1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1986, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /*
26 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
27 * All Rights Reserved
28 */
29
30 #include <sys/param.h>
31 #include <sys/types.h>
32 #include <sys/systm.h>
33 #include <sys/thread.h>
34 #include <sys/t_lock.h>
35 #include <sys/time.h>
36 #include <sys/vnode.h>
37 #include <sys/vfs.h>
38 #include <sys/errno.h>
39 #include <sys/buf.h>
40 #include <sys/stat.h>
41 #include <sys/cred.h>
42 #include <sys/kmem.h>
43 #include <sys/debug.h>
44 #include <sys/dnlc.h>
45 #include <sys/vmsystm.h>
46 #include <sys/flock.h>
47 #include <sys/share.h>
48 #include <sys/cmn_err.h>
49 #include <sys/tiuser.h>
50 #include <sys/sysmacros.h>
51 #include <sys/callb.h>
52 #include <sys/acl.h>
53 #include <sys/kstat.h>
54 #include <sys/signal.h>
55 #include <sys/disp.h>
56 #include <sys/atomic.h>
57 #include <sys/list.h>
58 #include <sys/sdt.h>
59
60 #include <rpc/types.h>
61 #include <rpc/xdr.h>
62 #include <rpc/auth.h>
63 #include <rpc/clnt.h>
64
65 #include <nfs/nfs.h>
66 #include <nfs/nfs_clnt.h>
67 #include <nfs/nfs_acl.h>
68
69 #include <nfs/nfs4.h>
70 #include <nfs/rnode4.h>
71 #include <nfs/nfs4_clnt.h>
72
73 #include <vm/hat.h>
74 #include <vm/as.h>
75 #include <vm/page.h>
76 #include <vm/pvn.h>
77 #include <vm/seg.h>
78 #include <vm/seg_map.h>
79 #include <vm/seg_vn.h>
80
81 #include <sys/ddi.h>
82
83 /*
84 * Arguments to page-flush thread.
85 */
86 typedef struct {
87 vnode_t *vp;
88 cred_t *cr;
89 } pgflush_t;
90
91 #ifdef DEBUG
92 int nfs4_client_lease_debug;
93 int nfs4_sharedfh_debug;
94 int nfs4_fname_debug;
95
96 /* temporary: panic if v_type is inconsistent with r_attr va_type */
97 int nfs4_vtype_debug;
98
99 uint_t nfs4_tsd_key;
100 #endif
101
102 static time_t nfs4_client_resumed = 0;
103 static callb_id_t cid = 0;
104
105 static int nfs4renew(nfs4_server_t *);
106 static void nfs4_attrcache_va(vnode_t *, nfs4_ga_res_t *, int);
107 static void nfs4_pgflush_thread(pgflush_t *);
108
109 static boolean_t nfs4_client_cpr_callb(void *, int);
110
111 struct mi4_globals {
112 kmutex_t mig_lock; /* lock protecting mig_list */
113 list_t mig_list; /* list of NFS v4 mounts in zone */
114 boolean_t mig_destructor_called;
115 };
116
117 static zone_key_t mi4_list_key;
118
119 /*
120 * Attributes caching:
121 *
122 * Attributes are cached in the rnode in struct vattr form.
123 * There is a time associated with the cached attributes (r_time_attr_inval)
124 * which tells whether the attributes are valid. The time is initialized
125 * to the difference between current time and the modify time of the vnode
126 * when new attributes are cached. This allows the attributes for
127 * files that have changed recently to be timed out sooner than for files
128 * that have not changed for a long time. There are minimum and maximum
129 * timeout values that can be set per mount point.
130 */
131
132 /*
133 * If a cache purge is in progress, wait for it to finish.
134 *
135 * The current thread must not be in the middle of an
136 * nfs4_start_op/nfs4_end_op region. Otherwise, there could be a deadlock
137 * between this thread, a recovery thread, and the page flush thread.
138 */
139 int
nfs4_waitfor_purge_complete(vnode_t * vp)140 nfs4_waitfor_purge_complete(vnode_t *vp)
141 {
142 rnode4_t *rp;
143 k_sigset_t smask;
144
145 rp = VTOR4(vp);
146 if ((rp->r_serial != NULL && rp->r_serial != curthread) ||
147 ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread)) {
148 mutex_enter(&rp->r_statelock);
149 sigintr(&smask, VTOMI4(vp)->mi_flags & MI4_INT);
150 while ((rp->r_serial != NULL && rp->r_serial != curthread) ||
151 ((rp->r_flags & R4PGFLUSH) &&
152 rp->r_pgflush != curthread)) {
153 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
154 sigunintr(&smask);
155 mutex_exit(&rp->r_statelock);
156 return (EINTR);
157 }
158 }
159 sigunintr(&smask);
160 mutex_exit(&rp->r_statelock);
161 }
162 return (0);
163 }
164
165 /*
166 * Validate caches by checking cached attributes. If they have timed out,
167 * then get new attributes from the server. As a side effect, cache
168 * invalidation is done if the attributes have changed.
169 *
170 * If the attributes have not timed out and if there is a cache
171 * invalidation being done by some other thread, then wait until that
172 * thread has completed the cache invalidation.
173 */
174 int
nfs4_validate_caches(vnode_t * vp,cred_t * cr)175 nfs4_validate_caches(vnode_t *vp, cred_t *cr)
176 {
177 int error;
178 nfs4_ga_res_t gar;
179
180 if (ATTRCACHE4_VALID(vp)) {
181 error = nfs4_waitfor_purge_complete(vp);
182 if (error)
183 return (error);
184 return (0);
185 }
186
187 return (nfs4_getattr_otw(vp, &gar, cr, 0));
188 }
189
190 /*
191 * Fill in attribute from the cache.
192 * If valid, then return 0 to indicate that no error occurred,
193 * otherwise return 1 to indicate that an error occurred.
194 */
195 static int
nfs4_getattr_cache(vnode_t * vp,struct vattr * vap)196 nfs4_getattr_cache(vnode_t *vp, struct vattr *vap)
197 {
198 rnode4_t *rp;
199
200 rp = VTOR4(vp);
201 mutex_enter(&rp->r_statelock);
202 mutex_enter(&rp->r_statev4_lock);
203 if (ATTRCACHE4_VALID(vp)) {
204 mutex_exit(&rp->r_statev4_lock);
205 /*
206 * Cached attributes are valid
207 */
208 *vap = rp->r_attr;
209 mutex_exit(&rp->r_statelock);
210 return (0);
211 }
212 mutex_exit(&rp->r_statev4_lock);
213 mutex_exit(&rp->r_statelock);
214 return (1);
215 }
216
217
218 /*
219 * If returned error is ESTALE flush all caches. The nfs4_purge_caches()
220 * call is synchronous because all the pages were invalidated by the
221 * nfs4_invalidate_pages() call.
222 */
223 void
nfs4_purge_stale_fh(int errno,vnode_t * vp,cred_t * cr)224 nfs4_purge_stale_fh(int errno, vnode_t *vp, cred_t *cr)
225 {
226 struct rnode4 *rp = VTOR4(vp);
227
228 /* Ensure that the ..._end_op() call has been done */
229 ASSERT(tsd_get(nfs4_tsd_key) == NULL);
230
231 if (errno != ESTALE)
232 return;
233
234 mutex_enter(&rp->r_statelock);
235 rp->r_flags |= R4STALE;
236 if (!rp->r_error)
237 rp->r_error = errno;
238 mutex_exit(&rp->r_statelock);
239 if (nfs4_has_pages(vp))
240 nfs4_invalidate_pages(vp, (u_offset_t)0, cr);
241 nfs4_purge_caches(vp, NFS4_PURGE_DNLC, cr, FALSE);
242 }
243
244 /*
245 * Purge all of the various NFS `data' caches. If "asyncpg" is TRUE, the
246 * page purge is done asynchronously.
247 */
248 void
nfs4_purge_caches(vnode_t * vp,int purge_dnlc,cred_t * cr,int asyncpg)249 nfs4_purge_caches(vnode_t *vp, int purge_dnlc, cred_t *cr, int asyncpg)
250 {
251 rnode4_t *rp;
252 char *contents;
253 vnode_t *xattr;
254 int size;
255 int pgflush; /* are we the page flush thread? */
256
257 /*
258 * Purge the DNLC for any entries which refer to this file.
259 */
260 if (vp->v_count > 1 &&
261 (vp->v_type == VDIR || purge_dnlc == NFS4_PURGE_DNLC))
262 dnlc_purge_vp(vp);
263
264 /*
265 * Clear any readdir state bits and purge the readlink response cache.
266 */
267 rp = VTOR4(vp);
268 mutex_enter(&rp->r_statelock);
269 rp->r_flags &= ~R4LOOKUP;
270 contents = rp->r_symlink.contents;
271 size = rp->r_symlink.size;
272 rp->r_symlink.contents = NULL;
273
274 xattr = rp->r_xattr_dir;
275 rp->r_xattr_dir = NULL;
276
277 /*
278 * Purge pathconf cache too.
279 */
280 rp->r_pathconf.pc4_xattr_valid = 0;
281 rp->r_pathconf.pc4_cache_valid = 0;
282
283 pgflush = (curthread == rp->r_pgflush);
284 mutex_exit(&rp->r_statelock);
285
286 if (contents != NULL) {
287
288 kmem_free((void *)contents, size);
289 }
290
291 if (xattr != NULL)
292 VN_RELE(xattr);
293
294 /*
295 * Flush the page cache. If the current thread is the page flush
296 * thread, don't initiate a new page flush. There's no need for
297 * it, and doing it correctly is hard.
298 */
299 if (nfs4_has_pages(vp) && !pgflush) {
300 if (!asyncpg) {
301 (void) nfs4_waitfor_purge_complete(vp);
302 nfs4_flush_pages(vp, cr);
303 } else {
304 pgflush_t *args;
305
306 /*
307 * We don't hold r_statelock while creating the
308 * thread, in case the call blocks. So we use a
309 * flag to indicate that a page flush thread is
310 * active.
311 */
312 mutex_enter(&rp->r_statelock);
313 if (rp->r_flags & R4PGFLUSH) {
314 mutex_exit(&rp->r_statelock);
315 } else {
316 rp->r_flags |= R4PGFLUSH;
317 mutex_exit(&rp->r_statelock);
318
319 args = kmem_alloc(sizeof (pgflush_t),
320 KM_SLEEP);
321 args->vp = vp;
322 VN_HOLD(args->vp);
323 args->cr = cr;
324 crhold(args->cr);
325 (void) zthread_create(NULL, 0,
326 nfs4_pgflush_thread, args, 0,
327 minclsyspri);
328 }
329 }
330 }
331
332 /*
333 * Flush the readdir response cache.
334 */
335 nfs4_purge_rddir_cache(vp);
336 }
337
338 /*
339 * Invalidate all pages for the given file, after writing back the dirty
340 * ones.
341 */
342
343 void
nfs4_flush_pages(vnode_t * vp,cred_t * cr)344 nfs4_flush_pages(vnode_t *vp, cred_t *cr)
345 {
346 int error;
347 rnode4_t *rp = VTOR4(vp);
348
349 error = VOP_PUTPAGE(vp, (u_offset_t)0, 0, B_INVAL, cr, NULL);
350 if (error == ENOSPC || error == EDQUOT) {
351 mutex_enter(&rp->r_statelock);
352 if (!rp->r_error)
353 rp->r_error = error;
354 mutex_exit(&rp->r_statelock);
355 }
356 }
357
358 /*
359 * Page flush thread.
360 */
361
362 static void
nfs4_pgflush_thread(pgflush_t * args)363 nfs4_pgflush_thread(pgflush_t *args)
364 {
365 rnode4_t *rp = VTOR4(args->vp);
366
367 /* remember which thread we are, so we don't deadlock ourselves */
368 mutex_enter(&rp->r_statelock);
369 ASSERT(rp->r_pgflush == NULL);
370 rp->r_pgflush = curthread;
371 mutex_exit(&rp->r_statelock);
372
373 nfs4_flush_pages(args->vp, args->cr);
374
375 mutex_enter(&rp->r_statelock);
376 rp->r_pgflush = NULL;
377 rp->r_flags &= ~R4PGFLUSH;
378 cv_broadcast(&rp->r_cv);
379 mutex_exit(&rp->r_statelock);
380
381 VN_RELE(args->vp);
382 crfree(args->cr);
383 kmem_free(args, sizeof (pgflush_t));
384 zthread_exit();
385 }
386
387 /*
388 * Purge the readdir cache of all entries which are not currently
389 * being filled.
390 */
391 void
nfs4_purge_rddir_cache(vnode_t * vp)392 nfs4_purge_rddir_cache(vnode_t *vp)
393 {
394 rnode4_t *rp;
395
396 rp = VTOR4(vp);
397
398 mutex_enter(&rp->r_statelock);
399 rp->r_direof = NULL;
400 rp->r_flags &= ~R4LOOKUP;
401 rp->r_flags |= R4READDIRWATTR;
402 rddir4_cache_purge(rp);
403 mutex_exit(&rp->r_statelock);
404 }
405
406 /*
407 * Set attributes cache for given vnode using virtual attributes. There is
408 * no cache validation, but if the attributes are deemed to be stale, they
409 * are ignored. This corresponds to nfs3_attrcache().
410 *
411 * Set the timeout value on the attribute cache and fill it
412 * with the passed in attributes.
413 */
414 void
nfs4_attrcache_noinval(vnode_t * vp,nfs4_ga_res_t * garp,hrtime_t t)415 nfs4_attrcache_noinval(vnode_t *vp, nfs4_ga_res_t *garp, hrtime_t t)
416 {
417 rnode4_t *rp = VTOR4(vp);
418
419 mutex_enter(&rp->r_statelock);
420 if (rp->r_time_attr_saved <= t)
421 nfs4_attrcache_va(vp, garp, FALSE);
422 mutex_exit(&rp->r_statelock);
423 }
424
425 /*
426 * Use the passed in virtual attributes to check to see whether the
427 * data and metadata caches are valid, cache the new attributes, and
428 * then do the cache invalidation if required.
429 *
430 * The cache validation and caching of the new attributes is done
431 * atomically via the use of the mutex, r_statelock. If required,
432 * the cache invalidation is done atomically w.r.t. the cache
433 * validation and caching of the attributes via the pseudo lock,
434 * r_serial.
435 *
436 * This routine is used to do cache validation and attributes caching
437 * for operations with a single set of post operation attributes.
438 */
439
440 void
nfs4_attr_cache(vnode_t * vp,nfs4_ga_res_t * garp,hrtime_t t,cred_t * cr,int async,change_info4 * cinfo)441 nfs4_attr_cache(vnode_t *vp, nfs4_ga_res_t *garp,
442 hrtime_t t, cred_t *cr, int async,
443 change_info4 *cinfo)
444 {
445 rnode4_t *rp;
446 int mtime_changed = 0;
447 int ctime_changed = 0;
448 vsecattr_t *vsp;
449 int was_serial, set_time_cache_inval, recov;
450 vattr_t *vap = &garp->n4g_va;
451 mntinfo4_t *mi = VTOMI4(vp);
452 len_t preattr_rsize;
453 boolean_t writemodify_set = B_FALSE;
454 boolean_t cachepurge_set = B_FALSE;
455
456 ASSERT(mi->mi_vfsp->vfs_dev == garp->n4g_va.va_fsid);
457
458 /* Is curthread the recovery thread? */
459 mutex_enter(&mi->mi_lock);
460 recov = (VTOMI4(vp)->mi_recovthread == curthread);
461 mutex_exit(&mi->mi_lock);
462
463 rp = VTOR4(vp);
464 mutex_enter(&rp->r_statelock);
465 was_serial = (rp->r_serial == curthread);
466 if (rp->r_serial != NULL && !was_serial) {
467 /*
468 * Purge current attrs and bail out to avoid potential deadlock
469 * between another thread caching attrs (r_serial thread), this
470 * thread, and a thread trying to read or write pages.
471 */
472 PURGE_ATTRCACHE4_LOCKED(rp);
473 mutex_exit(&rp->r_statelock);
474 return;
475 }
476
477 /*
478 * If there is a page flush thread, the current thread needs to
479 * bail out, to prevent a possible deadlock between the current
480 * thread (which might be in a start_op/end_op region), the
481 * recovery thread, and the page flush thread. Expire the
482 * attribute cache, so that any attributes the current thread was
483 * going to set are not lost.
484 */
485 if ((rp->r_flags & R4PGFLUSH) && rp->r_pgflush != curthread) {
486 PURGE_ATTRCACHE4_LOCKED(rp);
487 mutex_exit(&rp->r_statelock);
488 return;
489 }
490
491 if (rp->r_time_attr_saved > t) {
492 /*
493 * Attributes have been cached since these attributes were
494 * probably made. If there is an inconsistency in what is
495 * cached, mark them invalid. If not, don't act on them.
496 */
497 if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size))
498 PURGE_ATTRCACHE4_LOCKED(rp);
499 mutex_exit(&rp->r_statelock);
500 return;
501 }
502 set_time_cache_inval = 0;
503 if (cinfo) {
504 /*
505 * Only directory modifying callers pass non-NULL cinfo.
506 */
507 ASSERT(vp->v_type == VDIR);
508 /*
509 * If the cache timeout either doesn't exist or hasn't expired,
510 * and dir didn't changed on server before dirmod op
511 * and dir didn't change after dirmod op but before getattr
512 * then there's a chance that the client's cached data for
513 * this object is current (not stale). No immediate cache
514 * flush is required.
515 *
516 */
517 if ((! rp->r_time_cache_inval || t < rp->r_time_cache_inval) &&
518 cinfo->before == rp->r_change &&
519 (garp->n4g_change_valid &&
520 cinfo->after == garp->n4g_change)) {
521
522 /*
523 * If atomic isn't set, then the before/after info
524 * cannot be blindly trusted. For this case, we tell
525 * nfs4_attrcache_va to cache the attrs but also
526 * establish an absolute maximum cache timeout. When
527 * the timeout is reached, caches will be flushed.
528 */
529 if (! cinfo->atomic)
530 set_time_cache_inval = 1;
531 } else {
532
533 /*
534 * We're not sure exactly what changed, but we know
535 * what to do. flush all caches for dir. remove the
536 * attr timeout.
537 *
538 * a) timeout expired. flush all caches.
539 * b) r_change != cinfo.before. flush all caches.
540 * c) r_change == cinfo.before, but cinfo.after !=
541 * post-op getattr(change). flush all caches.
542 * d) post-op getattr(change) not provided by server.
543 * flush all caches.
544 */
545 mtime_changed = 1;
546 ctime_changed = 1;
547 rp->r_time_cache_inval = 0;
548 }
549 } else {
550 /*
551 * Write thread after writing data to file on remote server,
552 * will always set R4WRITEMODIFIED to indicate that file on
553 * remote server was modified with a WRITE operation and would
554 * have marked attribute cache as timed out. If R4WRITEMODIFIED
555 * is set, then do not check for mtime and ctime change.
556 */
557 if (!(rp->r_flags & R4WRITEMODIFIED)) {
558 if (!CACHE4_VALID(rp, vap->va_mtime, vap->va_size))
559 mtime_changed = 1;
560
561 if (rp->r_attr.va_ctime.tv_sec !=
562 vap->va_ctime.tv_sec ||
563 rp->r_attr.va_ctime.tv_nsec !=
564 vap->va_ctime.tv_nsec)
565 ctime_changed = 1;
566
567 /*
568 * If the change attribute was not provided by server
569 * or it differs, then flush all caches.
570 */
571 if (!garp->n4g_change_valid ||
572 rp->r_change != garp->n4g_change) {
573 mtime_changed = 1;
574 ctime_changed = 1;
575 }
576 } else {
577 writemodify_set = B_TRUE;
578 }
579 }
580
581 preattr_rsize = rp->r_size;
582
583 nfs4_attrcache_va(vp, garp, set_time_cache_inval);
584
585 /*
586 * If we have updated filesize in nfs4_attrcache_va, as soon as we
587 * drop statelock we will be in transition of purging all
588 * our caches and updating them. It is possible for another
589 * thread to pick this new file size and read in zeroed data.
590 * stall other threads till cache purge is complete.
591 */
592 if ((!cinfo) && (rp->r_size != preattr_rsize)) {
593 /*
594 * If R4WRITEMODIFIED was set and we have updated the file
595 * size, Server's returned file size need not necessarily
596 * be because of this Client's WRITE. We need to purge
597 * all caches.
598 */
599 if (writemodify_set)
600 mtime_changed = 1;
601
602 if (mtime_changed && !(rp->r_flags & R4INCACHEPURGE)) {
603 rp->r_flags |= R4INCACHEPURGE;
604 cachepurge_set = B_TRUE;
605 }
606 }
607
608 if (!mtime_changed && !ctime_changed) {
609 mutex_exit(&rp->r_statelock);
610 return;
611 }
612
613 rp->r_serial = curthread;
614
615 mutex_exit(&rp->r_statelock);
616
617 /*
618 * If we're the recov thread, then force async nfs4_purge_caches
619 * to avoid potential deadlock.
