt args;
5253 COMPOUND4res_clnt res;
5254 fattr4 *ver_fattr;
5255 fattr4_change dchange;
5256 int32_t *ptr;
5257 int argoplist_size = 7 * sizeof (nfs_argop4);
5258 nfs_argop4 *argop;
5259 int doqueue;
5260 mntinfo4_t *mi;
5261 nfs4_recov_state_t recov_state;
5262 hrtime_t t;
5263 int isdotdot;
5264 vnode_t *nvp;
5265 nfs_fh4 *fhp;
5266 nfs4_sharedfh_t *sfhp;
5267 nfs4_access_type_t cacc;
5268 rnode4_t *nrp;
5269 rnode4_t *drp = VTOR4(dvp);
5270 nfs4_ga_res_t *garp = NULL;
5271 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
5272
5273 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5274 ASSERT(nm != NULL);
5275 ASSERT(nm[0] != '\0');
5276 ASSERT(dvp->v_type == VDIR);
5277 ASSERT(nm[0] != '.' || nm[1] != '\0');
5278 ASSERT(*vpp != NULL);
5279
5280 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') {
5281 isdotdot = 1;
5282 args.ctag = TAG_LOOKUP_VPARENT;
5283 } else {
5284 /*
5285 * If dvp were a stub, it should have triggered and caused
5286 * a mount for us to get this far.
5287 */
5288 ASSERT(!RP_ISSTUB(VTOR4(dvp)));
5289
5290 isdotdot = 0;
5291 args.ctag = TAG_LOOKUP_VALID;
5292 }
5293
5294 mi = VTOMI4(dvp);
5295 recov_state.rs_flags = 0;
5296 recov_state.rs_num_retry_despite_err = 0;
5297
5298 nvp = NULL;
5299
5300 /* Save the original mount point security information */
5301 (void) save_mnt_secinfo(mi->mi_curr_serv);
5302
5303 recov_retry:
5304 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
5305 &recov_state, NULL);
5306 if (e.error) {
5307 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5308 VN_RELE(*vpp);
5309 *vpp = NULL;
5310 return (e.error);
5311 }
5312
5313 argop = kmem_alloc(argoplist_size, KM_SLEEP);
5314
5315 /* PUTFH dfh NVERIFY GETATTR ACCESS LOOKUP GETFH GETATTR */
5316 args.array_len = 7;
5317 args.array = argop;
5318
5319 /* 0. putfh file */
5320 argop[0].argop = OP_CPUTFH;
5321 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;
5322
5323 /* 1. nverify the change info */
5324 argop[1].argop = OP_NVERIFY;
5325 ver_fattr = &argop[1].nfs_argop4_u.opnverify.obj_attributes;
5326 ver_fattr->attrmask = FATTR4_CHANGE_MASK;
5327 ver_fattr->attrlist4 = (char *)&dchange;
5328 ptr = (int32_t *)&dchange;
5329 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
5330 ver_fattr->attrlist4_len = sizeof (fattr4_change);
5331
5332 /* 2. getattr directory */
5333 argop[2].argop = OP_GETATTR;
5334 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5335 argop[2].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5336
5337 /* 3. access directory */
5338 argop[3].argop = OP_ACCESS;
5339 argop[3].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
5340 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;
5341
5342 /* 4. lookup name */
5343 if (isdotdot) {
5344 argop[4].argop = OP_LOOKUPP;
5345 } else {
5346 argop[4].argop = OP_CLOOKUP;
5347 argop[4].nfs_argop4_u.opclookup.cname = nm;
5348 }
5349
5350 /* 5. resulting file handle */
5351 argop[5].argop = OP_GETFH;
5352
5353 /* 6. resulting file attributes */
5354 argop[6].argop = OP_GETATTR;
5355 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5356 argop[6].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5357
5358 doqueue = 1;
5359 t = gethrtime();
5360
5361 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
5362
5363 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5364 e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
5365 if (e.error != 0 && *vpp != NULL)
5366 VN_RELE(*vpp);
5367 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5368 &recov_state, FALSE);
5369 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5370 kmem_free(argop, argoplist_size);
5371 return (e.error);
5372 }
5373
5374 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5375 /*
5376 * For WRONGSEC of a non-dotdot case, send secinfo directly
5377 * from this thread, do not go thru the recovery thread since
5378 * we need the nm information.
5379 *
5380 * Not doing dotdot case because there is no specification
5381 * for (PUTFH, SECINFO "..") yet.
5382 */
5383 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
5384 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
5385 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5386 &recov_state, FALSE);
5387 else
5388 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5389 &recov_state, TRUE);
5390 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5391 kmem_free(argop, argoplist_size);
5392 if (!e.error)
5393 goto recov_retry;
5394 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5395 VN_RELE(*vpp);
5396 *vpp = NULL;
5397 return (e.error);
5398 }
5399
5400 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
5401 OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
5402 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5403 &recov_state, TRUE);
5404
5405 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5406 kmem_free(argop, argoplist_size);
5407 goto recov_retry;
5408 }
5409 }
5410
5411 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);
5412
5413 if (e.error || res.array_len == 0) {
5414 /*
5415 * If e.error isn't set, then reply has no ops (or we couldn't
5416 * be here). The only legal way to reply without an op array
5417 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
5418 * be in the reply for all other status values.
5419 *
5420 * For valid replies without an ops array, return ENOTSUP
5421 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
5422 * return EIO -- don't trust status.
5423 */
5424 if (e.error == 0)
5425 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
5426 ENOTSUP : EIO;
5427 VN_RELE(*vpp);
5428 *vpp = NULL;
5429 kmem_free(argop, argoplist_size);
5430 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5431 return (e.error);
5432 }
5433
5434 if (res.status != NFS4ERR_SAME) {
5435 e.error = geterrno4(res.status);
5436
5437 /*
5438 * The NVERIFY "failed" so the directory has changed
5439 * First make sure PUTFH succeeded and NVERIFY "failed"
5440 * cleanly.
5441 */
5442 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
5443 (res.array[1].nfs_resop4_u.opnverify.status != NFS4_OK)) {
5444 nfs4_purge_stale_fh(e.error, dvp, cr);
5445 VN_RELE(*vpp);
5446 *vpp = NULL;
5447 goto exit;
5448 }
5449
5450 /*
5451 * We know the NVERIFY "failed" so we must:
5452 * purge the caches (access and indirectly dnlc if needed)
5453 */
5454 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
5455
5456 if (res.array[2].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5457 nfs4_purge_stale_fh(e.error, dvp, cr);
5458 VN_RELE(*vpp);
5459 *vpp = NULL;
5460 goto exit;
5461 }
5462
5463 /*
5464 * Install new cached attributes for the directory
5465 */
5466 nfs4_attr_cache(dvp,
5467 &res.array[2].nfs_resop4_u.opgetattr.ga_res,
5468 t, cr, FALSE, NULL);
5469
5470 if (res.array[3].nfs_resop4_u.opaccess.status != NFS4_OK) {
5471 nfs4_purge_stale_fh(e.error, dvp, cr);
5472 VN_RELE(*vpp);
5473 *vpp = NULL;
5474 e.error = geterrno4(res.status);
5475 goto exit;
5476 }
5477
5478 /*
5479 * Now we know the directory is valid,
5480 * cache new directory access
5481 */
5482 nfs4_access_cache(drp,
5483 args.array[3].nfs_argop4_u.opaccess.access,
5484 res.array[3].nfs_resop4_u.opaccess.access, cr);
5485
5486 /*
5487 * recheck VEXEC access
5488 */
5489 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
5490 if (cacc != NFS4_ACCESS_ALLOWED) {
5491 /*
5492 * Directory permissions might have been revoked
5493 */
5494 if (cacc == NFS4_ACCESS_DENIED) {
5495 e.error = EACCES;
5496 VN_RELE(*vpp);
5497 *vpp = NULL;
5498 goto exit;
5499 }
5500
5501 /*
5502 * Somehow we must not have asked for enough
5503 * so try a singleton ACCESS, should never happen.
5504 */
5505 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5506 if (e.error) {
5507 VN_RELE(*vpp);
5508 *vpp = NULL;
5509 goto exit;
5510 }
5511 }
5512
5513 e.error = geterrno4(res.status);
5514 if (res.array[4].nfs_resop4_u.oplookup.status != NFS4_OK) {
5515 /*
5516 * The lookup failed, probably no entry
5517 */
5518 if (e.error == ENOENT && nfs4_lookup_neg_cache) {
5519 dnlc_update(dvp, nm, DNLC_NO_VNODE);
5520 } else {
5521 /*
5522 * Might be some other error, so remove
5523 * the dnlc entry to make sure we start all
5524 * over again, next time.
5525 */
5526 dnlc_remove(dvp, nm);
5527 }
5528 VN_RELE(*vpp);
5529 *vpp = NULL;
5530 goto exit;
5531 }
5532
5533 if (res.array[5].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5534 /*
5535 * The file exists but we can't get its fh for
5536 * some unknown reason. Remove it from the dnlc
5537 * and error out to be safe.
5538 */
5539 dnlc_remove(dvp, nm);
5540 VN_RELE(*vpp);
5541 *vpp = NULL;
5542 goto exit;
5543 }
5544 fhp = &res.array[5].nfs_resop4_u.opgetfh.object;
5545 if (fhp->nfs_fh4_len == 0) {
5546 /*
5547 * The file exists but a bogus fh
5548 * some unknown reason. Remove it from the dnlc
5549 * and error out to be safe.
5550 */
5551 e.error = ENOENT;
5552 dnlc_remove(dvp, nm);
5553 VN_RELE(*vpp);
5554 *vpp = NULL;
5555 goto exit;
5556 }
5557 sfhp = sfh4_get(fhp, mi);
5558
5559 if (res.array[6].nfs_resop4_u.opgetattr.status == NFS4_OK)
5560 garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
5561
5562 /*
5563 * Make the new rnode
5564 */
5565 if (isdotdot) {
5566 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
5567 if (e.error) {
5568 sfh4_rele(&sfhp);
5569 VN_RELE(*vpp);
5570 *vpp = NULL;
5571 goto exit;
5572 }
5573 /*
5574 * XXX if nfs4_make_dotdot uses an existing rnode
5575 * XXX it doesn't update the attributes.
5576 * XXX for now just save them again to save an OTW
5577 */
5578 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
5579 } else {
5580 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
5581 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
5582 /*
5583 * If v_type == VNON, then garp was NULL because
5584 * the last op in the compound failed and makenfs4node
5585 * could not find the vnode for sfhp. It created
5586 * a new vnode, so we have nothing to purge here.
5587 */
5588 if (nvp->v_type == VNON) {
5589 vattr_t vattr;
5590
5591 vattr.va_mask = AT_TYPE;
5592 /*
5593 * N.B. We've already called nfs4_end_fop above.
5594 */
5595 e.error = nfs4getattr(nvp, &vattr, cr);
5596 if (e.error) {
5597 sfh4_rele(&sfhp);
5598 VN_RELE(*vpp);
5599 *vpp = NULL;
5600 VN_RELE(nvp);
5601 goto exit;
5602 }
5603 nvp->v_type = vattr.va_type;
5604 }
5605 }
5606 sfh4_rele(&sfhp);
5607
5608 nrp = VTOR4(nvp);
5609 mutex_enter(&nrp->r_statev4_lock);
5610 if (!nrp->created_v4) {
5611 mutex_exit(&nrp->r_statev4_lock);
5612 dnlc_update(dvp, nm, nvp);
5613 } else
5614 mutex_exit(&nrp->r_statev4_lock);
5615
5616 VN_RELE(*vpp);
5617 *vpp = nvp;
5618 } else {
5619 hrtime_t now;
5620 hrtime_t delta = 0;
5621
5622 e.error = 0;
5623
5624 /*
5625 * Because the NVERIFY "succeeded" we know that the
5626 * directory attributes are still valid
5627 * so update r_time_attr_inval
5628 */
5629 now = gethrtime();
5630 mutex_enter(&drp->r_statelock);
5631 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
5632 delta = now - drp->r_time_attr_saved;
5633 if (delta < mi->mi_acdirmin)
5634 delta = mi->mi_acdirmin;
5635 else if (delta > mi->mi_acdirmax)
5636 delta = mi->mi_acdirmax;
5637 }
5638 drp->r_time_attr_inval = now + delta;
5639 mutex_exit(&drp->r_statelock);
5640 dnlc_update(dvp, nm, *vpp);
5641
5642 /*
5643 * Even though we have a valid directory attr cache
5644 * and dnlc entry, we may not have access.
5645 * This should almost always hit the cache.
5646 */
5647 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5648 if (e.error) {
5649 VN_RELE(*vpp);
5650 *vpp = NULL;
5651 }
5652
5653 if (*vpp == DNLC_NO_VNODE) {
5654 VN_RELE(*vpp);
5655 *vpp = NULL;
5656 e.error = ENOENT;
5657 }
5658 }
5659
5660 exit:
5661 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5662 kmem_free(argop, argoplist_size);
5663 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5664 return (e.error);
5665 }
5666
5667 /*
5668 * We need to go over the wire to lookup the name, but
5669 * while we are there verify the directory has not
5670 * changed but if it has, get new attributes and check access
5671 *
5672 * PUTFH dfh SAVEFH LOOKUP nm GETFH GETATTR RESTOREFH
5673 * NVERIFY GETATTR ACCESS
5674 *
5675 * With the results:
5676 * if the NVERIFY failed we must purge the caches, add new attributes,
5677 * and cache new access.
5678 * set a new r_time_attr_inval
5679 * add name to dnlc, possibly negative
5680 * if LOOKUP succeeded
5681 * cache new attributes
5682 */
5683 static int
nfs4lookupnew_otw(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr)5684 nfs4lookupnew_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
5685 {
5686 COMPOUND4args_clnt args;
5687 COMPOUND4res_clnt res;
5688 fattr4 *ver_fattr;
5689 fattr4_change dchange;
5690 int32_t *ptr;
5691 nfs4_ga_res_t *garp = NULL;
5692 int argoplist_size = 9 * sizeof (nfs_argop4);
5693 nfs_argop4 *argop;
5694 int doqueue;
5695 mntinfo4_t *mi;
5696 nfs4_recov_state_t recov_state;
5697 hrtime_t t;
5698 int isdotdot;
5699 vnode_t *nvp;
5700 nfs_fh4 *fhp;
5701 nfs4_sharedfh_t *sfhp;
5702 nfs4_access_type_t cacc;
5703 rnode4_t *nrp;
5704 rnode4_t *drp = VTOR4(dvp);
5705 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
5706
5707 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
5708 ASSERT(nm != NULL);
5709 ASSERT(nm[0] != '\0');
5710 ASSERT(dvp->v_type == VDIR);
5711 ASSERT(nm[0] != '.' || nm[1] != '\0');
5712 ASSERT(*vpp == NULL);
5713
5714 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0') {
5715 isdotdot = 1;
5716 args.ctag = TAG_LOOKUP_PARENT;
5717 } else {
5718 /*
5719 * If dvp were a stub, it should have triggered and caused
5720 * a mount for us to get this far.
5721 */
5722 ASSERT(!RP_ISSTUB(VTOR4(dvp)));
5723
5724 isdotdot = 0;
5725 args.ctag = TAG_LOOKUP;
5726 }
5727
5728 mi = VTOMI4(dvp);
5729 recov_state.rs_flags = 0;
5730 recov_state.rs_num_retry_despite_err = 0;
5731
5732 nvp = NULL;
5733
5734 /* Save the original mount point security information */
5735 (void) save_mnt_secinfo(mi->mi_curr_serv);
5736
5737 recov_retry:
5738 e.error = nfs4_start_fop(mi, dvp, NULL, OH_LOOKUP,
5739 &recov_state, NULL);
5740 if (e.error) {
5741 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5742 return (e.error);
5743 }
5744
5745 argop = kmem_alloc(argoplist_size, KM_SLEEP);
5746
5747 /* PUTFH SAVEFH LOOKUP GETFH GETATTR RESTOREFH NVERIFY GETATTR ACCESS */
5748 args.array_len = 9;
5749 args.array = argop;
5750
5751 /* 0. putfh file */
5752 argop[0].argop = OP_CPUTFH;
5753 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(dvp)->r_fh;
5754
5755 /* 1. savefh for the nverify */
5756 argop[1].argop = OP_SAVEFH;
5757
5758 /* 2. lookup name */
5759 if (isdotdot) {
5760 argop[2].argop = OP_LOOKUPP;
5761 } else {
5762 argop[2].argop = OP_CLOOKUP;
5763 argop[2].nfs_argop4_u.opclookup.cname = nm;
5764 }
5765
5766 /* 3. resulting file handle */
5767 argop[3].argop = OP_GETFH;
5768
5769 /* 4. resulting file attributes */
5770 argop[4].argop = OP_GETATTR;
5771 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5772 argop[4].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5773
5774 /* 5. restorefh back the directory for the nverify */
5775 argop[5].argop = OP_RESTOREFH;
5776
5777 /* 6. nverify the change info */
5778 argop[6].argop = OP_NVERIFY;
5779 ver_fattr = &argop[6].nfs_argop4_u.opnverify.obj_attributes;
5780 ver_fattr->attrmask = FATTR4_CHANGE_MASK;
5781 ver_fattr->attrlist4 = (char *)&dchange;
5782 ptr = (int32_t *)&dchange;
5783 IXDR_PUT_HYPER(ptr, VTOR4(dvp)->r_change);
5784 ver_fattr->attrlist4_len = sizeof (fattr4_change);
5785
5786 /* 7. getattr directory */
5787 argop[7].argop = OP_GETATTR;
5788 argop[7].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
5789 argop[7].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
5790
5791 /* 8. access directory */
5792 argop[8].argop = OP_ACCESS;
5793 argop[8].nfs_argop4_u.opaccess.access = ACCESS4_READ | ACCESS4_DELETE |
5794 ACCESS4_MODIFY | ACCESS4_EXTEND | ACCESS4_LOOKUP;
5795
5796 doqueue = 1;
5797 t = gethrtime();
5798
5799 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
5800
5801 if (!isdotdot && res.status == NFS4ERR_MOVED) {
5802 e.error = nfs4_setup_referral(dvp, nm, vpp, cr);
5803 if (e.error != 0 && *vpp != NULL)
5804 VN_RELE(*vpp);
5805 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5806 &recov_state, FALSE);
5807 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5808 kmem_free(argop, argoplist_size);
5809 return (e.error);
5810 }
5811
5812 if (nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp)) {
5813 /*
5814 * For WRONGSEC of a non-dotdot case, send secinfo directly
5815 * from this thread, do not go thru the recovery thread since
5816 * we need the nm information.
5817 *
5818 * Not doing dotdot case because there is no specification
5819 * for (PUTFH, SECINFO "..") yet.
5820 */
5821 if (!isdotdot && res.status == NFS4ERR_WRONGSEC) {
5822 if ((e.error = nfs4_secinfo_vnode_otw(dvp, nm, cr)))
5823 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5824 &recov_state, FALSE);
5825 else
5826 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5827 &recov_state, TRUE);
5828 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5829 kmem_free(argop, argoplist_size);
5830 if (!e.error)
5831 goto recov_retry;
5832 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5833 return (e.error);
5834 }
5835
5836 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
5837 OP_LOOKUP, NULL, NULL, NULL) == FALSE) {
5838 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP,
5839 &recov_state, TRUE);
5840
5841 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
5842 kmem_free(argop, argoplist_size);
5843 goto recov_retry;
5844 }
5845 }
5846
5847 nfs4_end_fop(mi, dvp, NULL, OH_LOOKUP, &recov_state, FALSE);
5848
5849 if (e.error || res.array_len == 0) {
5850 /*
5851 * If e.error isn't set, then reply has no ops (or we couldn't
5852 * be here). The only legal way to reply without an op array
5853 * is via NFS4ERR_MINOR_VERS_MISMATCH. An ops array should
5854 * be in the reply for all other status values.
5855 *
5856 * For valid replies without an ops array, return ENOTSUP
5857 * (geterrno4 xlation of VERS_MISMATCH). For illegal replies,
5858 * return EIO -- don't trust status.
5859 */
5860 if (e.error == 0)
5861 e.error = (res.status == NFS4ERR_MINOR_VERS_MISMATCH) ?
5862 ENOTSUP : EIO;
5863
5864 kmem_free(argop, argoplist_size);
5865 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
5866 return (e.error);
5867 }
5868
5869 e.error = geterrno4(res.status);
5870
5871 /*
5872 * The PUTFH and SAVEFH may have failed.
5873 */
5874 if ((res.array[0].nfs_resop4_u.opputfh.status != NFS4_OK) ||
5875 (res.array[1].nfs_resop4_u.opsavefh.status != NFS4_OK)) {
5876 nfs4_purge_stale_fh(e.error, dvp, cr);
5877 goto exit;
5878 }
5879
5880 /*
5881 * Check if the file exists, if it does delay entering
5882 * into the dnlc until after we update the directory
5883 * attributes so we don't cause it to get purged immediately.
5884 */
5885 if (res.array[2].nfs_resop4_u.oplookup.status != NFS4_OK) {
5886 /*
5887 * The lookup failed, probably no entry
5888 */
5889 if (e.error == ENOENT && nfs4_lookup_neg_cache)
5890 dnlc_update(dvp, nm, DNLC_NO_VNODE);
5891 goto exit;
5892 }
5893
5894 if (res.array[3].nfs_resop4_u.opgetfh.status != NFS4_OK) {
5895 /*
5896 * The file exists but we can't get its fh for
5897 * some unknown reason. Error out to be safe.
5898 */
5899 goto exit;
5900 }
5901
5902 fhp = &res.array[3].nfs_resop4_u.opgetfh.object;
5903 if (fhp->nfs_fh4_len == 0) {
5904 /*
5905 * The file exists but a bogus fh
5906 * some unknown reason. Error out to be safe.
5907 */
5908 e.error = EIO;
5909 goto exit;
5910 }
5911 sfhp = sfh4_get(fhp, mi);
5912
5913 if (res.array[4].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5914 sfh4_rele(&sfhp);
5915 goto exit;
5916 }
5917 garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
5918
5919 /*
5920 * The RESTOREFH may have failed
5921 */
5922 if (res.array[5].nfs_resop4_u.oprestorefh.status != NFS4_OK) {
5923 sfh4_rele(&sfhp);
5924 e.error = EIO;
5925 goto exit;
5926 }
5927
5928 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4ERR_SAME) {
5929 /*
5930 * First make sure the NVERIFY failed as we expected,
5931 * if it didn't then be conservative and error out
5932 * as we can't trust the directory.
5933 */
5934 if (res.array[6].nfs_resop4_u.opnverify.status != NFS4_OK) {
5935 sfh4_rele(&sfhp);
5936 e.error = EIO;
5937 goto exit;
5938 }
5939
5940 /*
5941 * We know the NVERIFY "failed" so the directory has changed,
5942 * so we must:
5943 * purge the caches (access and indirectly dnlc if needed)
5944 */
5945 nfs4_purge_caches(dvp, NFS4_NOPURGE_DNLC, cr, TRUE);
5946
5947 if (res.array[7].nfs_resop4_u.opgetattr.status != NFS4_OK) {
5948 sfh4_rele(&sfhp);
5949 goto exit;
5950 }
5951 nfs4_attr_cache(dvp,
5952 &res.array[7].nfs_resop4_u.opgetattr.ga_res,
5953 t, cr, FALSE, NULL);
5954
5955 if (res.array[8].nfs_resop4_u.opaccess.status != NFS4_OK) {
5956 nfs4_purge_stale_fh(e.error, dvp, cr);
5957 sfh4_rele(&sfhp);
5958 e.error = geterrno4(res.status);
5959 goto exit;
5960 }
5961
5962 /*
5963 * Now we know the directory is valid,
5964 * cache new directory access
5965 */
5966 nfs4_access_cache(drp,
5967 args.array[8].nfs_argop4_u.opaccess.access,
5968 res.array[8].nfs_resop4_u.opaccess.access, cr);
5969
5970 /*
5971 * recheck VEXEC access
5972 */
5973 cacc = nfs4_access_check(drp, ACCESS4_LOOKUP, cr);
5974 if (cacc != NFS4_ACCESS_ALLOWED) {
5975 /*
5976 * Directory permissions might have been revoked
5977 */
5978 if (cacc == NFS4_ACCESS_DENIED) {
5979 sfh4_rele(&sfhp);
5980 e.error = EACCES;
5981 goto exit;
5982 }
5983
5984 /*
5985 * Somehow we must not have asked for enough
5986 * so try a singleton ACCESS should never happen
5987 */
5988 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
5989 if (e.error) {
5990 sfh4_rele(&sfhp);
5991 goto exit;
5992 }
5993 }
5994
5995 e.error = geterrno4(res.status);
5996 } else {
5997 hrtime_t now;
5998 hrtime_t delta = 0;
5999
6000 e.error = 0;
6001
6002 /*
6003 * Because the NVERIFY "succeeded" we know that the
6004 * directory attributes are still valid
6005 * so update r_time_attr_inval
6006 */
6007 now = gethrtime();
6008 mutex_enter(&drp->r_statelock);
6009 if (!(mi->mi_flags & MI4_NOAC) && !(dvp->v_flag & VNOCACHE)) {
6010 delta = now - drp->r_time_attr_saved;
6011 if (delta < mi->mi_acdirmin)
6012 delta = mi->mi_acdirmin;
6013 else if (delta > mi->mi_acdirmax)
6014 delta = mi->mi_acdirmax;
6015 }
6016 drp->r_time_attr_inval = now + delta;
6017 mutex_exit(&drp->r_statelock);
6018
6019 /*
6020 * Even though we have a valid directory attr cache,
6021 * we may not have access.
6022 * This should almost always hit the cache.
6023 */
6024 e.error = nfs4_access(dvp, VEXEC, 0, cr, NULL);
6025 if (e.error) {
6026 sfh4_rele(&sfhp);
6027 goto exit;
6028 }
6029 }
6030
6031 /*
6032 * Now we have successfully completed the lookup, if the
6033 * directory has changed we now have the valid attributes.
6034 * We also know we have directory access.
6035 * Create the new rnode and insert it in the dnlc.
6036 */
6037 if (isdotdot) {
6038 e.error = nfs4_make_dotdot(sfhp, t, dvp, cr, &nvp, 1);
6039 if (e.error) {
6040 sfh4_rele(&sfhp);
6041 goto exit;
6042 }
6043 /*
6044 * XXX if nfs4_make_dotdot uses an existing rnode
6045 * XXX it doesn't update the attributes.
6046 * XXX for now just save them again to save an OTW
6047 */
6048 nfs4_attr_cache(nvp, garp, t, cr, FALSE, NULL);
6049 } else {
6050 nvp = makenfs4node(sfhp, garp, dvp->v_vfsp, t, cr,
6051 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
6052 }
6053 sfh4_rele(&sfhp);
6054
6055 nrp = VTOR4(nvp);
6056 mutex_enter(&nrp->r_statev4_lock);
6057 if (!nrp->created_v4) {
6058 mutex_exit(&nrp->r_statev4_lock);
6059 dnlc_update(dvp, nm, nvp);
6060 } else
6061 mutex_exit(&nrp->r_statev4_lock);
6062
6063 *vpp = nvp;
6064
6065 exit:
6066 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6067 kmem_free(argop, argoplist_size);
6068 (void) check_mnt_secinfo(mi->mi_curr_serv, nvp);
6069 return (e.error);
6070 }
6071
6072 #ifdef DEBUG
6073 void
nfs4lookup_dump_compound(char * where,nfs_argop4 * argbase,int argcnt)6074 nfs4lookup_dump_compound(char *where, nfs_argop4 *argbase, int argcnt)
6075 {
6076 uint_t i, len;
6077 zoneid_t zoneid = getzoneid();
6078 char *s;
6079
6080 zcmn_err(zoneid, CE_NOTE, "%s: dumping cmpd", where);
6081 for (i = 0; i < argcnt; i++) {
6082 nfs_argop4 *op = &argbase[i];
6083 switch (op->argop) {
6084 case OP_CPUTFH:
6085 case OP_PUTFH:
6086 zcmn_err(zoneid, CE_NOTE, "\t op %d, putfh", i);
6087 break;
6088 case OP_PUTROOTFH:
6089 zcmn_err(zoneid, CE_NOTE, "\t op %d, putrootfh", i);
6090 break;
6091 case OP_CLOOKUP:
6092 s = op->nfs_argop4_u.opclookup.cname;
6093 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
6094 break;
6095 case OP_LOOKUP:
6096 s = utf8_to_str(&op->nfs_argop4_u.oplookup.objname,
6097 &len, NULL);
6098 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookup %s", i, s);
6099 kmem_free(s, len);
6100 break;
6101 case OP_LOOKUPP:
6102 zcmn_err(zoneid, CE_NOTE, "\t op %d, lookupp ..", i);
6103 break;
6104 case OP_GETFH:
6105 zcmn_err(zoneid, CE_NOTE, "\t op %d, getfh", i);
6106 break;
6107 case OP_GETATTR:
6108 zcmn_err(zoneid, CE_NOTE, "\t op %d, getattr", i);
6109 break;
6110 case OP_OPENATTR:
6111 zcmn_err(zoneid, CE_NOTE, "\t op %d, openattr", i);
6112 break;
6113 default:
6114 zcmn_err(zoneid, CE_NOTE, "\t op %d, opcode %d", i,
6115 op->argop);
6116 break;
6117 }
6118 }
6119 }
6120 #endif
6121
6122 /*
6123 * nfs4lookup_setup - constructs a multi-lookup compound request.
6124 *
6125 * Given the path "nm1/nm2/.../nmn", the following compound requests
6126 * may be created:
6127 *
6128 * Note: Getfh is not be needed because filehandle attr is mandatory, but it
6129 * is faster, for now.
6130 *
6131 * l4_getattrs indicates the type of compound requested.
6132 *
6133 * LKP4_NO_ATTRIBUTE - no attributes (used by secinfo):
6134 *
6135 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn} }
6136 *
6137 * total number of ops is n + 1.
6138 *
6139 * LKP4_LAST_NAMED_ATTR - multi-component path for a named
6140 * attribute: create lookups plus one OPENATTR/GETFH/GETATTR
6141 * before the last component, and only get attributes
6142 * for the last component. Note that the second-to-last
6143 * pathname component is XATTR_RPATH, which does NOT go
6144 * over-the-wire as a lookup.
6145 *
6146 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Lookup {nmn-2};
6147 * Openattr; Getfh; Getattr; Lookup {nmn}; Getfh; Getattr }
6148 *
6149 * and total number of ops is n + 5.
6150 *
6151 * LKP4_LAST_ATTRDIR - multi-component path for the hidden named
6152 * attribute directory: create lookups plus an OPENATTR
6153 * replacing the last lookup. Note that the last pathname
6154 * component is XATTR_RPATH, which does NOT go over-the-wire
6155 * as a lookup.
6156 *
6157 * compound { Put*fh; Lookup {nm1}; Lookup {nm2}; ... Getfh; Getattr;
6158 * Openattr; Getfh; Getattr }
6159 *
6160 * and total number of ops is n + 5.
6161 *
6162 * LKP4_ALL_ATTRIBUTES - create lookups and get attributes for intermediate
6163 * nodes too.
6164 *
6165 * compound { Put*fh; Lookup {nm1}; Getfh; Getattr;
6166 * Lookup {nm2}; ... Lookup {nmn}; Getfh; Getattr }
6167 *
6168 * and total number of ops is 3*n + 1.
6169 *
6170 * All cases: returns the index in the arg array of the final LOOKUP op, or
6171 * -1 if no LOOKUPs were used.
6172 */
6173 int
nfs4lookup_setup(char * nm,lookup4_param_t * lookupargp,int needgetfh)6174 nfs4lookup_setup(char *nm, lookup4_param_t *lookupargp, int needgetfh)
6175 {
6176 enum lkp4_attr_setup l4_getattrs = lookupargp->l4_getattrs;
6177 nfs_argop4 *argbase, *argop;
6178 int arglen, argcnt;
6179 int n = 1; /* number of components */
6180 int nga = 1; /* number of Getattr's in request */
6181 char c = '\0', *s, *p;
6182 int lookup_idx = -1;
6183 int argoplist_size;
6184
6185 /* set lookuparg response result to 0 */
6186 lookupargp->resp->status = NFS4_OK;
6187
6188 /* skip leading "/" or "." e.g. ".//./" if there is */
6189 for (; ; nm++) {
6190 if (*nm != '/' && *nm != '.')
6191 break;
6192
6193 /* ".." is counted as 1 component */
6194 if (*nm == '.' && *(nm + 1) != '/')
6195 break;
6196 }
6197
6198 /*
6199 * Find n = number of components - nm must be null terminated
6200 * Skip "." components.
6201 */
6202 if (*nm != '\0')
6203 for (n = 1, s = nm; *s != '\0'; s++) {
6204 if ((*s == '/') && (*(s + 1) != '/') &&
6205 (*(s + 1) != '\0') &&
6206 !(*(s + 1) == '.' && (*(s + 2) == '/' ||
6207 *(s + 2) == '\0')))
6208 n++;
6209 }
6210 else
6211 n = 0;
6212
6213 /*
6214 * nga is number of components that need Getfh+Getattr
6215 */
6216 switch (l4_getattrs) {
6217 case LKP4_NO_ATTRIBUTES:
6218 nga = 0;
6219 break;
6220 case LKP4_ALL_ATTRIBUTES:
6221 nga = n;
6222 /*
6223 * Always have at least 1 getfh, getattr pair
6224 */
6225 if (nga == 0)
6226 nga++;
6227 break;
6228 case LKP4_LAST_ATTRDIR:
6229 case LKP4_LAST_NAMED_ATTR:
6230 nga = n+1;
6231 break;
6232 }
6233
6234 /*
6235 * If change to use the filehandle attr instead of getfh
6236 * the following line can be deleted.
6237 */
6238 nga *= 2;
6239
6240 /*
6241 * calculate number of ops in request as
6242 * header + trailer + lookups + getattrs
6243 */
6244 arglen = lookupargp->header_len + lookupargp->trailer_len + n + nga;
6245
6246 argoplist_size = arglen * sizeof (nfs_argop4);
6247 argop = argbase = kmem_alloc(argoplist_size, KM_SLEEP);
6248 lookupargp->argsp->array = argop;
6249
6250 argcnt = lookupargp->header_len;
6251 argop += argcnt;
6252
6253 /*
6254 * loop and create a lookup op and possibly getattr/getfh for
6255 * each component. Skip "." components.
6256 */
6257 for (s = nm; *s != '\0'; s = p) {
6258 /*
6259 * Set up a pathname struct for each component if needed
6260 */
6261 while (*s == '/')
6262 s++;
6263 if (*s == '\0')
6264 break;
6265
6266 for (p = s; (*p != '/') && (*p != '\0'); p++)
6267 ;
6268 c = *p;
6269 *p = '\0';
6270
6271 if (s[0] == '.' && s[1] == '\0') {
6272 *p = c;
6273 continue;
6274 }
6275 if (l4_getattrs == LKP4_LAST_ATTRDIR &&
6276 strcmp(s, XATTR_RPATH) == 0) {
6277 /* getfh XXX may not be needed in future */
6278 argop->argop = OP_GETFH;
6279 argop++;
6280 argcnt++;
6281
6282 /* getattr */
6283 argop->argop = OP_GETATTR;
6284 argop->nfs_argop4_u.opgetattr.attr_request =
6285 lookupargp->ga_bits;
6286 argop->nfs_argop4_u.opgetattr.mi =
6287 lookupargp->mi;
6288 argop++;
6289 argcnt++;
6290
6291 /* openattr */
6292 argop->argop = OP_OPENATTR;
6293 } else if (l4_getattrs == LKP4_LAST_NAMED_ATTR &&
6294 strcmp(s, XATTR_RPATH) == 0) {
6295 /* openattr */
6296 argop->argop = OP_OPENATTR;
6297 argop++;
6298 argcnt++;
6299
6300 /* getfh XXX may not be needed in future */
6301 argop->argop = OP_GETFH;
6302 argop++;
6303 argcnt++;
6304
6305 /* getattr */
6306 argop->argop = OP_GETATTR;
6307 argop->nfs_argop4_u.opgetattr.attr_request =
6308 lookupargp->ga_bits;
6309 argop->nfs_argop4_u.opgetattr.mi =
6310 lookupargp->mi;
6311 argop++;
6312 argcnt++;
6313 *p = c;
6314 continue;
6315 } else if (s[0] == '.' && s[1] == '.' && s[2] == '\0') {
6316 /* lookupp */
6317 argop->argop = OP_LOOKUPP;
6318 } else {
6319 /* lookup */
6320 argop->argop = OP_LOOKUP;
6321 (void) str_to_utf8(s,
6322 &argop->nfs_argop4_u.oplookup.objname);
6323 }
6324 lookup_idx = argcnt;
6325 argop++;
6326 argcnt++;
6327
6328 *p = c;
6329
6330 if (l4_getattrs == LKP4_ALL_ATTRIBUTES) {
6331 /* getfh XXX may not be needed in future */
6332 argop->argop = OP_GETFH;
6333 argop++;
6334 argcnt++;
6335
6336 /* getattr */
6337 argop->argop = OP_GETATTR;
6338 argop->nfs_argop4_u.opgetattr.attr_request =
6339 lookupargp->ga_bits;
6340 argop->nfs_argop4_u.opgetattr.mi =
6341 lookupargp->mi;
6342 argop++;
6343 argcnt++;
6344 }
6345 }
6346
6347 if ((l4_getattrs != LKP4_NO_ATTRIBUTES) &&
6348 ((l4_getattrs != LKP4_ALL_ATTRIBUTES) || (lookup_idx < 0))) {
6349 if (needgetfh) {
6350 /* stick in a post-lookup getfh */
6351 argop->argop = OP_GETFH;
6352 argcnt++;
6353 argop++;
6354 }
6355 /* post-lookup getattr */
6356 argop->argop = OP_GETATTR;
6357 argop->nfs_argop4_u.opgetattr.attr_request =
6358 lookupargp->ga_bits;
6359 argop->nfs_argop4_u.opgetattr.mi = lookupargp->mi;
6360 argcnt++;
6361 }
6362 argcnt += lookupargp->trailer_len; /* actual op count */
6363 lookupargp->argsp->array_len = argcnt;
6364 lookupargp->arglen = arglen;
6365
6366 #ifdef DEBUG
6367 if (nfs4_client_lookup_debug)
6368 nfs4lookup_dump_compound("nfs4lookup_setup", argbase, argcnt);
6369 #endif
6370
6371 return (lookup_idx);
6372 }
6373
6374 static int
nfs4openattr(vnode_t * dvp,vnode_t ** avp,int cflag,cred_t * cr)6375 nfs4openattr(vnode_t *dvp, vnode_t **avp, int cflag, cred_t *cr)
6376 {
6377 COMPOUND4args_clnt args;
6378 COMPOUND4res_clnt res;
6379 GETFH4res *gf_res = NULL;
6380 nfs_argop4 argop[4];
6381 nfs_resop4 *resop = NULL;
6382 nfs4_sharedfh_t *sfhp;
6383 hrtime_t t;
6384 nfs4_error_t e;
6385
6386 rnode4_t *drp;
6387 int doqueue = 1;
6388 vnode_t *vp;
6389 int needrecov = 0;
6390 nfs4_recov_state_t recov_state;
6391
6392 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
6393
6394 *avp = NULL;
6395 recov_state.rs_flags = 0;
6396 recov_state.rs_num_retry_despite_err = 0;
6397
6398 recov_retry:
6399 /* COMPOUND: putfh, openattr, getfh, getattr */
6400 args.array_len = 4;
6401 args.array = argop;
6402 args.ctag = TAG_OPENATTR;
6403
6404 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
6405 if (e.error)
6406 return (e.error);
6407
6408 drp = VTOR4(dvp);
6409
6410 /* putfh */
6411 argop[0].argop = OP_CPUTFH;
6412 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6413
6414 /* openattr */
6415 argop[1].argop = OP_OPENATTR;
6416 argop[1].nfs_argop4_u.opopenattr.createdir = (cflag ? TRUE : FALSE);
6417
6418 /* getfh */
6419 argop[2].argop = OP_GETFH;
6420
6421 /* getattr */
6422 argop[3].argop = OP_GETATTR;
6423 argop[3].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6424 argop[3].nfs_argop4_u.opgetattr.mi = VTOMI4(dvp);
6425
6426 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
6427 "nfs4openattr: %s call, drp %s", needrecov ? "recov" : "first",
6428 rnode4info(drp)));
6429
6430 t = gethrtime();
6431
6432 rfs4call(VTOMI4(dvp), &args, &res, cr, &doqueue, 0, &e);
6433
6434 needrecov = nfs4_needs_recovery(&e, FALSE, dvp->v_vfsp);
6435 if (needrecov) {
6436 bool_t abort;
6437
6438 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
6439 "nfs4openattr: initiating recovery\n"));
6440
6441 abort = nfs4_start_recovery(&e,
6442 VTOMI4(dvp), dvp, NULL, NULL, NULL,
6443 OP_OPENATTR, NULL, NULL, NULL);
6444 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6445 if (!e.error) {
6446 e.error = geterrno4(res.status);
6447 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6448 }
6449 if (abort == FALSE)
6450 goto recov_retry;
6451 return (e.error);
6452 }
6453
6454 if (e.error) {
6455 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6456 return (e.error);
6457 }
6458
6459 if (res.status) {
6460 /*
6461 * If OTW errro is NOTSUPP, then it should be
6462 * translated to EINVAL. All Solaris file system
6463 * implementations return EINVAL to the syscall layer
6464 * when the attrdir cannot be created due to an
6465 * implementation restriction or noxattr mount option.
6466 */
6467 if (res.status == NFS4ERR_NOTSUPP) {
6468 mutex_enter(&drp->r_statelock);
6469 if (drp->r_xattr_dir)
6470 VN_RELE(drp->r_xattr_dir);
6471 VN_HOLD(NFS4_XATTR_DIR_NOTSUPP);
6472 drp->r_xattr_dir = NFS4_XATTR_DIR_NOTSUPP;
6473 mutex_exit(&drp->r_statelock);
6474
6475 e.error = EINVAL;
6476 } else {
6477 e.error = geterrno4(res.status);
6478 }
6479
6480 if (e.error) {
6481 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6482 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
6483 needrecov);
6484 return (e.error);
6485 }
6486 }
6487
6488 resop = &res.array[0]; /* putfh res */
6489 ASSERT(resop->nfs_resop4_u.opgetfh.status == NFS4_OK);
6490
6491 resop = &res.array[1]; /* openattr res */
6492 ASSERT(resop->nfs_resop4_u.opopenattr.status == NFS4_OK);
6493
6494 resop = &res.array[2]; /* getfh res */
6495 gf_res = &resop->nfs_resop4_u.opgetfh;
6496 if (gf_res->object.nfs_fh4_len == 0) {
6497 *avp = NULL;
6498 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6499 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6500 return (ENOENT);
6501 }
6502
6503 sfhp = sfh4_get(&gf_res->object, VTOMI4(dvp));
6504 vp = makenfs4node(sfhp, &res.array[3].nfs_resop4_u.opgetattr.ga_res,
6505 dvp->v_vfsp, t, cr, dvp,
6506 fn_get(VTOSV(dvp)->sv_name, XATTR_RPATH, sfhp));
6507 sfh4_rele(&sfhp);
6508
6509 if (e.error)
6510 PURGE_ATTRCACHE4(vp);
6511
6512 mutex_enter(&vp->v_lock);
6513 vp->v_flag |= V_XATTRDIR;
6514 mutex_exit(&vp->v_lock);
6515
6516 *avp = vp;
6517
6518 mutex_enter(&drp->r_statelock);
6519 if (drp->r_xattr_dir)
6520 VN_RELE(drp->r_xattr_dir);
6521 VN_HOLD(vp);
6522 drp->r_xattr_dir = vp;
6523
6524 /*
6525 * Invalidate pathconf4 cache because r_xattr_dir is no longer
6526 * NULL. xattrs could be created at any time, and we have no
6527 * way to update pc4_xattr_exists in the base object if/when
6528 * it happens.
6529 */
6530 drp->r_pathconf.pc4_xattr_valid = 0;
6531
6532 mutex_exit(&drp->r_statelock);
6533
6534 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
6535
6536 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
6537
6538 return (0);
6539 }
6540
6541 /* ARGSUSED */
6542 static int
nfs4_create(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr,int flags,caller_context_t * ct,vsecattr_t * vsecp)6543 nfs4_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
6544 int mode, vnode_t **vpp, cred_t *cr, int flags, caller_context_t *ct,
6545 vsecattr_t *vsecp)
6546 {
6547 int error;
6548 vnode_t *vp = NULL;
6549 rnode4_t *rp;
6550 struct vattr vattr;
6551 rnode4_t *drp;
6552 vnode_t *tempvp;
6553 enum createmode4 createmode;
6554 bool_t must_trunc = FALSE;
6555 int truncating = 0;
6556
6557 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
6558 return (EPERM);
6559 if (exclusive == EXCL && (dvp->v_flag & V_XATTRDIR)) {
6560 return (EINVAL);
6561 }
6562
6563 /* . and .. have special meaning in the protocol, reject them. */
6564
6565 if (nm[0] == '.' && (nm[1] == '\0' || (nm[1] == '.' && nm[2] == '\0')))
6566 return (EISDIR);
6567
6568 drp = VTOR4(dvp);
6569
6570 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
6571 return (EINTR);
6572
6573 top:
6574 /*
6575 * We make a copy of the attributes because the caller does not
6576 * expect us to change what va points to.
6577 */
6578 vattr = *va;
6579
6580 /*
6581 * If the pathname is "", then dvp is the root vnode of
6582 * a remote file mounted over a local directory.
6583 * All that needs to be done is access
6584 * checking and truncation. Note that we avoid doing
6585 * open w/ create because the parent directory might
6586 * be in pseudo-fs and the open would fail.
6587 */
6588 if (*nm == '\0') {
6589 error = 0;
6590 VN_HOLD(dvp);
6591 vp = dvp;
6592 must_trunc = TRUE;
6593 } else {
6594 /*
6595 * We need to go over the wire, just to be sure whether the
6596 * file exists or not. Using the DNLC can be dangerous in
6597 * this case when making a decision regarding existence.
6598 */
6599 error = nfs4lookup(dvp, nm, &vp, cr, 1);
6600 }
6601
6602 if (exclusive)
6603 createmode = EXCLUSIVE4;
6604 else
6605 createmode = GUARDED4;
6606
6607 /*
6608 * error would be set if the file does not exist on the
6609 * server, so lets go create it.
6610 */
6611 if (error) {
6612 goto create_otw;
6613 }
6614
6615 /*
6616 * File does exist on the server
6617 */
6618 if (exclusive == EXCL)
6619 error = EEXIST;
6620 else if (vp->v_type == VDIR && (mode & VWRITE))
6621 error = EISDIR;
6622 else {
6623 /*
6624 * If vnode is a device, create special vnode.
6625 */
6626 if (ISVDEV(vp->v_type)) {
6627 tempvp = vp;
6628 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
6629 VN_RELE(tempvp);
6630 }
6631 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
6632 if ((vattr.va_mask & AT_SIZE) &&
6633 vp->v_type == VREG) {
6634 rp = VTOR4(vp);
6635 /*
6636 * Check here for large file handled
6637 * by LF-unaware process (as
6638 * ufs_create() does)
6639 */
6640 if (!(flags & FOFFMAX)) {
6641 mutex_enter(&rp->r_statelock);
6642 if (rp->r_size > MAXOFF32_T)
6643 error = EOVERFLOW;
6644 mutex_exit(&rp->r_statelock);
6645 }
6646
6647 /* if error is set then we need to return */
6648 if (error) {
6649 nfs_rw_exit(&drp->r_rwlock);
6650 VN_RELE(vp);
6651 return (error);
6652 }
6653
6654 if (must_trunc) {
6655 vattr.va_mask = AT_SIZE;
6656 error = nfs4setattr(vp, &vattr, 0, cr,
6657 NULL);
6658 } else {
6659 /*
6660 * we know we have a regular file that already
6661 * exists and we may end up truncating the file
6662 * as a result of the open_otw, so flush out
6663 * any dirty pages for this file first.
6664 */
6665 if (nfs4_has_pages(vp) &&
6666 ((rp->r_flags & R4DIRTY) ||
6667 rp->r_count > 0 ||
6668 rp->r_mapcnt > 0)) {
6669 error = nfs4_putpage(vp,
6670 (offset_t)0, 0, 0, cr, ct);
6671 if (error && (error == ENOSPC ||
6672 error == EDQUOT)) {
6673 mutex_enter(
6674 &rp->r_statelock);
6675 if (!rp->r_error)
6676 rp->r_error =
6677 error;
6678 mutex_exit(
6679 &rp->r_statelock);
6680 }
6681 }
6682 vattr.va_mask = (AT_SIZE |
6683 AT_TYPE | AT_MODE);
6684 vattr.va_type = VREG;
6685 createmode = UNCHECKED4;
6686 truncating = 1;
6687 goto create_otw;
6688 }
6689 }
6690 }
6691 }
6692 nfs_rw_exit(&drp->r_rwlock);
6693 if (error) {
6694 VN_RELE(vp);
6695 } else {
6696 vnode_t *tvp;
6697 rnode4_t *trp;
6698 tvp = vp;
6699 if (vp->v_type == VREG) {
6700 trp = VTOR4(vp);
6701 if (IS_SHADOW(vp, trp))
6702 tvp = RTOV4(trp);
6703 }
6704
6705 if (must_trunc) {
6706 /*
6707 * existing file got truncated, notify.
6708 */
6709 vnevent_create(tvp, ct);
6710 }
6711
6712 *vpp = vp;
6713 }
6714 return (error);
6715
6716 create_otw:
6717 dnlc_remove(dvp, nm);
6718
6719 ASSERT(vattr.va_mask & AT_TYPE);
6720
6721 /*
6722 * If not a regular file let nfs4mknod() handle it.
