1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
28 * All rights reserved.
29 */
30
31 /*
32 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
33 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
34 * Copyright 2022 Oxide Computer Company
35 */
36
37 #include <sys/param.h>
38 #include <sys/types.h>
39 #include <sys/systm.h>
40 #include <sys/cred.h>
41 #include <sys/time.h>
42 #include <sys/vnode.h>
43 #include <sys/vfs.h>
44 #include <sys/vfs_opreg.h>
45 #include <sys/file.h>
46 #include <sys/filio.h>
47 #include <sys/uio.h>
48 #include <sys/buf.h>
49 #include <sys/mman.h>
50 #include <sys/pathname.h>
51 #include <sys/dirent.h>
52 #include <sys/debug.h>
53 #include <sys/vmsystm.h>
54 #include <sys/fcntl.h>
55 #include <sys/flock.h>
56 #include <sys/swap.h>
57 #include <sys/errno.h>
58 #include <sys/strsubr.h>
59 #include <sys/sysmacros.h>
60 #include <sys/kmem.h>
61 #include <sys/cmn_err.h>
62 #include <sys/pathconf.h>
63 #include <sys/utsname.h>
64 #include <sys/dnlc.h>
65 #include <sys/acl.h>
66 #include <sys/systeminfo.h>
67 #include <sys/atomic.h>
68 #include <sys/policy.h>
69 #include <sys/sdt.h>
70 #include <sys/zone.h>
71
72 #include <rpc/types.h>
73 #include <rpc/auth.h>
74 #include <rpc/clnt.h>
75 #include <rpc/rpc_rdma.h>
76
77 #include <nfs/nfs.h>
78 #include <nfs/nfs_clnt.h>
79 #include <nfs/rnode.h>
80 #include <nfs/nfs_acl.h>
81 #include <nfs/lm.h>
82
83 #include <vm/hat.h>
84 #include <vm/as.h>
85 #include <vm/page.h>
86 #include <vm/pvn.h>
87 #include <vm/seg.h>
88 #include <vm/seg_map.h>
89 #include <vm/seg_kpm.h>
90 #include <vm/seg_vn.h>
91
92 #include <fs/fs_subr.h>
93
94 #include <sys/ddi.h>
95
96 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
97 cred_t *);
98 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
99 stable_how *);
100 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *);
101 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *);
102 static int nfs3_accessx(void *, int, cred_t *);
103 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *);
104 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int);
105 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl,
106 int, vnode_t **, cred_t *, int);
107 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *);
108 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
109 int, vnode_t **, cred_t *);
110 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
111 caller_context_t *);
112 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
113 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
114 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *);
115 static int nfs3_bio(struct buf *, stable_how *, cred_t *);
116 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
117 page_t *[], size_t, struct seg *, caddr_t,
118 enum seg_rw, cred_t *);
119 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
120 cred_t *);
121 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
122 int, cred_t *);
123 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
124 int, cred_t *);
125 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *);
126 static void nfs3_set_mod(vnode_t *);
127 static void nfs3_get_commit(vnode_t *);
128 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t);
129 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
130 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *);
131 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3,
132 cred_t *);
133 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3,
134 cred_t *);
135 static void nfs3_delmap_callback(struct as *, void *, uint_t);
136
137 /*
138 * Error flags used to pass information about certain special errors
139 * which need to be handled specially.
140 */
141 #define NFS_EOF -98
142 #define NFS_VERF_MISMATCH -97
143
144 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
145 #define ALIGN64(x, ptr, sz) \
146 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \
147 if (x) { \
148 x = sizeof (uint64_t) - (x); \
149 sz -= (x); \
150 ptr += (x); \
151 }
152
153 /*
154 * These are the vnode ops routines which implement the vnode interface to
155 * the networked file system. These routines just take their parameters,
156 * make them look networkish by putting the right info into interface structs,
157 * and then calling the appropriate remote routine(s) to do the work.
158 *
159 * Note on directory name lookup cacheing: If we detect a stale fhandle,
160 * we purge the directory cache relative to that vnode. This way, the
161 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for
162 * more details on rnode locking.
163 */
164
165 static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *);
166 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *,
167 caller_context_t *);
168 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *,
169 caller_context_t *);
170 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *,
171 caller_context_t *);
172 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
173 caller_context_t *);
174 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *,
175 caller_context_t *);
176 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *,
177 caller_context_t *);
178 static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *);
179 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *,
180 caller_context_t *);
181 static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *);
182 static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *);
183 static int nfs3_lookup(vnode_t *, char *, vnode_t **,
184 struct pathname *, int, vnode_t *, cred_t *,
185 caller_context_t *, int *, pathname_t *);
186 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl,
187 int, vnode_t **, cred_t *, int, caller_context_t *,
188 vsecattr_t *);
189 static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *,
190 int);
191 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *,
192 caller_context_t *, int);
193 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
194 caller_context_t *, int);
195 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
196 cred_t *, caller_context_t *, int, vsecattr_t *);
197 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
198 caller_context_t *, int);
199 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *,
200 cred_t *, caller_context_t *, int);
201 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *,
202 caller_context_t *, int);
203 static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *);
204 static int nfs3_rwlock(vnode_t *, int, caller_context_t *);
205 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *);
206 static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
207 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *,
208 page_t *[], size_t, struct seg *, caddr_t,
209 enum seg_rw, cred_t *, caller_context_t *);
210 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
211 caller_context_t *);
212 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
213 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
214 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
215 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
216 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
217 struct flk_callback *, cred_t *, caller_context_t *);
218 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t,
219 cred_t *, caller_context_t *);
220 static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *);
221 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
222 uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
223 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *,
224 caller_context_t *);
225 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
226 cred_t *, caller_context_t *);
227 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *,
228 caller_context_t *);
229 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
230 caller_context_t *);
231 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
232 caller_context_t *);
233 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
234 caller_context_t *);
235
236 struct vnodeops *nfs3_vnodeops;
237
238 const fs_operation_def_t nfs3_vnodeops_template[] = {
239 VOPNAME_OPEN, { .vop_open = nfs3_open },
240 VOPNAME_CLOSE, { .vop_close = nfs3_close },
241 VOPNAME_READ, { .vop_read = nfs3_read },
242 VOPNAME_WRITE, { .vop_write = nfs3_write },
243 VOPNAME_IOCTL, { .vop_ioctl = nfs3_ioctl },
244 VOPNAME_GETATTR, { .vop_getattr = nfs3_getattr },
245 VOPNAME_SETATTR, { .vop_setattr = nfs3_setattr },
246 VOPNAME_ACCESS, { .vop_access = nfs3_access },
247 VOPNAME_LOOKUP, { .vop_lookup = nfs3_lookup },
248 VOPNAME_CREATE, { .vop_create = nfs3_create },
249 VOPNAME_REMOVE, { .vop_remove = nfs3_remove },
250 VOPNAME_LINK, { .vop_link = nfs3_link },
251 VOPNAME_RENAME, { .vop_rename = nfs3_rename },
252 VOPNAME_MKDIR, { .vop_mkdir = nfs3_mkdir },
253 VOPNAME_RMDIR, { .vop_rmdir = nfs3_rmdir },
254 VOPNAME_READDIR, { .vop_readdir = nfs3_readdir },
255 VOPNAME_SYMLINK, { .vop_symlink = nfs3_symlink },
256 VOPNAME_READLINK, { .vop_readlink = nfs3_readlink },
257 VOPNAME_FSYNC, { .vop_fsync = nfs3_fsync },
258 VOPNAME_INACTIVE, { .vop_inactive = nfs3_inactive },
259 VOPNAME_FID, { .vop_fid = nfs3_fid },
260 VOPNAME_RWLOCK, { .vop_rwlock = nfs3_rwlock },
261 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs3_rwunlock },
262 VOPNAME_SEEK, { .vop_seek = nfs3_seek },
263 VOPNAME_FRLOCK, { .vop_frlock = nfs3_frlock },
264 VOPNAME_SPACE, { .vop_space = nfs3_space },
265 VOPNAME_REALVP, { .vop_realvp = nfs3_realvp },
266 VOPNAME_GETPAGE, { .vop_getpage = nfs3_getpage },
267 VOPNAME_PUTPAGE, { .vop_putpage = nfs3_putpage },
268 VOPNAME_MAP, { .vop_map = nfs3_map },
269 VOPNAME_ADDMAP, { .vop_addmap = nfs3_addmap },
270 VOPNAME_DELMAP, { .vop_delmap = nfs3_delmap },
271 /* no separate nfs3_dump */
272 VOPNAME_DUMP, { .vop_dump = nfs_dump },
273 VOPNAME_PATHCONF, { .vop_pathconf = nfs3_pathconf },
274 VOPNAME_PAGEIO, { .vop_pageio = nfs3_pageio },
275 VOPNAME_DISPOSE, { .vop_dispose = nfs3_dispose },
276 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs3_setsecattr },
277 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs3_getsecattr },
278 VOPNAME_SHRLOCK, { .vop_shrlock = nfs3_shrlock },
279 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
280 NULL, NULL
281 };
282
283 /*
284 * XXX: This is referenced in modstubs.S
285 */
286 struct vnodeops *
nfs3_getvnodeops(void)287 nfs3_getvnodeops(void)
288 {
289 return (nfs3_vnodeops);
290 }
291
292 /* ARGSUSED */
293 static int
nfs3_open(vnode_t ** vpp,int flag,cred_t * cr,caller_context_t * ct)294 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
295 {
296 int error;
297 struct vattr va;
298 rnode_t *rp;
299 vnode_t *vp;
300
301 vp = *vpp;
302 if (nfs_zone() != VTOMI(vp)->mi_zone)
303 return (EIO);
304 rp = VTOR(vp);
305 mutex_enter(&rp->r_statelock);
306 if (rp->r_cred == NULL) {
307 crhold(cr);
308 rp->r_cred = cr;
309 }
310 mutex_exit(&rp->r_statelock);
311
312 /*
313 * If there is no cached data or if close-to-open
314 * consistency checking is turned off, we can avoid
315 * the over the wire getattr. Otherwise, if the
316 * file system is mounted readonly, then just verify
317 * the caches are up to date using the normal mechanism.
318 * Else, if the file is not mmap'd, then just mark
319 * the attributes as timed out. They will be refreshed
320 * and the caches validated prior to being used.
321 * Else, the file system is mounted writeable so
322 * force an over the wire GETATTR in order to ensure
323 * that all cached data is valid.
324 */
325 if (vp->v_count > 1 ||
326 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) &&
327 !(VTOMI(vp)->mi_flags & MI_NOCTO))) {
328 if (vn_is_readonly(vp))
329 error = nfs3_validate_caches(vp, cr);
330 else if (rp->r_mapcnt == 0 && vp->v_count == 1) {
331 PURGE_ATTRCACHE(vp);
332 error = 0;
333 } else {
334 va.va_mask = AT_ALL;
335 error = nfs3_getattr_otw(vp, &va, cr);
336 }
337 } else
338 error = 0;
339
340 return (error);
341 }
342
343 /* ARGSUSED */
344 static int
nfs3_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr,caller_context_t * ct)345 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
346 caller_context_t *ct)
347 {
348 rnode_t *rp;
349 int error;
350 struct vattr va;
351
352 /*
353 * zone_enter(2) prevents processes from changing zones with NFS files
354 * open; if we happen to get here from the wrong zone we can't do
355 * anything over the wire.
356 */
357 if (VTOMI(vp)->mi_zone != nfs_zone()) {
358 /*
359 * We could attempt to clean up locks, except we're sure
360 * that the current process didn't acquire any locks on
361 * the file: any attempt to lock a file belong to another zone
362 * will fail, and one can't lock an NFS file and then change
363 * zones, as that fails too.
364 *
365 * Returning an error here is the sane thing to do. A
366 * subsequent call to VN_RELE() which translates to a
367 * nfs3_inactive() will clean up state: if the zone of the
368 * vnode's origin is still alive and kicking, an async worker
369 * thread will handle the request (from the correct zone), and
370 * everything (minus the commit and final nfs3_getattr_otw()
371 * call) should be OK. If the zone is going away
372 * nfs_async_inactive() will throw away cached pages inline.
373 */
374 return (EIO);
375 }
376
377 /*
378 * If we are using local locking for this filesystem, then
379 * release all of the SYSV style record locks. Otherwise,
380 * we are doing network locking and we need to release all
381 * of the network locks. All of the locks held by this
382 * process on this file are released no matter what the
383 * incoming reference count is.
384 */
385 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
386 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
387 cleanshares(vp, ttoproc(curthread)->p_pid);
388 } else
389 nfs_lockrelease(vp, flag, offset, cr);
390
391 if (count > 1)
392 return (0);
393
394 /*
395 * If the file has been `unlinked', then purge the
396 * DNLC so that this vnode will get reycled quicker
397 * and the .nfs* file on the server will get removed.
398 */
399 rp = VTOR(vp);
400 if (rp->r_unldvp != NULL)
401 dnlc_purge_vp(vp);
402
403 /*
404 * If the file was open for write and there are pages,
405 * then if the file system was mounted using the "no-close-
406 * to-open" semantics, then start an asynchronous flush
407 * of the all of the pages in the file.
408 * else the file system was not mounted using the "no-close-
409 * to-open" semantics, then do a synchronous flush and
410 * commit of all of the dirty and uncommitted pages.
411 *
412 * The asynchronous flush of the pages in the "nocto" path
413 * mostly just associates a cred pointer with the rnode so
414 * writes which happen later will have a better chance of
415 * working. It also starts the data being written to the
416 * server, but without unnecessarily delaying the application.
417 */
418 if ((flag & FWRITE) && vn_has_cached_data(vp)) {
419 if (VTOMI(vp)->mi_flags & MI_NOCTO) {
420 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC,
421 cr, ct);
422 if (error == EAGAIN)
423 error = 0;
424 } else
425 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
426 if (!error) {
427 mutex_enter(&rp->r_statelock);
428 error = rp->r_error;
429 rp->r_error = 0;
430 mutex_exit(&rp->r_statelock);
431 }
432 } else {
433 mutex_enter(&rp->r_statelock);
434 error = rp->r_error;
435 rp->r_error = 0;
436 mutex_exit(&rp->r_statelock);
437 }
438
439 /*
440 * If RWRITEATTR is set, then issue an over the wire GETATTR to
441 * refresh the attribute cache with a set of attributes which
442 * weren't returned from a WRITE. This will enable the close-
443 * to-open processing to work.
444 */
445 if (rp->r_flags & RWRITEATTR)
446 (void) nfs3_getattr_otw(vp, &va, cr);
447
448 return (error);
449 }
450
451 /* ARGSUSED */
452 static int
nfs3_directio_read(vnode_t * vp,struct uio * uiop,cred_t * cr)453 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr)
454 {
455 mntinfo_t *mi;
456 READ3args args;
457 READ3uiores res;
458 int tsize;
459 offset_t offset;
460 ssize_t count;
461 int error;
462 int douprintf;
463 failinfo_t fi;
464 char *sv_hostname;
465
466 mi = VTOMI(vp);
467 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
468 sv_hostname = VTOR(vp)->r_server->sv_hostname;
469
470 douprintf = 1;
471 args.file = *VTOFH3(vp);
472 fi.vp = vp;
473 fi.fhp = (caddr_t)&args.file;
474 fi.copyproc = nfs3copyfh;
475 fi.lookupproc = nfs3lookup;
476 fi.xattrdirproc = acl_getxattrdir3;
477
478 res.uiop = uiop;
479
480 res.wlist = NULL;
481
482 offset = uiop->uio_loffset;
483 count = uiop->uio_resid;
484
485 do {
486 if (mi->mi_io_kstats) {
487 mutex_enter(&mi->mi_lock);
488 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
489 mutex_exit(&mi->mi_lock);
490 }
491
492 do {
493 tsize = MIN(mi->mi_tsize, count);
494 args.offset = (offset3)offset;
495 args.count = (count3)tsize;
496 res.size = (uint_t)tsize;
497 args.res_uiop = uiop;
498 args.res_data_val_alt = NULL;
499
500 error = rfs3call(mi, NFSPROC3_READ,
501 xdr_READ3args, (caddr_t)&args,
502 xdr_READ3uiores, (caddr_t)&res, cr,
503 &douprintf, &res.status, 0, &fi);
504 } while (error == ENFS_TRYAGAIN);
505
506 if (mi->mi_io_kstats) {
507 mutex_enter(&mi->mi_lock);
508 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
509 mutex_exit(&mi->mi_lock);
510 }
511
512 if (error)
513 return (error);
514
515 error = geterrno3(res.status);
516 if (error)
517 return (error);
518
519 if (res.count != res.size) {
520 zcmn_err(getzoneid(), CE_WARN,
521 "nfs3_directio_read: server %s returned incorrect amount",
522 sv_hostname);
523 return (EIO);
524 }
525 count -= res.count;
526 offset += res.count;
527 if (mi->mi_io_kstats) {
528 mutex_enter(&mi->mi_lock);
529 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
530 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
531 mutex_exit(&mi->mi_lock);
532 }
533 lwp_stat_update(LWP_STAT_INBLK, 1);
534 } while (count && !res.eof);
535
536 return (0);
537 }
538
539 /* ARGSUSED */
540 static int
nfs3_read(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)541 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
542 caller_context_t *ct)
543 {
544 rnode_t *rp;
545 u_offset_t off;
546 offset_t diff;
547 int on;
548 size_t n;
549 caddr_t base;
550 uint_t flags;
551 int error = 0;
552 mntinfo_t *mi;
553
554 rp = VTOR(vp);
555 mi = VTOMI(vp);
556
557 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
558
559 if (nfs_zone() != mi->mi_zone)
560 return (EIO);
561
562 if (vp->v_type != VREG)
563 return (EISDIR);
564
565 if (uiop->uio_resid == 0)
566 return (0);
567
568 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
569 return (EINVAL);
570
571 /*
572 * Bypass VM if caching has been disabled (e.g., locking) or if
573 * using client-side direct I/O and the file is not mmap'd and
574 * there are no cached pages.