620 */
621 if (mtime_changed)
622 nfs4_purge_caches(vp, NFS4_NOPURGE_DNLC, cr, recov ? 1 : async);
623
624 if ((rp->r_flags & R4INCACHEPURGE) && cachepurge_set) {
625 mutex_enter(&rp->r_statelock);
626 rp->r_flags &= ~R4INCACHEPURGE;
627 cv_broadcast(&rp->r_cv);
628 mutex_exit(&rp->r_statelock);
629 cachepurge_set = B_FALSE;
630 }
631
632 if (ctime_changed) {
633 (void) nfs4_access_purge_rp(rp);
634 if (rp->r_secattr != NULL) {
635 mutex_enter(&rp->r_statelock);
636 vsp = rp->r_secattr;
637 rp->r_secattr = NULL;
638 mutex_exit(&rp->r_statelock);
639 if (vsp != NULL)
640 nfs4_acl_free_cache(vsp);
641 }
642 }
643
644 if (!was_serial) {
645 mutex_enter(&rp->r_statelock);
646 rp->r_serial = NULL;
647 cv_broadcast(&rp->r_cv);
648 mutex_exit(&rp->r_statelock);
649 }
650 }
651
652 /*
653 * Set attributes cache for given vnode using virtual attributes.
654 *
655 * Set the timeout value on the attribute cache and fill it
656 * with the passed in attributes.
657 *
658 * The caller must be holding r_statelock.
659 */
660 static void
nfs4_attrcache_va(vnode_t * vp,nfs4_ga_res_t * garp,int set_cache_timeout)661 nfs4_attrcache_va(vnode_t *vp, nfs4_ga_res_t *garp, int set_cache_timeout)
662 {
663 rnode4_t *rp;
664 mntinfo4_t *mi;
665 hrtime_t delta;
666 hrtime_t now;
667 vattr_t *vap = &garp->n4g_va;
668
669 rp = VTOR4(vp);
670
671 ASSERT(MUTEX_HELD(&rp->r_statelock));
672 ASSERT(vap->va_mask == AT_ALL);
673
674 /* Switch to master before checking v_flag */
675 if (IS_SHADOW(vp, rp))
676 vp = RTOV4(rp);
677
678 now = gethrtime();
679
680 mi = VTOMI4(vp);
681
682 /*
683 * Only establish a new cache timeout (if requested). Never
684 * extend a timeout. Never clear a timeout. Clearing a timeout
685 * is done by nfs4_update_dircaches (ancestor in our call chain)
686 */
687 if (set_cache_timeout && ! rp->r_time_cache_inval)
688 rp->r_time_cache_inval = now + mi->mi_acdirmax;
689
690 /*
691 * Delta is the number of nanoseconds that we will
692 * cache the attributes of the file. It is based on
693 * the number of nanoseconds since the last time that
694 * we detected a change. The assumption is that files
695 * that changed recently are likely to change again.
696 * There is a minimum and a maximum for regular files
697 * and for directories which is enforced though.
698 *
699 * Using the time since last change was detected
700 * eliminates direct comparison or calculation
701 * using mixed client and server times. NFS does
702 * not make any assumptions regarding the client
703 * and server clocks being synchronized.
704 */
705 if (vap->va_mtime.tv_sec != rp->r_attr.va_mtime.tv_sec ||
706 vap->va_mtime.tv_nsec != rp->r_attr.va_mtime.tv_nsec ||
707 vap->va_size != rp->r_attr.va_size) {
708 rp->r_time_attr_saved = now;
709 }
710
711 if ((mi->mi_flags & MI4_NOAC) || (vp->v_flag & VNOCACHE))
712 delta = 0;
713 else {
714 delta = now - rp->r_time_attr_saved;
715 if (vp->v_type == VDIR) {
716 if (delta < mi->mi_acdirmin)
717 delta = mi->mi_acdirmin;
718 else if (delta > mi->mi_acdirmax)
719 delta = mi->mi_acdirmax;
720 } else {
721 if (delta < mi->mi_acregmin)
722 delta = mi->mi_acregmin;
723 else if (delta > mi->mi_acregmax)
724 delta = mi->mi_acregmax;
725 }
726 }
727 rp->r_time_attr_inval = now + delta;
728
729 rp->r_attr = *vap;
730 if (garp->n4g_change_valid)
731 rp->r_change = garp->n4g_change;
732
733 /*
734 * The attributes that were returned may be valid and can
735 * be used, but they may not be allowed to be cached.
736 * Reset the timers to cause immediate invalidation and
737 * clear r_change so no VERIFY operations will suceed
738 */
739 if (garp->n4g_attrwhy == NFS4_GETATTR_NOCACHE_OK) {
740 rp->r_time_attr_inval = now;
741 rp->r_time_attr_saved = now;
742 rp->r_change = 0;
743 }
744
745 /*
746 * If mounted_on_fileid returned AND the object is a stub,
747 * then set object's va_nodeid to the mounted over fid
748 * returned by server.
749 *
750 * If mounted_on_fileid not provided/supported, then
751 * just set it to 0 for now. Eventually it would be
752 * better to set it to a hashed version of FH. This
753 * would probably be good enough to provide a unique
754 * fid/d_ino within a dir.
755 *
756 * We don't need to carry mounted_on_fileid in the
757 * rnode as long as the client never requests fileid
758 * without also requesting mounted_on_fileid. For
759 * now, it stays.
760 */
761 if (garp->n4g_mon_fid_valid) {
762 rp->r_mntd_fid = garp->n4g_mon_fid;
763
764 if (RP_ISSTUB(rp))
765 rp->r_attr.va_nodeid = rp->r_mntd_fid;
766 }
767
768 /*
769 * Check to see if there are valid pathconf bits to
770 * cache in the rnode.
771 */
772 if (garp->n4g_ext_res) {
773 if (garp->n4g_ext_res->n4g_pc4.pc4_cache_valid) {
774 rp->r_pathconf = garp->n4g_ext_res->n4g_pc4;
775 } else {
776 if (garp->n4g_ext_res->n4g_pc4.pc4_xattr_valid) {
777 rp->r_pathconf.pc4_xattr_valid = TRUE;
778 rp->r_pathconf.pc4_xattr_exists =
779 garp->n4g_ext_res->n4g_pc4.pc4_xattr_exists;
780 }
781 }
782 }
783 /*
784 * Update the size of the file if there is no cached data or if
785 * the cached data is clean and there is no data being written
786 * out.
787 */
788 if (rp->r_size != vap->va_size &&
789 (!vn_has_cached_data(vp) ||
790 (!(rp->r_flags & R4DIRTY) && rp->r_count == 0))) {
791 rp->r_size = vap->va_size;
792 }
793 nfs_setswaplike(vp, vap);
794 rp->r_flags &= ~R4WRITEMODIFIED;
795 }
796
797 /*
798 * Get attributes over-the-wire and update attributes cache
799 * if no error occurred in the over-the-wire operation.
800 * Return 0 if successful, otherwise error.
801 */
802 int
nfs4_getattr_otw(vnode_t * vp,nfs4_ga_res_t * garp,cred_t * cr,int get_acl)803 nfs4_getattr_otw(vnode_t *vp, nfs4_ga_res_t *garp, cred_t *cr, int get_acl)
804 {
805 mntinfo4_t *mi = VTOMI4(vp);
806 hrtime_t t;
807 nfs4_recov_state_t recov_state;
808 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
809
810 recov_state.rs_flags = 0;
811 recov_state.rs_num_retry_despite_err = 0;
812
813 /* Save the original mount point security flavor */
814 (void) save_mnt_secinfo(mi->mi_curr_serv);
815
816 recov_retry:
817
818 if ((e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR,
819 &recov_state, NULL))) {
820 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
821 return (e.error);
822 }
823
824 t = gethrtime();
825
826 nfs4_getattr_otw_norecovery(vp, garp, &e, cr, get_acl);
827
828 if (nfs4_needs_recovery(&e, FALSE, vp->v_vfsp)) {
829 if (nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
830 NULL, OP_GETATTR, NULL, NULL, NULL) == FALSE) {
831 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR,
832 &recov_state, 1);
833 goto recov_retry;
834 }
835 }
836
837 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state, 0);
838
839 if (!e.error) {
840 if (e.stat == NFS4_OK) {
841 nfs4_attr_cache(vp, garp, t, cr, FALSE, NULL);
842 } else {
843 e.error = geterrno4(e.stat);
844
845 nfs4_purge_stale_fh(e.error, vp, cr);
846 }
847 }
848
849 /*
850 * If getattr a node that is a stub for a crossed
851 * mount point, keep the original secinfo flavor for
852 * the current file system, not the crossed one.
853 */
854 (void) check_mnt_secinfo(mi->mi_curr_serv, vp);
855
856 return (e.error);
857 }
858
859 /*
860 * Generate a compound to get attributes over-the-wire.
861 */
862 void
nfs4_getattr_otw_norecovery(vnode_t * vp,nfs4_ga_res_t * garp,nfs4_error_t * ep,cred_t * cr,int get_acl)863 nfs4_getattr_otw_norecovery(vnode_t *vp, nfs4_ga_res_t *garp,
864 nfs4_error_t *ep, cred_t *cr, int get_acl)
865 {
866 COMPOUND4args_clnt args;
867 COMPOUND4res_clnt res;
868 int doqueue;
869 rnode4_t *rp = VTOR4(vp);
870 nfs_argop4 argop[2];
871
872 args.ctag = TAG_GETATTR;
873
874 args.array_len = 2;
875 args.array = argop;
876
877 /* putfh */
878 argop[0].argop = OP_CPUTFH;
879 argop[0].nfs_argop4_u.opcputfh.sfh = rp->r_fh;
880
881 /* getattr */
882 /*
883 * Unlike nfs version 2 and 3, where getattr returns all the
884 * attributes, nfs version 4 returns only the ones explicitly
885 * asked for. This creates problems, as some system functions
886 * (e.g. cache check) require certain attributes and if the
887 * cached node lacks some attributes such as uid/gid, it can
888 * affect system utilities (e.g. "ls") that rely on the information
889 * to be there. This can lead to anything from system crashes to
890 * corrupted information processed by user apps.
891 * So to ensure that all bases are covered, request at least
892 * the AT_ALL attribute mask.
893 */
894 argop[1].argop = OP_GETATTR;
895 argop[1].nfs_argop4_u.opgetattr.attr_request = NFS4_VATTR_MASK;
896 if (get_acl)
897 argop[1].nfs_argop4_u.opgetattr.attr_request |= FATTR4_ACL_MASK;
898 argop[1].nfs_argop4_u.opgetattr.mi = VTOMI4(vp);
899
900 doqueue = 1;
901
902 rfs4call(VTOMI4(vp), &args, &res, cr, &doqueue, 0, ep);
903
904 if (ep->error)
905 return;
906
907 if (res.status != NFS4_OK) {
908 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
909 return;
910 }
911
912 *garp = res.array[1].nfs_resop4_u.opgetattr.ga_res;
913
914 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
915 }
916
917 /*
918 * Return either cached or remote attributes. If get remote attr
919 * use them to check and invalidate caches, then cache the new attributes.
920 */
921 int
nfs4getattr(vnode_t * vp,vattr_t * vap,cred_t * cr)922 nfs4getattr(vnode_t *vp, vattr_t *vap, cred_t *cr)
923 {
924 int error;
925 rnode4_t *rp;
926 nfs4_ga_res_t gar;
927
928 ASSERT(nfs4_consistent_type(vp));
929
930 /*
931 * If we've got cached attributes, we're done, otherwise go
932 * to the server to get attributes, which will update the cache
933 * in the process. Either way, use the cached attributes for
934 * the caller's vattr_t.
935 *
936 * Note that we ignore the gar set by the OTW call: the attr caching
937 * code may make adjustments when storing to the rnode, and we want
938 * to see those changes here.
939 */
940 rp = VTOR4(vp);
941 error = 0;
942 mutex_enter(&rp->r_statelock);
943 if (!ATTRCACHE4_VALID(vp)) {
944 mutex_exit(&rp->r_statelock);
945 error = nfs4_getattr_otw(vp, &gar, cr, 0);
946 mutex_enter(&rp->r_statelock);
947 }
948
949 if (!error)
950 *vap = rp->r_attr;
951
952 /* Return the client's view of file size */
953 vap->va_size = rp->r_size;
954
955 mutex_exit(&rp->r_statelock);
956
957 ASSERT(nfs4_consistent_type(vp));
958
959 return (error);
960 }
961
962 int
nfs4_attr_otw(vnode_t * vp,nfs4_tag_type_t tag_type,nfs4_ga_res_t * garp,bitmap4 reqbitmap,cred_t * cr)963 nfs4_attr_otw(vnode_t *vp, nfs4_tag_type_t tag_type,
964 nfs4_ga_res_t *garp, bitmap4 reqbitmap, cred_t *cr)
965 {
966 COMPOUND4args_clnt args;
967 COMPOUND4res_clnt res;
968 int doqueue;
969 nfs_argop4 argop[2];
970 mntinfo4_t *mi = VTOMI4(vp);
971 bool_t needrecov = FALSE;
972 nfs4_recov_state_t recov_state;
973 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
974 nfs4_ga_ext_res_t *gerp;
975
976 recov_state.rs_flags = 0;
977 recov_state.rs_num_retry_despite_err = 0;
978
979 recov_retry:
980 args.ctag = tag_type;
981
982 args.array_len = 2;
983 args.array = argop;
984
985 e.error = nfs4_start_fop(mi, vp, NULL, OH_GETATTR, &recov_state, NULL);
986 if (e.error)
987 return (e.error);
988
989 /* putfh */
990 argop[0].argop = OP_CPUTFH;
991 argop[0].nfs_argop4_u.opcputfh.sfh = VTOR4(vp)->r_fh;
992
993 /* getattr */
994 argop[1].argop = OP_GETATTR;
995 argop[1].nfs_argop4_u.opgetattr.attr_request = reqbitmap;
996 argop[1].nfs_argop4_u.opgetattr.mi = mi;
997
998 doqueue = 1;
999
1000 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
1001 "nfs4_attr_otw: %s call, rp %s", needrecov ? "recov" : "first",
1002 rnode4info(VTOR4(vp))));
1003
1004 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
1005
1006 needrecov = nfs4_needs_recovery(&e, FALSE, vp->v_vfsp);
1007 if (!needrecov && e.error) {
1008 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1009 needrecov);
1010 return (e.error);
1011 }
1012
1013 if (needrecov) {
1014 bool_t abort;
1015
1016 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
1017 "nfs4_attr_otw: initiating recovery\n"));
1018
1019 abort = nfs4_start_recovery(&e, VTOMI4(vp), vp, NULL, NULL,
1020 NULL, OP_GETATTR, NULL, NULL, NULL);
1021 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1022 needrecov);
1023 if (!e.error) {
1024 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1025 e.error = geterrno4(res.status);
1026 }
1027 if (abort == FALSE)
1028 goto recov_retry;
1029 return (e.error);
1030 }
1031
1032 if (res.status) {
1033 e.error = geterrno4(res.status);
1034 } else {
1035 gerp = garp->n4g_ext_res;
1036 bcopy(&res.array[1].nfs_resop4_u.opgetattr.ga_res,
1037 garp, sizeof (nfs4_ga_res_t));
1038 garp->n4g_ext_res = gerp;
1039 if (garp->n4g_ext_res &&
1040 res.array[1].nfs_resop4_u.opgetattr.ga_res.n4g_ext_res)
1041 bcopy(res.array[1].nfs_resop4_u.opgetattr.
1042 ga_res.n4g_ext_res,
1043 garp->n4g_ext_res, sizeof (nfs4_ga_ext_res_t));
1044 }
1045 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
1046 nfs4_end_fop(VTOMI4(vp), vp, NULL, OH_GETATTR, &recov_state,
1047 needrecov);
1048 return (e.error);
1049 }
1050
1051 /*
1052 * Asynchronous I/O parameters. nfs_async_threads is the high-water mark
1053 * for the demand-based allocation of async threads per-mount. The
1054 * nfs_async_timeout is the amount of time a thread will live after it
1055 * becomes idle, unless new I/O requests are received before the thread
1056 * dies. See nfs4_async_putpage and nfs4_async_start.
1057 */
1058
1059 static void nfs4_async_start(struct vfs *);
1060 static void nfs4_async_pgops_start(struct vfs *);
1061 static void nfs4_async_common_start(struct vfs *, int);
1062
1063 static void
free_async_args4(struct nfs4_async_reqs * args)1064 free_async_args4(struct nfs4_async_reqs *args)
1065 {
1066 rnode4_t *rp;
1067
1068 if (args->a_io != NFS4_INACTIVE) {
1069 rp = VTOR4(args->a_vp);
1070 mutex_enter(&rp->r_statelock);
1071 rp->r_count--;
1072 if (args->a_io == NFS4_PUTAPAGE ||
1073 args->a_io == NFS4_PAGEIO)
1074 rp->r_awcount--;
1075 cv_broadcast(&rp->r_cv);
1076 mutex_exit(&rp->r_statelock);
1077 VN_RELE(args->a_vp);
1078 }
1079 crfree(args->a_cred);
1080 kmem_free(args, sizeof (*args));
1081 }
1082
1083 /*
1084 * Cross-zone thread creation and NFS access is disallowed, yet fsflush() and
1085 * pageout(), running in the global zone, have legitimate reasons to do
1086 * VOP_PUTPAGE(B_ASYNC) on other zones' NFS mounts. We avoid the problem by
1087 * use of a a per-mount "asynchronous requests manager thread" which is
1088 * signaled by the various asynchronous work routines when there is
1089 * asynchronous work to be done. It is responsible for creating new
1090 * worker threads if necessary, and notifying existing worker threads
1091 * that there is work to be done.
1092 *
1093 * In other words, it will "take the specifications from the customers and
1094 * give them to the engineers."
1095 *
1096 * Worker threads die off of their own accord if they are no longer
1097 * needed.
1098 *
1099 * This thread is killed when the zone is going away or the filesystem
1100 * is being unmounted.
1101 */
1102 void
nfs4_async_manager(vfs_t * vfsp)1103 nfs4_async_manager(vfs_t *vfsp)
1104 {
1105 callb_cpr_t cprinfo;
1106 mntinfo4_t *mi;
1107 uint_t max_threads;
1108
1109 mi = VFTOMI4(vfsp);
1110
1111 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1112 "nfs4_async_manager");
1113
1114 mutex_enter(&mi->mi_async_lock);
1115 /*
1116 * We want to stash the max number of threads that this mount was
1117 * allowed so we can use it later when the variable is set to zero as
1118 * part of the zone/mount going away.
1119 *
1120 * We want to be able to create at least one thread to handle
1121 * asynchronous inactive calls.
1122 */
1123 max_threads = MAX(mi->mi_max_threads, 1);
1124 /*
1125 * We don't want to wait for mi_max_threads to go to zero, since that
1126 * happens as part of a failed unmount, but this thread should only
1127 * exit when the mount is really going away.
1128 *
1129 * Once MI4_ASYNC_MGR_STOP is set, no more async operations will be
1130 * attempted: the various _async_*() functions know to do things
1131 * inline if mi_max_threads == 0. Henceforth we just drain out the
1132 * outstanding requests.
1133 *
1134 * Note that we still create zthreads even if we notice the zone is
1135 * shutting down (MI4_ASYNC_MGR_STOP is set); this may cause the zone
1136 * shutdown sequence to take slightly longer in some cases, but
1137 * doesn't violate the protocol, as all threads will exit as soon as
1138 * they're done processing the remaining requests.
1139 */
1140 for (;;) {
1141 while (mi->mi_async_req_count > 0) {
1142 /*
1143 * Paranoia: If the mount started out having
1144 * (mi->mi_max_threads == 0), and the value was
1145 * later changed (via a debugger or somesuch),
1146 * we could be confused since we will think we
1147 * can't create any threads, and the calling
1148 * code (which looks at the current value of
1149 * mi->mi_max_threads, now non-zero) thinks we
1150 * can.
1151 *
1152 * So, because we're paranoid, we create threads
1153 * up to the maximum of the original and the
1154 * current value. This means that future
1155 * (debugger-induced) alterations of
1156 * mi->mi_max_threads are ignored for our
1157 * purposes, but who told them they could change
1158 * random values on a live kernel anyhow?
1159 */
1160 if (mi->mi_threads[NFS4_ASYNC_QUEUE] <
1161 MAX(mi->mi_max_threads, max_threads)) {
1162 mi->mi_threads[NFS4_ASYNC_QUEUE]++;
1163 mutex_exit(&mi->mi_async_lock);
1164 MI4_HOLD(mi);
1165 VFS_HOLD(vfsp); /* hold for new thread */
1166 (void) zthread_create(NULL, 0, nfs4_async_start,
1167 vfsp, 0, minclsyspri);
1168 mutex_enter(&mi->mi_async_lock);
1169 } else if (mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] <
1170 NUM_ASYNC_PGOPS_THREADS) {
1171 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE]++;
1172 mutex_exit(&mi->mi_async_lock);
1173 MI4_HOLD(mi);
1174 VFS_HOLD(vfsp); /* hold for new thread */
1175 (void) zthread_create(NULL, 0,
1176 nfs4_async_pgops_start, vfsp, 0,
1177 minclsyspri);
1178 mutex_enter(&mi->mi_async_lock);
1179 }
1180 NFS4_WAKE_ASYNC_WORKER(mi->mi_async_work_cv);
1181 ASSERT(mi->mi_async_req_count != 0);
1182 mi->mi_async_req_count--;
1183 }
1184
1185 mutex_enter(&mi->mi_lock);
1186 if (mi->mi_flags & MI4_ASYNC_MGR_STOP) {
1187 mutex_exit(&mi->mi_lock);
1188 break;
1189 }
1190 mutex_exit(&mi->mi_lock);
1191
1192 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1193 cv_wait(&mi->mi_async_reqs_cv, &mi->mi_async_lock);
1194 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1195 }
1196
1197 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
1198 "nfs4_async_manager exiting for vfs %p\n", (void *)mi->mi_vfsp));
1199 /*
1200 * Let everyone know we're done.