6723 */
6724 if (vattr.va_type != VREG) {
6725 error = nfs4mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
6726 nfs_rw_exit(&drp->r_rwlock);
6727 return (error);
6728 }
6729
6730 /*
6731 * It _is_ a regular file.
6732 */
6733 ASSERT(vattr.va_mask & AT_MODE);
6734 if (MANDMODE(vattr.va_mode)) {
6735 nfs_rw_exit(&drp->r_rwlock);
6736 return (EACCES);
6737 }
6738
6739 /*
6740 * If this happens to be a mknod of a regular file, then flags will
6741 * have neither FREAD or FWRITE. However, we must set at least one
6742 * for the call to nfs4open_otw. If it's open(O_CREAT) driving
6743 * nfs4_create, then either FREAD, FWRITE, or FRDWR has already been
6744 * set (based on openmode specified by app).
6745 */
6746 if ((flags & (FREAD|FWRITE)) == 0)
6747 flags |= (FREAD|FWRITE);
6748
6749 error = nfs4open_otw(dvp, nm, &vattr, vpp, cr, 1, flags, createmode, 0);
6750
6751 if (vp != NULL) {
6752 /* if create was successful, throw away the file's pages */
6753 if (!error && (vattr.va_mask & AT_SIZE))
6754 nfs4_invalidate_pages(vp, (vattr.va_size & PAGEMASK),
6755 cr);
6756 /* release the lookup hold */
6757 VN_RELE(vp);
6758 vp = NULL;
6759 }
6760
6761 /*
6762 * validate that we opened a regular file. This handles a misbehaving
6763 * server that returns an incorrect FH.
6764 */
6765 if ((error == 0) && *vpp && (*vpp)->v_type != VREG) {
6766 error = EISDIR;
6767 VN_RELE(*vpp);
6768 }
6769
6770 /*
6771 * If this is not an exclusive create, then the CREATE
6772 * request will be made with the GUARDED mode set. This
6773 * means that the server will return EEXIST if the file
6774 * exists. The file could exist because of a retransmitted
6775 * request. In this case, we recover by starting over and
6776 * checking to see whether the file exists. This second
6777 * time through it should and a CREATE request will not be
6778 * sent.
6779 *
6780 * This handles the problem of a dangling CREATE request
6781 * which contains attributes which indicate that the file
6782 * should be truncated. This retransmitted request could
6783 * possibly truncate valid data in the file if not caught
6784 * by the duplicate request mechanism on the server or if
6785 * not caught by other means. The scenario is:
6786 *
6787 * Client transmits CREATE request with size = 0
6788 * Client times out, retransmits request.
6789 * Response to the first request arrives from the server
6790 * and the client proceeds on.
6791 * Client writes data to the file.
6792 * The server now processes retransmitted CREATE request
6793 * and truncates file.
6794 *
6795 * The use of the GUARDED CREATE request prevents this from
6796 * happening because the retransmitted CREATE would fail
6797 * with EEXIST and would not truncate the file.
6798 */
6799 if (error == EEXIST && exclusive == NONEXCL) {
6800 #ifdef DEBUG
6801 nfs4_create_misses++;
6802 #endif
6803 goto top;
6804 }
6805 nfs_rw_exit(&drp->r_rwlock);
6806 if (truncating && !error && *vpp) {
6807 vnode_t *tvp;
6808 rnode4_t *trp;
6809 /*
6810 * existing file got truncated, notify.
6811 */
6812 tvp = *vpp;
6813 trp = VTOR4(tvp);
6814 if (IS_SHADOW(tvp, trp))
6815 tvp = RTOV4(trp);
6816 vnevent_create(tvp, ct);
6817 }
6818 return (error);
6819 }
6820
6821 /*
6822 * Create compound (for mkdir, mknod, symlink):
6823 * { Putfh <dfh>; Create; Getfh; Getattr }
6824 * It's okay if setattr failed to set gid - this is not considered
6825 * an error, but purge attrs in that case.
6826 */
6827 static int
call_nfs4_create_req(vnode_t * dvp,char * nm,void * data,struct vattr * va,vnode_t ** vpp,cred_t * cr,nfs_ftype4 type)6828 call_nfs4_create_req(vnode_t *dvp, char *nm, void *data, struct vattr *va,
6829 vnode_t **vpp, cred_t *cr, nfs_ftype4 type)
6830 {
6831 int need_end_op = FALSE;
6832 COMPOUND4args_clnt args;
6833 COMPOUND4res_clnt res, *resp = NULL;
6834 nfs_argop4 *argop;
6835 nfs_resop4 *resop;
6836 int doqueue;
6837 mntinfo4_t *mi;
6838 rnode4_t *drp = VTOR4(dvp);
6839 change_info4 *cinfo;
6840 GETFH4res *gf_res;
6841 struct vattr vattr;
6842 vnode_t *vp;
6843 fattr4 *crattr;
6844 bool_t needrecov = FALSE;
6845 nfs4_recov_state_t recov_state;
6846 nfs4_sharedfh_t *sfhp = NULL;
6847 hrtime_t t;
6848 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
6849 int numops, argoplist_size, setgid_flag, idx_create, idx_fattr;
6850 dirattr_info_t dinfo, *dinfop;
6851 servinfo4_t *svp;
6852 bitmap4 supp_attrs;
6853
6854 ASSERT(type == NF4DIR || type == NF4LNK || type == NF4BLK ||
6855 type == NF4CHR || type == NF4SOCK || type == NF4FIFO);
6856
6857 mi = VTOMI4(dvp);
6858
6859 /*
6860 * Make sure we properly deal with setting the right gid
6861 * on a new directory to reflect the parent's setgid bit
6862 */
6863 setgid_flag = 0;
6864 if (type == NF4DIR) {
6865 struct vattr dva;
6866
6867 va->va_mode &= ~VSGID;
6868 dva.va_mask = AT_MODE | AT_GID;
6869 if (VOP_GETATTR(dvp, &dva, 0, cr, NULL) == 0) {
6870
6871 /*
6872 * If the parent's directory has the setgid bit set
6873 * _and_ the client was able to get a valid mapping
6874 * for the parent dir's owner_group, we want to
6875 * append NVERIFY(owner_group == dva.va_gid) and
6876 * SETTATTR to the CREATE compound.
6877 */
6878 if (mi->mi_flags & MI4_GRPID || dva.va_mode & VSGID) {
6879 setgid_flag = 1;
6880 va->va_mode |= VSGID;
6881 if (dva.va_gid != GID_NOBODY) {
6882 va->va_mask |= AT_GID;
6883 va->va_gid = dva.va_gid;
6884 }
6885 }
6886 }
6887 }
6888
6889 /*
6890 * Create ops:
6891 * 0:putfh(dir) 1:savefh(dir) 2:create 3:getfh(new) 4:getattr(new)
6892 * 5:restorefh(dir) 6:getattr(dir)
6893 *
6894 * if (setgid)
6895 * 0:putfh(dir) 1:create 2:getfh(new) 3:getattr(new)
6896 * 4:savefh(new) 5:putfh(dir) 6:getattr(dir) 7:restorefh(new)
6897 * 8:nverify 9:setattr
6898 */
6899 if (setgid_flag) {
6900 numops = 10;
6901 idx_create = 1;
6902 idx_fattr = 3;
6903 } else {
6904 numops = 7;
6905 idx_create = 2;
6906 idx_fattr = 4;
6907 }
6908
6909 ASSERT(nfs_zone() == mi->mi_zone);
6910 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp))) {
6911 return (EINTR);
6912 }
6913 recov_state.rs_flags = 0;
6914 recov_state.rs_num_retry_despite_err = 0;
6915
6916 argoplist_size = numops * sizeof (nfs_argop4);
6917 argop = kmem_alloc(argoplist_size, KM_SLEEP);
6918
6919 recov_retry:
6920 if (type == NF4LNK)
6921 args.ctag = TAG_SYMLINK;
6922 else if (type == NF4DIR)
6923 args.ctag = TAG_MKDIR;
6924 else
6925 args.ctag = TAG_MKNOD;
6926
6927 args.array_len = numops;
6928 args.array = argop;
6929
6930 if (e.error = nfs4_start_op(mi, dvp, NULL, &recov_state)) {
6931 nfs_rw_exit(&drp->r_rwlock);
6932 kmem_free(argop, argoplist_size);
6933 return (e.error);
6934 }
6935 need_end_op = TRUE;
6936
6937
6938 /* 0: putfh directory */
6939 argop[0].argop = OP_CPUTFH;
6940 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6941
6942 /* 1/2: Create object */
6943 argop[idx_create].argop = OP_CCREATE;
6944 argop[idx_create].nfs_argop4_u.opccreate.cname = nm;
6945 argop[idx_create].nfs_argop4_u.opccreate.type = type;
6946 if (type == NF4LNK) {
6947 /*
6948 * symlink, treat name as data
6949 */
6950 ASSERT(data != NULL);
6951 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.clinkdata =
6952 (char *)data;
6953 }
6954 if (type == NF4BLK || type == NF4CHR) {
6955 ASSERT(data != NULL);
6956 argop[idx_create].nfs_argop4_u.opccreate.ftype4_u.devdata =
6957 *((specdata4 *)data);
6958 }
6959
6960 crattr = &argop[idx_create].nfs_argop4_u.opccreate.createattrs;
6961
6962 svp = drp->r_server;
6963 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
6964 supp_attrs = svp->sv_supp_attrs;
6965 nfs_rw_exit(&svp->sv_lock);
6966
6967 if (vattr_to_fattr4(va, NULL, crattr, 0, OP_CREATE, supp_attrs)) {
6968 nfs_rw_exit(&drp->r_rwlock);
6969 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
6970 e.error = EINVAL;
6971 kmem_free(argop, argoplist_size);
6972 return (e.error);
6973 }
6974
6975 /* 2/3: getfh fh of created object */
6976 ASSERT(idx_create + 1 == idx_fattr - 1);
6977 argop[idx_create + 1].argop = OP_GETFH;
6978
6979 /* 3/4: getattr of new object */
6980 argop[idx_fattr].argop = OP_GETATTR;
6981 argop[idx_fattr].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6982 argop[idx_fattr].nfs_argop4_u.opgetattr.mi = mi;
6983
6984 if (setgid_flag) {
6985 vattr_t _v;
6986
6987 argop[4].argop = OP_SAVEFH;
6988
6989 argop[5].argop = OP_CPUTFH;
6990 argop[5].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
6991
6992 argop[6].argop = OP_GETATTR;
6993 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
6994 argop[6].nfs_argop4_u.opgetattr.mi = mi;
6995
6996 argop[7].argop = OP_RESTOREFH;
6997
6998 /*
6999 * nverify
7000 *
7001 * XXX - Revisit the last argument to nfs4_end_op()
7002 * once 5020486 is fixed.
7003 */
7004 _v.va_mask = AT_GID;
7005 _v.va_gid = va->va_gid;
7006 if (e.error = nfs4args_verify(&argop[8], &_v, OP_NVERIFY,
7007 supp_attrs)) {
7008 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
7009 nfs_rw_exit(&drp->r_rwlock);
7010 nfs4_fattr4_free(crattr);
7011 kmem_free(argop, argoplist_size);
7012 return (e.error);
7013 }
7014
7015 /*
7016 * setattr
7017 *
7018 * We _know_ we're not messing with AT_SIZE or AT_XTIME,
7019 * so no need for stateid or flags. Also we specify NULL
7020 * rp since we're only interested in setting owner_group
7021 * attributes.
7022 */
7023 nfs4args_setattr(&argop[9], &_v, NULL, 0, NULL, cr, supp_attrs,
7024 &e.error, 0);
7025
7026 if (e.error) {
7027 nfs4_end_op(mi, dvp, *vpp, &recov_state, TRUE);
7028 nfs_rw_exit(&drp->r_rwlock);
7029 nfs4_fattr4_free(crattr);
7030 nfs4args_verify_free(&argop[8]);
7031 kmem_free(argop, argoplist_size);
7032 return (e.error);
7033 }
7034 } else {
7035 argop[1].argop = OP_SAVEFH;
7036
7037 argop[5].argop = OP_RESTOREFH;
7038
7039 argop[6].argop = OP_GETATTR;
7040 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7041 argop[6].nfs_argop4_u.opgetattr.mi = mi;
7042 }
7043
7044 dnlc_remove(dvp, nm);
7045
7046 doqueue = 1;
7047 t = gethrtime();
7048 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
7049
7050 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
7051 if (e.error) {
7052 PURGE_ATTRCACHE4(dvp);
7053 if (!needrecov)
7054 goto out;
7055 }
7056
7057 if (needrecov) {
7058 if (nfs4_start_recovery(&e, mi, dvp, NULL, NULL, NULL,
7059 OP_CREATE, NULL, NULL, NULL) == FALSE) {
7060 nfs4_end_op(mi, dvp, NULL, &recov_state,
7061 needrecov);
7062 need_end_op = FALSE;
7063 nfs4_fattr4_free(crattr);
7064 if (setgid_flag) {
7065 nfs4args_verify_free(&argop[8]);
7066 nfs4args_setattr_free(&argop[9]);
7067 }
7068 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
7069 goto recov_retry;
7070 }
7071 }
7072
7073 resp = &res;
7074
7075 if (res.status != NFS4_OK && res.array_len <= idx_fattr + 1) {
7076
7077 if (res.status == NFS4ERR_BADOWNER)
7078 nfs4_log_badowner(mi, OP_CREATE);
7079
7080 e.error = geterrno4(res.status);
7081
7082 /*
7083 * This check is left over from when create was implemented
7084 * using a setattr op (instead of createattrs). If the
7085 * putfh/create/getfh failed, the error was returned. If
7086 * setattr/getattr failed, we keep going.
7087 *
7088 * It might be better to get rid of the GETFH also, and just
7089 * do PUTFH/CREATE/GETATTR since the FH attr is mandatory.
7090 * Then if any of the operations failed, we could return the
7091 * error now, and remove much of the error code below.
7092 */
7093 if (res.array_len <= idx_fattr) {
7094 /*
7095 * Either Putfh, Create or Getfh failed.
7096 */
7097 PURGE_ATTRCACHE4(dvp);
7098 /*
7099 * nfs4_purge_stale_fh() may generate otw calls through
7100 * nfs4_invalidate_pages. Hence the need to call
7101 * nfs4_end_op() here to avoid nfs4_start_op() deadlock.
7102 */
7103 nfs4_end_op(mi, dvp, NULL, &recov_state,
7104 needrecov);
7105 need_end_op = FALSE;
7106 nfs4_purge_stale_fh(e.error, dvp, cr);
7107 goto out;
7108 }
7109 }
7110
7111 resop = &res.array[idx_create]; /* create res */
7112 cinfo = &resop->nfs_resop4_u.opcreate.cinfo;
7113
7114 resop = &res.array[idx_create + 1]; /* getfh res */
7115 gf_res = &resop->nfs_resop4_u.opgetfh;
7116
7117 sfhp = sfh4_get(&gf_res->object, mi);
7118 if (e.error) {
7119 *vpp = vp = makenfs4node(sfhp, NULL, dvp->v_vfsp, t, cr, dvp,
7120 fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
7121 if (vp->v_type == VNON) {
7122 vattr.va_mask = AT_TYPE;
7123 /*
7124 * Need to call nfs4_end_op before nfs4getattr to avoid
7125 * potential nfs4_start_op deadlock. See RFE 4777612.
7126 */
7127 nfs4_end_op(mi, dvp, NULL, &recov_state,
7128 needrecov);
7129 need_end_op = FALSE;
7130 e.error = nfs4getattr(vp, &vattr, cr);
7131 if (e.error) {
7132 VN_RELE(vp);
7133 *vpp = NULL;
7134 goto out;
7135 }
7136 vp->v_type = vattr.va_type;
7137 }
7138 e.error = 0;
7139 } else {
7140 *vpp = vp = makenfs4node(sfhp,
7141 &res.array[idx_fattr].nfs_resop4_u.opgetattr.ga_res,
7142 dvp->v_vfsp, t, cr,
7143 dvp, fn_get(VTOSV(dvp)->sv_name, nm, sfhp));
7144 }
7145
7146 /*
7147 * If compound succeeded, then update dir attrs
7148 */
7149 if (res.status == NFS4_OK) {
7150 dinfo.di_garp = &res.array[6].nfs_resop4_u.opgetattr.ga_res;
7151 dinfo.di_cred = cr;
7152 dinfo.di_time_call = t;
7153 dinfop = &dinfo;
7154 } else
7155 dinfop = NULL;
7156
7157 /* Update directory cache attribute, readdir and dnlc caches */
7158 nfs4_update_dircaches(cinfo, dvp, vp, nm, dinfop);
7159
7160 out:
7161 if (sfhp != NULL)
7162 sfh4_rele(&sfhp);
7163 nfs_rw_exit(&drp->r_rwlock);
7164 nfs4_fattr4_free(crattr);
7165 if (setgid_flag) {
7166 nfs4args_verify_free(&argop[8]);
7167 nfs4args_setattr_free(&argop[9]);
7168 }
7169 if (resp)
7170 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7171 if (need_end_op)
7172 nfs4_end_op(mi, dvp, NULL, &recov_state, needrecov);
7173
7174 kmem_free(argop, argoplist_size);
7175 return (e.error);
7176 }
7177
7178 /* ARGSUSED */
7179 static int
nfs4mknod(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr)7180 nfs4mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
7181 int mode, vnode_t **vpp, cred_t *cr)
7182 {
7183 int error;
7184 vnode_t *vp;
7185 nfs_ftype4 type;
7186 specdata4 spec, *specp = NULL;
7187
7188 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
7189
7190 switch (va->va_type) {
7191 case VCHR:
7192 case VBLK:
7193 type = (va->va_type == VCHR) ? NF4CHR : NF4BLK;
7194 spec.specdata1 = getmajor(va->va_rdev);
7195 spec.specdata2 = getminor(va->va_rdev);
7196 specp = &spec;
7197 break;
7198
7199 case VFIFO:
7200 type = NF4FIFO;
7201 break;
7202 case VSOCK:
7203 type = NF4SOCK;
7204 break;
7205
7206 default:
7207 return (EINVAL);
7208 }
7209
7210 error = call_nfs4_create_req(dvp, nm, specp, va, &vp, cr, type);
7211 if (error) {
7212 return (error);
7213 }
7214
7215 /*
7216 * This might not be needed any more; special case to deal
7217 * with problematic v2/v3 servers. Since create was unable
7218 * to set group correctly, not sure what hope setattr has.
7219 */
7220 if (va->va_gid != VTOR4(vp)->r_attr.va_gid) {
7221 va->va_mask = AT_GID;
7222 (void) nfs4setattr(vp, va, 0, cr, NULL);
7223 }
7224
7225 /*
7226 * If vnode is a device create special vnode
7227 */
7228 if (ISVDEV(vp->v_type)) {
7229 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
7230 VN_RELE(vp);
7231 } else {
7232 *vpp = vp;
7233 }
7234 return (error);
7235 }
7236
7237 /*
7238 * Remove requires that the current fh be the target directory.
7239 * After the operation, the current fh is unchanged.
7240 * The compound op structure is:
7241 * PUTFH(targetdir), REMOVE
7242 *
7243 * Weirdness: if the vnode to be removed is open
7244 * we rename it instead of removing it and nfs_inactive
7245 * will remove the new name.
7246 */
7247 /* ARGSUSED */
7248 static int
nfs4_remove(vnode_t * dvp,char * nm,cred_t * cr,caller_context_t * ct,int flags)7249 nfs4_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
7250 {
7251 COMPOUND4args_clnt args;
7252 COMPOUND4res_clnt res, *resp = NULL;
7253 REMOVE4res *rm_res;
7254 nfs_argop4 argop[3];
7255 nfs_resop4 *resop;
7256 vnode_t *vp;
7257 char *tmpname;
7258 int doqueue;
7259 mntinfo4_t *mi;
7260 rnode4_t *rp;
7261 rnode4_t *drp;
7262 int needrecov = 0;
7263 nfs4_recov_state_t recov_state;
7264 int isopen;
7265 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7266 dirattr_info_t dinfo;
7267
7268 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
7269 return (EPERM);
7270 drp = VTOR4(dvp);
7271 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
7272 return (EINTR);
7273
7274 e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
7275 if (e.error) {
7276 nfs_rw_exit(&drp->r_rwlock);
7277 return (e.error);
7278 }
7279
7280 if (vp->v_type == VDIR) {
7281 VN_RELE(vp);
7282 nfs_rw_exit(&drp->r_rwlock);
7283 return (EISDIR);
7284 }
7285
7286 /*
7287 * First just remove the entry from the name cache, as it
7288 * is most likely the only entry for this vp.
7289 */
7290 dnlc_remove(dvp, nm);
7291
7292 rp = VTOR4(vp);
7293
7294 /*
7295 * For regular file types, check to see if the file is open by looking
7296 * at the open streams.
7297 * For all other types, check the reference count on the vnode. Since
7298 * they are not opened OTW they never have an open stream.
7299 *
7300 * If the file is open, rename it to .nfsXXXX.
7301 */
7302 if (vp->v_type != VREG) {
7303 /*
7304 * If the file has a v_count > 1 then there may be more than one
7305 * entry in the name cache due multiple links or an open file,
7306 * but we don't have the real reference count so flush all
7307 * possible entries.
7308 */
7309 if (vp->v_count > 1)
7310 dnlc_purge_vp(vp);
7311
7312 /*
7313 * Now we have the real reference count.
7314 */
7315 isopen = vp->v_count > 1;
7316 } else {
7317 mutex_enter(&rp->r_os_lock);
7318 isopen = list_head(&rp->r_open_streams) != NULL;
7319 mutex_exit(&rp->r_os_lock);
7320 }
7321
7322 mutex_enter(&rp->r_statelock);
7323 if (isopen &&
7324 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
7325 mutex_exit(&rp->r_statelock);
7326 tmpname = newname();
7327 e.error = nfs4rename(dvp, nm, dvp, tmpname, cr, ct);
7328 if (e.error)
7329 kmem_free(tmpname, MAXNAMELEN);
7330 else {
7331 mutex_enter(&rp->r_statelock);
7332 if (rp->r_unldvp == NULL) {
7333 VN_HOLD(dvp);
7334 rp->r_unldvp = dvp;
7335 if (rp->r_unlcred != NULL)
7336 crfree(rp->r_unlcred);
7337 crhold(cr);
7338 rp->r_unlcred = cr;
7339 rp->r_unlname = tmpname;
7340 } else {
7341 kmem_free(rp->r_unlname, MAXNAMELEN);
7342 rp->r_unlname = tmpname;
7343 }
7344 mutex_exit(&rp->r_statelock);
7345 }
7346 VN_RELE(vp);
7347 nfs_rw_exit(&drp->r_rwlock);
7348 return (e.error);
7349 }
7350 /*
7351 * Actually remove the file/dir
7352 */
7353 mutex_exit(&rp->r_statelock);
7354
7355 /*
7356 * We need to flush any dirty pages which happen to
7357 * be hanging around before removing the file.
7358 * This shouldn't happen very often since in NFSv4
7359 * we should be close to open consistent.
7360 */
7361 if (nfs4_has_pages(vp) &&
7362 ((rp->r_flags & R4DIRTY) || rp->r_count > 0)) {
7363 e.error = nfs4_putpage(vp, (u_offset_t)0, 0, 0, cr, ct);
7364 if (e.error && (e.error == ENOSPC || e.error == EDQUOT)) {
7365 mutex_enter(&rp->r_statelock);
7366 if (!rp->r_error)
7367 rp->r_error = e.error;
7368 mutex_exit(&rp->r_statelock);
7369 }
7370 }
7371
7372 mi = VTOMI4(dvp);
7373
7374 (void) nfs4delegreturn(rp, NFS4_DR_REOPEN);
7375 recov_state.rs_flags = 0;
7376 recov_state.rs_num_retry_despite_err = 0;
7377
7378 recov_retry:
7379 /*
7380 * Remove ops: putfh dir; remove
7381 */
7382 args.ctag = TAG_REMOVE;
7383 args.array_len = 3;
7384 args.array = argop;
7385
7386 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
7387 if (e.error) {
7388 nfs_rw_exit(&drp->r_rwlock);
7389 VN_RELE(vp);
7390 return (e.error);
7391 }
7392
7393 /* putfh directory */
7394 argop[0].argop = OP_CPUTFH;
7395 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
7396
7397 /* remove */
7398 argop[1].argop = OP_CREMOVE;
7399 argop[1].nfs_argop4_u.opcremove.ctarget = nm;
7400
7401 /* getattr dir */
7402 argop[2].argop = OP_GETATTR;
7403 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7404 argop[2].nfs_argop4_u.opgetattr.mi = mi;
7405
7406 doqueue = 1;
7407 dinfo.di_time_call = gethrtime();
7408 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
7409
7410 PURGE_ATTRCACHE4(vp);
7411
7412 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
7413 if (e.error)
7414 PURGE_ATTRCACHE4(dvp);
7415
7416 if (needrecov) {
7417 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp,
7418 NULL, NULL, NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
7419 if (!e.error)
7420 (void) xdr_free(xdr_COMPOUND4res_clnt,
7421 (caddr_t)&res);
7422 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
7423 needrecov);
7424 goto recov_retry;
7425 }
7426 }
7427
7428 /*
7429 * Matching nfs4_end_op() for start_op() above.
7430 * There is a path in the code below which calls
7431 * nfs4_purge_stale_fh(), which may generate otw calls through
7432 * nfs4_invalidate_pages. Hence we need to call nfs4_end_op()
7433 * here to avoid nfs4_start_op() deadlock.
7434 */
7435 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
7436
7437 if (!e.error) {
7438 resp = &res;
7439
7440 if (res.status) {
7441 e.error = geterrno4(res.status);
7442 PURGE_ATTRCACHE4(dvp);
7443 nfs4_purge_stale_fh(e.error, dvp, cr);
7444 } else {
7445 resop = &res.array[1]; /* remove res */
7446 rm_res = &resop->nfs_resop4_u.opremove;
7447
7448 dinfo.di_garp =
7449 &res.array[2].nfs_resop4_u.opgetattr.ga_res;
7450 dinfo.di_cred = cr;
7451
7452 /* Update directory attr, readdir and dnlc caches */
7453 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
7454 &dinfo);
7455 }
7456 }
7457 nfs_rw_exit(&drp->r_rwlock);
7458 if (resp)
7459 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7460
7461 if (e.error == 0) {
7462 vnode_t *tvp;
7463 rnode4_t *trp;
7464 trp = VTOR4(vp);
7465 tvp = vp;
7466 if (IS_SHADOW(vp, trp))
7467 tvp = RTOV4(trp);
7468 vnevent_remove(tvp, dvp, nm, ct);
7469 }
7470 VN_RELE(vp);
7471 return (e.error);
7472 }
7473
7474 /*
7475 * Link requires that the current fh be the target directory and the
7476 * saved fh be the source fh. After the operation, the current fh is unchanged.
7477 * Thus the compound op structure is:
7478 * PUTFH(file), SAVEFH, PUTFH(targetdir), LINK, RESTOREFH,
7479 * GETATTR(file)
7480 */
7481 /* ARGSUSED */
7482 static int
nfs4_link(vnode_t * tdvp,vnode_t * svp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)7483 nfs4_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
7484 caller_context_t *ct, int flags)
7485 {
7486 COMPOUND4args_clnt args;
7487 COMPOUND4res_clnt res, *resp = NULL;
7488 LINK4res *ln_res;
7489 int argoplist_size = 7 * sizeof (nfs_argop4);
7490 nfs_argop4 *argop;
7491 nfs_resop4 *resop;
7492 vnode_t *realvp, *nvp;
7493 int doqueue;
7494 mntinfo4_t *mi;
7495 rnode4_t *tdrp;
7496 bool_t needrecov = FALSE;
7497 nfs4_recov_state_t recov_state;
7498 hrtime_t t;
7499 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
7500 dirattr_info_t dinfo;
7501
7502 ASSERT(*tnm != '\0');
7503 ASSERT(tdvp->v_type == VDIR);
7504 ASSERT(nfs4_consistent_type(tdvp));
7505 ASSERT(nfs4_consistent_type(svp));
7506
7507 if (nfs_zone() != VTOMI4(tdvp)->mi_zone)
7508 return (EPERM);
7509 if (VOP_REALVP(svp, &realvp, ct) == 0) {
7510 svp = realvp;
7511 ASSERT(nfs4_consistent_type(svp));
7512 }
7513
7514 tdrp = VTOR4(tdvp);
7515 mi = VTOMI4(svp);
7516
7517 if (!(mi->mi_flags & MI4_LINK)) {
7518 return (EOPNOTSUPP);
7519 }
7520 recov_state.rs_flags = 0;
7521 recov_state.rs_num_retry_despite_err = 0;
7522
7523 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR4(tdvp)))
7524 return (EINTR);
7525
7526 recov_retry:
7527 argop = kmem_alloc(argoplist_size, KM_SLEEP);
7528
7529 args.ctag = TAG_LINK;
7530
7531 /*
7532 * Link ops: putfh fl; savefh; putfh tdir; link; getattr(dir);
7533 * restorefh; getattr(fl)
7534 */
7535 args.array_len = 7;
7536 args.array = argop;
7537
7538 e.error = nfs4_start_op(VTOMI4(svp), svp, tdvp, &recov_state);
7539 if (e.error) {
7540 kmem_free(argop, argoplist_size);
7541 nfs_rw_exit(&tdrp->r_rwlock);
7542 return (e.error);
7543 }
7544
7545 /* 0. putfh file */
7546 argop[0].argop = OP_CPUTFH;
7547 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(svp)->r_fh;
7548
7549 /* 1. save current fh to free up the space for the dir */
7550 argop[1].argop = OP_SAVEFH;
7551
7552 /* 2. putfh targetdir */
7553 argop[2].argop = OP_CPUTFH;
7554 argop[2].nfs_argop4_u.opcputfh.sfh = tdrp->r_fh;
7555
7556 /* 3. link: current_fh is targetdir, saved_fh is source */
7557 argop[3].argop = OP_CLINK;
7558 argop[3].nfs_argop4_u.opclink.cnewname = tnm;
7559
7560 /* 4. Get attributes of dir */
7561 argop[4].argop = OP_GETATTR;
7562 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7563 argop[4].nfs_argop4_u.opgetattr.mi = mi;
7564
7565 /* 5. If link was successful, restore current vp to file */
7566 argop[5].argop = OP_RESTOREFH;
7567
7568 /* 6. Get attributes of linked object */
7569 argop[6].argop = OP_GETATTR;
7570 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
7571 argop[6].nfs_argop4_u.opgetattr.mi = mi;
7572
7573 dnlc_remove(tdvp, tnm);
7574
7575 doqueue = 1;
7576 t = gethrtime();
7577
7578 rfs4call(VTOMI4(svp), &args, &res, cr, &doqueue, 0, &e);
7579
7580 needrecov = nfs4_needs_recovery(&e, FALSE, svp->v_vfsp);
7581 if (e.error != 0 && !needrecov) {
7582 PURGE_ATTRCACHE4(tdvp);
7583 PURGE_ATTRCACHE4(svp);
7584 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
7585 goto out;
7586 }
7587
7588 if (needrecov) {
7589 bool_t abort;
7590
7591 abort = nfs4_start_recovery(&e, VTOMI4(svp), svp, tdvp,
7592 NULL, NULL, OP_LINK, NULL, NULL, NULL);
7593 if (abort == FALSE) {
7594 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state,
7595 needrecov);
7596 kmem_free(argop, argoplist_size);
7597 if (!e.error)
7598 (void) xdr_free(xdr_COMPOUND4res_clnt,
7599 (caddr_t)&res);
7600 goto recov_retry;
7601 } else {
7602 if (e.error != 0) {
7603 PURGE_ATTRCACHE4(tdvp);
7604 PURGE_ATTRCACHE4(svp);
7605 nfs4_end_op(VTOMI4(svp), svp, tdvp,
7606 &recov_state, needrecov);
7607 goto out;
7608 }
7609 /* fall through for res.status case */
7610 }
7611 }
7612
7613 nfs4_end_op(VTOMI4(svp), svp, tdvp, &recov_state, needrecov);
7614
7615 resp = &res;
7616 if (res.status) {
7617 /* If link succeeded, then don't return error */
7618 e.error = geterrno4(res.status);
7619 if (res.array_len <= 4) {
7620 /*
7621 * Either Putfh, Savefh, Putfh dir, or Link failed
7622 */
7623 PURGE_ATTRCACHE4(svp);
7624 PURGE_ATTRCACHE4(tdvp);
7625 if (e.error == EOPNOTSUPP) {
7626 mutex_enter(&mi->mi_lock);
7627 mi->mi_flags &= ~MI4_LINK;
7628 mutex_exit(&mi->mi_lock);
7629 }
7630 /* Remap EISDIR to EPERM for non-root user for SVVS */
7631 /* XXX-LP */
7632 if (e.error == EISDIR && crgetuid(cr) != 0)
7633 e.error = EPERM;
7634 goto out;
7635 }
7636 }
7637
7638 /* either no error or one of the postop getattr failed */
7639
7640 /*
7641 * XXX - if LINK succeeded, but no attrs were returned for link
7642 * file, purge its cache.
7643 *
7644 * XXX Perform a simplified version of wcc checking. Instead of
7645 * have another getattr to get pre-op, just purge cache if
7646 * any of the ops prior to and including the getattr failed.
7647 * If the getattr succeeded then update the attrcache accordingly.
7648 */
7649
7650 /*
7651 * update cache with link file postattrs.
7652 * Note: at this point resop points to link res.
7653 */
7654 resop = &res.array[3]; /* link res */
7655 ln_res = &resop->nfs_resop4_u.oplink;
7656 if (res.status == NFS4_OK)
7657 e.error = nfs4_update_attrcache(res.status,
7658 &res.array[6].nfs_resop4_u.opgetattr.ga_res,
7659 t, svp, cr);
7660
7661 /*
7662 * Call makenfs4node to create the new shadow vp for tnm.
7663 * We pass NULL attrs because we just cached attrs for
7664 * the src object. All we're trying to accomplish is to
7665 * to create the new shadow vnode.
7666 */
7667 nvp = makenfs4node(VTOR4(svp)->r_fh, NULL, tdvp->v_vfsp, t, cr,
7668 tdvp, fn_get(VTOSV(tdvp)->sv_name, tnm, VTOR4(svp)->r_fh));
7669
7670 /* Update target cache attribute, readdir and dnlc caches */
7671 dinfo.di_garp = &res.array[4].nfs_resop4_u.opgetattr.ga_res;
7672 dinfo.di_time_call = t;
7673 dinfo.di_cred = cr;
7674
7675 nfs4_update_dircaches(&ln_res->cinfo, tdvp, nvp, tnm, &dinfo);
7676 ASSERT(nfs4_consistent_type(tdvp));
7677 ASSERT(nfs4_consistent_type(svp));
7678 ASSERT(nfs4_consistent_type(nvp));
7679 VN_RELE(nvp);
7680
7681 if (!e.error) {
7682 vnode_t *tvp;
7683 rnode4_t *trp;
7684 /*
7685 * Notify the source file of this link operation.
7686 */
7687 trp = VTOR4(svp);
7688 tvp = svp;
7689 if (IS_SHADOW(svp, trp))
7690 tvp = RTOV4(trp);
7691 vnevent_link(tvp, ct);
7692 }
7693 out:
7694 kmem_free(argop, argoplist_size);
7695 if (resp)
7696 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
7697
7698 nfs_rw_exit(&tdrp->r_rwlock);
7699
7700 return (e.error);
7701 }
7702
7703 /* ARGSUSED */
7704 static int
nfs4_rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct,int flags)7705 nfs4_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
7706 caller_context_t *ct, int flags)
7707 {
7708 vnode_t *realvp;
7709
7710 if (nfs_zone() != VTOMI4(odvp)->mi_zone)
7711 return (EPERM);
7712 if (VOP_REALVP(ndvp, &realvp, ct) == 0)
7713 ndvp = realvp;
7714
7715 return (nfs4rename(odvp, onm, ndvp, nnm, cr, ct));
7716 }
7717
7718 /*
7719 * nfs4rename does the real work of renaming in NFS Version 4.
7720 *
7721 * A file handle is considered volatile for renaming purposes if either
7722 * of the volatile bits are turned on. However, the compound may differ
7723 * based on the likelihood of the filehandle to change during rename.
7724 */
7725 static int
nfs4rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct)7726 nfs4rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
7727 caller_context_t *ct)
7728 {
7729 int error;
7730 mntinfo4_t *mi;
7731 vnode_t *nvp = NULL;
7732 vnode_t *ovp = NULL;
7733 char *tmpname = NULL;
7734 rnode4_t *rp;
7735 rnode4_t *odrp;
7736 rnode4_t *ndrp;
7737 int did_link = 0;
7738 int do_link = 1;
7739 nfsstat4 stat = NFS4_OK;
7740
7741 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
7742 ASSERT(nfs4_consistent_type(odvp));
7743 ASSERT(nfs4_consistent_type(ndvp));
7744
7745 if (onm[0] == '.' && (onm[1] == '\0' ||
7746 (onm[1] == '.' && onm[2] == '\0')))
7747 return (EINVAL);
7748
7749 if (nnm[0] == '.' && (nnm[1] == '\0' ||
7750 (nnm[1] == '.' && nnm[2] == '\0')))
7751 return (EINVAL);
7752
7753 odrp = VTOR4(odvp);
7754 ndrp = VTOR4(ndvp);
7755 if ((intptr_t)odrp < (intptr_t)ndrp) {
7756 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp)))
7757 return (EINTR);
7758 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp))) {
7759 nfs_rw_exit(&odrp->r_rwlock);
7760 return (EINTR);
7761 }
7762 } else {
7763 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR4(ndvp)))
7764 return (EINTR);
7765 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR4(odvp))) {
7766 nfs_rw_exit(&ndrp->r_rwlock);
7767 return (EINTR);
7768 }
7769 }
7770
7771 /*
7772 * Lookup the target file. If it exists, it needs to be
7773 * checked to see whether it is a mount point and whether
7774 * it is active (open).
7775 */
7776 error = nfs4lookup(ndvp, nnm, &nvp, cr, 0);
7777 if (!error) {
7778 int isactive;
7779
7780 ASSERT(nfs4_consistent_type(nvp));
7781 /*
7782 * If this file has been mounted on, then just
7783 * return busy because renaming to it would remove
7784 * the mounted file system from the name space.
7785 */
7786 if (vn_ismntpt(nvp)) {
7787 VN_RELE(nvp);
7788 nfs_rw_exit(&odrp->r_rwlock);
7789 nfs_rw_exit(&ndrp->r_rwlock);
7790 return (EBUSY);
7791 }
7792
7793 /*
7794 * First just remove the entry from the name cache, as it
7795 * is most likely the only entry for this vp.
7796 */
7797 dnlc_remove(ndvp, nnm);
7798
7799 rp = VTOR4(nvp);
7800
7801 if (nvp->v_type != VREG) {
7802 /*
7803 * Purge the name cache of all references to this vnode
7804 * so that we can check the reference count to infer
7805 * whether it is active or not.
7806 */
7807 if (nvp->v_count > 1)
7808 dnlc_purge_vp(nvp);
7809
7810 isactive = nvp->v_count > 1;
7811 } else {
7812 mutex_enter(&rp->r_os_lock);
7813 isactive = list_head(&rp->r_open_streams) != NULL;
7814 mutex_exit(&rp->r_os_lock);
7815 }
7816
7817 /*
7818 * If the vnode is active and is not a directory,
7819 * arrange to rename it to a
7820 * temporary file so that it will continue to be
7821 * accessible. This implements the "unlink-open-file"
7822 * semantics for the target of a rename operation.
7823 * Before doing this though, make sure that the
7824 * source and target files are not already the same.
7825 */
7826 if (isactive && nvp->v_type != VDIR) {
7827 /*
7828 * Lookup the source name.
7829 */
7830 error = nfs4lookup(odvp, onm, &ovp, cr, 0);
7831
7832 /*
7833 * The source name *should* already exist.
7834 */
7835 if (error) {
7836 VN_RELE(nvp);
7837 nfs_rw_exit(&odrp->r_rwlock);
7838 nfs_rw_exit(&ndrp->r_rwlock);
7839 return (error);
7840 }
7841
7842 ASSERT(nfs4_consistent_type(ovp));
7843
7844 /*
7845 * Compare the two vnodes. If they are the same,
7846 * just release all held vnodes and return success.
7847 */
7848 if (VN_CMP(ovp, nvp)) {
7849 VN_RELE(ovp);
7850 VN_RELE(nvp);
7851 nfs_rw_exit(&odrp->r_rwlock);
7852 nfs_rw_exit(&ndrp->r_rwlock);
7853 return (0);
7854 }
7855
7856 /*
7857 * Can't mix and match directories and non-
7858 * directories in rename operations. We already
7859 * know that the target is not a directory. If
7860 * the source is a directory, return an error.
7861 */
7862 if (ovp->v_type == VDIR) {
7863 VN_RELE(ovp);
7864 VN_RELE(nvp);
7865 nfs_rw_exit(&odrp->r_rwlock);
7866 nfs_rw_exit(&ndrp->r_rwlock);
7867 return (ENOTDIR);
7868 }
7869 link_call:
7870 /*
7871 * The target file exists, is not the same as
7872 * the source file, and is active. We first
7873 * try to Link it to a temporary filename to
7874 * avoid having the server removing the file
7875 * completely (which could cause data loss to
7876 * the user's POV in the event the Rename fails
7877 * -- see bug 1165874).
7878 */
7879 /*
7880 * The do_link and did_link booleans are
7881 * introduced in the event we get NFS4ERR_FILE_OPEN
7882 * returned for the Rename. Some servers can
7883 * not Rename over an Open file, so they return
7884 * this error. The client needs to Remove the
7885 * newly created Link and do two Renames, just
7886 * as if the server didn't support LINK.
7887 */
7888 tmpname = newname();
7889 error = 0;
7890
7891 if (do_link) {
7892 error = nfs4_link(ndvp, nvp, tmpname, cr,
7893 NULL, 0);
7894 }
7895 if (error == EOPNOTSUPP || !do_link) {
7896 error = nfs4_rename(ndvp, nnm, ndvp, tmpname,
7897 cr, NULL, 0);
7898 did_link = 0;
7899 } else {
7900 did_link = 1;
7901 }
7902 if (error) {
7903 kmem_free(tmpname, MAXNAMELEN);
7904 VN_RELE(ovp);
7905 VN_RELE(nvp);
7906 nfs_rw_exit(&odrp->r_rwlock);
7907 nfs_rw_exit(&ndrp->r_rwlock);
7908 return (error);
7909 }
7910
7911 mutex_enter(&rp->r_statelock);
7912 if (rp->r_unldvp == NULL) {
7913 VN_HOLD(ndvp);
7914 rp->r_unldvp = ndvp;
7915 if (rp->r_unlcred != NULL)
7916 crfree(rp->r_unlcred);
7917 crhold(cr);
7918 rp->r_unlcred = cr;
7919 rp->r_unlname = tmpname;
7920 } else {
7921 if (rp->r_unlname)
7922 kmem_free(rp->r_unlname, MAXNAMELEN);
7923 rp->r_unlname = tmpname;
7924 }
7925 mutex_exit(&rp->r_statelock);
7926 }
7927
7928 (void) nfs4delegreturn(VTOR4(nvp), NFS4_DR_PUSH|NFS4_DR_REOPEN);
7929
7930 ASSERT(nfs4_consistent_type(nvp));
7931 }
7932
7933 if (ovp == NULL) {
7934 /*
7935 * When renaming directories to be a subdirectory of a
7936 * different parent, the dnlc entry for ".." will no
7937 * longer be valid, so it must be removed.
7938 *
7939 * We do a lookup here to determine whether we are renaming
7940 * a directory and we need to check if we are renaming
7941 * an unlinked file. This might have already been done
7942 * in previous code, so we check ovp == NULL to avoid
7943 * doing it twice.
7944 */
7945 error = nfs4lookup(odvp, onm, &ovp, cr, 0);
7946 /*
7947 * The source name *should* already exist.
7948 */
7949 if (error) {
7950 nfs_rw_exit(&odrp->r_rwlock);
7951 nfs_rw_exit(&ndrp->r_rwlock);
7952 if (nvp) {
7953 VN_RELE(nvp);
7954 }
7955 return (error);
7956 }
7957 ASSERT(ovp != NULL);
7958 ASSERT(nfs4_consistent_type(ovp));
7959 }
7960
7961 /*
7962 * Is the object being renamed a dir, and if so, is
7963 * it being renamed to a child of itself? The underlying
7964 * fs should ultimately return EINVAL for this case;
7965 * however, buggy beta non-Solaris NFSv4 servers at
7966 * interop testing events have allowed this behavior,
7967 * and it caused our client to panic due to a recursive
7968 * mutex_enter in fn_move.
7969 *
7970 * The tedious locking in fn_move could be changed to
7971 * deal with this case, and the client could avoid the
7972 * panic; however, the client would just confuse itself
7973 * later and misbehave. A better way to handle the broken
7974 * server is to detect this condition and return EINVAL
7975 * without ever sending the the bogus rename to the server.
7976 * We know the rename is invalid -- just fail it now.
7977 */
7978 if (ovp->v_type == VDIR && VN_CMP(ndvp, ovp)) {
7979 VN_RELE(ovp);
7980 nfs_rw_exit(&odrp->r_rwlock);
7981 nfs_rw_exit(&ndrp->r_rwlock);
7982 if (nvp) {
7983 VN_RELE(nvp);
7984 }
7985 return (EINVAL);
7986 }
7987
7988 (void) nfs4delegreturn(VTOR4(ovp), NFS4_DR_PUSH|NFS4_DR_REOPEN);
7989
7990 /*
7991 * If FH4_VOL_RENAME or FH4_VOLATILE_ANY bits are set, it is
7992 * possible for the filehandle to change due to the rename.
7993 * If neither of these bits is set, but FH4_VOL_MIGRATION is set,
7994 * the fh will not change because of the rename, but we still need
7995 * to update its rnode entry with the new name for
7996 * an eventual fh change due to migration. The FH4_NOEXPIRE_ON_OPEN
7997 * has no effect on these for now, but for future improvements,
7998 * we might want to use it too to simplify handling of files
7999 * that are open with that flag on. (XXX)
8000 */
8001 mi = VTOMI4(odvp);
8002 if (NFS4_VOLATILE_FH(mi))
8003 error = nfs4rename_volatile_fh(odvp, onm, ovp, ndvp, nnm, cr,
8004 &stat);
8005 else
8006 error = nfs4rename_persistent_fh(odvp, onm, ovp, ndvp, nnm, cr,
8007 &stat);
8008
8009 ASSERT(nfs4_consistent_type(odvp));
8010 ASSERT(nfs4_consistent_type(ndvp));
8011 ASSERT(nfs4_consistent_type(ovp));
8012
8013 if (stat == NFS4ERR_FILE_OPEN && did_link) {
8014 do_link = 0;
8015 /*
8016 * Before the 'link_call' code, we did a nfs4_lookup
8017 * that puts a VN_HOLD on nvp. After the nfs4_link
8018 * call we call VN_RELE to match that hold. We need
8019 * to place an additional VN_HOLD here since we will
8020 * be hitting that VN_RELE again.
8021 */
8022 VN_HOLD(nvp);
8023
8024 (void) nfs4_remove(ndvp, tmpname, cr, NULL, 0);
8025
8026 /* Undo the unlinked file naming stuff we just did */
8027 mutex_enter(&rp->r_statelock);
8028 if (rp->r_unldvp) {
8029 VN_RELE(ndvp);
8030 rp->r_unldvp = NULL;
8031 if (rp->r_unlcred != NULL)
8032 crfree(rp->r_unlcred);
8033 rp->r_unlcred = NULL;
8034 /* rp->r_unlanme points to tmpname */
8035 if (rp->r_unlname)
8036 kmem_free(rp->r_unlname, MAXNAMELEN);
8037 rp->r_unlname = NULL;
8038 }
8039 mutex_exit(&rp->r_statelock);
8040
8041 if (nvp) {
8042 VN_RELE(nvp);
8043 }
8044 goto link_call;
8045 }
8046
8047 if (error) {
8048 VN_RELE(ovp);
8049 nfs_rw_exit(&odrp->r_rwlock);
8050 nfs_rw_exit(&ndrp->r_rwlock);
8051 if (nvp) {
8052 VN_RELE(nvp);
8053 }
8054 return (error);
8055 }
8056
8057 /*
8058 * when renaming directories to be a subdirectory of a
8059 * different parent, the dnlc entry for ".." will no
8060 * longer be valid, so it must be removed
8061 */
8062 rp = VTOR4(ovp);
8063 if (ndvp != odvp) {
8064 if (ovp->v_type == VDIR) {
8065 dnlc_remove(ovp, "..");
8066 if (rp->r_dir != NULL)
8067 nfs4_purge_rddir_cache(ovp);
8068 }
8069 }
8070
8071 /*
8072 * If we are renaming the unlinked file, update the
8073 * r_unldvp and r_unlname as needed.
8074 */
8075 mutex_enter(&rp->r_statelock);
8076 if (rp->r_unldvp != NULL) {
8077 if (strcmp(rp->r_unlname, onm) == 0) {
8078 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
8079 rp->r_unlname[MAXNAMELEN - 1] = '\0';
8080 if (ndvp != rp->r_unldvp) {
8081 VN_RELE(rp->r_unldvp);
8082 rp->r_unldvp = ndvp;
8083 VN_HOLD(ndvp);
8084 }
8085 }
8086 }
8087 mutex_exit(&rp->r_statelock);
8088
8089 /*
8090 * Notify the rename vnevents to source vnode, and to the target
8091 * vnode if it already existed.