575 */
576 if ((vp->v_flag & VNOCACHE) ||
577 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
578 rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
579 !vn_has_cached_data(vp))) {
580 return (nfs3_directio_read(vp, uiop, cr));
581 }
582
583 do {
584 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
585 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
586 n = MIN(MAXBSIZE - on, uiop->uio_resid);
587
588 error = nfs3_validate_caches(vp, cr);
589 if (error)
590 break;
591
592 mutex_enter(&rp->r_statelock);
593 while (rp->r_flags & RINCACHEPURGE) {
594 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
595 mutex_exit(&rp->r_statelock);
596 return (EINTR);
597 }
598 }
599 diff = rp->r_size - uiop->uio_loffset;
600 mutex_exit(&rp->r_statelock);
601 if (diff <= 0)
602 break;
603 if (diff < n)
604 n = (size_t)diff;
605
606 if (vpm_enable) {
607 /*
608 * Copy data.
609 */
610 error = vpm_data_copy(vp, off + on, n, uiop,
611 1, NULL, 0, S_READ);
612 } else {
613 base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
614 S_READ);
615
616 error = uiomove(base + on, n, UIO_READ, uiop);
617 }
618
619 if (!error) {
620 /*
621 * If read a whole block or read to eof,
622 * won't need this buffer again soon.
623 */
624 mutex_enter(&rp->r_statelock);
625 if (n + on == MAXBSIZE ||
626 uiop->uio_loffset == rp->r_size)
627 flags = SM_DONTNEED;
628 else
629 flags = 0;
630 mutex_exit(&rp->r_statelock);
631 if (vpm_enable) {
632 error = vpm_sync_pages(vp, off, n, flags);
633 } else {
634 error = segmap_release(segkmap, base, flags);
635 }
636 } else {
637 if (vpm_enable) {
638 (void) vpm_sync_pages(vp, off, n, 0);
639 } else {
640 (void) segmap_release(segkmap, base, 0);
641 }
642 }
643 } while (!error && uiop->uio_resid > 0);
644
645 return (error);
646 }
647
648 /* ARGSUSED */
649 static int
nfs3_write(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)650 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
651 caller_context_t *ct)
652 {
653 rlim64_t limit = uiop->uio_llimit;
654 rnode_t *rp;
655 u_offset_t off;
656 caddr_t base;
657 uint_t flags;
658 int remainder;
659 size_t n;
660 int on;
661 int error;
662 int resid;
663 offset_t offset;
664 mntinfo_t *mi;
665 uint_t bsize;
666
667 rp = VTOR(vp);
668
669 if (vp->v_type != VREG)
670 return (EISDIR);
671
672 mi = VTOMI(vp);
673 if (nfs_zone() != mi->mi_zone)
674 return (EIO);
675 if (uiop->uio_resid == 0)
676 return (0);
677
678 if (ioflag & FAPPEND) {
679 struct vattr va;
680
681 /*
682 * Must serialize if appending.
683 */
684 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
685 nfs_rw_exit(&rp->r_rwlock);
686 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
687 INTR(vp)))
688 return (EINTR);
689 }
690
691 va.va_mask = AT_SIZE;
692 error = nfs3getattr(vp, &va, cr);
693 if (error)
694 return (error);
695 uiop->uio_loffset = va.va_size;
696 }
697
698 offset = uiop->uio_loffset + uiop->uio_resid;
699
700 if (uiop->uio_loffset < 0 || offset < 0)
701 return (EINVAL);
702
703 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
704 limit = MAXOFFSET_T;
705
706 /*
707 * Check to make sure that the process will not exceed
708 * its limit on file size. It is okay to write up to
709 * the limit, but not beyond. Thus, the write which
710 * reaches the limit will be short and the next write
711 * will return an error.
712 */
713 remainder = 0;
714 if (offset > limit) {
715 remainder = offset - limit;
716 uiop->uio_resid = limit - uiop->uio_loffset;
717 if (uiop->uio_resid <= 0) {
718 proc_t *p = ttoproc(curthread);
719
720 uiop->uio_resid += remainder;
721 mutex_enter(&p->p_lock);
722 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
723 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
724 mutex_exit(&p->p_lock);
725 return (EFBIG);
726 }
727 }
728
729 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp)))
730 return (EINTR);
731
732 /*
733 * Bypass VM if caching has been disabled (e.g., locking) or if
734 * using client-side direct I/O and the file is not mmap'd and
735 * there are no cached pages.
736 */
737 if ((vp->v_flag & VNOCACHE) ||
738 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
739 rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
740 !vn_has_cached_data(vp))) {
741 size_t bufsize;
742 int count;
743 u_offset_t org_offset;
744 stable_how stab_comm;
745
746 nfs3_fwrite:
747 if (rp->r_flags & RSTALE) {
748 resid = uiop->uio_resid;
749 offset = uiop->uio_loffset;
750 error = rp->r_error;
751 /*
752 * A close may have cleared r_error, if so,
753 * propagate ESTALE error return properly
754 */
755 if (error == 0)
756 error = ESTALE;
757 goto bottom;
758 }
759 bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
760 base = kmem_alloc(bufsize, KM_SLEEP);
761 do {
762 if (ioflag & FDSYNC)
763 stab_comm = DATA_SYNC;
764 else
765 stab_comm = FILE_SYNC;
766 resid = uiop->uio_resid;
767 offset = uiop->uio_loffset;
768 count = MIN(uiop->uio_resid, bufsize);
769 org_offset = uiop->uio_loffset;
770 error = uiomove(base, count, UIO_WRITE, uiop);
771 if (!error) {
772 error = nfs3write(vp, base, org_offset,
773 count, cr, &stab_comm);
774 }
775 } while (!error && uiop->uio_resid > 0);
776 kmem_free(base, bufsize);
777 goto bottom;
778 }
779
780
781 bsize = vp->v_vfsp->vfs_bsize;
782
783 do {
784 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
785 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
786 n = MIN(MAXBSIZE - on, uiop->uio_resid);
787
788 resid = uiop->uio_resid;
789 offset = uiop->uio_loffset;
790
791 if (rp->r_flags & RSTALE) {
792 error = rp->r_error;
793 /*
794 * A close may have cleared r_error, if so,
795 * propagate ESTALE error return properly
796 */
797 if (error == 0)
798 error = ESTALE;
799 break;
800 }
801
802 /*
803 * Don't create dirty pages faster than they
804 * can be cleaned so that the system doesn't
805 * get imbalanced. If the async queue is
806 * maxed out, then wait for it to drain before
807 * creating more dirty pages. Also, wait for
808 * any threads doing pagewalks in the vop_getattr
809 * entry points so that they don't block for
810 * long periods.
811 */
812 mutex_enter(&rp->r_statelock);
813 while ((mi->mi_max_threads != 0 &&
814 rp->r_awcount > 2 * mi->mi_max_threads) ||
815 rp->r_gcount > 0) {
816 if (INTR(vp)) {
817 klwp_t *lwp = ttolwp(curthread);
818
819 if (lwp != NULL)
820 lwp->lwp_nostop++;
821 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
822 mutex_exit(&rp->r_statelock);
823 if (lwp != NULL)
824 lwp->lwp_nostop--;
825 error = EINTR;
826 goto bottom;
827 }
828 if (lwp != NULL)
829 lwp->lwp_nostop--;
830 } else
831 cv_wait(&rp->r_cv, &rp->r_statelock);
832 }
833 mutex_exit(&rp->r_statelock);
834
835 /*
836 * Touch the page and fault it in if it is not in core
837 * before segmap_getmapflt or vpm_data_copy can lock it.
838 * This is to avoid the deadlock if the buffer is mapped
839 * to the same file through mmap which we want to write.
840 */
841 uio_prefaultpages((long)n, uiop);
842
843 if (vpm_enable) {
844 /*
845 * It will use kpm mappings, so no need to
846 * pass an address.
847 */
848 error = writerp(rp, NULL, n, uiop, 0);
849 } else {
850 if (segmap_kpm) {
851 int pon = uiop->uio_loffset & PAGEOFFSET;
852 size_t pn = MIN(PAGESIZE - pon,
853 uiop->uio_resid);
854 int pagecreate;
855
856 mutex_enter(&rp->r_statelock);
857 pagecreate = (pon == 0) && (pn == PAGESIZE ||
858 uiop->uio_loffset + pn >= rp->r_size);
859 mutex_exit(&rp->r_statelock);
860
861 base = segmap_getmapflt(segkmap, vp, off + on,
862 pn, !pagecreate, S_WRITE);
863
864 error = writerp(rp, base + pon, n, uiop,
865 pagecreate);
866
867 } else {
868 base = segmap_getmapflt(segkmap, vp, off + on,
869 n, 0, S_READ);
870 error = writerp(rp, base + on, n, uiop, 0);
871 }
872 }
873
874 if (!error) {
875 if (mi->mi_flags & MI_NOAC)
876 flags = SM_WRITE;
877 else if ((uiop->uio_loffset % bsize) == 0 ||
878 IS_SWAPVP(vp)) {
879 /*
880 * Have written a whole block.
881 * Start an asynchronous write
882 * and mark the buffer to
883 * indicate that it won't be
884 * needed again soon.
885 */
886 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
887 } else
888 flags = 0;
889 if ((ioflag & (FSYNC|FDSYNC)) ||
890 (rp->r_flags & ROUTOFSPACE)) {
891 flags &= ~SM_ASYNC;
892 flags |= SM_WRITE;
893 }
894 if (vpm_enable) {
895 error = vpm_sync_pages(vp, off, n, flags);
896 } else {
897 error = segmap_release(segkmap, base, flags);
898 }
899 } else {
900 if (vpm_enable) {
901 (void) vpm_sync_pages(vp, off, n, 0);
902 } else {
903 (void) segmap_release(segkmap, base, 0);
904 }
905 /*
906 * In the event that we got an access error while
907 * faulting in a page for a write-only file just
908 * force a write.
909 */
910 if (error == EACCES)
911 goto nfs3_fwrite;
912 }
913 } while (!error && uiop->uio_resid > 0);
914
915 bottom:
916 if (error) {
917 uiop->uio_resid = resid + remainder;
918 uiop->uio_loffset = offset;
919 } else
920 uiop->uio_resid += remainder;
921
922 nfs_rw_exit(&rp->r_lkserlock);
923
924 return (error);
925 }
926
927 /*
928 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
929 */
930 static int
nfs3_rdwrlbn(vnode_t * vp,page_t * pp,u_offset_t off,size_t len,int flags,cred_t * cr)931 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
932 int flags, cred_t *cr)
933 {
934 struct buf *bp;
935 int error;
936 page_t *savepp;
937 uchar_t fsdata;
938 stable_how stab_comm;
939
940 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
941 bp = pageio_setup(pp, len, vp, flags);
942 ASSERT(bp != NULL);
943
944 /*
945 * pageio_setup should have set b_addr to 0. This
946 * is correct since we want to do I/O on a page
947 * boundary. bp_mapin will use this addr to calculate
948 * an offset, and then set b_addr to the kernel virtual
949 * address it allocated for us.
950 */
951 ASSERT(bp->b_un.b_addr == 0);
952
953 bp->b_edev = 0;
954 bp->b_dev = 0;
955 bp->b_lblkno = lbtodb(off);
956 bp->b_file = vp;
957 bp->b_offset = (offset_t)off;
958 bp_mapin(bp);
959
960 /*
961 * Calculate the desired level of stability to write data
962 * on the server and then mark all of the pages to reflect
963 * this.
964 */
965 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
966 freemem > desfree) {
967 stab_comm = UNSTABLE;
968 fsdata = C_DELAYCOMMIT;
969 } else {
970 stab_comm = FILE_SYNC;
971 fsdata = C_NOCOMMIT;
972 }
973
974 savepp = pp;
975 do {
976 pp->p_fsdata = fsdata;
977 } while ((pp = pp->p_next) != savepp);
978
979 error = nfs3_bio(bp, &stab_comm, cr);
980
981 bp_mapout(bp);
982 pageio_done(bp);
983
984 /*
985 * If the server wrote pages in a more stable fashion than
986 * was requested, then clear all of the marks in the pages
987 * indicating that COMMIT operations were required.
988 */
989 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) {
990 do {
991 pp->p_fsdata = C_NOCOMMIT;
992 } while ((pp = pp->p_next) != savepp);
993 }
994
995 return (error);
996 }
997
998 /*
999 * Write to file. Writes to remote server in largest size
1000 * chunks that the server can handle. Write is synchronous.
1001 */
1002 static int
nfs3write(vnode_t * vp,caddr_t base,u_offset_t offset,int count,cred_t * cr,stable_how * stab_comm)1003 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
1004 stable_how *stab_comm)
1005 {
1006 mntinfo_t *mi;
1007 WRITE3args args;
1008 WRITE3res res;
1009 int error;
1010 int tsize;
1011 rnode_t *rp;
1012 int douprintf;
1013
1014 rp = VTOR(vp);
1015 mi = VTOMI(vp);
1016
1017 ASSERT(nfs_zone() == mi->mi_zone);
1018
1019 args.file = *VTOFH3(vp);
1020 args.stable = *stab_comm;
1021
1022 *stab_comm = FILE_SYNC;
1023
1024 douprintf = 1;
1025
1026 do {
1027 if ((vp->v_flag & VNOCACHE) ||
1028 (rp->r_flags & RDIRECTIO) ||
1029 (mi->mi_flags & MI_DIRECTIO))
1030 tsize = MIN(mi->mi_stsize, count);
1031 else
1032 tsize = MIN(mi->mi_curwrite, count);
1033 args.offset = (offset3)offset;
1034 args.count = (count3)tsize;
1035 args.data.data_len = (uint_t)tsize;
1036 args.data.data_val = base;
1037
1038 if (mi->mi_io_kstats) {
1039 mutex_enter(&mi->mi_lock);
1040 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1041 mutex_exit(&mi->mi_lock);
1042 }
1043 args.mblk = NULL;
1044 do {
1045 error = rfs3call(mi, NFSPROC3_WRITE,
1046 xdr_WRITE3args, (caddr_t)&args,
1047 xdr_WRITE3res, (caddr_t)&res, cr,
1048 &douprintf, &res.status, 0, NULL);
1049 } while (error == ENFS_TRYAGAIN);
1050 if (mi->mi_io_kstats) {
1051 mutex_enter(&mi->mi_lock);
1052 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1053 mutex_exit(&mi->mi_lock);
1054 }
1055
1056 if (error)
1057 return (error);
1058 error = geterrno3(res.status);
1059 if (!error) {
1060 if (res.resok.count > args.count) {
1061 zcmn_err(getzoneid(), CE_WARN,
1062 "nfs3write: server %s wrote %u, "
1063 "requested was %u",
1064 rp->r_server->sv_hostname,
1065 res.resok.count, args.count);
1066 return (EIO);
1067 }
1068 if (res.resok.committed == UNSTABLE) {
1069 *stab_comm = UNSTABLE;
1070 if (args.stable == DATA_SYNC ||
1071 args.stable == FILE_SYNC) {
1072 zcmn_err(getzoneid(), CE_WARN,
1073 "nfs3write: server %s did not commit to stable storage",
1074 rp->r_server->sv_hostname);
1075 return (EIO);
1076 }
1077 }
1078 tsize = (int)res.resok.count;
1079 count -= tsize;
1080 base += tsize;
1081 offset += tsize;
1082 if (mi->mi_io_kstats) {
1083 mutex_enter(&mi->mi_lock);
1084 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
1085 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
1086 tsize;
1087 mutex_exit(&mi->mi_lock);
1088 }
1089 lwp_stat_update(LWP_STAT_OUBLK, 1);
1090 mutex_enter(&rp->r_statelock);
1091 if (rp->r_flags & RHAVEVERF) {
1092 if (rp->r_verf != res.resok.verf) {
1093 nfs3_set_mod(vp);
1094 rp->r_verf = res.resok.verf;
1095 /*
1096 * If the data was written UNSTABLE,
1097 * then might as well stop because
1098 * the whole block will have to get
1099 * rewritten anyway.
1100 */
1101 if (*stab_comm == UNSTABLE) {
1102 mutex_exit(&rp->r_statelock);
1103 break;
1104 }
1105 }
1106 } else {
1107 rp->r_verf = res.resok.verf;
1108 rp->r_flags |= RHAVEVERF;
1109 }
1110 /*
1111 * Mark the attribute cache as timed out and
1112 * set RWRITEATTR to indicate that the file
1113 * was modified with a WRITE operation and
1114 * that the attributes can not be trusted.
1115 */
1116 PURGE_ATTRCACHE_LOCKED(rp);
1117 rp->r_flags |= RWRITEATTR;
1118 mutex_exit(&rp->r_statelock);
1119 }
1120 } while (!error && count);
1121
1122 return (error);
1123 }
1124
1125 /*
1126 * Read from a file. Reads data in largest chunks our interface can handle.