1201 */
1202 mi->mi_manager_thread = NULL;
1203 /*
1204 * Wake up the inactive thread.
1205 */
1206 cv_broadcast(&mi->mi_inact_req_cv);
1207 /*
1208 * Wake up anyone sitting in nfs4_async_manager_stop()
1209 */
1210 cv_broadcast(&mi->mi_async_cv);
1211 /*
1212 * There is no explicit call to mutex_exit(&mi->mi_async_lock)
1213 * since CALLB_CPR_EXIT is actually responsible for releasing
1214 * 'mi_async_lock'.
1215 */
1216 CALLB_CPR_EXIT(&cprinfo);
1217 VFS_RELE(vfsp); /* release thread's hold */
1218 MI4_RELE(mi);
1219 zthread_exit();
1220 }
1221
1222 /*
1223 * Signal (and wait for) the async manager thread to clean up and go away.
1224 */
1225 void
nfs4_async_manager_stop(vfs_t * vfsp)1226 nfs4_async_manager_stop(vfs_t *vfsp)
1227 {
1228 mntinfo4_t *mi = VFTOMI4(vfsp);
1229
1230 mutex_enter(&mi->mi_async_lock);
1231 mutex_enter(&mi->mi_lock);
1232 mi->mi_flags |= MI4_ASYNC_MGR_STOP;
1233 mutex_exit(&mi->mi_lock);
1234 cv_broadcast(&mi->mi_async_reqs_cv);
1235 /*
1236 * Wait for the async manager thread to die.
1237 */
1238 while (mi->mi_manager_thread != NULL)
1239 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1240 mutex_exit(&mi->mi_async_lock);
1241 }
1242
1243 int
nfs4_async_readahead(vnode_t * vp,u_offset_t blkoff,caddr_t addr,struct seg * seg,cred_t * cr,void (* readahead)(vnode_t *,u_offset_t,caddr_t,struct seg *,cred_t *))1244 nfs4_async_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr,
1245 struct seg *seg, cred_t *cr, void (*readahead)(vnode_t *,
1246 u_offset_t, caddr_t, struct seg *, cred_t *))
1247 {
1248 rnode4_t *rp;
1249 mntinfo4_t *mi;
1250 struct nfs4_async_reqs *args;
1251
1252 rp = VTOR4(vp);
1253 ASSERT(rp->r_freef == NULL);
1254
1255 mi = VTOMI4(vp);
1256
1257 /*
1258 * If addr falls in a different segment, don't bother doing readahead.
1259 */
1260 if (addr >= seg->s_base + seg->s_size)
1261 return (-1);
1262
1263 /*
1264 * If we can't allocate a request structure, punt on the readahead.
1265 */
1266 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1267 return (-1);
1268
1269 /*
1270 * If a lock operation is pending, don't initiate any new
1271 * readaheads. Otherwise, bump r_count to indicate the new
1272 * asynchronous I/O.
1273 */
1274 if (!nfs_rw_tryenter(&rp->r_lkserlock, RW_READER)) {
1275 kmem_free(args, sizeof (*args));
1276 return (-1);
1277 }
1278 mutex_enter(&rp->r_statelock);
1279 rp->r_count++;
1280 mutex_exit(&rp->r_statelock);
1281 nfs_rw_exit(&rp->r_lkserlock);
1282
1283 args->a_next = NULL;
1284 #ifdef DEBUG
1285 args->a_queuer = curthread;
1286 #endif
1287 VN_HOLD(vp);
1288 args->a_vp = vp;
1289 ASSERT(cr != NULL);
1290 crhold(cr);
1291 args->a_cred = cr;
1292 args->a_io = NFS4_READ_AHEAD;
1293 args->a_nfs4_readahead = readahead;
1294 args->a_nfs4_blkoff = blkoff;
1295 args->a_nfs4_seg = seg;
1296 args->a_nfs4_addr = addr;
1297
1298 mutex_enter(&mi->mi_async_lock);
1299
1300 /*
1301 * If asyncio has been disabled, don't bother readahead.
1302 */
1303 if (mi->mi_max_threads == 0) {
1304 mutex_exit(&mi->mi_async_lock);
1305 goto noasync;
1306 }
1307
1308 /*
1309 * Link request structure into the async list and
1310 * wakeup async thread to do the i/o.
1311 */
1312 if (mi->mi_async_reqs[NFS4_READ_AHEAD] == NULL) {
1313 mi->mi_async_reqs[NFS4_READ_AHEAD] = args;
1314 mi->mi_async_tail[NFS4_READ_AHEAD] = args;
1315 } else {
1316 mi->mi_async_tail[NFS4_READ_AHEAD]->a_next = args;
1317 mi->mi_async_tail[NFS4_READ_AHEAD] = args;
1318 }
1319
1320 if (mi->mi_io_kstats) {
1321 mutex_enter(&mi->mi_lock);
1322 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1323 mutex_exit(&mi->mi_lock);
1324 }
1325
1326 mi->mi_async_req_count++;
1327 ASSERT(mi->mi_async_req_count != 0);
1328 cv_signal(&mi->mi_async_reqs_cv);
1329 mutex_exit(&mi->mi_async_lock);
1330 return (0);
1331
1332 noasync:
1333 mutex_enter(&rp->r_statelock);
1334 rp->r_count--;
1335 cv_broadcast(&rp->r_cv);
1336 mutex_exit(&rp->r_statelock);
1337 VN_RELE(vp);
1338 crfree(cr);
1339 kmem_free(args, sizeof (*args));
1340 return (-1);
1341 }
1342
1343 static void
nfs4_async_start(struct vfs * vfsp)1344 nfs4_async_start(struct vfs *vfsp)
1345 {
1346 nfs4_async_common_start(vfsp, NFS4_ASYNC_QUEUE);
1347 }
1348
1349 static void
nfs4_async_pgops_start(struct vfs * vfsp)1350 nfs4_async_pgops_start(struct vfs *vfsp)
1351 {
1352 nfs4_async_common_start(vfsp, NFS4_ASYNC_PGOPS_QUEUE);
1353 }
1354
1355 /*
1356 * The async queues for each mounted file system are arranged as a
1357 * set of queues, one for each async i/o type. Requests are taken
1358 * from the queues in a round-robin fashion. A number of consecutive
1359 * requests are taken from each queue before moving on to the next
1360 * queue. This functionality may allow the NFS Version 2 server to do
1361 * write clustering, even if the client is mixing writes and reads
1362 * because it will take multiple write requests from the queue
1363 * before processing any of the other async i/o types.
1364 *
1365 * XXX The nfs4_async_common_start thread is unsafe in the light of the present
1366 * model defined by cpr to suspend the system. Specifically over the
1367 * wire calls are cpr-unsafe. The thread should be reevaluated in
1368 * case of future updates to the cpr model.
1369 */
1370 static void
nfs4_async_common_start(struct vfs * vfsp,int async_queue)1371 nfs4_async_common_start(struct vfs *vfsp, int async_queue)
1372 {
1373 struct nfs4_async_reqs *args;
1374 mntinfo4_t *mi = VFTOMI4(vfsp);
1375 clock_t time_left = 1;
1376 callb_cpr_t cprinfo;
1377 int i;
1378 extern int nfs_async_timeout;
1379 int async_types;
1380 kcondvar_t *async_work_cv;
1381
1382 if (async_queue == NFS4_ASYNC_QUEUE) {
1383 async_types = NFS4_ASYNC_TYPES;
1384 async_work_cv = &mi->mi_async_work_cv[NFS4_ASYNC_QUEUE];
1385 } else {
1386 async_types = NFS4_ASYNC_PGOPS_TYPES;
1387 async_work_cv = &mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE];
1388 }
1389
1390 /*
1391 * Dynamic initialization of nfs_async_timeout to allow nfs to be
1392 * built in an implementation independent manner.
1393 */
1394 if (nfs_async_timeout == -1)
1395 nfs_async_timeout = NFS_ASYNC_TIMEOUT;
1396
1397 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr, "nas");
1398
1399 mutex_enter(&mi->mi_async_lock);
1400 for (;;) {
1401 /*
1402 * Find the next queue containing an entry. We start
1403 * at the current queue pointer and then round robin
1404 * through all of them until we either find a non-empty
1405 * queue or have looked through all of them.
1406 */
1407 for (i = 0; i < async_types; i++) {
1408 args = *mi->mi_async_curr[async_queue];
1409 if (args != NULL)
1410 break;
1411 mi->mi_async_curr[async_queue]++;
1412 if (mi->mi_async_curr[async_queue] ==
1413 &mi->mi_async_reqs[async_types]) {
1414 mi->mi_async_curr[async_queue] =
1415 &mi->mi_async_reqs[0];
1416 }
1417 }
1418 /*
1419 * If we didn't find a entry, then block until woken up
1420 * again and then look through the queues again.
1421 */
1422 if (args == NULL) {
1423 /*
1424 * Exiting is considered to be safe for CPR as well
1425 */
1426 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1427
1428 /*
1429 * Wakeup thread waiting to unmount the file
1430 * system only if all async threads are inactive.
1431 *
1432 * If we've timed-out and there's nothing to do,
1433 * then get rid of this thread.
1434 */
1435 if (mi->mi_max_threads == 0 || time_left <= 0) {
1436 --mi->mi_threads[async_queue];
1437
1438 if (mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 &&
1439 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0)
1440 cv_signal(&mi->mi_async_cv);
1441 CALLB_CPR_EXIT(&cprinfo);
1442 VFS_RELE(vfsp); /* release thread's hold */
1443 MI4_RELE(mi);
1444 zthread_exit();
1445 /* NOTREACHED */
1446 }
1447 time_left = cv_reltimedwait(async_work_cv,
1448 &mi->mi_async_lock, nfs_async_timeout,
1449 TR_CLOCK_TICK);
1450
1451 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1452
1453 continue;
1454 } else {
1455 time_left = 1;
1456 }
1457
1458 /*
1459 * Remove the request from the async queue and then
1460 * update the current async request queue pointer. If
1461 * the current queue is empty or we have removed enough
1462 * consecutive entries from it, then reset the counter
1463 * for this queue and then move the current pointer to
1464 * the next queue.
1465 */
1466 *mi->mi_async_curr[async_queue] = args->a_next;
1467 if (*mi->mi_async_curr[async_queue] == NULL ||
1468 --mi->mi_async_clusters[args->a_io] == 0) {
1469 mi->mi_async_clusters[args->a_io] =
1470 mi->mi_async_init_clusters;
1471 mi->mi_async_curr[async_queue]++;
1472 if (mi->mi_async_curr[async_queue] ==
1473 &mi->mi_async_reqs[async_types]) {
1474 mi->mi_async_curr[async_queue] =
1475 &mi->mi_async_reqs[0];
1476 }
1477 }
1478
1479 if (args->a_io != NFS4_INACTIVE && mi->mi_io_kstats) {
1480 mutex_enter(&mi->mi_lock);
1481 kstat_waitq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1482 mutex_exit(&mi->mi_lock);
1483 }
1484
1485 mutex_exit(&mi->mi_async_lock);
1486
1487 /*
1488 * Obtain arguments from the async request structure.
1489 */
1490 if (args->a_io == NFS4_READ_AHEAD && mi->mi_max_threads > 0) {
1491 (*args->a_nfs4_readahead)(args->a_vp,
1492 args->a_nfs4_blkoff, args->a_nfs4_addr,
1493 args->a_nfs4_seg, args->a_cred);
1494 } else if (args->a_io == NFS4_PUTAPAGE) {
1495 (void) (*args->a_nfs4_putapage)(args->a_vp,
1496 args->a_nfs4_pp, args->a_nfs4_off,
1497 args->a_nfs4_len, args->a_nfs4_flags,
1498 args->a_cred);
1499 } else if (args->a_io == NFS4_PAGEIO) {
1500 (void) (*args->a_nfs4_pageio)(args->a_vp,
1501 args->a_nfs4_pp, args->a_nfs4_off,
1502 args->a_nfs4_len, args->a_nfs4_flags,
1503 args->a_cred);
1504 } else if (args->a_io == NFS4_READDIR) {
1505 (void) ((*args->a_nfs4_readdir)(args->a_vp,
1506 args->a_nfs4_rdc, args->a_cred));
1507 } else if (args->a_io == NFS4_COMMIT) {
1508 (*args->a_nfs4_commit)(args->a_vp, args->a_nfs4_plist,
1509 args->a_nfs4_offset, args->a_nfs4_count,
1510 args->a_cred);
1511 } else if (args->a_io == NFS4_INACTIVE) {
1512 nfs4_inactive_otw(args->a_vp, args->a_cred);
1513 }
1514
1515 /*
1516 * Now, release the vnode and free the credentials
1517 * structure.
1518 */
1519 free_async_args4(args);
1520 /*
1521 * Reacquire the mutex because it will be needed above.
1522 */
1523 mutex_enter(&mi->mi_async_lock);
1524 }
1525 }
1526
1527 /*
1528 * nfs4_inactive_thread - look for vnodes that need over-the-wire calls as
1529 * part of VOP_INACTIVE.
1530 */
1531
1532 void
nfs4_inactive_thread(mntinfo4_t * mi)1533 nfs4_inactive_thread(mntinfo4_t *mi)
1534 {
1535 struct nfs4_async_reqs *args;
1536 callb_cpr_t cprinfo;
1537 vfs_t *vfsp = mi->mi_vfsp;
1538
1539 CALLB_CPR_INIT(&cprinfo, &mi->mi_async_lock, callb_generic_cpr,
1540 "nfs4_inactive_thread");
1541
1542 for (;;) {
1543 mutex_enter(&mi->mi_async_lock);
1544 args = mi->mi_async_reqs[NFS4_INACTIVE];
1545 if (args == NULL) {
1546 mutex_enter(&mi->mi_lock);
1547 /*
1548 * We don't want to exit until the async manager is done
1549 * with its work; hence the check for mi_manager_thread
1550 * being NULL.
1551 *
1552 * The async manager thread will cv_broadcast() on
1553 * mi_inact_req_cv when it's done, at which point we'll
1554 * wake up and exit.
1555 */
1556 if (mi->mi_manager_thread == NULL)
1557 goto die;
1558 mi->mi_flags |= MI4_INACTIVE_IDLE;
1559 mutex_exit(&mi->mi_lock);
1560 cv_signal(&mi->mi_async_cv);
1561 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1562 cv_wait(&mi->mi_inact_req_cv, &mi->mi_async_lock);
1563 CALLB_CPR_SAFE_END(&cprinfo, &mi->mi_async_lock);
1564 mutex_exit(&mi->mi_async_lock);
1565 } else {
1566 mutex_enter(&mi->mi_lock);
1567 mi->mi_flags &= ~MI4_INACTIVE_IDLE;
1568 mutex_exit(&mi->mi_lock);
1569 mi->mi_async_reqs[NFS4_INACTIVE] = args->a_next;
1570 mutex_exit(&mi->mi_async_lock);
1571 nfs4_inactive_otw(args->a_vp, args->a_cred);
1572 crfree(args->a_cred);
1573 kmem_free(args, sizeof (*args));
1574 }
1575 }
1576 die:
1577 mutex_exit(&mi->mi_lock);
1578 mi->mi_inactive_thread = NULL;
1579 cv_signal(&mi->mi_async_cv);
1580
1581 /*
1582 * There is no explicit call to mutex_exit(&mi->mi_async_lock) since
1583 * CALLB_CPR_EXIT is actually responsible for releasing 'mi_async_lock'.
1584 */
1585 CALLB_CPR_EXIT(&cprinfo);
1586
1587 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
1588 "nfs4_inactive_thread exiting for vfs %p\n", (void *)vfsp));
1589
1590 MI4_RELE(mi);
1591 zthread_exit();
1592 /* NOTREACHED */
1593 }
1594
1595 /*
1596 * nfs_async_stop:
1597 * Wait for all outstanding putpage operations and the inactive thread to
1598 * complete; nfs4_async_stop_sig() without interruptibility.
1599 */
1600 void
nfs4_async_stop(struct vfs * vfsp)1601 nfs4_async_stop(struct vfs *vfsp)
1602 {
1603 mntinfo4_t *mi = VFTOMI4(vfsp);
1604
1605 /*
1606 * Wait for all outstanding async operations to complete and for
1607 * worker threads to exit.
1608 */
1609 mutex_enter(&mi->mi_async_lock);
1610 mi->mi_max_threads = 0;
1611 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
1612 while (mi->mi_threads[NFS4_ASYNC_QUEUE] != 0 ||
1613 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] != 0)
1614 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1615
1616 /*
1617 * Wait for the inactive thread to finish doing what it's doing. It
1618 * won't exit until the last reference to the vfs_t goes away.
1619 */
1620 if (mi->mi_inactive_thread != NULL) {
1621 mutex_enter(&mi->mi_lock);
1622 while (!(mi->mi_flags & MI4_INACTIVE_IDLE) ||
1623 (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) {
1624 mutex_exit(&mi->mi_lock);
1625 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
1626 mutex_enter(&mi->mi_lock);
1627 }
1628 mutex_exit(&mi->mi_lock);
1629 }
1630 mutex_exit(&mi->mi_async_lock);
1631 }
1632
1633 /*
1634 * nfs_async_stop_sig:
1635 * Wait for all outstanding putpage operations and the inactive thread to
1636 * complete. If a signal is delivered we will abort and return non-zero;
1637 * otherwise return 0. Since this routine is called from nfs4_unmount, we
1638 * need to make it interruptible.
1639 */
1640 int
nfs4_async_stop_sig(struct vfs * vfsp)1641 nfs4_async_stop_sig(struct vfs *vfsp)
1642 {
1643 mntinfo4_t *mi = VFTOMI4(vfsp);
1644 ushort_t omax;
1645 bool_t intr = FALSE;
1646
1647 /*
1648 * Wait for all outstanding putpage operations to complete and for
1649 * worker threads to exit.
1650 */
1651 mutex_enter(&mi->mi_async_lock);
1652 omax = mi->mi_max_threads;
1653 mi->mi_max_threads = 0;
1654 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
1655 while (mi->mi_threads[NFS4_ASYNC_QUEUE] != 0 ||
1656 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] != 0) {
1657 if (!cv_wait_sig(&mi->mi_async_cv, &mi->mi_async_lock)) {
1658 intr = TRUE;
1659 goto interrupted;
1660 }
1661 }
1662
1663 /*
1664 * Wait for the inactive thread to finish doing what it's doing. It
1665 * won't exit until the a last reference to the vfs_t goes away.
1666 */
1667 if (mi->mi_inactive_thread != NULL) {
1668 mutex_enter(&mi->mi_lock);
1669 while (!(mi->mi_flags & MI4_INACTIVE_IDLE) ||
1670 (mi->mi_async_reqs[NFS4_INACTIVE] != NULL)) {
1671 mutex_exit(&mi->mi_lock);
1672 if (!cv_wait_sig(&mi->mi_async_cv,
1673 &mi->mi_async_lock)) {
1674 intr = TRUE;
1675 goto interrupted;
1676 }
1677 mutex_enter(&mi->mi_lock);
1678 }
1679 mutex_exit(&mi->mi_lock);
1680 }
1681 interrupted:
1682 if (intr)
1683 mi->mi_max_threads = omax;
1684 mutex_exit(&mi->mi_async_lock);
1685
1686 return (intr);
1687 }
1688
1689 int
nfs4_async_putapage(vnode_t * vp,page_t * pp,u_offset_t off,size_t len,int flags,cred_t * cr,int (* putapage)(vnode_t *,page_t *,u_offset_t,size_t,int,cred_t *))1690 nfs4_async_putapage(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
1691 int flags, cred_t *cr, int (*putapage)(vnode_t *, page_t *,
1692 u_offset_t, size_t, int, cred_t *))
1693 {
1694 rnode4_t *rp;
1695 mntinfo4_t *mi;
1696 struct nfs4_async_reqs *args;
1697
1698 ASSERT(flags & B_ASYNC);
1699 ASSERT(vp->v_vfsp != NULL);
1700
1701 rp = VTOR4(vp);
1702 ASSERT(rp->r_count > 0);
1703
1704 mi = VTOMI4(vp);
1705
1706 /*
1707 * If we can't allocate a request structure, do the putpage
1708 * operation synchronously in this thread's context.