8092 */
8093 if (error == 0) {
8094 vnode_t *tvp;
8095 rnode4_t *trp;
8096 /*
8097 * Notify the vnode. Each links is represented by
8098 * a different vnode, in nfsv4.
8099 */
8100 if (nvp) {
8101 trp = VTOR4(nvp);
8102 tvp = nvp;
8103 if (IS_SHADOW(nvp, trp))
8104 tvp = RTOV4(trp);
8105 vnevent_rename_dest(tvp, ndvp, nnm, ct);
8106 }
8107
8108 /*
8109 * if the source and destination directory are not the
8110 * same notify the destination directory.
8111 */
8112 if (VTOR4(odvp) != VTOR4(ndvp)) {
8113 trp = VTOR4(ndvp);
8114 tvp = ndvp;
8115 if (IS_SHADOW(ndvp, trp))
8116 tvp = RTOV4(trp);
8117 vnevent_rename_dest_dir(tvp, ct);
8118 }
8119
8120 trp = VTOR4(ovp);
8121 tvp = ovp;
8122 if (IS_SHADOW(ovp, trp))
8123 tvp = RTOV4(trp);
8124 vnevent_rename_src(tvp, odvp, onm, ct);
8125 }
8126
8127 if (nvp) {
8128 VN_RELE(nvp);
8129 }
8130 VN_RELE(ovp);
8131
8132 nfs_rw_exit(&odrp->r_rwlock);
8133 nfs_rw_exit(&ndrp->r_rwlock);
8134
8135 return (error);
8136 }
8137
8138 /*
8139 * When the parent directory has changed, sv_dfh must be updated
8140 */
8141 static void
update_parentdir_sfh(vnode_t * vp,vnode_t * ndvp)8142 update_parentdir_sfh(vnode_t *vp, vnode_t *ndvp)
8143 {
8144 svnode_t *sv = VTOSV(vp);
8145 nfs4_sharedfh_t *old_dfh = sv->sv_dfh;
8146 nfs4_sharedfh_t *new_dfh = VTOR4(ndvp)->r_fh;
8147
8148 sfh4_hold(new_dfh);
8149 sv->sv_dfh = new_dfh;
8150 sfh4_rele(&old_dfh);
8151 }
8152
8153 /*
8154 * nfs4rename_persistent does the otw portion of renaming in NFS Version 4,
8155 * when it is known that the filehandle is persistent through rename.
8156 *
8157 * Rename requires that the current fh be the target directory and the
8158 * saved fh be the source directory. After the operation, the current fh
8159 * is unchanged.
8160 * The compound op structure for persistent fh rename is:
8161 * PUTFH(sourcdir), SAVEFH, PUTFH(targetdir), RENAME
8162 * Rather than bother with the directory postop args, we'll simply
8163 * update that a change occurred in the cache, so no post-op getattrs.
8164 */
8165 static int
nfs4rename_persistent_fh(vnode_t * odvp,char * onm,vnode_t * renvp,vnode_t * ndvp,char * nnm,cred_t * cr,nfsstat4 * statp)8166 nfs4rename_persistent_fh(vnode_t *odvp, char *onm, vnode_t *renvp,
8167 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
8168 {
8169 COMPOUND4args_clnt args;
8170 COMPOUND4res_clnt res, *resp = NULL;
8171 nfs_argop4 *argop;
8172 nfs_resop4 *resop;
8173 int doqueue, argoplist_size;
8174 mntinfo4_t *mi;
8175 rnode4_t *odrp = VTOR4(odvp);
8176 rnode4_t *ndrp = VTOR4(ndvp);
8177 RENAME4res *rn_res;
8178 bool_t needrecov;
8179 nfs4_recov_state_t recov_state;
8180 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8181 dirattr_info_t dinfo, *dinfop;
8182
8183 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
8184
8185 recov_state.rs_flags = 0;
8186 recov_state.rs_num_retry_despite_err = 0;
8187
8188 /*
8189 * Rename ops: putfh sdir; savefh; putfh tdir; rename; getattr tdir
8190 *
8191 * If source/target are different dirs, then append putfh(src); getattr
8192 */
8193 args.array_len = (odvp == ndvp) ? 5 : 7;
8194 argoplist_size = args.array_len * sizeof (nfs_argop4);
8195 args.array = argop = kmem_alloc(argoplist_size, KM_SLEEP);
8196
8197 recov_retry:
8198 *statp = NFS4_OK;
8199
8200 /* No need to Lookup the file, persistent fh */
8201 args.ctag = TAG_RENAME;
8202
8203 mi = VTOMI4(odvp);
8204 e.error = nfs4_start_op(mi, odvp, ndvp, &recov_state);
8205 if (e.error) {
8206 kmem_free(argop, argoplist_size);
8207 return (e.error);
8208 }
8209
8210 /* 0: putfh source directory */
8211 argop[0].argop = OP_CPUTFH;
8212 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;
8213
8214 /* 1: Save source fh to free up current for target */
8215 argop[1].argop = OP_SAVEFH;
8216
8217 /* 2: putfh targetdir */
8218 argop[2].argop = OP_CPUTFH;
8219 argop[2].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8220
8221 /* 3: current_fh is targetdir, saved_fh is sourcedir */
8222 argop[3].argop = OP_CRENAME;
8223 argop[3].nfs_argop4_u.opcrename.coldname = onm;
8224 argop[3].nfs_argop4_u.opcrename.cnewname = nnm;
8225
8226 /* 4: getattr (targetdir) */
8227 argop[4].argop = OP_GETATTR;
8228 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8229 argop[4].nfs_argop4_u.opgetattr.mi = mi;
8230
8231 if (ndvp != odvp) {
8232
8233 /* 5: putfh (sourcedir) */
8234 argop[5].argop = OP_CPUTFH;
8235 argop[5].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8236
8237 /* 6: getattr (sourcedir) */
8238 argop[6].argop = OP_GETATTR;
8239 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8240 argop[6].nfs_argop4_u.opgetattr.mi = mi;
8241 }
8242
8243 dnlc_remove(odvp, onm);
8244 dnlc_remove(ndvp, nnm);
8245
8246 doqueue = 1;
8247 dinfo.di_time_call = gethrtime();
8248 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8249
8250 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8251 if (e.error) {
8252 PURGE_ATTRCACHE4(odvp);
8253 PURGE_ATTRCACHE4(ndvp);
8254 } else {
8255 *statp = res.status;
8256 }
8257
8258 if (needrecov) {
8259 if (nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
8260 OP_RENAME, NULL, NULL, NULL) == FALSE) {
8261 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
8262 if (!e.error)
8263 (void) xdr_free(xdr_COMPOUND4res_clnt,
8264 (caddr_t)&res);
8265 goto recov_retry;
8266 }
8267 }
8268
8269 if (!e.error) {
8270 resp = &res;
8271 /*
8272 * as long as OP_RENAME
8273 */
8274 if (res.status != NFS4_OK && res.array_len <= 4) {
8275 e.error = geterrno4(res.status);
8276 PURGE_ATTRCACHE4(odvp);
8277 PURGE_ATTRCACHE4(ndvp);
8278 /*
8279 * System V defines rename to return EEXIST, not
8280 * ENOTEMPTY if the target directory is not empty.
8281 * Over the wire, the error is NFSERR_ENOTEMPTY
8282 * which geterrno4 maps to ENOTEMPTY.
8283 */
8284 if (e.error == ENOTEMPTY)
8285 e.error = EEXIST;
8286 } else {
8287
8288 resop = &res.array[3]; /* rename res */
8289 rn_res = &resop->nfs_resop4_u.oprename;
8290
8291 if (res.status == NFS4_OK) {
8292 /*
8293 * Update target attribute, readdir and dnlc
8294 * caches.
8295 */
8296 dinfo.di_garp =
8297 &res.array[4].nfs_resop4_u.opgetattr.ga_res;
8298 dinfo.di_cred = cr;
8299 dinfop = &dinfo;
8300 } else
8301 dinfop = NULL;
8302
8303 nfs4_update_dircaches(&rn_res->target_cinfo,
8304 ndvp, NULL, NULL, dinfop);
8305
8306 /*
8307 * Update source attribute, readdir and dnlc caches
8308 *
8309 */
8310 if (ndvp != odvp) {
8311 update_parentdir_sfh(renvp, ndvp);
8312
8313 if (dinfop)
8314 dinfo.di_garp =
8315 &(res.array[6].nfs_resop4_u.
8316 opgetattr.ga_res);
8317
8318 nfs4_update_dircaches(&rn_res->source_cinfo,
8319 odvp, NULL, NULL, dinfop);
8320 }
8321
8322 fn_move(VTOSV(renvp)->sv_name, VTOSV(ndvp)->sv_name,
8323 nnm);
8324 }
8325 }
8326
8327 if (resp)
8328 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8329 nfs4_end_op(mi, odvp, ndvp, &recov_state, needrecov);
8330 kmem_free(argop, argoplist_size);
8331
8332 return (e.error);
8333 }
8334
8335 /*
8336 * nfs4rename_volatile_fh does the otw part of renaming in NFS Version 4, when
8337 * it is possible for the filehandle to change due to the rename.
8338 *
8339 * The compound req in this case includes a post-rename lookup and getattr
8340 * to ensure that we have the correct fh and attributes for the object.
8341 *
8342 * Rename requires that the current fh be the target directory and the
8343 * saved fh be the source directory. After the operation, the current fh
8344 * is unchanged.
8345 *
8346 * We need the new filehandle (hence a LOOKUP and GETFH) so that we can
8347 * update the filehandle for the renamed object. We also get the old
8348 * filehandle for historical reasons; this should be taken out sometime.
8349 * This results in a rather cumbersome compound...
8350 *
8351 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
8352 * PUTFH(targetdir), RENAME, LOOKUP(trgt), GETFH(new), GETATTR
8353 *
8354 */
8355 static int
nfs4rename_volatile_fh(vnode_t * odvp,char * onm,vnode_t * ovp,vnode_t * ndvp,char * nnm,cred_t * cr,nfsstat4 * statp)8356 nfs4rename_volatile_fh(vnode_t *odvp, char *onm, vnode_t *ovp,
8357 vnode_t *ndvp, char *nnm, cred_t *cr, nfsstat4 *statp)
8358 {
8359 COMPOUND4args_clnt args;
8360 COMPOUND4res_clnt res, *resp = NULL;
8361 int argoplist_size;
8362 nfs_argop4 *argop;
8363 nfs_resop4 *resop;
8364 int doqueue;
8365 mntinfo4_t *mi;
8366 rnode4_t *odrp = VTOR4(odvp); /* old directory */
8367 rnode4_t *ndrp = VTOR4(ndvp); /* new directory */
8368 rnode4_t *orp = VTOR4(ovp); /* object being renamed */
8369 RENAME4res *rn_res;
8370 GETFH4res *ngf_res;
8371 bool_t needrecov;
8372 nfs4_recov_state_t recov_state;
8373 hrtime_t t;
8374 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8375 dirattr_info_t dinfo, *dinfop = &dinfo;
8376
8377 ASSERT(nfs_zone() == VTOMI4(odvp)->mi_zone);
8378
8379 recov_state.rs_flags = 0;
8380 recov_state.rs_num_retry_despite_err = 0;
8381
8382 recov_retry:
8383 *statp = NFS4_OK;
8384
8385 /*
8386 * There is a window between the RPC and updating the path and
8387 * filehandle stored in the rnode. Lock out the FHEXPIRED recovery
8388 * code, so that it doesn't try to use the old path during that
8389 * window.
8390 */
8391 mutex_enter(&orp->r_statelock);
8392 while (orp->r_flags & R4RECEXPFH) {
8393 klwp_t *lwp = ttolwp(curthread);
8394
8395 if (lwp != NULL)
8396 lwp->lwp_nostop++;
8397 if (cv_wait_sig(&orp->r_cv, &orp->r_statelock) == 0) {
8398 mutex_exit(&orp->r_statelock);
8399 if (lwp != NULL)
8400 lwp->lwp_nostop--;
8401 return (EINTR);
8402 }
8403 if (lwp != NULL)
8404 lwp->lwp_nostop--;
8405 }
8406 orp->r_flags |= R4RECEXPFH;
8407 mutex_exit(&orp->r_statelock);
8408
8409 mi = VTOMI4(odvp);
8410
8411 args.ctag = TAG_RENAME_VFH;
8412 args.array_len = (odvp == ndvp) ? 10 : 12;
8413 argoplist_size = args.array_len * sizeof (nfs_argop4);
8414 argop = kmem_alloc(argoplist_size, KM_SLEEP);
8415
8416 /*
8417 * Rename ops:
8418 * PUTFH(sourcdir), SAVEFH, LOOKUP(src), GETFH(old),
8419 * PUTFH(targetdir), RENAME, GETATTR(targetdir)
8420 * LOOKUP(trgt), GETFH(new), GETATTR,
8421 *
8422 * if (odvp != ndvp)
8423 * add putfh(sourcedir), getattr(sourcedir) }
8424 */
8425 args.array = argop;
8426
8427 e.error = nfs4_start_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8428 &recov_state, NULL);
8429 if (e.error) {
8430 kmem_free(argop, argoplist_size);
8431 mutex_enter(&orp->r_statelock);
8432 orp->r_flags &= ~R4RECEXPFH;
8433 cv_broadcast(&orp->r_cv);
8434 mutex_exit(&orp->r_statelock);
8435 return (e.error);
8436 }
8437
8438 /* 0: putfh source directory */
8439 argop[0].argop = OP_CPUTFH;
8440 argop[0].nfs_argop4_u.opcputfh.sfh = odrp->r_fh;
8441
8442 /* 1: Save source fh to free up current for target */
8443 argop[1].argop = OP_SAVEFH;
8444
8445 /* 2: Lookup pre-rename fh of renamed object */
8446 argop[2].argop = OP_CLOOKUP;
8447 argop[2].nfs_argop4_u.opclookup.cname = onm;
8448
8449 /* 3: getfh fh of renamed object (before rename) */
8450 argop[3].argop = OP_GETFH;
8451
8452 /* 4: putfh targetdir */
8453 argop[4].argop = OP_CPUTFH;
8454 argop[4].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8455
8456 /* 5: current_fh is targetdir, saved_fh is sourcedir */
8457 argop[5].argop = OP_CRENAME;
8458 argop[5].nfs_argop4_u.opcrename.coldname = onm;
8459 argop[5].nfs_argop4_u.opcrename.cnewname = nnm;
8460
8461 /* 6: getattr of target dir (post op attrs) */
8462 argop[6].argop = OP_GETATTR;
8463 argop[6].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8464 argop[6].nfs_argop4_u.opgetattr.mi = mi;
8465
8466 /* 7: Lookup post-rename fh of renamed object */
8467 argop[7].argop = OP_CLOOKUP;
8468 argop[7].nfs_argop4_u.opclookup.cname = nnm;
8469
8470 /* 8: getfh fh of renamed object (after rename) */
8471 argop[8].argop = OP_GETFH;
8472
8473 /* 9: getattr of renamed object */
8474 argop[9].argop = OP_GETATTR;
8475 argop[9].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8476 argop[9].nfs_argop4_u.opgetattr.mi = mi;
8477
8478 /*
8479 * If source/target dirs are different, then get new post-op
8480 * attrs for source dir also.
8481 */
8482 if (ndvp != odvp) {
8483 /* 10: putfh (sourcedir) */
8484 argop[10].argop = OP_CPUTFH;
8485 argop[10].nfs_argop4_u.opcputfh.sfh = ndrp->r_fh;
8486
8487 /* 11: getattr (sourcedir) */
8488 argop[11].argop = OP_GETATTR;
8489 argop[11].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8490 argop[11].nfs_argop4_u.opgetattr.mi = mi;
8491 }
8492
8493 dnlc_remove(odvp, onm);
8494 dnlc_remove(ndvp, nnm);
8495
8496 doqueue = 1;
8497 t = gethrtime();
8498 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8499
8500 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8501 if (e.error) {
8502 PURGE_ATTRCACHE4(odvp);
8503 PURGE_ATTRCACHE4(ndvp);
8504 if (!needrecov) {
8505 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8506 &recov_state, needrecov);
8507 goto out;
8508 }
8509 } else {
8510 *statp = res.status;
8511 }
8512
8513 if (needrecov) {
8514 bool_t abort;
8515
8516 abort = nfs4_start_recovery(&e, mi, odvp, ndvp, NULL, NULL,
8517 OP_RENAME, NULL, NULL, NULL);
8518 if (abort == FALSE) {
8519 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8520 &recov_state, needrecov);
8521 kmem_free(argop, argoplist_size);
8522 if (!e.error)
8523 (void) xdr_free(xdr_COMPOUND4res_clnt,
8524 (caddr_t)&res);
8525 mutex_enter(&orp->r_statelock);
8526 orp->r_flags &= ~R4RECEXPFH;
8527 cv_broadcast(&orp->r_cv);
8528 mutex_exit(&orp->r_statelock);
8529 goto recov_retry;
8530 } else {
8531 if (e.error != 0) {
8532 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME,
8533 &recov_state, needrecov);
8534 goto out;
8535 }
8536 /* fall through for res.status case */
8537 }
8538 }
8539
8540 resp = &res;
8541 /*
8542 * If OP_RENAME (or any prev op) failed, then return an error.
8543 * OP_RENAME is index 5, so if array len <= 6 we return an error.
8544 */
8545 if ((res.status != NFS4_OK) && (res.array_len <= 6)) {
8546 /*
8547 * Error in an op other than last Getattr
8548 */
8549 e.error = geterrno4(res.status);
8550 PURGE_ATTRCACHE4(odvp);
8551 PURGE_ATTRCACHE4(ndvp);
8552 /*
8553 * System V defines rename to return EEXIST, not
8554 * ENOTEMPTY if the target directory is not empty.
8555 * Over the wire, the error is NFSERR_ENOTEMPTY
8556 * which geterrno4 maps to ENOTEMPTY.
8557 */
8558 if (e.error == ENOTEMPTY)
8559 e.error = EEXIST;
8560 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state,
8561 needrecov);
8562 goto out;
8563 }
8564
8565 /* rename results */
8566 rn_res = &res.array[5].nfs_resop4_u.oprename;
8567
8568 if (res.status == NFS4_OK) {
8569 /* Update target attribute, readdir and dnlc caches */
8570 dinfo.di_garp =
8571 &res.array[6].nfs_resop4_u.opgetattr.ga_res;
8572 dinfo.di_cred = cr;
8573 dinfo.di_time_call = t;
8574 } else
8575 dinfop = NULL;
8576
8577 /* Update source cache attribute, readdir and dnlc caches */
8578 nfs4_update_dircaches(&rn_res->target_cinfo, ndvp, NULL, NULL, dinfop);
8579
8580 /* Update source cache attribute, readdir and dnlc caches */
8581 if (ndvp != odvp) {
8582 update_parentdir_sfh(ovp, ndvp);
8583
8584 /*
8585 * If dinfop is non-NULL, then compound succeded, so
8586 * set di_garp to attrs for source dir. dinfop is only
8587 * set to NULL when compound fails.
8588 */
8589 if (dinfop)
8590 dinfo.di_garp =
8591 &res.array[11].nfs_resop4_u.opgetattr.ga_res;
8592 nfs4_update_dircaches(&rn_res->source_cinfo, odvp, NULL, NULL,
8593 dinfop);
8594 }
8595
8596 /*
8597 * Update the rnode with the new component name and args,
8598 * and if the file handle changed, also update it with the new fh.
8599 * This is only necessary if the target object has an rnode
8600 * entry and there is no need to create one for it.
8601 */
8602 resop = &res.array[8]; /* getfh new res */
8603 ngf_res = &resop->nfs_resop4_u.opgetfh;
8604
8605 /*
8606 * Update the path and filehandle for the renamed object.
8607 */
8608 nfs4rename_update(ovp, ndvp, &ngf_res->object, nnm);
8609
8610 nfs4_end_fop(mi, odvp, ndvp, OH_VFH_RENAME, &recov_state, needrecov);
8611
8612 if (res.status == NFS4_OK) {
8613 resop++; /* getattr res */
8614 e.error = nfs4_update_attrcache(res.status,
8615 &resop->nfs_resop4_u.opgetattr.ga_res,
8616 t, ovp, cr);
8617 }
8618
8619 out:
8620 kmem_free(argop, argoplist_size);
8621 if (resp)
8622 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8623 mutex_enter(&orp->r_statelock);
8624 orp->r_flags &= ~R4RECEXPFH;
8625 cv_broadcast(&orp->r_cv);
8626 mutex_exit(&orp->r_statelock);
8627
8628 return (e.error);
8629 }
8630
8631 /* ARGSUSED */
8632 static int
nfs4_mkdir(vnode_t * dvp,char * nm,struct vattr * va,vnode_t ** vpp,cred_t * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)8633 nfs4_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
8634 caller_context_t *ct, int flags, vsecattr_t *vsecp)
8635 {
8636 int error;
8637 vnode_t *vp;
8638
8639 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
8640 return (EPERM);
8641 /*
8642 * As ".." has special meaning and rather than send a mkdir
8643 * over the wire to just let the server freak out, we just
8644 * short circuit it here and return EEXIST
8645 */
8646 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0')
8647 return (EEXIST);
8648
8649 /*
8650 * Decision to get the right gid and setgid bit of the
8651 * new directory is now made in call_nfs4_create_req.
8652 */
8653 va->va_mask |= AT_MODE;
8654 error = call_nfs4_create_req(dvp, nm, NULL, va, &vp, cr, NF4DIR);
8655 if (error)
8656 return (error);
8657
8658 *vpp = vp;
8659 return (0);
8660 }
8661
8662
8663 /*
8664 * rmdir is using the same remove v4 op as does remove.
8665 * Remove requires that the current fh be the target directory.
8666 * After the operation, the current fh is unchanged.
8667 * The compound op structure is:
8668 * PUTFH(targetdir), REMOVE
8669 */
8670 /*ARGSUSED4*/
8671 static int
nfs4_rmdir(vnode_t * dvp,char * nm,vnode_t * cdir,cred_t * cr,caller_context_t * ct,int flags)8672 nfs4_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
8673 caller_context_t *ct, int flags)
8674 {
8675 int need_end_op = FALSE;
8676 COMPOUND4args_clnt args;
8677 COMPOUND4res_clnt res, *resp = NULL;
8678 REMOVE4res *rm_res;
8679 nfs_argop4 argop[3];
8680 nfs_resop4 *resop;
8681 vnode_t *vp;
8682 int doqueue;
8683 mntinfo4_t *mi;
8684 rnode4_t *drp;
8685 bool_t needrecov = FALSE;
8686 nfs4_recov_state_t recov_state;
8687 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
8688 dirattr_info_t dinfo, *dinfop;
8689
8690 if (nfs_zone() != VTOMI4(dvp)->mi_zone)
8691 return (EPERM);
8692 /*
8693 * As ".." has special meaning and rather than send a rmdir
8694 * over the wire to just let the server freak out, we just
8695 * short circuit it here and return EEXIST
8696 */
8697 if (nm[0] == '.' && nm[1] == '.' && nm[2] == '\0')
8698 return (EEXIST);
8699
8700 drp = VTOR4(dvp);
8701 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR4(dvp)))
8702 return (EINTR);
8703
8704 /*
8705 * Attempt to prevent a rmdir(".") from succeeding.
8706 */
8707 e.error = nfs4lookup(dvp, nm, &vp, cr, 0);
8708 if (e.error) {
8709 nfs_rw_exit(&drp->r_rwlock);
8710 return (e.error);
8711 }
8712 if (vp == cdir) {
8713 VN_RELE(vp);
8714 nfs_rw_exit(&drp->r_rwlock);
8715 return (EINVAL);
8716 }
8717
8718 /*
8719 * Since nfsv4 remove op works on both files and directories,
8720 * check that the removed object is indeed a directory.
8721 */
8722 if (vp->v_type != VDIR) {
8723 VN_RELE(vp);
8724 nfs_rw_exit(&drp->r_rwlock);
8725 return (ENOTDIR);
8726 }
8727
8728 /*
8729 * First just remove the entry from the name cache, as it
8730 * is most likely an entry for this vp.
8731 */
8732 dnlc_remove(dvp, nm);
8733
8734 /*
8735 * If there vnode reference count is greater than one, then
8736 * there may be additional references in the DNLC which will
8737 * need to be purged. First, trying removing the entry for
8738 * the parent directory and see if that removes the additional
8739 * reference(s). If that doesn't do it, then use dnlc_purge_vp
8740 * to completely remove any references to the directory which
8741 * might still exist in the DNLC.
8742 */
8743 if (vp->v_count > 1) {
8744 dnlc_remove(vp, "..");
8745 if (vp->v_count > 1)
8746 dnlc_purge_vp(vp);
8747 }
8748
8749 mi = VTOMI4(dvp);
8750 recov_state.rs_flags = 0;
8751 recov_state.rs_num_retry_despite_err = 0;
8752
8753 recov_retry:
8754 args.ctag = TAG_RMDIR;
8755
8756 /*
8757 * Rmdir ops: putfh dir; remove
8758 */
8759 args.array_len = 3;
8760 args.array = argop;
8761
8762 e.error = nfs4_start_op(VTOMI4(dvp), dvp, NULL, &recov_state);
8763 if (e.error) {
8764 nfs_rw_exit(&drp->r_rwlock);
8765 return (e.error);
8766 }
8767 need_end_op = TRUE;
8768
8769 /* putfh directory */
8770 argop[0].argop = OP_CPUTFH;
8771 argop[0].nfs_argop4_u.opcputfh.sfh = drp->r_fh;
8772
8773 /* remove */
8774 argop[1].argop = OP_CREMOVE;
8775 argop[1].nfs_argop4_u.opcremove.ctarget = nm;
8776
8777 /* getattr (postop attrs for dir that contained removed dir) */
8778 argop[2].argop = OP_GETATTR;
8779 argop[2].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
8780 argop[2].nfs_argop4_u.opgetattr.mi = mi;
8781
8782 dinfo.di_time_call = gethrtime();
8783 doqueue = 1;
8784 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
8785
8786 PURGE_ATTRCACHE4(vp);
8787
8788 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
8789 if (e.error) {
8790 PURGE_ATTRCACHE4(dvp);
8791 }
8792
8793 if (needrecov) {
8794 if (nfs4_start_recovery(&e, VTOMI4(dvp), dvp, NULL, NULL,
8795 NULL, OP_REMOVE, NULL, NULL, NULL) == FALSE) {
8796 if (!e.error)
8797 (void) xdr_free(xdr_COMPOUND4res_clnt,
8798 (caddr_t)&res);
8799
8800 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state,
8801 needrecov);
8802 need_end_op = FALSE;
8803 goto recov_retry;
8804 }
8805 }
8806
8807 if (!e.error) {
8808 resp = &res;
8809
8810 /*
8811 * Only return error if first 2 ops (OP_REMOVE or earlier)
8812 * failed.
8813 */
8814 if (res.status != NFS4_OK && res.array_len <= 2) {
8815 e.error = geterrno4(res.status);
8816 PURGE_ATTRCACHE4(dvp);
8817 nfs4_end_op(VTOMI4(dvp), dvp, NULL,
8818 &recov_state, needrecov);
8819 need_end_op = FALSE;
8820 nfs4_purge_stale_fh(e.error, dvp, cr);
8821 /*
8822 * System V defines rmdir to return EEXIST, not
8823 * ENOTEMPTY if the directory is not empty. Over
8824 * the wire, the error is NFSERR_ENOTEMPTY which
8825 * geterrno4 maps to ENOTEMPTY.
8826 */
8827 if (e.error == ENOTEMPTY)
8828 e.error = EEXIST;
8829 } else {
8830 resop = &res.array[1]; /* remove res */
8831 rm_res = &resop->nfs_resop4_u.opremove;
8832
8833 if (res.status == NFS4_OK) {
8834 resop = &res.array[2]; /* dir attrs */
8835 dinfo.di_garp =
8836 &resop->nfs_resop4_u.opgetattr.ga_res;
8837 dinfo.di_cred = cr;
8838 dinfop = &dinfo;
8839 } else
8840 dinfop = NULL;
8841
8842 /* Update dir attribute, readdir and dnlc caches */
8843 nfs4_update_dircaches(&rm_res->cinfo, dvp, NULL, NULL,
8844 dinfop);
8845
8846 /* destroy rddir cache for dir that was removed */
8847 if (VTOR4(vp)->r_dir != NULL)
8848 nfs4_purge_rddir_cache(vp);
8849 }
8850 }
8851
8852 if (need_end_op)
8853 nfs4_end_op(VTOMI4(dvp), dvp, NULL, &recov_state, needrecov);
8854
8855 nfs_rw_exit(&drp->r_rwlock);
8856
8857 if (resp)
8858 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
8859
8860 if (e.error == 0) {
8861 vnode_t *tvp;
8862 rnode4_t *trp;
8863 trp = VTOR4(vp);
8864 tvp = vp;
8865 if (IS_SHADOW(vp, trp))
8866 tvp = RTOV4(trp);
8867 vnevent_rmdir(tvp, dvp, nm, ct);
8868 }
8869
8870 VN_RELE(vp);
8871
8872 return (e.error);
8873 }
8874
8875 /* ARGSUSED */
8876 static int
nfs4_symlink(vnode_t * dvp,char * lnm,struct vattr * tva,char * tnm,cred_t * cr,caller_context_t * ct,int flags)8877 nfs4_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
8878 caller_context_t *ct, int flags)
8879 {
8880 int error;
8881 vnode_t *vp;
8882 rnode4_t *rp;
8883 char *contents;
8884 mntinfo4_t *mi = VTOMI4(dvp);
8885
8886 if (nfs_zone() != mi->mi_zone)
8887 return (EPERM);
8888 if (!(mi->mi_flags & MI4_SYMLINK))
8889 return (EOPNOTSUPP);
8890
8891 error = call_nfs4_create_req(dvp, lnm, tnm, tva, &vp, cr, NF4LNK);
8892 if (error)
8893 return (error);
8894
8895 ASSERT(nfs4_consistent_type(vp));
8896 rp = VTOR4(vp);
8897 if (nfs4_do_symlink_cache && rp->r_symlink.contents == NULL) {
8898
8899 contents = kmem_alloc(MAXPATHLEN, KM_SLEEP);
8900
8901 if (contents != NULL) {
8902 mutex_enter(&rp->r_statelock);
8903 if (rp->r_symlink.contents == NULL) {
8904 rp->r_symlink.len = strlen(tnm);
8905 bcopy(tnm, contents, rp->r_symlink.len);
8906 rp->r_symlink.contents = contents;
8907 rp->r_symlink.size = MAXPATHLEN;
8908 mutex_exit(&rp->r_statelock);
8909 } else {
8910 mutex_exit(&rp->r_statelock);
8911 kmem_free((void *)contents, MAXPATHLEN);
8912 }
8913 }
8914 }
8915 VN_RELE(vp);
8916
8917 return (error);
8918 }
8919
8920
8921 /*
8922 * Read directory entries.
8923 * There are some weird things to look out for here. The uio_loffset
8924 * field is either 0 or it is the offset returned from a previous
8925 * readdir. It is an opaque value used by the server to find the
8926 * correct directory block to read. The count field is the number
8927 * of blocks to read on the server. This is advisory only, the server
8928 * may return only one block's worth of entries. Entries may be compressed
8929 * on the server.
8930 */
8931 /* ARGSUSED */
8932 static int
nfs4_readdir(vnode_t * vp,struct uio * uiop,cred_t * cr,int * eofp,caller_context_t * ct,int flags)8933 nfs4_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
8934 caller_context_t *ct, int flags)
8935 {
8936 int error;
8937 uint_t count;
8938 rnode4_t *rp;
8939 rddir4_cache *rdc;
8940 rddir4_cache *rrdc;
8941
8942 if (nfs_zone() != VTOMI4(vp)->mi_zone)
8943 return (EIO);
8944 rp = VTOR4(vp);
8945
8946 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
8947
8948 /*
8949 * Make sure that the directory cache is valid.
8950 */
8951 if (rp->r_dir != NULL) {
8952 if (nfs_disable_rddir_cache != 0) {
8953 /*
8954 * Setting nfs_disable_rddir_cache in /etc/system
8955 * allows interoperability with servers that do not
8956 * properly update the attributes of directories.
8957 * Any cached information gets purged before an
8958 * access is made to it.
8959 */
8960 nfs4_purge_rddir_cache(vp);
8961 }
8962
8963 error = nfs4_validate_caches(vp, cr);
8964 if (error)
8965 return (error);
8966 }
8967
8968 count = MIN(uiop->uio_iov->iov_len, MAXBSIZE);
8969
8970 /*
8971 * Short circuit last readdir which always returns 0 bytes.
8972 * This can be done after the directory has been read through
8973 * completely at least once. This will set r_direof which
8974 * can be used to find the value of the last cookie.
8975 */
8976 mutex_enter(&rp->r_statelock);
8977 if (rp->r_direof != NULL &&
8978 uiop->uio_loffset == rp->r_direof->nfs4_ncookie) {
8979 mutex_exit(&rp->r_statelock);
8980 #ifdef DEBUG
8981 nfs4_readdir_cache_shorts++;
8982 #endif
8983 if (eofp)
8984 *eofp = 1;
8985 return (0);
8986 }
8987
8988 /*
8989 * Look for a cache entry. Cache entries are identified
8990 * by the NFS cookie value and the byte count requested.
8991 */
8992 rdc = rddir4_cache_lookup(rp, uiop->uio_loffset, count);
8993
8994 /*
8995 * If rdc is NULL then the lookup resulted in an unrecoverable error.
8996 */
8997 if (rdc == NULL) {
8998 mutex_exit(&rp->r_statelock);
8999 return (EINTR);
9000 }
9001
9002 /*
9003 * Check to see if we need to fill this entry in.
9004 */
9005 if (rdc->flags & RDDIRREQ) {
9006 rdc->flags &= ~RDDIRREQ;
9007 rdc->flags |= RDDIR;
9008 mutex_exit(&rp->r_statelock);
9009
9010 /*
9011 * Do the readdir.
9012 */
9013 nfs4readdir(vp, rdc, cr);
9014
9015 /*
9016 * Reacquire the lock, so that we can continue
9017 */
9018 mutex_enter(&rp->r_statelock);
9019 /*
9020 * The entry is now complete
9021 */
9022 rdc->flags &= ~RDDIR;
9023 }
9024
9025 ASSERT(!(rdc->flags & RDDIR));
9026
9027 /*
9028 * If an error occurred while attempting
9029 * to fill the cache entry, mark the entry invalid and
9030 * just return the error.
9031 */
9032 if (rdc->error) {
9033 error = rdc->error;
9034 rdc->flags |= RDDIRREQ;
9035 rddir4_cache_rele(rp, rdc);
9036 mutex_exit(&rp->r_statelock);
9037 return (error);
9038 }
9039
9040 /*
9041 * The cache entry is complete and good,
9042 * copyout the dirent structs to the calling
9043 * thread.
9044 */
9045 error = uiomove(rdc->entries, rdc->actlen, UIO_READ, uiop);
9046
9047 /*
9048 * If no error occurred during the copyout,
9049 * update the offset in the uio struct to
9050 * contain the value of the next NFS 4 cookie
9051 * and set the eof value appropriately.
9052 */
9053 if (!error) {
9054 uiop->uio_loffset = rdc->nfs4_ncookie;
9055 if (eofp)
9056 *eofp = rdc->eof;
9057 }
9058
9059 /*
9060 * Decide whether to do readahead. Don't if we
9061 * have already read to the end of directory.
9062 */
9063 if (rdc->eof) {
9064 /*
9065 * Make the entry the direof only if it is cached
9066 */
9067 if (rdc->flags & RDDIRCACHED)
9068 rp->r_direof = rdc;
9069 rddir4_cache_rele(rp, rdc);
9070 mutex_exit(&rp->r_statelock);
9071 return (error);
9072 }
9073
9074 /* Determine if a readdir readahead should be done */
9075 if (!(rp->r_flags & R4LOOKUP)) {
9076 rddir4_cache_rele(rp, rdc);
9077 mutex_exit(&rp->r_statelock);
9078 return (error);
9079 }
9080
9081 /*
9082 * Now look for a readahead entry.
9083 *
9084 * Check to see whether we found an entry for the readahead.
9085 * If so, we don't need to do anything further, so free the new
9086 * entry if one was allocated. Otherwise, allocate a new entry, add
9087 * it to the cache, and then initiate an asynchronous readdir
9088 * operation to fill it.
9089 */
9090 rrdc = rddir4_cache_lookup(rp, rdc->nfs4_ncookie, count);
9091
9092 /*
9093 * A readdir cache entry could not be obtained for the readahead. In
9094 * this case we skip the readahead and return.
9095 */
9096 if (rrdc == NULL) {
9097 rddir4_cache_rele(rp, rdc);
9098 mutex_exit(&rp->r_statelock);
9099 return (error);
9100 }
9101
9102 /*
9103 * Check to see if we need to fill this entry in.
9104 */
9105 if (rrdc->flags & RDDIRREQ) {
9106 rrdc->flags &= ~RDDIRREQ;
9107 rrdc->flags |= RDDIR;
9108 rddir4_cache_rele(rp, rdc);
9109 mutex_exit(&rp->r_statelock);
9110 #ifdef DEBUG
9111 nfs4_readdir_readahead++;
9112 #endif
9113 /*
9114 * Do the readdir.
9115 */
9116 nfs4_async_readdir(vp, rrdc, cr, do_nfs4readdir);
9117 return (error);
9118 }
9119
9120 rddir4_cache_rele(rp, rrdc);
9121 rddir4_cache_rele(rp, rdc);
9122 mutex_exit(&rp->r_statelock);
9123 return (error);
9124 }
9125
9126 static int
do_nfs4readdir(vnode_t * vp,rddir4_cache * rdc,cred_t * cr)9127 do_nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
9128 {
9129 int error;
9130 rnode4_t *rp;
9131
9132 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
9133
9134 rp = VTOR4(vp);
9135
9136 /*
9137 * Obtain the readdir results for the caller.
9138 */
9139 nfs4readdir(vp, rdc, cr);
9140
9141 mutex_enter(&rp->r_statelock);
9142 /*
9143 * The entry is now complete
9144 */
9145 rdc->flags &= ~RDDIR;
9146
9147 error = rdc->error;
9148 if (error)
9149 rdc->flags |= RDDIRREQ;
9150 rddir4_cache_rele(rp, rdc);
9151 mutex_exit(&rp->r_statelock);
9152
9153 return (error);
9154 }
9155
9156 /*
9157 * Read directory entries.
9158 * There are some weird things to look out for here. The uio_loffset
9159 * field is either 0 or it is the offset returned from a previous
9160 * readdir. It is an opaque value used by the server to find the
9161 * correct directory block to read. The count field is the number
9162 * of blocks to read on the server. This is advisory only, the server
9163 * may return only one block's worth of entries. Entries may be compressed
9164 * on the server.
9165 *
9166 * Generates the following compound request:
9167 * 1. If readdir offset is zero and no dnlc entry for parent exists,
9168 * must include a Lookupp as well. In this case, send:
9169 * { Putfh <fh>; Readdir; Lookupp; Getfh; Getattr }
9170 * 2. Otherwise just do: { Putfh <fh>; Readdir }
9171 *
9172 * Get complete attributes and filehandles for entries if this is the
9173 * first read of the directory. Otherwise, just get fileid's.
9174 */
9175 static void
nfs4readdir(vnode_t * vp,rddir4_cache * rdc,cred_t * cr)9176 nfs4readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr)
9177 {
9178 COMPOUND4args_clnt args;
9179 COMPOUND4res_clnt res;
9180 READDIR4args *rargs;
9181 READDIR4res_clnt *rd_res;
9182 bitmap4 rd_bitsval;
9183 nfs_argop4 argop[5];
9184 nfs_resop4 *resop;
9185 rnode4_t *rp = VTOR4(vp);
9186 mntinfo4_t *mi = VTOMI4(vp);
9187 int doqueue;
9188 u_longlong_t nodeid, pnodeid; /* id's of dir and its parents */
9189 vnode_t *dvp;
9190 nfs_cookie4 cookie = (nfs_cookie4)rdc->nfs4_cookie;
9191 int num_ops, res_opcnt;
9192 bool_t needrecov = FALSE;
9193 nfs4_recov_state_t recov_state;
9194 hrtime_t t;
9195 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
9196
9197 ASSERT(nfs_zone() == mi->mi_zone);
9198 ASSERT(rdc->flags & RDDIR);
9199 ASSERT(rdc->entries == NULL);
9200
9201 /*
9202 * If rp were a stub, it should have triggered and caused
9203 * a mount for us to get this far.
9204 */
9205 ASSERT(!RP_ISSTUB(rp));
9206
9207 num_ops = 2;
9208 if (cookie == (nfs_cookie4)0 || cookie == (nfs_cookie4)1) {
9209 /*
9210 * Since nfsv4 readdir may not return entries for "." and "..",
9211 * the client must recreate them:
9212 * To find the correct nodeid, do the following:
9213 * For current node, get nodeid from dnlc.
9214 * - if current node is rootvp, set pnodeid to nodeid.
9215 * - else if parent is in the dnlc, get its nodeid from there.
9216 * - else add LOOKUPP+GETATTR to compound.
9217 */
9218 nodeid = rp->r_attr.va_nodeid;
9219 if (vp->v_flag & VROOT) {
9220 pnodeid = nodeid; /* root of mount point */
9221 } else {
9222 dvp = dnlc_lookup(vp, "..");
9223 if (dvp != NULL && dvp != DNLC_NO_VNODE) {
9224 /* parent in dnlc cache - no need for otw */
9225 pnodeid = VTOR4(dvp)->r_attr.va_nodeid;
9226 } else {
9227 /*
9228 * parent not in dnlc cache,
9229 * do lookupp to get its id
9230 */
9231 num_ops = 5;
9232 pnodeid = 0; /* set later by getattr parent */
9233 }
9234 if (dvp)
9235 VN_RELE(dvp);
9236 }
9237 }
9238 recov_state.rs_flags = 0;
9239 recov_state.rs_num_retry_despite_err = 0;
9240
9241 /* Save the original mount point security flavor */
9242 (void) save_mnt_secinfo(mi->mi_curr_serv);
9243
9244 recov_retry:
9245 args.ctag = TAG_READDIR;
9246
9247 args.array = argop;
9248 args.array_len = num_ops;
9249
9250 if (e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9251 &recov_state, NULL)) {
9252 /*
9253 * If readdir a node that is a stub for a crossed mount point,
9254 * keep the original secinfo flavor for the current file
9255 * system, not the crossed one.
9256 */
9257 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9258 rdc->error = e.error;
9259 return;
9260 }
9261
9262 /*
9263 * Determine which attrs to request for dirents. This code
9264 * must be protected by nfs4_start/end_fop because of r_server
9265 * (which will change during failover recovery).
9266 *
9267 */
9268 if (rp->r_flags & (R4LOOKUP | R4READDIRWATTR)) {
9269 /*
9270 * Get all vattr attrs plus filehandle and rdattr_error
9271 */
9272 rd_bitsval = NFS4_VATTR_MASK |
9273 FATTR4_RDATTR_ERROR_MASK |
9274 FATTR4_FILEHANDLE_MASK;
9275
9276 if (rp->r_flags & R4READDIRWATTR) {
9277 mutex_enter(&rp->r_statelock);
9278 rp->r_flags &= ~R4READDIRWATTR;
9279 mutex_exit(&rp->r_statelock);
9280 }
9281 } else {
9282 servinfo4_t *svp = rp->r_server;
9283
9284 /*
9285 * Already read directory. Use readdir with
9286 * no attrs (except for mounted_on_fileid) for updates.
9287 */
9288 rd_bitsval = FATTR4_RDATTR_ERROR_MASK;
9289
9290 /*
9291 * request mounted on fileid if supported, else request
9292 * fileid. maybe we should verify that fileid is supported
9293 * and request something else if not.
9294 */
9295 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
9296 if (svp->sv_supp_attrs & FATTR4_MOUNTED_ON_FILEID_MASK)
9297 rd_bitsval |= FATTR4_MOUNTED_ON_FILEID_MASK;
9298 nfs_rw_exit(&svp->sv_lock);
9299 }
9300
9301 /* putfh directory fh */
9302 argop[0].argop = OP_CPUTFH;
9303 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
9304
9305 argop[1].argop = OP_READDIR;
9306 rargs = &argop[1].nfs_argop4_u.opreaddir;
9307 /*
9308 * 1 and 2 are reserved for client "." and ".." entry offset.
9309 * cookie 0 should be used over-the-wire to start reading at
9310 * the beginning of the directory excluding "." and "..".
9311 */
9312 if (rdc->nfs4_cookie == 0 ||
9313 rdc->nfs4_cookie == 1 ||
9314 rdc->nfs4_cookie == 2) {
9315 rargs->cookie = (nfs_cookie4)0;
9316 rargs->cookieverf = 0;
9317 } else {
9318 rargs->cookie = (nfs_cookie4)rdc->nfs4_cookie;
9319 mutex_enter(&rp->r_statelock);
9320 rargs->cookieverf = rp->r_cookieverf4;
9321 mutex_exit(&rp->r_statelock);
9322 }
9323 rargs->dircount = MIN(rdc->buflen, mi->mi_tsize);
9324 rargs->maxcount = mi->mi_tsize;
9325 rargs->attr_request = rd_bitsval;
9326 rargs->rdc = rdc;
9327 rargs->dvp = vp;
9328 rargs->mi = mi;
9329 rargs->cr = cr;
9330
9331
9332 /*
9333 * If count < than the minimum required, we return no entries
9334 * and fail with EINVAL
9335 */
9336 if (rargs->dircount < (DIRENT64_RECLEN(1) + DIRENT64_RECLEN(2))) {
9337 rdc->error = EINVAL;
9338 goto out;
9339 }
9340
9341 if (args.array_len == 5) {
9342 /*
9343 * Add lookupp and getattr for parent nodeid.
9344 */
9345 argop[2].argop = OP_LOOKUPP;
9346
9347 argop[3].argop = OP_GETFH;
9348
9349 /* getattr parent */
9350 argop[4].argop = OP_GETATTR;
9351 argop[4].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
9352 argop[4].nfs_argop4_u.opgetattr.mi = mi;
9353 }
9354
9355 doqueue = 1;
9356
9357 if (mi->mi_io_kstats) {
9358 mutex_enter(&mi->mi_lock);
9359 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
9360 mutex_exit(&mi->mi_lock);
9361 }
9362
9363 /* capture the time of this call */
9364 rargs->t = t = gethrtime();
9365
9366 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
9367
9368 if (mi->mi_io_kstats) {
9369 mutex_enter(&mi->mi_lock);
9370 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
9371 mutex_exit(&mi->mi_lock);
9372 }
9373
9374 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
9375
9376 /*
9377 * If RPC error occurred and it isn't an error that
9378 * triggers recovery, then go ahead and fail now.
9379 */
9380 if (e.error != 0 && !needrecov) {
9381 rdc->error = e.error;
9382 goto out;
9383 }
9384
9385 if (needrecov) {
9386 bool_t abort;
9387
9388 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
9389 "nfs4readdir: initiating recovery.\n"));
9390
9391 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
9392 NULL, OP_READDIR, NULL, NULL, NULL);
9393 if (abort == FALSE) {
9394 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9395 &recov_state, needrecov);
9396 if (!e.error)
9397 (void) xdr_free(xdr_COMPOUND4res_clnt,
9398 (caddr_t)&res);
9399 if (rdc->entries != NULL) {
9400 kmem_free(rdc->entries, rdc->entlen);
9401 rdc->entries = NULL;
9402 }
9403 goto recov_retry;
9404 }
9405
9406 if (e.error != 0) {
9407 rdc->error = e.error;
9408 goto out;
9409 }
9410
9411 /* fall through for res.status case */
9412 }
9413
9414 res_opcnt = res.array_len;
9415
9416 /*
9417 * If compound failed first 2 ops (PUTFH+READDIR), then return
9418 * failure here. Subsequent ops are for filling out dot-dot
9419 * dirent, and if they fail, we still want to give the caller
9420 * the dirents returned by (the successful) READDIR op, so we need
9421 * to silently ignore failure for subsequent ops (LOOKUPP+GETATTR).
9422 *
9423 * One example where PUTFH+READDIR ops would succeed but
9424 * LOOKUPP+GETATTR would fail would be a dir that has r perm
9425 * but lacks x. In this case, a POSIX server's VOP_READDIR
9426 * would succeed; however, VOP_LOOKUP(..) would fail since no
9427 * x perm. We need to come up with a non-vendor-specific way
9428 * for a POSIX server to return d_ino from dotdot's dirent if
9429 * client only requests mounted_on_fileid, and just say the
9430 * LOOKUPP succeeded and fill out the GETATTR. However, if
9431 * client requested any mandatory attrs, server would be required
9432 * to fail the GETATTR op because it can't call VOP_LOOKUP+VOP_GETATTR
9433 * for dotdot.
9434 */
9435
9436 if (res.status) {
9437 if (res_opcnt <= 2) {
9438 e.error = geterrno4(res.status);
9439 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_READDIR,
9440 &recov_state, needrecov);
9441 nfs4_purge_stale_fh(e.error, vp, cr);
9442 rdc->error = e.error;
9443 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
9444 if (rdc->entries != NULL) {
9445 kmem_free(rdc->entries, rdc->entlen);
9446 rdc->entries = NULL;
9447 }
9448 /*
9449 * If readdir a node that is a stub for a
9450 * crossed mount point, keep the original
9451 * secinfo flavor for the current file system,
9452 * not the crossed one.
9453 */
9454 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9455 return;
9456 }
9457 }
9458
9459 resop = &res.array[1]; /* readdir res */
9460 rd_res = &resop->nfs_resop4_u.opreaddirclnt;
9461
9462 mutex_enter(&rp->r_statelock);
9463 rp->r_cookieverf4 = rd_res->cookieverf;
9464 mutex_exit(&rp->r_statelock);
9465
9466 /*
9467 * For "." and ".." entries
9468 * e.g.