1127 */
1128 static int
nfs3read(vnode_t * vp,caddr_t base,offset_t offset,int count,size_t * residp,cred_t * cr)1129 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count, size_t *residp,
1130 cred_t *cr)
1131 {
1132 mntinfo_t *mi;
1133 READ3args args;
1134 READ3vres res;
1135 int tsize;
1136 int error;
1137 int douprintf;
1138 failinfo_t fi;
1139 rnode_t *rp;
1140 struct vattr va;
1141 hrtime_t t;
1142
1143 rp = VTOR(vp);
1144 mi = VTOMI(vp);
1145 ASSERT(nfs_zone() == mi->mi_zone);
1146 douprintf = 1;
1147
1148 args.file = *VTOFH3(vp);
1149 fi.vp = vp;
1150 fi.fhp = (caddr_t)&args.file;
1151 fi.copyproc = nfs3copyfh;
1152 fi.lookupproc = nfs3lookup;
1153 fi.xattrdirproc = acl_getxattrdir3;
1154
1155 res.pov.fres.vp = vp;
1156 res.pov.fres.vap = &va;
1157
1158 res.wlist = NULL;
1159 *residp = count;
1160 do {
1161 if (mi->mi_io_kstats) {
1162 mutex_enter(&mi->mi_lock);
1163 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1164 mutex_exit(&mi->mi_lock);
1165 }
1166
1167 do {
1168 if ((vp->v_flag & VNOCACHE) ||
1169 (rp->r_flags & RDIRECTIO) ||
1170 (mi->mi_flags & MI_DIRECTIO))
1171 tsize = MIN(mi->mi_tsize, count);
1172 else
1173 tsize = MIN(mi->mi_curread, count);
1174 res.data.data_val = base;
1175 res.data.data_len = tsize;
1176 args.offset = (offset3)offset;
1177 args.count = (count3)tsize;
1178 args.res_uiop = NULL;
1179 args.res_data_val_alt = base;
1180
1181 t = gethrtime();
1182 error = rfs3call(mi, NFSPROC3_READ,
1183 xdr_READ3args, (caddr_t)&args,
1184 xdr_READ3vres, (caddr_t)&res, cr,
1185 &douprintf, &res.status, 0, &fi);
1186 } while (error == ENFS_TRYAGAIN);
1187
1188 if (mi->mi_io_kstats) {
1189 mutex_enter(&mi->mi_lock);
1190 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1191 mutex_exit(&mi->mi_lock);
1192 }
1193
1194 if (error)
1195 return (error);
1196
1197 error = geterrno3(res.status);
1198 if (error)
1199 return (error);
1200
1201 if (res.count != res.data.data_len) {
1202 zcmn_err(getzoneid(), CE_WARN,
1203 "nfs3read: server %s returned incorrect amount",
1204 rp->r_server->sv_hostname);
1205 return (EIO);
1206 }
1207
1208 count -= res.count;
1209 *residp = count;
1210 base += res.count;
1211 offset += res.count;
1212 if (mi->mi_io_kstats) {
1213 mutex_enter(&mi->mi_lock);
1214 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
1215 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
1216 mutex_exit(&mi->mi_lock);
1217 }
1218 lwp_stat_update(LWP_STAT_INBLK, 1);
1219 } while (count && !res.eof);
1220
1221 if (res.pov.attributes) {
1222 mutex_enter(&rp->r_statelock);
1223 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) {
1224 mutex_exit(&rp->r_statelock);
1225 PURGE_ATTRCACHE(vp);
1226 } else {
1227 if (rp->r_mtime <= t)
1228 nfs_attrcache_va(vp, &va);
1229 mutex_exit(&rp->r_statelock);
1230 }
1231 }
1232
1233 return (0);
1234 }
1235
1236 /* ARGSUSED */
1237 static int
nfs3_ioctl(vnode_t * vp,int cmd,intptr_t arg,int flag,cred_t * cr,int * rvalp,caller_context_t * ct)1238 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
1239 caller_context_t *ct)
1240 {
1241
1242 if (nfs_zone() != VTOMI(vp)->mi_zone)
1243 return (EIO);
1244 switch (cmd) {
1245 case _FIODIRECTIO:
1246 return (nfs_directio(vp, (int)arg, cr));
1247 default:
1248 return (ENOTTY);
1249 }
1250 }
1251
1252 /* ARGSUSED */
1253 static int
nfs3_getattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)1254 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1255 caller_context_t *ct)
1256 {
1257 int error;
1258 rnode_t *rp;
1259
1260 if (nfs_zone() != VTOMI(vp)->mi_zone)
1261 return (EIO);
1262 /*
1263 * If it has been specified that the return value will
1264 * just be used as a hint, and we are only being asked
1265 * for size, fsid or rdevid, then return the client's
1266 * notion of these values without checking to make sure
1267 * that the attribute cache is up to date.
1268 * The whole point is to avoid an over the wire GETATTR
1269 * call.
1270 */
1271 rp = VTOR(vp);
1272 if (flags & ATTR_HINT) {
1273 if (vap->va_mask ==
1274 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
1275 mutex_enter(&rp->r_statelock);
1276 if (vap->va_mask | AT_SIZE)
1277 vap->va_size = rp->r_size;
1278 if (vap->va_mask | AT_FSID)
1279 vap->va_fsid = rp->r_attr.va_fsid;
1280 if (vap->va_mask | AT_RDEV)
1281 vap->va_rdev = rp->r_attr.va_rdev;
1282 mutex_exit(&rp->r_statelock);
1283 return (0);
1284 }
1285 }
1286
1287 /*
1288 * Only need to flush pages if asking for the mtime
1289 * and if there any dirty pages or any outstanding
1290 * asynchronous (write) requests for this file.
1291 */
1292 if (vap->va_mask & AT_MTIME) {
1293 if (vn_has_cached_data(vp) &&
1294 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) {
1295 mutex_enter(&rp->r_statelock);
1296 rp->r_gcount++;
1297 mutex_exit(&rp->r_statelock);
1298 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct);
1299 mutex_enter(&rp->r_statelock);
1300 if (error && (error == ENOSPC || error == EDQUOT)) {
1301 if (!rp->r_error)
1302 rp->r_error = error;
1303 }
1304 if (--rp->r_gcount == 0)
1305 cv_broadcast(&rp->r_cv);
1306 mutex_exit(&rp->r_statelock);
1307 }
1308 }
1309
1310 return (nfs3getattr(vp, vap, cr));
1311 }
1312
1313 /*ARGSUSED4*/
1314 static int
nfs3_setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)1315 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1316 caller_context_t *ct)
1317 {
1318 int error;
1319 struct vattr va;
1320
1321 if (vap->va_mask & AT_NOSET)
1322 return (EINVAL);
1323 if (nfs_zone() != VTOMI(vp)->mi_zone)
1324 return (EIO);
1325
1326 va.va_mask = AT_UID | AT_MODE;
1327 error = nfs3getattr(vp, &va, cr);
1328 if (error)
1329 return (error);
1330
1331 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx,
1332 vp);
1333 if (error)
1334 return (error);
1335
1336 error = nfs3setattr(vp, vap, flags, cr);
1337
1338 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0)
1339 vnevent_truncate(vp, ct);
1340
1341 return (error);
1342 }
1343
1344 static int
nfs3setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr)1345 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
1346 {
1347 int error;
1348 uint_t mask;
1349 SETATTR3args args;
1350 SETATTR3res res;
1351 int douprintf;
1352 rnode_t *rp;
1353 struct vattr va;
1354 mode_t omode;
1355 vsecattr_t *vsp;
1356 hrtime_t t;
1357
1358 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
1359 mask = vap->va_mask;
1360
1361 rp = VTOR(vp);
1362
1363 /*
1364 * Only need to flush pages if there are any pages and
1365 * if the file is marked as dirty in some fashion. The
1366 * file must be flushed so that we can accurately
1367 * determine the size of the file and the cached data
1368 * after the SETATTR returns. A file is considered to
1369 * be dirty if it is either marked with RDIRTY, has
1370 * outstanding i/o's active, or is mmap'd. In this
1371 * last case, we can't tell whether there are dirty
1372 * pages, so we flush just to be sure.
1373 */
1374 if (vn_has_cached_data(vp) &&
1375 ((rp->r_flags & RDIRTY) ||
1376 rp->r_count > 0 ||
1377 rp->r_mapcnt > 0)) {
1378 ASSERT(vp->v_type != VCHR);
1379 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
1380 if (error && (error == ENOSPC || error == EDQUOT)) {
1381 mutex_enter(&rp->r_statelock);
1382 if (!rp->r_error)
1383 rp->r_error = error;
1384 mutex_exit(&rp->r_statelock);
1385 }
1386 }
1387
1388 args.object = *RTOFH3(rp);
1389 /*
1390 * If the intent is for the server to set the times,
1391 * there is no point in have the mask indicating set mtime or
1392 * atime, because the vap values may be junk, and so result
1393 * in an overflow error. Remove these flags from the vap mask
1394 * before calling in this case, and restore them afterwards.
1395 */
1396 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) {
1397 /* Use server times, so don't set the args time fields */
1398 vap->va_mask &= ~(AT_ATIME | AT_MTIME);
1399 error = vattr_to_sattr3(vap, &args.new_attributes);
1400 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME));
1401 if (mask & AT_ATIME) {
1402 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
1403 }
1404 if (mask & AT_MTIME) {
1405 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
1406 }
1407 } else {
1408 /* Either do not set times or use the client specified times */
1409 error = vattr_to_sattr3(vap, &args.new_attributes);
1410 }
1411
1412 if (error) {
1413 /* req time field(s) overflow - return immediately */
1414 return (error);
1415 }
1416
1417 va.va_mask = AT_MODE | AT_CTIME;
1418 error = nfs3getattr(vp, &va, cr);
1419 if (error)
1420 return (error);
1421 omode = va.va_mode;
1422
1423 tryagain:
1424 if (mask & AT_SIZE) {
1425 args.guard.check = TRUE;
1426 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec;
1427 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec;
1428 } else
1429 args.guard.check = FALSE;
1430
1431 douprintf = 1;
1432
1433 t = gethrtime();
1434
1435 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
1436 xdr_SETATTR3args, (caddr_t)&args,
1437 xdr_SETATTR3res, (caddr_t)&res, cr,
1438 &douprintf, &res.status, 0, NULL);
1439
1440 /*
1441 * Purge the access cache and ACL cache if changing either the
1442 * owner of the file, the group owner, or the mode. These may
1443 * change the access permissions of the file, so purge old
1444 * information and start over again.
1445 */
1446 if (mask & (AT_UID | AT_GID | AT_MODE)) {
1447 (void) nfs_access_purge_rp(rp);
1448 if (rp->r_secattr != NULL) {
1449 mutex_enter(&rp->r_statelock);
1450 vsp = rp->r_secattr;
1451 rp->r_secattr = NULL;
1452 mutex_exit(&rp->r_statelock);
1453 if (vsp != NULL)
1454 nfs_acl_free(vsp);
1455 }
1456 }
1457
1458 if (error) {
1459 PURGE_ATTRCACHE(vp);
1460 return (error);
1461 }
1462
1463 error = geterrno3(res.status);
1464 if (!error) {
1465 /*
1466 * If changing the size of the file, invalidate
1467 * any local cached data which is no longer part
1468 * of the file. We also possibly invalidate the
1469 * last page in the file. We could use
1470 * pvn_vpzero(), but this would mark the page as
1471 * modified and require it to be written back to
1472 * the server for no particularly good reason.
1473 * This way, if we access it, then we bring it
1474 * back in. A read should be cheaper than a
1475 * write.
1476 */
1477 if (mask & AT_SIZE) {
1478 nfs_invalidate_pages(vp,
1479 (vap->va_size & PAGEMASK), cr);
1480 }
1481 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
1482 /*
1483 * Some servers will change the mode to clear the setuid
1484 * and setgid bits when changing the uid or gid. The
1485 * client needs to compensate appropriately.
1486 */
1487 if (mask & (AT_UID | AT_GID)) {
1488 int terror;
1489
1490 va.va_mask = AT_MODE;
1491 terror = nfs3getattr(vp, &va, cr);
1492 if (!terror &&
1493 (((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
1494 (!(mask & AT_MODE) && va.va_mode != omode))) {
1495 va.va_mask = AT_MODE;
1496 if (mask & AT_MODE)
1497 va.va_mode = vap->va_mode;
1498 else
1499 va.va_mode = omode;
1500 (void) nfs3setattr(vp, &va, 0, cr);
1501 }
1502 }
1503 } else {
1504 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
1505 /*
1506 * If we got back a "not synchronized" error, then
1507 * we need to retry with a new guard value. The
1508 * guard value used is the change time. If the
1509 * server returned post_op_attr, then we can just
1510 * retry because we have the latest attributes.
1511 * Otherwise, we issue a GETATTR to get the latest
1512 * attributes and then retry. If we couldn't get
1513 * the attributes this way either, then we give
1514 * up because we can't complete the operation as
1515 * required.
1516 */
1517 if (res.status == NFS3ERR_NOT_SYNC) {
1518 va.va_mask = AT_CTIME;
1519 if (nfs3getattr(vp, &va, cr) == 0)
1520 goto tryagain;
1521 }
1522 PURGE_STALE_FH(error, vp, cr);
1523 }
1524
1525 return (error);
1526 }
1527
1528 static int
nfs3_accessx(void * vp,int mode,cred_t * cr)1529 nfs3_accessx(void *vp, int mode, cred_t *cr)
1530 {
1531 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone);
1532 return (nfs3_access(vp, mode, 0, cr, NULL));
1533 }
1534
1535 /* ARGSUSED */
1536 static int
nfs3_access(vnode_t * vp,int mode,int flags,cred_t * cr,caller_context_t * ct)1537 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
1538 {
1539 int error;
1540 ACCESS3args args;
1541 ACCESS3res res;
1542 int douprintf;
1543 uint32 acc;
1544 rnode_t *rp;
1545 cred_t *cred, *ncr, *ncrfree = NULL;
1546 failinfo_t fi;
1547 nfs_access_type_t cacc;
1548 hrtime_t t;
1549
1550 acc = 0;
1551 if (nfs_zone() != VTOMI(vp)->mi_zone)
1552 return (EIO);
1553 if (mode & VREAD)
1554 acc |= ACCESS3_READ;
1555 if (mode & VWRITE) {
1556 if (vn_is_readonly(vp) && !IS_DEVVP(vp))
1557 return (EROFS);
1558 if (vp->v_type == VDIR)
1559 acc |= ACCESS3_DELETE;
1560 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND;
1561 }
1562 if (mode & VEXEC) {
1563 if (vp->v_type == VDIR)
1564 acc |= ACCESS3_LOOKUP;
1565 else
1566 acc |= ACCESS3_EXECUTE;
1567 }
1568
1569 rp = VTOR(vp);
1570 args.object = *VTOFH3(vp);
1571 if (vp->v_type == VDIR) {
1572 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY |
1573 ACCESS3_EXTEND | ACCESS3_LOOKUP;
1574 } else {
1575 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND |
1576 ACCESS3_EXECUTE;
1577 }
1578 fi.vp = vp;
1579 fi.fhp = (caddr_t)&args.object;
1580 fi.copyproc = nfs3copyfh;
1581 fi.lookupproc = nfs3lookup;
1582 fi.xattrdirproc = acl_getxattrdir3;
1583
1584 cred = cr;
1585 /*
1586 * ncr and ncrfree both initially
1587 * point to the memory area returned
1588 * by crnetadjust();
1589 * ncrfree not NULL when exiting means
1590 * that we need to release it
1591 */
1592 ncr = crnetadjust(cred);
1593 ncrfree = ncr;
1594 tryagain:
1595 if (rp->r_acache != NULL) {
1596 cacc = nfs_access_check(rp, acc, cred);
1597 if (cacc == NFS_ACCESS_ALLOWED) {
1598 if (ncrfree != NULL)
1599 crfree(ncrfree);
1600 return (0);
1601 }
1602 if (cacc == NFS_ACCESS_DENIED) {
1603 /*
1604 * If the cred can be adjusted, try again
1605 * with the new cred.
1606 */
1607 if (ncr != NULL) {
1608 cred = ncr;
1609 ncr = NULL;
1610 goto tryagain;
1611 }
1612 if (ncrfree != NULL)
1613 crfree(ncrfree);
1614 return (EACCES);
1615 }
1616 }
1617
1618 douprintf = 1;
1619
1620 t = gethrtime();
1621
1622 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS,
1623 xdr_ACCESS3args, (caddr_t)&args,
1624 xdr_ACCESS3res, (caddr_t)&res, cred,
1625 &douprintf, &res.status, 0, &fi);
1626
1627 if (error) {
1628 if (ncrfree != NULL)
1629 crfree(ncrfree);
1630 return (error);
1631 }
1632
1633 error = geterrno3(res.status);
1634 if (!error) {
1635 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
1636 nfs_access_cache(rp, args.access, res.resok.access, cred);
1637 /*
1638 * we just cached results with cred; if cred is the
1639 * adjusted credentials from crnetadjust, we do not want
1640 * to release them before exiting: hence setting ncrfree
1641 * to NULL
1642 */
1643 if (cred != cr)
1644 ncrfree = NULL;
1645 if ((acc & res.resok.access) != acc) {
1646 /*
1647 * If the cred can be adjusted, try again
1648 * with the new cred.