1709 */
1710 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1711 goto noasync;
1712
1713 args->a_next = NULL;
1714 #ifdef DEBUG
1715 args->a_queuer = curthread;
1716 #endif
1717 VN_HOLD(vp);
1718 args->a_vp = vp;
1719 ASSERT(cr != NULL);
1720 crhold(cr);
1721 args->a_cred = cr;
1722 args->a_io = NFS4_PUTAPAGE;
1723 args->a_nfs4_putapage = putapage;
1724 args->a_nfs4_pp = pp;
1725 args->a_nfs4_off = off;
1726 args->a_nfs4_len = (uint_t)len;
1727 args->a_nfs4_flags = flags;
1728
1729 mutex_enter(&mi->mi_async_lock);
1730
1731 /*
1732 * If asyncio has been disabled, then make a synchronous request.
1733 * This check is done a second time in case async io was diabled
1734 * while this thread was blocked waiting for memory pressure to
1735 * reduce or for the queue to drain.
1736 */
1737 if (mi->mi_max_threads == 0) {
1738 mutex_exit(&mi->mi_async_lock);
1739
1740 VN_RELE(vp);
1741 crfree(cr);
1742 kmem_free(args, sizeof (*args));
1743 goto noasync;
1744 }
1745
1746 /*
1747 * Link request structure into the async list and
1748 * wakeup async thread to do the i/o.
1749 */
1750 if (mi->mi_async_reqs[NFS4_PUTAPAGE] == NULL) {
1751 mi->mi_async_reqs[NFS4_PUTAPAGE] = args;
1752 mi->mi_async_tail[NFS4_PUTAPAGE] = args;
1753 } else {
1754 mi->mi_async_tail[NFS4_PUTAPAGE]->a_next = args;
1755 mi->mi_async_tail[NFS4_PUTAPAGE] = args;
1756 }
1757
1758 mutex_enter(&rp->r_statelock);
1759 rp->r_count++;
1760 rp->r_awcount++;
1761 mutex_exit(&rp->r_statelock);
1762
1763 if (mi->mi_io_kstats) {
1764 mutex_enter(&mi->mi_lock);
1765 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1766 mutex_exit(&mi->mi_lock);
1767 }
1768
1769 mi->mi_async_req_count++;
1770 ASSERT(mi->mi_async_req_count != 0);
1771 cv_signal(&mi->mi_async_reqs_cv);
1772 mutex_exit(&mi->mi_async_lock);
1773 return (0);
1774
1775 noasync:
1776
1777 if (curproc == proc_pageout || curproc == proc_fsflush) {
1778 /*
1779 * If we get here in the context of the pageout/fsflush,
1780 * or we have run out of memory or we're attempting to
1781 * unmount we refuse to do a sync write, because this may
1782 * hang pageout/fsflush and the machine. In this case,
1783 * we just re-mark the page as dirty and punt on the page.
1784 *
1785 * Make sure B_FORCE isn't set. We can re-mark the
1786 * pages as dirty and unlock the pages in one swoop by
1787 * passing in B_ERROR to pvn_write_done(). However,
1788 * we should make sure B_FORCE isn't set - we don't
1789 * want the page tossed before it gets written out.
1790 */
1791 if (flags & B_FORCE)
1792 flags &= ~(B_INVAL | B_FORCE);
1793 pvn_write_done(pp, flags | B_ERROR);
1794 return (0);
1795 }
1796
1797 if (nfs_zone() != mi->mi_zone) {
1798 /*
1799 * So this was a cross-zone sync putpage.
1800 *
1801 * We pass in B_ERROR to pvn_write_done() to re-mark the pages
1802 * as dirty and unlock them.
1803 *
1804 * We don't want to clear B_FORCE here as the caller presumably
1805 * knows what they're doing if they set it.
1806 */
1807 pvn_write_done(pp, flags | B_ERROR);
1808 return (EPERM);
1809 }
1810 return ((*putapage)(vp, pp, off, len, flags, cr));
1811 }
1812
1813 int
nfs4_async_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr,int (* pageio)(vnode_t *,page_t *,u_offset_t,size_t,int,cred_t *))1814 nfs4_async_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
1815 int flags, cred_t *cr, int (*pageio)(vnode_t *, page_t *, u_offset_t,
1816 size_t, int, cred_t *))
1817 {
1818 rnode4_t *rp;
1819 mntinfo4_t *mi;
1820 struct nfs4_async_reqs *args;
1821
1822 ASSERT(flags & B_ASYNC);
1823 ASSERT(vp->v_vfsp != NULL);
1824
1825 rp = VTOR4(vp);
1826 ASSERT(rp->r_count > 0);
1827
1828 mi = VTOMI4(vp);
1829
1830 /*
1831 * If we can't allocate a request structure, do the pageio
1832 * request synchronously in this thread's context.
1833 */
1834 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1835 goto noasync;
1836
1837 args->a_next = NULL;
1838 #ifdef DEBUG
1839 args->a_queuer = curthread;
1840 #endif
1841 VN_HOLD(vp);
1842 args->a_vp = vp;
1843 ASSERT(cr != NULL);
1844 crhold(cr);
1845 args->a_cred = cr;
1846 args->a_io = NFS4_PAGEIO;
1847 args->a_nfs4_pageio = pageio;
1848 args->a_nfs4_pp = pp;
1849 args->a_nfs4_off = io_off;
1850 args->a_nfs4_len = (uint_t)io_len;
1851 args->a_nfs4_flags = flags;
1852
1853 mutex_enter(&mi->mi_async_lock);
1854
1855 /*
1856 * If asyncio has been disabled, then make a synchronous request.
1857 * This check is done a second time in case async io was diabled
1858 * while this thread was blocked waiting for memory pressure to
1859 * reduce or for the queue to drain.
1860 */
1861 if (mi->mi_max_threads == 0) {
1862 mutex_exit(&mi->mi_async_lock);
1863
1864 VN_RELE(vp);
1865 crfree(cr);
1866 kmem_free(args, sizeof (*args));
1867 goto noasync;
1868 }
1869
1870 /*
1871 * Link request structure into the async list and
1872 * wakeup async thread to do the i/o.
1873 */
1874 if (mi->mi_async_reqs[NFS4_PAGEIO] == NULL) {
1875 mi->mi_async_reqs[NFS4_PAGEIO] = args;
1876 mi->mi_async_tail[NFS4_PAGEIO] = args;
1877 } else {
1878 mi->mi_async_tail[NFS4_PAGEIO]->a_next = args;
1879 mi->mi_async_tail[NFS4_PAGEIO] = args;
1880 }
1881
1882 mutex_enter(&rp->r_statelock);
1883 rp->r_count++;
1884 rp->r_awcount++;
1885 mutex_exit(&rp->r_statelock);
1886
1887 if (mi->mi_io_kstats) {
1888 mutex_enter(&mi->mi_lock);
1889 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1890 mutex_exit(&mi->mi_lock);
1891 }
1892
1893 mi->mi_async_req_count++;
1894 ASSERT(mi->mi_async_req_count != 0);
1895 cv_signal(&mi->mi_async_reqs_cv);
1896 mutex_exit(&mi->mi_async_lock);
1897 return (0);
1898
1899 noasync:
1900 /*
1901 * If we can't do it ASYNC, for reads we do nothing (but cleanup
1902 * the page list), for writes we do it synchronously, except for
1903 * proc_pageout/proc_fsflush as described below.
1904 */
1905 if (flags & B_READ) {
1906 pvn_read_done(pp, flags | B_ERROR);
1907 return (0);
1908 }
1909
1910 if (curproc == proc_pageout || curproc == proc_fsflush) {
1911 /*
1912 * If we get here in the context of the pageout/fsflush,
1913 * we refuse to do a sync write, because this may hang
1914 * pageout/fsflush (and the machine). In this case, we just
1915 * re-mark the page as dirty and punt on the page.
1916 *
1917 * Make sure B_FORCE isn't set. We can re-mark the
1918 * pages as dirty and unlock the pages in one swoop by
1919 * passing in B_ERROR to pvn_write_done(). However,
1920 * we should make sure B_FORCE isn't set - we don't
1921 * want the page tossed before it gets written out.
1922 */
1923 if (flags & B_FORCE)
1924 flags &= ~(B_INVAL | B_FORCE);
1925 pvn_write_done(pp, flags | B_ERROR);
1926 return (0);
1927 }
1928
1929 if (nfs_zone() != mi->mi_zone) {
1930 /*
1931 * So this was a cross-zone sync pageio. We pass in B_ERROR
1932 * to pvn_write_done() to re-mark the pages as dirty and unlock
1933 * them.
1934 *
1935 * We don't want to clear B_FORCE here as the caller presumably
1936 * knows what they're doing if they set it.
1937 */
1938 pvn_write_done(pp, flags | B_ERROR);
1939 return (EPERM);
1940 }
1941 return ((*pageio)(vp, pp, io_off, io_len, flags, cr));
1942 }
1943
1944 void
nfs4_async_readdir(vnode_t * vp,rddir4_cache * rdc,cred_t * cr,int (* readdir)(vnode_t *,rddir4_cache *,cred_t *))1945 nfs4_async_readdir(vnode_t *vp, rddir4_cache *rdc, cred_t *cr,
1946 int (*readdir)(vnode_t *, rddir4_cache *, cred_t *))
1947 {
1948 rnode4_t *rp;
1949 mntinfo4_t *mi;
1950 struct nfs4_async_reqs *args;
1951
1952 rp = VTOR4(vp);
1953 ASSERT(rp->r_freef == NULL);
1954
1955 mi = VTOMI4(vp);
1956
1957 /*
1958 * If we can't allocate a request structure, skip the readdir.
1959 */
1960 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
1961 goto noasync;
1962
1963 args->a_next = NULL;
1964 #ifdef DEBUG
1965 args->a_queuer = curthread;
1966 #endif
1967 VN_HOLD(vp);
1968 args->a_vp = vp;
1969 ASSERT(cr != NULL);
1970 crhold(cr);
1971 args->a_cred = cr;
1972 args->a_io = NFS4_READDIR;
1973 args->a_nfs4_readdir = readdir;
1974 args->a_nfs4_rdc = rdc;
1975
1976 mutex_enter(&mi->mi_async_lock);
1977
1978 /*
1979 * If asyncio has been disabled, then skip this request
1980 */
1981 if (mi->mi_max_threads == 0) {
1982 mutex_exit(&mi->mi_async_lock);
1983
1984 VN_RELE(vp);
1985 crfree(cr);
1986 kmem_free(args, sizeof (*args));
1987 goto noasync;
1988 }
1989
1990 /*
1991 * Link request structure into the async list and
1992 * wakeup async thread to do the i/o.
1993 */
1994 if (mi->mi_async_reqs[NFS4_READDIR] == NULL) {
1995 mi->mi_async_reqs[NFS4_READDIR] = args;
1996 mi->mi_async_tail[NFS4_READDIR] = args;
1997 } else {
1998 mi->mi_async_tail[NFS4_READDIR]->a_next = args;
1999 mi->mi_async_tail[NFS4_READDIR] = args;
2000 }
2001
2002 mutex_enter(&rp->r_statelock);
2003 rp->r_count++;
2004 mutex_exit(&rp->r_statelock);
2005
2006 if (mi->mi_io_kstats) {
2007 mutex_enter(&mi->mi_lock);
2008 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
2009 mutex_exit(&mi->mi_lock);
2010 }
2011
2012 mi->mi_async_req_count++;
2013 ASSERT(mi->mi_async_req_count != 0);
2014 cv_signal(&mi->mi_async_reqs_cv);
2015 mutex_exit(&mi->mi_async_lock);
2016 return;
2017
2018 noasync:
2019 mutex_enter(&rp->r_statelock);
2020 rdc->entries = NULL;
2021 /*
2022 * Indicate that no one is trying to fill this entry and
2023 * it still needs to be filled.
2024 */
2025 rdc->flags &= ~RDDIR;
2026 rdc->flags |= RDDIRREQ;
2027 rddir4_cache_rele(rp, rdc);
2028 mutex_exit(&rp->r_statelock);
2029 }
2030
2031 void
nfs4_async_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr,void (* commit)(vnode_t *,page_t *,offset3,count3,cred_t *))2032 nfs4_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
2033 cred_t *cr, void (*commit)(vnode_t *, page_t *, offset3, count3,
2034 cred_t *))
2035 {
2036 rnode4_t *rp;
2037 mntinfo4_t *mi;
2038 struct nfs4_async_reqs *args;
2039 page_t *pp;
2040
2041 rp = VTOR4(vp);
2042 mi = VTOMI4(vp);
2043
2044 /*
2045 * If we can't allocate a request structure, do the commit
2046 * operation synchronously in this thread's context.
2047 */
2048 if ((args = kmem_alloc(sizeof (*args), KM_NOSLEEP)) == NULL)
2049 goto noasync;
2050
2051 args->a_next = NULL;
2052 #ifdef DEBUG
2053 args->a_queuer = curthread;
2054 #endif
2055 VN_HOLD(vp);
2056 args->a_vp = vp;
2057 ASSERT(cr != NULL);
2058 crhold(cr);
2059 args->a_cred = cr;
2060 args->a_io = NFS4_COMMIT;
2061 args->a_nfs4_commit = commit;
2062 args->a_nfs4_plist = plist;
2063 args->a_nfs4_offset = offset;
2064 args->a_nfs4_count = count;
2065
2066 mutex_enter(&mi->mi_async_lock);
2067
2068 /*
2069 * If asyncio has been disabled, then make a synchronous request.
2070 * This check is done a second time in case async io was diabled
2071 * while this thread was blocked waiting for memory pressure to
2072 * reduce or for the queue to drain.
2073 */
2074 if (mi->mi_max_threads == 0) {
2075 mutex_exit(&mi->mi_async_lock);
2076
2077 VN_RELE(vp);
2078 crfree(cr);
2079 kmem_free(args, sizeof (*args));
2080 goto noasync;
2081 }
2082
2083 /*
2084 * Link request structure into the async list and
2085 * wakeup async thread to do the i/o.
2086 */
2087 if (mi->mi_async_reqs[NFS4_COMMIT] == NULL) {
2088 mi->mi_async_reqs[NFS4_COMMIT] = args;
2089 mi->mi_async_tail[NFS4_COMMIT] = args;
2090 } else {
2091 mi->mi_async_tail[NFS4_COMMIT]->a_next = args;
2092 mi->mi_async_tail[NFS4_COMMIT] = args;
2093 }
2094
2095 mutex_enter(&rp->r_statelock);
2096 rp->r_count++;
2097 mutex_exit(&rp->r_statelock);
2098
2099 if (mi->mi_io_kstats) {
2100 mutex_enter(&mi->mi_lock);
2101 kstat_waitq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
2102 mutex_exit(&mi->mi_lock);
2103 }
2104
2105 mi->mi_async_req_count++;
2106 ASSERT(mi->mi_async_req_count != 0);
2107 cv_signal(&mi->mi_async_reqs_cv);
2108 mutex_exit(&mi->mi_async_lock);
2109 return;
2110
2111 noasync:
2112 if (curproc == proc_pageout || curproc == proc_fsflush ||
2113 nfs_zone() != mi->mi_zone) {
2114 while (plist != NULL) {
2115 pp = plist;
2116 page_sub(&plist, pp);
2117 pp->p_fsdata = C_COMMIT;
2118 page_unlock(pp);
2119 }
2120 return;
2121 }
2122 (*commit)(vp, plist, offset, count, cr);
2123 }
2124
2125 /*
2126 * nfs4_async_inactive - hand off a VOP_INACTIVE call to a thread. The
2127 * reference to the vnode is handed over to the thread; the caller should
2128 * no longer refer to the vnode.
2129 *
2130 * Unlike most of the async routines, this handoff is needed for
2131 * correctness reasons, not just performance. So doing operations in the
2132 * context of the current thread is not an option.
2133 */
2134 void
nfs4_async_inactive(vnode_t * vp,cred_t * cr)2135 nfs4_async_inactive(vnode_t *vp, cred_t *cr)
2136 {
2137 mntinfo4_t *mi;
2138 struct nfs4_async_reqs *args;
2139 boolean_t signal_inactive_thread = B_FALSE;
2140
2141 mi = VTOMI4(vp);
2142
2143 args = kmem_alloc(sizeof (*args), KM_SLEEP);
2144 args->a_next = NULL;
2145 #ifdef DEBUG
2146 args->a_queuer = curthread;
2147 #endif
2148 args->a_vp = vp;
2149 ASSERT(cr != NULL);
2150 crhold(cr);
2151 args->a_cred = cr;
2152 args->a_io = NFS4_INACTIVE;
2153
2154 /*
2155 * Note that we don't check mi->mi_max_threads here, since we
2156 * *need* to get rid of this vnode regardless of whether someone
2157 * set nfs4_max_threads to zero in /etc/system.
2158 *
2159 * The manager thread knows about this and is willing to create
2160 * at least one thread to accommodate us.
2161 */
2162 mutex_enter(&mi->mi_async_lock);
2163 if (mi->mi_inactive_thread == NULL) {
2164 rnode4_t *rp;
2165 vnode_t *unldvp = NULL;
2166 char *unlname;
2167 cred_t *unlcred;
2168
2169 mutex_exit(&mi->mi_async_lock);
2170 /*
2171 * We just need to free up the memory associated with the
2172 * vnode, which can be safely done from within the current
2173 * context.
2174 */
2175 crfree(cr); /* drop our reference */
2176 kmem_free(args, sizeof (*args));
2177 rp = VTOR4(vp);
2178 mutex_enter(&rp->r_statelock);
2179 if (rp->r_unldvp != NULL) {
2180 unldvp = rp->r_unldvp;
2181 rp->r_unldvp = NULL;
2182 unlname = rp->r_unlname;
2183 rp->r_unlname = NULL;
2184 unlcred = rp->r_unlcred;
2185 rp->r_unlcred = NULL;
2186 }
2187 mutex_exit(&rp->r_statelock);
2188 /*
2189 * No need to explicitly throw away any cached pages. The
2190 * eventual r4inactive() will attempt a synchronous
2191 * VOP_PUTPAGE() which will immediately fail since the request
2192 * is coming from the wrong zone, and then will proceed to call
2193 * nfs4_invalidate_pages() which will clean things up for us.
2194 *
2195 * Throw away the delegation here so rp4_addfree()'s attempt to
2196 * return any existing delegations becomes a no-op.
2197 */
2198 if (rp->r_deleg_type != OPEN_DELEGATE_NONE) {
2199 (void) nfs_rw_enter_sig(&mi->mi_recovlock, RW_READER,
2200 FALSE);
2201 (void) nfs4delegreturn(rp, NFS4_DR_DISCARD);
2202 nfs_rw_exit(&mi->mi_recovlock);
2203 }
2204 nfs4_clear_open_streams(rp);
2205
2206 rp4_addfree(rp, cr);
2207 if (unldvp != NULL) {
2208 kmem_free(unlname, MAXNAMELEN);
2209 VN_RELE(unldvp);
2210 crfree(unlcred);
2211 }
2212 return;
2213 }
2214
2215 if (mi->mi_manager_thread == NULL) {
2216 /*
2217 * We want to talk to the inactive thread.
2218 */
2219 signal_inactive_thread = B_TRUE;
2220 }
2221
2222 /*
2223 * Enqueue the vnode and wake up either the special thread (empty
2224 * list) or an async thread.
2225 */
2226 if (mi->mi_async_reqs[NFS4_INACTIVE] == NULL) {
2227 mi->mi_async_reqs[NFS4_INACTIVE] = args;
2228 mi->mi_async_tail[NFS4_INACTIVE] = args;
2229 signal_inactive_thread = B_TRUE;
2230 } else {
2231 mi->mi_async_tail[NFS4_INACTIVE]->a_next = args;
2232 mi->mi_async_tail[NFS4_INACTIVE] = args;
2233 }
2234 if (signal_inactive_thread) {
2235 cv_signal(&mi->mi_inact_req_cv);
2236 } else {
2237 mi->mi_async_req_count++;
2238 ASSERT(mi->mi_async_req_count != 0);
2239 cv_signal(&mi->mi_async_reqs_cv);
2240 }
2241
2242 mutex_exit(&mi->mi_async_lock);
2243 }
2244
2245 int
writerp4(rnode4_t * rp,caddr_t base,int tcount,struct uio * uio,int pgcreated)2246 writerp4(rnode4_t *rp, caddr_t base, int tcount, struct uio *uio, int pgcreated)
2247 {
2248 int pagecreate;
2249 int n;
2250 int saved_n;
2251 caddr_t saved_base;
2252 u_offset_t offset;
2253 int error;
2254 int sm_error;
2255 vnode_t *vp = RTOV(rp);
2256
2257 ASSERT(tcount <= MAXBSIZE && tcount <= uio->uio_resid);
2258 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_WRITER));
2259 if (!vpm_enable) {
2260 ASSERT(((uintptr_t)base & MAXBOFFSET) + tcount <= MAXBSIZE);
2261 }
2262
2263 /*
2264 * Move bytes in at most PAGESIZE chunks. We must avoid
2265 * spanning pages in uiomove() because page faults may cause
2266 * the cache to be invalidated out from under us. The r_size is not
2267 * updated until after the uiomove. If we push the last page of a
2268 * file before r_size is correct, we will lose the data written past
2269 * the current (and invalid) r_size.