9469 * seek(cookie=0) -> "." entry with d_off = 1
9470 * seek(cookie=1) -> ".." entry with d_off = 2
9471 */
9472 if (cookie == (nfs_cookie4) 0) {
9473 if (rd_res->dotp)
9474 rd_res->dotp->d_ino = nodeid;
9475 if (rd_res->dotdotp)
9476 rd_res->dotdotp->d_ino = pnodeid;
9477 }
9478 if (cookie == (nfs_cookie4) 1) {
9479 if (rd_res->dotdotp)
9480 rd_res->dotdotp->d_ino = pnodeid;
9481 }
9482
9483
9484 /* LOOKUPP+GETATTR attemped */
9485 if (args.array_len == 5 && rd_res->dotdotp) {
9486 if (res.status == NFS4_OK && res_opcnt == 5) {
9487 nfs_fh4 *fhp;
9488 nfs4_sharedfh_t *sfhp;
9489 vnode_t *pvp;
9490 nfs4_ga_res_t *garp;
9491
9492 resop++; /* lookupp */
9493 resop++; /* getfh */
9494 fhp = &resop->nfs_resop4_u.opgetfh.object;
9495
9496 resop++; /* getattr of parent */
9497
9498 /*
9499 * First, take care of finishing the
9500 * readdir results.
9501 */
9502 garp = &resop->nfs_resop4_u.opgetattr.ga_res;
9503 /*
9504 * The d_ino of .. must be the inode number
9505 * of the mounted filesystem.
9506 */
9507 if (garp->n4g_va.va_mask & AT_NODEID)
9508 rd_res->dotdotp->d_ino =
9509 garp->n4g_va.va_nodeid;
9510
9511
9512 /*
9513 * Next, create the ".." dnlc entry
9514 */
9515 sfhp = sfh4_get(fhp, mi);
9516 if (!nfs4_make_dotdot(sfhp, t, vp, cr, &pvp, 0)) {
9517 dnlc_update(vp, "..", pvp);
9518 VN_RELE(pvp);
9519 }
9520 sfh4_rele(&sfhp);
9521 }
9522 }
9523
9524 if (mi->mi_io_kstats) {
9525 mutex_enter(&mi->mi_lock);
9526 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
9527 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += rdc->actlen;
9528 mutex_exit(&mi->mi_lock);
9529 }
9530
9531 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
9532
9533 out:
9534 /*
9535 * If readdir a node that is a stub for a crossed mount point,
9536 * keep the original secinfo flavor for the current file system,
9537 * not the crossed one.
9538 */
9539 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
9540
9541 nfs4_end_fop(mi, vp, NULL, OH_READDIR, &recov_state, needrecov);
9542 }
9543
9544
9545 static int
nfs4_bio(struct buf * bp,stable_how4 * stab_comm,cred_t * cr,bool_t readahead)9546 nfs4_bio(struct buf *bp, stable_how4 *stab_comm, cred_t *cr, bool_t readahead)
9547 {
9548 rnode4_t *rp = VTOR4(bp->b_vp);
9549 int count;
9550 int error;
9551 cred_t *cred_otw = NULL;
9552 offset_t offset;
9553 nfs4_open_stream_t *osp = NULL;
9554 bool_t first_time = TRUE; /* first time getting otw cred */
9555 bool_t last_time = FALSE; /* last time getting otw cred */
9556
9557 ASSERT(nfs_zone() == VTOMI4(bp->b_vp)->mi_zone);
9558
9559 DTRACE_IO1(start, struct buf *, bp);
9560 offset = ldbtob(bp->b_lblkno);
9561
9562 if (bp->b_flags & B_READ) {
9563 read_again:
9564 /*
9565 * Releases the osp, if it is provided.
9566 * Puts a hold on the cred_otw and the new osp (if found).
9567 */
9568 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
9569 &first_time, &last_time);
9570 error = bp->b_error = nfs4read(bp->b_vp, bp->b_un.b_addr,
9571 offset, bp->b_bcount, &bp->b_resid, cred_otw,
9572 readahead, NULL);
9573 crfree(cred_otw);
9574 if (!error) {
9575 if (bp->b_resid) {
9576 /*
9577 * Didn't get it all because we hit EOF,
9578 * zero all the memory beyond the EOF.
9579 */
9580 /* bzero(rdaddr + */
9581 bzero(bp->b_un.b_addr +
9582 bp->b_bcount - bp->b_resid, bp->b_resid);
9583 }
9584 mutex_enter(&rp->r_statelock);
9585 if (bp->b_resid == bp->b_bcount &&
9586 offset >= rp->r_size) {
9587 /*
9588 * We didn't read anything at all as we are
9589 * past EOF. Return an error indicator back
9590 * but don't destroy the pages (yet).
9591 */
9592 error = NFS_EOF;
9593 }
9594 mutex_exit(&rp->r_statelock);
9595 } else if (error == EACCES && last_time == FALSE) {
9596 goto read_again;
9597 }
9598 } else {
9599 if (!(rp->r_flags & R4STALE)) {
9600 write_again:
9601 /*
9602 * Releases the osp, if it is provided.
9603 * Puts a hold on the cred_otw and the new
9604 * osp (if found).
9605 */
9606 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
9607 &first_time, &last_time);
9608 mutex_enter(&rp->r_statelock);
9609 count = MIN(bp->b_bcount, rp->r_size - offset);
9610 mutex_exit(&rp->r_statelock);
9611 if (count < 0)
9612 cmn_err(CE_PANIC, "nfs4_bio: write count < 0");
9613 #ifdef DEBUG
9614 if (count == 0) {
9615 zoneid_t zoneid = getzoneid();
9616
9617 zcmn_err(zoneid, CE_WARN,
9618 "nfs4_bio: zero length write at %lld",
9619 offset);
9620 zcmn_err(zoneid, CE_CONT, "flags=0x%x, "
9621 "b_bcount=%ld, file size=%lld",
9622 rp->r_flags, (long)bp->b_bcount,
9623 rp->r_size);
9624 sfh4_printfhandle(VTOR4(bp->b_vp)->r_fh);
9625 if (nfs4_bio_do_stop)
9626 debug_enter("nfs4_bio");
9627 }
9628 #endif
9629 error = nfs4write(bp->b_vp, bp->b_un.b_addr, offset,
9630 count, cred_otw, stab_comm);
9631 if (error == EACCES && last_time == FALSE) {
9632 crfree(cred_otw);
9633 goto write_again;
9634 }
9635 bp->b_error = error;
9636 if (error && error != EINTR &&
9637 !(bp->b_vp->v_vfsp->vfs_flag & VFS_UNMOUNTED)) {
9638 /*
9639 * Don't print EDQUOT errors on the console.
9640 * Don't print asynchronous EACCES errors.
9641 * Don't print EFBIG errors.
9642 * Print all other write errors.
9643 */
9644 if (error != EDQUOT && error != EFBIG &&
9645 (error != EACCES ||
9646 !(bp->b_flags & B_ASYNC)))
9647 nfs4_write_error(bp->b_vp,
9648 error, cred_otw);
9649 /*
9650 * Update r_error and r_flags as appropriate.
9651 * If the error was ESTALE, then mark the
9652 * rnode as not being writeable and save
9653 * the error status. Otherwise, save any
9654 * errors which occur from asynchronous
9655 * page invalidations. Any errors occurring
9656 * from other operations should be saved
9657 * by the caller.
9658 */
9659 mutex_enter(&rp->r_statelock);
9660 if (error == ESTALE) {
9661 rp->r_flags |= R4STALE;
9662 if (!rp->r_error)
9663 rp->r_error = error;
9664 } else if (!rp->r_error &&
9665 (bp->b_flags &
9666 (B_INVAL|B_FORCE|B_ASYNC)) ==
9667 (B_INVAL|B_FORCE|B_ASYNC)) {
9668 rp->r_error = error;
9669 }
9670 mutex_exit(&rp->r_statelock);
9671 }
9672 crfree(cred_otw);
9673 } else {
9674 error = rp->r_error;
9675 /*
9676 * A close may have cleared r_error, if so,
9677 * propagate ESTALE error return properly
9678 */
9679 if (error == 0)
9680 error = ESTALE;
9681 }
9682 }
9683
9684 if (error != 0 && error != NFS_EOF)
9685 bp->b_flags |= B_ERROR;
9686
9687 if (osp)
9688 open_stream_rele(osp, rp);
9689
9690 DTRACE_IO1(done, struct buf *, bp);
9691
9692 return (error);
9693 }
9694
9695 /* ARGSUSED */
9696 int
nfs4_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)9697 nfs4_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
9698 {
9699 return (EREMOTE);
9700 }
9701
9702 /* ARGSUSED2 */
9703 int
nfs4_rwlock(vnode_t * vp,int write_lock,caller_context_t * ctp)9704 nfs4_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
9705 {
9706 rnode4_t *rp = VTOR4(vp);
9707
9708 if (!write_lock) {
9709 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
9710 return (V_WRITELOCK_FALSE);
9711 }
9712
9713 if ((rp->r_flags & R4DIRECTIO) ||
9714 (VTOMI4(vp)->mi_flags & MI4_DIRECTIO)) {
9715 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
9716 if (rp->r_mapcnt == 0 && !nfs4_has_pages(vp))
9717 return (V_WRITELOCK_FALSE);
9718 nfs_rw_exit(&rp->r_rwlock);
9719 }
9720
9721 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
9722 return (V_WRITELOCK_TRUE);
9723 }
9724
9725 /* ARGSUSED */
9726 void
nfs4_rwunlock(vnode_t * vp,int write_lock,caller_context_t * ctp)9727 nfs4_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
9728 {
9729 rnode4_t *rp = VTOR4(vp);
9730
9731 nfs_rw_exit(&rp->r_rwlock);
9732 }
9733
9734 /* ARGSUSED */
9735 static int
nfs4_seek(vnode_t * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)9736 nfs4_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
9737 {
9738 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9739 return (EIO);
9740
9741 /*
9742 * Because we stuff the readdir cookie into the offset field
9743 * someone may attempt to do an lseek with the cookie which
9744 * we want to succeed.
9745 */
9746 if (vp->v_type == VDIR)
9747 return (0);
9748 if (*noffp < 0)
9749 return (EINVAL);
9750 return (0);
9751 }
9752
9753
9754 /*
9755 * Return all the pages from [off..off+len) in file
9756 */
9757 /* ARGSUSED */
9758 static int
nfs4_getpage(vnode_t * vp,offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr,caller_context_t * ct)9759 nfs4_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
9760 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9761 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
9762 {
9763 rnode4_t *rp;
9764 int error;
9765 mntinfo4_t *mi;
9766
9767 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9768 return (EIO);
9769 rp = VTOR4(vp);
9770 if (IS_SHADOW(vp, rp))
9771 vp = RTOV4(rp);
9772
9773 if (vp->v_flag & VNOMAP)
9774 return (ENOSYS);
9775
9776 if (protp != NULL)
9777 *protp = PROT_ALL;
9778
9779 /*
9780 * Now validate that the caches are up to date.
9781 */
9782 if (error = nfs4_validate_caches(vp, cr))
9783 return (error);
9784
9785 mi = VTOMI4(vp);
9786 retry:
9787 mutex_enter(&rp->r_statelock);
9788
9789 /*
9790 * Don't create dirty pages faster than they
9791 * can be cleaned so that the system doesn't
9792 * get imbalanced. If the async queue is
9793 * maxed out, then wait for it to drain before
9794 * creating more dirty pages. Also, wait for
9795 * any threads doing pagewalks in the vop_getattr
9796 * entry points so that they don't block for
9797 * long periods.
9798 */
9799 if (rw == S_CREATE) {
9800 while ((mi->mi_max_threads != 0 &&
9801 rp->r_awcount > 2 * mi->mi_max_threads) ||
9802 rp->r_gcount > 0)
9803 cv_wait(&rp->r_cv, &rp->r_statelock);
9804 }
9805
9806 /*
9807 * If we are getting called as a side effect of an nfs_write()
9808 * operation the local file size might not be extended yet.
9809 * In this case we want to be able to return pages of zeroes.
9810 */
9811 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
9812 NFS4_DEBUG(nfs4_pageio_debug,
9813 (CE_NOTE, "getpage beyond EOF: off=%lld, "
9814 "len=%llu, size=%llu, attrsize =%llu", off,
9815 (u_longlong_t)len, rp->r_size, rp->r_attr.va_size));
9816 mutex_exit(&rp->r_statelock);
9817 return (EFAULT); /* beyond EOF */
9818 }
9819
9820 mutex_exit(&rp->r_statelock);
9821
9822 error = pvn_getpages(nfs4_getapage, vp, off, len, protp,
9823 pl, plsz, seg, addr, rw, cr);
9824 NFS4_DEBUG(nfs4_pageio_debug && error,
9825 (CE_NOTE, "getpages error %d; off=%lld, len=%lld",
9826 error, off, (u_longlong_t)len));
9827
9828 switch (error) {
9829 case NFS_EOF:
9830 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, FALSE);
9831 goto retry;
9832 case ESTALE:
9833 nfs4_purge_stale_fh(error, vp, cr);
9834 }
9835
9836 return (error);
9837 }
9838
9839 /*
9840 * Called from pvn_getpages to get a particular page.
9841 */
9842 /* ARGSUSED */
9843 static int
nfs4_getapage(vnode_t * vp,u_offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr)9844 nfs4_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
9845 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
9846 enum seg_rw rw, cred_t *cr)
9847 {
9848 rnode4_t *rp;
9849 uint_t bsize;
9850 struct buf *bp;
9851 page_t *pp;
9852 u_offset_t lbn;
9853 u_offset_t io_off;
9854 u_offset_t blkoff;
9855 u_offset_t rablkoff;
9856 size_t io_len;
9857 uint_t blksize;
9858 int error;
9859 int readahead;
9860 int readahead_issued = 0;
9861 int ra_window; /* readahead window */
9862 page_t *pagefound;
9863 page_t *savepp;
9864
9865 if (nfs_zone() != VTOMI4(vp)->mi_zone)
9866 return (EIO);
9867
9868 rp = VTOR4(vp);
9869 ASSERT(!IS_SHADOW(vp, rp));
9870 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
9871
9872 reread:
9873 bp = NULL;
9874 pp = NULL;
9875 pagefound = NULL;
9876
9877 if (pl != NULL)
9878 pl[0] = NULL;
9879
9880 error = 0;
9881 lbn = off / bsize;
9882 blkoff = lbn * bsize;
9883
9884 /*
9885 * Queueing up the readahead before doing the synchronous read
9886 * results in a significant increase in read throughput because
9887 * of the increased parallelism between the async threads and
9888 * the process context.
9889 */
9890 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
9891 rw != S_CREATE &&
9892 !(vp->v_flag & VNOCACHE)) {
9893 mutex_enter(&rp->r_statelock);
9894
9895 /*
9896 * Calculate the number of readaheads to do.
9897 * a) No readaheads at offset = 0.
9898 * b) Do maximum(nfs4_nra) readaheads when the readahead
9899 * window is closed.
9900 * c) Do readaheads between 1 to (nfs4_nra - 1) depending
9901 * upon how far the readahead window is open or close.
9902 * d) No readaheads if rp->r_nextr is not within the scope
9903 * of the readahead window (random i/o).
9904 */
9905
9906 if (off == 0)
9907 readahead = 0;
9908 else if (blkoff == rp->r_nextr)
9909 readahead = nfs4_nra;
9910 else if (rp->r_nextr > blkoff &&
9911 ((ra_window = (rp->r_nextr - blkoff) / bsize)
9912 <= (nfs4_nra - 1)))
9913 readahead = nfs4_nra - ra_window;
9914 else
9915 readahead = 0;
9916
9917 rablkoff = rp->r_nextr;
9918 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
9919 mutex_exit(&rp->r_statelock);
9920 if (nfs4_async_readahead(vp, rablkoff + bsize,
9921 addr + (rablkoff + bsize - off),
9922 seg, cr, nfs4_readahead) < 0) {
9923 mutex_enter(&rp->r_statelock);
9924 break;
9925 }
9926 readahead--;
9927 rablkoff += bsize;
9928 /*
9929 * Indicate that we did a readahead so
9930 * readahead offset is not updated
9931 * by the synchronous read below.
9932 */
9933 readahead_issued = 1;
9934 mutex_enter(&rp->r_statelock);
9935 /*
9936 * set readahead offset to
9937 * offset of last async readahead
9938 * request.
9939 */
9940 rp->r_nextr = rablkoff;
9941 }
9942 mutex_exit(&rp->r_statelock);
9943 }
9944
9945 again:
9946 if ((pagefound = page_exists(vp, off)) == NULL) {
9947 if (pl == NULL) {
9948 (void) nfs4_async_readahead(vp, blkoff, addr, seg, cr,
9949 nfs4_readahead);
9950 } else if (rw == S_CREATE) {
9951 /*
9952 * Block for this page is not allocated, or the offset
9953 * is beyond the current allocation size, or we're
9954 * allocating a swap slot and the page was not found,
9955 * so allocate it and return a zero page.
9956 */
9957 if ((pp = page_create_va(vp, off,
9958 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
9959 cmn_err(CE_PANIC, "nfs4_getapage: page_create");
9960 io_len = PAGESIZE;
9961 mutex_enter(&rp->r_statelock);
9962 rp->r_nextr = off + PAGESIZE;
9963 mutex_exit(&rp->r_statelock);
9964 } else {
9965 /*
9966 * Need to go to server to get a block
9967 */
9968 mutex_enter(&rp->r_statelock);
9969 if (blkoff < rp->r_size &&
9970 blkoff + bsize > rp->r_size) {
9971 /*
9972 * If less than a block left in
9973 * file read less than a block.
9974 */
9975 if (rp->r_size <= off) {
9976 /*
9977 * Trying to access beyond EOF,
9978 * set up to get at least one page.
9979 */
9980 blksize = off + PAGESIZE - blkoff;
9981 } else
9982 blksize = rp->r_size - blkoff;
9983 } else if ((off == 0) ||
9984 (off != rp->r_nextr && !readahead_issued)) {
9985 blksize = PAGESIZE;
9986 blkoff = off; /* block = page here */
9987 } else
9988 blksize = bsize;
9989 mutex_exit(&rp->r_statelock);
9990
9991 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
9992 &io_len, blkoff, blksize, 0);
9993
9994 /*
9995 * Some other thread has entered the page,
9996 * so just use it.
9997 */
9998 if (pp == NULL)
9999 goto again;
10000
10001 /*
10002 * Now round the request size up to page boundaries.
10003 * This ensures that the entire page will be
10004 * initialized to zeroes if EOF is encountered.
10005 */
10006 io_len = ptob(btopr(io_len));
10007
10008 bp = pageio_setup(pp, io_len, vp, B_READ);
10009 ASSERT(bp != NULL);
10010
10011 /*
10012 * pageio_setup should have set b_addr to 0. This
10013 * is correct since we want to do I/O on a page
10014 * boundary. bp_mapin will use this addr to calculate
10015 * an offset, and then set b_addr to the kernel virtual
10016 * address it allocated for us.
10017 */
10018 ASSERT(bp->b_un.b_addr == 0);
10019
10020 bp->b_edev = 0;
10021 bp->b_dev = 0;
10022 bp->b_lblkno = lbtodb(io_off);
10023 bp->b_file = vp;
10024 bp->b_offset = (offset_t)off;
10025 bp_mapin(bp);
10026
10027 /*
10028 * If doing a write beyond what we believe is EOF,
10029 * don't bother trying to read the pages from the
10030 * server, we'll just zero the pages here. We
10031 * don't check that the rw flag is S_WRITE here
10032 * because some implementations may attempt a
10033 * read access to the buffer before copying data.
10034 */
10035 mutex_enter(&rp->r_statelock);
10036 if (io_off >= rp->r_size && seg == segkmap) {
10037 mutex_exit(&rp->r_statelock);
10038 bzero(bp->b_un.b_addr, io_len);
10039 } else {
10040 mutex_exit(&rp->r_statelock);
10041 error = nfs4_bio(bp, NULL, cr, FALSE);
10042 }
10043
10044 /*
10045 * Unmap the buffer before freeing it.
10046 */
10047 bp_mapout(bp);
10048 pageio_done(bp);
10049
10050 savepp = pp;
10051 do {
10052 pp->p_fsdata = C_NOCOMMIT;
10053 } while ((pp = pp->p_next) != savepp);
10054
10055 if (error == NFS_EOF) {
10056 /*
10057 * If doing a write system call just return
10058 * zeroed pages, else user tried to get pages
10059 * beyond EOF, return error. We don't check
10060 * that the rw flag is S_WRITE here because
10061 * some implementations may attempt a read
10062 * access to the buffer before copying data.
10063 */
10064 if (seg == segkmap)
10065 error = 0;
10066 else
10067 error = EFAULT;
10068 }
10069
10070 if (!readahead_issued && !error) {
10071 mutex_enter(&rp->r_statelock);
10072 rp->r_nextr = io_off + io_len;
10073 mutex_exit(&rp->r_statelock);
10074 }
10075 }
10076 }
10077
10078 out:
10079 if (pl == NULL)
10080 return (error);
10081
10082 if (error) {
10083 if (pp != NULL)
10084 pvn_read_done(pp, B_ERROR);
10085 return (error);
10086 }
10087
10088 if (pagefound) {
10089 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
10090
10091 /*
10092 * Page exists in the cache, acquire the appropriate lock.
10093 * If this fails, start all over again.
10094 */
10095 if ((pp = page_lookup(vp, off, se)) == NULL) {
10096 #ifdef DEBUG
10097 nfs4_lostpage++;
10098 #endif
10099 goto reread;
10100 }
10101 pl[0] = pp;
10102 pl[1] = NULL;
10103 return (0);
10104 }
10105
10106 if (pp != NULL)
10107 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
10108
10109 return (error);
10110 }
10111
10112 static void
nfs4_readahead(vnode_t * vp,u_offset_t blkoff,caddr_t addr,struct seg * seg,cred_t * cr)10113 nfs4_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
10114 cred_t *cr)
10115 {
10116 int error;
10117 page_t *pp;
10118 u_offset_t io_off;
10119 size_t io_len;
10120 struct buf *bp;
10121 uint_t bsize, blksize;
10122 rnode4_t *rp = VTOR4(vp);
10123 page_t *savepp;
10124
10125 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
10126
10127 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
10128
10129 mutex_enter(&rp->r_statelock);
10130 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
10131 /*
10132 * If less than a block left in file read less
10133 * than a block.
10134 */
10135 blksize = rp->r_size - blkoff;
10136 } else
10137 blksize = bsize;
10138 mutex_exit(&rp->r_statelock);
10139
10140 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
10141 &io_off, &io_len, blkoff, blksize, 1);
10142 /*
10143 * The isra flag passed to the kluster function is 1, we may have
10144 * gotten a return value of NULL for a variety of reasons (# of free
10145 * pages < minfree, someone entered the page on the vnode etc). In all
10146 * cases, we want to punt on the readahead.
10147 */
10148 if (pp == NULL)
10149 return;
10150
10151 /*
10152 * Now round the request size up to page boundaries.
10153 * This ensures that the entire page will be
10154 * initialized to zeroes if EOF is encountered.
10155 */
10156 io_len = ptob(btopr(io_len));
10157
10158 bp = pageio_setup(pp, io_len, vp, B_READ);
10159 ASSERT(bp != NULL);
10160
10161 /*
10162 * pageio_setup should have set b_addr to 0. This is correct since
10163 * we want to do I/O on a page boundary. bp_mapin() will use this addr
10164 * to calculate an offset, and then set b_addr to the kernel virtual
10165 * address it allocated for us.
10166 */
10167 ASSERT(bp->b_un.b_addr == 0);
10168
10169 bp->b_edev = 0;
10170 bp->b_dev = 0;
10171 bp->b_lblkno = lbtodb(io_off);
10172 bp->b_file = vp;
10173 bp->b_offset = (offset_t)blkoff;
10174 bp_mapin(bp);
10175
10176 /*
10177 * If doing a write beyond what we believe is EOF, don't bother trying
10178 * to read the pages from the server, we'll just zero the pages here.
10179 * We don't check that the rw flag is S_WRITE here because some
10180 * implementations may attempt a read access to the buffer before
10181 * copying data.
10182 */
10183 mutex_enter(&rp->r_statelock);
10184 if (io_off >= rp->r_size && seg == segkmap) {
10185 mutex_exit(&rp->r_statelock);
10186 bzero(bp->b_un.b_addr, io_len);
10187 error = 0;
10188 } else {
10189 mutex_exit(&rp->r_statelock);
10190 error = nfs4_bio(bp, NULL, cr, TRUE);
10191 if (error == NFS_EOF)
10192 error = 0;
10193 }
10194
10195 /*
10196 * Unmap the buffer before freeing it.
10197 */
10198 bp_mapout(bp);
10199 pageio_done(bp);
10200
10201 savepp = pp;
10202 do {
10203 pp->p_fsdata = C_NOCOMMIT;
10204 } while ((pp = pp->p_next) != savepp);
10205
10206 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
10207
10208 /*
10209 * In case of error set readahead offset
10210 * to the lowest offset.
10211 * pvn_read_done() calls VN_DISPOSE to destroy the pages
10212 */
10213 if (error && rp->r_nextr > io_off) {
10214 mutex_enter(&rp->r_statelock);
10215 if (rp->r_nextr > io_off)
10216 rp->r_nextr = io_off;
10217 mutex_exit(&rp->r_statelock);
10218 }
10219 }
10220
10221 /*
10222 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
10223 * If len == 0, do from off to EOF.
10224 *
10225 * The normal cases should be len == 0 && off == 0 (entire vp list) or
10226 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
10227 * (from pageout).
10228 */
10229 /* ARGSUSED */
10230 static int
nfs4_putpage(vnode_t * vp,offset_t off,size_t len,int flags,cred_t * cr,caller_context_t * ct)10231 nfs4_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
10232 caller_context_t *ct)
10233 {
10234 int error;
10235 rnode4_t *rp;
10236
10237 ASSERT(cr != NULL);
10238
10239 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
10240 return (EIO);
10241
10242 rp = VTOR4(vp);
10243 if (IS_SHADOW(vp, rp))
10244 vp = RTOV4(rp);
10245
10246 /*
10247 * XXX - Why should this check be made here?
10248 */
10249 if (vp->v_flag & VNOMAP)
10250 return (ENOSYS);
10251
10252 if (len == 0 && !(flags & B_INVAL) &&
10253 (vp->v_vfsp->vfs_flag & VFS_RDONLY))
10254 return (0);
10255
10256 mutex_enter(&rp->r_statelock);
10257 rp->r_count++;
10258 mutex_exit(&rp->r_statelock);
10259 error = nfs4_putpages(vp, off, len, flags, cr);
10260 mutex_enter(&rp->r_statelock);
10261 rp->r_count--;
10262 cv_broadcast(&rp->r_cv);
10263 mutex_exit(&rp->r_statelock);
10264
10265 return (error);
10266 }
10267
10268 /*
10269 * Write out a single page, possibly klustering adjacent dirty pages.
10270 */
10271 int
nfs4_putapage(vnode_t * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,cred_t * cr)10272 nfs4_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
10273 int flags, cred_t *cr)
10274 {
10275 u_offset_t io_off;
10276 u_offset_t lbn_off;
10277 u_offset_t lbn;
10278 size_t io_len;
10279 uint_t bsize;
10280 int error;
10281 rnode4_t *rp;
10282
10283 ASSERT(!(vp->v_vfsp->vfs_flag & VFS_RDONLY));
10284 ASSERT(pp != NULL);
10285 ASSERT(cr != NULL);
10286 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI4(vp)->mi_zone);
10287
10288 rp = VTOR4(vp);
10289 ASSERT(rp->r_count > 0);
10290 ASSERT(!IS_SHADOW(vp, rp));
10291
10292 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
10293 lbn = pp->p_offset / bsize;
10294 lbn_off = lbn * bsize;
10295
10296 /*
10297 * Find a kluster that fits in one block, or in
10298 * one page if pages are bigger than blocks. If
10299 * there is less file space allocated than a whole
10300 * page, we'll shorten the i/o request below.
10301 */
10302 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
10303 roundup(bsize, PAGESIZE), flags);
10304
10305 /*
10306 * pvn_write_kluster shouldn't have returned a page with offset
10307 * behind the original page we were given. Verify that.
10308 */
10309 ASSERT((pp->p_offset / bsize) >= lbn);
10310
10311 /*
10312 * Now pp will have the list of kept dirty pages marked for
10313 * write back. It will also handle invalidation and freeing
10314 * of pages that are not dirty. Check for page length rounding
10315 * problems.
10316 */
10317 if (io_off + io_len > lbn_off + bsize) {
10318 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
10319 io_len = lbn_off + bsize - io_off;
10320 }
10321 /*
10322 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
10323 * consistent value of r_size. R4MODINPROGRESS is set in writerp4().
10324 * When R4MODINPROGRESS is set it indicates that a uiomove() is in
10325 * progress and the r_size has not been made consistent with the
10326 * new size of the file. When the uiomove() completes the r_size is
10327 * updated and the R4MODINPROGRESS flag is cleared.
10328 *
10329 * The R4MODINPROGRESS flag makes sure that nfs4_bio() sees a
10330 * consistent value of r_size. Without this handshaking, it is
10331 * possible that nfs4_bio() picks up the old value of r_size
10332 * before the uiomove() in writerp4() completes. This will result
10333 * in the write through nfs4_bio() being dropped.
10334 *
10335 * More precisely, there is a window between the time the uiomove()
10336 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
10337 * operation intervenes in this window, the page will be picked up,
10338 * because it is dirty (it will be unlocked, unless it was
10339 * pagecreate'd). When the page is picked up as dirty, the dirty
10340 * bit is reset (pvn_getdirty()). In nfs4write(), r_size is
10341 * checked. This will still be the old size. Therefore the page will
10342 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
10343 * the page will be found to be clean and the write will be dropped.
10344 */
10345 if (rp->r_flags & R4MODINPROGRESS) {
10346 mutex_enter(&rp->r_statelock);
10347 if ((rp->r_flags & R4MODINPROGRESS) &&
10348 rp->r_modaddr + MAXBSIZE > io_off &&
10349 rp->r_modaddr < io_off + io_len) {
10350 page_t *plist;
10351 /*
10352 * A write is in progress for this region of the file.
10353 * If we did not detect R4MODINPROGRESS here then this
10354 * path through nfs_putapage() would eventually go to
10355 * nfs4_bio() and may not write out all of the data
10356 * in the pages. We end up losing data. So we decide
10357 * to set the modified bit on each page in the page
10358 * list and mark the rnode with R4DIRTY. This write
10359 * will be restarted at some later time.
10360 */
10361 plist = pp;
10362 while (plist != NULL) {
10363 pp = plist;
10364 page_sub(&plist, pp);
10365 hat_setmod(pp);
10366 page_io_unlock(pp);
10367 page_unlock(pp);
10368 }
10369 rp->r_flags |= R4DIRTY;
10370 mutex_exit(&rp->r_statelock);
10371 if (offp)
10372 *offp = io_off;
10373 if (lenp)
10374 *lenp = io_len;
10375 return (0);
10376 }
10377 mutex_exit(&rp->r_statelock);
10378 }
10379
10380 if (flags & B_ASYNC) {
10381 error = nfs4_async_putapage(vp, pp, io_off, io_len, flags, cr,
10382 nfs4_sync_putapage);
10383 } else
10384 error = nfs4_sync_putapage(vp, pp, io_off, io_len, flags, cr);
10385
10386 if (offp)
10387 *offp = io_off;
10388 if (lenp)
10389 *lenp = io_len;
10390 return (error);
10391 }
10392
10393 static int
nfs4_sync_putapage(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)10394 nfs4_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
10395 int flags, cred_t *cr)
10396 {
10397 int error;
10398 rnode4_t *rp;
10399
10400 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
10401
10402 flags |= B_WRITE;
10403
10404 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
10405
10406 rp = VTOR4(vp);
10407
10408 if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
10409 error == EACCES) &&
10410 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
10411 if (!(rp->r_flags & R4OUTOFSPACE)) {
10412 mutex_enter(&rp->r_statelock);
10413 rp->r_flags |= R4OUTOFSPACE;
10414 mutex_exit(&rp->r_statelock);
10415 }
10416 flags |= B_ERROR;
10417 pvn_write_done(pp, flags);
10418 /*
10419 * If this was not an async thread, then try again to
10420 * write out the pages, but this time, also destroy
10421 * them whether or not the write is successful. This
10422 * will prevent memory from filling up with these
10423 * pages and destroying them is the only alternative
10424 * if they can't be written out.
10425 *
10426 * Don't do this if this is an async thread because
10427 * when the pages are unlocked in pvn_write_done,
10428 * some other thread could have come along, locked
10429 * them, and queued for an async thread. It would be
10430 * possible for all of the async threads to be tied
10431 * up waiting to lock the pages again and they would
10432 * all already be locked and waiting for an async
10433 * thread to handle them. Deadlock.
10434 */
10435 if (!(flags & B_ASYNC)) {
10436 error = nfs4_putpage(vp, io_off, io_len,
10437 B_INVAL | B_FORCE, cr, NULL);
10438 }
10439 } else {
10440 if (error)
10441 flags |= B_ERROR;
10442 else if (rp->r_flags & R4OUTOFSPACE) {
10443 mutex_enter(&rp->r_statelock);
10444 rp->r_flags &= ~R4OUTOFSPACE;
10445 mutex_exit(&rp->r_statelock);
10446 }
10447 pvn_write_done(pp, flags);
10448 if (freemem < desfree)
10449 (void) nfs4_commit_vp(vp, (u_offset_t)0, 0, cr,
10450 NFS4_WRITE_NOWAIT);
10451 }
10452
10453 return (error);
10454 }
10455
10456 #ifdef DEBUG
10457 int nfs4_force_open_before_mmap = 0;
10458 #endif
10459
10460 /* ARGSUSED */
10461 static int
nfs4_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)10462 nfs4_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
10463 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
10464 caller_context_t *ct)
10465 {
10466 struct segvn_crargs vn_a;
10467 int error = 0;
10468 rnode4_t *rp = VTOR4(vp);
10469 mntinfo4_t *mi = VTOMI4(vp);
10470
10471 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10472 return (EIO);
10473
10474 if (vp->v_flag & VNOMAP)
10475 return (ENOSYS);
10476
10477 if (off < 0 || (off + len) < 0)
10478 return (ENXIO);
10479
10480 if (vp->v_type != VREG)
10481 return (ENODEV);
10482
10483 /*
10484 * If the file is delegated to the client don't do anything.
10485 * If the file is not delegated, then validate the data cache.
10486 */
10487 mutex_enter(&rp->r_statev4_lock);
10488 if (rp->r_deleg_type == OPEN_DELEGATE_NONE) {
10489 mutex_exit(&rp->r_statev4_lock);
10490 error = nfs4_validate_caches(vp, cr);
10491 if (error)
10492 return (error);
10493 } else {
10494 mutex_exit(&rp->r_statev4_lock);
10495 }
10496
10497 /*
10498 * Check to see if the vnode is currently marked as not cachable.
10499 * This means portions of the file are locked (through VOP_FRLOCK).
10500 * In this case the map request must be refused. We use
10501 * rp->r_lkserlock to avoid a race with concurrent lock requests.
10502 *
10503 * Atomically increment r_inmap after acquiring r_rwlock. The
10504 * idea here is to acquire r_rwlock to block read/write and
10505 * not to protect r_inmap. r_inmap will inform nfs4_read/write()
10506 * that we are in nfs4_map(). Now, r_rwlock is acquired in order
10507 * and we can prevent the deadlock that would have occurred
10508 * when nfs4_addmap() would have acquired it out of order.
10509 *
10510 * Since we are not protecting r_inmap by any lock, we do not
10511 * hold any lock when we decrement it. We atomically decrement
10512 * r_inmap after we release r_lkserlock.
10513 */
10514
10515 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR4(vp)))
10516 return (EINTR);
10517 atomic_inc_uint(&rp->r_inmap);
10518 nfs_rw_exit(&rp->r_rwlock);
10519
10520 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR4(vp))) {
10521 atomic_dec_uint(&rp->r_inmap);
10522 return (EINTR);
10523 }
10524
10525
10526 if (vp->v_flag & VNOCACHE) {
10527 error = EAGAIN;
10528 goto done;
10529 }
10530
10531 /*
10532 * Don't allow concurrent locks and mapping if mandatory locking is
10533 * enabled.
10534 */
10535 if (flk_has_remote_locks(vp)) {
10536 struct vattr va;
10537 va.va_mask = AT_MODE;
10538 error = nfs4getattr(vp, &va, cr);
10539 if (error != 0)
10540 goto done;
10541 if (MANDLOCK(vp, va.va_mode)) {
10542 error = EAGAIN;
10543 goto done;
10544 }
10545 }
10546
10547 /*
10548 * It is possible that the rnode has a lost lock request that we
10549 * are still trying to recover, and that the request conflicts with
10550 * this map request.
10551 *
10552 * An alternative approach would be for nfs4_safemap() to consider
10553 * queued lock requests when deciding whether to set or clear
10554 * VNOCACHE. This would require the frlock code path to call
10555 * nfs4_safemap() after enqueing a lost request.
10556 */
10557 if (nfs4_map_lost_lock_conflict(vp)) {
10558 error = EAGAIN;
10559 goto done;
10560 }
10561
10562 as_rangelock(as);
10563 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
10564 if (error != 0) {
10565 as_rangeunlock(as);
10566 goto done;
10567 }
10568
10569 if (vp->v_type == VREG) {
10570 /*
10571 * We need to retrieve the open stream
10572 */
10573 nfs4_open_stream_t *osp = NULL;
10574 nfs4_open_owner_t *oop = NULL;
10575
10576 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
10577 if (oop != NULL) {
10578 /* returns with 'os_sync_lock' held */
10579 osp = find_open_stream(oop, rp);
10580 open_owner_rele(oop);
10581 }
10582 if (osp == NULL) {
10583 #ifdef DEBUG
10584 if (nfs4_force_open_before_mmap) {
10585 error = EIO;
10586 goto done;
10587 }
10588 #endif
10589 /* returns with 'os_sync_lock' held */
10590 error = open_and_get_osp(vp, cr, &osp);
10591 if (osp == NULL) {
10592 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
10593 "nfs4_map: we tried to OPEN the file "
10594 "but again no osp, so fail with EIO"));
10595 goto done;
10596 }
10597 }
10598
10599 if (osp->os_failed_reopen) {
10600 mutex_exit(&osp->os_sync_lock);
10601 open_stream_rele(osp, rp);
10602 NFS4_DEBUG(nfs4_open_stream_debug, (CE_NOTE,
10603 "nfs4_map: os_failed_reopen set on "
10604 "osp %p, cr %p, rp %s", (void *)osp,
10605 (void *)cr, rnode4info(rp)));
10606 error = EIO;
10607 goto done;
10608 }
10609 mutex_exit(&osp->os_sync_lock);
10610 open_stream_rele(osp, rp);
10611 }
10612
10613 vn_a.vp = vp;
10614 vn_a.offset = off;
10615 vn_a.type = (flags & MAP_TYPE);
10616 vn_a.prot = (uchar_t)prot;
10617 vn_a.maxprot = (uchar_t)maxprot;
10618 vn_a.flags = (flags & ~MAP_TYPE);
10619 vn_a.cred = cr;
10620 vn_a.amp = NULL;
10621 vn_a.szc = 0;
10622 vn_a.lgrp_mem_policy_flags = 0;
10623
10624 error = as_map(as, *addrp, len, segvn_create, &vn_a);
10625 as_rangeunlock(as);
10626
10627 done:
10628 nfs_rw_exit(&rp->r_lkserlock);
10629 atomic_dec_uint(&rp->r_inmap);
10630 return (error);
10631 }
10632
10633 /*
10634 * We're most likely dealing with a kernel module that likes to READ
10635 * and mmap without OPENing the file (ie: lookup/read/mmap), so lets
10636 * officially OPEN the file to create the necessary client state
10637 * for bookkeeping of os_mmap_read/write counts.
10638 *
10639 * Since VOP_MAP only passes in a pointer to the vnode rather than
10640 * a double pointer, we can't handle the case where nfs4open_otw()
10641 * returns a different vnode than the one passed into VOP_MAP (since
10642 * VOP_DELMAP will not see the vnode nfs4open_otw used). In this case,
10643 * we return NULL and let nfs4_map() fail. Note: the only case where
10644 * this should happen is if the file got removed and replaced with the
10645 * same name on the server (in addition to the fact that we're trying
10646 * to VOP_MAP withouth VOP_OPENing the file in the first place).
10647 */
10648 static int
open_and_get_osp(vnode_t * map_vp,cred_t * cr,nfs4_open_stream_t ** ospp)10649 open_and_get_osp(vnode_t *map_vp, cred_t *cr, nfs4_open_stream_t **ospp)
10650 {
10651 rnode4_t *rp, *drp;
10652 vnode_t *dvp, *open_vp;
10653 char file_name[MAXNAMELEN];
10654 int just_created;
10655 nfs4_open_stream_t *osp;
10656 nfs4_open_owner_t *oop;
10657 int error;
10658
10659 *ospp = NULL;
10660 open_vp = map_vp;
10661
10662 rp = VTOR4(open_vp);
10663 if ((error = vtodv(open_vp, &dvp, cr, TRUE)) != 0)
10664 return (error);
10665 drp = VTOR4(dvp);
10666
10667 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR4(dvp))) {
10668 VN_RELE(dvp);
10669 return (EINTR);
10670 }
10671
10672 if ((error = vtoname(open_vp, file_name, MAXNAMELEN)) != 0) {
10673 nfs_rw_exit(&drp->r_rwlock);
10674 VN_RELE(dvp);
10675 return (error);
10676 }
10677
10678 mutex_enter(&rp->r_statev4_lock);
10679 if (rp->created_v4) {
10680 rp->created_v4 = 0;
10681 mutex_exit(&rp->r_statev4_lock);
10682
10683 dnlc_update(dvp, file_name, open_vp);
10684 /* This is needed so we don't bump the open ref count */
10685 just_created = 1;
10686 } else {
10687 mutex_exit(&rp->r_statev4_lock);
10688 just_created = 0;
10689 }
10690
10691 VN_HOLD(map_vp);
10692
10693 error = nfs4open_otw(dvp, file_name, NULL, &open_vp, cr, 0, FREAD, 0,
10694 just_created);
10695 if (error) {
10696 nfs_rw_exit(&drp->r_rwlock);
10697 VN_RELE(dvp);
10698 VN_RELE(map_vp);
10699 return (error);
10700 }
10701
10702 nfs_rw_exit(&drp->r_rwlock);
10703 VN_RELE(dvp);
10704
10705 /*
10706 * If nfs4open_otw() returned a different vnode then "undo"
10707 * the open and return failure to the caller.
10708 */
10709 if (!VN_CMP(open_vp, map_vp)) {
10710 nfs4_error_t e;
10711
10712 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
10713 "open returned a different vnode"));
10714 /*
10715 * If there's an error, ignore it,
10716 * and let VOP_INACTIVE handle it.
10717 */
10718 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
10719 CLOSE_NORM, 0, 0, 0);
10720 VN_RELE(map_vp);
10721 return (EIO);
10722 }
10723
10724 VN_RELE(map_vp);
10725
10726 oop = find_open_owner(cr, NFS4_PERM_CREATED, VTOMI4(open_vp));
10727 if (!oop) {
10728 nfs4_error_t e;
10729
10730 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "open_and_get_osp: "
10731 "no open owner"));
10732 /*
10733 * If there's an error, ignore it,
10734 * and let VOP_INACTIVE handle it.
10735 */
10736 (void) nfs4close_one(open_vp, NULL, cr, FREAD, NULL, &e,
10737 CLOSE_NORM, 0, 0, 0);
10738 return (EIO);
10739 }
10740 osp = find_open_stream(oop, rp);
10741 open_owner_rele(oop);
10742 *ospp = osp;
10743 return (0);
10744 }
10745
10746 /*
10747 * Please be aware that when this function is called, the address space write
10748 * a_lock is held. Do not put over the wire calls in this function.
10749 */
10750 /* ARGSUSED */
10751 static int
nfs4_addmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)10752 nfs4_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
10753 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
10754 caller_context_t *ct)
10755 {
10756 rnode4_t *rp;
10757 int error = 0;
10758 mntinfo4_t *mi;
10759
10760 mi = VTOMI4(vp);
10761 rp = VTOR4(vp);
10762
10763 if (nfs_zone() != mi->mi_zone)
10764 return (EIO);
10765 if (vp->v_flag & VNOMAP)
10766 return (ENOSYS);
10767
10768 /*
10769 * Don't need to update the open stream first, since this
10770 * mmap can't add any additional share access that isn't
10771 * already contained in the open stream (for the case where we
10772 * open/mmap/only update rp->r_mapcnt/server reboots/reopen doesn't
10773 * take into account os_mmap_read[write] counts).
10774 */
10775 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
10776
10777 if (vp->v_type == VREG) {
10778 /*
10779 * We need to retrieve the open stream and update the counts.
10780 * If there is no open stream here, something is wrong.
10781 */
10782 nfs4_open_stream_t *osp = NULL;
10783 nfs4_open_owner_t *oop = NULL;
10784
10785 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
10786 if (oop != NULL) {
10787 /* returns with 'os_sync_lock' held */
10788 osp = find_open_stream(oop, rp);
10789 open_owner_rele(oop);
10790 }
10791 if (osp == NULL) {
10792 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE,
10793 "nfs4_addmap: we should have an osp"
10794 "but we don't, so fail with EIO"));
10795 error = EIO;
10796 goto out;
10797 }
10798
10799 NFS4_DEBUG(nfs4_mmap_debug, (CE_NOTE, "nfs4_addmap: osp %p,"
10800 " pages %ld, prot 0x%x", (void *)osp, btopr(len), prot));
10801
10802 /*
10803 * Update the map count in the open stream.
10804 * This is necessary in the case where we
10805 * open/mmap/close/, then the server reboots, and we
10806 * attempt to reopen. If the mmap doesn't add share
10807 * access then we send an invalid reopen with
10808 * access = NONE.
10809 *
10810 * We need to specifically check each PROT_* so a mmap
10811 * call of (PROT_WRITE | PROT_EXEC) will ensure us both
10812 * read and write access. A simple comparison of prot
10813 * to ~PROT_WRITE to determine read access is insufficient
10814 * since prot can be |= with PROT_USER, etc.
10815 */
10816
10817 /*
10818 * Unless we're MAP_SHARED, no sense in adding os_mmap_write
10819 */
10820 if ((flags & MAP_SHARED) && (maxprot & PROT_WRITE))
10821 osp->os_mmap_write += btopr(len);
10822 if (maxprot & PROT_READ)
10823 osp->os_mmap_read += btopr(len);
10824 if (maxprot & PROT_EXEC)
10825 osp->os_mmap_read += btopr(len);
10826 /*
10827 * Ensure that os_mmap_read gets incremented, even if
10828 * maxprot were to look like PROT_NONE.
10829 */
10830 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&
10831 !(maxprot & PROT_EXEC))
10832 osp->os_mmap_read += btopr(len);
10833 osp->os_mapcnt += btopr(len);
10834 mutex_exit(&osp->os_sync_lock);
10835 open_stream_rele(osp, rp);
10836 }
10837
10838 out:
10839 /*
10840 * If we got an error, then undo our
10841 * incrementing of 'r_mapcnt'.
10842 */
10843
10844 if (error) {
10845 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(len));
10846 ASSERT(rp->r_mapcnt >= 0);
10847 }
10848 return (error);
10849 }
10850
10851 /* ARGSUSED */
10852 static int
nfs4_cmp(vnode_t * vp1,vnode_t * vp2,caller_context_t * ct)10853 nfs4_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct)
10854 {
10855
10856 return (VTOR4(vp1) == VTOR4(vp2));
10857 }
10858
10859 /*
10860 * Data structure for nfs4_lkserlock_callback() function.
10861 */
10862 struct nfs4_lkserlock_callback_data {
10863 vnode_t *vp;
10864 int rc;
10865 };
10866
10867 /*
10868 * Callback function for reclock().
10869 */
10870 static callb_cpr_t *
nfs4_lkserlock_callback(flk_cb_when_t when,void * infop)10871 nfs4_lkserlock_callback(flk_cb_when_t when, void *infop)
10872 {
10873 struct nfs4_lkserlock_callback_data *dp =
10874 (struct nfs4_lkserlock_callback_data *)infop;
10875 rnode4_t *rp = VTOR4(dp->vp);
10876
10877 if (when == FLK_BEFORE_SLEEP)
10878 nfs_rw_exit(&rp->r_lkserlock);
10879 else
10880 dp->rc = nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER,
10881 INTR4(dp->vp));
10882
10883 return (NULL);
10884 }
10885
10886 /* ARGSUSED */
10887 static int
nfs4_frlock(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,struct flk_callback * flk_cbp,cred_t * cr,caller_context_t * ct)10888 nfs4_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
10889 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
10890 caller_context_t *ct)
10891 {
10892 int rc = 0;
10893 rnode4_t *rp;
10894 int intr = INTR4(vp);
10895 nfs4_error_t e;
10896 int frcmd;
10897 struct lm_sysid *ls = NULL;
10898
10899 if (nfs_zone() != VTOMI4(vp)->mi_zone)
10900 return (EIO);
10901
10902 /* check for valid cmd parameter and set frcmd appropriately */
10903 switch (cmd) {
10904 case F_GETLK:
10905 frcmd = 0;
10906 break;
10907 case F_SETLK:
10908 frcmd = SETFLCK;
10909 break;
10910 case F_SETLKW:
10911 frcmd = SETFLCK | SLPFLCK;
10912 break;
10913 default:
10914 return (EINVAL);
10915 }
10916
10917 /*
10918 * If lock is relative to EOF, we need the newest length of the file.