1649 */
1650 if (ncr != NULL) {
1651 cred = ncr;
1652 ncr = NULL;
1653 goto tryagain;
1654 }
1655 error = EACCES;
1656 }
1657 } else {
1658 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
1659 PURGE_STALE_FH(error, vp, cr);
1660 }
1661
1662 if (ncrfree != NULL)
1663 crfree(ncrfree);
1664
1665 return (error);
1666 }
1667
1668 static int nfs3_do_symlink_cache = 1;
1669
1670 /* ARGSUSED */
1671 static int
nfs3_readlink(vnode_t * vp,struct uio * uiop,cred_t * cr,caller_context_t * ct)1672 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
1673 {
1674 int error;
1675 READLINK3args args;
1676 READLINK3res res;
1677 nfspath3 resdata_backup;
1678 rnode_t *rp;
1679 int douprintf;
1680 int len;
1681 failinfo_t fi;
1682 hrtime_t t;
1683
1684 /*
1685 * Can't readlink anything other than a symbolic link.
1686 */
1687 if (vp->v_type != VLNK)
1688 return (EINVAL);
1689 if (nfs_zone() != VTOMI(vp)->mi_zone)
1690 return (EIO);
1691
1692 rp = VTOR(vp);
1693 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) {
1694 error = nfs3_validate_caches(vp, cr);
1695 if (error)
1696 return (error);
1697 mutex_enter(&rp->r_statelock);
1698 if (rp->r_symlink.contents != NULL) {
1699 error = uiomove(rp->r_symlink.contents,
1700 rp->r_symlink.len, UIO_READ, uiop);
1701 mutex_exit(&rp->r_statelock);
1702 return (error);
1703 }
1704 mutex_exit(&rp->r_statelock);
1705 }
1706
1707 args.symlink = *VTOFH3(vp);
1708 fi.vp = vp;
1709 fi.fhp = (caddr_t)&args.symlink;
1710 fi.copyproc = nfs3copyfh;
1711 fi.lookupproc = nfs3lookup;
1712 fi.xattrdirproc = acl_getxattrdir3;
1713
1714 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1715
1716 resdata_backup = res.resok.data;
1717
1718 douprintf = 1;
1719
1720 t = gethrtime();
1721
1722 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK,
1723 xdr_READLINK3args, (caddr_t)&args,
1724 xdr_READLINK3res, (caddr_t)&res, cr,
1725 &douprintf, &res.status, 0, &fi);
1726
1727 if (res.resok.data == nfs3nametoolong)
1728 error = EINVAL;
1729
1730 if (error) {
1731 kmem_free(resdata_backup, MAXPATHLEN);
1732 return (error);
1733 }
1734
1735 error = geterrno3(res.status);
1736 if (!error) {
1737 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t,
1738 cr);
1739 len = strlen(res.resok.data);
1740 error = uiomove(res.resok.data, len, UIO_READ, uiop);
1741 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) {
1742 mutex_enter(&rp->r_statelock);
1743 if (rp->r_symlink.contents == NULL) {
1744 rp->r_symlink.contents = res.resok.data;
1745 rp->r_symlink.len = len;
1746 rp->r_symlink.size = MAXPATHLEN;
1747 mutex_exit(&rp->r_statelock);
1748 } else {
1749 mutex_exit(&rp->r_statelock);
1750
1751 kmem_free((void *)res.resok.data, MAXPATHLEN);
1752 }
1753 } else {
1754 kmem_free((void *)res.resok.data, MAXPATHLEN);
1755 }
1756 } else {
1757 nfs3_cache_post_op_attr(vp,
1758 &res.resfail.symlink_attributes, t, cr);
1759 PURGE_STALE_FH(error, vp, cr);
1760
1761 kmem_free((void *)res.resok.data, MAXPATHLEN);
1762
1763 }
1764
1765 /*
1766 * The over the wire error for attempting to readlink something
1767 * other than a symbolic link is ENXIO. However, we need to
1768 * return EINVAL instead of ENXIO, so we map it here.
1769 */
1770 return (error == ENXIO ? EINVAL : error);
1771 }
1772
1773 /*
1774 * Flush local dirty pages to stable storage on the server.
1775 *
1776 * If FNODSYNC is specified, then there is nothing to do because
1777 * metadata changes are not cached on the client before being
1778 * sent to the server.
1779 */
1780 /* ARGSUSED */
1781 static int
nfs3_fsync(vnode_t * vp,int syncflag,cred_t * cr,caller_context_t * ct)1782 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
1783 {
1784 int error;
1785
1786 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
1787 return (0);
1788 if (nfs_zone() != VTOMI(vp)->mi_zone)
1789 return (EIO);
1790
1791 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
1792 if (!error)
1793 error = VTOR(vp)->r_error;
1794 return (error);
1795 }
1796
1797 /*
1798 * Weirdness: if the file was removed or the target of a rename
1799 * operation while it was open, it got renamed instead. Here we
1800 * remove the renamed file.
1801 */
1802 /* ARGSUSED */
1803 static void
nfs3_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)1804 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1805 {
1806 rnode_t *rp;
1807
1808 ASSERT(vp != DNLC_NO_VNODE);
1809
1810 /*
1811 * If this is coming from the wrong zone, we let someone in the right
1812 * zone take care of it asynchronously. We can get here due to
1813 * VN_RELE() being called from pageout() or fsflush(). This call may
1814 * potentially turn into an expensive no-op if, for instance, v_count
1815 * gets incremented in the meantime, but it's still correct.
1816 */
1817 if (nfs_zone() != VTOMI(vp)->mi_zone) {
1818 nfs_async_inactive(vp, cr, nfs3_inactive);
1819 return;
1820 }
1821
1822 rp = VTOR(vp);
1823 redo:
1824 if (rp->r_unldvp != NULL) {
1825 /*
1826 * Save the vnode pointer for the directory where the
1827 * unlinked-open file got renamed, then set it to NULL
1828 * to prevent another thread from getting here before
1829 * we're done with the remove. While we have the
1830 * statelock, make local copies of the pertinent rnode
1831 * fields. If we weren't to do this in an atomic way, the
1832 * the unl* fields could become inconsistent with respect
1833 * to each other due to a race condition between this
1834 * code and nfs_remove(). See bug report 1034328.
1835 */
1836 mutex_enter(&rp->r_statelock);
1837 if (rp->r_unldvp != NULL) {
1838 vnode_t *unldvp;
1839 char *unlname;
1840 cred_t *unlcred;
1841 REMOVE3args args;
1842 REMOVE3res res;
1843 int douprintf;
1844 int error;
1845 hrtime_t t;
1846
1847 unldvp = rp->r_unldvp;
1848 rp->r_unldvp = NULL;
1849 unlname = rp->r_unlname;
1850 rp->r_unlname = NULL;
1851 unlcred = rp->r_unlcred;
1852 rp->r_unlcred = NULL;
1853 mutex_exit(&rp->r_statelock);
1854
1855 /*
1856 * If there are any dirty pages left, then flush
1857 * them. This is unfortunate because they just
1858 * may get thrown away during the remove operation,
1859 * but we have to do this for correctness.
1860 */
1861 if (vn_has_cached_data(vp) &&
1862 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
1863 ASSERT(vp->v_type != VCHR);
1864 error = nfs3_putpage(vp, (offset_t)0, 0, 0,
1865 cr, ct);
1866 if (error) {
1867 mutex_enter(&rp->r_statelock);
1868 if (!rp->r_error)
1869 rp->r_error = error;
1870 mutex_exit(&rp->r_statelock);
1871 }
1872 }
1873
1874 /*
1875 * Do the remove operation on the renamed file
1876 */
1877 setdiropargs3(&args.object, unlname, unldvp);
1878
1879 douprintf = 1;
1880
1881 t = gethrtime();
1882
1883 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE,
1884 xdr_diropargs3, (caddr_t)&args,
1885 xdr_REMOVE3res, (caddr_t)&res, unlcred,
1886 &douprintf, &res.status, 0, NULL);
1887
1888 if (error) {
1889 PURGE_ATTRCACHE(unldvp);
1890 } else {
1891 error = geterrno3(res.status);
1892 if (!error) {
1893 nfs3_cache_wcc_data(unldvp,
1894 &res.resok.dir_wcc, t, cr);
1895 if (HAVE_RDDIR_CACHE(VTOR(unldvp)))
1896 nfs_purge_rddir_cache(unldvp);
1897 } else {
1898 nfs3_cache_wcc_data(unldvp,
1899 &res.resfail.dir_wcc, t, cr);
1900 PURGE_STALE_FH(error, unldvp, cr);
1901 }
1902 }
1903
1904 /*
1905 * Release stuff held for the remove
1906 */
1907 VN_RELE(unldvp);
1908 kmem_free(unlname, MAXNAMELEN);
1909 crfree(unlcred);
1910 goto redo;
1911 }
1912 mutex_exit(&rp->r_statelock);
1913 }
1914
1915 rp_addfree(rp, cr);
1916 }
1917
1918 /*
1919 * Remote file system operations having to do with directory manipulation.
1920 */
1921
1922 /* ARGSUSED */
1923 static int
nfs3_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)1924 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1925 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1926 int *direntflags, pathname_t *realpnp)
1927 {
1928 int error;
1929 vnode_t *vp;
1930 vnode_t *avp = NULL;
1931 rnode_t *drp;
1932
1933 if (nfs_zone() != VTOMI(dvp)->mi_zone)
1934 return (EPERM);
1935
1936 drp = VTOR(dvp);
1937
1938 /*
1939 * Are we looking up extended attributes? If so, "dvp" is
1940 * the file or directory for which we want attributes, and
1941 * we need a lookup of the hidden attribute directory
1942 * before we lookup the rest of the path.
1943 */
1944 if (flags & LOOKUP_XATTR) {
1945 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0);
1946 mntinfo_t *mi;
1947
1948 mi = VTOMI(dvp);
1949 if (!(mi->mi_flags & MI_EXTATTR))
1950 return (EINVAL);
1951
1952 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp)))
1953 return (EINTR);
1954
1955 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr);
1956 if (avp == NULL)
1957 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0);
1958 else
1959 error = 0;
1960
1961 nfs_rw_exit(&drp->r_rwlock);
1962
1963 if (error) {
1964 if (mi->mi_flags & MI_EXTATTR)
1965 return (error);
1966 return (EINVAL);
1967 }
1968 dvp = avp;
1969 drp = VTOR(dvp);
1970 }
1971
1972 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) {
1973 error = EINTR;
1974 goto out;
1975 }
1976
1977 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0);
1978
1979 nfs_rw_exit(&drp->r_rwlock);
1980
1981 /*
1982 * If vnode is a device, create special vnode.
1983 */
1984 if (!error && IS_DEVVP(*vpp)) {
1985 vp = *vpp;
1986 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
1987 VN_RELE(vp);
1988 }
1989
1990 out:
1991 if (avp != NULL)
1992 VN_RELE(avp);
1993
1994 return (error);
1995 }
1996
1997 static int nfs3_lookup_neg_cache = 1;
1998
1999 #ifdef DEBUG
2000 static int nfs3_lookup_dnlc_hits = 0;
2001 static int nfs3_lookup_dnlc_misses = 0;
2002 static int nfs3_lookup_dnlc_neg_hits = 0;
2003 static int nfs3_lookup_dnlc_disappears = 0;
2004 static int nfs3_lookup_dnlc_lookups = 0;
2005 #endif
2006
2007 /* ARGSUSED */
2008 int
nfs3lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,int rfscall_flags)2009 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
2010 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags)
2011 {
2012 int error;
2013 rnode_t *drp;
2014
2015 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2016 /*
2017 * If lookup is for "", just return dvp. Don't need
2018 * to send it over the wire, look it up in the dnlc,
2019 * or perform any access checks.
2020 */
2021 if (*nm == '\0') {
2022 VN_HOLD(dvp);
2023 *vpp = dvp;
2024 return (0);
2025 }
2026
2027 /*
2028 * Can't do lookups in non-directories.
2029 */
2030 if (dvp->v_type != VDIR)
2031 return (ENOTDIR);
2032
2033 /*
2034 * If we're called with RFSCALL_SOFT, it's important that
2035 * the only rfscall is one we make directly; if we permit
2036 * an access call because we're looking up "." or validating
2037 * a dnlc hit, we'll deadlock because that rfscall will not
2038 * have the RFSCALL_SOFT set.
2039 */
2040 if (rfscall_flags & RFSCALL_SOFT)
2041 goto callit;
2042
2043 /*
2044 * If lookup is for ".", just return dvp. Don't need
2045 * to send it over the wire or look it up in the dnlc,
2046 * just need to check access.
2047 */
2048 if (strcmp(nm, ".") == 0) {
2049 error = nfs3_access(dvp, VEXEC, 0, cr, NULL);
2050 if (error)
2051 return (error);
2052 VN_HOLD(dvp);
2053 *vpp = dvp;
2054 return (0);
2055 }
2056
2057 drp = VTOR(dvp);
2058 if (!(drp->r_flags & RLOOKUP)) {
2059 mutex_enter(&drp->r_statelock);
2060 drp->r_flags |= RLOOKUP;
2061 mutex_exit(&drp->r_statelock);
2062 }
2063
2064 /*
2065 * Lookup this name in the DNLC. If there was a valid entry,
2066 * then return the results of the lookup.
2067 */
2068 error = nfs3lookup_dnlc(dvp, nm, vpp, cr);
2069 if (error || *vpp != NULL)
2070 return (error);
2071
2072 callit:
2073 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags);
2074
2075 return (error);
2076 }
2077
2078 static int
nfs3lookup_dnlc(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr)2079 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
2080 {
2081 int error;
2082 vnode_t *vp;
2083
2084 ASSERT(*nm != '\0');
2085 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2086 /*
2087 * Lookup this name in the DNLC. If successful, then validate
2088 * the caches and then recheck the DNLC. The DNLC is rechecked
2089 * just in case this entry got invalidated during the call
2090 * to nfs3_validate_caches.
2091 *
2092 * An assumption is being made that it is safe to say that a
2093 * file exists which may not on the server. Any operations to
2094 * the server will fail with ESTALE.
2095 */
2096 #ifdef DEBUG
2097 nfs3_lookup_dnlc_lookups++;
2098 #endif
2099 vp = dnlc_lookup(dvp, nm);
2100 if (vp != NULL) {
2101 VN_RELE(vp);
2102 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) {
2103 PURGE_ATTRCACHE(dvp);
2104 }
2105 error = nfs3_validate_caches(dvp, cr);
2106 if (error)
2107 return (error);
2108 vp = dnlc_lookup(dvp, nm);
2109 if (vp != NULL) {
2110 error = nfs3_access(dvp, VEXEC, 0, cr, NULL);
2111 if (error) {
2112 VN_RELE(vp);
2113 return (error);
2114 }
2115 if (vp == DNLC_NO_VNODE) {
2116 VN_RELE(vp);
2117 #ifdef DEBUG
2118 nfs3_lookup_dnlc_neg_hits++;
2119 #endif
2120 return (ENOENT);
2121 }
2122 *vpp = vp;
2123 #ifdef DEBUG
2124 nfs3_lookup_dnlc_hits++;
2125 #endif
2126 return (0);
2127 }
2128 #ifdef DEBUG
2129 nfs3_lookup_dnlc_disappears++;
2130 #endif
2131 }
2132 #ifdef DEBUG
2133 else
2134 nfs3_lookup_dnlc_misses++;
2135 #endif
2136
2137 *vpp = NULL;
2138
2139 return (0);
2140 }
2141
2142 static int
nfs3lookup_otw(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr,int rfscall_flags)2143 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
2144 int rfscall_flags)
2145 {
2146 int error;
2147 LOOKUP3args args;
2148 LOOKUP3vres res;
2149 int douprintf;
2150 struct vattr vattr;
2151 struct vattr dvattr;
2152 vnode_t *vp;
2153 failinfo_t fi;
2154 hrtime_t t;
2155
2156 ASSERT(*nm != '\0');
2157 ASSERT(dvp->v_type == VDIR);
2158 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2159
2160 setdiropargs3(&args.what, nm, dvp);
2161
2162 fi.vp = dvp;
2163 fi.fhp = (caddr_t)&args.what.dir;
2164 fi.copyproc = nfs3copyfh;
2165 fi.lookupproc = nfs3lookup;
2166 fi.xattrdirproc = acl_getxattrdir3;
2167 res.obj_attributes.fres.vp = dvp;
2168 res.obj_attributes.fres.vap = &vattr;
2169 res.dir_attributes.fres.vp = dvp;
2170 res.dir_attributes.fres.vap = &dvattr;
2171
2172 douprintf = 1;
2173
2174 t = gethrtime();
2175
2176 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP,
2177 xdr_diropargs3, (caddr_t)&args,
2178 xdr_LOOKUP3vres, (caddr_t)&res, cr,
2179 &douprintf, &res.status, rfscall_flags, &fi);
2180
2181 if (error)
2182 return (error);
2183
2184 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr);
2185
2186 error = geterrno3(res.status);
2187 if (error) {
2188 PURGE_STALE_FH(error, dvp, cr);
2189 if (error == ENOENT && nfs3_lookup_neg_cache)
2190 dnlc_enter(dvp, nm, DNLC_NO_VNODE);
2191 return (error);
2192 }
2193
2194 if (res.obj_attributes.attributes) {
2195 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap,
2196 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
2197 } else {
2198 vp = makenfs3node_va(&res.object, NULL,
2199 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
2200 if (vp->v_type == VNON) {
2201 vattr.va_mask = AT_TYPE;
2202 error = nfs3getattr(vp, &vattr, cr);
2203 if (error) {
2204 VN_RELE(vp);
2205 return (error);
2206 }
2207 vp->v_type = vattr.va_type;
2208 }
2209 }
2210
2211 if (!(rfscall_flags & RFSCALL_SOFT))
2212 dnlc_update(dvp, nm, vp);
2213
2214 *vpp = vp;
2215
2216 return (error);
2217 }
2218
2219 #ifdef DEBUG
2220 static int nfs3_create_misses = 0;
2221 #endif
2222
2223 /* ARGSUSED */
2224 static int
nfs3_create(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr,int lfaware,caller_context_t * ct,vsecattr_t * vsecp)2225 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2226 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct,
2227 vsecattr_t *vsecp)
2228 {
2229 int error;
2230 vnode_t *vp;
2231 rnode_t *rp;
2232 struct vattr vattr;
2233 rnode_t *drp;
2234 vnode_t *tempvp;
2235
2236 drp = VTOR(dvp);
2237 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2238 return (EPERM);
2239 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2240 return (EINTR);
2241
2242 top:
2243 /*
2244 * We make a copy of the attributes because the caller does not
2245 * expect us to change what va points to.