2270 */
2271 do {
2272 offset = uio->uio_loffset;
2273 pagecreate = 0;
2274
2275 /*
2276 * n is the number of bytes required to satisfy the request
2277 * or the number of bytes to fill out the page.
2278 */
2279 n = (int)MIN((PAGESIZE - (offset & PAGEOFFSET)), tcount);
2280
2281 /*
2282 * Check to see if we can skip reading in the page
2283 * and just allocate the memory. We can do this
2284 * if we are going to rewrite the entire mapping
2285 * or if we are going to write to or beyond the current
2286 * end of file from the beginning of the mapping.
2287 *
2288 * The read of r_size is now protected by r_statelock.
2289 */
2290 mutex_enter(&rp->r_statelock);
2291 /*
2292 * When pgcreated is nonzero the caller has already done
2293 * a segmap_getmapflt with forcefault 0 and S_WRITE. With
2294 * segkpm this means we already have at least one page
2295 * created and mapped at base.
2296 */
2297 pagecreate = pgcreated ||
2298 ((offset & PAGEOFFSET) == 0 &&
2299 (n == PAGESIZE || ((offset + n) >= rp->r_size)));
2300
2301 mutex_exit(&rp->r_statelock);
2302
2303 if (!vpm_enable && pagecreate) {
2304 /*
2305 * The last argument tells segmap_pagecreate() to
2306 * always lock the page, as opposed to sometimes
2307 * returning with the page locked. This way we avoid a
2308 * fault on the ensuing uiomove(), but also
2309 * more importantly (to fix bug 1094402) we can
2310 * call segmap_fault() to unlock the page in all
2311 * cases. An alternative would be to modify
2312 * segmap_pagecreate() to tell us when it is
2313 * locking a page, but that's a fairly major
2314 * interface change.
2315 */
2316 if (pgcreated == 0)
2317 (void) segmap_pagecreate(segkmap, base,
2318 (uint_t)n, 1);
2319 saved_base = base;
2320 saved_n = n;
2321 }
2322
2323 /*
2324 * The number of bytes of data in the last page can not
2325 * be accurately be determined while page is being
2326 * uiomove'd to and the size of the file being updated.
2327 * Thus, inform threads which need to know accurately
2328 * how much data is in the last page of the file. They
2329 * will not do the i/o immediately, but will arrange for
2330 * the i/o to happen later when this modify operation
2331 * will have finished.
2332 */
2333 ASSERT(!(rp->r_flags & R4MODINPROGRESS));
2334 mutex_enter(&rp->r_statelock);
2335 rp->r_flags |= R4MODINPROGRESS;
2336 rp->r_modaddr = (offset & MAXBMASK);
2337 mutex_exit(&rp->r_statelock);
2338
2339 if (vpm_enable) {
2340 /*
2341 * Copy data. If new pages are created, part of
2342 * the page that is not written will be initizliazed
2343 * with zeros.
2344 */
2345 error = vpm_data_copy(vp, offset, n, uio,
2346 !pagecreate, NULL, 0, S_WRITE);
2347 } else {
2348 error = uiomove(base, n, UIO_WRITE, uio);
2349 }
2350
2351 /*
2352 * r_size is the maximum number of
2353 * bytes known to be in the file.
2354 * Make sure it is at least as high as the
2355 * first unwritten byte pointed to by uio_loffset.
2356 */
2357 mutex_enter(&rp->r_statelock);
2358 if (rp->r_size < uio->uio_loffset)
2359 rp->r_size = uio->uio_loffset;
2360 rp->r_flags &= ~R4MODINPROGRESS;
2361 rp->r_flags |= R4DIRTY;
2362 mutex_exit(&rp->r_statelock);
2363
2364 /* n = # of bytes written */
2365 n = (int)(uio->uio_loffset - offset);
2366
2367 if (!vpm_enable) {
2368 base += n;
2369 }
2370
2371 tcount -= n;
2372 /*
2373 * If we created pages w/o initializing them completely,
2374 * we need to zero the part that wasn't set up.
2375 * This happens on a most EOF write cases and if
2376 * we had some sort of error during the uiomove.
2377 */
2378 if (!vpm_enable && pagecreate) {
2379 if ((uio->uio_loffset & PAGEOFFSET) || n == 0)
2380 (void) kzero(base, PAGESIZE - n);
2381
2382 if (pgcreated) {
2383 /*
2384 * Caller is responsible for this page,
2385 * it was not created in this loop.
2386 */
2387 pgcreated = 0;
2388 } else {
2389 /*
2390 * For bug 1094402: segmap_pagecreate locks
2391 * page. Unlock it. This also unlocks the
2392 * pages allocated by page_create_va() in
2393 * segmap_pagecreate().
2394 */
2395 sm_error = segmap_fault(kas.a_hat, segkmap,
2396 saved_base, saved_n,
2397 F_SOFTUNLOCK, S_WRITE);
2398 if (error == 0)
2399 error = sm_error;
2400 }
2401 }
2402 } while (tcount > 0 && error == 0);
2403
2404 return (error);
2405 }
2406
2407 int
nfs4_putpages(vnode_t * vp,u_offset_t off,size_t len,int flags,cred_t * cr)2408 nfs4_putpages(vnode_t *vp, u_offset_t off, size_t len, int flags, cred_t *cr)
2409 {
2410 rnode4_t *rp;
2411 page_t *pp;
2412 u_offset_t eoff;
2413 u_offset_t io_off;
2414 size_t io_len;
2415 int error;
2416 int rdirty;
2417 int err;
2418
2419 rp = VTOR4(vp);
2420 ASSERT(rp->r_count > 0);
2421
2422 if (!nfs4_has_pages(vp))
2423 return (0);
2424
2425 ASSERT(vp->v_type != VCHR);
2426
2427 /*
2428 * If R4OUTOFSPACE is set, then all writes turn into B_INVAL
2429 * writes. B_FORCE is set to force the VM system to actually
2430 * invalidate the pages, even if the i/o failed. The pages
2431 * need to get invalidated because they can't be written out
2432 * because there isn't any space left on either the server's
2433 * file system or in the user's disk quota. The B_FREE bit
2434 * is cleared to avoid confusion as to whether this is a
2435 * request to place the page on the freelist or to destroy
2436 * it.
2437 */
2438 if ((rp->r_flags & R4OUTOFSPACE) ||
2439 (vp->v_vfsp->vfs_flag & VFS_UNMOUNTED))
2440 flags = (flags & ~B_FREE) | B_INVAL | B_FORCE;
2441
2442 if (len == 0) {
2443 /*
2444 * If doing a full file synchronous operation, then clear
2445 * the R4DIRTY bit. If a page gets dirtied while the flush
2446 * is happening, then R4DIRTY will get set again. The
2447 * R4DIRTY bit must get cleared before the flush so that
2448 * we don't lose this information.
2449 *
2450 * If there are no full file async write operations
2451 * pending and RDIRTY bit is set, clear it.
2452 */
2453 if (off == (u_offset_t)0 &&
2454 !(flags & B_ASYNC) &&
2455 (rp->r_flags & R4DIRTY)) {
2456 mutex_enter(&rp->r_statelock);
2457 rdirty = (rp->r_flags & R4DIRTY);
2458 rp->r_flags &= ~R4DIRTY;
2459 mutex_exit(&rp->r_statelock);
2460 } else if (flags & B_ASYNC && off == (u_offset_t)0) {
2461 mutex_enter(&rp->r_statelock);
2462 if (rp->r_flags & R4DIRTY && rp->r_awcount == 0) {
2463 rdirty = (rp->r_flags & R4DIRTY);
2464 rp->r_flags &= ~R4DIRTY;
2465 }
2466 mutex_exit(&rp->r_statelock);
2467 } else
2468 rdirty = 0;
2469
2470 /*
2471 * Search the entire vp list for pages >= off, and flush
2472 * the dirty pages.
2473 */
2474 error = pvn_vplist_dirty(vp, off, rp->r_putapage,
2475 flags, cr);
2476
2477 /*
2478 * If an error occurred and the file was marked as dirty
2479 * before and we aren't forcibly invalidating pages, then
2480 * reset the R4DIRTY flag.
2481 */
2482 if (error && rdirty &&
2483 (flags & (B_INVAL | B_FORCE)) != (B_INVAL | B_FORCE)) {
2484 mutex_enter(&rp->r_statelock);
2485 rp->r_flags |= R4DIRTY;
2486 mutex_exit(&rp->r_statelock);
2487 }
2488 } else {
2489 /*
2490 * Do a range from [off...off + len) looking for pages
2491 * to deal with.
2492 */
2493 error = 0;
2494 io_len = 0;
2495 eoff = off + len;
2496 mutex_enter(&rp->r_statelock);
2497 for (io_off = off; io_off < eoff && io_off < rp->r_size;
2498 io_off += io_len) {
2499 mutex_exit(&rp->r_statelock);
2500 /*
2501 * If we are not invalidating, synchronously
2502 * freeing or writing pages use the routine
2503 * page_lookup_nowait() to prevent reclaiming
2504 * them from the free list.
2505 */
2506 if ((flags & B_INVAL) || !(flags & B_ASYNC)) {
2507 pp = page_lookup(vp, io_off,
2508 (flags & (B_INVAL | B_FREE)) ?
2509 SE_EXCL : SE_SHARED);
2510 } else {
2511 pp = page_lookup_nowait(vp, io_off,
2512 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
2513 }
2514
2515 if (pp == NULL || !pvn_getdirty(pp, flags))
2516 io_len = PAGESIZE;
2517 else {
2518 err = (*rp->r_putapage)(vp, pp, &io_off,
2519 &io_len, flags, cr);
2520 if (!error)
2521 error = err;
2522 /*
2523 * "io_off" and "io_len" are returned as
2524 * the range of pages we actually wrote.
2525 * This allows us to skip ahead more quickly
2526 * since several pages may've been dealt
2527 * with by this iteration of the loop.
2528 */
2529 }
2530 mutex_enter(&rp->r_statelock);
2531 }
2532 mutex_exit(&rp->r_statelock);
2533 }
2534
2535 return (error);
2536 }
2537
2538 void
nfs4_invalidate_pages(vnode_t * vp,u_offset_t off,cred_t * cr)2539 nfs4_invalidate_pages(vnode_t *vp, u_offset_t off, cred_t *cr)
2540 {
2541 rnode4_t *rp;
2542
2543 rp = VTOR4(vp);
2544 if (IS_SHADOW(vp, rp))
2545 vp = RTOV4(rp);
2546 mutex_enter(&rp->r_statelock);
2547 while (rp->r_flags & R4TRUNCATE)
2548 cv_wait(&rp->r_cv, &rp->r_statelock);
2549 rp->r_flags |= R4TRUNCATE;
2550 if (off == (u_offset_t)0) {
2551 rp->r_flags &= ~R4DIRTY;
2552 if (!(rp->r_flags & R4STALE))
2553 rp->r_error = 0;
2554 }
2555 rp->r_truncaddr = off;
2556 mutex_exit(&rp->r_statelock);
2557 (void) pvn_vplist_dirty(vp, off, rp->r_putapage,
2558 B_INVAL | B_TRUNC, cr);
2559 mutex_enter(&rp->r_statelock);
2560 rp->r_flags &= ~R4TRUNCATE;
2561 cv_broadcast(&rp->r_cv);
2562 mutex_exit(&rp->r_statelock);
2563 }
2564
2565 static int
nfs4_mnt_kstat_update(kstat_t * ksp,int rw)2566 nfs4_mnt_kstat_update(kstat_t *ksp, int rw)
2567 {
2568 mntinfo4_t *mi;
2569 struct mntinfo_kstat *mik;
2570 vfs_t *vfsp;
2571
2572 /* this is a read-only kstat. Bail out on a write */
2573 if (rw == KSTAT_WRITE)
2574 return (EACCES);
2575
2576
2577 /*
2578 * We don't want to wait here as kstat_chain_lock could be held by
2579 * dounmount(). dounmount() takes vfs_reflock before the chain lock
2580 * and thus could lead to a deadlock.
2581 */
2582 vfsp = (struct vfs *)ksp->ks_private;
2583
2584 mi = VFTOMI4(vfsp);
2585 mik = (struct mntinfo_kstat *)ksp->ks_data;
2586
2587 (void) strcpy(mik->mik_proto, mi->mi_curr_serv->sv_knconf->knc_proto);
2588
2589 mik->mik_vers = (uint32_t)mi->mi_vers;
2590 mik->mik_flags = mi->mi_flags;
2591 /*
2592 * The sv_secdata holds the flavor the client specifies.
2593 * If the client uses default and a security negotiation
2594 * occurs, sv_currsec will point to the current flavor
2595 * selected from the server flavor list.
2596 * sv_currsec is NULL if no security negotiation takes place.
2597 */
2598 mik->mik_secmod = mi->mi_curr_serv->sv_currsec ?
2599 mi->mi_curr_serv->sv_currsec->secmod :
2600 mi->mi_curr_serv->sv_secdata->secmod;
2601 mik->mik_curread = (uint32_t)mi->mi_curread;
2602 mik->mik_curwrite = (uint32_t)mi->mi_curwrite;
2603 mik->mik_retrans = mi->mi_retrans;
2604 mik->mik_timeo = mi->mi_timeo;
2605 mik->mik_acregmin = HR2SEC(mi->mi_acregmin);
2606 mik->mik_acregmax = HR2SEC(mi->mi_acregmax);
2607 mik->mik_acdirmin = HR2SEC(mi->mi_acdirmin);
2608 mik->mik_acdirmax = HR2SEC(mi->mi_acdirmax);
2609 mik->mik_noresponse = (uint32_t)mi->mi_noresponse;
2610 mik->mik_failover = (uint32_t)mi->mi_failover;
2611 mik->mik_remap = (uint32_t)mi->mi_remap;
2612
2613 (void) strcpy(mik->mik_curserver, mi->mi_curr_serv->sv_hostname);
2614
2615 return (0);
2616 }
2617
2618 void
nfs4_mnt_kstat_init(struct vfs * vfsp)2619 nfs4_mnt_kstat_init(struct vfs *vfsp)
2620 {
2621 mntinfo4_t *mi = VFTOMI4(vfsp);
2622
2623 /*
2624 * PSARC 2001/697 Contract Private Interface
2625 * All nfs kstats are under SunMC contract
2626 * Please refer to the PSARC listed above and contact
2627 * SunMC before making any changes!
2628 *
2629 * Changes must be reviewed by Solaris File Sharing
2630 * Changes must be communicated to contract-2001-697@sun.com
2631 *
2632 */
2633
2634 mi->mi_io_kstats = kstat_create_zone("nfs", getminor(vfsp->vfs_dev),
2635 NULL, "nfs", KSTAT_TYPE_IO, 1, 0, mi->mi_zone->zone_id);
2636 if (mi->mi_io_kstats) {
2637 if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
2638 kstat_zone_add(mi->mi_io_kstats, GLOBAL_ZONEID);
2639 mi->mi_io_kstats->ks_lock = &mi->mi_lock;
2640 kstat_install(mi->mi_io_kstats);
2641 }
2642
2643 if ((mi->mi_ro_kstats = kstat_create_zone("nfs",
2644 getminor(vfsp->vfs_dev), "mntinfo", "misc", KSTAT_TYPE_RAW,
2645 sizeof (struct mntinfo_kstat), 0, mi->mi_zone->zone_id)) != NULL) {
2646 if (mi->mi_zone->zone_id != GLOBAL_ZONEID)
2647 kstat_zone_add(mi->mi_ro_kstats, GLOBAL_ZONEID);
2648 mi->mi_ro_kstats->ks_update = nfs4_mnt_kstat_update;
2649 mi->mi_ro_kstats->ks_private = (void *)vfsp;
2650 kstat_install(mi->mi_ro_kstats);
2651 }
2652
2653 nfs4_mnt_recov_kstat_init(vfsp);
2654 }
2655
2656 void
nfs4_write_error(vnode_t * vp,int error,cred_t * cr)2657 nfs4_write_error(vnode_t *vp, int error, cred_t *cr)
2658 {
2659 mntinfo4_t *mi;
2660 clock_t now = ddi_get_lbolt();
2661
2662 mi = VTOMI4(vp);
2663 /*
2664 * In case of forced unmount, do not print any messages
2665 * since it can flood the console with error messages.
2666 */
2667 if (mi->mi_vfsp->vfs_flag & VFS_UNMOUNTED)
2668 return;
2669
2670 /*
2671 * If the mount point is dead, not recoverable, do not
2672 * print error messages that can flood the console.
2673 */
2674 if (mi->mi_flags & MI4_RECOV_FAIL)
2675 return;
2676
2677 /*
2678 * No use in flooding the console with ENOSPC
2679 * messages from the same file system.
2680 */
2681 if ((error != ENOSPC && error != EDQUOT) ||
2682 now - mi->mi_printftime > 0) {
2683 zoneid_t zoneid = mi->mi_zone->zone_id;
2684
2685 #ifdef DEBUG
2686 nfs_perror(error, "NFS%ld write error on host %s: %m.\n",
2687 mi->mi_vers, VTOR4(vp)->r_server->sv_hostname, NULL);
2688 #else
2689 nfs_perror(error, "NFS write error on host %s: %m.\n",
2690 VTOR4(vp)->r_server->sv_hostname, NULL);
2691 #endif
2692 if (error == ENOSPC || error == EDQUOT) {
2693 zcmn_err(zoneid, CE_CONT,
2694 "^File: userid=%d, groupid=%d\n",
2695 crgetuid(cr), crgetgid(cr));
2696 if (crgetuid(curthread->t_cred) != crgetuid(cr) ||
2697 crgetgid(curthread->t_cred) != crgetgid(cr)) {
2698 zcmn_err(zoneid, CE_CONT,
2699 "^User: userid=%d, groupid=%d\n",
2700 crgetuid(curthread->t_cred),
2701 crgetgid(curthread->t_cred));
2702 }
2703 mi->mi_printftime = now +
2704 nfs_write_error_interval * hz;
2705 }
2706 sfh4_printfhandle(VTOR4(vp)->r_fh);
2707 #ifdef DEBUG
2708 if (error == EACCES) {
2709 zcmn_err(zoneid, CE_CONT,
2710 "nfs_bio: cred is%s kcred\n",
2711 cr == kcred ? "" : " not");
2712 }
2713 #endif
2714 }
2715 }
2716
2717 /*
2718 * Return non-zero if the given file can be safely memory mapped. Locks
2719 * are safe if whole-file (length and offset are both zero).
2720 */
2721
2722 #define SAFE_LOCK(flk) ((flk).l_start == 0 && (flk).l_len == 0)
2723
2724 static int
nfs4_safemap(const vnode_t * vp)2725 nfs4_safemap(const vnode_t *vp)
2726 {
2727 locklist_t *llp, *next_llp;
2728 int safe = 1;
2729 rnode4_t *rp = VTOR4(vp);
2730
2731 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2732
2733 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: "
2734 "vp = %p", (void *)vp));
2735
2736 /*
2737 * Review all the locks for the vnode, both ones that have been
2738 * acquired and ones that are pending. We assume that
2739 * flk_active_locks_for_vp() has merged any locks that can be
2740 * merged (so that if a process has the entire file locked, it is
2741 * represented as a single lock).
2742 *
2743 * Note that we can't bail out of the loop if we find a non-safe
2744 * lock, because we have to free all the elements in the llp list.
2745 * We might be able to speed up this code slightly by not looking
2746 * at each lock's l_start and l_len fields once we've found a
2747 * non-safe lock.
2748 */
2749
2750 llp = flk_active_locks_for_vp(vp);
2751 while (llp) {
2752 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
2753 "nfs4_safemap: active lock (%" PRId64 ", %" PRId64 ")",
2754 llp->ll_flock.l_start, llp->ll_flock.l_len));
2755 if (!SAFE_LOCK(llp->ll_flock)) {
2756 safe = 0;
2757 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE,
2758 "nfs4_safemap: unsafe active lock (%" PRId64
2759 ", %" PRId64 ")", llp->ll_flock.l_start,
2760 llp->ll_flock.l_len));
2761 }
2762 next_llp = llp->ll_next;
2763 VN_RELE(llp->ll_vp);
2764 kmem_free(llp, sizeof (*llp));
2765 llp = next_llp;
2766 }
2767
2768 NFS4_DEBUG(nfs4_client_map_debug, (CE_NOTE, "nfs4_safemap: %s",
2769 safe ? "safe" : "unsafe"));
2770 return (safe);
2771 }
2772
2773 /*
2774 * Return whether there is a lost LOCK or LOCKU queued up for the given
2775 * file that would make an mmap request unsafe. cf. nfs4_safemap().
2776 */
2777
2778 bool_t
nfs4_map_lost_lock_conflict(vnode_t * vp)2779 nfs4_map_lost_lock_conflict(vnode_t *vp)
2780 {
2781 bool_t conflict = FALSE;
2782 nfs4_lost_rqst_t *lrp;
2783 mntinfo4_t *mi = VTOMI4(vp);
2784
2785 mutex_enter(&mi->mi_lock);
2786 for (lrp = list_head(&mi->mi_lost_state); lrp != NULL;
2787 lrp = list_next(&mi->mi_lost_state, lrp)) {
2788 if (lrp->lr_op != OP_LOCK && lrp->lr_op != OP_LOCKU)
2789 continue;
2790 ASSERT(lrp->lr_vp != NULL);
2791 if (!VOP_CMP(lrp->lr_vp, vp, NULL))
2792 continue; /* different file */
2793 if (!SAFE_LOCK(*lrp->lr_flk)) {
2794 conflict = TRUE;
2795 break;
2796 }
2797 }
2798
2799 mutex_exit(&mi->mi_lock);
2800 return (conflict);
2801 }
2802
2803 /*
2804 * nfs_lockcompletion:
2805 *
2806 * If the vnode has a lock that makes it unsafe to cache the file, mark it
2807 * as non cachable (set VNOCACHE bit).