10919 * Therefore invalidate the ATTR_CACHE.
10920 */
10921 if (bfp->l_whence == 2) /* SEEK_END */
10922 PURGE_ATTRCACHE4(vp);
10923
10924 /*
10925 * If the filesystem is mounted using local locking, pass the
10926 * request off to the local locking code.
10927 */
10928 if (VTOMI4(vp)->mi_flags & MI4_LLOCK || vp->v_type != VREG) {
10929 if (cmd == F_SETLK || cmd == F_SETLKW) {
10930 /*
10931 * For complete safety, we should be holding
10932 * r_lkserlock. However, we can't call
10933 * nfs4_safelock and then fs_frlock while
10934 * holding r_lkserlock, so just invoke
10935 * nfs4_safelock and expect that this will
10936 * catch enough of the cases.
10937 */
10938 if (!nfs4_safelock(vp, bfp, cr))
10939 return (EAGAIN);
10940 }
10941 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
10942 }
10943
10944 /*
10945 * Convert the offset. We need to do this to make sure our view of the
10946 * locking range is always the same through the rest of this function.
10947 * This is especially needed for bfp->l_whence == SEEK_END, because the
10948 * length of the file could change anytime and thus the locking range
10949 * would be a moving target for us.
10950 *
10951 * For the bfp->l_whence == SEEK_CUR case this is just a convenient
10952 * conversion to make the life easier for nfs4frlock().
10953 */
10954 rc = convoff(vp, bfp, 0, offset);
10955 if (rc != 0)
10956 return (rc);
10957
10958 if (bfp->l_type == F_UNLCK) {
10959 u_offset_t start, end;
10960
10961 /*
10962 * Shortcut for trivial case.
10963 */
10964 if (cmd == F_GETLK)
10965 return (rc);
10966
10967 /*
10968 * For every lock or unlock request we need to do two steps:
10969 * (un)register the local lock, and (un)register the lock at
10970 * the NFSv4 server. It is essential to make sure the lock
10971 * status registered at the server and registered locally is
10972 * same and never goes out of sync. This means that if one
10973 * step fails, the other one needs to be either skipped, or
10974 * reverted.
10975 *
10976 * For lock requests the situation is easy since a lock
10977 * registration can be reverted without any risk of data
10978 * corruption.
10979 *
10980 * The unlock requests cannot be reverted because once a lock
10981 * is unregistered the race window is open and some other
10982 * process could grab a conflicting lock. This means that once
10983 * the first step (the first lock unregistration) succeeded,
10984 * the second step cannot fail. The second step for the unlock
10985 * request is the local lock unregistration by the reclock()
10986 * call.
10987 *
10988 * The only way how the reclock() call for an unlock request
10989 * could fail is the invalid unlock range so we check it here,
10990 * before the lock is unregistered at NFSv4 server. This
10991 * duplicates the check done in the reclock() function.
10992 */
10993 rc = flk_convert_lock_data(vp, bfp, &start, &end, offset);
10994 if (rc != 0)
10995 return (rc);
10996 rc = flk_check_lock_data(start, end, MAXEND);
10997 if (rc != 0)
10998 return (rc);
10999
11000 intr = 0;
11001 }
11002
11003 /*
11004 * For F_SETLK and F_SETLKW we need to set sysid.
11005 */
11006 if (cmd == F_SETLK || cmd == F_SETLKW) {
11007 rc = nfs4frlock_get_sysid(&ls, vp, bfp);
11008 if (rc != 0)
11009 return (rc);
11010
11011 /*
11012 * Client locks are registerred locally by oring the sysid with
11013 * LM_SYSID_CLIENT. The server registers locks locally using
11014 * just the sysid. We need to distinguish between the two to
11015 * avoid collision in a case one machine is used as both client
11016 * and server.
11017 */
11018 bfp->l_sysid |= LM_SYSID_CLIENT;
11019 }
11020
11021 bfp->l_pid = curproc->p_pid;
11022
11023 rp = VTOR4(vp);
11024
11025 /*
11026 * Check whether the given lock request can proceed, given the
11027 * current file mappings.
11028 */
11029 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr)) {
11030 if (ls != NULL)
11031 lm_rel_sysid(ls);
11032 return (EINTR);
11033 }
11034 if (cmd == F_SETLK || cmd == F_SETLKW) {
11035 if (!nfs4_safelock(vp, bfp, cr)) {
11036 rc = EAGAIN;
11037 goto done;
11038 }
11039 }
11040
11041 /*
11042 * For query we will try to find a conflicting local lock first by
11043 * calling reclock().
11044 *
11045 * In a case this is a lock request we need to register it locally
11046 * first before we consult the NFSv4 server.
11047 */
11048 if (cmd == F_GETLK || bfp->l_type != F_UNLCK) {
11049 /*
11050 * Save l_type. This is needed in a case the query (F_GETLK)
11051 * founds no local lock and we need to consult the server to
11052 * find possible conflicting lock.
11053 */
11054 short saved_l_type = bfp->l_type;
11055
11056 /*
11057 * If we might sleep in reclock() we need to register a
11058 * callback to release the r_lkserlock during the sleep.
11059 */
11060 if ((frcmd & SLPFLCK) == 0) {
11061 rc = reclock(vp, bfp, frcmd, flag, 0, flk_cbp);
11062 } else {
11063 flk_callback_t callback;
11064 struct nfs4_lkserlock_callback_data callback_data =
11065 {vp, 0};
11066
11067 flk_add_callback(&callback, nfs4_lkserlock_callback,
11068 &callback_data, flk_cbp);
11069 rc = reclock(vp, bfp, frcmd, flag, 0, &callback);
11070 flk_del_callback(&callback);
11071
11072 if (callback_data.rc != 0) {
11073 /*
11074 * The nfs_rw_enter_sig() call in
11075 * nfs4_lkserlock_callback() failed.
11076 */
11077
11078 if (rc == 0) {
11079 /*
11080 * The reclock() call above succeeded
11081 * so we need to revert it.
11082 */
11083 bfp->l_type = F_UNLCK;
11084 rc = reclock(vp, bfp, frcmd, flag, 0,
11085 flk_cbp);
11086 /* The unlock cannot fail */
11087 ASSERT(rc == 0);
11088
11089 /*
11090 * We are here because we failed to
11091 * acquire r_lkserlock in
11092 * nfs4_lkserlock_callback() due to a
11093 * signal. Return the appropriate
11094 * error.
11095 */
11096 rc = EINTR;
11097 }
11098
11099 ASSERT(ls != NULL);
11100 lm_rel_sysid(ls);
11101
11102 return (rc);
11103 }
11104
11105 /*
11106 * We possibly released r_lkserlock in reclock() so
11107 * make sure it is still safe to lock the file.
11108 */
11109 if (!nfs4_safelock(vp, bfp, cr)) {
11110 rc = EAGAIN;
11111 goto revert;
11112 }
11113
11114 }
11115
11116 /*
11117 * If the reclock() call failed we are done and we will return
11118 * an error to the caller. Similarly, if we found a
11119 * conflicting lock registered locally we are done too. We do
11120 * not need to consult the server.
11121 */
11122 if ((rc != 0) || (cmd == F_GETLK && bfp->l_type != F_UNLCK))
11123 goto done;
11124
11125 /*
11126 * If this is a query (F_GETLK) and we didn't found any
11127 * conflicting local lock (otherwise we would just jump out
11128 * above) the original l_type got replaced by F_UNLCK. Restore
11129 * its value so we will ask the server with original l_type.
11130 */
11131 if (cmd == F_GETLK)
11132 bfp->l_type = saved_l_type;
11133 }
11134
11135 /*
11136 * Flush the cache after waiting for async I/O to finish. For new
11137 * locks, this is so that the process gets the latest bits from the
11138 * server. For unlocks, this is so that other clients see the
11139 * latest bits once the file has been unlocked. If currently dirty
11140 * pages can't be flushed, then don't allow a lock to be set. But
11141 * allow unlocks to succeed, to avoid having orphan locks on the
11142 * server.
11143 */
11144 if (cmd != F_GETLK) {
11145 mutex_enter(&rp->r_statelock);
11146 while (rp->r_count > 0) {
11147 if (intr) {
11148 klwp_t *lwp = ttolwp(curthread);
11149
11150 if (lwp != NULL)
11151 lwp->lwp_nostop++;
11152 if (cv_wait_sig(&rp->r_cv,
11153 &rp->r_statelock) == 0) {
11154 if (lwp != NULL)
11155 lwp->lwp_nostop--;
11156 rc = EINTR;
11157 break;
11158 }
11159 if (lwp != NULL)
11160 lwp->lwp_nostop--;
11161 } else
11162 cv_wait(&rp->r_cv, &rp->r_statelock);
11163 }
11164 mutex_exit(&rp->r_statelock);
11165 if (rc != 0) {
11166 ASSERT(bfp->l_type != F_UNLCK);
11167
11168 goto revert;
11169 }
11170
11171 rc = nfs4_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
11172 if (rc != 0) {
11173 if (rc == ENOSPC || rc == EDQUOT) {
11174 mutex_enter(&rp->r_statelock);
11175 if (!rp->r_error)
11176 rp->r_error = rc;
11177 mutex_exit(&rp->r_statelock);
11178 }
11179
11180 /*
11181 * If this was a lock request, make sure it is
11182 * reverted.
11183 */
11184 if (bfp->l_type != F_UNLCK) {
11185 rc = ENOLCK;
11186 goto revert;
11187 }
11188 }
11189 }
11190
11191 /*
11192 * Call the lock manager to do the real work of contacting
11193 * the server and obtaining the lock.
11194 */
11195 nfs4frlock(NFS4_LCK_CTYPE_NORM, vp, cmd, bfp, cr, &e, NULL, NULL);
11196 rc = e.error;
11197
11198 if (rc == 0)
11199 nfs4_lockcompletion(vp, cmd);
11200
11201 revert:
11202 /*
11203 * If this is either successful unlock request or a lock request that
11204 * failed we should unregister/revert the local lock now.
11205 */
11206 if ((rc == 0 && cmd != F_GETLK && bfp->l_type == F_UNLCK) ||
11207 (rc != 0 && cmd != F_GETLK && bfp->l_type != F_UNLCK)) {
11208 int r;
11209
11210 bfp->l_type = F_UNLCK;
11211 r = reclock(vp, bfp, frcmd, flag, 0, flk_cbp);
11212 /* The unlock cannot fail */
11213 ASSERT(r == 0);
11214 }
11215
11216 done:
11217 nfs_rw_exit(&rp->r_lkserlock);
11218 if (ls != NULL)
11219 lm_rel_sysid(ls);
11220
11221 return (rc);
11222 }
11223
11224 /*
11225 * Free storage space associated with the specified vnode. The portion
11226 * to be freed is specified by bfp->l_start and bfp->l_len (already
11227 * normalized to a "whence" of 0).
11228 *
11229 * This is an experimental facility whose continued existence is not
11230 * guaranteed. Currently, we only support the special case
11231 * of l_len == 0, meaning free to end of file.
11232 */
11233 /* ARGSUSED */
11234 static int
nfs4_space(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)11235 nfs4_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
11236 offset_t offset, cred_t *cr, caller_context_t *ct)
11237 {
11238 int error;
11239
11240 if (nfs_zone() != VTOMI4(vp)->mi_zone)
11241 return (EIO);
11242 ASSERT(vp->v_type == VREG);
11243 if (cmd != F_FREESP)
11244 return (EINVAL);
11245
11246 error = convoff(vp, bfp, 0, offset);
11247 if (!error) {
11248 ASSERT(bfp->l_start >= 0);
11249 if (bfp->l_len == 0) {
11250 struct vattr va;
11251
11252 va.va_mask = AT_SIZE;
11253 va.va_size = bfp->l_start;
11254 error = nfs4setattr(vp, &va, 0, cr, NULL);
11255
11256 if (error == 0 && bfp->l_start == 0)
11257 vnevent_truncate(vp, ct);
11258 } else
11259 error = EINVAL;
11260 }
11261
11262 return (error);
11263 }
11264
11265 /* ARGSUSED */
11266 int
nfs4_realvp(vnode_t * vp,vnode_t ** vpp,caller_context_t * ct)11267 nfs4_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
11268 {
11269 rnode4_t *rp;
11270 rp = VTOR4(vp);
11271
11272 if (vp->v_type == VREG && IS_SHADOW(vp, rp)) {
11273 vp = RTOV4(rp);
11274 }
11275 *vpp = vp;
11276 return (0);
11277 }
11278
11279 /*
11280 * Setup and add an address space callback to do the work of the delmap call.
11281 * The callback will (and must be) deleted in the actual callback function.
11282 *
11283 * This is done in order to take care of the problem that we have with holding
11284 * the address space's a_lock for a long period of time (e.g. if the NFS server
11285 * is down). Callbacks will be executed in the address space code while the
11286 * a_lock is not held. Holding the address space's a_lock causes things such
11287 * as ps and fork to hang because they are trying to acquire this lock as well.
11288 */
11289 /* ARGSUSED */
11290 static int
nfs4_delmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)11291 nfs4_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
11292 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
11293 caller_context_t *ct)
11294 {
11295 int caller_found;
11296 int error;
11297 rnode4_t *rp;
11298 nfs4_delmap_args_t *dmapp;
11299 nfs4_delmapcall_t *delmap_call;
11300
11301 if (vp->v_flag & VNOMAP)
11302 return (ENOSYS);
11303
11304 /*
11305 * A process may not change zones if it has NFS pages mmap'ed
11306 * in, so we can't legitimately get here from the wrong zone.
11307 */
11308 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11309
11310 rp = VTOR4(vp);
11311
11312 /*
11313 * The way that the address space of this process deletes its mapping
11314 * of this file is via the following call chains:
11315 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
11316 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs4_delmap()
11317 *
11318 * With the use of address space callbacks we are allowed to drop the
11319 * address space lock, a_lock, while executing the NFS operations that
11320 * need to go over the wire. Returning EAGAIN to the caller of this
11321 * function is what drives the execution of the callback that we add
11322 * below. The callback will be executed by the address space code
11323 * after dropping the a_lock. When the callback is finished, since
11324 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
11325 * is called again on the same segment to finish the rest of the work
11326 * that needs to happen during unmapping.
11327 *
11328 * This action of calling back into the segment driver causes
11329 * nfs4_delmap() to get called again, but since the callback was
11330 * already executed at this point, it already did the work and there
11331 * is nothing left for us to do.
11332 *
11333 * To Summarize:
11334 * - The first time nfs4_delmap is called by the current thread is when
11335 * we add the caller associated with this delmap to the delmap caller
11336 * list, add the callback, and return EAGAIN.
11337 * - The second time in this call chain when nfs4_delmap is called we
11338 * will find this caller in the delmap caller list and realize there
11339 * is no more work to do thus removing this caller from the list and
11340 * returning the error that was set in the callback execution.
11341 */
11342 caller_found = nfs4_find_and_delete_delmapcall(rp, &error);
11343 if (caller_found) {
11344 /*
11345 * 'error' is from the actual delmap operations. To avoid
11346 * hangs, we need to handle the return of EAGAIN differently
11347 * since this is what drives the callback execution.
11348 * In this case, we don't want to return EAGAIN and do the
11349 * callback execution because there are none to execute.
11350 */
11351 if (error == EAGAIN)
11352 return (0);
11353 else
11354 return (error);
11355 }
11356
11357 /* current caller was not in the list */
11358 delmap_call = nfs4_init_delmapcall();
11359
11360 mutex_enter(&rp->r_statelock);
11361 list_insert_tail(&rp->r_indelmap, delmap_call);
11362 mutex_exit(&rp->r_statelock);
11363
11364 dmapp = kmem_alloc(sizeof (nfs4_delmap_args_t), KM_SLEEP);
11365
11366 dmapp->vp = vp;
11367 dmapp->off = off;
11368 dmapp->addr = addr;
11369 dmapp->len = len;
11370 dmapp->prot = prot;
11371 dmapp->maxprot = maxprot;
11372 dmapp->flags = flags;
11373 dmapp->cr = cr;
11374 dmapp->caller = delmap_call;
11375
11376 error = as_add_callback(as, nfs4_delmap_callback, dmapp,
11377 AS_UNMAP_EVENT, addr, len, KM_SLEEP);
11378
11379 return (error ? error : EAGAIN);
11380 }
11381
11382 static nfs4_delmapcall_t *
nfs4_init_delmapcall()11383 nfs4_init_delmapcall()
11384 {
11385 nfs4_delmapcall_t *delmap_call;
11386
11387 delmap_call = kmem_alloc(sizeof (nfs4_delmapcall_t), KM_SLEEP);
11388 delmap_call->call_id = curthread;
11389 delmap_call->error = 0;
11390
11391 return (delmap_call);
11392 }
11393
11394 static void
nfs4_free_delmapcall(nfs4_delmapcall_t * delmap_call)11395 nfs4_free_delmapcall(nfs4_delmapcall_t *delmap_call)
11396 {
11397 kmem_free(delmap_call, sizeof (nfs4_delmapcall_t));
11398 }
11399
11400 /*
11401 * Searches for the current delmap caller (based on curthread) in the list of
11402 * callers. If it is found, we remove it and free the delmap caller.
11403 * Returns:
11404 * 0 if the caller wasn't found
11405 * 1 if the caller was found, removed and freed. *errp will be set
11406 * to what the result of the delmap was.
11407 */
11408 static int
nfs4_find_and_delete_delmapcall(rnode4_t * rp,int * errp)11409 nfs4_find_and_delete_delmapcall(rnode4_t *rp, int *errp)
11410 {
11411 nfs4_delmapcall_t *delmap_call;
11412
11413 /*
11414 * If the list doesn't exist yet, we create it and return
11415 * that the caller wasn't found. No list = no callers.
11416 */
11417 mutex_enter(&rp->r_statelock);
11418 if (!(rp->r_flags & R4DELMAPLIST)) {
11419 /* The list does not exist */
11420 list_create(&rp->r_indelmap, sizeof (nfs4_delmapcall_t),
11421 offsetof(nfs4_delmapcall_t, call_node));
11422 rp->r_flags |= R4DELMAPLIST;
11423 mutex_exit(&rp->r_statelock);
11424 return (0);
11425 } else {
11426 /* The list exists so search it */
11427 for (delmap_call = list_head(&rp->r_indelmap);
11428 delmap_call != NULL;
11429 delmap_call = list_next(&rp->r_indelmap, delmap_call)) {
11430 if (delmap_call->call_id == curthread) {
11431 /* current caller is in the list */
11432 *errp = delmap_call->error;
11433 list_remove(&rp->r_indelmap, delmap_call);
11434 mutex_exit(&rp->r_statelock);
11435 nfs4_free_delmapcall(delmap_call);
11436 return (1);
11437 }
11438 }
11439 }
11440 mutex_exit(&rp->r_statelock);
11441 return (0);
11442 }
11443
11444 /*
11445 * Remove some pages from an mmap'd vnode. Just update the
11446 * count of pages. If doing close-to-open, then flush and
11447 * commit all of the pages associated with this file.
11448 * Otherwise, start an asynchronous page flush to write out
11449 * any dirty pages. This will also associate a credential
11450 * with the rnode which can be used to write the pages.
11451 */
11452 /* ARGSUSED */
11453 static void
nfs4_delmap_callback(struct as * as,void * arg,uint_t event)11454 nfs4_delmap_callback(struct as *as, void *arg, uint_t event)
11455 {
11456 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
11457 rnode4_t *rp;
11458 mntinfo4_t *mi;
11459 nfs4_delmap_args_t *dmapp = (nfs4_delmap_args_t *)arg;
11460
11461 rp = VTOR4(dmapp->vp);
11462 mi = VTOMI4(dmapp->vp);
11463
11464 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
11465 ASSERT(rp->r_mapcnt >= 0);
11466
11467 /*
11468 * Initiate a page flush and potential commit if there are
11469 * pages, the file system was not mounted readonly, the segment
11470 * was mapped shared, and the pages themselves were writeable.
11471 */
11472 if (nfs4_has_pages(dmapp->vp) &&
11473 !(dmapp->vp->v_vfsp->vfs_flag & VFS_RDONLY) &&
11474 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
11475 mutex_enter(&rp->r_statelock);
11476 rp->r_flags |= R4DIRTY;
11477 mutex_exit(&rp->r_statelock);
11478 e.error = nfs4_putpage_commit(dmapp->vp, dmapp->off,
11479 dmapp->len, dmapp->cr);
11480 if (!e.error) {
11481 mutex_enter(&rp->r_statelock);
11482 e.error = rp->r_error;
11483 rp->r_error = 0;
11484 mutex_exit(&rp->r_statelock);
11485 }
11486 } else
11487 e.error = 0;
11488
11489 if ((rp->r_flags & R4DIRECTIO) || (mi->mi_flags & MI4_DIRECTIO))
11490 (void) nfs4_putpage(dmapp->vp, dmapp->off, dmapp->len,
11491 B_INVAL, dmapp->cr, NULL);
11492
11493 if (e.error) {
11494 e.stat = puterrno4(e.error);
11495 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
11496 OP_COMMIT, FALSE, NULL, 0, dmapp->vp);
11497 dmapp->caller->error = e.error;
11498 }
11499
11500 /* Check to see if we need to close the file */
11501
11502 if (dmapp->vp->v_type == VREG) {
11503 nfs4close_one(dmapp->vp, NULL, dmapp->cr, 0, NULL, &e,
11504 CLOSE_DELMAP, dmapp->len, dmapp->maxprot, dmapp->flags);
11505
11506 if (e.error != 0 || e.stat != NFS4_OK) {
11507 /*
11508 * Since it is possible that e.error == 0 and
11509 * e.stat != NFS4_OK (and vice versa),
11510 * we do the proper checking in order to get both
11511 * e.error and e.stat reporting the correct info.
11512 */
11513 if (e.stat == NFS4_OK)
11514 e.stat = puterrno4(e.error);
11515 if (e.error == 0)
11516 e.error = geterrno4(e.stat);
11517
11518 nfs4_queue_fact(RF_DELMAP_CB_ERR, mi, e.stat, 0,
11519 OP_CLOSE, FALSE, NULL, 0, dmapp->vp);
11520 dmapp->caller->error = e.error;
11521 }
11522 }
11523
11524 (void) as_delete_callback(as, arg);
11525 kmem_free(dmapp, sizeof (nfs4_delmap_args_t));
11526 }
11527
11528
11529 static uint_t
fattr4_maxfilesize_to_bits(uint64_t ll)11530 fattr4_maxfilesize_to_bits(uint64_t ll)
11531 {
11532 uint_t l = 1;
11533
11534 if (ll == 0) {
11535 return (0);
11536 }
11537
11538 if (ll & 0xffffffff00000000) {
11539 l += 32; ll >>= 32;
11540 }
11541 if (ll & 0xffff0000) {
11542 l += 16; ll >>= 16;
11543 }
11544 if (ll & 0xff00) {
11545 l += 8; ll >>= 8;
11546 }
11547 if (ll & 0xf0) {
11548 l += 4; ll >>= 4;
11549 }
11550 if (ll & 0xc) {
11551 l += 2; ll >>= 2;
11552 }
11553 if (ll & 0x2) {
11554 l += 1;
11555 }
11556 return (l);
11557 }
11558
11559 static int
nfs4_have_xattrs(vnode_t * vp,ulong_t * valp,cred_t * cr)11560 nfs4_have_xattrs(vnode_t *vp, ulong_t *valp, cred_t *cr)
11561 {
11562 vnode_t *avp = NULL;
11563 int error;
11564
11565 if ((error = nfs4lookup_xattr(vp, "", &avp,
11566 LOOKUP_XATTR, cr)) == 0)
11567 error = do_xattr_exists_check(avp, valp, cr);
11568 if (avp)
11569 VN_RELE(avp);
11570
11571 return (error);
11572 }
11573
11574 /* ARGSUSED */
11575 int
nfs4_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)11576 nfs4_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
11577 caller_context_t *ct)
11578 {
11579 int error;
11580 hrtime_t t;
11581 rnode4_t *rp;
11582 nfs4_ga_res_t gar;
11583 nfs4_ga_ext_res_t ger;
11584
11585 gar.n4g_ext_res = &ger;
11586
11587 if (nfs_zone() != VTOMI4(vp)->mi_zone)
11588 return (EIO);
11589 if (cmd == _PC_PATH_MAX || cmd == _PC_SYMLINK_MAX) {
11590 *valp = MAXPATHLEN;
11591 return (0);
11592 }
11593 if (cmd == _PC_ACL_ENABLED) {
11594 *valp = _ACL_ACE_ENABLED;
11595 return (0);
11596 }
11597
11598 rp = VTOR4(vp);
11599 if (cmd == _PC_XATTR_EXISTS) {
11600 /*
11601 * The existence of the xattr directory is not sufficient
11602 * for determining whether generic user attributes exists.
11603 * The attribute directory could only be a transient directory
11604 * used for Solaris sysattr support. Do a small readdir
11605 * to verify if the only entries are sysattrs or not.
11606 *
11607 * pc4_xattr_valid can be only be trusted when r_xattr_dir
11608 * is NULL. Once the xadir vp exists, we can create xattrs,
11609 * and we don't have any way to update the "base" object's
11610 * pc4_xattr_exists from the xattr or xadir. Maybe FEM
11611 * could help out.
11612 */
11613 if (ATTRCACHE4_VALID(vp) && rp->r_pathconf.pc4_xattr_valid &&
11614 rp->r_xattr_dir == NULL) {
11615 return (nfs4_have_xattrs(vp, valp, cr));
11616 }
11617 } else { /* OLD CODE */
11618 if (ATTRCACHE4_VALID(vp)) {
11619 mutex_enter(&rp->r_statelock);
11620 if (rp->r_pathconf.pc4_cache_valid) {
11621 error = 0;
11622 switch (cmd) {
11623 case _PC_FILESIZEBITS:
11624 *valp =
11625 rp->r_pathconf.pc4_filesizebits;
11626 break;
11627 case _PC_LINK_MAX:
11628 *valp =
11629 rp->r_pathconf.pc4_link_max;
11630 break;
11631 case _PC_NAME_MAX:
11632 *valp =
11633 rp->r_pathconf.pc4_name_max;
11634 break;
11635 case _PC_CHOWN_RESTRICTED:
11636 *valp =
11637 rp->r_pathconf.pc4_chown_restricted;
11638 break;
11639 case _PC_NO_TRUNC:
11640 *valp =
11641 rp->r_pathconf.pc4_no_trunc;
11642 break;
11643 default:
11644 error = EINVAL;
11645 break;
11646 }
11647 mutex_exit(&rp->r_statelock);
11648 #ifdef DEBUG
11649 nfs4_pathconf_cache_hits++;
11650 #endif
11651 return (error);
11652 }
11653 mutex_exit(&rp->r_statelock);
11654 }
11655 }
11656 #ifdef DEBUG
11657 nfs4_pathconf_cache_misses++;
11658 #endif
11659
11660 t = gethrtime();
11661
11662 error = nfs4_attr_otw(vp, TAG_PATHCONF, &gar, NFS4_PATHCONF_MASK, cr);
11663
11664 if (error) {
11665 mutex_enter(&rp->r_statelock);
11666 rp->r_pathconf.pc4_cache_valid = FALSE;
11667 rp->r_pathconf.pc4_xattr_valid = FALSE;
11668 mutex_exit(&rp->r_statelock);
11669 return (error);
11670 }
11671
11672 /* interpret the max filesize */
11673 gar.n4g_ext_res->n4g_pc4.pc4_filesizebits =
11674 fattr4_maxfilesize_to_bits(gar.n4g_ext_res->n4g_maxfilesize);
11675
11676 /* Store the attributes we just received */
11677 nfs4_attr_cache(vp, &gar, t, cr, TRUE, NULL);
11678
11679 switch (cmd) {
11680 case _PC_FILESIZEBITS:
11681 *valp = gar.n4g_ext_res->n4g_pc4.pc4_filesizebits;
11682 break;
11683 case _PC_LINK_MAX:
11684 *valp = gar.n4g_ext_res->n4g_pc4.pc4_link_max;
11685 break;
11686 case _PC_NAME_MAX:
11687 *valp = gar.n4g_ext_res->n4g_pc4.pc4_name_max;
11688 break;
11689 case _PC_CHOWN_RESTRICTED:
11690 *valp = gar.n4g_ext_res->n4g_pc4.pc4_chown_restricted;
11691 break;
11692 case _PC_NO_TRUNC:
11693 *valp = gar.n4g_ext_res->n4g_pc4.pc4_no_trunc;
11694 break;
11695 case _PC_XATTR_EXISTS:
11696 if (gar.n4g_ext_res->n4g_pc4.pc4_xattr_exists) {
11697 if (error = nfs4_have_xattrs(vp, valp, cr))
11698 return (error);
11699 }
11700 break;
11701 default:
11702 return (EINVAL);
11703 }
11704
11705 return (0);
11706 }
11707
11708 /*
11709 * Called by async thread to do synchronous pageio. Do the i/o, wait
11710 * for it to complete, and cleanup the page list when done.
11711 */
11712 static int
nfs4_sync_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)11713 nfs4_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
11714 int flags, cred_t *cr)
11715 {
11716 int error;
11717
11718 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11719
11720 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
11721 if (flags & B_READ)
11722 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
11723 else
11724 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
11725 return (error);
11726 }
11727
11728 /* ARGSUSED */
11729 static int
nfs4_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr,caller_context_t * ct)11730 nfs4_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
11731 int flags, cred_t *cr, caller_context_t *ct)
11732 {
11733 int error;
11734 rnode4_t *rp;
11735
11736 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI4(vp)->mi_zone)
11737 return (EIO);
11738
11739 if (pp == NULL)
11740 return (EINVAL);
11741
11742 rp = VTOR4(vp);
11743 mutex_enter(&rp->r_statelock);
11744 rp->r_count++;
11745 mutex_exit(&rp->r_statelock);
11746
11747 if (flags & B_ASYNC) {
11748 error = nfs4_async_pageio(vp, pp, io_off, io_len, flags, cr,
11749 nfs4_sync_pageio);
11750 } else
11751 error = nfs4_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
11752 mutex_enter(&rp->r_statelock);
11753 rp->r_count--;
11754 cv_broadcast(&rp->r_cv);
11755 mutex_exit(&rp->r_statelock);
11756 return (error);
11757 }
11758
11759 /* ARGSUSED */
11760 static void
nfs4_dispose(vnode_t * vp,page_t * pp,int fl,int dn,cred_t * cr,caller_context_t * ct)11761 nfs4_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
11762 caller_context_t *ct)
11763 {
11764 int error;
11765 rnode4_t *rp;
11766 page_t *plist;
11767 page_t *pptr;
11768 offset3 offset;
11769 count3 len;
11770 k_sigset_t smask;
11771
11772 /*
11773 * We should get called with fl equal to either B_FREE or
11774 * B_INVAL. Any other value is illegal.
11775 *
11776 * The page that we are either supposed to free or destroy
11777 * should be exclusive locked and its io lock should not
11778 * be held.
11779 */
11780 ASSERT(fl == B_FREE || fl == B_INVAL);
11781 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
11782
11783 rp = VTOR4(vp);
11784
11785 /*
11786 * If the page doesn't need to be committed or we shouldn't
11787 * even bother attempting to commit it, then just make sure
11788 * that the p_fsdata byte is clear and then either free or
11789 * destroy the page as appropriate.
11790 */
11791 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & R4STALE)) {
11792 pp->p_fsdata = C_NOCOMMIT;
11793 if (fl == B_FREE)
11794 page_free(pp, dn);
11795 else
11796 page_destroy(pp, dn);
11797 return;
11798 }
11799
11800 /*
11801 * If there is a page invalidation operation going on, then
11802 * if this is one of the pages being destroyed, then just
11803 * clear the p_fsdata byte and then either free or destroy
11804 * the page as appropriate.
11805 */
11806 mutex_enter(&rp->r_statelock);
11807 if ((rp->r_flags & R4TRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
11808 mutex_exit(&rp->r_statelock);
11809 pp->p_fsdata = C_NOCOMMIT;
11810 if (fl == B_FREE)
11811 page_free(pp, dn);
11812 else
11813 page_destroy(pp, dn);
11814 return;
11815 }
11816
11817 /*
11818 * If we are freeing this page and someone else is already
11819 * waiting to do a commit, then just unlock the page and
11820 * return. That other thread will take care of commiting
11821 * this page. The page can be freed sometime after the
11822 * commit has finished. Otherwise, if the page is marked
11823 * as delay commit, then we may be getting called from
11824 * pvn_write_done, one page at a time. This could result
11825 * in one commit per page, so we end up doing lots of small
11826 * commits instead of fewer larger commits. This is bad,
11827 * we want do as few commits as possible.
11828 */
11829 if (fl == B_FREE) {
11830 if (rp->r_flags & R4COMMITWAIT) {
11831 page_unlock(pp);
11832 mutex_exit(&rp->r_statelock);
11833 return;
11834 }
11835 if (pp->p_fsdata == C_DELAYCOMMIT) {
11836 pp->p_fsdata = C_COMMIT;
11837 page_unlock(pp);
11838 mutex_exit(&rp->r_statelock);
11839 return;
11840 }
11841 }
11842
11843 /*
11844 * Check to see if there is a signal which would prevent an
11845 * attempt to commit the pages from being successful. If so,
11846 * then don't bother with all of the work to gather pages and
11847 * generate the unsuccessful RPC. Just return from here and
11848 * let the page be committed at some later time.
11849 */
11850 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
11851 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
11852 sigunintr(&smask);
11853 page_unlock(pp);
11854 mutex_exit(&rp->r_statelock);
11855 return;
11856 }
11857 sigunintr(&smask);
11858
11859 /*
11860 * We are starting to need to commit pages, so let's try
11861 * to commit as many as possible at once to reduce the
11862 * overhead.
11863 *
11864 * Set the `commit inprogress' state bit. We must
11865 * first wait until any current one finishes. Then
11866 * we initialize the c_pages list with this page.
11867 */
11868 while (rp->r_flags & R4COMMIT) {
11869 rp->r_flags |= R4COMMITWAIT;
11870 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
11871 rp->r_flags &= ~R4COMMITWAIT;
11872 }
11873 rp->r_flags |= R4COMMIT;
11874 mutex_exit(&rp->r_statelock);
11875 ASSERT(rp->r_commit.c_pages == NULL);
11876 rp->r_commit.c_pages = pp;
11877 rp->r_commit.c_commbase = (offset3)pp->p_offset;
11878 rp->r_commit.c_commlen = PAGESIZE;
11879
11880 /*
11881 * Gather together all other pages which can be committed.
11882 * They will all be chained off r_commit.c_pages.
11883 */
11884 nfs4_get_commit(vp);
11885
11886 /*
11887 * Clear the `commit inprogress' status and disconnect
11888 * the list of pages to be committed from the rnode.
11889 * At this same time, we also save the starting offset
11890 * and length of data to be committed on the server.
11891 */
11892 plist = rp->r_commit.c_pages;
11893 rp->r_commit.c_pages = NULL;
11894 offset = rp->r_commit.c_commbase;
11895 len = rp->r_commit.c_commlen;
11896 mutex_enter(&rp->r_statelock);
11897 rp->r_flags &= ~R4COMMIT;
11898 cv_broadcast(&rp->r_commit.c_cv);
11899 mutex_exit(&rp->r_statelock);
11900
11901 if (curproc == proc_pageout || curproc == proc_fsflush ||
11902 nfs_zone() != VTOMI4(vp)->mi_zone) {
11903 nfs4_async_commit(vp, plist, offset, len,
11904 cr, do_nfs4_async_commit);
11905 return;
11906 }
11907
11908 /*
11909 * Actually generate the COMMIT op over the wire operation.
11910 */
11911 error = nfs4_commit(vp, (offset4)offset, (count4)len, cr);
11912
11913 /*
11914 * If we got an error during the commit, just unlock all
11915 * of the pages. The pages will get retransmitted to the
11916 * server during a putpage operation.
11917 */
11918 if (error) {
11919 while (plist != NULL) {
11920 pptr = plist;
11921 page_sub(&plist, pptr);
11922 page_unlock(pptr);
11923 }
11924 return;
11925 }
11926
11927 /*
11928 * We've tried as hard as we can to commit the data to stable
11929 * storage on the server. We just unlock the rest of the pages
11930 * and clear the commit required state. They will be put
11931 * onto the tail of the cachelist if they are nolonger
11932 * mapped.
11933 */
11934 while (plist != pp) {
11935 pptr = plist;
11936 page_sub(&plist, pptr);
11937 pptr->p_fsdata = C_NOCOMMIT;
11938 page_unlock(pptr);
11939 }
11940
11941 /*
11942 * It is possible that nfs4_commit didn't return error but
11943 * some other thread has modified the page we are going
11944 * to free/destroy.
11945 * In this case we need to rewrite the page. Do an explicit check
11946 * before attempting to free/destroy the page. If modified, needs to
11947 * be rewritten so unlock the page and return.
11948 */
11949 if (hat_ismod(pp)) {
11950 pp->p_fsdata = C_NOCOMMIT;
11951 page_unlock(pp);
11952 return;
11953 }
11954
11955 /*
11956 * Now, as appropriate, either free or destroy the page
11957 * that we were called with.
11958 */
11959 pp->p_fsdata = C_NOCOMMIT;
11960 if (fl == B_FREE)
11961 page_free(pp, dn);
11962 else
11963 page_destroy(pp, dn);
11964 }
11965
11966 /*
11967 * Commit requires that the current fh be the file written to.
11968 * The compound op structure is:
11969 * PUTFH(file), COMMIT
11970 */
11971 static int
nfs4_commit(vnode_t * vp,offset4 offset,count4 count,cred_t * cr)11972 nfs4_commit(vnode_t *vp, offset4 offset, count4 count, cred_t *cr)
11973 {
11974 COMPOUND4args_clnt args;
11975 COMPOUND4res_clnt res;
11976 COMMIT4res *cm_res;
11977 nfs_argop4 argop[2];
11978 nfs_resop4 *resop;
11979 int doqueue;
11980 mntinfo4_t *mi;
11981 rnode4_t *rp;
11982 cred_t *cred_otw = NULL;
11983 bool_t needrecov = FALSE;
11984 nfs4_recov_state_t recov_state;
11985 nfs4_open_stream_t *osp = NULL;
11986 bool_t first_time = TRUE; /* first time getting OTW cred */
11987 bool_t last_time = FALSE; /* last time getting OTW cred */
11988 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
11989
11990 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
11991
11992 rp = VTOR4(vp);
11993
11994 mi = VTOMI4(vp);
11995 recov_state.rs_flags = 0;
11996 recov_state.rs_num_retry_despite_err = 0;
11997 get_commit_cred:
11998 /*
11999 * Releases the osp, if a valid open stream is provided.
12000 * Puts a hold on the cred_otw and the new osp (if found).
12001 */
12002 cred_otw = nfs4_get_otw_cred_by_osp(rp, cr, &osp,
12003 &first_time, &last_time);
12004 args.ctag = TAG_COMMIT;
12005 recov_retry:
12006 /*
12007 * Commit ops: putfh file; commit
12008 */
12009 args.array_len = 2;
12010 args.array = argop;
12011
12012 e.error = nfs4_start_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
12013 &recov_state, NULL);
12014 if (e.error) {
12015 crfree(cred_otw);
12016 if (osp != NULL)
12017 open_stream_rele(osp, rp);
12018 return (e.error);
12019 }
12020
12021 /* putfh directory */
12022 argop[0].argop = OP_CPUTFH;
12023 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
12024
12025 /* commit */
12026 argop[1].argop = OP_COMMIT;
12027 argop[1].nfs_argop4_u.opcommit.offset = offset;
12028 argop[1].nfs_argop4_u.opcommit.count = count;
12029
12030 doqueue = 1;
12031 rfs4call(mi, &args, &res, cred_otw, &doqueue, 0, &e);
12032
12033 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
12034 if (!needrecov && e.error) {
12035 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state,
12036 needrecov);
12037 crfree(cred_otw);
12038 if (e.error == EACCES && last_time == FALSE)
12039 goto get_commit_cred;
12040 if (osp != NULL)
12041 open_stream_rele(osp, rp);
12042 return (e.error);
12043 }
12044
12045 if (needrecov) {
12046 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
12047 NULL, OP_COMMIT, NULL, NULL, NULL) == FALSE) {
12048 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
12049 &recov_state, needrecov);
12050 if (!e.error)
12051 (void) xdr_free(xdr_COMPOUND4res_clnt,
12052 (caddr_t)&res);
12053 goto recov_retry;
12054 }
12055 if (e.error) {
12056 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
12057 &recov_state, needrecov);
12058 crfree(cred_otw);
12059 if (osp != NULL)
12060 open_stream_rele(osp, rp);
12061 return (e.error);
12062 }
12063 /* fall through for res.status case */
12064 }
12065
12066 if (res.status) {
12067 e.error = geterrno4(res.status);
12068 if (e.error == EACCES && last_time == FALSE) {
12069 crfree(cred_otw);
12070 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
12071 &recov_state, needrecov);
12072 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12073 goto get_commit_cred;
12074 }
12075 /*
12076 * Can't do a nfs4_purge_stale_fh here because this
12077 * can cause a deadlock. nfs4_commit can
12078 * be called from nfs4_dispose which can be called
12079 * indirectly via pvn_vplist_dirty. nfs4_purge_stale_fh
12080 * can call back to pvn_vplist_dirty.
12081 */
12082 if (e.error == ESTALE) {
12083 mutex_enter(&rp->r_statelock);
12084 rp->r_flags |= R4STALE;
12085 if (!rp->r_error)
12086 rp->r_error = e.error;
12087 mutex_exit(&rp->r_statelock);
12088 PURGE_ATTRCACHE4(vp);
12089 } else {
12090 mutex_enter(&rp->r_statelock);
12091 if (!rp->r_error)
12092 rp->r_error = e.error;
12093 mutex_exit(&rp->r_statelock);
12094 }
12095 } else {
12096 ASSERT(rp->r_flags & R4HAVEVERF);
12097 resop = &res.array[1]; /* commit res */
12098 cm_res = &resop->nfs_resop4_u.opcommit;
12099 mutex_enter(&rp->r_statelock);
12100 if (cm_res->writeverf == rp->r_writeverf) {
12101 mutex_exit(&rp->r_statelock);
12102 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12103 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT,
12104 &recov_state, needrecov);
12105 crfree(cred_otw);
12106 if (osp != NULL)
12107 open_stream_rele(osp, rp);
12108 return (0);
12109 }
12110 nfs4_set_mod(vp);
12111 rp->r_writeverf = cm_res->writeverf;
12112 mutex_exit(&rp->r_statelock);
12113 e.error = NFS_VERF_MISMATCH;
12114 }
12115
12116 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
12117 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_COMMIT, &recov_state, needrecov);
12118 crfree(cred_otw);
12119 if (osp != NULL)
12120 open_stream_rele(osp, rp);
12121
12122 return (e.error);
12123 }
12124
12125 static void
nfs4_set_mod(vnode_t * vp)12126 nfs4_set_mod(vnode_t *vp)
12127 {
12128 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12129
12130 /* make sure we're looking at the master vnode, not a shadow */
12131 pvn_vplist_setdirty(RTOV4(VTOR4(vp)), nfs_setmod_check);
12132 }
12133
12134 /*
12135 * This function is used to gather a page list of the pages which
12136 * can be committed on the server.
12137 *
12138 * The calling thread must have set R4COMMIT. This bit is used to
12139 * serialize access to the commit structure in the rnode. As long
12140 * as the thread has set R4COMMIT, then it can manipulate the commit
12141 * structure without requiring any other locks.
12142 *
12143 * When this function is called from nfs4_dispose() the page passed
12144 * into nfs4_dispose() will be SE_EXCL locked, and so this function
12145 * will skip it. This is not a problem since we initially add the
12146 * page to the r_commit page list.
12147 *
12148 */
12149 static void
nfs4_get_commit(vnode_t * vp)12150 nfs4_get_commit(vnode_t *vp)
12151 {
12152 rnode4_t *rp;
12153 page_t *pp;
12154 kmutex_t *vphm;
12155
12156 rp = VTOR4(vp);
12157
12158 ASSERT(rp->r_flags & R4COMMIT);
12159
12160 /* make sure we're looking at the master vnode, not a shadow */
12161
12162 if (IS_SHADOW(vp, rp))
12163 vp = RTOV4(rp);
12164
12165 vphm = page_vnode_mutex(vp);
12166 mutex_enter(vphm);
12167
12168 /*
12169 * If there are no pages associated with this vnode, then
12170 * just return.
12171 */
12172 if ((pp = vp->v_pages) == NULL) {
12173 mutex_exit(vphm);
12174 return;
12175 }
12176
12177 /*
12178 * Step through all of the pages associated with this vnode
12179 * looking for pages which need to be committed.
12180 */
12181 do {
12182 /* Skip marker pages. */
12183 if (pp->p_hash == PVN_VPLIST_HASH_TAG)
12184 continue;
12185
12186 /*
12187 * First short-cut everything (without the page_lock)
12188 * and see if this page does not need to be committed
12189 * or is modified if so then we'll just skip it.
12190 */
12191 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
12192 continue;
12193
12194 /*
12195 * Attempt to lock the page. If we can't, then
12196 * someone else is messing with it or we have been
12197 * called from nfs4_dispose and this is the page that
12198 * nfs4_dispose was called with.. anyway just skip it.
12199 */
12200 if (!page_trylock(pp, SE_EXCL))
12201 continue;
12202
12203 /*
12204 * Lets check again now that we have the page lock.
12205 */
12206 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
12207 page_unlock(pp);
12208 continue;
12209 }
12210
12211 /* this had better not be a free page */
12212 ASSERT(PP_ISFREE(pp) == 0);
12213
12214 /*
12215 * The page needs to be committed and we locked it.
12216 * Update the base and length parameters and add it
12217 * to r_pages.
12218 */
12219 if (rp->r_commit.c_pages == NULL) {
12220 rp->r_commit.c_commbase = (offset3)pp->p_offset;
12221 rp->r_commit.c_commlen = PAGESIZE;
12222 } else if (pp->p_offset < rp->r_commit.c_commbase) {
12223 rp->r_commit.c_commlen = rp->r_commit.c_commbase -
12224 (offset3)pp->p_offset + rp->r_commit.c_commlen;
12225 rp->r_commit.c_commbase = (offset3)pp->p_offset;
12226 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
12227 <= pp->p_offset) {
12228 rp->r_commit.c_commlen = (offset3)pp->p_offset -
12229 rp->r_commit.c_commbase + PAGESIZE;
12230 }
12231 page_add(&rp->r_commit.c_pages, pp);
12232 } while ((pp = pp->p_vpnext) != vp->v_pages);
12233
12234 mutex_exit(vphm);
12235 }
12236
12237 /*
12238 * This routine is used to gather together a page list of the pages
12239 * which are to be committed on the server. This routine must not
12240 * be called if the calling thread holds any locked pages.
12241 *
12242 * The calling thread must have set R4COMMIT. This bit is used to
12243 * serialize access to the commit structure in the rnode. As long
12244 * as the thread has set R4COMMIT, then it can manipulate the commit
12245 * structure without requiring any other locks.
12246 */
12247 static void
nfs4_get_commit_range(vnode_t * vp,u_offset_t soff,size_t len)12248 nfs4_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
12249 {
12250
12251 rnode4_t *rp;
12252 page_t *pp;
12253 u_offset_t end;
12254 u_offset_t off;
12255 ASSERT(len != 0);
12256 rp = VTOR4(vp);
12257 ASSERT(rp->r_flags & R4COMMIT);
12258
12259 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12260
12261 /* make sure we're looking at the master vnode, not a shadow */
12262
12263 if (IS_SHADOW(vp, rp))
12264 vp = RTOV4(rp);
12265
12266 /*
12267 * If there are no pages associated with this vnode, then
12268 * just return.
12269 */
12270 if ((pp = vp->v_pages) == NULL)
12271 return;
12272 /*
12273 * Calculate the ending offset.
12274 */
12275 end = soff + len;
12276 for (off = soff; off < end; off += PAGESIZE) {
12277 /*
12278 * Lookup each page by vp, offset.
12279 */
12280 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
12281 continue;
12282 /*
12283 * If this page does not need to be committed or is
12284 * modified, then just skip it.
12285 */
12286 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
12287 page_unlock(pp);
12288 continue;
12289 }
12290
12291 ASSERT(PP_ISFREE(pp) == 0);
12292 /*
12293 * The page needs to be committed and we locked it.
12294 * Update the base and length parameters and add it
12295 * to r_pages.
12296 */
12297 if (rp->r_commit.c_pages == NULL) {
12298 rp->r_commit.c_commbase = (offset3)pp->p_offset;
12299 rp->r_commit.c_commlen = PAGESIZE;
12300 } else {
12301 rp->r_commit.c_commlen = (offset3)pp->p_offset -
12302 rp->r_commit.c_commbase + PAGESIZE;
12303 }
12304 page_add(&rp->r_commit.c_pages, pp);
12305 }
12306 }
12307
12308 /*
12309 * Called from nfs4_close(), nfs4_fsync() and nfs4_delmap().
12310 * Flushes and commits data to the server.
12311 */
12312 static int
nfs4_putpage_commit(vnode_t * vp,offset_t poff,size_t plen,cred_t * cr)12313 nfs4_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
12314 {
12315 int error;
12316 verifier4 write_verf;
12317 rnode4_t *rp = VTOR4(vp);
12318
12319 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12320
12321 /*
12322 * Flush the data portion of the file and then commit any
12323 * portions which need to be committed. This may need to
12324 * be done twice if the server has changed state since
12325 * data was last written. The data will need to be
12326 * rewritten to the server and then a new commit done.