2246 */
2247 vattr = *va;
2248
2249 /*
2250 * If the pathname is "", just use dvp. Don't need
2251 * to send it over the wire, look it up in the dnlc,
2252 * or perform any access checks.
2253 */
2254 if (*nm == '\0') {
2255 error = 0;
2256 VN_HOLD(dvp);
2257 vp = dvp;
2258 /*
2259 * If the pathname is ".", just use dvp. Don't need
2260 * to send it over the wire or look it up in the dnlc,
2261 * just need to check access.
2262 */
2263 } else if (strcmp(nm, ".") == 0) {
2264 error = nfs3_access(dvp, VEXEC, 0, cr, ct);
2265 if (error) {
2266 nfs_rw_exit(&drp->r_rwlock);
2267 return (error);
2268 }
2269 VN_HOLD(dvp);
2270 vp = dvp;
2271 /*
2272 * We need to go over the wire, just to be sure whether the
2273 * file exists or not. Using the DNLC can be dangerous in
2274 * this case when making a decision regarding existence.
2275 */
2276 } else {
2277 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0);
2278 }
2279 if (!error) {
2280 if (exclusive == EXCL)
2281 error = EEXIST;
2282 else if (vp->v_type == VDIR && (mode & VWRITE))
2283 error = EISDIR;
2284 else {
2285 /*
2286 * If vnode is a device, create special vnode.
2287 */
2288 if (IS_DEVVP(vp)) {
2289 tempvp = vp;
2290 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2291 VN_RELE(tempvp);
2292 }
2293 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
2294 if ((vattr.va_mask & AT_SIZE) &&
2295 vp->v_type == VREG) {
2296 rp = VTOR(vp);
2297 /*
2298 * Check here for large file handled
2299 * by LF-unaware process (as
2300 * ufs_create() does)
2301 */
2302 if (!(lfaware & FOFFMAX)) {
2303 mutex_enter(&rp->r_statelock);
2304 if (rp->r_size > MAXOFF32_T)
2305 error = EOVERFLOW;
2306 mutex_exit(&rp->r_statelock);
2307 }
2308 if (!error) {
2309 vattr.va_mask = AT_SIZE;
2310 error = nfs3setattr(vp,
2311 &vattr, 0, cr);
2312
2313 /*
2314 * Existing file was truncated;
2315 * emit a create event.
2316 */
2317 vnevent_create(vp, ct);
2318 }
2319 }
2320 }
2321 }
2322 nfs_rw_exit(&drp->r_rwlock);
2323 if (error) {
2324 VN_RELE(vp);
2325 } else {
2326 *vpp = vp;
2327 }
2328
2329 return (error);
2330 }
2331
2332 dnlc_remove(dvp, nm);
2333
2334 /*
2335 * Decide what the group-id of the created file should be.
2336 * Set it in attribute list as advisory...
2337 */
2338 error = setdirgid(dvp, &vattr.va_gid, cr);
2339 if (error) {
2340 nfs_rw_exit(&drp->r_rwlock);
2341 return (error);
2342 }
2343 vattr.va_mask |= AT_GID;
2344
2345 ASSERT(vattr.va_mask & AT_TYPE);
2346 if (vattr.va_type == VREG) {
2347 ASSERT(vattr.va_mask & AT_MODE);
2348 if (MANDMODE(vattr.va_mode)) {
2349 nfs_rw_exit(&drp->r_rwlock);
2350 return (EACCES);
2351 }
2352 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr,
2353 lfaware);
2354 /*
2355 * If this is not an exclusive create, then the CREATE
2356 * request will be made with the GUARDED mode set. This
2357 * means that the server will return EEXIST if the file
2358 * exists. The file could exist because of a retransmitted
2359 * request. In this case, we recover by starting over and
2360 * checking to see whether the file exists. This second
2361 * time through it should and a CREATE request will not be
2362 * sent.
2363 *
2364 * This handles the problem of a dangling CREATE request
2365 * which contains attributes which indicate that the file
2366 * should be truncated. This retransmitted request could
2367 * possibly truncate valid data in the file if not caught
2368 * by the duplicate request mechanism on the server or if
2369 * not caught by other means. The scenario is:
2370 *
2371 * Client transmits CREATE request with size = 0
2372 * Client times out, retransmits request.
2373 * Response to the first request arrives from the server
2374 * and the client proceeds on.
2375 * Client writes data to the file.
2376 * The server now processes retransmitted CREATE request
2377 * and truncates file.
2378 *
2379 * The use of the GUARDED CREATE request prevents this from
2380 * happening because the retransmitted CREATE would fail
2381 * with EEXIST and would not truncate the file.
2382 */
2383 if (error == EEXIST && exclusive == NONEXCL) {
2384 #ifdef DEBUG
2385 nfs3_create_misses++;
2386 #endif
2387 goto top;
2388 }
2389 nfs_rw_exit(&drp->r_rwlock);
2390 return (error);
2391 }
2392 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
2393 nfs_rw_exit(&drp->r_rwlock);
2394 return (error);
2395 }
2396
2397 /* ARGSUSED */
2398 static int
nfs3create(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr,int lfaware)2399 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2400 int mode, vnode_t **vpp, cred_t *cr, int lfaware)
2401 {
2402 int error;
2403 CREATE3args args;
2404 CREATE3res res;
2405 int douprintf;
2406 vnode_t *vp;
2407 struct vattr vattr;
2408 nfstime3 *verfp;
2409 rnode_t *rp;
2410 timestruc_t now;
2411 hrtime_t t;
2412
2413 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2414 setdiropargs3(&args.where, nm, dvp);
2415 if (exclusive == EXCL) {
2416 args.how.mode = EXCLUSIVE;
2417 /*
2418 * Construct the create verifier. This verifier needs
2419 * to be unique between different clients. It also needs
2420 * to vary for each exclusive create request generated
2421 * from the client to the server.
2422 *
2423 * The first attempt is made to use the hostid and a
2424 * unique number on the client. If the hostid has not
2425 * been set, the high resolution time that the exclusive
2426 * create request is being made is used. This will work
2427 * unless two different clients, both with the hostid
2428 * not set, attempt an exclusive create request on the
2429 * same file, at exactly the same clock time. The
2430 * chances of this happening seem small enough to be
2431 * reasonable.
2432 */
2433 verfp = (nfstime3 *)&args.how.createhow3_u.verf;
2434 verfp->seconds = zone_get_hostid(NULL);
2435 if (verfp->seconds != 0)
2436 verfp->nseconds = newnum();
2437 else {
2438 gethrestime(&now);
2439 verfp->seconds = now.tv_sec;
2440 verfp->nseconds = now.tv_nsec;
2441 }
2442 /*
2443 * Since the server will use this value for the mtime,
2444 * make sure that it can't overflow. Zero out the MSB.
2445 * The actual value does not matter here, only its uniqeness.
2446 */
2447 verfp->seconds %= INT32_MAX;
2448 } else {
2449 /*
2450 * Issue the non-exclusive create in guarded mode. This
2451 * may result in some false EEXIST responses for
2452 * retransmitted requests, but these will be handled at
2453 * a higher level. By using GUARDED, duplicate requests
2454 * to do file truncation and possible access problems
2455 * can be avoided.
2456 */
2457 args.how.mode = GUARDED;
2458 error = vattr_to_sattr3(va,
2459 &args.how.createhow3_u.obj_attributes);
2460 if (error) {
2461 /* req time field(s) overflow - return immediately */
2462 return (error);
2463 }
2464 }
2465
2466 douprintf = 1;
2467
2468 t = gethrtime();
2469
2470 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE,
2471 xdr_CREATE3args, (caddr_t)&args,
2472 xdr_CREATE3res, (caddr_t)&res, cr,
2473 &douprintf, &res.status, 0, NULL);
2474
2475 if (error) {
2476 PURGE_ATTRCACHE(dvp);
2477 return (error);
2478 }
2479
2480 error = geterrno3(res.status);
2481 if (!error) {
2482 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
2483 if (HAVE_RDDIR_CACHE(VTOR(dvp)))
2484 nfs_purge_rddir_cache(dvp);
2485
2486 /*
2487 * On exclusive create the times need to be explicitly
2488 * set to clear any potential verifier that may be stored
2489 * in one of these fields (see comment below). This
2490 * is done here to cover the case where no post op attrs
2491 * were returned or a 'invalid' time was returned in
2492 * the attributes.
2493 */
2494 if (exclusive == EXCL)
2495 va->va_mask |= (AT_MTIME | AT_ATIME);
2496
2497 if (!res.resok.obj.handle_follows) {
2498 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2499 if (error)
2500 return (error);
2501 } else {
2502 if (res.resok.obj_attributes.attributes) {
2503 vp = makenfs3node(&res.resok.obj.handle,
2504 &res.resok.obj_attributes.attr,
2505 dvp->v_vfsp, t, cr, NULL, NULL);
2506 } else {
2507 vp = makenfs3node(&res.resok.obj.handle, NULL,
2508 dvp->v_vfsp, t, cr, NULL, NULL);
2509
2510 /*
2511 * On an exclusive create, it is possible
2512 * that attributes were returned but those
2513 * postop attributes failed to decode
2514 * properly. If this is the case,
2515 * then most likely the atime or mtime
2516 * were invalid for our client; this
2517 * is caused by the server storing the
2518 * create verifier in one of the time
2519 * fields(most likely mtime).
2520 * So... we are going to setattr just the
2521 * atime/mtime to clear things up.
2522 */
2523 if (exclusive == EXCL) {
2524 if (error =
2525 nfs3excl_create_settimes(vp,
2526 va, cr)) {
2527 /*
2528 * Setting the times failed.
2529 * Remove the file and return
2530 * the error.
2531 */
2532 VN_RELE(vp);
2533 (void) nfs3_remove(dvp,
2534 nm, cr, NULL, 0);
2535 return (error);
2536 }
2537 }
2538
2539 /*
2540 * This handles the non-exclusive case
2541 * and the exclusive case where no post op
2542 * attrs were returned.
2543 */
2544 if (vp->v_type == VNON) {
2545 vattr.va_mask = AT_TYPE;
2546 error = nfs3getattr(vp, &vattr, cr);
2547 if (error) {
2548 VN_RELE(vp);
2549 return (error);
2550 }
2551 vp->v_type = vattr.va_type;
2552 }
2553 }
2554 dnlc_update(dvp, nm, vp);
2555 }
2556
2557 rp = VTOR(vp);
2558
2559 /*
2560 * Check here for large file handled by
2561 * LF-unaware process (as ufs_create() does)
2562 */
2563 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG &&
2564 !(lfaware & FOFFMAX)) {
2565 mutex_enter(&rp->r_statelock);
2566 if (rp->r_size > MAXOFF32_T) {
2567 mutex_exit(&rp->r_statelock);
2568 VN_RELE(vp);
2569 return (EOVERFLOW);
2570 }
2571 mutex_exit(&rp->r_statelock);
2572 }
2573
2574 if (exclusive == EXCL &&
2575 (va->va_mask & ~(AT_GID | AT_SIZE))) {
2576 /*
2577 * If doing an exclusive create, then generate
2578 * a SETATTR to set the initial attributes.
2579 * Try to set the mtime and the atime to the
2580 * server's current time. It is somewhat
2581 * expected that these fields will be used to
2582 * store the exclusive create cookie. If not,
2583 * server implementors will need to know that
2584 * a SETATTR will follow an exclusive create
2585 * and the cookie should be destroyed if
2586 * appropriate. This work may have been done
2587 * earlier in this function if post op attrs
2588 * were not available.
2589 *
2590 * The AT_GID and AT_SIZE bits are turned off
2591 * so that the SETATTR request will not attempt
2592 * to process these. The gid will be set
2593 * separately if appropriate. The size is turned
2594 * off because it is assumed that a new file will
2595 * be created empty and if the file wasn't empty,
2596 * then the exclusive create will have failed
2597 * because the file must have existed already.
2598 * Therefore, no truncate operation is needed.
2599 */
2600 va->va_mask &= ~(AT_GID | AT_SIZE);
2601 error = nfs3setattr(vp, va, 0, cr);
2602 if (error) {
2603 /*
2604 * Couldn't correct the attributes of
2605 * the newly created file and the
2606 * attributes are wrong. Remove the
2607 * file and return an error to the
2608 * application.
2609 */
2610 VN_RELE(vp);
2611 (void) nfs3_remove(dvp, nm, cr, NULL, 0);
2612 return (error);
2613 }
2614 }
2615
2616 if (va->va_gid != rp->r_attr.va_gid) {
2617 /*
2618 * If the gid on the file isn't right, then
2619 * generate a SETATTR to attempt to change
2620 * it. This may or may not work, depending
2621 * upon the server's semantics for allowing
2622 * file ownership changes.
2623 */
2624 va->va_mask = AT_GID;
2625 (void) nfs3setattr(vp, va, 0, cr);
2626 }
2627
2628 /*
2629 * If vnode is a device create special vnode
2630 */
2631 if (IS_DEVVP(vp)) {
2632 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2633 VN_RELE(vp);
2634 } else
2635 *vpp = vp;
2636 } else {
2637 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
2638 PURGE_STALE_FH(error, dvp, cr);
2639 }
2640
2641 return (error);
2642 }
2643
2644 /*
2645 * Special setattr function to take care of rest of atime/mtime
2646 * after successful exclusive create. This function exists to avoid
2647 * handling attributes from the server; exclusive the atime/mtime fields
2648 * may be 'invalid' in client's view and therefore can not be trusted.
2649 */
2650 static int
nfs3excl_create_settimes(vnode_t * vp,struct vattr * vap,cred_t * cr)2651 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr)
2652 {
2653 int error;
2654 uint_t mask;
2655 SETATTR3args args;
2656 SETATTR3res res;
2657 int douprintf;
2658 rnode_t *rp;
2659 hrtime_t t;
2660
2661 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
2662 /* save the caller's mask so that it can be reset later */
2663 mask = vap->va_mask;
2664
2665 rp = VTOR(vp);
2666
2667 args.object = *RTOFH3(rp);
2668 args.guard.check = FALSE;
2669
2670 /* Use the mask to initialize the arguments */
2671 vap->va_mask = 0;
2672 error = vattr_to_sattr3(vap, &args.new_attributes);
2673
2674 /* We want to set just atime/mtime on this request */
2675 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
2676 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
2677
2678 douprintf = 1;
2679
2680 t = gethrtime();
2681
2682 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
2683 xdr_SETATTR3args, (caddr_t)&args,
2684 xdr_SETATTR3res, (caddr_t)&res, cr,
2685 &douprintf, &res.status, 0, NULL);
2686
2687 if (error) {
2688 vap->va_mask = mask;
2689 return (error);
2690 }
2691
2692 error = geterrno3(res.status);
2693 if (!error) {
2694 /*
2695 * It is important to pick up the attributes.
2696 * Since this is the exclusive create path, the
2697 * attributes on the initial create were ignored
2698 * and we need these to have the correct info.
2699 */
2700 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
2701 /*
2702 * No need to do the atime/mtime work again so clear
2703 * the bits.
2704 */
2705 mask &= ~(AT_ATIME | AT_MTIME);
2706 } else {
2707 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
2708 }
2709
2710 vap->va_mask = mask;
2711
2712 return (error);
2713 }
2714
2715 /* ARGSUSED */
2716 static int
nfs3mknod(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr)2717 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2718 int mode, vnode_t **vpp, cred_t *cr)
2719 {
2720 int error;
2721 MKNOD3args args;
2722 MKNOD3res res;
2723 int douprintf;
2724 vnode_t *vp;
2725 struct vattr vattr;
2726 hrtime_t t;
2727
2728 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2729 switch (va->va_type) {
2730 case VCHR:
2731 case VBLK:
2732 setdiropargs3(&args.where, nm, dvp);
2733 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK;
2734 error = vattr_to_sattr3(va,
2735 &args.what.mknoddata3_u.device.dev_attributes);
2736 if (error) {
2737 /* req time field(s) overflow - return immediately */
2738 return (error);
2739 }
2740 args.what.mknoddata3_u.device.spec.specdata1 =
2741 getmajor(va->va_rdev);
2742 args.what.mknoddata3_u.device.spec.specdata2 =
2743 getminor(va->va_rdev);
2744 break;
2745
2746 case VFIFO:
2747 case VSOCK:
2748 setdiropargs3(&args.where, nm, dvp);
2749 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK;
2750 error = vattr_to_sattr3(va,
2751 &args.what.mknoddata3_u.pipe_attributes);
2752 if (error) {
2753 /* req time field(s) overflow - return immediately */
2754 return (error);
2755 }
2756 break;
2757
2758 default:
2759 return (EINVAL);
2760 }
2761
2762 douprintf = 1;
2763
2764 t = gethrtime();
2765
2766 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD,
2767 xdr_MKNOD3args, (caddr_t)&args,
2768 xdr_MKNOD3res, (caddr_t)&res, cr,
2769 &douprintf, &res.status, 0, NULL);
2770
2771 if (error) {
2772 PURGE_ATTRCACHE(dvp);
2773 return (error);
2774 }
2775
2776 error = geterrno3(res.status);
2777 if (!error) {
2778 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
2779 if (HAVE_RDDIR_CACHE(VTOR(dvp)))
2780 nfs_purge_rddir_cache(dvp);
2781
2782 if (!res.resok.obj.handle_follows) {
2783 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2784 if (error)
2785 return (error);
2786 } else {
2787 if (res.resok.obj_attributes.attributes) {
2788 vp = makenfs3node(&res.resok.obj.handle,
2789 &res.resok.obj_attributes.attr,
2790 dvp->v_vfsp, t, cr, NULL, NULL);
2791 } else {
2792 vp = makenfs3node(&res.resok.obj.handle, NULL,
2793 dvp->v_vfsp, t, cr, NULL, NULL);
2794 if (vp->v_type == VNON) {
2795 vattr.va_mask = AT_TYPE;
2796 error = nfs3getattr(vp, &vattr, cr);
2797 if (error) {
2798 VN_RELE(vp);
2799 return (error);
2800 }
2801 vp->v_type = vattr.va_type;
2802 }
2803
2804 }
2805 dnlc_update(dvp, nm, vp);
2806 }
2807
2808 if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
2809 va->va_mask = AT_GID;
2810 (void) nfs3setattr(vp, va, 0, cr);
2811 }
2812
2813 /*
2814 * If vnode is a device create special vnode
2815 */
2816 if (IS_DEVVP(vp)) {
2817 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2818 VN_RELE(vp);
2819 } else
2820 *vpp = vp;
2821 } else {
2822 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
2823 PURGE_STALE_FH(error, dvp, cr);
2824 }
2825 return (error);
2826 }
2827
2828 /*
2829 * Weirdness: if the vnode to be removed is open
2830 * we rename it instead of removing it and nfs_inactive
2831 * will remove the new name.