2808 */
2809
2810 void
nfs4_lockcompletion(vnode_t * vp,int cmd)2811 nfs4_lockcompletion(vnode_t *vp, int cmd)
2812 {
2813 rnode4_t *rp = VTOR4(vp);
2814
2815 ASSERT(nfs_rw_lock_held(&rp->r_lkserlock, RW_WRITER));
2816 ASSERT(!IS_SHADOW(vp, rp));
2817
2818 if (cmd == F_SETLK || cmd == F_SETLKW) {
2819
2820 if (!nfs4_safemap(vp)) {
2821 mutex_enter(&vp->v_lock);
2822 vp->v_flag |= VNOCACHE;
2823 mutex_exit(&vp->v_lock);
2824 } else {
2825 mutex_enter(&vp->v_lock);
2826 vp->v_flag &= ~VNOCACHE;
2827 mutex_exit(&vp->v_lock);
2828 }
2829 }
2830 /*
2831 * The cached attributes of the file are stale after acquiring
2832 * the lock on the file. They were updated when the file was
2833 * opened, but not updated when the lock was acquired. Therefore the
2834 * cached attributes are invalidated after the lock is obtained.
2835 */
2836 PURGE_ATTRCACHE4(vp);
2837 }
2838
2839 /* ARGSUSED */
2840 static void *
nfs4_mi_init(zoneid_t zoneid)2841 nfs4_mi_init(zoneid_t zoneid)
2842 {
2843 struct mi4_globals *mig;
2844
2845 mig = kmem_alloc(sizeof (*mig), KM_SLEEP);
2846 mutex_init(&mig->mig_lock, NULL, MUTEX_DEFAULT, NULL);
2847 list_create(&mig->mig_list, sizeof (mntinfo4_t),
2848 offsetof(mntinfo4_t, mi_zone_node));
2849 mig->mig_destructor_called = B_FALSE;
2850 return (mig);
2851 }
2852
2853 /*
2854 * Callback routine to tell all NFSv4 mounts in the zone to start tearing down
2855 * state and killing off threads.
2856 */
2857 /* ARGSUSED */
2858 static void
nfs4_mi_shutdown(zoneid_t zoneid,void * data)2859 nfs4_mi_shutdown(zoneid_t zoneid, void *data)
2860 {
2861 struct mi4_globals *mig = data;
2862 mntinfo4_t *mi;
2863 nfs4_server_t *np;
2864
2865 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2866 "nfs4_mi_shutdown zone %d\n", zoneid));
2867 ASSERT(mig != NULL);
2868 for (;;) {
2869 mutex_enter(&mig->mig_lock);
2870 mi = list_head(&mig->mig_list);
2871 if (mi == NULL) {
2872 mutex_exit(&mig->mig_lock);
2873 break;
2874 }
2875
2876 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2877 "nfs4_mi_shutdown stopping vfs %p\n", (void *)mi->mi_vfsp));
2878 /*
2879 * purge the DNLC for this filesystem
2880 */
2881 (void) dnlc_purge_vfsp(mi->mi_vfsp, 0);
2882 /*
2883 * Tell existing async worker threads to exit.
2884 */
2885 mutex_enter(&mi->mi_async_lock);
2886 mi->mi_max_threads = 0;
2887 NFS4_WAKEALL_ASYNC_WORKERS(mi->mi_async_work_cv);
2888 /*
2889 * Set the appropriate flags, signal and wait for both the
2890 * async manager and the inactive thread to exit when they're
2891 * done with their current work.
2892 */
2893 mutex_enter(&mi->mi_lock);
2894 mi->mi_flags |= (MI4_ASYNC_MGR_STOP|MI4_DEAD);
2895 mutex_exit(&mi->mi_lock);
2896 mutex_exit(&mi->mi_async_lock);
2897 if (mi->mi_manager_thread) {
2898 nfs4_async_manager_stop(mi->mi_vfsp);
2899 }
2900 if (mi->mi_inactive_thread) {
2901 mutex_enter(&mi->mi_async_lock);
2902 cv_signal(&mi->mi_inact_req_cv);
2903 /*
2904 * Wait for the inactive thread to exit.
2905 */
2906 while (mi->mi_inactive_thread != NULL) {
2907 cv_wait(&mi->mi_async_cv, &mi->mi_async_lock);
2908 }
2909 mutex_exit(&mi->mi_async_lock);
2910 }
2911 /*
2912 * Wait for the recovery thread to complete, that is, it will
2913 * signal when it is done using the "mi" structure and about
2914 * to exit
2915 */
2916 mutex_enter(&mi->mi_lock);
2917 while (mi->mi_in_recovery > 0)
2918 cv_wait(&mi->mi_cv_in_recov, &mi->mi_lock);
2919 mutex_exit(&mi->mi_lock);
2920 /*
2921 * We're done when every mi has been done or the list is empty.
2922 * This one is done, remove it from the list.
2923 */
2924 list_remove(&mig->mig_list, mi);
2925 mutex_exit(&mig->mig_lock);
2926 zone_rele_ref(&mi->mi_zone_ref, ZONE_REF_NFSV4);
2927
2928 /*
2929 * Release hold on vfs and mi done to prevent race with zone
2930 * shutdown. This releases the hold in nfs4_mi_zonelist_add.
2931 */
2932 VFS_RELE(mi->mi_vfsp);
2933 MI4_RELE(mi);
2934 }
2935 /*
2936 * Tell each renew thread in the zone to exit
2937 */
2938 mutex_enter(&nfs4_server_lst_lock);
2939 for (np = nfs4_server_lst.forw; np != &nfs4_server_lst; np = np->forw) {
2940 mutex_enter(&np->s_lock);
2941 if (np->zoneid == zoneid) {
2942 /*
2943 * We add another hold onto the nfs4_server_t
2944 * because this will make sure tha the nfs4_server_t
2945 * stays around until nfs4_callback_fini_zone destroys
2946 * the zone. This way, the renew thread can
2947 * unconditionally release its holds on the
2948 * nfs4_server_t.
2949 */
2950 np->s_refcnt++;
2951 nfs4_mark_srv_dead(np);
2952 }
2953 mutex_exit(&np->s_lock);
2954 }
2955 mutex_exit(&nfs4_server_lst_lock);
2956 }
2957
2958 static void
nfs4_mi_free_globals(struct mi4_globals * mig)2959 nfs4_mi_free_globals(struct mi4_globals *mig)
2960 {
2961 list_destroy(&mig->mig_list); /* makes sure the list is empty */
2962 mutex_destroy(&mig->mig_lock);
2963 kmem_free(mig, sizeof (*mig));
2964 }
2965
2966 /* ARGSUSED */
2967 static void
nfs4_mi_destroy(zoneid_t zoneid,void * data)2968 nfs4_mi_destroy(zoneid_t zoneid, void *data)
2969 {
2970 struct mi4_globals *mig = data;
2971
2972 NFS4_DEBUG(nfs4_client_zone_debug, (CE_NOTE,
2973 "nfs4_mi_destroy zone %d\n", zoneid));
2974 ASSERT(mig != NULL);
2975 mutex_enter(&mig->mig_lock);
2976 if (list_head(&mig->mig_list) != NULL) {
2977 /* Still waiting for VFS_FREEVFS() */
2978 mig->mig_destructor_called = B_TRUE;
2979 mutex_exit(&mig->mig_lock);
2980 return;
2981 }
2982 nfs4_mi_free_globals(mig);
2983 }
2984
2985 /*
2986 * Add an NFS mount to the per-zone list of NFS mounts.
2987 */
2988 void
nfs4_mi_zonelist_add(mntinfo4_t * mi)2989 nfs4_mi_zonelist_add(mntinfo4_t *mi)
2990 {
2991 struct mi4_globals *mig;
2992
2993 mig = zone_getspecific(mi4_list_key, mi->mi_zone);
2994 mutex_enter(&mig->mig_lock);
2995 list_insert_head(&mig->mig_list, mi);
2996 /*
2997 * hold added to eliminate race with zone shutdown -this will be
2998 * released in mi_shutdown
2999 */
3000 MI4_HOLD(mi);
3001 VFS_HOLD(mi->mi_vfsp);
3002 mutex_exit(&mig->mig_lock);
3003 }
3004
3005 /*
3006 * Remove an NFS mount from the per-zone list of NFS mounts.
3007 */
3008 int
nfs4_mi_zonelist_remove(mntinfo4_t * mi)3009 nfs4_mi_zonelist_remove(mntinfo4_t *mi)
3010 {
3011 struct mi4_globals *mig;
3012 int ret = 0;
3013
3014 mig = zone_getspecific(mi4_list_key, mi->mi_zone);
3015 mutex_enter(&mig->mig_lock);
3016 mutex_enter(&mi->mi_lock);
3017 /* if this mi is marked dead, then the zone already released it */
3018 if (!(mi->mi_flags & MI4_DEAD)) {
3019 list_remove(&mig->mig_list, mi);
3020 mutex_exit(&mi->mi_lock);
3021
3022 /* release the holds put on in zonelist_add(). */
3023 VFS_RELE(mi->mi_vfsp);
3024 MI4_RELE(mi);
3025 ret = 1;
3026 } else {
3027 mutex_exit(&mi->mi_lock);
3028 }
3029
3030 /*
3031 * We can be called asynchronously by VFS_FREEVFS() after the zone
3032 * shutdown/destroy callbacks have executed; if so, clean up the zone's
3033 * mi globals.
3034 */
3035 if (list_head(&mig->mig_list) == NULL &&
3036 mig->mig_destructor_called == B_TRUE) {
3037 nfs4_mi_free_globals(mig);
3038 return (ret);
3039 }
3040 mutex_exit(&mig->mig_lock);
3041 return (ret);
3042 }
3043
3044 void
nfs_free_mi4(mntinfo4_t * mi)3045 nfs_free_mi4(mntinfo4_t *mi)
3046 {
3047 nfs4_open_owner_t *foop;
3048 nfs4_oo_hash_bucket_t *bucketp;
3049 nfs4_debug_msg_t *msgp;
3050 int i;
3051 servinfo4_t *svp;
3052
3053 /*
3054 * Code introduced here should be carefully evaluated to make
3055 * sure none of the freed resources are accessed either directly
3056 * or indirectly after freeing them. For eg: Introducing calls to
3057 * NFS4_DEBUG that use mntinfo4_t structure member after freeing
3058 * the structure members or other routines calling back into NFS
3059 * accessing freed mntinfo4_t structure member.
3060 */
3061 mutex_enter(&mi->mi_lock);
3062 ASSERT(mi->mi_recovthread == NULL);
3063 ASSERT(mi->mi_flags & MI4_ASYNC_MGR_STOP);
3064 mutex_exit(&mi->mi_lock);
3065 mutex_enter(&mi->mi_async_lock);
3066 ASSERT(mi->mi_threads[NFS4_ASYNC_QUEUE] == 0 &&
3067 mi->mi_threads[NFS4_ASYNC_PGOPS_QUEUE] == 0);
3068 ASSERT(mi->mi_manager_thread == NULL);
3069 mutex_exit(&mi->mi_async_lock);
3070 if (mi->mi_io_kstats) {
3071 kstat_delete(mi->mi_io_kstats);
3072 mi->mi_io_kstats = NULL;
3073 }
3074 if (mi->mi_ro_kstats) {
3075 kstat_delete(mi->mi_ro_kstats);
3076 mi->mi_ro_kstats = NULL;
3077 }
3078 if (mi->mi_recov_ksp) {
3079 kstat_delete(mi->mi_recov_ksp);
3080 mi->mi_recov_ksp = NULL;
3081 }
3082 mutex_enter(&mi->mi_msg_list_lock);
3083 while (msgp = list_head(&mi->mi_msg_list)) {
3084 list_remove(&mi->mi_msg_list, msgp);
3085 nfs4_free_msg(msgp);
3086 }
3087 mutex_exit(&mi->mi_msg_list_lock);
3088 list_destroy(&mi->mi_msg_list);
3089 if (mi->mi_fname != NULL)
3090 fn_rele(&mi->mi_fname);
3091 if (mi->mi_rootfh != NULL)
3092 sfh4_rele(&mi->mi_rootfh);
3093 if (mi->mi_srvparentfh != NULL)
3094 sfh4_rele(&mi->mi_srvparentfh);
3095 svp = mi->mi_servers;
3096 sv4_free(svp);
3097 mutex_destroy(&mi->mi_lock);
3098 mutex_destroy(&mi->mi_async_lock);
3099 mutex_destroy(&mi->mi_msg_list_lock);
3100 mutex_destroy(&mi->mi_rnodes_lock);
3101 nfs_rw_destroy(&mi->mi_recovlock);
3102 nfs_rw_destroy(&mi->mi_rename_lock);
3103 nfs_rw_destroy(&mi->mi_fh_lock);
3104 cv_destroy(&mi->mi_failover_cv);
3105 cv_destroy(&mi->mi_async_reqs_cv);
3106 cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_QUEUE]);
3107 cv_destroy(&mi->mi_async_work_cv[NFS4_ASYNC_PGOPS_QUEUE]);
3108 cv_destroy(&mi->mi_async_cv);
3109 cv_destroy(&mi->mi_inact_req_cv);
3110 /*
3111 * Destroy the oo hash lists and mutexes for the cred hash table.
3112 */
3113 for (i = 0; i < NFS4_NUM_OO_BUCKETS; i++) {
3114 bucketp = &(mi->mi_oo_list[i]);
3115 /* Destroy any remaining open owners on the list */
3116 foop = list_head(&bucketp->b_oo_hash_list);
3117 while (foop != NULL) {
3118 list_remove(&bucketp->b_oo_hash_list, foop);
3119 nfs4_destroy_open_owner(foop);
3120 foop = list_head(&bucketp->b_oo_hash_list);
3121 }
3122 list_destroy(&bucketp->b_oo_hash_list);
3123 mutex_destroy(&bucketp->b_lock);
3124 }
3125 /*
3126 * Empty and destroy the freed open owner list.
3127 */
3128 foop = list_head(&mi->mi_foo_list);
3129 while (foop != NULL) {
3130 list_remove(&mi->mi_foo_list, foop);
3131 nfs4_destroy_open_owner(foop);
3132 foop = list_head(&mi->mi_foo_list);
3133 }
3134 list_destroy(&mi->mi_foo_list);
3135 list_destroy(&mi->mi_bseqid_list);
3136 list_destroy(&mi->mi_lost_state);
3137 list_destroy(&mi->mi_rnodes);
3138 avl_destroy(&mi->mi_filehandles);
3139 kmem_free(mi, sizeof (*mi));
3140 }
3141 void
mi_hold(mntinfo4_t * mi)3142 mi_hold(mntinfo4_t *mi)
3143 {
3144 atomic_inc_32(&mi->mi_count);
3145 ASSERT(mi->mi_count != 0);
3146 }
3147
3148 void
mi_rele(mntinfo4_t * mi)3149 mi_rele(mntinfo4_t *mi)
3150 {
3151 ASSERT(mi->mi_count != 0);
3152 if (atomic_dec_32_nv(&mi->mi_count) == 0) {
3153 nfs_free_mi4(mi);
3154 }
3155 }
3156
3157 vnode_t nfs4_xattr_notsupp_vnode;
3158
3159 void
nfs4_clnt_init(void)3160 nfs4_clnt_init(void)
3161 {
3162 nfs4_vnops_init();
3163 (void) nfs4_rnode_init();
3164 (void) nfs4_shadow_init();
3165 (void) nfs4_acache_init();
3166 (void) nfs4_subr_init();
3167 nfs4_acl_init();
3168 nfs_idmap_init();
3169 nfs4_callback_init();
3170 nfs4_secinfo_init();
3171 #ifdef DEBUG
3172 tsd_create(&nfs4_tsd_key, NULL);
3173 #endif
3174
3175 /*
3176 * Add a CPR callback so that we can update client
3177 * lease after a suspend and resume.
3178 */
3179 cid = callb_add(nfs4_client_cpr_callb, 0, CB_CL_CPR_RPC, "nfs4");
3180
3181 zone_key_create(&mi4_list_key, nfs4_mi_init, nfs4_mi_shutdown,
3182 nfs4_mi_destroy);
3183
3184 /*
3185 * Initialise the reference count of the notsupp xattr cache vnode to 1
3186 * so that it never goes away (VOP_INACTIVE isn't called on it).
3187 */
3188 nfs4_xattr_notsupp_vnode.v_count = 1;
3189 }
3190
3191 void
nfs4_clnt_fini(void)3192 nfs4_clnt_fini(void)
3193 {
3194 (void) zone_key_delete(mi4_list_key);
3195 nfs4_vnops_fini();
3196 (void) nfs4_rnode_fini();
3197 (void) nfs4_shadow_fini();
3198 (void) nfs4_acache_fini();
3199 (void) nfs4_subr_fini();
3200 nfs_idmap_fini();
3201 nfs4_callback_fini();
3202 nfs4_secinfo_fini();
3203 #ifdef DEBUG
3204 tsd_destroy(&nfs4_tsd_key);
3205 #endif
3206 if (cid)
3207 (void) callb_delete(cid);
3208 }
3209
3210 /*ARGSUSED*/
3211 static boolean_t
nfs4_client_cpr_callb(void * arg,int code)3212 nfs4_client_cpr_callb(void *arg, int code)
3213 {
3214 /*
3215 * We get called for Suspend and Resume events.
3216 * For the suspend case we simply don't care!
3217 */
3218 if (code == CB_CODE_CPR_CHKPT) {
3219 return (B_TRUE);
3220 }
3221
3222 /*
3223 * When we get to here we are in the process of
3224 * resuming the system from a previous suspend.
3225 */
3226 nfs4_client_resumed = gethrestime_sec();
3227 return (B_TRUE);
3228 }
3229
3230 void
nfs4_renew_lease_thread(nfs4_server_t * sp)3231 nfs4_renew_lease_thread(nfs4_server_t *sp)
3232 {
3233 int error = 0;
3234 time_t tmp_last_renewal_time, tmp_time, tmp_now_time, kip_secs;
3235 clock_t tick_delay = 0;
3236 clock_t time_left = 0;
3237 callb_cpr_t cpr_info;
3238 kmutex_t cpr_lock;
3239
3240 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3241 "nfs4_renew_lease_thread: acting on sp 0x%p", (void*)sp));
3242 mutex_init(&cpr_lock, NULL, MUTEX_DEFAULT, NULL);
3243 CALLB_CPR_INIT(&cpr_info, &cpr_lock, callb_generic_cpr, "nfsv4Lease");
3244
3245 mutex_enter(&sp->s_lock);
3246 /* sp->s_lease_time is set via a GETATTR */
3247 sp->last_renewal_time = gethrestime_sec();
3248 sp->lease_valid = NFS4_LEASE_UNINITIALIZED;
3249 ASSERT(sp->s_refcnt >= 1);
3250
3251 for (;;) {
3252 if (!sp->state_ref_count ||
3253 sp->lease_valid != NFS4_LEASE_VALID) {
3254
3255 kip_secs = MAX((sp->s_lease_time >> 1) -
3256 (3 * sp->propagation_delay.tv_sec), 1);
3257
3258 tick_delay = SEC_TO_TICK(kip_secs);
3259
3260 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3261 "nfs4_renew_lease_thread: no renew : thread "
3262 "wait %ld secs", kip_secs));
3263
3264 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3265 "nfs4_renew_lease_thread: no renew : "
3266 "state_ref_count %d, lease_valid %d",
3267 sp->state_ref_count, sp->lease_valid));
3268
3269 mutex_enter(&cpr_lock);
3270 CALLB_CPR_SAFE_BEGIN(&cpr_info);
3271 mutex_exit(&cpr_lock);
3272 time_left = cv_reltimedwait(&sp->cv_thread_exit,
3273 &sp->s_lock, tick_delay, TR_CLOCK_TICK);
3274 mutex_enter(&cpr_lock);
3275 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3276 mutex_exit(&cpr_lock);
3277
3278 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3279 "nfs4_renew_lease_thread: no renew: "
3280 "time left %ld", time_left));
3281
3282 if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3283 goto die;
3284 continue;
3285 }
3286
3287 tmp_last_renewal_time = sp->last_renewal_time;
3288
3289 tmp_time = gethrestime_sec() - sp->last_renewal_time +
3290 (3 * sp->propagation_delay.tv_sec);
3291
3292 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3293 "nfs4_renew_lease_thread: tmp_time %ld, "
3294 "sp->last_renewal_time %ld", tmp_time,
3295 sp->last_renewal_time));
3296
3297 kip_secs = MAX((sp->s_lease_time >> 1) - tmp_time, 1);
3298
3299 tick_delay = SEC_TO_TICK(kip_secs);
3300
3301 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3302 "nfs4_renew_lease_thread: valid lease: sleep for %ld "
3303 "secs", kip_secs));
3304
3305 mutex_enter(&cpr_lock);
3306 CALLB_CPR_SAFE_BEGIN(&cpr_info);
3307 mutex_exit(&cpr_lock);
3308 time_left = cv_reltimedwait(&sp->cv_thread_exit, &sp->s_lock,
3309 tick_delay, TR_CLOCK_TICK);
3310 mutex_enter(&cpr_lock);
3311 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3312 mutex_exit(&cpr_lock);
3313
3314 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3315 "nfs4_renew_lease_thread: valid lease: time left %ld :"
3316 "sp last_renewal_time %ld, nfs4_client_resumed %ld, "
3317 "tmp_last_renewal_time %ld", time_left,
3318 sp->last_renewal_time, nfs4_client_resumed,
3319 tmp_last_renewal_time));
3320
3321 if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3322 goto die;
3323
3324 if (tmp_last_renewal_time == sp->last_renewal_time ||
3325 (nfs4_client_resumed != 0 &&
3326 nfs4_client_resumed > sp->last_renewal_time)) {
3327 /*
3328 * Issue RENEW op since we haven't renewed the lease
3329 * since we slept.