12327 *
12328 * In fact, this may need to be done several times if the
12329 * server is having problems and crashing while we are
12330 * attempting to do this.
12331 */
12332
12333 top:
12334 /*
12335 * Do a flush based on the poff and plen arguments. This
12336 * will synchronously write out any modified pages in the
12337 * range specified by (poff, plen). This starts all of the
12338 * i/o operations which will be waited for in the next
12339 * call to nfs4_putpage
12340 */
12341
12342 mutex_enter(&rp->r_statelock);
12343 write_verf = rp->r_writeverf;
12344 mutex_exit(&rp->r_statelock);
12345
12346 error = nfs4_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
12347 if (error == EAGAIN)
12348 error = 0;
12349
12350 /*
12351 * Do a flush based on the poff and plen arguments. This
12352 * will synchronously write out any modified pages in the
12353 * range specified by (poff, plen) and wait until all of
12354 * the asynchronous i/o's in that range are done as well.
12355 */
12356 if (!error)
12357 error = nfs4_putpage(vp, poff, plen, 0, cr, NULL);
12358
12359 if (error)
12360 return (error);
12361
12362 mutex_enter(&rp->r_statelock);
12363 if (rp->r_writeverf != write_verf) {
12364 mutex_exit(&rp->r_statelock);
12365 goto top;
12366 }
12367 mutex_exit(&rp->r_statelock);
12368
12369 /*
12370 * Now commit any pages which might need to be committed.
12371 * If the error, NFS_VERF_MISMATCH, is returned, then
12372 * start over with the flush operation.
12373 */
12374 error = nfs4_commit_vp(vp, poff, plen, cr, NFS4_WRITE_WAIT);
12375
12376 if (error == NFS_VERF_MISMATCH)
12377 goto top;
12378
12379 return (error);
12380 }
12381
12382 /*
12383 * nfs4_commit_vp() will wait for other pending commits and
12384 * will either commit the whole file or a range, plen dictates
12385 * if we commit whole file. a value of zero indicates the whole
12386 * file. Called from nfs4_putpage_commit() or nfs4_sync_putapage()
12387 */
12388 static int
nfs4_commit_vp(vnode_t * vp,u_offset_t poff,size_t plen,cred_t * cr,int wait_on_writes)12389 nfs4_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen,
12390 cred_t *cr, int wait_on_writes)
12391 {
12392 rnode4_t *rp;
12393 page_t *plist;
12394 offset3 offset;
12395 count3 len;
12396
12397 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12398
12399 rp = VTOR4(vp);
12400
12401 /*
12402 * before we gather commitable pages make
12403 * sure there are no outstanding async writes
12404 */
12405 if (rp->r_count && wait_on_writes == NFS4_WRITE_WAIT) {
12406 mutex_enter(&rp->r_statelock);
12407 while (rp->r_count > 0) {
12408 cv_wait(&rp->r_cv, &rp->r_statelock);
12409 }
12410 mutex_exit(&rp->r_statelock);
12411 }
12412
12413 /*
12414 * Set the `commit inprogress' state bit. We must
12415 * first wait until any current one finishes.
12416 */
12417 mutex_enter(&rp->r_statelock);
12418 while (rp->r_flags & R4COMMIT) {
12419 rp->r_flags |= R4COMMITWAIT;
12420 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
12421 rp->r_flags &= ~R4COMMITWAIT;
12422 }
12423 rp->r_flags |= R4COMMIT;
12424 mutex_exit(&rp->r_statelock);
12425
12426 /*
12427 * Gather all of the pages which need to be
12428 * committed.
12429 */
12430 if (plen == 0)
12431 nfs4_get_commit(vp);
12432 else
12433 nfs4_get_commit_range(vp, poff, plen);
12434
12435 /*
12436 * Clear the `commit inprogress' bit and disconnect the
12437 * page list which was gathered by nfs4_get_commit.
12438 */
12439 plist = rp->r_commit.c_pages;
12440 rp->r_commit.c_pages = NULL;
12441 offset = rp->r_commit.c_commbase;
12442 len = rp->r_commit.c_commlen;
12443 mutex_enter(&rp->r_statelock);
12444 rp->r_flags &= ~R4COMMIT;
12445 cv_broadcast(&rp->r_commit.c_cv);
12446 mutex_exit(&rp->r_statelock);
12447
12448 /*
12449 * If any pages need to be committed, commit them and
12450 * then unlock them so that they can be freed some
12451 * time later.
12452 */
12453 if (plist == NULL)
12454 return (0);
12455
12456 /*
12457 * No error occurred during the flush portion
12458 * of this operation, so now attempt to commit
12459 * the data to stable storage on the server.
12460 *
12461 * This will unlock all of the pages on the list.
12462 */
12463 return (nfs4_sync_commit(vp, plist, offset, len, cr));
12464 }
12465
12466 static int
nfs4_sync_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr)12467 nfs4_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
12468 cred_t *cr)
12469 {
12470 int error;
12471 page_t *pp;
12472
12473 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12474
12475 error = nfs4_commit(vp, (offset4)offset, (count3)count, cr);
12476
12477 /*
12478 * If we got an error, then just unlock all of the pages
12479 * on the list.
12480 */
12481 if (error) {
12482 while (plist != NULL) {
12483 pp = plist;
12484 page_sub(&plist, pp);
12485 page_unlock(pp);
12486 }
12487 return (error);
12488 }
12489 /*
12490 * We've tried as hard as we can to commit the data to stable
12491 * storage on the server. We just unlock the pages and clear
12492 * the commit required state. They will get freed later.
12493 */
12494 while (plist != NULL) {
12495 pp = plist;
12496 page_sub(&plist, pp);
12497 pp->p_fsdata = C_NOCOMMIT;
12498 page_unlock(pp);
12499 }
12500
12501 return (error);
12502 }
12503
12504 static void
do_nfs4_async_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr)12505 do_nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
12506 cred_t *cr)
12507 {
12508
12509 (void) nfs4_sync_commit(vp, plist, offset, count, cr);
12510 }
12511
12512 /*ARGSUSED*/
12513 static int
nfs4_setsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)12514 nfs4_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12515 caller_context_t *ct)
12516 {
12517 int error = 0;
12518 mntinfo4_t *mi;
12519 vattr_t va;
12520 vsecattr_t nfsace4_vsap;
12521
12522 mi = VTOMI4(vp);
12523 if (nfs_zone() != mi->mi_zone)
12524 return (EIO);
12525 if (mi->mi_flags & MI4_ACL) {
12526 /* if we have a delegation, return it */
12527 if (VTOR4(vp)->r_deleg_type != OPEN_DELEGATE_NONE)
12528 (void) nfs4delegreturn(VTOR4(vp),
12529 NFS4_DR_REOPEN|NFS4_DR_PUSH);
12530
12531 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask,
12532 NFS4_ACL_SET);
12533 if (error) /* EINVAL */
12534 return (error);
12535
12536 if (vsecattr->vsa_mask & (VSA_ACL | VSA_DFACL)) {
12537 /*
12538 * These are aclent_t type entries.
12539 */
12540 error = vs_aent_to_ace4(vsecattr, &nfsace4_vsap,
12541 vp->v_type == VDIR, FALSE);
12542 if (error)
12543 return (error);
12544 } else {
12545 /*
12546 * These are ace_t type entries.
12547 */
12548 error = vs_acet_to_ace4(vsecattr, &nfsace4_vsap,
12549 FALSE);
12550 if (error)
12551 return (error);
12552 }
12553 bzero(&va, sizeof (va));
12554 error = nfs4setattr(vp, &va, flag, cr, &nfsace4_vsap);
12555 vs_ace4_destroy(&nfsace4_vsap);
12556 return (error);
12557 }
12558 return (ENOSYS);
12559 }
12560
12561 /* ARGSUSED */
12562 int
nfs4_getsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)12563 nfs4_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
12564 caller_context_t *ct)
12565 {
12566 int error;
12567 mntinfo4_t *mi;
12568 nfs4_ga_res_t gar;
12569 rnode4_t *rp = VTOR4(vp);
12570
12571 mi = VTOMI4(vp);
12572 if (nfs_zone() != mi->mi_zone)
12573 return (EIO);
12574
12575 bzero(&gar, sizeof (gar));
12576 gar.n4g_vsa.vsa_mask = vsecattr->vsa_mask;
12577
12578 /*
12579 * vsecattr->vsa_mask holds the original acl request mask.
12580 * This is needed when determining what to return.
12581 * (See: nfs4_create_getsecattr_return())
12582 */
12583 error = nfs4_is_acl_mask_valid(vsecattr->vsa_mask, NFS4_ACL_GET);
12584 if (error) /* EINVAL */
12585 return (error);
12586
12587 /*
12588 * If this is a referral stub, don't try to go OTW for an ACL
12589 */
12590 if (RP_ISSTUB_REFERRAL(VTOR4(vp)))
12591 return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
12592
12593 if (mi->mi_flags & MI4_ACL) {
12594 /*
12595 * Check if the data is cached and the cache is valid. If it
12596 * is we don't go over the wire.
12597 */
12598 if (rp->r_secattr != NULL && ATTRCACHE4_VALID(vp)) {
12599 mutex_enter(&rp->r_statelock);
12600 if (rp->r_secattr != NULL) {
12601 error = nfs4_create_getsecattr_return(
12602 rp->r_secattr, vsecattr, rp->r_attr.va_uid,
12603 rp->r_attr.va_gid,
12604 vp->v_type == VDIR);
12605 if (!error) { /* error == 0 - Success! */
12606 mutex_exit(&rp->r_statelock);
12607 return (error);
12608 }
12609 }
12610 mutex_exit(&rp->r_statelock);
12611 }
12612
12613 /*
12614 * The getattr otw call will always get both the acl, in
12615 * the form of a list of nfsace4's, and the number of acl
12616 * entries; independent of the value of gar.n4g_va.va_mask.
12617 */
12618 error = nfs4_getattr_otw(vp, &gar, cr, 1);
12619 if (error) {
12620 vs_ace4_destroy(&gar.n4g_vsa);
12621 if (error == ENOTSUP || error == EOPNOTSUPP)
12622 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12623 return (error);
12624 }
12625
12626 if (!(gar.n4g_resbmap & FATTR4_ACL_MASK)) {
12627 /*
12628 * No error was returned, but according to the response
12629 * bitmap, neither was an acl.
12630 */
12631 vs_ace4_destroy(&gar.n4g_vsa);
12632 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12633 return (error);
12634 }
12635
12636 /*
12637 * Update the cache with the ACL.
12638 */
12639 nfs4_acl_fill_cache(rp, &gar.n4g_vsa);
12640
12641 error = nfs4_create_getsecattr_return(&gar.n4g_vsa,
12642 vsecattr, gar.n4g_va.va_uid, gar.n4g_va.va_gid,
12643 vp->v_type == VDIR);
12644 vs_ace4_destroy(&gar.n4g_vsa);
12645 if ((error) && (vsecattr->vsa_mask &
12646 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) &&
12647 (error != EACCES)) {
12648 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12649 }
12650 return (error);
12651 }
12652 error = fs_fab_acl(vp, vsecattr, flag, cr, ct);
12653 return (error);
12654 }
12655
12656 /*
12657 * The function returns:
12658 * - 0 (zero) if the passed in "acl_mask" is a valid request.
12659 * - EINVAL if the passed in "acl_mask" is an invalid request.
12660 *
12661 * In the case of getting an acl (op == NFS4_ACL_GET) the mask is invalid if:
12662 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
12663 *
12664 * In the case of setting an acl (op == NFS4_ACL_SET) the mask is invalid if:
12665 * - We have a mixture of ACE and ACL requests (e.g. VSA_ACL | VSA_ACE)
12666 * - We have a count field set without the corresponding acl field set. (e.g. -
12667 * VSA_ACECNT is set, but VSA_ACE is not)
12668 */
12669 static int
nfs4_is_acl_mask_valid(uint_t acl_mask,nfs4_acl_op_t op)12670 nfs4_is_acl_mask_valid(uint_t acl_mask, nfs4_acl_op_t op)
12671 {
12672 /* Shortcut the masks that are always valid. */
12673 if (acl_mask == (VSA_ACE | VSA_ACECNT))
12674 return (0);
12675 if (acl_mask == (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT))
12676 return (0);
12677
12678 if (acl_mask & (VSA_ACE | VSA_ACECNT)) {
12679 /*
12680 * We can't have any VSA_ACL type stuff in the mask now.
12681 */
12682 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
12683 VSA_DFACLCNT))
12684 return (EINVAL);
12685
12686 if (op == NFS4_ACL_SET) {
12687 if ((acl_mask & VSA_ACECNT) && !(acl_mask & VSA_ACE))
12688 return (EINVAL);
12689 }
12690 }
12691
12692 if (acl_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) {
12693 /*
12694 * We can't have any VSA_ACE type stuff in the mask now.
12695 */
12696 if (acl_mask & (VSA_ACE | VSA_ACECNT))
12697 return (EINVAL);
12698
12699 if (op == NFS4_ACL_SET) {
12700 if ((acl_mask & VSA_ACLCNT) && !(acl_mask & VSA_ACL))
12701 return (EINVAL);
12702
12703 if ((acl_mask & VSA_DFACLCNT) &&
12704 !(acl_mask & VSA_DFACL))
12705 return (EINVAL);
12706 }
12707 }
12708 return (0);
12709 }
12710
12711 /*
12712 * The theory behind creating the correct getsecattr return is simply this:
12713 * "Don't return anything that the caller is not expecting to have to free."
12714 */
12715 static int
nfs4_create_getsecattr_return(vsecattr_t * filled_vsap,vsecattr_t * vsap,uid_t uid,gid_t gid,int isdir)12716 nfs4_create_getsecattr_return(vsecattr_t *filled_vsap, vsecattr_t *vsap,
12717 uid_t uid, gid_t gid, int isdir)
12718 {
12719 int error = 0;
12720 /* Save the mask since the translators modify it. */
12721 uint_t orig_mask = vsap->vsa_mask;
12722
12723 if (orig_mask & (VSA_ACE | VSA_ACECNT)) {
12724 error = vs_ace4_to_acet(filled_vsap, vsap, uid, gid, FALSE);
12725
12726 if (error)
12727 return (error);
12728
12729 /*
12730 * If the caller only asked for the ace count (VSA_ACECNT)
12731 * don't give them the full acl (VSA_ACE), free it.
12732 */
12733 if (!orig_mask & VSA_ACE) {
12734 if (vsap->vsa_aclentp != NULL) {
12735 kmem_free(vsap->vsa_aclentp,
12736 vsap->vsa_aclcnt * sizeof (ace_t));
12737 vsap->vsa_aclentp = NULL;
12738 }
12739 }
12740 vsap->vsa_mask = orig_mask;
12741
12742 } else if (orig_mask & (VSA_ACL | VSA_ACLCNT | VSA_DFACL |
12743 VSA_DFACLCNT)) {
12744 error = vs_ace4_to_aent(filled_vsap, vsap, uid, gid,
12745 isdir, FALSE);
12746
12747 if (error)
12748 return (error);
12749
12750 /*
12751 * If the caller only asked for the acl count (VSA_ACLCNT)
12752 * and/or the default acl count (VSA_DFACLCNT) don't give them
12753 * the acl (VSA_ACL) or default acl (VSA_DFACL), free it.
12754 */
12755 if (!orig_mask & VSA_ACL) {
12756 if (vsap->vsa_aclentp != NULL) {
12757 kmem_free(vsap->vsa_aclentp,
12758 vsap->vsa_aclcnt * sizeof (aclent_t));
12759 vsap->vsa_aclentp = NULL;
12760 }
12761 }
12762
12763 if (!orig_mask & VSA_DFACL) {
12764 if (vsap->vsa_dfaclentp != NULL) {
12765 kmem_free(vsap->vsa_dfaclentp,
12766 vsap->vsa_dfaclcnt * sizeof (aclent_t));
12767 vsap->vsa_dfaclentp = NULL;
12768 }
12769 }
12770 vsap->vsa_mask = orig_mask;
12771 }
12772 return (0);
12773 }
12774
12775 /* ARGSUSED */
12776 int
nfs4_shrlock(vnode_t * vp,int cmd,struct shrlock * shr,int flag,cred_t * cr,caller_context_t * ct)12777 nfs4_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
12778 caller_context_t *ct)
12779 {
12780 int error;
12781
12782 if (nfs_zone() != VTOMI4(vp)->mi_zone)
12783 return (EIO);
12784 /*
12785 * check for valid cmd parameter
12786 */
12787 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
12788 return (EINVAL);
12789
12790 /*
12791 * Check access permissions
12792 */
12793 if ((cmd & F_SHARE) &&
12794 (((shr->s_access & F_RDACC) && (flag & FREAD) == 0) ||
12795 (shr->s_access == F_WRACC && (flag & FWRITE) == 0)))
12796 return (EBADF);
12797
12798 /*
12799 * If the filesystem is mounted using local locking, pass the
12800 * request off to the local share code.
12801 */
12802 if (VTOMI4(vp)->mi_flags & MI4_LLOCK)
12803 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
12804
12805 switch (cmd) {
12806 case F_SHARE:
12807 case F_UNSHARE:
12808 /*
12809 * This will be properly implemented later,
12810 * see RFE: 4823948 .
12811 */
12812 error = EAGAIN;
12813 break;
12814
12815 case F_HASREMOTELOCKS:
12816 /*
12817 * NFS client can't store remote locks itself
12818 */
12819 shr->s_access = 0;
12820 error = 0;
12821 break;
12822
12823 default:
12824 error = EINVAL;
12825 break;
12826 }
12827
12828 return (error);
12829 }
12830
12831 /*
12832 * Common code called by directory ops to update the attrcache
12833 */
12834 static int
nfs4_update_attrcache(nfsstat4 status,nfs4_ga_res_t * garp,hrtime_t t,vnode_t * vp,cred_t * cr)12835 nfs4_update_attrcache(nfsstat4 status, nfs4_ga_res_t *garp,
12836 hrtime_t t, vnode_t *vp, cred_t *cr)
12837 {
12838 int error = 0;
12839
12840 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12841
12842 if (status != NFS4_OK) {
12843 /* getattr not done or failed */
12844 PURGE_ATTRCACHE4(vp);
12845 return (error);
12846 }
12847
12848 if (garp) {
12849 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
12850 } else {
12851 PURGE_ATTRCACHE4(vp);
12852 }
12853 return (error);
12854 }
12855
12856 /*
12857 * Update directory caches for directory modification ops (link, rename, etc.)
12858 * When dinfo is NULL, manage dircaches in the old way.
12859 */
12860 static void
nfs4_update_dircaches(change_info4 * cinfo,vnode_t * dvp,vnode_t * vp,char * nm,dirattr_info_t * dinfo)12861 nfs4_update_dircaches(change_info4 *cinfo, vnode_t *dvp, vnode_t *vp, char *nm,
12862 dirattr_info_t *dinfo)
12863 {
12864 rnode4_t *drp = VTOR4(dvp);
12865
12866 ASSERT(nfs_zone() == VTOMI4(dvp)->mi_zone);
12867
12868 /* Purge rddir cache for dir since it changed */
12869 if (drp->r_dir != NULL)
12870 nfs4_purge_rddir_cache(dvp);
12871
12872 /*
12873 * If caller provided dinfo, then use it to manage dir caches.
12874 */
12875 if (dinfo != NULL) {
12876 if (vp != NULL) {
12877 mutex_enter(&VTOR4(vp)->r_statev4_lock);
12878 if (!VTOR4(vp)->created_v4) {
12879 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12880 dnlc_update(dvp, nm, vp);
12881 } else {
12882 /*
12883 * XXX don't update if the created_v4 flag is
12884 * set
12885 */
12886 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12887 NFS4_DEBUG(nfs4_client_state_debug,
12888 (CE_NOTE, "nfs4_update_dircaches: "
12889 "don't update dnlc: created_v4 flag"));
12890 }
12891 }
12892
12893 nfs4_attr_cache(dvp, dinfo->di_garp, dinfo->di_time_call,
12894 dinfo->di_cred, FALSE, cinfo);
12895
12896 return;
12897 }
12898
12899 /*
12900 * Caller didn't provide dinfo, then check change_info4 to update DNLC.
12901 * Since caller modified dir but didn't receive post-dirmod-op dir
12902 * attrs, the dir's attrs must be purged.
12903 *
12904 * XXX this check and dnlc update/purge should really be atomic,
12905 * XXX but can't use rnode statelock because it'll deadlock in
12906 * XXX dnlc_purge_vp, however, the risk is minimal even if a race
12907 * XXX does occur.
12908 *
12909 * XXX We also may want to check that atomic is true in the
12910 * XXX change_info struct. If it is not, the change_info may
12911 * XXX reflect changes by more than one clients which means that
12912 * XXX our cache may not be valid.
12913 */
12914 PURGE_ATTRCACHE4(dvp);
12915 if (drp->r_change == cinfo->before) {
12916 /* no changes took place in the directory prior to our link */
12917 if (vp != NULL) {
12918 mutex_enter(&VTOR4(vp)->r_statev4_lock);
12919 if (!VTOR4(vp)->created_v4) {
12920 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12921 dnlc_update(dvp, nm, vp);
12922 } else {
12923 /*
12924 * XXX dont' update if the created_v4 flag
12925 * is set
12926 */
12927 mutex_exit(&VTOR4(vp)->r_statev4_lock);
12928 NFS4_DEBUG(nfs4_client_state_debug, (CE_NOTE,
12929 "nfs4_update_dircaches: don't"
12930 " update dnlc: created_v4 flag"));
12931 }
12932 }
12933 } else {
12934 /* Another client modified directory - purge its dnlc cache */
12935 dnlc_purge_vp(dvp);
12936 }
12937 }
12938
12939 /*
12940 * The OPEN_CONFIRM operation confirms the sequence number used in OPENing a
12941 * file.
12942 *
12943 * The 'reopening_file' boolean should be set to TRUE if we are reopening this
12944 * file (ie: client recovery) and otherwise set to FALSE.
12945 *
12946 * 'nfs4_start/end_op' should have been called by the proper (ie: not recovery
12947 * initiated) calling functions.
12948 *
12949 * 'resend' is set to TRUE if this is a OPEN_CONFIRM issued as a result
12950 * of resending a 'lost' open request.
12951 *
12952 * 'num_bseqid_retryp' makes sure we don't loop forever on a broken
12953 * server that hands out BAD_SEQID on open confirm.
12954 *
12955 * Errors are returned via the nfs4_error_t parameter.
12956 */
12957 void
nfs4open_confirm(vnode_t * vp,seqid4 * seqid,stateid4 * stateid,cred_t * cr,bool_t reopening_file,bool_t * retry_open,nfs4_open_owner_t * oop,bool_t resend,nfs4_error_t * ep,int * num_bseqid_retryp)12958 nfs4open_confirm(vnode_t *vp, seqid4 *seqid, stateid4 *stateid, cred_t *cr,
12959 bool_t reopening_file, bool_t *retry_open, nfs4_open_owner_t *oop,
12960 bool_t resend, nfs4_error_t *ep, int *num_bseqid_retryp)
12961 {
12962 COMPOUND4args_clnt args;
12963 COMPOUND4res_clnt res;
12964 nfs_argop4 argop[2];
12965 nfs_resop4 *resop;
12966 int doqueue = 1;
12967 mntinfo4_t *mi;
12968 OPEN_CONFIRM4args *open_confirm_args;
12969 int needrecov;
12970
12971 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
12972 #if DEBUG
12973 mutex_enter(&oop->oo_lock);
12974 ASSERT(oop->oo_seqid_inuse);
12975 mutex_exit(&oop->oo_lock);
12976 #endif
12977
12978 recov_retry_confirm:
12979 nfs4_error_zinit(ep);
12980 *retry_open = FALSE;
12981
12982 if (resend)
12983 args.ctag = TAG_OPEN_CONFIRM_LOST;
12984 else
12985 args.ctag = TAG_OPEN_CONFIRM;
12986
12987 args.array_len = 2;
12988 args.array = argop;
12989
12990 /* putfh target fh */
12991 argop[0].argop = OP_CPUTFH;
12992 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
12993
12994 argop[1].argop = OP_OPEN_CONFIRM;
12995 open_confirm_args = &argop[1].nfs_argop4_u.opopen_confirm;
12996
12997 (*seqid) += 1;
12998 open_confirm_args->seqid = *seqid;
12999 open_confirm_args->open_stateid = *stateid;
13000
13001 mi = VTOMI4(vp);
13002
13003 rfs4call(mi, &args, &res, cr, &doqueue, 0, ep);
13004
13005 if (!ep->error && nfs4_need_to_bump_seqid(&res)) {
13006 nfs4_set_open_seqid((*seqid), oop, args.ctag);
13007 }
13008
13009 needrecov = nfs4_needs_recovery(ep, FALSE, mi->mi_vfsp);
13010 if (!needrecov && ep->error)
13011 return;
13012
13013 if (needrecov) {
13014 bool_t abort = FALSE;
13015
13016 if (reopening_file == FALSE) {
13017 nfs4_bseqid_entry_t *bsep = NULL;
13018
13019 if (!ep->error && res.status == NFS4ERR_BAD_SEQID)
13020 bsep = nfs4_create_bseqid_entry(oop, NULL,
13021 vp, 0, args.ctag,
13022 open_confirm_args->seqid);
13023
13024 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL,
13025 NULL, NULL, OP_OPEN_CONFIRM, bsep, NULL, NULL);
13026 if (bsep) {
13027 kmem_free(bsep, sizeof (*bsep));
13028 if (num_bseqid_retryp &&
13029 --(*num_bseqid_retryp) == 0)
13030 abort = TRUE;
13031 }
13032 }
13033 if ((ep->error == ETIMEDOUT ||
13034 res.status == NFS4ERR_RESOURCE) &&
13035 abort == FALSE && resend == FALSE) {
13036 if (!ep->error)
13037 (void) xdr_free(xdr_COMPOUND4res_clnt,
13038 (caddr_t)&res);
13039
13040 delay(SEC_TO_TICK(confirm_retry_sec));
13041 goto recov_retry_confirm;
13042 }
13043 /* State may have changed so retry the entire OPEN op */
13044 if (abort == FALSE)
13045 *retry_open = TRUE;
13046 else
13047 *retry_open = FALSE;
13048 if (!ep->error)
13049 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
13050 return;
13051 }
13052
13053 if (res.status) {
13054 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
13055 return;
13056 }
13057
13058 resop = &res.array[1]; /* open confirm res */
13059 bcopy(&resop->nfs_resop4_u.opopen_confirm.open_stateid,
13060 stateid, sizeof (*stateid));
13061
13062 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
13063 }
13064
13065 /*
13066 * Return the credentials associated with a client state object. The
13067 * caller is responsible for freeing the credentials.
13068 */
13069
13070 static cred_t *
state_to_cred(nfs4_open_stream_t * osp)13071 state_to_cred(nfs4_open_stream_t *osp)
13072 {
13073 cred_t *cr;
13074
13075 /*
13076 * It's ok to not lock the open stream and open owner to get
13077 * the oo_cred since this is only written once (upon creation)
13078 * and will not change.
13079 */
13080 cr = osp->os_open_owner->oo_cred;
13081 crhold(cr);
13082
13083 return (cr);
13084 }
13085
13086 /*
13087 * nfs4_find_sysid
13088 *
13089 * Find the sysid for the knetconfig associated with the given mi.
13090 */
13091 static struct lm_sysid *
nfs4_find_sysid(mntinfo4_t * mi)13092 nfs4_find_sysid(mntinfo4_t *mi)
13093 {
13094 ASSERT(nfs_zone() == mi->mi_zone);
13095
13096 /*
13097 * Switch from RDMA knconf to original mount knconf
13098 */
13099 return (lm_get_sysid(ORIG_KNCONF(mi), &mi->mi_curr_serv->sv_addr,
13100 mi->mi_curr_serv->sv_hostname, NULL));
13101 }
13102
13103 #ifdef DEBUG
13104 /*
13105 * Return a string version of the call type for easy reading.
13106 */
13107 static char *
nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype)13108 nfs4frlock_get_call_type(nfs4_lock_call_type_t ctype)
13109 {
13110 switch (ctype) {
13111 case NFS4_LCK_CTYPE_NORM:
13112 return ("NORMAL");
13113 case NFS4_LCK_CTYPE_RECLAIM:
13114 return ("RECLAIM");
13115 case NFS4_LCK_CTYPE_RESEND:
13116 return ("RESEND");
13117 case NFS4_LCK_CTYPE_REINSTATE:
13118 return ("REINSTATE");
13119 default:
13120 cmn_err(CE_PANIC, "nfs4frlock_get_call_type: got illegal "
13121 "type %d", ctype);
13122 return ("");
13123 }
13124 }
13125 #endif
13126
13127 /*
13128 * Map the frlock cmd and lock type to the NFSv4 over-the-wire lock type
13129 * Unlock requests don't have an over-the-wire locktype, so we just return
13130 * something non-threatening.
13131 */
13132
13133 static nfs_lock_type4
flk_to_locktype(int cmd,int l_type)13134 flk_to_locktype(int cmd, int l_type)
13135 {
13136 ASSERT(l_type == F_RDLCK || l_type == F_WRLCK || l_type == F_UNLCK);
13137
13138 switch (l_type) {
13139 case F_UNLCK:
13140 return (READ_LT);
13141 case F_RDLCK:
13142 if (cmd == F_SETLK)
13143 return (READ_LT);
13144 else
13145 return (READW_LT);
13146 case F_WRLCK:
13147 if (cmd == F_SETLK)
13148 return (WRITE_LT);
13149 else
13150 return (WRITEW_LT);
13151 }
13152 panic("flk_to_locktype");
13153 /*NOTREACHED*/
13154 }
13155
13156 /*
13157 * Set the flock64's lm_sysid for nfs4frlock.
13158 */
13159 static int
nfs4frlock_get_sysid(struct lm_sysid ** lspp,vnode_t * vp,flock64_t * flk)13160 nfs4frlock_get_sysid(struct lm_sysid **lspp, vnode_t *vp, flock64_t *flk)
13161 {
13162 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13163
13164 /* Find the lm_sysid */
13165 *lspp = nfs4_find_sysid(VTOMI4(vp));
13166
13167 if (*lspp == NULL) {
13168 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13169 "nfs4frlock_get_sysid: no sysid, return ENOLCK"));
13170 return (ENOLCK);
13171 }
13172
13173 flk->l_sysid = lm_sysidt(*lspp);
13174
13175 return (0);
13176 }
13177
13178 /*
13179 * Do the remaining preliminary setup for nfs4frlock.
13180 */
13181 static void
nfs4frlock_pre_setup(clock_t * tick_delayp,nfs4_recov_state_t * recov_statep,vnode_t * vp,cred_t * search_cr,cred_t ** cred_otw)13182 nfs4frlock_pre_setup(clock_t *tick_delayp, nfs4_recov_state_t *recov_statep,
13183 vnode_t *vp, cred_t *search_cr, cred_t **cred_otw)
13184 {
13185 /*
13186 * set tick_delay to the base delay time.
13187 * (nfs4_base_wait_time is in msecs)
13188 */
13189
13190 *tick_delayp = drv_usectohz(nfs4_base_wait_time * 1000);
13191
13192 recov_statep->rs_flags = 0;
13193 recov_statep->rs_num_retry_despite_err = 0;
13194 *cred_otw = nfs4_get_otw_cred(search_cr, VTOMI4(vp), NULL);
13195 }
13196
13197 /*
13198 * Initialize and allocate the data structures necessary for
13199 * the nfs4frlock call.
13200 * Allocates argsp's op array, frees up the saved_rqstpp if there is one.
13201 */
13202 static void
nfs4frlock_call_init(COMPOUND4args_clnt * argsp,COMPOUND4args_clnt ** argspp,nfs_argop4 ** argopp,nfs4_op_hint_t * op_hintp,flock64_t * flk,int cmd,bool_t * retry,bool_t * did_start_fop,COMPOUND4res_clnt ** respp,bool_t * skip_get_err,nfs4_lost_rqst_t * lost_rqstp)13203 nfs4frlock_call_init(COMPOUND4args_clnt *argsp, COMPOUND4args_clnt **argspp,
13204 nfs_argop4 **argopp, nfs4_op_hint_t *op_hintp, flock64_t *flk, int cmd,
13205 bool_t *retry, bool_t *did_start_fop, COMPOUND4res_clnt **respp,
13206 bool_t *skip_get_err, nfs4_lost_rqst_t *lost_rqstp)
13207 {
13208 int argoplist_size;
13209 int num_ops = 2;
13210
13211 *retry = FALSE;
13212 *did_start_fop = FALSE;
13213 *skip_get_err = FALSE;
13214 lost_rqstp->lr_op = 0;
13215 argoplist_size = num_ops * sizeof (nfs_argop4);
13216 /* fill array with zero */
13217 *argopp = kmem_zalloc(argoplist_size, KM_SLEEP);
13218
13219 *argspp = argsp;
13220 *respp = NULL;
13221
13222 argsp->array_len = num_ops;
13223 argsp->array = *argopp;
13224
13225 /* initialize in case of error; will get real value down below */
13226 argsp->ctag = TAG_NONE;
13227
13228 if ((cmd == F_SETLK || cmd == F_SETLKW) && flk->l_type == F_UNLCK)
13229 *op_hintp = OH_LOCKU;
13230 else
13231 *op_hintp = OH_OTHER;
13232 }
13233
13234 /*
13235 * Call the nfs4_start_fop() for nfs4frlock, if necessary. Assign
13236 * the proper nfs4_server_t for this instance of nfs4frlock.
13237 * Returns 0 (success) or an errno value.
13238 */
13239 static int
nfs4frlock_start_call(nfs4_lock_call_type_t ctype,vnode_t * vp,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,bool_t * did_start_fop,bool_t * startrecovp)13240 nfs4frlock_start_call(nfs4_lock_call_type_t ctype, vnode_t *vp,
13241 nfs4_op_hint_t op_hint, nfs4_recov_state_t *recov_statep,
13242 bool_t *did_start_fop, bool_t *startrecovp)
13243 {
13244 int error = 0;
13245 rnode4_t *rp;
13246
13247 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13248
13249 if (ctype == NFS4_LCK_CTYPE_NORM) {
13250 error = nfs4_start_fop(VTOMI4(vp), vp, NULL, op_hint,
13251 recov_statep, startrecovp);
13252 if (error)
13253 return (error);
13254 *did_start_fop = TRUE;
13255 } else {
13256 *did_start_fop = FALSE;
13257 *startrecovp = FALSE;
13258 }
13259
13260 if (!error) {
13261 rp = VTOR4(vp);
13262
13263 /* If the file failed recovery, just quit. */
13264 mutex_enter(&rp->r_statelock);
13265 if (rp->r_flags & R4RECOVERR) {
13266 error = EIO;
13267 }
13268 mutex_exit(&rp->r_statelock);
13269 }
13270
13271 return (error);
13272 }
13273
13274 /*
13275 * Setup the LOCK4/LOCKU4 arguments for resending a lost lock request. A
13276 * resend nfs4frlock call is initiated by the recovery framework.
13277 * Acquires the lop and oop seqid synchronization.
13278 */
13279 static void
nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t * resend_rqstp,COMPOUND4args_clnt * argsp,nfs_argop4 * argop,nfs4_lock_owner_t ** lopp,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,LOCK4args ** lock_argsp,LOCKU4args ** locku_argsp)13280 nfs4frlock_setup_resend_lock_args(nfs4_lost_rqst_t *resend_rqstp,
13281 COMPOUND4args_clnt *argsp, nfs_argop4 *argop, nfs4_lock_owner_t **lopp,
13282 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13283 LOCK4args **lock_argsp, LOCKU4args **locku_argsp)
13284 {
13285 mntinfo4_t *mi = VTOMI4(resend_rqstp->lr_vp);
13286 int error;
13287
13288 NFS4_DEBUG((nfs4_lost_rqst_debug || nfs4_client_lock_debug),
13289 (CE_NOTE,
13290 "nfs4frlock_setup_resend_lock_args: have lost lock to resend"));
13291 ASSERT(resend_rqstp != NULL);
13292 ASSERT(resend_rqstp->lr_op == OP_LOCK ||
13293 resend_rqstp->lr_op == OP_LOCKU);
13294
13295 *oopp = resend_rqstp->lr_oop;
13296 if (resend_rqstp->lr_oop) {
13297 open_owner_hold(resend_rqstp->lr_oop);
13298 error = nfs4_start_open_seqid_sync(resend_rqstp->lr_oop, mi);
13299 ASSERT(error == 0); /* recov thread always succeeds */
13300 }
13301
13302 /* Must resend this lost lock/locku request. */
13303 ASSERT(resend_rqstp->lr_lop != NULL);
13304 *lopp = resend_rqstp->lr_lop;
13305 lock_owner_hold(resend_rqstp->lr_lop);
13306 error = nfs4_start_lock_seqid_sync(resend_rqstp->lr_lop, mi);
13307 ASSERT(error == 0); /* recov thread always succeeds */
13308
13309 *ospp = resend_rqstp->lr_osp;
13310 if (*ospp)
13311 open_stream_hold(resend_rqstp->lr_osp);
13312
13313 if (resend_rqstp->lr_op == OP_LOCK) {
13314 LOCK4args *lock_args;
13315
13316 argop->argop = OP_LOCK;
13317 *lock_argsp = lock_args = &argop->nfs_argop4_u.oplock;
13318 lock_args->locktype = resend_rqstp->lr_locktype;
13319 lock_args->reclaim =
13320 (resend_rqstp->lr_ctype == NFS4_LCK_CTYPE_RECLAIM);
13321 lock_args->offset = resend_rqstp->lr_flk->l_start;
13322 lock_args->length = resend_rqstp->lr_flk->l_len;
13323 if (lock_args->length == 0)
13324 lock_args->length = ~lock_args->length;
13325 nfs4_setup_lock_args(*lopp, *oopp, *ospp,
13326 mi2clientid(mi), &lock_args->locker);
13327
13328 switch (resend_rqstp->lr_ctype) {
13329 case NFS4_LCK_CTYPE_RESEND:
13330 argsp->ctag = TAG_LOCK_RESEND;
13331 break;
13332 case NFS4_LCK_CTYPE_REINSTATE:
13333 argsp->ctag = TAG_LOCK_REINSTATE;
13334 break;
13335 case NFS4_LCK_CTYPE_RECLAIM:
13336 argsp->ctag = TAG_LOCK_RECLAIM;
13337 break;
13338 default:
13339 argsp->ctag = TAG_LOCK_UNKNOWN;
13340 break;
13341 }
13342 } else {
13343 LOCKU4args *locku_args;
13344 nfs4_lock_owner_t *lop = resend_rqstp->lr_lop;
13345
13346 argop->argop = OP_LOCKU;
13347 *locku_argsp = locku_args = &argop->nfs_argop4_u.oplocku;
13348 locku_args->locktype = READ_LT;
13349 locku_args->seqid = lop->lock_seqid + 1;
13350 mutex_enter(&lop->lo_lock);
13351 locku_args->lock_stateid = lop->lock_stateid;
13352 mutex_exit(&lop->lo_lock);
13353 locku_args->offset = resend_rqstp->lr_flk->l_start;
13354 locku_args->length = resend_rqstp->lr_flk->l_len;
13355 if (locku_args->length == 0)
13356 locku_args->length = ~locku_args->length;
13357
13358 switch (resend_rqstp->lr_ctype) {
13359 case NFS4_LCK_CTYPE_RESEND:
13360 argsp->ctag = TAG_LOCKU_RESEND;
13361 break;
13362 case NFS4_LCK_CTYPE_REINSTATE:
13363 argsp->ctag = TAG_LOCKU_REINSTATE;
13364 break;
13365 default:
13366 argsp->ctag = TAG_LOCK_UNKNOWN;
13367 break;
13368 }
13369 }
13370 }
13371
13372 /*
13373 * Setup the LOCKT4 arguments.
13374 */
13375 static void
nfs4frlock_setup_lockt_args(nfs_argop4 * argop,LOCKT4args ** lockt_argsp,COMPOUND4args_clnt * argsp,flock64_t * flk,rnode4_t * rp)13376 nfs4frlock_setup_lockt_args(nfs_argop4 *argop, LOCKT4args **lockt_argsp,
13377 COMPOUND4args_clnt *argsp, flock64_t *flk, rnode4_t *rp)
13378 {
13379 LOCKT4args *lockt_args;
13380
13381 ASSERT(nfs_zone() == VTOMI4(RTOV4(rp))->mi_zone);
13382 argop->argop = OP_LOCKT;
13383 argsp->ctag = TAG_LOCKT;
13384 lockt_args = &argop->nfs_argop4_u.oplockt;
13385
13386 /*
13387 * The locktype will be READ_LT unless it's
13388 * a write lock. We do this because the Solaris
13389 * system call allows the combination of
13390 * F_UNLCK and F_GETLK* and so in that case the
13391 * unlock is mapped to a read.
13392 */
13393 if (flk->l_type == F_WRLCK)
13394 lockt_args->locktype = WRITE_LT;
13395 else
13396 lockt_args->locktype = READ_LT;
13397
13398 lockt_args->owner.clientid = mi2clientid(VTOMI4(RTOV4(rp)));
13399 /* set the lock owner4 args */
13400 nfs4_setlockowner_args(&lockt_args->owner, rp, flk->l_pid);
13401 lockt_args->offset = flk->l_start;
13402 lockt_args->length = flk->l_len;
13403 if (flk->l_len == 0)
13404 lockt_args->length = ~lockt_args->length;
13405
13406 *lockt_argsp = lockt_args;
13407 }
13408
13409 /*
13410 * If the client is holding a delegation, and the open stream to be used
13411 * with this lock request is a delegation open stream, then re-open the stream.
13412 * Sets the nfs4_error_t to all zeros unless the open stream has already
13413 * failed a reopen or we couldn't find the open stream. NFS4ERR_DELAY
13414 * means the caller should retry (like a recovery retry).
13415 */
13416 static void
nfs4frlock_check_deleg(vnode_t * vp,nfs4_error_t * ep,cred_t * cr,int lt)13417 nfs4frlock_check_deleg(vnode_t *vp, nfs4_error_t *ep, cred_t *cr, int lt)
13418 {
13419 open_delegation_type4 dt;
13420 bool_t reopen_needed, force;
13421 nfs4_open_stream_t *osp;
13422 open_claim_type4 oclaim;
13423 rnode4_t *rp = VTOR4(vp);
13424 mntinfo4_t *mi = VTOMI4(vp);
13425
13426 ASSERT(nfs_zone() == mi->mi_zone);
13427
13428 nfs4_error_zinit(ep);
13429
13430 mutex_enter(&rp->r_statev4_lock);
13431 dt = rp->r_deleg_type;
13432 mutex_exit(&rp->r_statev4_lock);
13433
13434 if (dt != OPEN_DELEGATE_NONE) {
13435 nfs4_open_owner_t *oop;
13436
13437 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
13438 if (!oop) {
13439 ep->stat = NFS4ERR_IO;
13440 return;
13441 }
13442 /* returns with 'os_sync_lock' held */
13443 osp = find_open_stream(oop, rp);
13444 if (!osp) {
13445 open_owner_rele(oop);
13446 ep->stat = NFS4ERR_IO;
13447 return;
13448 }
13449
13450 if (osp->os_failed_reopen) {
13451 NFS4_DEBUG((nfs4_open_stream_debug ||
13452 nfs4_client_lock_debug), (CE_NOTE,
13453 "nfs4frlock_check_deleg: os_failed_reopen set "
13454 "for osp %p, cr %p, rp %s", (void *)osp,
13455 (void *)cr, rnode4info(rp)));
13456 mutex_exit(&osp->os_sync_lock);
13457 open_stream_rele(osp, rp);
13458 open_owner_rele(oop);
13459 ep->stat = NFS4ERR_IO;
13460 return;
13461 }
13462
13463 /*
13464 * Determine whether a reopen is needed. If this
13465 * is a delegation open stream, then send the open
13466 * to the server to give visibility to the open owner.
13467 * Even if it isn't a delegation open stream, we need
13468 * to check if the previous open CLAIM_DELEGATE_CUR
13469 * was sufficient.
13470 */
13471
13472 reopen_needed = osp->os_delegation ||
13473 ((lt == F_RDLCK &&
13474 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_READ)) ||
13475 (lt == F_WRLCK &&
13476 !(osp->os_dc_openacc & OPEN4_SHARE_ACCESS_WRITE)));
13477
13478 mutex_exit(&osp->os_sync_lock);
13479 open_owner_rele(oop);
13480
13481 if (reopen_needed) {
13482 /*
13483 * Always use CLAIM_PREVIOUS after server reboot.
13484 * The server will reject CLAIM_DELEGATE_CUR if
13485 * it is used during the grace period.
13486 */
13487 mutex_enter(&mi->mi_lock);
13488 if (mi->mi_recovflags & MI4R_SRV_REBOOT) {
13489 oclaim = CLAIM_PREVIOUS;
13490 force = TRUE;
13491 } else {
13492 oclaim = CLAIM_DELEGATE_CUR;
13493 force = FALSE;
13494 }
13495 mutex_exit(&mi->mi_lock);
13496
13497 nfs4_reopen(vp, osp, ep, oclaim, force, FALSE);
13498 if (ep->error == EAGAIN) {
13499 nfs4_error_zinit(ep);
13500 ep->stat = NFS4ERR_DELAY;
13501 }
13502 }
13503 open_stream_rele(osp, rp);
13504 osp = NULL;
13505 }
13506 }
13507
13508 /*
13509 * Setup the LOCKU4 arguments.
13510 * Returns errors via the nfs4_error_t.
13511 * NFS4_OK no problems. *go_otwp is TRUE if call should go
13512 * over-the-wire. The caller must release the
13513 * reference on *lopp.
13514 * NFS4ERR_DELAY caller should retry (like recovery retry)
13515 * (other) unrecoverable error.
13516 */
13517 static void
nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype,nfs_argop4 * argop,LOCKU4args ** locku_argsp,flock64_t * flk,nfs4_lock_owner_t ** lopp,nfs4_error_t * ep,COMPOUND4args_clnt * argsp,vnode_t * vp,cred_t * cr,bool_t * skip_get_err,bool_t * go_otwp)13518 nfs4frlock_setup_locku_args(nfs4_lock_call_type_t ctype, nfs_argop4 *argop,
13519 LOCKU4args **locku_argsp, flock64_t *flk,
13520 nfs4_lock_owner_t **lopp, nfs4_error_t *ep, COMPOUND4args_clnt *argsp,
13521 vnode_t *vp, cred_t *cr, bool_t *skip_get_err, bool_t *go_otwp)
13522 {
13523 nfs4_lock_owner_t *lop = NULL;
13524 LOCKU4args *locku_args;
13525 pid_t pid = flk->l_pid;
13526 bool_t is_spec = FALSE;
13527 rnode4_t *rp = VTOR4(vp);
13528
13529 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13530 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
13531
13532 nfs4frlock_check_deleg(vp, ep, cr, F_UNLCK);
13533 if (ep->error || ep->stat)
13534 return;
13535
13536 argop->argop = OP_LOCKU;
13537 if (ctype == NFS4_LCK_CTYPE_REINSTATE)
13538 argsp->ctag = TAG_LOCKU_REINSTATE;
13539 else
13540 argsp->ctag = TAG_LOCKU;
13541 locku_args = &argop->nfs_argop4_u.oplocku;
13542 *locku_argsp = locku_args;
13543
13544 /*
13545 * XXX what should locku_args->locktype be?
13546 * setting to ALWAYS be READ_LT so at least
13547 * it is a valid locktype.
13548 */
13549
13550 locku_args->locktype = READ_LT;
13551
13552 /*
13553 * Get the lock owner stateid. If no lock owner
13554 * exists, return success.
13555 */
13556 lop = find_lock_owner(rp, pid, LOWN_ANY);
13557 *lopp = lop;
13558 if (lop && CLNT_ISSPECIAL(&lop->lock_stateid))
13559 is_spec = TRUE;
13560 if (!lop || is_spec) {
13561 /*
13562 * No lock owner so no locks to unlock.
13563 * Return success.
13564 *
13565 * If the lockowner is using a special stateid,
13566 * then the original lock request (that created
13567 * this lockowner) was never successful, so we
13568 * have no lock to undo OTW.
13569 */
13570 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
13571 "nfs4frlock_setup_locku_args: LOCKU: no lock owner "
13572 "(%ld) so return success", (long)pid));
13573
13574 /*
13575 * Release our hold and NULL out so final_cleanup
13576 * doesn't try to end a lock seqid sync we
13577 * never started.
13578 */
13579 if (is_spec) {
13580 lock_owner_rele(lop);
13581 *lopp = NULL;
13582 }
13583 *skip_get_err = TRUE;
13584 *go_otwp = FALSE;
13585 return;
13586 }
13587
13588 ep->error = nfs4_start_lock_seqid_sync(lop, VTOMI4(vp));
13589 if (ep->error == EAGAIN) {
13590 lock_owner_rele(lop);
13591 *lopp = NULL;
13592 return;
13593 }
13594
13595 mutex_enter(&lop->lo_lock);
13596 locku_args->lock_stateid = lop->lock_stateid;
13597 mutex_exit(&lop->lo_lock);
13598 locku_args->seqid = lop->lock_seqid + 1;
13599
13600 /* leave the ref count on lop, rele after RPC call */
13601
13602 locku_args->offset = flk->l_start;
13603 locku_args->length = flk->l_len;
13604 if (flk->l_len == 0)
13605 locku_args->length = ~locku_args->length;
13606
13607 *go_otwp = TRUE;
13608 }
13609
13610 /*
13611 * Setup the LOCK4 arguments.
13612 *
13613 * Returns errors via the nfs4_error_t.