2832 */
2833 /* ARGSUSED */
2834 static int
nfs3_remove(vnode_t * dvp,char * nm,cred_t * cr,caller_context_t * ct,int flags)2835 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
2836 {
2837 int error;
2838 REMOVE3args args;
2839 REMOVE3res res;
2840 vnode_t *vp;
2841 char *tmpname;
2842 int douprintf;
2843 rnode_t *rp;
2844 rnode_t *drp;
2845 hrtime_t t;
2846
2847 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2848 return (EPERM);
2849 drp = VTOR(dvp);
2850 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2851 return (EINTR);
2852
2853 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2854 if (error) {
2855 nfs_rw_exit(&drp->r_rwlock);
2856 return (error);
2857 }
2858
2859 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) {
2860 VN_RELE(vp);
2861 nfs_rw_exit(&drp->r_rwlock);
2862 return (EPERM);
2863 }
2864
2865 /*
2866 * First just remove the entry from the name cache, as it
2867 * is most likely the only entry for this vp.
2868 */
2869 dnlc_remove(dvp, nm);
2870
2871 /*
2872 * If the file has a v_count > 1 then there may be more than one
2873 * entry in the name cache due multiple links or an open file,
2874 * but we don't have the real reference count so flush all
2875 * possible entries.
2876 */
2877 if (vp->v_count > 1)
2878 dnlc_purge_vp(vp);
2879
2880 /*
2881 * Now we have the real reference count on the vnode
2882 */
2883 rp = VTOR(vp);
2884 mutex_enter(&rp->r_statelock);
2885 if (vp->v_count > 1 &&
2886 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
2887 mutex_exit(&rp->r_statelock);
2888 tmpname = newname();
2889 error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct);
2890 if (error)
2891 kmem_free(tmpname, MAXNAMELEN);
2892 else {
2893 mutex_enter(&rp->r_statelock);
2894 if (rp->r_unldvp == NULL) {
2895 VN_HOLD(dvp);
2896 rp->r_unldvp = dvp;
2897 if (rp->r_unlcred != NULL)
2898 crfree(rp->r_unlcred);
2899 crhold(cr);
2900 rp->r_unlcred = cr;
2901 rp->r_unlname = tmpname;
2902 } else {
2903 kmem_free(rp->r_unlname, MAXNAMELEN);
2904 rp->r_unlname = tmpname;
2905 }
2906 mutex_exit(&rp->r_statelock);
2907 }
2908 } else {
2909 mutex_exit(&rp->r_statelock);
2910 /*
2911 * We need to flush any dirty pages which happen to
2912 * be hanging around before removing the file. This
2913 * shouldn't happen very often and mostly on file
2914 * systems mounted "nocto".
2915 */
2916 if (vn_has_cached_data(vp) &&
2917 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
2918 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct);
2919 if (error && (error == ENOSPC || error == EDQUOT)) {
2920 mutex_enter(&rp->r_statelock);
2921 if (!rp->r_error)
2922 rp->r_error = error;
2923 mutex_exit(&rp->r_statelock);
2924 }
2925 }
2926
2927 setdiropargs3(&args.object, nm, dvp);
2928
2929 douprintf = 1;
2930
2931 t = gethrtime();
2932
2933 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE,
2934 xdr_diropargs3, (caddr_t)&args,
2935 xdr_REMOVE3res, (caddr_t)&res, cr,
2936 &douprintf, &res.status, 0, NULL);
2937
2938 /*
2939 * The xattr dir may be gone after last attr is removed,
2940 * so flush it from dnlc.
2941 */
2942 if (dvp->v_flag & V_XATTRDIR)
2943 dnlc_purge_vp(dvp);
2944
2945 PURGE_ATTRCACHE(vp);
2946
2947 if (error) {
2948 PURGE_ATTRCACHE(dvp);
2949 } else {
2950 error = geterrno3(res.status);
2951 if (!error) {
2952 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t,
2953 cr);
2954 if (HAVE_RDDIR_CACHE(drp))
2955 nfs_purge_rddir_cache(dvp);
2956 } else {
2957 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc,
2958 t, cr);
2959 PURGE_STALE_FH(error, dvp, cr);
2960 }
2961 }
2962 }
2963
2964 if (error == 0) {
2965 vnevent_remove(vp, dvp, nm, ct);
2966 }
2967 VN_RELE(vp);
2968
2969 nfs_rw_exit(&drp->r_rwlock);
2970
2971 return (error);
2972 }
2973
2974 /* ARGSUSED */
2975 static int
nfs3_link(vnode_t * tdvp,vnode_t * svp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)2976 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
2977 caller_context_t *ct, int flags)
2978 {
2979 int error;
2980 LINK3args args;
2981 LINK3res res;
2982 vnode_t *realvp;
2983 int douprintf;
2984 mntinfo_t *mi;
2985 rnode_t *tdrp;
2986 hrtime_t t;
2987
2988 if (nfs_zone() != VTOMI(tdvp)->mi_zone)
2989 return (EPERM);
2990 if (VOP_REALVP(svp, &realvp, ct) == 0)
2991 svp = realvp;
2992
2993 mi = VTOMI(svp);
2994
2995 if (!(mi->mi_flags & MI_LINK))
2996 return (EOPNOTSUPP);
2997
2998 args.file = *VTOFH3(svp);
2999 setdiropargs3(&args.link, tnm, tdvp);
3000
3001 tdrp = VTOR(tdvp);
3002 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp)))
3003 return (EINTR);
3004
3005 dnlc_remove(tdvp, tnm);
3006
3007 douprintf = 1;
3008
3009 t = gethrtime();
3010
3011 error = rfs3call(mi, NFSPROC3_LINK,
3012 xdr_LINK3args, (caddr_t)&args,
3013 xdr_LINK3res, (caddr_t)&res, cr,
3014 &douprintf, &res.status, 0, NULL);
3015
3016 if (error) {
3017 PURGE_ATTRCACHE(tdvp);
3018 PURGE_ATTRCACHE(svp);
3019 nfs_rw_exit(&tdrp->r_rwlock);
3020 return (error);
3021 }
3022
3023 error = geterrno3(res.status);
3024
3025 if (!error) {
3026 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr);
3027 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr);
3028 if (HAVE_RDDIR_CACHE(tdrp))
3029 nfs_purge_rddir_cache(tdvp);
3030 dnlc_update(tdvp, tnm, svp);
3031 } else {
3032 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t,
3033 cr);
3034 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr);
3035 if (error == EOPNOTSUPP) {
3036 mutex_enter(&mi->mi_lock);
3037 mi->mi_flags &= ~MI_LINK;
3038 mutex_exit(&mi->mi_lock);
3039 }
3040 }
3041
3042 nfs_rw_exit(&tdrp->r_rwlock);
3043
3044 if (!error) {
3045 /*
3046 * Notify the source file of this link operation.
3047 */
3048 vnevent_link(svp, ct);
3049 }
3050 return (error);
3051 }
3052
3053 /* ARGSUSED */
3054 static int
nfs3_rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct,int flags)3055 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
3056 caller_context_t *ct, int flags)
3057 {
3058 vnode_t *realvp;
3059
3060 if (nfs_zone() != VTOMI(odvp)->mi_zone)
3061 return (EPERM);
3062 if (VOP_REALVP(ndvp, &realvp, ct) == 0)
3063 ndvp = realvp;
3064
3065 return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct));
3066 }
3067
3068 /*
3069 * nfs3rename does the real work of renaming in NFS Version 3.
3070 */
3071 static int
nfs3rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct)3072 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
3073 caller_context_t *ct)
3074 {
3075 int error;
3076 RENAME3args args;
3077 RENAME3res res;
3078 int douprintf;
3079 vnode_t *nvp = NULL;
3080 vnode_t *ovp = NULL;
3081 char *tmpname;
3082 rnode_t *rp;
3083 rnode_t *odrp;
3084 rnode_t *ndrp;
3085 hrtime_t t;
3086
3087 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone);
3088
3089 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 ||
3090 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0)
3091 return (EINVAL);
3092
3093 odrp = VTOR(odvp);
3094 ndrp = VTOR(ndvp);
3095 if ((intptr_t)odrp < (intptr_t)ndrp) {
3096 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp)))
3097 return (EINTR);
3098 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) {
3099 nfs_rw_exit(&odrp->r_rwlock);
3100 return (EINTR);
3101 }
3102 } else {
3103 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp)))
3104 return (EINTR);
3105 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) {
3106 nfs_rw_exit(&ndrp->r_rwlock);
3107 return (EINTR);
3108 }
3109 }
3110
3111 /*
3112 * Lookup the target file. If it exists, it needs to be
3113 * checked to see whether it is a mount point and whether
3114 * it is active (open).
3115 */
3116 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0);
3117 if (!error) {
3118 /*
3119 * If this file has been mounted on, then just
3120 * return busy because renaming to it would remove
3121 * the mounted file system from the name space.
3122 */
3123 if (vn_mountedvfs(nvp) != NULL) {
3124 VN_RELE(nvp);
3125 nfs_rw_exit(&odrp->r_rwlock);
3126 nfs_rw_exit(&ndrp->r_rwlock);
3127 return (EBUSY);
3128 }
3129
3130 /*
3131 * Purge the name cache of all references to this vnode
3132 * so that we can check the reference count to infer
3133 * whether it is active or not.
3134 */
3135 /*
3136 * First just remove the entry from the name cache, as it
3137 * is most likely the only entry for this vp.
3138 */
3139 dnlc_remove(ndvp, nnm);
3140 /*
3141 * If the file has a v_count > 1 then there may be more
3142 * than one entry in the name cache due multiple links
3143 * or an open file, but we don't have the real reference
3144 * count so flush all possible entries.
3145 */
3146 if (nvp->v_count > 1)
3147 dnlc_purge_vp(nvp);
3148
3149 /*
3150 * If the vnode is active and is not a directory,
3151 * arrange to rename it to a
3152 * temporary file so that it will continue to be
3153 * accessible. This implements the "unlink-open-file"
3154 * semantics for the target of a rename operation.
3155 * Before doing this though, make sure that the
3156 * source and target files are not already the same.
3157 */
3158 if (nvp->v_count > 1 && nvp->v_type != VDIR) {
3159 /*
3160 * Lookup the source name.
3161 */
3162 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL,
3163 cr, 0);
3164
3165 /*
3166 * The source name *should* already exist.
3167 */
3168 if (error) {
3169 VN_RELE(nvp);
3170 nfs_rw_exit(&odrp->r_rwlock);
3171 nfs_rw_exit(&ndrp->r_rwlock);
3172 return (error);
3173 }
3174
3175 /*
3176 * Compare the two vnodes. If they are the same,
3177 * just release all held vnodes and return success.
3178 */
3179 if (ovp == nvp) {
3180 VN_RELE(ovp);
3181 VN_RELE(nvp);
3182 nfs_rw_exit(&odrp->r_rwlock);
3183 nfs_rw_exit(&ndrp->r_rwlock);
3184 return (0);
3185 }
3186
3187 /*
3188 * Can't mix and match directories and non-
3189 * directories in rename operations. We already
3190 * know that the target is not a directory. If
3191 * the source is a directory, return an error.
3192 */
3193 if (ovp->v_type == VDIR) {
3194 VN_RELE(ovp);
3195 VN_RELE(nvp);
3196 nfs_rw_exit(&odrp->r_rwlock);
3197 nfs_rw_exit(&ndrp->r_rwlock);
3198 return (ENOTDIR);
3199 }
3200
3201 /*
3202 * The target file exists, is not the same as
3203 * the source file, and is active. Link it
3204 * to a temporary filename to avoid having
3205 * the server removing the file completely.
3206 */
3207 tmpname = newname();
3208 error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0);
3209 if (error == EOPNOTSUPP) {
3210 error = nfs3_rename(ndvp, nnm, ndvp, tmpname,
3211 cr, NULL, 0);
3212 }
3213 if (error) {
3214 kmem_free(tmpname, MAXNAMELEN);
3215 VN_RELE(ovp);
3216 VN_RELE(nvp);
3217 nfs_rw_exit(&odrp->r_rwlock);
3218 nfs_rw_exit(&ndrp->r_rwlock);
3219 return (error);
3220 }
3221 rp = VTOR(nvp);
3222 mutex_enter(&rp->r_statelock);
3223 if (rp->r_unldvp == NULL) {
3224 VN_HOLD(ndvp);
3225 rp->r_unldvp = ndvp;
3226 if (rp->r_unlcred != NULL)
3227 crfree(rp->r_unlcred);
3228 crhold(cr);
3229 rp->r_unlcred = cr;
3230 rp->r_unlname = tmpname;
3231 } else {
3232 kmem_free(rp->r_unlname, MAXNAMELEN);
3233 rp->r_unlname = tmpname;
3234 }
3235 mutex_exit(&rp->r_statelock);
3236 }
3237 }
3238
3239 if (ovp == NULL) {
3240 /*
3241 * When renaming directories to be a subdirectory of a
3242 * different parent, the dnlc entry for ".." will no
3243 * longer be valid, so it must be removed.
3244 *
3245 * We do a lookup here to determine whether we are renaming
3246 * a directory and we need to check if we are renaming
3247 * an unlinked file. This might have already been done
3248 * in previous code, so we check ovp == NULL to avoid
3249 * doing it twice.
3250 */
3251
3252 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0);
3253 /*
3254 * The source name *should* already exist.
3255 */
3256 if (error) {
3257 nfs_rw_exit(&odrp->r_rwlock);
3258 nfs_rw_exit(&ndrp->r_rwlock);
3259 if (nvp) {
3260 VN_RELE(nvp);
3261 }
3262 return (error);
3263 }
3264 ASSERT(ovp != NULL);
3265 }
3266
3267 dnlc_remove(odvp, onm);
3268 dnlc_remove(ndvp, nnm);
3269
3270 setdiropargs3(&args.from, onm, odvp);
3271 setdiropargs3(&args.to, nnm, ndvp);
3272
3273 douprintf = 1;
3274
3275 t = gethrtime();
3276
3277 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME,
3278 xdr_RENAME3args, (caddr_t)&args,
3279 xdr_RENAME3res, (caddr_t)&res, cr,
3280 &douprintf, &res.status, 0, NULL);
3281
3282 if (error) {
3283 PURGE_ATTRCACHE(odvp);
3284 PURGE_ATTRCACHE(ndvp);
3285 VN_RELE(ovp);
3286 nfs_rw_exit(&odrp->r_rwlock);
3287 nfs_rw_exit(&ndrp->r_rwlock);
3288 if (nvp) {
3289 VN_RELE(nvp);
3290 }
3291 return (error);
3292 }
3293
3294 error = geterrno3(res.status);
3295
3296 if (!error) {
3297 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr);
3298 if (HAVE_RDDIR_CACHE(odrp))
3299 nfs_purge_rddir_cache(odvp);
3300 if (ndvp != odvp) {
3301 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr);
3302 if (HAVE_RDDIR_CACHE(ndrp))
3303 nfs_purge_rddir_cache(ndvp);
3304 }
3305 /*
3306 * when renaming directories to be a subdirectory of a
3307 * different parent, the dnlc entry for ".." will no
3308 * longer be valid, so it must be removed
3309 */
3310 rp = VTOR(ovp);
3311 if (ndvp != odvp) {
3312 if (ovp->v_type == VDIR) {
3313 dnlc_remove(ovp, "..");
3314 if (HAVE_RDDIR_CACHE(rp))
3315 nfs_purge_rddir_cache(ovp);
3316 }
3317 }
3318
3319 /*
3320 * If we are renaming the unlinked file, update the
3321 * r_unldvp and r_unlname as needed.