3330 */
3331 tmp_now_time = gethrestime_sec();
3332 error = nfs4renew(sp);
3333 /*
3334 * Need to re-acquire sp's lock, nfs4renew()
3335 * relinqueshes it.
3336 */
3337 mutex_enter(&sp->s_lock);
3338
3339 /*
3340 * See if someone changed s_thread_exit while we gave
3341 * up s_lock.
3342 */
3343 if (sp->s_thread_exit == NFS4_THREAD_EXIT)
3344 goto die;
3345
3346 if (!error) {
3347 /*
3348 * check to see if we implicitly renewed while
3349 * we waited for a reply for our RENEW call.
3350 */
3351 if (tmp_last_renewal_time ==
3352 sp->last_renewal_time) {
3353 /* no implicit renew came */
3354 sp->last_renewal_time = tmp_now_time;
3355 } else {
3356 NFS4_DEBUG(nfs4_client_lease_debug,
3357 (CE_NOTE, "renew_thread: did "
3358 "implicit renewal before reply "
3359 "from server for RENEW"));
3360 }
3361 } else {
3362 /* figure out error */
3363 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3364 "renew_thread: nfs4renew returned error"
3365 " %d", error));
3366 }
3367
3368 }
3369 }
3370
3371 die:
3372 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3373 "nfs4_renew_lease_thread: thread exiting"));
3374
3375 while (sp->s_otw_call_count != 0) {
3376 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3377 "nfs4_renew_lease_thread: waiting for outstanding "
3378 "otw calls to finish for sp 0x%p, current "
3379 "s_otw_call_count %d", (void *)sp,
3380 sp->s_otw_call_count));
3381 mutex_enter(&cpr_lock);
3382 CALLB_CPR_SAFE_BEGIN(&cpr_info);
3383 mutex_exit(&cpr_lock);
3384 cv_wait(&sp->s_cv_otw_count, &sp->s_lock);
3385 mutex_enter(&cpr_lock);
3386 CALLB_CPR_SAFE_END(&cpr_info, &cpr_lock);
3387 mutex_exit(&cpr_lock);
3388 }
3389 mutex_exit(&sp->s_lock);
3390
3391 nfs4_server_rele(sp); /* free the thread's reference */
3392 nfs4_server_rele(sp); /* free the list's reference */
3393 sp = NULL;
3394
3395 done:
3396 mutex_enter(&cpr_lock);
3397 CALLB_CPR_EXIT(&cpr_info); /* drops cpr_lock */
3398 mutex_destroy(&cpr_lock);
3399
3400 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3401 "nfs4_renew_lease_thread: renew thread exit officially"));
3402
3403 zthread_exit();
3404 /* NOT REACHED */
3405 }
3406
3407 /*
3408 * Send out a RENEW op to the server.
3409 * Assumes sp is locked down.
3410 */
3411 static int
nfs4renew(nfs4_server_t * sp)3412 nfs4renew(nfs4_server_t *sp)
3413 {
3414 COMPOUND4args_clnt args;
3415 COMPOUND4res_clnt res;
3416 nfs_argop4 argop[1];
3417 int doqueue = 1;
3418 int rpc_error;
3419 cred_t *cr;
3420 mntinfo4_t *mi;
3421 timespec_t prop_time, after_time;
3422 int needrecov = FALSE;
3423 nfs4_recov_state_t recov_state;
3424 nfs4_error_t e = { 0, NFS4_OK, RPC_SUCCESS };
3425
3426 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "nfs4renew"));
3427
3428 recov_state.rs_flags = 0;
3429 recov_state.rs_num_retry_despite_err = 0;
3430
3431 recov_retry:
3432 mi = sp->mntinfo4_list;
3433 VFS_HOLD(mi->mi_vfsp);
3434 mutex_exit(&sp->s_lock);
3435 ASSERT(mi != NULL);
3436
3437 e.error = nfs4_start_op(mi, NULL, NULL, &recov_state);
3438 if (e.error) {
3439 VFS_RELE(mi->mi_vfsp);
3440 return (e.error);
3441 }
3442
3443 /* Check to see if we're dealing with a marked-dead sp */
3444 mutex_enter(&sp->s_lock);
3445 if (sp->s_thread_exit == NFS4_THREAD_EXIT) {
3446 mutex_exit(&sp->s_lock);
3447 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3448 VFS_RELE(mi->mi_vfsp);
3449 return (0);
3450 }
3451
3452 /* Make sure mi hasn't changed on us */
3453 if (mi != sp->mntinfo4_list) {
3454 /* Must drop sp's lock to avoid a recursive mutex enter */
3455 mutex_exit(&sp->s_lock);
3456 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3457 VFS_RELE(mi->mi_vfsp);
3458 mutex_enter(&sp->s_lock);
3459 goto recov_retry;
3460 }
3461 mutex_exit(&sp->s_lock);
3462
3463 args.ctag = TAG_RENEW;
3464
3465 args.array_len = 1;
3466 args.array = argop;
3467
3468 argop[0].argop = OP_RENEW;
3469
3470 mutex_enter(&sp->s_lock);
3471 argop[0].nfs_argop4_u.oprenew.clientid = sp->clientid;
3472 cr = sp->s_cred;
3473 crhold(cr);
3474 mutex_exit(&sp->s_lock);
3475
3476 ASSERT(cr != NULL);
3477
3478 /* used to figure out RTT for sp */
3479 gethrestime(&prop_time);
3480
3481 NFS4_DEBUG(nfs4_client_call_debug, (CE_NOTE,
3482 "nfs4renew: %s call, sp 0x%p", needrecov ? "recov" : "first",
3483 (void*)sp));
3484 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "before: %ld s %ld ns ",
3485 prop_time.tv_sec, prop_time.tv_nsec));
3486
3487 DTRACE_PROBE2(nfs4__renew__start, nfs4_server_t *, sp,
3488 mntinfo4_t *, mi);
3489
3490 rfs4call(mi, &args, &res, cr, &doqueue, 0, &e);
3491 crfree(cr);
3492
3493 DTRACE_PROBE2(nfs4__renew__end, nfs4_server_t *, sp,
3494 mntinfo4_t *, mi);
3495
3496 gethrestime(&after_time);
3497
3498 mutex_enter(&sp->s_lock);
3499 sp->propagation_delay.tv_sec =
3500 MAX(1, after_time.tv_sec - prop_time.tv_sec);
3501 mutex_exit(&sp->s_lock);
3502
3503 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE, "after : %ld s %ld ns ",
3504 after_time.tv_sec, after_time.tv_nsec));
3505
3506 if (e.error == 0 && res.status == NFS4ERR_CB_PATH_DOWN) {
3507 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3508 nfs4_delegreturn_all(sp);
3509 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3510 VFS_RELE(mi->mi_vfsp);
3511 /*
3512 * If the server returns CB_PATH_DOWN, it has renewed
3513 * the lease and informed us that the callback path is
3514 * down. Since the lease is renewed, just return 0 and
3515 * let the renew thread proceed as normal.
3516 */
3517 return (0);
3518 }
3519
3520 needrecov = nfs4_needs_recovery(&e, FALSE, mi->mi_vfsp);
3521 if (!needrecov && e.error) {
3522 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3523 VFS_RELE(mi->mi_vfsp);
3524 return (e.error);
3525 }
3526
3527 rpc_error = e.error;
3528
3529 if (needrecov) {
3530 NFS4_DEBUG(nfs4_client_recov_debug, (CE_NOTE,
3531 "nfs4renew: initiating recovery\n"));
3532
3533 if (nfs4_start_recovery(&e, mi, NULL, NULL, NULL, NULL,
3534 OP_RENEW, NULL, NULL, NULL) == FALSE) {
3535 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3536 VFS_RELE(mi->mi_vfsp);
3537 if (!e.error)
3538 (void) xdr_free(xdr_COMPOUND4res_clnt,
3539 (caddr_t)&res);
3540 mutex_enter(&sp->s_lock);
3541 goto recov_retry;
3542 }
3543 /* fall through for res.status case */
3544 }
3545
3546 if (res.status) {
3547 if (res.status == NFS4ERR_LEASE_MOVED) {
3548 /*EMPTY*/
3549 /*
3550 * XXX need to try every mntinfo4 in sp->mntinfo4_list
3551 * to renew the lease on that server
3552 */
3553 }
3554 e.error = geterrno4(res.status);
3555 }
3556
3557 if (!rpc_error)
3558 (void) xdr_free(xdr_COMPOUND4res_clnt, (caddr_t)&res);
3559
3560 nfs4_end_op(mi, NULL, NULL, &recov_state, needrecov);
3561
3562 VFS_RELE(mi->mi_vfsp);
3563
3564 return (e.error);
3565 }
3566
3567 void
nfs4_inc_state_ref_count(mntinfo4_t * mi)3568 nfs4_inc_state_ref_count(mntinfo4_t *mi)
3569 {
3570 nfs4_server_t *sp;
3571
3572 /* this locks down sp if it is found */
3573 sp = find_nfs4_server(mi);
3574
3575 if (sp != NULL) {
3576 nfs4_inc_state_ref_count_nolock(sp, mi);
3577 mutex_exit(&sp->s_lock);
3578 nfs4_server_rele(sp);
3579 }
3580 }
3581
3582 /*
3583 * Bump the number of OPEN files (ie: those with state) so we know if this
3584 * nfs4_server has any state to maintain a lease for or not.
3585 *
3586 * Also, marks the nfs4_server's lease valid if it hasn't been done so already.
3587 */
3588 void
nfs4_inc_state_ref_count_nolock(nfs4_server_t * sp,mntinfo4_t * mi)3589 nfs4_inc_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
3590 {
3591 ASSERT(mutex_owned(&sp->s_lock));
3592
3593 sp->state_ref_count++;
3594 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3595 "nfs4_inc_state_ref_count: state_ref_count now %d",
3596 sp->state_ref_count));
3597
3598 if (sp->lease_valid == NFS4_LEASE_UNINITIALIZED)
3599 sp->lease_valid = NFS4_LEASE_VALID;
3600
3601 /*
3602 * If this call caused the lease to be marked valid and/or
3603 * took the state_ref_count from 0 to 1, then start the time
3604 * on lease renewal.
3605 */
3606 if (sp->lease_valid == NFS4_LEASE_VALID && sp->state_ref_count == 1)
3607 sp->last_renewal_time = gethrestime_sec();
3608
3609 /* update the number of open files for mi */
3610 mi->mi_open_files++;
3611 }
3612
3613 void
nfs4_dec_state_ref_count(mntinfo4_t * mi)3614 nfs4_dec_state_ref_count(mntinfo4_t *mi)
3615 {
3616 nfs4_server_t *sp;
3617
3618 /* this locks down sp if it is found */
3619 sp = find_nfs4_server_all(mi, 1);
3620
3621 if (sp != NULL) {
3622 nfs4_dec_state_ref_count_nolock(sp, mi);
3623 mutex_exit(&sp->s_lock);
3624 nfs4_server_rele(sp);
3625 }
3626 }
3627
3628 /*
3629 * Decrement the number of OPEN files (ie: those with state) so we know if
3630 * this nfs4_server has any state to maintain a lease for or not.
3631 */
3632 void
nfs4_dec_state_ref_count_nolock(nfs4_server_t * sp,mntinfo4_t * mi)3633 nfs4_dec_state_ref_count_nolock(nfs4_server_t *sp, mntinfo4_t *mi)
3634 {
3635 ASSERT(mutex_owned(&sp->s_lock));
3636 ASSERT(sp->state_ref_count != 0);
3637 sp->state_ref_count--;
3638
3639 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3640 "nfs4_dec_state_ref_count: state ref count now %d",
3641 sp->state_ref_count));
3642
3643 mi->mi_open_files--;
3644 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3645 "nfs4_dec_state_ref_count: mi open files %d, v4 flags 0x%x",
3646 mi->mi_open_files, mi->mi_flags));
3647
3648 /* We don't have to hold the mi_lock to test mi_flags */
3649 if (mi->mi_open_files == 0 &&
3650 (mi->mi_flags & MI4_REMOVE_ON_LAST_CLOSE)) {
3651 NFS4_DEBUG(nfs4_client_lease_debug, (CE_NOTE,
3652 "nfs4_dec_state_ref_count: remove mntinfo4 %p since "
3653 "we have closed the last open file", (void*)mi));
3654 nfs4_remove_mi_from_server(mi, sp);
3655 }
3656 }
3657
3658 bool_t
inlease(nfs4_server_t * sp)3659 inlease(nfs4_server_t *sp)
3660 {
3661 bool_t result;
3662
3663 ASSERT(mutex_owned(&sp->s_lock));
3664
3665 if (sp->lease_valid == NFS4_LEASE_VALID &&
3666 gethrestime_sec() < sp->last_renewal_time + sp->s_lease_time)
3667 result = TRUE;
3668 else
3669 result = FALSE;
3670
3671 return (result);
3672 }
3673
3674
3675 /*
3676 * Return non-zero if the given nfs4_server_t is going through recovery.
3677 */
3678
3679 int
nfs4_server_in_recovery(nfs4_server_t * sp)3680 nfs4_server_in_recovery(nfs4_server_t *sp)
3681 {
3682 return (nfs_rw_lock_held(&sp->s_recovlock, RW_WRITER));
3683 }
3684
3685 /*
3686 * Compare two shared filehandle objects. Returns -1, 0, or +1, if the
3687 * first is less than, equal to, or greater than the second.
3688 */
3689
3690 int
sfh4cmp(const void * p1,const void * p2)3691 sfh4cmp(const void *p1, const void *p2)
3692 {
3693 const nfs4_sharedfh_t *sfh1 = (const nfs4_sharedfh_t *)p1;
3694 const nfs4_sharedfh_t *sfh2 = (const nfs4_sharedfh_t *)p2;
3695
3696 return (nfs4cmpfh(&sfh1->sfh_fh, &sfh2->sfh_fh));
3697 }
3698
3699 /*
3700 * Create a table for shared filehandle objects.
3701 */
3702
3703 void
sfh4_createtab(avl_tree_t * tab)3704 sfh4_createtab(avl_tree_t *tab)
3705 {
3706 avl_create(tab, sfh4cmp, sizeof (nfs4_sharedfh_t),
3707 offsetof(nfs4_sharedfh_t, sfh_tree));
3708 }
3709
3710 /*
3711 * Return a shared filehandle object for the given filehandle. The caller
3712 * is responsible for eventually calling sfh4_rele().
3713 */
3714
3715 nfs4_sharedfh_t *
sfh4_put(const nfs_fh4 * fh,mntinfo4_t * mi,nfs4_sharedfh_t * key)3716 sfh4_put(const nfs_fh4 *fh, mntinfo4_t *mi, nfs4_sharedfh_t *key)
3717 {
3718 nfs4_sharedfh_t *sfh, *nsfh;
3719 avl_index_t where;
3720 nfs4_sharedfh_t skey;
3721
3722 if (!key) {
3723 skey.sfh_fh = *fh;
3724 key = &skey;
3725 }
3726
3727 nsfh = kmem_alloc(sizeof (nfs4_sharedfh_t), KM_SLEEP);
3728 nsfh->sfh_fh.nfs_fh4_len = fh->nfs_fh4_len;
3729 /*
3730 * We allocate the largest possible filehandle size because it's
3731 * not that big, and it saves us from possibly having to resize the
3732 * buffer later.
3733 */
3734 nsfh->sfh_fh.nfs_fh4_val = kmem_alloc(NFS4_FHSIZE, KM_SLEEP);
3735 bcopy(fh->nfs_fh4_val, nsfh->sfh_fh.nfs_fh4_val, fh->nfs_fh4_len);
3736 mutex_init(&nsfh->sfh_lock, NULL, MUTEX_DEFAULT, NULL);
3737 nsfh->sfh_refcnt = 1;
3738 nsfh->sfh_flags = SFH4_IN_TREE;
3739 nsfh->sfh_mi = mi;
3740 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE, "sfh4_get: new object (%p)",
3741 (void *)nsfh));
3742
3743 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3744 sfh = avl_find(&mi->mi_filehandles, key, &where);
3745 if (sfh != NULL) {
3746 mutex_enter(&sfh->sfh_lock);
3747 sfh->sfh_refcnt++;
3748 mutex_exit(&sfh->sfh_lock);
3749 nfs_rw_exit(&mi->mi_fh_lock);
3750 /* free our speculative allocs */
3751 kmem_free(nsfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
3752 kmem_free(nsfh, sizeof (nfs4_sharedfh_t));
3753 return (sfh);
3754 }
3755
3756 avl_insert(&mi->mi_filehandles, nsfh, where);
3757 nfs_rw_exit(&mi->mi_fh_lock);
3758
3759 return (nsfh);
3760 }
3761
3762 /*
3763 * Return a shared filehandle object for the given filehandle. The caller
3764 * is responsible for eventually calling sfh4_rele().
3765 */
3766
3767 nfs4_sharedfh_t *
sfh4_get(const nfs_fh4 * fh,mntinfo4_t * mi)3768 sfh4_get(const nfs_fh4 *fh, mntinfo4_t *mi)
3769 {
3770 nfs4_sharedfh_t *sfh;
3771 nfs4_sharedfh_t key;
3772
3773 ASSERT(fh->nfs_fh4_len <= NFS4_FHSIZE);
3774
3775 #ifdef DEBUG
3776 if (nfs4_sharedfh_debug) {
3777 nfs4_fhandle_t fhandle;
3778
3779 fhandle.fh_len = fh->nfs_fh4_len;
3780 bcopy(fh->nfs_fh4_val, fhandle.fh_buf, fhandle.fh_len);
3781 zcmn_err(mi->mi_zone->zone_id, CE_NOTE, "sfh4_get:");
3782 nfs4_printfhandle(&fhandle);
3783 }
3784 #endif
3785
3786 /*
3787 * If there's already an object for the given filehandle, bump the
3788 * reference count and return it. Otherwise, create a new object
3789 * and add it to the AVL tree.
3790 */
3791
3792 key.sfh_fh = *fh;
3793
3794 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
3795 sfh = avl_find(&mi->mi_filehandles, &key, NULL);
3796 if (sfh != NULL) {
3797 mutex_enter(&sfh->sfh_lock);
3798 sfh->sfh_refcnt++;
3799 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3800 "sfh4_get: found existing %p, new refcnt=%d",
3801 (void *)sfh, sfh->sfh_refcnt));
3802 mutex_exit(&sfh->sfh_lock);
3803 nfs_rw_exit(&mi->mi_fh_lock);
3804 return (sfh);
3805 }
3806 nfs_rw_exit(&mi->mi_fh_lock);
3807
3808 return (sfh4_put(fh, mi, &key));
3809 }
3810
3811 /*
3812 * Get a reference to the given shared filehandle object.
3813 */
3814
3815 void
sfh4_hold(nfs4_sharedfh_t * sfh)3816 sfh4_hold(nfs4_sharedfh_t *sfh)
3817 {
3818 ASSERT(sfh->sfh_refcnt > 0);
3819
3820 mutex_enter(&sfh->sfh_lock);
3821 sfh->sfh_refcnt++;
3822 NFS4_DEBUG(nfs4_sharedfh_debug,
3823 (CE_NOTE, "sfh4_hold %p, new refcnt=%d",
3824 (void *)sfh, sfh->sfh_refcnt));
3825 mutex_exit(&sfh->sfh_lock);
3826 }
3827
3828 /*
3829 * Release a reference to the given shared filehandle object and null out
3830 * the given pointer.