13614 * NFS4_OK no problems
13615 * NFS4ERR_DELAY caller should retry (like recovery retry)
13616 * (other) unrecoverable error
13617 */
13618 static void
nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype,LOCK4args ** lock_argsp,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,nfs4_lock_owner_t ** lopp,nfs_argop4 * argop,COMPOUND4args_clnt * argsp,flock64_t * flk,int cmd,vnode_t * vp,cred_t * cr,nfs4_error_t * ep)13619 nfs4frlock_setup_lock_args(nfs4_lock_call_type_t ctype, LOCK4args **lock_argsp,
13620 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13621 nfs4_lock_owner_t **lopp, nfs_argop4 *argop, COMPOUND4args_clnt *argsp,
13622 flock64_t *flk, int cmd, vnode_t *vp, cred_t *cr, nfs4_error_t *ep)
13623 {
13624 LOCK4args *lock_args;
13625 nfs4_open_owner_t *oop = NULL;
13626 nfs4_open_stream_t *osp = NULL;
13627 nfs4_lock_owner_t *lop = NULL;
13628 pid_t pid = flk->l_pid;
13629 rnode4_t *rp = VTOR4(vp);
13630
13631 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13632
13633 nfs4frlock_check_deleg(vp, ep, cr, flk->l_type);
13634 if (ep->error || ep->stat != NFS4_OK)
13635 return;
13636
13637 argop->argop = OP_LOCK;
13638 if (ctype == NFS4_LCK_CTYPE_NORM)
13639 argsp->ctag = TAG_LOCK;
13640 else if (ctype == NFS4_LCK_CTYPE_RECLAIM)
13641 argsp->ctag = TAG_RELOCK;
13642 else
13643 argsp->ctag = TAG_LOCK_REINSTATE;
13644 lock_args = &argop->nfs_argop4_u.oplock;
13645 lock_args->locktype = flk_to_locktype(cmd, flk->l_type);
13646 lock_args->reclaim = ctype == NFS4_LCK_CTYPE_RECLAIM ? 1 : 0;
13647 /*
13648 * Get the lock owner. If no lock owner exists,
13649 * create a 'temporary' one and grab the open seqid
13650 * synchronization (which puts a hold on the open
13651 * owner and open stream).
13652 * This also grabs the lock seqid synchronization.
13653 */
13654 ep->stat =
13655 nfs4_find_or_create_lock_owner(pid, rp, cr, &oop, &osp, &lop);
13656
13657 if (ep->stat != NFS4_OK)
13658 goto out;
13659
13660 nfs4_setup_lock_args(lop, oop, osp, mi2clientid(VTOMI4(vp)),
13661 &lock_args->locker);
13662
13663 lock_args->offset = flk->l_start;
13664 lock_args->length = flk->l_len;
13665 if (flk->l_len == 0)
13666 lock_args->length = ~lock_args->length;
13667 *lock_argsp = lock_args;
13668 out:
13669 *oopp = oop;
13670 *ospp = osp;
13671 *lopp = lop;
13672 }
13673
13674 /*
13675 * After we get the reply from the server, record the proper information
13676 * for possible resend lock requests.
13677 *
13678 * Allocates memory for the saved_rqstp if we have a lost lock to save.
13679 */
13680 static void
nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype,int error,nfs_lock_type4 locktype,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,nfs4_lock_owner_t * lop,flock64_t * flk,nfs4_lost_rqst_t * lost_rqstp,cred_t * cr,vnode_t * vp)13681 nfs4frlock_save_lost_rqst(nfs4_lock_call_type_t ctype, int error,
13682 nfs_lock_type4 locktype, nfs4_open_owner_t *oop,
13683 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop, flock64_t *flk,
13684 nfs4_lost_rqst_t *lost_rqstp, cred_t *cr, vnode_t *vp)
13685 {
13686 bool_t unlock = (flk->l_type == F_UNLCK);
13687
13688 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13689 ASSERT(ctype == NFS4_LCK_CTYPE_NORM ||
13690 ctype == NFS4_LCK_CTYPE_REINSTATE);
13691
13692 if (error != 0 && !unlock) {
13693 NFS4_DEBUG((nfs4_lost_rqst_debug ||
13694 nfs4_client_lock_debug), (CE_NOTE,
13695 "nfs4frlock_save_lost_rqst: set lo_pending_rqsts to 1 "
13696 " for lop %p", (void *)lop));
13697 ASSERT(lop != NULL);
13698 mutex_enter(&lop->lo_lock);
13699 lop->lo_pending_rqsts = 1;
13700 mutex_exit(&lop->lo_lock);
13701 }
13702
13703 lost_rqstp->lr_putfirst = FALSE;
13704 lost_rqstp->lr_op = 0;
13705
13706 /*
13707 * For lock/locku requests, we treat EINTR as ETIMEDOUT for
13708 * recovery purposes so that the lock request that was sent
13709 * can be saved and re-issued later. Ditto for EIO from a forced
13710 * unmount. This is done to have the client's local locking state
13711 * match the v4 server's state; that is, the request was
13712 * potentially received and accepted by the server but the client
13713 * thinks it was not.
13714 */
13715 if (error == ETIMEDOUT || error == EINTR ||
13716 NFS4_FRC_UNMT_ERR(error, vp->v_vfsp)) {
13717 NFS4_DEBUG((nfs4_lost_rqst_debug ||
13718 nfs4_client_lock_debug), (CE_NOTE,
13719 "nfs4frlock_save_lost_rqst: got a lost %s lock for "
13720 "lop %p oop %p osp %p", unlock ? "LOCKU" : "LOCK",
13721 (void *)lop, (void *)oop, (void *)osp));
13722 if (unlock)
13723 lost_rqstp->lr_op = OP_LOCKU;
13724 else {
13725 lost_rqstp->lr_op = OP_LOCK;
13726 lost_rqstp->lr_locktype = locktype;
13727 }
13728 /*
13729 * Objects are held and rele'd via the recovery code.
13730 * See nfs4_save_lost_rqst.
13731 */
13732 lost_rqstp->lr_vp = vp;
13733 lost_rqstp->lr_dvp = NULL;
13734 lost_rqstp->lr_oop = oop;
13735 lost_rqstp->lr_osp = osp;
13736 lost_rqstp->lr_lop = lop;
13737 lost_rqstp->lr_cr = cr;
13738 switch (ctype) {
13739 case NFS4_LCK_CTYPE_NORM:
13740 lost_rqstp->lr_ctype = NFS4_LCK_CTYPE_RESEND;
13741 break;
13742 case NFS4_LCK_CTYPE_REINSTATE:
13743 lost_rqstp->lr_putfirst = TRUE;
13744 lost_rqstp->lr_ctype = ctype;
13745 break;
13746 default:
13747 break;
13748 }
13749 lost_rqstp->lr_flk = flk;
13750 }
13751 }
13752
13753 /*
13754 * Update lop's seqid. Also update the seqid stored in a resend request,
13755 * if any. (Some recovery errors increment the seqid, and we may have to
13756 * send the resend request again.)
13757 */
13758
13759 static void
nfs4frlock_bump_seqid(LOCK4args * lock_args,LOCKU4args * locku_args,nfs4_open_owner_t * oop,nfs4_lock_owner_t * lop,nfs4_tag_type_t tag_type)13760 nfs4frlock_bump_seqid(LOCK4args *lock_args, LOCKU4args *locku_args,
13761 nfs4_open_owner_t *oop, nfs4_lock_owner_t *lop, nfs4_tag_type_t tag_type)
13762 {
13763 if (lock_args) {
13764 if (lock_args->locker.new_lock_owner == TRUE)
13765 nfs4_get_and_set_next_open_seqid(oop, tag_type);
13766 else {
13767 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE);
13768 nfs4_set_lock_seqid(lop->lock_seqid + 1, lop);
13769 }
13770 } else if (locku_args) {
13771 ASSERT(lop->lo_flags & NFS4_LOCK_SEQID_INUSE);
13772 nfs4_set_lock_seqid(lop->lock_seqid +1, lop);
13773 }
13774 }
13775
13776 /*
13777 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13778 * COMPOUND4 args/res for calls that need to retry.
13779 * Switches the *cred_otwp to base_cr.
13780 */
13781 static void
nfs4frlock_check_access(vnode_t * vp,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,int needrecov,bool_t * did_start_fop,COMPOUND4args_clnt ** argspp,COMPOUND4res_clnt ** respp,int error,nfs4_lock_owner_t ** lopp,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,cred_t * base_cr,cred_t ** cred_otwp)13782 nfs4frlock_check_access(vnode_t *vp, nfs4_op_hint_t op_hint,
13783 nfs4_recov_state_t *recov_statep, int needrecov, bool_t *did_start_fop,
13784 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp, int error,
13785 nfs4_lock_owner_t **lopp, nfs4_open_owner_t **oopp,
13786 nfs4_open_stream_t **ospp, cred_t *base_cr, cred_t **cred_otwp)
13787 {
13788 nfs4_open_owner_t *oop = *oopp;
13789 nfs4_open_stream_t *osp = *ospp;
13790 nfs4_lock_owner_t *lop = *lopp;
13791 nfs_argop4 *argop = (*argspp)->array;
13792
13793 if (*did_start_fop) {
13794 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep,
13795 needrecov);
13796 *did_start_fop = FALSE;
13797 }
13798 ASSERT((*argspp)->array_len == 2);
13799 if (argop[1].argop == OP_LOCK)
13800 nfs4args_lock_free(&argop[1]);
13801 else if (argop[1].argop == OP_LOCKT)
13802 nfs4args_lockt_free(&argop[1]);
13803 kmem_free(argop, 2 * sizeof (nfs_argop4));
13804 if (!error)
13805 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp);
13806 *argspp = NULL;
13807 *respp = NULL;
13808
13809 if (lop) {
13810 nfs4_end_lock_seqid_sync(lop);
13811 lock_owner_rele(lop);
13812 *lopp = NULL;
13813 }
13814
13815 /* need to free up the reference on osp for lock args */
13816 if (osp != NULL) {
13817 open_stream_rele(osp, VTOR4(vp));
13818 *ospp = NULL;
13819 }
13820
13821 /* need to free up the reference on oop for lock args */
13822 if (oop != NULL) {
13823 nfs4_end_open_seqid_sync(oop);
13824 open_owner_rele(oop);
13825 *oopp = NULL;
13826 }
13827
13828 crfree(*cred_otwp);
13829 *cred_otwp = base_cr;
13830 crhold(*cred_otwp);
13831 }
13832
13833 /*
13834 * Function to process the client's recovery for nfs4frlock.
13835 * Returns TRUE if we should retry the lock request; FALSE otherwise.
13836 *
13837 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13838 * COMPOUND4 args/res for calls that need to retry.
13839 *
13840 * Note: the rp's r_lkserlock is *not* dropped during this path.
13841 */
13842 static bool_t
nfs4frlock_recovery(int needrecov,nfs4_error_t * ep,COMPOUND4args_clnt ** argspp,COMPOUND4res_clnt ** respp,LOCK4args * lock_args,LOCKU4args * locku_args,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,nfs4_lock_owner_t ** lopp,rnode4_t * rp,vnode_t * vp,nfs4_recov_state_t * recov_statep,nfs4_op_hint_t op_hint,bool_t * did_start_fop,nfs4_lost_rqst_t * lost_rqstp,flock64_t * flk)13843 nfs4frlock_recovery(int needrecov, nfs4_error_t *ep,
13844 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp,
13845 LOCK4args *lock_args, LOCKU4args *locku_args,
13846 nfs4_open_owner_t **oopp, nfs4_open_stream_t **ospp,
13847 nfs4_lock_owner_t **lopp, rnode4_t *rp, vnode_t *vp,
13848 nfs4_recov_state_t *recov_statep, nfs4_op_hint_t op_hint,
13849 bool_t *did_start_fop, nfs4_lost_rqst_t *lost_rqstp, flock64_t *flk)
13850 {
13851 nfs4_open_owner_t *oop = *oopp;
13852 nfs4_open_stream_t *osp = *ospp;
13853 nfs4_lock_owner_t *lop = *lopp;
13854
13855 bool_t abort, retry;
13856
13857 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13858 ASSERT((*argspp) != NULL);
13859 ASSERT((*respp) != NULL);
13860 if (lock_args || locku_args)
13861 ASSERT(lop != NULL);
13862
13863 NFS4_DEBUG((nfs4_client_lock_debug || nfs4_client_recov_debug),
13864 (CE_NOTE, "nfs4frlock_recovery: initiating recovery\n"));
13865
13866 retry = TRUE;
13867 abort = FALSE;
13868 if (needrecov) {
13869 nfs4_bseqid_entry_t *bsep = NULL;
13870 nfs_opnum4 op;
13871
13872 op = lock_args ? OP_LOCK : locku_args ? OP_LOCKU : OP_LOCKT;
13873
13874 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID) {
13875 seqid4 seqid;
13876
13877 if (lock_args) {
13878 if (lock_args->locker.new_lock_owner == TRUE)
13879 seqid = lock_args->locker.locker4_u.
13880 open_owner.open_seqid;
13881 else
13882 seqid = lock_args->locker.locker4_u.
13883 lock_owner.lock_seqid;
13884 } else if (locku_args) {
13885 seqid = locku_args->seqid;
13886 } else {
13887 seqid = 0;
13888 }
13889
13890 bsep = nfs4_create_bseqid_entry(oop, lop, vp,
13891 flk->l_pid, (*argspp)->ctag, seqid);
13892 }
13893
13894 abort = nfs4_start_recovery(ep, VTOMI4(vp), vp, NULL, NULL,
13895 (lost_rqstp && (lost_rqstp->lr_op == OP_LOCK ||
13896 lost_rqstp->lr_op == OP_LOCKU)) ? lost_rqstp :
13897 NULL, op, bsep, NULL, NULL);
13898
13899 if (bsep)
13900 kmem_free(bsep, sizeof (*bsep));
13901 }
13902
13903 /*
13904 * Return that we do not want to retry the request for 3 cases:
13905 * 1. If we received EINTR or are bailing out because of a forced
13906 * unmount, we came into this code path just for the sake of
13907 * initiating recovery, we now need to return the error.
13908 * 2. If we have aborted recovery.
13909 * 3. We received NFS4ERR_BAD_SEQID.
13910 */
13911 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp) ||
13912 abort == TRUE || (ep->error == 0 && ep->stat == NFS4ERR_BAD_SEQID))
13913 retry = FALSE;
13914
13915 if (*did_start_fop == TRUE) {
13916 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint, recov_statep,
13917 needrecov);
13918 *did_start_fop = FALSE;
13919 }
13920
13921 if (retry == TRUE) {
13922 nfs_argop4 *argop;
13923
13924 argop = (*argspp)->array;
13925 ASSERT((*argspp)->array_len == 2);
13926
13927 if (argop[1].argop == OP_LOCK)
13928 nfs4args_lock_free(&argop[1]);
13929 else if (argop[1].argop == OP_LOCKT)
13930 nfs4args_lockt_free(&argop[1]);
13931 kmem_free(argop, 2 * sizeof (nfs_argop4));
13932 if (!ep->error)
13933 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)*respp);
13934 *respp = NULL;
13935 *argspp = NULL;
13936 }
13937
13938 if (lop != NULL) {
13939 nfs4_end_lock_seqid_sync(lop);
13940 lock_owner_rele(lop);
13941 }
13942
13943 *lopp = NULL;
13944
13945 /* need to free up the reference on osp for lock args */
13946 if (osp != NULL) {
13947 open_stream_rele(osp, rp);
13948 *ospp = NULL;
13949 }
13950
13951 /* need to free up the reference on oop for lock args */
13952 if (oop != NULL) {
13953 nfs4_end_open_seqid_sync(oop);
13954 open_owner_rele(oop);
13955 *oopp = NULL;
13956 }
13957
13958 return (retry);
13959 }
13960
13961 /*
13962 * Handle the DENIED reply from the server for nfs4frlock.
13963 * Returns TRUE if we should retry the request; FALSE otherwise.
13964 *
13965 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
13966 * COMPOUND4 args/res for calls that need to retry. Can also
13967 * drop and regrab the r_lkserlock.
13968 */
13969 static bool_t
nfs4frlock_results_denied(nfs4_lock_call_type_t ctype,LOCK4args * lock_args,LOCKT4args * lockt_args,nfs4_open_owner_t ** oopp,nfs4_open_stream_t ** ospp,nfs4_lock_owner_t ** lopp,int cmd,vnode_t * vp,flock64_t * flk,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,int needrecov,COMPOUND4args_clnt ** argspp,COMPOUND4res_clnt ** respp,clock_t * tick_delayp,int * errorp,nfs_resop4 * resop,cred_t * cr,bool_t * did_start_fop,bool_t * skip_get_err)13970 nfs4frlock_results_denied(nfs4_lock_call_type_t ctype, LOCK4args *lock_args,
13971 LOCKT4args *lockt_args, nfs4_open_owner_t **oopp,
13972 nfs4_open_stream_t **ospp, nfs4_lock_owner_t **lopp, int cmd,
13973 vnode_t *vp, flock64_t *flk, nfs4_op_hint_t op_hint,
13974 nfs4_recov_state_t *recov_statep, int needrecov,
13975 COMPOUND4args_clnt **argspp, COMPOUND4res_clnt **respp,
13976 clock_t *tick_delayp, int *errorp,
13977 nfs_resop4 *resop, cred_t *cr, bool_t *did_start_fop,
13978 bool_t *skip_get_err)
13979 {
13980 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
13981
13982 if (lock_args) {
13983 nfs4_open_owner_t *oop = *oopp;
13984 nfs4_open_stream_t *osp = *ospp;
13985 nfs4_lock_owner_t *lop = *lopp;
13986 int intr;
13987
13988 /*
13989 * Blocking lock needs to sleep and retry from the request.
13990 *
13991 * Do not block and wait for 'resend' or 'reinstate'
13992 * lock requests, just return the error.
13993 *
13994 * Note: reclaim requests have cmd == F_SETLK, not F_SETLKW.
13995 */
13996 if (cmd == F_SETLKW) {
13997 rnode4_t *rp = VTOR4(vp);
13998 nfs_argop4 *argop = (*argspp)->array;
13999
14000 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
14001
14002 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint,
14003 recov_statep, needrecov);
14004 *did_start_fop = FALSE;
14005 ASSERT((*argspp)->array_len == 2);
14006 if (argop[1].argop == OP_LOCK)
14007 nfs4args_lock_free(&argop[1]);
14008 else if (argop[1].argop == OP_LOCKT)
14009 nfs4args_lockt_free(&argop[1]);
14010 kmem_free(argop, 2 * sizeof (nfs_argop4));
14011 if (*respp)
14012 (void) xdr_free(xdr_COMPOUND4res_clnt,
14013 (caddr_t)*respp);
14014 *argspp = NULL;
14015 *respp = NULL;
14016 nfs4_end_lock_seqid_sync(lop);
14017 lock_owner_rele(lop);
14018 *lopp = NULL;
14019 if (osp != NULL) {
14020 open_stream_rele(osp, rp);
14021 *ospp = NULL;
14022 }
14023 if (oop != NULL) {
14024 nfs4_end_open_seqid_sync(oop);
14025 open_owner_rele(oop);
14026 *oopp = NULL;
14027 }
14028
14029 nfs_rw_exit(&rp->r_lkserlock);
14030
14031 intr = nfs4_block_and_wait(tick_delayp);
14032
14033 (void) nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER,
14034 FALSE);
14035
14036 if (intr) {
14037 *errorp = EINTR;
14038 return (FALSE);
14039 }
14040
14041 /*
14042 * Make sure we are still safe to lock with
14043 * regards to mmapping.
14044 */
14045 if (!nfs4_safelock(vp, flk, cr)) {
14046 *errorp = EAGAIN;
14047 return (FALSE);
14048 }
14049
14050 return (TRUE);
14051 }
14052 if (ctype == NFS4_LCK_CTYPE_NORM)
14053 *errorp = EAGAIN;
14054 *skip_get_err = TRUE;
14055 flk->l_whence = 0;
14056 return (FALSE);
14057 } else if (lockt_args) {
14058 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14059 "nfs4frlock_results_denied: OP_LOCKT DENIED"));
14060
14061 denied_to_flk(&resop->nfs_resop4_u.oplockt.denied,
14062 flk, lockt_args);
14063
14064 /* according to NLM code */
14065 *errorp = 0;
14066 *skip_get_err = TRUE;
14067 return (FALSE);
14068 }
14069 return (FALSE);
14070 }
14071
14072 /*
14073 * Handles all NFS4 errors besides NFS4_OK and NFS4ERR_DENIED for nfs4frlock.
14074 */
14075 static void
nfs4frlock_results_default(COMPOUND4res_clnt * resp,int * errorp)14076 nfs4frlock_results_default(COMPOUND4res_clnt *resp, int *errorp)
14077 {
14078 switch (resp->status) {
14079 case NFS4ERR_ACCESS:
14080 case NFS4ERR_ADMIN_REVOKED:
14081 case NFS4ERR_BADHANDLE:
14082 case NFS4ERR_BAD_RANGE:
14083 case NFS4ERR_BAD_SEQID:
14084 case NFS4ERR_BAD_STATEID:
14085 case NFS4ERR_BADXDR:
14086 case NFS4ERR_DEADLOCK:
14087 case NFS4ERR_DELAY:
14088 case NFS4ERR_EXPIRED:
14089 case NFS4ERR_FHEXPIRED:
14090 case NFS4ERR_GRACE:
14091 case NFS4ERR_INVAL:
14092 case NFS4ERR_ISDIR:
14093 case NFS4ERR_LEASE_MOVED:
14094 case NFS4ERR_LOCK_NOTSUPP:
14095 case NFS4ERR_LOCK_RANGE:
14096 case NFS4ERR_MOVED:
14097 case NFS4ERR_NOFILEHANDLE:
14098 case NFS4ERR_NO_GRACE:
14099 case NFS4ERR_OLD_STATEID:
14100 case NFS4ERR_OPENMODE:
14101 case NFS4ERR_RECLAIM_BAD:
14102 case NFS4ERR_RECLAIM_CONFLICT:
14103 case NFS4ERR_RESOURCE:
14104 case NFS4ERR_SERVERFAULT:
14105 case NFS4ERR_STALE:
14106 case NFS4ERR_STALE_CLIENTID:
14107 case NFS4ERR_STALE_STATEID:
14108 return;
14109 default:
14110 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14111 "nfs4frlock_results_default: got unrecognizable "
14112 "res.status %d", resp->status));
14113 *errorp = NFS4ERR_INVAL;
14114 }
14115 }
14116
14117 /*
14118 * The lock request was successful, so update the client's state.
14119 */
14120 static void
nfs4frlock_update_state(LOCK4args * lock_args,LOCKU4args * locku_args,LOCKT4args * lockt_args,nfs_resop4 * resop,nfs4_lock_owner_t * lop,vnode_t * vp,flock64_t * flk,cred_t * cr,nfs4_lost_rqst_t * resend_rqstp)14121 nfs4frlock_update_state(LOCK4args *lock_args, LOCKU4args *locku_args,
14122 LOCKT4args *lockt_args, nfs_resop4 *resop, nfs4_lock_owner_t *lop,
14123 vnode_t *vp, flock64_t *flk, cred_t *cr,
14124 nfs4_lost_rqst_t *resend_rqstp)
14125 {
14126 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14127
14128 if (lock_args) {
14129 LOCK4res *lock_res;
14130
14131 lock_res = &resop->nfs_resop4_u.oplock;
14132 /* update the stateid with server's response */
14133
14134 if (lock_args->locker.new_lock_owner == TRUE) {
14135 mutex_enter(&lop->lo_lock);
14136 lop->lo_just_created = NFS4_PERM_CREATED;
14137 mutex_exit(&lop->lo_lock);
14138 }
14139
14140 nfs4_set_lock_stateid(lop, lock_res->LOCK4res_u.lock_stateid);
14141
14142 /*
14143 * If the lock was the result of a resending a lost
14144 * request, we've synched up the stateid and seqid
14145 * with the server, but now the server might be out of sync
14146 * with what the application thinks it has for locks.
14147 * Clean that up here. It's unclear whether we should do
14148 * this even if the filesystem has been forcibly unmounted.
14149 * For most servers, it's probably wasted effort, but
14150 * RFC3530 lets servers require that unlocks exactly match
14151 * the locks that are held.
14152 */
14153 if (resend_rqstp != NULL &&
14154 resend_rqstp->lr_ctype != NFS4_LCK_CTYPE_REINSTATE) {
14155 nfs4_reinstitute_local_lock_state(vp, flk, cr, lop);
14156 } else {
14157 flk->l_whence = 0;
14158 }
14159 } else if (locku_args) {
14160 LOCKU4res *locku_res;
14161
14162 locku_res = &resop->nfs_resop4_u.oplocku;
14163
14164 /* Update the stateid with the server's response */
14165 nfs4_set_lock_stateid(lop, locku_res->lock_stateid);
14166 } else if (lockt_args) {
14167 /* Switch the lock type to express success, see fcntl */
14168 flk->l_type = F_UNLCK;
14169 flk->l_whence = 0;
14170 }
14171 }
14172
14173 /*
14174 * Do final cleanup before exiting nfs4frlock.
14175 * Calls nfs4_end_fop, drops the seqid syncs, and frees up the
14176 * COMPOUND4 args/res for calls that haven't already.
14177 */
14178 static void
nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype,COMPOUND4args_clnt * argsp,COMPOUND4res_clnt * resp,vnode_t * vp,nfs4_op_hint_t op_hint,nfs4_recov_state_t * recov_statep,int needrecov,nfs4_open_owner_t * oop,nfs4_open_stream_t * osp,nfs4_lock_owner_t * lop,int * errorp,LOCK4args * lock_args,LOCKU4args * locku_args,bool_t did_start_fop,bool_t skip_get_err,cred_t * cred_otw,cred_t * cred)14179 nfs4frlock_final_cleanup(nfs4_lock_call_type_t ctype, COMPOUND4args_clnt *argsp,
14180 COMPOUND4res_clnt *resp, vnode_t *vp, nfs4_op_hint_t op_hint,
14181 nfs4_recov_state_t *recov_statep, int needrecov, nfs4_open_owner_t *oop,
14182 nfs4_open_stream_t *osp, nfs4_lock_owner_t *lop,
14183 int *errorp, LOCK4args *lock_args, LOCKU4args *locku_args,
14184 bool_t did_start_fop, bool_t skip_get_err,
14185 cred_t *cred_otw, cred_t *cred)
14186 {
14187 mntinfo4_t *mi = VTOMI4(vp);
14188 rnode4_t *rp = VTOR4(vp);
14189 int error = *errorp;
14190 nfs_argop4 *argop;
14191 int do_flush_pages = 0;
14192
14193 ASSERT(nfs_zone() == mi->mi_zone);
14194 /*
14195 * The client recovery code wants the raw status information,
14196 * so don't map the NFS status code to an errno value for
14197 * non-normal call types.
14198 */
14199 if (ctype == NFS4_LCK_CTYPE_NORM) {
14200 if (*errorp == 0 && resp != NULL && skip_get_err == FALSE)
14201 *errorp = geterrno4(resp->status);
14202 if (did_start_fop == TRUE)
14203 nfs4_end_fop(mi, vp, NULL, op_hint, recov_statep,
14204 needrecov);
14205
14206 /*
14207 * We've established a new lock on the server, so invalidate
14208 * the pages associated with the vnode to get the most up to
14209 * date pages from the server after acquiring the lock. We
14210 * want to be sure that the read operation gets the newest data.
14211 *
14212 * We flush the pages below after calling nfs4_end_fop above.
14213 *
14214 * The flush of the page cache must be done after
14215 * nfs4_end_open_seqid_sync() to avoid a 4-way hang.
14216 */
14217 if (!error && resp && resp->status == NFS4_OK)
14218 do_flush_pages = 1;
14219 }
14220 if (argsp) {
14221 ASSERT(argsp->array_len == 2);
14222 argop = argsp->array;
14223 if (argop[1].argop == OP_LOCK)
14224 nfs4args_lock_free(&argop[1]);
14225 else if (argop[1].argop == OP_LOCKT)
14226 nfs4args_lockt_free(&argop[1]);
14227 kmem_free(argop, 2 * sizeof (nfs_argop4));
14228 if (resp)
14229 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)resp);
14230 }
14231
14232 /* free the reference on the lock owner */
14233 if (lop != NULL) {
14234 nfs4_end_lock_seqid_sync(lop);
14235 lock_owner_rele(lop);
14236 }
14237
14238 /* need to free up the reference on osp for lock args */
14239 if (osp != NULL)
14240 open_stream_rele(osp, rp);
14241
14242 /* need to free up the reference on oop for lock args */
14243 if (oop != NULL) {
14244 nfs4_end_open_seqid_sync(oop);
14245 open_owner_rele(oop);
14246 }
14247
14248 if (do_flush_pages)
14249 nfs4_flush_pages(vp, cred);
14250
14251 /*
14252 * Record debug information in the event we get EINVAL.
14253 */
14254 mutex_enter(&mi->mi_lock);
14255 if (*errorp == EINVAL && (lock_args || locku_args) &&
14256 (!(mi->mi_flags & MI4_POSIX_LOCK))) {
14257 if (!(mi->mi_flags & MI4_LOCK_DEBUG)) {
14258 zcmn_err(getzoneid(), CE_NOTE,
14259 "%s operation failed with "
14260 "EINVAL probably since the server, %s,"
14261 " doesn't support POSIX style locking",
14262 lock_args ? "LOCK" : "LOCKU",
14263 mi->mi_curr_serv->sv_hostname);
14264 mi->mi_flags |= MI4_LOCK_DEBUG;
14265 }
14266 }
14267 mutex_exit(&mi->mi_lock);
14268
14269 if (cred_otw)
14270 crfree(cred_otw);
14271 }
14272
14273 /*
14274 * This calls the server.
14275 *
14276 * Blocking lock requests will continually retry to acquire the lock
14277 * forever.
14278 *
14279 * The ctype is defined as follows:
14280 * NFS4_LCK_CTYPE_NORM: normal lock request.
14281 *
14282 * NFS4_LCK_CTYPE_RECLAIM: bypass the usual calls for synchronizing with client
14283 * recovery.
14284 *
14285 * NFS4_LCK_CTYPE_RESEND: same as NFS4_LCK_CTYPE_RECLAIM, with the addition
14286 * that we will use the information passed in via resend_rqstp to setup the
14287 * lock/locku request. This resend is the exact same request as the 'lost
14288 * lock', and is initiated by the recovery framework. A successful resend
14289 * request can initiate one or more reinstate requests.
14290 *
14291 * NFS4_LCK_CTYPE_REINSTATE: same as NFS4_LCK_CTYPE_RESEND, except that it
14292 * does not trigger additional reinstate requests. This lock call type is
14293 * set for setting the v4 server's locking state back to match what the
14294 * client's local locking state is in the event of a received 'lost lock'.
14295 *
14296 * Errors are returned via the nfs4_error_t parameter.
14297 */
14298 void
nfs4frlock(nfs4_lock_call_type_t ctype,vnode_t * vp,int cmd,flock64_t * flk,cred_t * cr,nfs4_error_t * ep,nfs4_lost_rqst_t * resend_rqstp,int * did_reclaimp)14299 nfs4frlock(nfs4_lock_call_type_t ctype, vnode_t *vp, int cmd, flock64_t *flk,
14300 cred_t *cr, nfs4_error_t *ep, nfs4_lost_rqst_t *resend_rqstp,
14301 int *did_reclaimp)
14302 {
14303 COMPOUND4args_clnt args, *argsp = NULL;
14304 COMPOUND4res_clnt res, *resp = NULL;
14305 nfs_argop4 *argop;
14306 nfs_resop4 *resop;
14307 rnode4_t *rp;
14308 int doqueue = 1;
14309 clock_t tick_delay; /* delay in clock ticks */
14310 LOCK4args *lock_args = NULL;
14311 LOCKU4args *locku_args = NULL;
14312 LOCKT4args *lockt_args = NULL;
14313 nfs4_open_owner_t *oop = NULL;
14314 nfs4_open_stream_t *osp = NULL;
14315 nfs4_lock_owner_t *lop = NULL;
14316 bool_t needrecov = FALSE;
14317 nfs4_recov_state_t recov_state;
14318 nfs4_op_hint_t op_hint;
14319 nfs4_lost_rqst_t lost_rqst;
14320 bool_t retry = FALSE;
14321 bool_t did_start_fop = FALSE;
14322 bool_t skip_get_err = FALSE;
14323 cred_t *cred_otw = NULL;
14324 bool_t recovonly; /* just queue request */
14325 int frc_no_reclaim = 0;
14326 #ifdef DEBUG
14327 char *name;
14328 #endif
14329
14330 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14331
14332 #ifdef DEBUG
14333 name = fn_name(VTOSV(vp)->sv_name);
14334 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4frlock: "
14335 "%s: cmd %d, type %d, start %"PRIx64", "
14336 "length %"PRIu64", pid %d, sysid %d, call type %s, "
14337 "resend request %s", name, cmd, flk->l_type, flk->l_start,
14338 flk->l_len, flk->l_pid, flk->l_sysid,
14339 nfs4frlock_get_call_type(ctype),
14340 resend_rqstp ? "TRUE" : "FALSE"));
14341 kmem_free(name, MAXNAMELEN);
14342 #endif
14343
14344 nfs4_error_zinit(ep);
14345
14346 nfs4frlock_pre_setup(&tick_delay, &recov_state, vp, cr, &cred_otw);
14347
14348 rp = VTOR4(vp);
14349
14350 recov_retry:
14351 nfs4frlock_call_init(&args, &argsp, &argop, &op_hint, flk, cmd,
14352 &retry, &did_start_fop, &resp, &skip_get_err, &lost_rqst);
14353
14354 ep->error = nfs4frlock_start_call(ctype, vp, op_hint, &recov_state,
14355 &did_start_fop, &recovonly);
14356
14357 if (ep->error)
14358 goto out;
14359
14360 if (recovonly) {
14361 /*
14362 * Leave the request for the recovery system to deal with.
14363 */
14364 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
14365 ASSERT(cmd != F_GETLK);
14366 ASSERT(flk->l_type == F_UNLCK);
14367
14368 nfs4_error_init(ep, EINTR);
14369 needrecov = TRUE;
14370 lop = find_lock_owner(rp, flk->l_pid, LOWN_ANY);
14371 if (lop != NULL) {
14372 nfs4frlock_save_lost_rqst(ctype, ep->error, READ_LT,
14373 NULL, NULL, lop, flk, &lost_rqst, cr, vp);
14374 (void) nfs4_start_recovery(ep,
14375 VTOMI4(vp), vp, NULL, NULL,
14376 (lost_rqst.lr_op == OP_LOCK ||
14377 lost_rqst.lr_op == OP_LOCKU) ?
14378 &lost_rqst : NULL, OP_LOCKU, NULL, NULL, NULL);
14379 lock_owner_rele(lop);
14380 lop = NULL;
14381 }
14382 goto out;
14383 }
14384
14385 /* putfh directory fh */
14386 argop[0].argop = OP_CPUTFH;
14387 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
14388
14389 /*
14390 * Set up the over-the-wire arguments and get references to the
14391 * open owner, etc.
14392 */
14393
14394 if (ctype == NFS4_LCK_CTYPE_RESEND ||
14395 ctype == NFS4_LCK_CTYPE_REINSTATE) {
14396 nfs4frlock_setup_resend_lock_args(resend_rqstp, argsp,
14397 &argop[1], &lop, &oop, &osp, &lock_args, &locku_args);
14398 } else {
14399 bool_t go_otw = TRUE;
14400
14401 ASSERT(resend_rqstp == NULL);
14402
14403 switch (cmd) {
14404 case F_GETLK:
14405 case F_O_GETLK:
14406 ASSERT(ctype == NFS4_LCK_CTYPE_NORM);
14407 nfs4frlock_setup_lockt_args(&argop[1], &lockt_args,
14408 argsp, flk, rp);
14409 break;
14410 case F_SETLKW:
14411 case F_SETLK:
14412 if (flk->l_type == F_UNLCK)
14413 nfs4frlock_setup_locku_args(ctype,
14414 &argop[1], &locku_args, flk,
14415 &lop, ep, argsp, vp, cr,
14416 &skip_get_err, &go_otw);
14417 else
14418 nfs4frlock_setup_lock_args(ctype,
14419 &lock_args, &oop, &osp, &lop, &argop[1],
14420 argsp, flk, cmd, vp, cr, ep);
14421
14422 if (ep->error)
14423 goto out;
14424
14425 switch (ep->stat) {
14426 case NFS4_OK:
14427 break;
14428 case NFS4ERR_DELAY:
14429 /* recov thread never gets this error */
14430 ASSERT(resend_rqstp == NULL);
14431 ASSERT(did_start_fop);
14432
14433 nfs4_end_fop(VTOMI4(vp), vp, NULL, op_hint,
14434 &recov_state, TRUE);
14435 did_start_fop = FALSE;
14436 if (argop[1].argop == OP_LOCK)
14437 nfs4args_lock_free(&argop[1]);
14438 else if (argop[1].argop == OP_LOCKT)
14439 nfs4args_lockt_free(&argop[1]);
14440 kmem_free(argop, 2 * sizeof (nfs_argop4));
14441 argsp = NULL;
14442 goto recov_retry;
14443 default:
14444 ep->error = EIO;
14445 goto out;
14446 }
14447 break;
14448 default:
14449 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14450 "nfs4_frlock: invalid cmd %d", cmd));
14451 ep->error = EINVAL;
14452 goto out;
14453 }
14454
14455 if (!go_otw)
14456 goto out;
14457 }
14458
14459 /*
14460 * Send the server the lock request. Continually loop with a delay
14461 * if get error NFS4ERR_DENIED (for blocking locks) or NFS4ERR_GRACE.
14462 */
14463 resp = &res;
14464
14465 NFS4_DEBUG((nfs4_client_call_debug || nfs4_client_lock_debug),
14466 (CE_NOTE,
14467 "nfs4frlock: %s call, rp %s", needrecov ? "recov" : "first",
14468 rnode4info(rp)));
14469
14470 if (lock_args && frc_no_reclaim) {
14471 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM);
14472 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14473 "nfs4frlock: frc_no_reclaim: clearing reclaim"));
14474 lock_args->reclaim = FALSE;
14475 if (did_reclaimp)
14476 *did_reclaimp = 0;
14477 }
14478
14479 /*
14480 * Do the OTW call.
14481 */
14482 rfs4call(VTOMI4(vp), argsp, resp, cred_otw, &doqueue, 0, ep);
14483
14484 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14485 "nfs4frlock: error %d, status %d", ep->error, resp->status));
14486
14487 needrecov = nfs4_needs_recovery(ep, TRUE, vp->v_vfsp);
14488 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14489 "nfs4frlock: needrecov %d", needrecov));
14490
14491 if (ep->error == 0 && nfs4_need_to_bump_seqid(resp))
14492 nfs4frlock_bump_seqid(lock_args, locku_args, oop, lop,
14493 args.ctag);
14494
14495 /*
14496 * Check if one of these mutually exclusive error cases has
14497 * happened:
14498 * need to swap credentials due to access error
14499 * recovery is needed
14500 * different error (only known case is missing Kerberos ticket)
14501 */
14502
14503 if ((ep->error == EACCES ||
14504 (ep->error == 0 && resp->status == NFS4ERR_ACCESS)) &&
14505 cred_otw != cr) {
14506 nfs4frlock_check_access(vp, op_hint, &recov_state, needrecov,
14507 &did_start_fop, &argsp, &resp, ep->error, &lop, &oop, &osp,
14508 cr, &cred_otw);
14509 goto recov_retry;
14510 }
14511
14512 if (needrecov) {
14513 /*
14514 * LOCKT requests don't need to recover from lost
14515 * requests since they don't create/modify state.
14516 */
14517 if ((ep->error == EINTR ||
14518 NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) &&
14519 lockt_args)
14520 goto out;
14521 /*
14522 * Do not attempt recovery for requests initiated by
14523 * the recovery framework. Let the framework redrive them.
14524 */
14525 if (ctype != NFS4_LCK_CTYPE_NORM)
14526 goto out;
14527 else {
14528 ASSERT(resend_rqstp == NULL);
14529 }
14530
14531 nfs4frlock_save_lost_rqst(ctype, ep->error,
14532 flk_to_locktype(cmd, flk->l_type),
14533 oop, osp, lop, flk, &lost_rqst, cred_otw, vp);
14534
14535 retry = nfs4frlock_recovery(needrecov, ep, &argsp,
14536 &resp, lock_args, locku_args, &oop, &osp, &lop,
14537 rp, vp, &recov_state, op_hint, &did_start_fop,
14538 cmd != F_GETLK ? &lost_rqst : NULL, flk);
14539
14540 if (retry) {
14541 ASSERT(oop == NULL);
14542 ASSERT(osp == NULL);
14543 ASSERT(lop == NULL);
14544 goto recov_retry;
14545 }
14546 goto out;
14547 }
14548
14549 /*
14550 * Bail out if have reached this point with ep->error set. Can
14551 * happen if (ep->error == EACCES && !needrecov && cred_otw == cr).
14552 * This happens if Kerberos ticket has expired or has been
14553 * destroyed.
14554 */
14555 if (ep->error != 0)
14556 goto out;
14557
14558 /*
14559 * Process the reply.
14560 */
14561 switch (resp->status) {
14562 case NFS4_OK:
14563 resop = &resp->array[1];
14564 /*
14565 * Have a successful lock operation, now update state.
14566 */
14567 nfs4frlock_update_state(lock_args, locku_args, lockt_args,
14568 resop, lop, vp, flk, cr, resend_rqstp);
14569 break;
14570
14571 case NFS4ERR_DENIED:
14572 resop = &resp->array[1];
14573 retry = nfs4frlock_results_denied(ctype, lock_args, lockt_args,
14574 &oop, &osp, &lop, cmd, vp, flk, op_hint,
14575 &recov_state, needrecov, &argsp, &resp,
14576 &tick_delay, &ep->error, resop, cr,
14577 &did_start_fop, &skip_get_err);
14578
14579 if (retry) {
14580 ASSERT(oop == NULL);
14581 ASSERT(osp == NULL);
14582 ASSERT(lop == NULL);
14583 goto recov_retry;
14584 }
14585 break;
14586 /*
14587 * If the server won't let us reclaim, fall-back to trying to lock
14588 * the file from scratch. Code elsewhere will check the changeinfo
14589 * to ensure the file hasn't been changed.
14590 */
14591 case NFS4ERR_NO_GRACE:
14592 if (lock_args && lock_args->reclaim == TRUE) {
14593 ASSERT(ctype == NFS4_LCK_CTYPE_RECLAIM);
14594 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14595 "nfs4frlock: reclaim: NFS4ERR_NO_GRACE"));
14596 frc_no_reclaim = 1;
14597 /* clean up before retrying */
14598 needrecov = 0;
14599 (void) nfs4frlock_recovery(needrecov, ep, &argsp, &resp,
14600 lock_args, locku_args, &oop, &osp, &lop, rp, vp,
14601 &recov_state, op_hint, &did_start_fop, NULL, flk);
14602 goto recov_retry;
14603 }
14604 /* FALLTHROUGH */
14605
14606 default:
14607 nfs4frlock_results_default(resp, &ep->error);
14608 break;
14609 }
14610 out:
14611 /*
14612 * Process and cleanup from error. Make interrupted unlock
14613 * requests look successful, since they will be handled by the
14614 * client recovery code.
14615 */
14616 nfs4frlock_final_cleanup(ctype, argsp, resp, vp, op_hint, &recov_state,
14617 needrecov, oop, osp, lop, &ep->error,
14618 lock_args, locku_args, did_start_fop,
14619 skip_get_err, cred_otw, cr);
14620
14621 if (ep->error == EINTR && flk->l_type == F_UNLCK &&
14622 (cmd == F_SETLK || cmd == F_SETLKW))
14623 ep->error = 0;
14624 }
14625
14626 /*
14627 * nfs4_safelock:
14628 *
14629 * Return non-zero if the given lock request can be handled without
14630 * violating the constraints on concurrent mapping and locking.
14631 */
14632
14633 static int
nfs4_safelock(vnode_t * vp,const struct flock64 * bfp,cred_t * cr)14634 nfs4_safelock(vnode_t *vp, const struct flock64 *bfp, cred_t *cr)
14635 {
14636 rnode4_t *rp = VTOR4(vp);
14637 struct vattr va;
14638 int error;
14639
14640 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14641 ASSERT(rp->r_mapcnt >= 0);
14642 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock %s: "
14643 "(%"PRIx64", %"PRIx64"); mapcnt = %ld", bfp->l_type == F_WRLCK ?
14644 "write" : bfp->l_type == F_RDLCK ? "read" : "unlock",
14645 bfp->l_start, bfp->l_len, rp->r_mapcnt));
14646
14647 if (rp->r_mapcnt == 0)
14648 return (1); /* always safe if not mapped */
14649
14650 /*
14651 * If the file is already mapped and there are locks, then they
14652 * should be all safe locks. So adding or removing a lock is safe
14653 * as long as the new request is safe (i.e., whole-file, meaning
14654 * length and starting offset are both zero).
14655 */
14656
14657 if (bfp->l_start != 0 || bfp->l_len != 0) {
14658 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14659 "cannot lock a memory mapped file unless locking the "
14660 "entire file: start %"PRIx64", len %"PRIx64,
14661 bfp->l_start, bfp->l_len));
14662 return (0);
14663 }
14664
14665 /* mandatory locking and mapping don't mix */
14666 va.va_mask = AT_MODE;
14667 error = VOP_GETATTR(vp, &va, 0, cr, NULL);
14668 if (error != 0) {
14669 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14670 "getattr error %d", error));
14671 return (0); /* treat errors conservatively */
14672 }
14673 if (MANDLOCK(vp, va.va_mode)) {
14674 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_safelock: "
14675 "cannot mandatory lock and mmap a file"));
14676 return (0);
14677 }
14678
14679 return (1);
14680 }
14681
14682 /*
14683 * nfs4_lockrelease:
14684 *
14685 * Release any locks on the given vnode that are held by the current
14686 * process. Also removes the lock owner (if one exists) from the rnode's
14687 * list.
14688 */
14689 static int
nfs4_lockrelease(vnode_t * vp,int flag,offset_t offset,cred_t * cr)14690 nfs4_lockrelease(vnode_t *vp, int flag, offset_t offset, cred_t *cr)
14691 {
14692 flock64_t ld;
14693 int ret, error;
14694 rnode4_t *rp;
14695 nfs4_lock_owner_t *lop;
14696 nfs4_recov_state_t recov_state;
14697 mntinfo4_t *mi;
14698 bool_t possible_orphan = FALSE;
14699 bool_t recovonly;
14700
14701 ASSERT((uintptr_t)vp > KERNELBASE);
14702 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14703
14704 rp = VTOR4(vp);
14705 mi = VTOMI4(vp);
14706
14707 /*
14708 * If we have not locked anything then we can
14709 * just return since we have no work to do.
14710 */
14711 if (rp->r_lo_head.lo_next_rnode == &rp->r_lo_head) {
14712 return (0);
14713 }
14714
14715 /*
14716 * We need to comprehend that another thread may
14717 * kick off recovery and the lock_owner we have stashed
14718 * in lop might be invalid so we should NOT cache it
14719 * locally!
14720 */
14721 recov_state.rs_flags = 0;
14722 recov_state.rs_num_retry_despite_err = 0;
14723 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state,
14724 &recovonly);
14725 if (error) {
14726 mutex_enter(&rp->r_statelock);
14727 rp->r_flags |= R4LODANGLERS;
14728 mutex_exit(&rp->r_statelock);
14729 return (error);
14730 }
14731
14732 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14733
14734 /*
14735 * Check if the lock owner might have a lock (request was sent but
14736 * no response was received). Also check if there are any remote
14737 * locks on the file. (In theory we shouldn't have to make this
14738 * second check if there's no lock owner, but for now we'll be
14739 * conservative and do it anyway.) If either condition is true,
14740 * send an unlock for the entire file to the server.
14741 *
14742 * Note that no explicit synchronization is needed here. At worst,
14743 * flk_has_remote_locks() will return a false positive, in which case
14744 * the unlock call wastes time but doesn't harm correctness.
14745 */
14746
14747 if (lop) {
14748 mutex_enter(&lop->lo_lock);
14749 possible_orphan = lop->lo_pending_rqsts;
14750 mutex_exit(&lop->lo_lock);
14751 lock_owner_rele(lop);
14752 }
14753
14754 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0);
14755
14756 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14757 "nfs4_lockrelease: possible orphan %d, remote locks %d, for "
14758 "lop %p.", possible_orphan, flk_has_remote_locks(vp),
14759 (void *)lop));
14760
14761 if (possible_orphan || flk_has_remote_locks(vp)) {
14762 ld.l_type = F_UNLCK; /* set to unlock entire file */
14763 ld.l_whence = 0; /* unlock from start of file */
14764 ld.l_start = 0;
14765 ld.l_len = 0; /* do entire file */
14766
14767 ret = VOP_FRLOCK(vp, F_SETLK, &ld, flag, offset, NULL,
14768 cr, NULL);
14769
14770 if (ret != 0) {
14771 /*
14772 * If VOP_FRLOCK fails, make sure we unregister
14773 * local locks before we continue.
14774 */
14775 struct lm_sysid *lmsid = nfs4_find_sysid(VTOMI4(vp));
14776
14777 if (lmsid != NULL) {
14778 cleanlocks(vp, curproc->p_pid,
14779 lm_sysidt(lmsid) | LM_SYSID_CLIENT);
14780 lm_rel_sysid(lmsid);
14781 }
14782
14783 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
14784 "nfs4_lockrelease: lock release error on vp"
14785 " %p: error %d.\n", (void *)vp, ret));
14786 }
14787 }
14788
14789 recov_state.rs_flags = 0;
14790 recov_state.rs_num_retry_despite_err = 0;
14791 error = nfs4_start_fop(mi, vp, NULL, OH_LOCKU, &recov_state,
14792 &recovonly);
14793 if (error) {
14794 mutex_enter(&rp->r_statelock);
14795 rp->r_flags |= R4LODANGLERS;
14796 mutex_exit(&rp->r_statelock);
14797 return (error);
14798 }
14799
14800 /*
14801 * So, here we're going to need to retrieve the lock-owner
14802 * again (in case recovery has done a switch-a-roo) and
14803 * remove it because we can.