3322 */
3323 mutex_enter(&rp->r_statelock);
3324 if (rp->r_unldvp != NULL) {
3325 if (strcmp(rp->r_unlname, onm) == 0) {
3326 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
3327 rp->r_unlname[MAXNAMELEN - 1] = '\0';
3328
3329 if (ndvp != rp->r_unldvp) {
3330 VN_RELE(rp->r_unldvp);
3331 rp->r_unldvp = ndvp;
3332 VN_HOLD(ndvp);
3333 }
3334 }
3335 }
3336 mutex_exit(&rp->r_statelock);
3337 } else {
3338 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr);
3339 if (ndvp != odvp) {
3340 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t,
3341 cr);
3342 }
3343 /*
3344 * System V defines rename to return EEXIST, not
3345 * ENOTEMPTY if the target directory is not empty.
3346 * Over the wire, the error is NFSERR_ENOTEMPTY
3347 * which geterrno maps to ENOTEMPTY.
3348 */
3349 if (error == ENOTEMPTY)
3350 error = EEXIST;
3351 }
3352
3353 if (error == 0) {
3354 if (nvp)
3355 vnevent_rename_dest(nvp, ndvp, nnm, ct);
3356
3357 if (odvp != ndvp)
3358 vnevent_rename_dest_dir(ndvp, ct);
3359 ASSERT(ovp != NULL);
3360 vnevent_rename_src(ovp, odvp, onm, ct);
3361 }
3362
3363 if (nvp) {
3364 VN_RELE(nvp);
3365 }
3366 VN_RELE(ovp);
3367
3368 nfs_rw_exit(&odrp->r_rwlock);
3369 nfs_rw_exit(&ndrp->r_rwlock);
3370
3371 return (error);
3372 }
3373
3374 /* ARGSUSED */
3375 static int
nfs3_mkdir(vnode_t * dvp,char * nm,struct vattr * va,vnode_t ** vpp,cred_t * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)3376 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
3377 caller_context_t *ct, int flags, vsecattr_t *vsecp)
3378 {
3379 int error;
3380 MKDIR3args args;
3381 MKDIR3res res;
3382 int douprintf;
3383 struct vattr vattr;
3384 vnode_t *vp;
3385 rnode_t *drp;
3386 hrtime_t t;
3387
3388 if (nfs_zone() != VTOMI(dvp)->mi_zone)
3389 return (EPERM);
3390 setdiropargs3(&args.where, nm, dvp);
3391
3392 /*
3393 * Decide what the group-id and set-gid bit of the created directory
3394 * should be. May have to do a setattr to get the gid right.
3395 */
3396 error = setdirgid(dvp, &va->va_gid, cr);
3397 if (error)
3398 return (error);
3399 error = setdirmode(dvp, &va->va_mode, cr);
3400 if (error)
3401 return (error);
3402 va->va_mask |= AT_MODE|AT_GID;
3403
3404 error = vattr_to_sattr3(va, &args.attributes);
3405 if (error) {
3406 /* req time field(s) overflow - return immediately */
3407 return (error);
3408 }
3409
3410 drp = VTOR(dvp);
3411 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3412 return (EINTR);
3413
3414 dnlc_remove(dvp, nm);
3415
3416 douprintf = 1;
3417
3418 t = gethrtime();
3419
3420 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR,
3421 xdr_MKDIR3args, (caddr_t)&args,
3422 xdr_MKDIR3res, (caddr_t)&res, cr,
3423 &douprintf, &res.status, 0, NULL);
3424
3425 if (error) {
3426 PURGE_ATTRCACHE(dvp);
3427 nfs_rw_exit(&drp->r_rwlock);
3428 return (error);
3429 }
3430
3431 error = geterrno3(res.status);
3432 if (!error) {
3433 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3434 if (HAVE_RDDIR_CACHE(drp))
3435 nfs_purge_rddir_cache(dvp);
3436
3437 if (!res.resok.obj.handle_follows) {
3438 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
3439 if (error) {
3440 nfs_rw_exit(&drp->r_rwlock);
3441 return (error);
3442 }
3443 } else {
3444 if (res.resok.obj_attributes.attributes) {
3445 vp = makenfs3node(&res.resok.obj.handle,
3446 &res.resok.obj_attributes.attr,
3447 dvp->v_vfsp, t, cr, NULL, NULL);
3448 } else {
3449 vp = makenfs3node(&res.resok.obj.handle, NULL,
3450 dvp->v_vfsp, t, cr, NULL, NULL);
3451 if (vp->v_type == VNON) {
3452 vattr.va_mask = AT_TYPE;
3453 error = nfs3getattr(vp, &vattr, cr);
3454 if (error) {
3455 VN_RELE(vp);
3456 nfs_rw_exit(&drp->r_rwlock);
3457 return (error);
3458 }
3459 vp->v_type = vattr.va_type;
3460 }
3461 }
3462 dnlc_update(dvp, nm, vp);
3463 }
3464 if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
3465 va->va_mask = AT_GID;
3466 (void) nfs3setattr(vp, va, 0, cr);
3467 }
3468 *vpp = vp;
3469 } else {
3470 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3471 PURGE_STALE_FH(error, dvp, cr);
3472 }
3473
3474 nfs_rw_exit(&drp->r_rwlock);
3475
3476 return (error);
3477 }
3478
3479 /* ARGSUSED */
3480 static int
nfs3_rmdir(vnode_t * dvp,char * nm,vnode_t * cdir,cred_t * cr,caller_context_t * ct,int flags)3481 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
3482 caller_context_t *ct, int flags)
3483 {
3484 int error;
3485 RMDIR3args args;
3486 RMDIR3res res;
3487 vnode_t *vp;
3488 int douprintf;
3489 rnode_t *drp;
3490 hrtime_t t;
3491
3492 if (nfs_zone() != VTOMI(dvp)->mi_zone)
3493 return (EPERM);
3494 drp = VTOR(dvp);
3495 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3496 return (EINTR);
3497
3498 /*
3499 * Attempt to prevent a rmdir(".") from succeeding.
3500 */
3501 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
3502 if (error) {
3503 nfs_rw_exit(&drp->r_rwlock);
3504 return (error);
3505 }
3506
3507 if (vp == cdir) {
3508 VN_RELE(vp);
3509 nfs_rw_exit(&drp->r_rwlock);
3510 return (EINVAL);
3511 }
3512
3513 setdiropargs3(&args.object, nm, dvp);
3514
3515 /*
3516 * First just remove the entry from the name cache, as it
3517 * is most likely an entry for this vp.
3518 */
3519 dnlc_remove(dvp, nm);
3520
3521 /*
3522 * If there vnode reference count is greater than one, then
3523 * there may be additional references in the DNLC which will
3524 * need to be purged. First, trying removing the entry for
3525 * the parent directory and see if that removes the additional
3526 * reference(s). If that doesn't do it, then use dnlc_purge_vp
3527 * to completely remove any references to the directory which
3528 * might still exist in the DNLC.
3529 */
3530 if (vp->v_count > 1) {
3531 dnlc_remove(vp, "..");
3532 if (vp->v_count > 1)
3533 dnlc_purge_vp(vp);
3534 }
3535
3536 douprintf = 1;
3537
3538 t = gethrtime();
3539
3540 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR,
3541 xdr_diropargs3, (caddr_t)&args,
3542 xdr_RMDIR3res, (caddr_t)&res, cr,
3543 &douprintf, &res.status, 0, NULL);
3544
3545 PURGE_ATTRCACHE(vp);
3546
3547 if (error) {
3548 PURGE_ATTRCACHE(dvp);
3549 VN_RELE(vp);
3550 nfs_rw_exit(&drp->r_rwlock);
3551 return (error);
3552 }
3553
3554 error = geterrno3(res.status);
3555 if (!error) {
3556 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3557 if (HAVE_RDDIR_CACHE(drp))
3558 nfs_purge_rddir_cache(dvp);
3559 if (HAVE_RDDIR_CACHE(VTOR(vp)))
3560 nfs_purge_rddir_cache(vp);
3561 } else {
3562 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3563 PURGE_STALE_FH(error, dvp, cr);
3564 /*
3565 * System V defines rmdir to return EEXIST, not
3566 * ENOTEMPTY if the directory is not empty. Over
3567 * the wire, the error is NFSERR_ENOTEMPTY which
3568 * geterrno maps to ENOTEMPTY.
3569 */
3570 if (error == ENOTEMPTY)
3571 error = EEXIST;
3572 }
3573
3574 if (error == 0) {
3575 vnevent_rmdir(vp, dvp, nm, ct);
3576 }
3577 VN_RELE(vp);
3578
3579 nfs_rw_exit(&drp->r_rwlock);
3580
3581 return (error);
3582 }
3583
3584 /* ARGSUSED */
3585 static int
nfs3_symlink(vnode_t * dvp,char * lnm,struct vattr * tva,char * tnm,cred_t * cr,caller_context_t * ct,int flags)3586 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
3587 caller_context_t *ct, int flags)
3588 {
3589 int error;
3590 SYMLINK3args args;
3591 SYMLINK3res res;
3592 int douprintf;
3593 mntinfo_t *mi;
3594 vnode_t *vp;
3595 rnode_t *rp;
3596 char *contents;
3597 rnode_t *drp;
3598 hrtime_t t;
3599
3600 mi = VTOMI(dvp);
3601
3602 if (nfs_zone() != mi->mi_zone)
3603 return (EPERM);
3604 if (!(mi->mi_flags & MI_SYMLINK))
3605 return (EOPNOTSUPP);
3606
3607 setdiropargs3(&args.where, lnm, dvp);
3608 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes);
3609 if (error) {
3610 /* req time field(s) overflow - return immediately */
3611 return (error);
3612 }
3613 args.symlink.symlink_data = tnm;
3614
3615 drp = VTOR(dvp);
3616 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3617 return (EINTR);
3618
3619 dnlc_remove(dvp, lnm);
3620
3621 douprintf = 1;
3622
3623 t = gethrtime();
3624
3625 error = rfs3call(mi, NFSPROC3_SYMLINK,
3626 xdr_SYMLINK3args, (caddr_t)&args,
3627 xdr_SYMLINK3res, (caddr_t)&res, cr,
3628 &douprintf, &res.status, 0, NULL);
3629
3630 if (error) {
3631 PURGE_ATTRCACHE(dvp);
3632 nfs_rw_exit(&drp->r_rwlock);
3633 return (error);
3634 }
3635
3636 error = geterrno3(res.status);
3637 if (!error) {
3638 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3639 if (HAVE_RDDIR_CACHE(drp))
3640 nfs_purge_rddir_cache(dvp);
3641
3642 if (res.resok.obj.handle_follows) {
3643 if (res.resok.obj_attributes.attributes) {
3644 vp = makenfs3node(&res.resok.obj.handle,
3645 &res.resok.obj_attributes.attr,
3646 dvp->v_vfsp, t, cr, NULL, NULL);
3647 } else {
3648 vp = makenfs3node(&res.resok.obj.handle, NULL,
3649 dvp->v_vfsp, t, cr, NULL, NULL);
3650 vp->v_type = VLNK;
3651 vp->v_rdev = 0;
3652 }
3653 dnlc_update(dvp, lnm, vp);
3654 rp = VTOR(vp);
3655 if (nfs3_do_symlink_cache &&
3656 rp->r_symlink.contents == NULL) {
3657
3658 contents = kmem_alloc(MAXPATHLEN,
3659 KM_NOSLEEP);
3660
3661 if (contents != NULL) {
3662 mutex_enter(&rp->r_statelock);
3663 if (rp->r_symlink.contents == NULL) {
3664 rp->r_symlink.len = strlen(tnm);
3665 bcopy(tnm, contents,
3666 rp->r_symlink.len);
3667 rp->r_symlink.contents =
3668 contents;
3669 rp->r_symlink.size = MAXPATHLEN;
3670 mutex_exit(&rp->r_statelock);
3671 } else {
3672 mutex_exit(&rp->r_statelock);
3673 kmem_free((void *)contents,
3674 MAXPATHLEN);
3675 }
3676 }
3677 }
3678 VN_RELE(vp);
3679 }
3680 } else {
3681 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3682 PURGE_STALE_FH(error, dvp, cr);
3683 if (error == EOPNOTSUPP) {
3684 mutex_enter(&mi->mi_lock);
3685 mi->mi_flags &= ~MI_SYMLINK;
3686 mutex_exit(&mi->mi_lock);
3687 }
3688 }
3689
3690 nfs_rw_exit(&drp->r_rwlock);
3691
3692 return (error);
3693 }
3694
3695 #ifdef DEBUG
3696 static int nfs3_readdir_cache_hits = 0;
3697 static int nfs3_readdir_cache_shorts = 0;
3698 static int nfs3_readdir_cache_waits = 0;
3699 static int nfs3_readdir_cache_misses = 0;
3700 static int nfs3_readdir_readahead = 0;
3701 #endif
3702
3703 static int nfs3_shrinkreaddir = 0;
3704
3705 /*
3706 * Read directory entries.
3707 * There are some weird things to look out for here. The uio_loffset
3708 * field is either 0 or it is the offset returned from a previous
3709 * readdir. It is an opaque value used by the server to find the
3710 * correct directory block to read. The count field is the number
3711 * of blocks to read on the server. This is advisory only, the server
3712 * may return only one block's worth of entries. Entries may be compressed
3713 * on the server.
3714 */
3715 /* ARGSUSED */
3716 static int
nfs3_readdir(vnode_t * vp,struct uio * uiop,cred_t * cr,int * eofp,caller_context_t * ct,int flags)3717 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
3718 caller_context_t *ct, int flags)
3719 {
3720 int error;
3721 size_t count;
3722 rnode_t *rp;
3723 rddir_cache *rdc;
3724 rddir_cache *nrdc;
3725 rddir_cache *rrdc;
3726 #ifdef DEBUG
3727 int missed;
3728 #endif
3729 int doreadahead;
3730 rddir_cache srdc;
3731 avl_index_t where;
3732
3733 if (nfs_zone() != VTOMI(vp)->mi_zone)
3734 return (EIO);
3735 rp = VTOR(vp);
3736
3737 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
3738
3739 /*
3740 * Make sure that the directory cache is valid.
3741 */
3742 if (HAVE_RDDIR_CACHE(rp)) {
3743 if (nfs_disable_rddir_cache) {
3744 /*
3745 * Setting nfs_disable_rddir_cache in /etc/system
3746 * allows interoperability with servers that do not
3747 * properly update the attributes of directories.
3748 * Any cached information gets purged before an
3749 * access is made to it.
3750 */
3751 nfs_purge_rddir_cache(vp);
3752 } else {
3753 error = nfs3_validate_caches(vp, cr);
3754 if (error)
3755 return (error);
3756 }
3757 }
3758
3759 /*
3760 * It is possible that some servers may not be able to correctly
3761 * handle a large READDIR or READDIRPLUS request due to bugs in
3762 * their implementation. In order to continue to interoperate
3763 * with them, this workaround is provided to limit the maximum
3764 * size of a READDIRPLUS request to 1024. In any case, the request
3765 * size is limited to MAXBSIZE.
3766 */
3767 count = MIN(uiop->uio_iov->iov_len,
3768 nfs3_shrinkreaddir ? 1024 : MAXBSIZE);
3769
3770 nrdc = NULL;
3771 #ifdef DEBUG
3772 missed = 0;
3773 #endif
3774 top:
3775 /*
3776 * Short circuit last readdir which always returns 0 bytes.
3777 * This can be done after the directory has been read through
3778 * completely at least once. This will set r_direof which
3779 * can be used to find the value of the last cookie.
3780 */
3781 mutex_enter(&rp->r_statelock);
3782 if (rp->r_direof != NULL &&
3783 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) {
3784 mutex_exit(&rp->r_statelock);
3785 #ifdef DEBUG
3786 nfs3_readdir_cache_shorts++;
3787 #endif
3788 if (eofp)
3789 *eofp = 1;
3790 if (nrdc != NULL)
3791 rddir_cache_rele(nrdc);
3792 return (0);
3793 }
3794 /*
3795 * Look for a cache entry. Cache entries are identified
3796 * by the NFS cookie value and the byte count requested.
3797 */
3798 srdc.nfs3_cookie = uiop->uio_loffset;
3799 srdc.buflen = count;
3800 rdc = avl_find(&rp->r_dir, &srdc, &where);
3801 if (rdc != NULL) {
3802 rddir_cache_hold(rdc);
3803 /*
3804 * If the cache entry is in the process of being
3805 * filled in, wait until this completes. The
3806 * RDDIRWAIT bit is set to indicate that someone
3807 * is waiting and then the thread currently
3808 * filling the entry is done, it should do a
3809 * cv_broadcast to wakeup all of the threads
3810 * waiting for it to finish.
3811 */
3812 if (rdc->flags & RDDIR) {
3813 nfs_rw_exit(&rp->r_rwlock);
3814 rdc->flags |= RDDIRWAIT;
3815 #ifdef DEBUG
3816 nfs3_readdir_cache_waits++;
3817 #endif
3818 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) {
3819 /*
3820 * We got interrupted, probably
3821 * the user typed ^C or an alarm
3822 * fired. We free the new entry
3823 * if we allocated one.
3824 */
3825 mutex_exit(&rp->r_statelock);
3826 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3827 RW_READER, FALSE);
3828 rddir_cache_rele(rdc);
3829 if (nrdc != NULL)
3830 rddir_cache_rele(nrdc);
3831 return (EINTR);
3832 }
3833 mutex_exit(&rp->r_statelock);
3834 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3835 RW_READER, FALSE);
3836 rddir_cache_rele(rdc);
3837 goto top;
3838 }
3839 /*
3840 * Check to see if a readdir is required to
3841 * fill the entry. If so, mark this entry
3842 * as being filled, remove our reference,
3843 * and branch to the code to fill the entry.