3831 */
3832
3833 void
sfh4_rele(nfs4_sharedfh_t ** sfhpp)3834 sfh4_rele(nfs4_sharedfh_t **sfhpp)
3835 {
3836 mntinfo4_t *mi;
3837 nfs4_sharedfh_t *sfh = *sfhpp;
3838
3839 ASSERT(sfh->sfh_refcnt > 0);
3840
3841 mutex_enter(&sfh->sfh_lock);
3842 if (sfh->sfh_refcnt > 1) {
3843 sfh->sfh_refcnt--;
3844 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3845 "sfh4_rele %p, new refcnt=%d",
3846 (void *)sfh, sfh->sfh_refcnt));
3847 mutex_exit(&sfh->sfh_lock);
3848 goto finish;
3849 }
3850 mutex_exit(&sfh->sfh_lock);
3851
3852 /*
3853 * Possibly the last reference, so get the lock for the table in
3854 * case it's time to remove the object from the table.
3855 */
3856 mi = sfh->sfh_mi;
3857 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3858 mutex_enter(&sfh->sfh_lock);
3859 sfh->sfh_refcnt--;
3860 if (sfh->sfh_refcnt > 0) {
3861 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3862 "sfh4_rele %p, new refcnt=%d",
3863 (void *)sfh, sfh->sfh_refcnt));
3864 mutex_exit(&sfh->sfh_lock);
3865 nfs_rw_exit(&mi->mi_fh_lock);
3866 goto finish;
3867 }
3868
3869 NFS4_DEBUG(nfs4_sharedfh_debug, (CE_NOTE,
3870 "sfh4_rele %p, last ref", (void *)sfh));
3871 if (sfh->sfh_flags & SFH4_IN_TREE) {
3872 avl_remove(&mi->mi_filehandles, sfh);
3873 sfh->sfh_flags &= ~SFH4_IN_TREE;
3874 }
3875 mutex_exit(&sfh->sfh_lock);
3876 nfs_rw_exit(&mi->mi_fh_lock);
3877 mutex_destroy(&sfh->sfh_lock);
3878 kmem_free(sfh->sfh_fh.nfs_fh4_val, NFS4_FHSIZE);
3879 kmem_free(sfh, sizeof (nfs4_sharedfh_t));
3880
3881 finish:
3882 *sfhpp = NULL;
3883 }
3884
3885 /*
3886 * Update the filehandle for the given shared filehandle object.
3887 */
3888
3889 int nfs4_warn_dupfh = 0; /* if set, always warn about dup fhs below */
3890
3891 void
sfh4_update(nfs4_sharedfh_t * sfh,const nfs_fh4 * newfh)3892 sfh4_update(nfs4_sharedfh_t *sfh, const nfs_fh4 *newfh)
3893 {
3894 mntinfo4_t *mi = sfh->sfh_mi;
3895 nfs4_sharedfh_t *dupsfh;
3896 avl_index_t where;
3897 nfs4_sharedfh_t key;
3898
3899 #ifdef DEBUG
3900 mutex_enter(&sfh->sfh_lock);
3901 ASSERT(sfh->sfh_refcnt > 0);
3902 mutex_exit(&sfh->sfh_lock);
3903 #endif
3904 ASSERT(newfh->nfs_fh4_len <= NFS4_FHSIZE);
3905
3906 /*
3907 * The basic plan is to remove the shared filehandle object from
3908 * the table, update it to have the new filehandle, then reinsert
3909 * it.
3910 */
3911
3912 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_WRITER, 0);
3913 mutex_enter(&sfh->sfh_lock);
3914 if (sfh->sfh_flags & SFH4_IN_TREE) {
3915 avl_remove(&mi->mi_filehandles, sfh);
3916 sfh->sfh_flags &= ~SFH4_IN_TREE;
3917 }
3918 mutex_exit(&sfh->sfh_lock);
3919 sfh->sfh_fh.nfs_fh4_len = newfh->nfs_fh4_len;
3920 bcopy(newfh->nfs_fh4_val, sfh->sfh_fh.nfs_fh4_val,
3921 sfh->sfh_fh.nfs_fh4_len);
3922
3923 /*
3924 * XXX If there is already a shared filehandle object with the new
3925 * filehandle, we're in trouble, because the rnode code assumes
3926 * that there is only one shared filehandle object for a given
3927 * filehandle. So issue a warning (for read-write mounts only)
3928 * and don't try to re-insert the given object into the table.
3929 * Hopefully the given object will quickly go away and everyone
3930 * will use the new object.
3931 */
3932 key.sfh_fh = *newfh;
3933 dupsfh = avl_find(&mi->mi_filehandles, &key, &where);
3934 if (dupsfh != NULL) {
3935 if (!(mi->mi_vfsp->vfs_flag & VFS_RDONLY) || nfs4_warn_dupfh) {
3936 zcmn_err(mi->mi_zone->zone_id, CE_WARN, "sfh4_update: "
3937 "duplicate filehandle detected");
3938 sfh4_printfhandle(dupsfh);
3939 }
3940 } else {
3941 avl_insert(&mi->mi_filehandles, sfh, where);
3942 mutex_enter(&sfh->sfh_lock);
3943 sfh->sfh_flags |= SFH4_IN_TREE;
3944 mutex_exit(&sfh->sfh_lock);
3945 }
3946 nfs_rw_exit(&mi->mi_fh_lock);
3947 }
3948
3949 /*
3950 * Copy out the current filehandle for the given shared filehandle object.
3951 */
3952
3953 void
sfh4_copyval(const nfs4_sharedfh_t * sfh,nfs4_fhandle_t * fhp)3954 sfh4_copyval(const nfs4_sharedfh_t *sfh, nfs4_fhandle_t *fhp)
3955 {
3956 mntinfo4_t *mi = sfh->sfh_mi;
3957
3958 ASSERT(sfh->sfh_refcnt > 0);
3959
3960 (void) nfs_rw_enter_sig(&mi->mi_fh_lock, RW_READER, 0);
3961 fhp->fh_len = sfh->sfh_fh.nfs_fh4_len;
3962 ASSERT(fhp->fh_len <= NFS4_FHSIZE);
3963 bcopy(sfh->sfh_fh.nfs_fh4_val, fhp->fh_buf, fhp->fh_len);
3964 nfs_rw_exit(&mi->mi_fh_lock);
3965 }
3966
3967 /*
3968 * Print out the filehandle for the given shared filehandle object.
3969 */
3970
3971 void
sfh4_printfhandle(const nfs4_sharedfh_t * sfh)3972 sfh4_printfhandle(const nfs4_sharedfh_t *sfh)
3973 {
3974 nfs4_fhandle_t fhandle;
3975
3976 sfh4_copyval(sfh, &fhandle);
3977 nfs4_printfhandle(&fhandle);
3978 }
3979
3980 /*
3981 * Compare 2 fnames. Returns -1 if the first is "less" than the second, 0
3982 * if they're the same, +1 if the first is "greater" than the second. The
3983 * caller (or whoever's calling the AVL package) is responsible for
3984 * handling locking issues.
3985 */
3986
3987 static int
fncmp(const void * p1,const void * p2)3988 fncmp(const void *p1, const void *p2)
3989 {
3990 const nfs4_fname_t *f1 = p1;
3991 const nfs4_fname_t *f2 = p2;
3992 int res;
3993
3994 res = strcmp(f1->fn_name, f2->fn_name);
3995 /*
3996 * The AVL package wants +/-1, not arbitrary positive or negative
3997 * integers.
3998 */
3999 if (res > 0)
4000 res = 1;
4001 else if (res < 0)
4002 res = -1;
4003 return (res);
4004 }
4005
4006 /*
4007 * Get or create an fname with the given name, as a child of the given
4008 * fname. The caller is responsible for eventually releasing the reference
4009 * (fn_rele()). parent may be NULL.
4010 */
4011
4012 nfs4_fname_t *
fn_get(nfs4_fname_t * parent,char * name,nfs4_sharedfh_t * sfh)4013 fn_get(nfs4_fname_t *parent, char *name, nfs4_sharedfh_t *sfh)
4014 {
4015 nfs4_fname_t key;
4016 nfs4_fname_t *fnp;
4017 avl_index_t where;
4018
4019 key.fn_name = name;
4020
4021 /*
4022 * If there's already an fname registered with the given name, bump
4023 * its reference count and return it. Otherwise, create a new one
4024 * and add it to the parent's AVL tree.
4025 *
4026 * fname entries we are looking for should match both name
4027 * and sfh stored in the fname.
4028 */
4029 again:
4030 if (parent != NULL) {
4031 mutex_enter(&parent->fn_lock);
4032 fnp = avl_find(&parent->fn_children, &key, &where);
4033 if (fnp != NULL) {
4034 /*
4035 * This hold on fnp is released below later,
4036 * in case this is not the fnp we want.
4037 */
4038 fn_hold(fnp);
4039
4040 if (fnp->fn_sfh == sfh) {
4041 /*
4042 * We have found our entry.
4043 * put an hold and return it.
4044 */
4045 mutex_exit(&parent->fn_lock);
4046 return (fnp);
4047 }
4048
4049 /*
4050 * We have found an entry that has a mismatching
4051 * fn_sfh. This could be a stale entry due to
4052 * server side rename. We will remove this entry
4053 * and make sure no such entries exist.
4054 */
4055 mutex_exit(&parent->fn_lock);
4056 mutex_enter(&fnp->fn_lock);
4057 if (fnp->fn_parent == parent) {
4058 /*
4059 * Remove ourselves from parent's
4060 * fn_children tree.
4061 */
4062 mutex_enter(&parent->fn_lock);
4063 avl_remove(&parent->fn_children, fnp);
4064 mutex_exit(&parent->fn_lock);
4065 fn_rele(&fnp->fn_parent);
4066 }
4067 mutex_exit(&fnp->fn_lock);
4068 fn_rele(&fnp);
4069 goto again;
4070 }
4071 }
4072
4073 fnp = kmem_alloc(sizeof (nfs4_fname_t), KM_SLEEP);
4074 mutex_init(&fnp->fn_lock, NULL, MUTEX_DEFAULT, NULL);
4075 fnp->fn_parent = parent;
4076 if (parent != NULL)
4077 fn_hold(parent);
4078 fnp->fn_len = strlen(name);
4079 ASSERT(fnp->fn_len < MAXNAMELEN);
4080 fnp->fn_name = kmem_alloc(fnp->fn_len + 1, KM_SLEEP);
4081 (void) strcpy(fnp->fn_name, name);
4082 fnp->fn_refcnt = 1;
4083
4084 /*
4085 * This hold on sfh is later released
4086 * when we do the final fn_rele() on this fname.
4087 */
4088 sfh4_hold(sfh);
4089 fnp->fn_sfh = sfh;
4090
4091 avl_create(&fnp->fn_children, fncmp, sizeof (nfs4_fname_t),
4092 offsetof(nfs4_fname_t, fn_tree));
4093 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4094 "fn_get %p:%s, a new nfs4_fname_t!",
4095 (void *)fnp, fnp->fn_name));
4096 if (parent != NULL) {
4097 avl_insert(&parent->fn_children, fnp, where);
4098 mutex_exit(&parent->fn_lock);
4099 }
4100
4101 return (fnp);
4102 }
4103
4104 void
fn_hold(nfs4_fname_t * fnp)4105 fn_hold(nfs4_fname_t *fnp)
4106 {
4107 atomic_inc_32(&fnp->fn_refcnt);
4108 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4109 "fn_hold %p:%s, new refcnt=%d",
4110 (void *)fnp, fnp->fn_name, fnp->fn_refcnt));
4111 }
4112
4113 /*
4114 * Decrement the reference count of the given fname, and destroy it if its
4115 * reference count goes to zero. Nulls out the given pointer.
4116 */
4117
4118 void
fn_rele(nfs4_fname_t ** fnpp)4119 fn_rele(nfs4_fname_t **fnpp)
4120 {
4121 nfs4_fname_t *parent;
4122 uint32_t newref;
4123 nfs4_fname_t *fnp;
4124
4125 recur:
4126 fnp = *fnpp;
4127 *fnpp = NULL;
4128
4129 mutex_enter(&fnp->fn_lock);
4130 parent = fnp->fn_parent;
4131 if (parent != NULL)
4132 mutex_enter(&parent->fn_lock); /* prevent new references */
4133 newref = atomic_dec_32_nv(&fnp->fn_refcnt);
4134 if (newref > 0) {
4135 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4136 "fn_rele %p:%s, new refcnt=%d",
4137 (void *)fnp, fnp->fn_name, fnp->fn_refcnt));
4138 if (parent != NULL)
4139 mutex_exit(&parent->fn_lock);
4140 mutex_exit(&fnp->fn_lock);
4141 return;
4142 }
4143
4144 NFS4_DEBUG(nfs4_fname_debug, (CE_NOTE,
4145 "fn_rele %p:%s, last reference, deleting...",
4146 (void *)fnp, fnp->fn_name));
4147 if (parent != NULL) {
4148 avl_remove(&parent->fn_children, fnp);
4149 mutex_exit(&parent->fn_lock);
4150 }
4151 kmem_free(fnp->fn_name, fnp->fn_len + 1);
4152 sfh4_rele(&fnp->fn_sfh);
4153 mutex_destroy(&fnp->fn_lock);
4154 avl_destroy(&fnp->fn_children);
4155 kmem_free(fnp, sizeof (nfs4_fname_t));
4156 /*
4157 * Recursivly fn_rele the parent.
4158 * Use goto instead of a recursive call to avoid stack overflow.
4159 */
4160 if (parent != NULL) {
4161 fnpp = &parent;
4162 goto recur;
4163 }
4164 }
4165
4166 /*
4167 * Returns the single component name of the given fname, in a MAXNAMELEN
4168 * string buffer, which the caller is responsible for freeing. Note that
4169 * the name may become invalid as a result of fn_move().
4170 */
4171
4172 char *
fn_name(nfs4_fname_t * fnp)4173 fn_name(nfs4_fname_t *fnp)
4174 {
4175 char *name;
4176
4177 ASSERT(fnp->fn_len < MAXNAMELEN);
4178 name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
4179 mutex_enter(&fnp->fn_lock);
4180 (void) strcpy(name, fnp->fn_name);
4181 mutex_exit(&fnp->fn_lock);
4182
4183 return (name);
4184 }
4185
4186
4187 /*
4188 * fn_path_realloc
4189 *
4190 * This function, used only by fn_path, constructs
4191 * a new string which looks like "prepend" + "/" + "current".
4192 * by allocating a new string and freeing the old one.
4193 */
4194 static void
fn_path_realloc(char ** curses,char * prepend)4195 fn_path_realloc(char **curses, char *prepend)
4196 {
4197 int len, curlen = 0;
4198 char *news;
4199
4200 if (*curses == NULL) {
4201 /*
4202 * Prime the pump, allocate just the
4203 * space for prepend and return that.
4204 */
4205 len = strlen(prepend) + 1;
4206 news = kmem_alloc(len, KM_SLEEP);
4207 (void) strncpy(news, prepend, len);
4208 } else {
4209 /*
4210 * Allocate the space for a new string
4211 * +1 +1 is for the "/" and the NULL
4212 * byte at the end of it all.
4213 */
4214 curlen = strlen(*curses);
4215 len = curlen + strlen(prepend) + 1 + 1;
4216 news = kmem_alloc(len, KM_SLEEP);
4217 (void) strncpy(news, prepend, len);
4218 (void) strcat(news, "/");
4219 (void) strcat(news, *curses);
4220 kmem_free(*curses, curlen + 1);
4221 }
4222 *curses = news;
4223 }
4224
4225 /*
4226 * Returns the path name (starting from the fs root) for the given fname.
4227 * The caller is responsible for freeing. Note that the path may be or
4228 * become invalid as a result of fn_move().
4229 */
4230
4231 char *
fn_path(nfs4_fname_t * fnp)4232 fn_path(nfs4_fname_t *fnp)
4233 {
4234 char *path;
4235 nfs4_fname_t *nextfnp;
4236
4237 if (fnp == NULL)
4238 return (NULL);
4239
4240 path = NULL;
4241
4242 /* walk up the tree constructing the pathname. */
4243
4244 fn_hold(fnp); /* adjust for later rele */
4245 do {
4246 mutex_enter(&fnp->fn_lock);
4247 /*
4248 * Add fn_name in front of the current path
4249 */
4250 fn_path_realloc(&path, fnp->fn_name);
4251 nextfnp = fnp->fn_parent;
4252 if (nextfnp != NULL)
4253 fn_hold(nextfnp);
4254 mutex_exit(&fnp->fn_lock);
4255 fn_rele(&fnp);
4256 fnp = nextfnp;
4257 } while (fnp != NULL);
4258
4259 return (path);
4260 }
4261
4262 /*
4263 * Return a reference to the parent of the given fname, which the caller is
4264 * responsible for eventually releasing.
4265 */
4266
4267 nfs4_fname_t *
fn_parent(nfs4_fname_t * fnp)4268 fn_parent(nfs4_fname_t *fnp)
4269 {
4270 nfs4_fname_t *parent;
4271
4272 mutex_enter(&fnp->fn_lock);
4273 parent = fnp->fn_parent;
4274 if (parent != NULL)
4275 fn_hold(parent);
4276 mutex_exit(&fnp->fn_lock);
4277
4278 return (parent);
4279 }
4280
4281 /*
4282 * Update fnp so that its parent is newparent and its name is newname.
4283 */
4284
4285 void
fn_move(nfs4_fname_t * fnp,nfs4_fname_t * newparent,char * newname)4286 fn_move(nfs4_fname_t *fnp, nfs4_fname_t *newparent, char *newname)
4287 {
4288 nfs4_fname_t *parent, *tmpfnp;
4289 ssize_t newlen;
4290 nfs4_fname_t key;
4291 avl_index_t where;
4292
4293 /*
4294 * This assert exists to catch the client trying to rename
4295 * a dir to be a child of itself. This happened at a recent
4296 * bakeoff against a 3rd party (broken) server which allowed
4297 * the rename to succeed. If it trips it means that:
4298 * a) the code in nfs4rename that detects this case is broken
4299 * b) the server is broken (since it allowed the bogus rename)
4300 *
4301 * For non-DEBUG kernels, prepare for a recursive mutex_enter
4302 * panic below from: mutex_enter(&newparent->fn_lock);
4303 */
4304 ASSERT(fnp != newparent);
4305
4306 /*
4307 * Remove fnp from its current parent, change its name, then add it
4308 * to newparent. It might happen that fnp was replaced by another
4309 * nfs4_fname_t with the same fn_name in parent->fn_children.
4310 * In such case, fnp->fn_parent is NULL and we skip the removal
4311 * of fnp from its current parent.
4312 */
4313 mutex_enter(&fnp->fn_lock);
4314 parent = fnp->fn_parent;
4315 if (parent != NULL) {
4316 mutex_enter(&parent->fn_lock);
4317 avl_remove(&parent->fn_children, fnp);
4318 mutex_exit(&parent->fn_lock);
4319 fn_rele(&fnp->fn_parent);
4320 }
4321
4322 newlen = strlen(newname);
4323 if (newlen != fnp->fn_len) {
4324 ASSERT(newlen < MAXNAMELEN);
4325 kmem_free(fnp->fn_name, fnp->fn_len + 1);
4326 fnp->fn_name = kmem_alloc(newlen + 1, KM_SLEEP);
4327 fnp->fn_len = newlen;
4328 }
4329 (void) strcpy(fnp->fn_name, newname);
4330
4331 again:
4332 mutex_enter(&newparent->fn_lock);
4333 key.fn_name = fnp->fn_name;
4334 tmpfnp = avl_find(&newparent->fn_children, &key, &where);
4335 if (tmpfnp != NULL) {
4336 /*
4337 * This could be due to a file that was unlinked while
4338 * open, or perhaps the rnode is in the free list. Remove
4339 * it from newparent and let it go away on its own. The
4340 * contorted code is to deal with lock order issues and
4341 * race conditions.
4342 */
4343 fn_hold(tmpfnp);
4344 mutex_exit(&newparent->fn_lock);
4345 mutex_enter(&tmpfnp->fn_lock);
4346 if (tmpfnp->fn_parent == newparent) {
4347 mutex_enter(&newparent->fn_lock);
4348 avl_remove(&newparent->fn_children, tmpfnp);
4349 mutex_exit(&newparent->fn_lock);
4350 fn_rele(&tmpfnp->fn_parent);
4351 }
4352 mutex_exit(&tmpfnp->fn_lock);
4353 fn_rele(&tmpfnp);
4354 goto again;
4355 }
4356 fnp->fn_parent = newparent;
4357 fn_hold(newparent);
4358 avl_insert(&newparent->fn_children, fnp, where);
4359 mutex_exit(&newparent->fn_lock);
4360 mutex_exit(&fnp->fn_lock);
4361 }
4362
4363 #ifdef DEBUG
4364 /*
4365 * Return non-zero if the type information makes sense for the given vnode.
4366 * Otherwise panic.
4367 */
4368 int
nfs4_consistent_type(vnode_t * vp)4369 nfs4_consistent_type(vnode_t *vp)
4370 {
4371 rnode4_t *rp = VTOR4(vp);
4372
4373 if (nfs4_vtype_debug && vp->v_type != VNON &&
4374 rp->r_attr.va_type != VNON && vp->v_type != rp->r_attr.va_type) {
4375 cmn_err(CE_PANIC, "vnode %p type mismatch; v_type=%d, "
4376 "rnode attr type=%d", (void *)vp, vp->v_type,
4377 rp->r_attr.va_type);
4378 }
4379
4380 return (1);
4381 }
4382 #endif /* DEBUG */
4383