14804 */
14805 lop = find_lock_owner(rp, curproc->p_pid, LOWN_ANY);
14806
14807 if (lop) {
14808 nfs4_rnode_remove_lock_owner(rp, lop);
14809 lock_owner_rele(lop);
14810 }
14811
14812 nfs4_end_fop(mi, vp, NULL, OH_LOCKU, &recov_state, 0);
14813 return (0);
14814 }
14815
14816 /*
14817 * Wait for 'tick_delay' clock ticks.
14818 * Implement exponential backoff until hit the lease_time of this nfs4_server.
14819 *
14820 * The client should retry to acquire the lock faster than the lease period.
14821 * We use roughly half of the lease time to use a similar calculation as it is
14822 * used in nfs4_renew_lease_thread().
14823 *
14824 * XXX For future improvements, should implement a waiting queue scheme.
14825 */
14826 static int
nfs4_block_and_wait(clock_t * tick_delay)14827 nfs4_block_and_wait(clock_t *tick_delay)
14828 {
14829 /* wait tick_delay clock ticks or siginteruptus */
14830 if (delay_sig(*tick_delay)) {
14831 return (EINTR);
14832 }
14833
14834 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE, "nfs4_block_and_wait: "
14835 "reissue the lock request: blocked for %ld clock ticks: %ld "
14836 "milliseconds", *tick_delay, drv_hztousec(*tick_delay) / 1000));
14837
14838 *tick_delay = MIN(drv_usectohz(nfs4_max_base_wait_time * 1000),
14839 *tick_delay * 1.5);
14840 return (0);
14841 }
14842
14843 void
nfs4_vnops_init(void)14844 nfs4_vnops_init(void)
14845 {
14846 }
14847
14848 void
nfs4_vnops_fini(void)14849 nfs4_vnops_fini(void)
14850 {
14851 }
14852
14853 /*
14854 * Return a reference to the directory (parent) vnode for a given vnode,
14855 * using the saved pathname information and the directory file handle. The
14856 * caller is responsible for disposing of the reference.
14857 * Returns zero or an errno value.
14858 *
14859 * Caller should set need_start_op to FALSE if it is the recovery
14860 * thread, or if a start_fop has already been done. Otherwise, TRUE.
14861 */
14862 int
vtodv(vnode_t * vp,vnode_t ** dvpp,cred_t * cr,bool_t need_start_op)14863 vtodv(vnode_t *vp, vnode_t **dvpp, cred_t *cr, bool_t need_start_op)
14864 {
14865 svnode_t *svnp;
14866 vnode_t *dvp = NULL;
14867 servinfo4_t *svp;
14868 nfs4_fname_t *mfname;
14869 int error;
14870
14871 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
14872
14873 if (vp->v_flag & VROOT) {
14874 nfs4_sharedfh_t *sfh;
14875 nfs_fh4 fh;
14876 mntinfo4_t *mi;
14877
14878 ASSERT(vp->v_type == VREG);
14879
14880 mi = VTOMI4(vp);
14881 svp = mi->mi_curr_serv;
14882 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
14883 fh.nfs_fh4_len = svp->sv_pfhandle.fh_len;
14884 fh.nfs_fh4_val = svp->sv_pfhandle.fh_buf;
14885 sfh = sfh4_get(&fh, VTOMI4(vp));
14886 nfs_rw_exit(&svp->sv_lock);
14887 mfname = mi->mi_fname;
14888 fn_hold(mfname);
14889 dvp = makenfs4node_by_fh(sfh, NULL, &mfname, NULL, mi, cr, 0);
14890 sfh4_rele(&sfh);
14891
14892 if (dvp->v_type == VNON)
14893 dvp->v_type = VDIR;
14894 *dvpp = dvp;
14895 return (0);
14896 }
14897
14898 svnp = VTOSV(vp);
14899
14900 if (svnp == NULL) {
14901 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14902 "shadow node is NULL"));
14903 return (EINVAL);
14904 }
14905
14906 if (svnp->sv_name == NULL || svnp->sv_dfh == NULL) {
14907 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14908 "shadow node name or dfh val == NULL"));
14909 return (EINVAL);
14910 }
14911
14912 error = nfs4_make_dotdot(svnp->sv_dfh, 0, vp, cr, &dvp,
14913 (int)need_start_op);
14914 if (error != 0) {
14915 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14916 "nfs4_make_dotdot returned %d", error));
14917 return (error);
14918 }
14919 if (!dvp) {
14920 NFS4_DEBUG(nfs4_client_shadow_debug, (CE_NOTE, "vtodv: "
14921 "nfs4_make_dotdot returned a NULL dvp"));
14922 return (EIO);
14923 }
14924 if (dvp->v_type == VNON)
14925 dvp->v_type = VDIR;
14926 ASSERT(dvp->v_type == VDIR);
14927 if (VTOR4(vp)->r_flags & R4ISXATTR) {
14928 mutex_enter(&dvp->v_lock);
14929 dvp->v_flag |= V_XATTRDIR;
14930 mutex_exit(&dvp->v_lock);
14931 }
14932 *dvpp = dvp;
14933 return (0);
14934 }
14935
14936 /*
14937 * Copy the (final) component name of vp to fnamep. maxlen is the maximum
14938 * length that fnamep can accept, including the trailing null.
14939 * Returns 0 if okay, returns an errno value if there was a problem.
14940 */
14941
14942 int
vtoname(vnode_t * vp,char * fnamep,ssize_t maxlen)14943 vtoname(vnode_t *vp, char *fnamep, ssize_t maxlen)
14944 {
14945 char *fn;
14946 int err = 0;
14947 servinfo4_t *svp;
14948 svnode_t *shvp;
14949
14950 /*
14951 * If the file being opened has VROOT set, then this is
14952 * a "file" mount. sv_name will not be interesting, so
14953 * go back to the servinfo4 to get the original mount
14954 * path and strip off all but the final edge. Otherwise
14955 * just return the name from the shadow vnode.
14956 */
14957
14958 if (vp->v_flag & VROOT) {
14959
14960 svp = VTOMI4(vp)->mi_curr_serv;
14961 (void) nfs_rw_enter_sig(&svp->sv_lock, RW_READER, 0);
14962
14963 fn = strrchr(svp->sv_path, '/');
14964 if (fn == NULL)
14965 err = EINVAL;
14966 else
14967 fn++;
14968 } else {
14969 shvp = VTOSV(vp);
14970 fn = fn_name(shvp->sv_name);
14971 }
14972
14973 if (err == 0)
14974 if (strlen(fn) < maxlen)
14975 (void) strcpy(fnamep, fn);
14976 else
14977 err = ENAMETOOLONG;
14978
14979 if (vp->v_flag & VROOT)
14980 nfs_rw_exit(&svp->sv_lock);
14981 else
14982 kmem_free(fn, MAXNAMELEN);
14983
14984 return (err);
14985 }
14986
14987 /*
14988 * Bookkeeping for a close that doesn't need to go over the wire.
14989 * *have_lockp is set to 0 if 'os_sync_lock' is released; otherwise
14990 * it is left at 1.
14991 */
14992 void
nfs4close_notw(vnode_t * vp,nfs4_open_stream_t * osp,int * have_lockp)14993 nfs4close_notw(vnode_t *vp, nfs4_open_stream_t *osp, int *have_lockp)
14994 {
14995 rnode4_t *rp;
14996 mntinfo4_t *mi;
14997
14998 mi = VTOMI4(vp);
14999 rp = VTOR4(vp);
15000
15001 NFS4_DEBUG(nfs4close_notw_debug, (CE_NOTE, "nfs4close_notw: "
15002 "rp=%p osp=%p", (void *)rp, (void *)osp));
15003 ASSERT(nfs_zone() == mi->mi_zone);
15004 ASSERT(mutex_owned(&osp->os_sync_lock));
15005 ASSERT(*have_lockp);
15006
15007 if (!osp->os_valid ||
15008 osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) {
15009 return;
15010 }
15011
15012 /*
15013 * This removes the reference obtained at OPEN; ie,
15014 * when the open stream structure was created.
15015 *
15016 * We don't have to worry about calling 'open_stream_rele'
15017 * since we our currently holding a reference to this
15018 * open stream which means the count can not go to 0 with
15019 * this decrement.
15020 */
15021 ASSERT(osp->os_ref_count >= 2);
15022 osp->os_ref_count--;
15023 osp->os_valid = 0;
15024 mutex_exit(&osp->os_sync_lock);
15025 *have_lockp = 0;
15026
15027 nfs4_dec_state_ref_count(mi);
15028 }
15029
15030 /*
15031 * Close all remaining open streams on the rnode. These open streams
15032 * could be here because:
15033 * - The close attempted at either close or delmap failed
15034 * - Some kernel entity did VOP_OPEN but never did VOP_CLOSE
15035 * - Someone did mknod on a regular file but never opened it
15036 */
15037 int
nfs4close_all(vnode_t * vp,cred_t * cr)15038 nfs4close_all(vnode_t *vp, cred_t *cr)
15039 {
15040 nfs4_open_stream_t *osp;
15041 int error;
15042 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
15043 rnode4_t *rp;
15044
15045 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
15046
15047 error = 0;
15048 rp = VTOR4(vp);
15049
15050 /*
15051 * At this point, all we know is that the last time
15052 * someone called vn_rele, the count was 1. Since then,
15053 * the vnode could have been re-activated. We want to
15054 * loop through the open streams and close each one, but
15055 * we have to be careful since once we release the rnode
15056 * hash bucket lock, someone else is free to come in and
15057 * re-activate the rnode and add new open streams. The
15058 * strategy is take the rnode hash bucket lock, verify that
15059 * the count is still 1, grab the open stream off the
15060 * head of the list and mark it invalid, then release the
15061 * rnode hash bucket lock and proceed with that open stream.
15062 * This is ok because nfs4close_one() will acquire the proper
15063 * open/create to close/destroy synchronization for open
15064 * streams, and will ensure that if someone has reopened
15065 * the open stream after we've dropped the hash bucket lock
15066 * then we'll just simply return without destroying the
15067 * open stream.
15068 * Repeat until the list is empty.
15069 */
15070
15071 for (;;) {
15072
15073 /* make sure vnode hasn't been reactivated */
15074 rw_enter(&rp->r_hashq->r_lock, RW_READER);
15075 mutex_enter(&vp->v_lock);
15076 if (vp->v_count > 1) {
15077 mutex_exit(&vp->v_lock);
15078 rw_exit(&rp->r_hashq->r_lock);
15079 break;
15080 }
15081 /*
15082 * Grabbing r_os_lock before releasing v_lock prevents
15083 * a window where the rnode/open stream could get
15084 * reactivated (and os_force_close set to 0) before we
15085 * had a chance to set os_force_close to 1.
15086 */
15087 mutex_enter(&rp->r_os_lock);
15088 mutex_exit(&vp->v_lock);
15089
15090 osp = list_head(&rp->r_open_streams);
15091 if (!osp) {
15092 /* nothing left to CLOSE OTW, so return */
15093 mutex_exit(&rp->r_os_lock);
15094 rw_exit(&rp->r_hashq->r_lock);
15095 break;
15096 }
15097
15098 mutex_enter(&rp->r_statev4_lock);
15099 /* the file can't still be mem mapped */
15100 ASSERT(rp->r_mapcnt == 0);
15101 if (rp->created_v4)
15102 rp->created_v4 = 0;
15103 mutex_exit(&rp->r_statev4_lock);
15104
15105 /*
15106 * Grab a ref on this open stream; nfs4close_one
15107 * will mark it as invalid
15108 */
15109 mutex_enter(&osp->os_sync_lock);
15110 osp->os_ref_count++;
15111 osp->os_force_close = 1;
15112 mutex_exit(&osp->os_sync_lock);
15113 mutex_exit(&rp->r_os_lock);
15114 rw_exit(&rp->r_hashq->r_lock);
15115
15116 nfs4close_one(vp, osp, cr, 0, NULL, &e, CLOSE_FORCE, 0, 0, 0);
15117
15118 /* Update error if it isn't already non-zero */
15119 if (error == 0) {
15120 if (e.error)
15121 error = e.error;
15122 else if (e.stat)
15123 error = geterrno4(e.stat);
15124 }
15125
15126 #ifdef DEBUG
15127 nfs4close_all_cnt++;
15128 #endif
15129 /* Release the ref on osp acquired above. */
15130 open_stream_rele(osp, rp);
15131
15132 /* Proceed to the next open stream, if any */
15133 }
15134 return (error);
15135 }
15136
15137 /*
15138 * nfs4close_one - close one open stream for a file if needed.
15139 *
15140 * "close_type" indicates which close path this is:
15141 * CLOSE_NORM: close initiated via VOP_CLOSE.
15142 * CLOSE_DELMAP: close initiated via VOP_DELMAP.
15143 * CLOSE_FORCE: close initiated via VOP_INACTIVE. This path forces
15144 * the close and release of client state for this open stream
15145 * (unless someone else has the open stream open).
15146 * CLOSE_RESEND: indicates the request is a replay of an earlier request
15147 * (e.g., due to abort because of a signal).
15148 * CLOSE_AFTER_RESEND: close initiated to "undo" a successful resent OPEN.
15149 *
15150 * CLOSE_RESEND and CLOSE_AFTER_RESEND will not attempt to retry after client
15151 * recovery. Instead, the caller is expected to deal with retries.
15152 *
15153 * The caller can either pass in the osp ('provided_osp') or not.
15154 *
15155 * 'access_bits' represents the access we are closing/downgrading.
15156 *
15157 * 'len', 'prot', and 'mmap_flags' are used for CLOSE_DELMAP. 'len' is the
15158 * number of bytes we are unmapping, 'maxprot' is the mmap protection, and
15159 * 'mmap_flags' tells us the type of sharing (MAP_PRIVATE or MAP_SHARED).
15160 *
15161 * Errors are returned via the nfs4_error_t.
15162 */
15163 void
nfs4close_one(vnode_t * vp,nfs4_open_stream_t * provided_osp,cred_t * cr,int access_bits,nfs4_lost_rqst_t * lrp,nfs4_error_t * ep,nfs4_close_type_t close_type,size_t len,uint_t maxprot,uint_t mmap_flags)15164 nfs4close_one(vnode_t *vp, nfs4_open_stream_t *provided_osp, cred_t *cr,
15165 int access_bits, nfs4_lost_rqst_t *lrp, nfs4_error_t *ep,
15166 nfs4_close_type_t close_type, size_t len, uint_t maxprot,
15167 uint_t mmap_flags)
15168 {
15169 nfs4_open_owner_t *oop;
15170 nfs4_open_stream_t *osp = NULL;
15171 int retry = 0;
15172 int num_retries = NFS4_NUM_RECOV_RETRIES;
15173 rnode4_t *rp;
15174 mntinfo4_t *mi;
15175 nfs4_recov_state_t recov_state;
15176 cred_t *cred_otw = NULL;
15177 bool_t recovonly = FALSE;
15178 int isrecov;
15179 int force_close;
15180 int close_failed = 0;
15181 int did_dec_count = 0;
15182 int did_start_op = 0;
15183 int did_force_recovlock = 0;
15184 int did_start_seqid_sync = 0;
15185 int have_sync_lock = 0;
15186
15187 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
15188
15189 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE, "closing vp %p osp %p, "
15190 "lrp %p, close type %d len %ld prot %x mmap flags %x bits %x",
15191 (void *)vp, (void *)provided_osp, (void *)lrp, close_type,
15192 len, maxprot, mmap_flags, access_bits));
15193
15194 nfs4_error_zinit(ep);
15195 rp = VTOR4(vp);
15196 mi = VTOMI4(vp);
15197 isrecov = (close_type == CLOSE_RESEND ||
15198 close_type == CLOSE_AFTER_RESEND);
15199
15200 /*
15201 * First get the open owner.
15202 */
15203 if (!provided_osp) {
15204 oop = find_open_owner(cr, NFS4_PERM_CREATED, mi);
15205 } else {
15206 oop = provided_osp->os_open_owner;
15207 ASSERT(oop != NULL);
15208 open_owner_hold(oop);
15209 }
15210
15211 if (!oop) {
15212 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15213 "nfs4close_one: no oop, rp %p, mi %p, cr %p, osp %p, "
15214 "close type %d", (void *)rp, (void *)mi, (void *)cr,
15215 (void *)provided_osp, close_type));
15216 ep->error = EIO;
15217 goto out;
15218 }
15219
15220 cred_otw = nfs4_get_otw_cred(cr, mi, oop);
15221 recov_retry:
15222 osp = NULL;
15223 close_failed = 0;
15224 force_close = (close_type == CLOSE_FORCE);
15225 retry = 0;
15226 did_start_op = 0;
15227 did_force_recovlock = 0;
15228 did_start_seqid_sync = 0;
15229 have_sync_lock = 0;
15230 recovonly = FALSE;
15231 recov_state.rs_flags = 0;
15232 recov_state.rs_num_retry_despite_err = 0;
15233
15234 /*
15235 * Second synchronize with recovery.
15236 */
15237 if (!isrecov) {
15238 ep->error = nfs4_start_fop(mi, vp, NULL, OH_CLOSE,
15239 &recov_state, &recovonly);
15240 if (!ep->error) {
15241 did_start_op = 1;
15242 } else {
15243 close_failed = 1;
15244 /*
15245 * If we couldn't get start_fop, but have to
15246 * cleanup state, then at least acquire the
15247 * mi_recovlock so we can synchronize with
15248 * recovery.
15249 */
15250 if (close_type == CLOSE_FORCE) {
15251 (void) nfs_rw_enter_sig(&mi->mi_recovlock,
15252 RW_READER, FALSE);
15253 did_force_recovlock = 1;
15254 } else
15255 goto out;
15256 }
15257 }
15258
15259 /*
15260 * We cannot attempt to get the open seqid sync if nfs4_start_fop
15261 * set 'recovonly' to TRUE since most likely this is due to
15262 * reovery being active (MI4_RECOV_ACTIV). If recovery is active,
15263 * nfs4_start_open_seqid_sync() will fail with EAGAIN asking us
15264 * to retry, causing us to loop until recovery finishes. Plus we
15265 * don't need protection over the open seqid since we're not going
15266 * OTW, hence don't need to use the seqid.
15267 */
15268 if (recovonly == FALSE) {
15269 /* need to grab the open owner sync before 'os_sync_lock' */
15270 ep->error = nfs4_start_open_seqid_sync(oop, mi);
15271 if (ep->error == EAGAIN) {
15272 ASSERT(!isrecov);
15273 if (did_start_op)
15274 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15275 &recov_state, TRUE);
15276 if (did_force_recovlock)
15277 nfs_rw_exit(&mi->mi_recovlock);
15278 goto recov_retry;
15279 }
15280 did_start_seqid_sync = 1;
15281 }
15282
15283 /*
15284 * Third get an open stream and acquire 'os_sync_lock' to
15285 * sychronize the opening/creating of an open stream with the
15286 * closing/destroying of an open stream.
15287 */
15288 if (!provided_osp) {
15289 /* returns with 'os_sync_lock' held */
15290 osp = find_open_stream(oop, rp);
15291 if (!osp) {
15292 ep->error = EIO;
15293 goto out;
15294 }
15295 } else {
15296 osp = provided_osp;
15297 open_stream_hold(osp);
15298 mutex_enter(&osp->os_sync_lock);
15299 }
15300 have_sync_lock = 1;
15301
15302 ASSERT(oop == osp->os_open_owner);
15303
15304 /*
15305 * Fourth, do any special pre-OTW CLOSE processing
15306 * based on the specific close type.
15307 */
15308 if ((close_type == CLOSE_NORM || close_type == CLOSE_AFTER_RESEND) &&
15309 !did_dec_count) {
15310 ASSERT(osp->os_open_ref_count > 0);
15311 osp->os_open_ref_count--;
15312 did_dec_count = 1;
15313 if (osp->os_open_ref_count == 0)
15314 osp->os_final_close = 1;
15315 }
15316
15317 if (close_type == CLOSE_FORCE) {
15318 /* see if somebody reopened the open stream. */
15319 if (!osp->os_force_close) {
15320 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE,
15321 "nfs4close_one: skip CLOSE_FORCE as osp %p "
15322 "was reopened, vp %p", (void *)osp, (void *)vp));
15323 ep->error = 0;
15324 ep->stat = NFS4_OK;
15325 goto out;
15326 }
15327
15328 if (!osp->os_final_close && !did_dec_count) {
15329 osp->os_open_ref_count--;
15330 did_dec_count = 1;
15331 }
15332
15333 /*
15334 * We can't depend on os_open_ref_count being 0 due to the
15335 * way executables are opened (VN_RELE to match a VOP_OPEN).
15336 */
15337 #ifdef NOTYET
15338 ASSERT(osp->os_open_ref_count == 0);
15339 #endif
15340 if (osp->os_open_ref_count != 0) {
15341 NFS4_DEBUG(nfs4close_one_debug, (CE_NOTE,
15342 "nfs4close_one: should panic here on an "
15343 "ASSERT(osp->os_open_ref_count == 0). Ignoring "
15344 "since this is probably the exec problem."));
15345
15346 osp->os_open_ref_count = 0;
15347 }
15348
15349 /*
15350 * There is the possibility that nfs4close_one()
15351 * for close_type == CLOSE_DELMAP couldn't find the
15352 * open stream, thus couldn't decrement its os_mapcnt;
15353 * therefore we can't use this ASSERT yet.
15354 */
15355 #ifdef NOTYET
15356 ASSERT(osp->os_mapcnt == 0);
15357 #endif
15358 osp->os_mapcnt = 0;
15359 }
15360
15361 if (close_type == CLOSE_DELMAP && !did_dec_count) {
15362 ASSERT(osp->os_mapcnt >= btopr(len));
15363
15364 if ((mmap_flags & MAP_SHARED) && (maxprot & PROT_WRITE))
15365 osp->os_mmap_write -= btopr(len);
15366 if (maxprot & PROT_READ)
15367 osp->os_mmap_read -= btopr(len);
15368 if (maxprot & PROT_EXEC)
15369 osp->os_mmap_read -= btopr(len);
15370 /* mirror the PROT_NONE check in nfs4_addmap() */
15371 if (!(maxprot & PROT_READ) && !(maxprot & PROT_WRITE) &&
15372 !(maxprot & PROT_EXEC))
15373 osp->os_mmap_read -= btopr(len);
15374 osp->os_mapcnt -= btopr(len);
15375 did_dec_count = 1;
15376 }
15377
15378 if (recovonly) {
15379 nfs4_lost_rqst_t lost_rqst;
15380
15381 /* request should not already be in recovery queue */
15382 ASSERT(lrp == NULL);
15383 nfs4_error_init(ep, EINTR);
15384 nfs4close_save_lost_rqst(ep->error, &lost_rqst, oop,
15385 osp, cred_otw, vp);
15386 mutex_exit(&osp->os_sync_lock);
15387 have_sync_lock = 0;
15388 (void) nfs4_start_recovery(ep, mi, vp, NULL, NULL,
15389 lost_rqst.lr_op == OP_CLOSE ?
15390 &lost_rqst : NULL, OP_CLOSE, NULL, NULL, NULL);
15391 close_failed = 1;
15392 force_close = 0;
15393 goto close_cleanup;
15394 }
15395
15396 /*
15397 * If a previous OTW call got NFS4ERR_BAD_SEQID, then
15398 * we stopped operating on the open owner's <old oo_name, old seqid>
15399 * space, which means we stopped operating on the open stream
15400 * too. So don't go OTW (as the seqid is likely bad, and the
15401 * stateid could be stale, potentially triggering a false
15402 * setclientid), and just clean up the client's internal state.
15403 */
15404 if (osp->os_orig_oo_name != oop->oo_name) {
15405 NFS4_DEBUG(nfs4close_one_debug || nfs4_client_recov_debug,
15406 (CE_NOTE, "nfs4close_one: skip OTW close for osp %p "
15407 "oop %p due to bad seqid (orig oo_name %" PRIx64 " current "
15408 "oo_name %" PRIx64")",
15409 (void *)osp, (void *)oop, osp->os_orig_oo_name,
15410 oop->oo_name));
15411 close_failed = 1;
15412 }
15413
15414 /* If the file failed recovery, just quit. */
15415 mutex_enter(&rp->r_statelock);
15416 if (rp->r_flags & R4RECOVERR) {
15417 close_failed = 1;
15418 }
15419 mutex_exit(&rp->r_statelock);
15420
15421 /*
15422 * If the force close path failed to obtain start_fop
15423 * then skip the OTW close and just remove the state.
15424 */
15425 if (close_failed)
15426 goto close_cleanup;
15427
15428 /*
15429 * Fifth, check to see if there are still mapped pages or other
15430 * opens using this open stream. If there are then we can't
15431 * close yet but we can see if an OPEN_DOWNGRADE is necessary.
15432 */
15433 if (osp->os_open_ref_count > 0 || osp->os_mapcnt > 0) {
15434 nfs4_lost_rqst_t new_lost_rqst;
15435 bool_t needrecov = FALSE;
15436 cred_t *odg_cred_otw = NULL;
15437 seqid4 open_dg_seqid = 0;
15438
15439 if (osp->os_delegation) {
15440 /*
15441 * If this open stream was never OPENed OTW then we
15442 * surely can't DOWNGRADE it (especially since the
15443 * osp->open_stateid is really a delegation stateid
15444 * when os_delegation is 1).
15445 */
15446 if (access_bits & FREAD)
15447 osp->os_share_acc_read--;
15448 if (access_bits & FWRITE)
15449 osp->os_share_acc_write--;
15450 osp->os_share_deny_none--;
15451 nfs4_error_zinit(ep);
15452 goto out;
15453 }
15454 nfs4_open_downgrade(access_bits, 0, oop, osp, vp, cr,
15455 lrp, ep, &odg_cred_otw, &open_dg_seqid);
15456 needrecov = nfs4_needs_recovery(ep, TRUE, mi->mi_vfsp);
15457 if (needrecov && !isrecov) {
15458 bool_t abort;
15459 nfs4_bseqid_entry_t *bsep = NULL;
15460
15461 if (!ep->error && ep->stat == NFS4ERR_BAD_SEQID)
15462 bsep = nfs4_create_bseqid_entry(oop, NULL,
15463 vp, 0,
15464 lrp ? TAG_OPEN_DG_LOST : TAG_OPEN_DG,
15465 open_dg_seqid);
15466
15467 nfs4open_dg_save_lost_rqst(ep->error, &new_lost_rqst,
15468 oop, osp, odg_cred_otw, vp, access_bits, 0);
15469 mutex_exit(&osp->os_sync_lock);
15470 have_sync_lock = 0;
15471 abort = nfs4_start_recovery(ep, mi, vp, NULL, NULL,
15472 new_lost_rqst.lr_op == OP_OPEN_DOWNGRADE ?
15473 &new_lost_rqst : NULL, OP_OPEN_DOWNGRADE,
15474 bsep, NULL, NULL);
15475 if (odg_cred_otw)
15476 crfree(odg_cred_otw);
15477 if (bsep)
15478 kmem_free(bsep, sizeof (*bsep));
15479
15480 if (abort == TRUE)
15481 goto out;
15482
15483 if (did_start_seqid_sync) {
15484 nfs4_end_open_seqid_sync(oop);
15485 did_start_seqid_sync = 0;
15486 }
15487 open_stream_rele(osp, rp);
15488
15489 if (did_start_op)
15490 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15491 &recov_state, FALSE);
15492 if (did_force_recovlock)
15493 nfs_rw_exit(&mi->mi_recovlock);
15494
15495 goto recov_retry;
15496 } else {
15497 if (odg_cred_otw)
15498 crfree(odg_cred_otw);
15499 }
15500 goto out;
15501 }
15502
15503 /*
15504 * If this open stream was created as the results of an open
15505 * while holding a delegation, then just release it; no need
15506 * to do an OTW close. Otherwise do a "normal" OTW close.
15507 */
15508 if (osp->os_delegation) {
15509 nfs4close_notw(vp, osp, &have_sync_lock);
15510 nfs4_error_zinit(ep);
15511 goto out;
15512 }
15513
15514 /*
15515 * If this stream is not valid, we're done.
15516 */
15517 if (!osp->os_valid) {
15518 nfs4_error_zinit(ep);
15519 goto out;
15520 }
15521
15522 /*
15523 * Last open or mmap ref has vanished, need to do an OTW close.
15524 * First check to see if a close is still necessary.
15525 */
15526 if (osp->os_failed_reopen) {
15527 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15528 "don't close OTW osp %p since reopen failed.",
15529 (void *)osp));
15530 /*
15531 * Reopen of the open stream failed, hence the
15532 * stateid of the open stream is invalid/stale, and
15533 * sending this OTW would incorrectly cause another
15534 * round of recovery. In this case, we need to set
15535 * the 'os_valid' bit to 0 so another thread doesn't
15536 * come in and re-open this open stream before
15537 * this "closing" thread cleans up state (decrementing
15538 * the nfs4_server_t's state_ref_count and decrementing
15539 * the os_ref_count).
15540 */
15541 osp->os_valid = 0;
15542 /*
15543 * This removes the reference obtained at OPEN; ie,
15544 * when the open stream structure was created.
15545 *
15546 * We don't have to worry about calling 'open_stream_rele'
15547 * since we our currently holding a reference to this
15548 * open stream which means the count can not go to 0 with
15549 * this decrement.
15550 */
15551 ASSERT(osp->os_ref_count >= 2);
15552 osp->os_ref_count--;
15553 nfs4_error_zinit(ep);
15554 close_failed = 0;
15555 goto close_cleanup;
15556 }
15557
15558 ASSERT(osp->os_ref_count > 1);
15559
15560 /*
15561 * Sixth, try the CLOSE OTW.
15562 */
15563 nfs4close_otw(rp, cred_otw, oop, osp, &retry, &did_start_seqid_sync,
15564 close_type, ep, &have_sync_lock);
15565
15566 if (ep->error == EINTR || NFS4_FRC_UNMT_ERR(ep->error, vp->v_vfsp)) {
15567 /*
15568 * Let the recovery thread be responsible for
15569 * removing the state for CLOSE.
15570 */
15571 close_failed = 1;
15572 force_close = 0;
15573 retry = 0;
15574 }
15575
15576 /* See if we need to retry with a different cred */
15577 if ((ep->error == EACCES ||
15578 (ep->error == 0 && ep->stat == NFS4ERR_ACCESS)) &&
15579 cred_otw != cr) {
15580 crfree(cred_otw);
15581 cred_otw = cr;
15582 crhold(cred_otw);
15583 retry = 1;
15584 }
15585
15586 if (ep->error || ep->stat)
15587 close_failed = 1;
15588
15589 if (retry && !isrecov && num_retries-- > 0) {
15590 if (have_sync_lock) {
15591 mutex_exit(&osp->os_sync_lock);
15592 have_sync_lock = 0;
15593 }
15594 if (did_start_seqid_sync) {
15595 nfs4_end_open_seqid_sync(oop);
15596 did_start_seqid_sync = 0;
15597 }
15598 open_stream_rele(osp, rp);
15599
15600 if (did_start_op)
15601 nfs4_end_fop(mi, vp, NULL, OH_CLOSE,
15602 &recov_state, FALSE);
15603 if (did_force_recovlock)
15604 nfs_rw_exit(&mi->mi_recovlock);
15605 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
15606 "nfs4close_one: need to retry the close "
15607 "operation"));
15608 goto recov_retry;
15609 }
15610 close_cleanup:
15611 /*
15612 * Seventh and lastly, process our results.
15613 */
15614 if (close_failed && force_close) {
15615 /*
15616 * It's ok to drop and regrab the 'os_sync_lock' since
15617 * nfs4close_notw() will recheck to make sure the
15618 * "close"/removal of state should happen.
15619 */
15620 if (!have_sync_lock) {
15621 mutex_enter(&osp->os_sync_lock);
15622 have_sync_lock = 1;
15623 }
15624 /*
15625 * This is last call, remove the ref on the open
15626 * stream created by open and clean everything up.
15627 */
15628 osp->os_pending_close = 0;
15629 nfs4close_notw(vp, osp, &have_sync_lock);
15630 nfs4_error_zinit(ep);
15631 }
15632
15633 if (!close_failed) {
15634 if (have_sync_lock) {
15635 osp->os_pending_close = 0;
15636 mutex_exit(&osp->os_sync_lock);
15637 have_sync_lock = 0;
15638 } else {
15639 mutex_enter(&osp->os_sync_lock);
15640 osp->os_pending_close = 0;
15641 mutex_exit(&osp->os_sync_lock);
15642 }
15643 if (did_start_op && recov_state.rs_sp != NULL) {
15644 mutex_enter(&recov_state.rs_sp->s_lock);
15645 nfs4_dec_state_ref_count_nolock(recov_state.rs_sp, mi);
15646 mutex_exit(&recov_state.rs_sp->s_lock);
15647 } else {
15648 nfs4_dec_state_ref_count(mi);
15649 }
15650 nfs4_error_zinit(ep);
15651 }
15652
15653 out:
15654 if (have_sync_lock)
15655 mutex_exit(&osp->os_sync_lock);
15656 if (did_start_op)
15657 nfs4_end_fop(mi, vp, NULL, OH_CLOSE, &recov_state,
15658 recovonly ? TRUE : FALSE);
15659 if (did_force_recovlock)
15660 nfs_rw_exit(&mi->mi_recovlock);
15661 if (cred_otw)
15662 crfree(cred_otw);
15663 if (osp)
15664 open_stream_rele(osp, rp);
15665 if (oop) {
15666 if (did_start_seqid_sync)
15667 nfs4_end_open_seqid_sync(oop);
15668 open_owner_rele(oop);
15669 }
15670 }
15671
15672 /*
15673 * Convert information returned by the server in the LOCK4denied
15674 * structure to the form required by fcntl.
15675 */
15676 static void
denied_to_flk(LOCK4denied * lockt_denied,flock64_t * flk,LOCKT4args * lockt_args)15677 denied_to_flk(LOCK4denied *lockt_denied, flock64_t *flk, LOCKT4args *lockt_args)
15678 {
15679 nfs4_lo_name_t *lo;
15680
15681 #ifdef DEBUG
15682 if (denied_to_flk_debug) {
15683 lockt_denied_debug = lockt_denied;
15684 debug_enter("lockt_denied");
15685 }
15686 #endif
15687
15688 flk->l_type = lockt_denied->locktype == READ_LT ? F_RDLCK : F_WRLCK;
15689 flk->l_whence = 0; /* aka SEEK_SET */
15690 flk->l_start = lockt_denied->offset;
15691 flk->l_len = lockt_denied->length;
15692
15693 /*
15694 * If the blocking clientid matches our client id, then we can
15695 * interpret the lockowner (since we built it). If not, then
15696 * fabricate a sysid and pid. Note that the l_sysid field
15697 * in *flk already has the local sysid.
15698 */
15699
15700 if (lockt_denied->owner.clientid == lockt_args->owner.clientid) {
15701
15702 if (lockt_denied->owner.owner_len == sizeof (*lo)) {
15703 lo = (nfs4_lo_name_t *)
15704 lockt_denied->owner.owner_val;
15705
15706 flk->l_pid = lo->ln_pid;
15707 } else {
15708 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
15709 "denied_to_flk: bad lock owner length\n"));
15710
15711 flk->l_pid = lo_to_pid(&lockt_denied->owner);
15712 }
15713 } else {
15714 NFS4_DEBUG(nfs4_client_lock_debug, (CE_NOTE,
15715 "denied_to_flk: foreign clientid\n"));
15716
15717 /*
15718 * Construct a new sysid which should be different from
15719 * sysids of other systems.
15720 */
15721
15722 flk->l_sysid++;
15723 flk->l_pid = lo_to_pid(&lockt_denied->owner);
15724 }
15725 }
15726
15727 static pid_t
lo_to_pid(lock_owner4 * lop)15728 lo_to_pid(lock_owner4 *lop)
15729 {
15730 pid_t pid = 0;
15731 uchar_t *cp;
15732 int i;
15733
15734 cp = (uchar_t *)&lop->clientid;
15735
15736 for (i = 0; i < sizeof (lop->clientid); i++)
15737 pid += (pid_t)*cp++;
15738
15739 cp = (uchar_t *)lop->owner_val;
15740
15741 for (i = 0; i < lop->owner_len; i++)
15742 pid += (pid_t)*cp++;
15743
15744 return (pid);
15745 }
15746
15747 /*
15748 * Given a lock pointer, returns the length of that lock.
15749 * "end" is the last locked offset the "l_len" covers from
15750 * the start of the lock.
15751 */
15752 static off64_t
lock_to_end(flock64_t * lock)15753 lock_to_end(flock64_t *lock)
15754 {
15755 off64_t lock_end;
15756
15757 if (lock->l_len == 0)
15758 lock_end = (off64_t)MAXEND;
15759 else
15760 lock_end = lock->l_start + lock->l_len - 1;
15761
15762 return (lock_end);
15763 }
15764
15765 /*
15766 * Given the end of a lock, it will return you the length "l_len" for that lock.
15767 */
15768 static off64_t
end_to_len(off64_t start,off64_t end)15769 end_to_len(off64_t start, off64_t end)
15770 {
15771 off64_t lock_len;
15772
15773 ASSERT(end >= start);
15774 if (end == MAXEND)
15775 lock_len = 0;
15776 else
15777 lock_len = end - start + 1;
15778
15779 return (lock_len);
15780 }
15781
15782 /*
15783 * On given end for a lock it determines if it is the last locked offset
15784 * or not, if so keeps it as is, else adds one to return the length for
15785 * valid start.
15786 */
15787 static off64_t
start_check(off64_t x)15788 start_check(off64_t x)
15789 {
15790 if (x == MAXEND)
15791 return (x);
15792 else
15793 return (x + 1);
15794 }
15795
15796 /*
15797 * See if these two locks overlap, and if so return 1;
15798 * otherwise, return 0.
15799 */
15800 static int
locks_intersect(flock64_t * llfp,flock64_t * curfp)15801 locks_intersect(flock64_t *llfp, flock64_t *curfp)
15802 {
15803 off64_t llfp_end, curfp_end;
15804
15805 llfp_end = lock_to_end(llfp);
15806 curfp_end = lock_to_end(curfp);
15807
15808 if (((llfp_end >= curfp->l_start) &&
15809 (llfp->l_start <= curfp->l_start)) ||
15810 ((curfp->l_start <= llfp->l_start) && (curfp_end >= llfp->l_start)))
15811 return (1);
15812 return (0);
15813 }
15814
15815 /*
15816 * Determine what the intersecting lock region is, and add that to the
15817 * 'nl_llpp' locklist in increasing order (by l_start).
15818 */
15819 static void
nfs4_add_lock_range(flock64_t * lost_flp,flock64_t * local_flp,locklist_t ** nl_llpp,vnode_t * vp)15820 nfs4_add_lock_range(flock64_t *lost_flp, flock64_t *local_flp,
15821 locklist_t **nl_llpp, vnode_t *vp)
15822 {
15823 locklist_t *intersect_llp, *tmp_fllp, *cur_fllp;
15824 off64_t lost_flp_end, local_flp_end, len, start;
15825
15826 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range:"));
15827
15828 if (!locks_intersect(lost_flp, local_flp))
15829 return;
15830
15831 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: "
15832 "locks intersect"));
15833
15834 lost_flp_end = lock_to_end(lost_flp);
15835 local_flp_end = lock_to_end(local_flp);
15836
15837 /* Find the starting point of the intersecting region */
15838 if (local_flp->l_start > lost_flp->l_start)
15839 start = local_flp->l_start;
15840 else
15841 start = lost_flp->l_start;
15842
15843 /* Find the lenght of the intersecting region */
15844 if (lost_flp_end < local_flp_end)
15845 len = end_to_len(start, lost_flp_end);
15846 else
15847 len = end_to_len(start, local_flp_end);
15848
15849 /*
15850 * Prepare the flock structure for the intersection found and insert
15851 * it into the new list in increasing l_start order. This list contains
15852 * intersections of locks registered by the client with the local host
15853 * and the lost lock.
15854 * The lock type of this lock is the same as that of the local_flp.
15855 */
15856 intersect_llp = (locklist_t *)kmem_alloc(sizeof (locklist_t), KM_SLEEP);
15857 intersect_llp->ll_flock.l_start = start;
15858 intersect_llp->ll_flock.l_len = len;
15859 intersect_llp->ll_flock.l_type = local_flp->l_type;
15860 intersect_llp->ll_flock.l_pid = local_flp->l_pid;
15861 intersect_llp->ll_flock.l_sysid = local_flp->l_sysid;
15862 intersect_llp->ll_flock.l_whence = 0; /* aka SEEK_SET */
15863 intersect_llp->ll_vp = vp;
15864
15865 tmp_fllp = *nl_llpp;
15866 cur_fllp = NULL;
15867 while (tmp_fllp != NULL && tmp_fllp->ll_flock.l_start <
15868 intersect_llp->ll_flock.l_start) {
15869 cur_fllp = tmp_fllp;
15870 tmp_fllp = tmp_fllp->ll_next;
15871 }
15872 if (cur_fllp == NULL) {
15873 /* first on the list */
15874 intersect_llp->ll_next = *nl_llpp;
15875 *nl_llpp = intersect_llp;
15876 } else {
15877 intersect_llp->ll_next = cur_fllp->ll_next;
15878 cur_fllp->ll_next = intersect_llp;
15879 }
15880
15881 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE, "nfs4_add_lock_range: "
15882 "created lock region: start %"PRIx64" end %"PRIx64" : %s\n",
15883 intersect_llp->ll_flock.l_start,
15884 intersect_llp->ll_flock.l_start + intersect_llp->ll_flock.l_len,
15885 intersect_llp->ll_flock.l_type == F_RDLCK ? "READ" : "WRITE"));
15886 }
15887
15888 /*
15889 * Our local locking current state is potentially different than
15890 * what the NFSv4 server thinks we have due to a lost lock that was
15891 * resent and then received. We need to reset our "NFSv4" locking
15892 * state to match the current local locking state for this pid since
15893 * that is what the user/application sees as what the world is.
15894 *
15895 * We cannot afford to drop the open/lock seqid sync since then we can
15896 * get confused about what the current local locking state "is" versus
15897 * "was".
15898 *
15899 * If we are unable to fix up the locks, we send SIGLOST to the affected
15900 * process. This is not done if the filesystem has been forcibly
15901 * unmounted, in case the process has already exited and a new process
15902 * exists with the same pid.
15903 */
15904 static void
nfs4_reinstitute_local_lock_state(vnode_t * vp,flock64_t * lost_flp,cred_t * cr,nfs4_lock_owner_t * lop)15905 nfs4_reinstitute_local_lock_state(vnode_t *vp, flock64_t *lost_flp, cred_t *cr,
15906 nfs4_lock_owner_t *lop)
15907 {
15908 locklist_t *locks, *llp, *ri_llp, *tmp_llp;
15909 mntinfo4_t *mi = VTOMI4(vp);
15910 const int cmd = F_SETLK;
15911 off64_t cur_start, llp_ll_flock_end, lost_flp_end;
15912 flock64_t ul_fl;
15913
15914 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15915 "nfs4_reinstitute_local_lock_state"));
15916
15917 /*
15918 * Find active locks for this vp from the local locking code.
15919 * Scan through this list and find out the locks that intersect with
15920 * the lost lock. Once we find the lock that intersects, add the
15921 * intersection area as a new lock to a new list "ri_llp". The lock
15922 * type of the intersection region lock added to ri_llp is the same
15923 * as that found in the active lock list, "list". The intersecting
15924 * region locks are added to ri_llp in increasing l_start order.
15925 */
15926 ASSERT(nfs_zone() == mi->mi_zone);
15927
15928 locks = flk_active_locks_for_vp(vp);
15929 ri_llp = NULL;
15930
15931 for (llp = locks; llp != NULL; llp = llp->ll_next) {
15932 ASSERT(llp->ll_vp == vp);
15933 /*
15934 * Pick locks that belong to this pid/lockowner
15935 */
15936 if (llp->ll_flock.l_pid != lost_flp->l_pid)
15937 continue;
15938
15939 nfs4_add_lock_range(lost_flp, &llp->ll_flock, &ri_llp, vp);
15940 }
15941
15942 /*
15943 * Now we have the list of intersections with the lost lock. These are
15944 * the locks that were/are active before the server replied to the
15945 * last/lost lock. Issue these locks to the server here. Playing these
15946 * locks to the server will re-establish aur current local locking state
15947 * with the v4 server.
15948 * If we get an error, send SIGLOST to the application for that lock.
15949 */
15950
15951 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) {
15952 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15953 "nfs4_reinstitute_local_lock_state: need to issue "
15954 "flock: [%"PRIx64" - %"PRIx64"] : %s",
15955 llp->ll_flock.l_start,
15956 llp->ll_flock.l_start + llp->ll_flock.l_len,
15957 llp->ll_flock.l_type == F_RDLCK ? "READ" :
15958 llp->ll_flock.l_type == F_WRLCK ? "WRITE" : "INVALID"));
15959 /*
15960 * No need to relock what we already have
15961 */
15962 if (llp->ll_flock.l_type == lost_flp->l_type)
15963 continue;
15964
15965 push_reinstate(vp, cmd, &llp->ll_flock, cr, lop);
15966 }
15967
15968 /*
15969 * Now keeping the start of the lost lock as our reference parse the
15970 * newly created ri_llp locklist to find the ranges that we have locked
15971 * with the v4 server but not in the current local locking. We need
15972 * to unlock these ranges.
15973 * These ranges can also be reffered to as those ranges, where the lost
15974 * lock does not overlap with the locks in the ri_llp but are locked
15975 * since the server replied to the lost lock.
15976 */
15977 cur_start = lost_flp->l_start;
15978 lost_flp_end = lock_to_end(lost_flp);
15979
15980 ul_fl.l_type = F_UNLCK;
15981 ul_fl.l_whence = 0; /* aka SEEK_SET */
15982 ul_fl.l_sysid = lost_flp->l_sysid;
15983 ul_fl.l_pid = lost_flp->l_pid;
15984
15985 for (llp = ri_llp; llp != NULL; llp = llp->ll_next) {
15986 llp_ll_flock_end = lock_to_end(&llp->ll_flock);
15987
15988 if (llp->ll_flock.l_start <= cur_start) {
15989 cur_start = start_check(llp_ll_flock_end);
15990 continue;
15991 }
15992 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
15993 "nfs4_reinstitute_local_lock_state: "
15994 "UNLOCK [%"PRIx64" - %"PRIx64"]",
15995 cur_start, llp->ll_flock.l_start));
15996
15997 ul_fl.l_start = cur_start;
15998 ul_fl.l_len = end_to_len(cur_start,
15999 (llp->ll_flock.l_start - 1));
16000
16001 push_reinstate(vp, cmd, &ul_fl, cr, lop);
16002 cur_start = start_check(llp_ll_flock_end);
16003 }
16004
16005 /*
16006 * In the case where the lost lock ends after all intersecting locks,
16007 * unlock the last part of the lost lock range.
16008 */
16009 if (cur_start != start_check(lost_flp_end)) {
16010 NFS4_DEBUG(nfs4_lost_rqst_debug, (CE_NOTE,
16011 "nfs4_reinstitute_local_lock_state: UNLOCK end of the "
16012 "lost lock region [%"PRIx64" - %"PRIx64"]",
16013 cur_start, lost_flp->l_start + lost_flp->l_len));
16014
16015 ul_fl.l_start = cur_start;
16016 /*
16017 * Is it an to-EOF lock? if so unlock till the end
16018 */
16019 if (lost_flp->l_len == 0)
16020 ul_fl.l_len = 0;
16021 else
16022 ul_fl.l_len = start_check(lost_flp_end) - cur_start;
16023
16024 push_reinstate(vp, cmd, &ul_fl, cr, lop);
16025 }
16026
16027 if (locks != NULL)
16028 flk_free_locklist(locks);
16029
16030 /* Free up our newly created locklist */
16031 for (llp = ri_llp; llp != NULL; ) {
16032 tmp_llp = llp->ll_next;
16033 kmem_free(llp, sizeof (locklist_t));
16034 llp = tmp_llp;
16035 }
16036
16037 /*
16038 * Now return back to the original calling nfs4frlock()
16039 * and let us naturally drop our seqid syncs.
16040 */
16041 }
16042
16043 /*
16044 * Create a lost state record for the given lock reinstantiation request
16045 * and push it onto the lost state queue.
16046 */
16047 static void
push_reinstate(vnode_t * vp,int cmd,flock64_t * flk,cred_t * cr,nfs4_lock_owner_t * lop)16048 push_reinstate(vnode_t *vp, int cmd, flock64_t *flk, cred_t *cr,
16049 nfs4_lock_owner_t *lop)
16050 {
16051 nfs4_lost_rqst_t req;
16052 nfs_lock_type4 locktype;
16053 nfs4_error_t e = { EINTR, NFS4_OK, RPC_SUCCESS };
16054
16055 ASSERT(nfs_zone() == VTOMI4(vp)->mi_zone);
16056
16057 locktype = flk_to_locktype(cmd, flk->l_type);
16058 nfs4frlock_save_lost_rqst(NFS4_LCK_CTYPE_REINSTATE, EINTR, locktype,
16059 NULL, NULL, lop, flk, &req, cr, vp);
16060 (void) nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
16061 (req.lr_op == OP_LOCK || req.lr_op == OP_LOCKU) ?
16062 &req : NULL, flk->l_type == F_UNLCK ? OP_LOCKU : OP_LOCK,
16063 NULL, NULL, NULL);
16064 }
16065