3844 */
3845 if (rdc->flags & RDDIRREQ) {
3846 rdc->flags &= ~RDDIRREQ;
3847 rdc->flags |= RDDIR;
3848 if (nrdc != NULL)
3849 rddir_cache_rele(nrdc);
3850 nrdc = rdc;
3851 mutex_exit(&rp->r_statelock);
3852 goto bottom;
3853 }
3854 #ifdef DEBUG
3855 if (!missed)
3856 nfs3_readdir_cache_hits++;
3857 #endif
3858 /*
3859 * If an error occurred while attempting
3860 * to fill the cache entry, just return it.
3861 */
3862 if (rdc->error) {
3863 error = rdc->error;
3864 mutex_exit(&rp->r_statelock);
3865 rddir_cache_rele(rdc);
3866 if (nrdc != NULL)
3867 rddir_cache_rele(nrdc);
3868 return (error);
3869 }
3870
3871 /*
3872 * The cache entry is complete and good,
3873 * copyout the dirent structs to the calling
3874 * thread.
3875 */
3876 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop);
3877
3878 /*
3879 * If no error occurred during the copyout,
3880 * update the offset in the uio struct to
3881 * contain the value of the next cookie
3882 * and set the eof value appropriately.
3883 */
3884 if (!error) {
3885 uiop->uio_loffset = rdc->nfs3_ncookie;
3886 if (eofp)
3887 *eofp = rdc->eof;
3888 }
3889
3890 /*
3891 * Decide whether to do readahead.
3892 *
3893 * Don't if have already read to the end of
3894 * directory. There is nothing more to read.
3895 *
3896 * Don't if the application is not doing
3897 * lookups in the directory. The readahead
3898 * is only effective if the application can
3899 * be doing work while an async thread is
3900 * handling the over the wire request.
3901 */
3902 if (rdc->eof) {
3903 rp->r_direof = rdc;
3904 doreadahead = FALSE;
3905 } else if (!(rp->r_flags & RLOOKUP))
3906 doreadahead = FALSE;
3907 else
3908 doreadahead = TRUE;
3909
3910 if (!doreadahead) {
3911 mutex_exit(&rp->r_statelock);
3912 rddir_cache_rele(rdc);
3913 if (nrdc != NULL)
3914 rddir_cache_rele(nrdc);
3915 return (error);
3916 }
3917
3918 /*
3919 * Check to see whether we found an entry
3920 * for the readahead. If so, we don't need
3921 * to do anything further, so free the new
3922 * entry if one was allocated. Otherwise,
3923 * allocate a new entry, add it to the cache,
3924 * and then initiate an asynchronous readdir
3925 * operation to fill it.
3926 */
3927 srdc.nfs3_cookie = rdc->nfs3_ncookie;
3928 srdc.buflen = count;
3929 rrdc = avl_find(&rp->r_dir, &srdc, &where);
3930 if (rrdc != NULL) {
3931 if (nrdc != NULL)
3932 rddir_cache_rele(nrdc);
3933 } else {
3934 if (nrdc != NULL)
3935 rrdc = nrdc;
3936 else {
3937 rrdc = rddir_cache_alloc(KM_NOSLEEP);
3938 }
3939 if (rrdc != NULL) {
3940 rrdc->nfs3_cookie = rdc->nfs3_ncookie;
3941 rrdc->buflen = count;
3942 avl_insert(&rp->r_dir, rrdc, where);
3943 rddir_cache_hold(rrdc);
3944 mutex_exit(&rp->r_statelock);
3945 rddir_cache_rele(rdc);
3946 #ifdef DEBUG
3947 nfs3_readdir_readahead++;
3948 #endif
3949 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir);
3950 return (error);
3951 }
3952 }
3953
3954 mutex_exit(&rp->r_statelock);
3955 rddir_cache_rele(rdc);
3956 return (error);
3957 }
3958
3959 /*
3960 * Didn't find an entry in the cache. Construct a new empty
3961 * entry and link it into the cache. Other processes attempting
3962 * to access this entry will need to wait until it is filled in.
3963 *
3964 * Since kmem_alloc may block, another pass through the cache
3965 * will need to be taken to make sure that another process
3966 * hasn't already added an entry to the cache for this request.
3967 */
3968 if (nrdc == NULL) {
3969 mutex_exit(&rp->r_statelock);
3970 nrdc = rddir_cache_alloc(KM_SLEEP);
3971 nrdc->nfs3_cookie = uiop->uio_loffset;
3972 nrdc->buflen = count;
3973 goto top;
3974 }
3975
3976 /*
3977 * Add this entry to the cache.
3978 */
3979 avl_insert(&rp->r_dir, nrdc, where);
3980 rddir_cache_hold(nrdc);
3981 mutex_exit(&rp->r_statelock);
3982
3983 bottom:
3984 #ifdef DEBUG
3985 missed = 1;
3986 nfs3_readdir_cache_misses++;
3987 #endif
3988 /*
3989 * Do the readdir. This routine decides whether to use
3990 * READDIR or READDIRPLUS.
3991 */
3992 error = do_nfs3readdir(vp, nrdc, cr);
3993
3994 /*
3995 * If this operation failed, just return the error which occurred.
3996 */
3997 if (error != 0)
3998 return (error);
3999
4000 /*
4001 * Since the RPC operation will have taken sometime and blocked
4002 * this process, another pass through the cache will need to be
4003 * taken to find the correct cache entry. It is possible that
4004 * the correct cache entry will not be there (although one was
4005 * added) because the directory changed during the RPC operation
4006 * and the readdir cache was flushed. In this case, just start
4007 * over. It is hoped that this will not happen too often... :-)
4008 */
4009 nrdc = NULL;
4010 goto top;
4011 /* NOTREACHED */
4012 }
4013
4014 static int
do_nfs3readdir(vnode_t * vp,rddir_cache * rdc,cred_t * cr)4015 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4016 {
4017 int error;
4018 rnode_t *rp;
4019 mntinfo_t *mi;
4020
4021 rp = VTOR(vp);
4022 mi = VTOMI(vp);
4023 ASSERT(nfs_zone() == mi->mi_zone);
4024 /*
4025 * Issue the proper request.
4026 *
4027 * If the server does not support READDIRPLUS, then use READDIR.
4028 *
4029 * Otherwise --
4030 * Issue a READDIRPLUS if reading to fill an empty cache or if
4031 * an application has performed a lookup in the directory which
4032 * required an over the wire lookup. The use of READDIRPLUS
4033 * will help to (re)populate the DNLC.
4034 */
4035 if (!(mi->mi_flags & MI_READDIRONLY) &&
4036 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) {
4037 if (rp->r_flags & RREADDIRPLUS) {
4038 mutex_enter(&rp->r_statelock);
4039 rp->r_flags &= ~RREADDIRPLUS;
4040 mutex_exit(&rp->r_statelock);
4041 }
4042 nfs3readdirplus(vp, rdc, cr);
4043 if (rdc->error == EOPNOTSUPP)
4044 nfs3readdir(vp, rdc, cr);
4045 } else
4046 nfs3readdir(vp, rdc, cr);
4047
4048 mutex_enter(&rp->r_statelock);
4049 rdc->flags &= ~RDDIR;
4050 if (rdc->flags & RDDIRWAIT) {
4051 rdc->flags &= ~RDDIRWAIT;
4052 cv_broadcast(&rdc->cv);
4053 }
4054 error = rdc->error;
4055 if (error)
4056 rdc->flags |= RDDIRREQ;
4057 mutex_exit(&rp->r_statelock);
4058
4059 rddir_cache_rele(rdc);
4060
4061 return (error);
4062 }
4063
4064 static void
nfs3readdir(vnode_t * vp,rddir_cache * rdc,cred_t * cr)4065 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4066 {
4067 int error;
4068 READDIR3args args;
4069 READDIR3vres res;
4070 vattr_t dva;
4071 rnode_t *rp;
4072 int douprintf;
4073 failinfo_t fi, *fip = NULL;
4074 mntinfo_t *mi;
4075 hrtime_t t;
4076
4077 rp = VTOR(vp);
4078 mi = VTOMI(vp);
4079 ASSERT(nfs_zone() == mi->mi_zone);
4080
4081 args.dir = *RTOFH3(rp);
4082 args.cookie = (cookie3)rdc->nfs3_cookie;
4083 args.cookieverf = rp->r_cookieverf;
4084 args.count = rdc->buflen;
4085
4086 /*
4087 * NFS client failover support
4088 * suppress failover unless we have a zero cookie
4089 */
4090 if (args.cookie == (cookie3) 0) {
4091 fi.vp = vp;
4092 fi.fhp = (caddr_t)&args.dir;
4093 fi.copyproc = nfs3copyfh;
4094 fi.lookupproc = nfs3lookup;
4095 fi.xattrdirproc = acl_getxattrdir3;
4096 fip = &fi;
4097 }
4098
4099 #ifdef DEBUG
4100 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
4101 #else
4102 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
4103 #endif
4104
4105 res.entries = (dirent64_t *)rdc->entries;
4106 res.entries_size = rdc->buflen;
4107 res.dir_attributes.fres.vap = &dva;
4108 res.dir_attributes.fres.vp = vp;
4109 res.loff = rdc->nfs3_cookie;
4110
4111 douprintf = 1;
4112
4113 if (mi->mi_io_kstats) {
4114 mutex_enter(&mi->mi_lock);
4115 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
4116 mutex_exit(&mi->mi_lock);
4117 }
4118
4119 t = gethrtime();
4120
4121 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR,
4122 xdr_READDIR3args, (caddr_t)&args,
4123 xdr_READDIR3vres, (caddr_t)&res, cr,
4124 &douprintf, &res.status, 0, fip);
4125
4126 if (mi->mi_io_kstats) {
4127 mutex_enter(&mi->mi_lock);
4128 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
4129 mutex_exit(&mi->mi_lock);
4130 }
4131
4132 if (error)
4133 goto err;
4134
4135 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr);
4136
4137 error = geterrno3(res.status);
4138 if (error) {
4139 PURGE_STALE_FH(error, vp, cr);
4140 goto err;
4141 }
4142
4143 if (mi->mi_io_kstats) {
4144 mutex_enter(&mi->mi_lock);
4145 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
4146 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
4147 mutex_exit(&mi->mi_lock);
4148 }
4149
4150 rdc->nfs3_ncookie = res.loff;
4151 rp->r_cookieverf = res.cookieverf;
4152 rdc->eof = res.eof ? 1 : 0;
4153 rdc->entlen = res.size;
4154 ASSERT(rdc->entlen <= rdc->buflen);
4155 rdc->error = 0;
4156 return;
4157
4158 err:
4159 kmem_free(rdc->entries, rdc->buflen);
4160 rdc->entries = NULL;
4161 rdc->error = error;
4162 }
4163
4164 /*
4165 * Read directory entries.
4166 * There are some weird things to look out for here. The uio_loffset
4167 * field is either 0 or it is the offset returned from a previous
4168 * readdir. It is an opaque value used by the server to find the
4169 * correct directory block to read. The count field is the number
4170 * of blocks to read on the server. This is advisory only, the server
4171 * may return only one block's worth of entries. Entries may be compressed
4172 * on the server.
4173 */
4174 static void
nfs3readdirplus(vnode_t * vp,rddir_cache * rdc,cred_t * cr)4175 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4176 {
4177 int error;
4178 READDIRPLUS3args args;
4179 READDIRPLUS3vres res;
4180 vattr_t dva;
4181 rnode_t *rp;
4182 mntinfo_t *mi;
4183 int douprintf;
4184 failinfo_t fi, *fip = NULL;
4185
4186 rp = VTOR(vp);
4187 mi = VTOMI(vp);
4188 ASSERT(nfs_zone() == mi->mi_zone);
4189
4190 args.dir = *RTOFH3(rp);
4191 args.cookie = (cookie3)rdc->nfs3_cookie;
4192 args.cookieverf = rp->r_cookieverf;
4193 args.dircount = rdc->buflen;
4194 args.maxcount = mi->mi_tsize;
4195
4196 /*
4197 * NFS client failover support
4198 * suppress failover unless we have a zero cookie
4199 */
4200 if (args.cookie == (cookie3)0) {
4201 fi.vp = vp;
4202 fi.fhp = (caddr_t)&args.dir;
4203 fi.copyproc = nfs3copyfh;
4204 fi.lookupproc = nfs3lookup;
4205 fi.xattrdirproc = acl_getxattrdir3;
4206 fip = &fi;
4207 }
4208
4209 #ifdef DEBUG
4210 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
4211 #else
4212 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
4213 #endif
4214
4215 res.entries = (dirent64_t *)rdc->entries;
4216 res.entries_size = rdc->buflen;
4217 res.dir_attributes.fres.vap = &dva;
4218 res.dir_attributes.fres.vp = vp;
4219 res.loff = rdc->nfs3_cookie;
4220 res.credentials = cr;
4221
4222 douprintf = 1;
4223
4224 if (mi->mi_io_kstats) {
4225 mutex_enter(&mi->mi_lock);
4226 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
4227 mutex_exit(&mi->mi_lock);
4228 }
4229
4230 res.time = gethrtime();
4231
4232 error = rfs3call(mi, NFSPROC3_READDIRPLUS,
4233 xdr_READDIRPLUS3args, (caddr_t)&args,
4234 xdr_READDIRPLUS3vres, (caddr_t)&res, cr,
4235 &douprintf, &res.status, 0, fip);
4236
4237 if (mi->mi_io_kstats) {
4238 mutex_enter(&mi->mi_lock);
4239 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
4240 mutex_exit(&mi->mi_lock);
4241 }
4242
4243 if (error) {
4244 goto err;
4245 }
4246
4247 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr);
4248
4249 error = geterrno3(res.status);
4250 if (error) {
4251 PURGE_STALE_FH(error, vp, cr);
4252 if (error == EOPNOTSUPP) {
4253 mutex_enter(&mi->mi_lock);
4254 mi->mi_flags |= MI_READDIRONLY;
4255 mutex_exit(&mi->mi_lock);
4256 }
4257 goto err;
4258 }
4259
4260 if (mi->mi_io_kstats) {
4261 mutex_enter(&mi->mi_lock);
4262 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
4263 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
4264 mutex_exit(&mi->mi_lock);
4265 }
4266
4267 rdc->nfs3_ncookie = res.loff;
4268 rp->r_cookieverf = res.cookieverf;
4269 rdc->eof = res.eof ? 1 : 0;
4270 rdc->entlen = res.size;
4271 ASSERT(rdc->entlen <= rdc->buflen);
4272 rdc->error = 0;
4273
4274 return;
4275
4276 err:
4277 kmem_free(rdc->entries, rdc->buflen);
4278 rdc->entries = NULL;
4279 rdc->error = error;
4280 }
4281
4282 #ifdef DEBUG
4283 static int nfs3_bio_do_stop = 0;
4284 #endif
4285
4286 static int
nfs3_bio(struct buf * bp,stable_how * stab_comm,cred_t * cr)4287 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr)
4288 {
4289 rnode_t *rp = VTOR(bp->b_vp);
4290 int count;
4291 int error;
4292 cred_t *cred;
4293 offset_t offset;
4294
4295 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone);
4296 offset = ldbtob(bp->b_lblkno);
4297
4298 DTRACE_IO1(start, struct buf *, bp);
4299
4300 if (bp->b_flags & B_READ) {
4301 mutex_enter(&rp->r_statelock);
4302 if (rp->r_cred != NULL) {
4303 cred = rp->r_cred;
4304 crhold(cred);
4305 } else {
4306 rp->r_cred = cr;
4307 crhold(cr);
4308 cred = cr;
4309 crhold(cred);
4310 }
4311 mutex_exit(&rp->r_statelock);
4312 read_again:
4313 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr,
4314 offset, bp->b_bcount, &bp->b_resid, cred);
4315 crfree(cred);
4316 if (!error) {
4317 if (bp->b_resid) {
4318 /*
4319 * Didn't get it all because we hit EOF,
4320 * zero all the memory beyond the EOF.
4321 */
4322 /* bzero(rdaddr + */
4323 bzero(bp->b_un.b_addr +
4324 bp->b_bcount - bp->b_resid, bp->b_resid);
4325 }
4326 mutex_enter(&rp->r_statelock);
4327 if (bp->b_resid == bp->b_bcount &&
4328 offset >= rp->r_size) {
4329 /*
4330 * We didn't read anything at all as we are
4331 * past EOF. Return an error indicator back
4332 * but don't destroy the pages (yet).
4333 */
4334 error = NFS_EOF;
4335 }
4336 mutex_exit(&rp->r_statelock);
4337 } else if (error == EACCES) {
4338 mutex_enter(&rp->r_statelock);
4339 if (cred != cr) {
4340 if (rp->r_cred != NULL)
4341 crfree(rp->r_cred);
4342 rp->r_cred = cr;
4343 crhold(cr);
4344 cred = cr;
4345 crhold(cred);
4346 mutex_exit(&rp->r_statelock);
4347 goto read_again;
4348 }
4349 mutex_exit(&rp->r_statelock);
4350 }
4351 } else {
4352 if (!(rp->r_flags & RSTALE)) {
4353 mutex_enter(&rp->r_statelock);
4354 if (rp->r_cred != NULL) {
4355 cred = rp->r_cred;
4356 crhold(cred);
4357 } else {
4358 rp->r_cred = cr;
4359 crhold(cr);
4360 cred = cr;
4361 crhold(cred);
4362 }
4363 mutex_exit(&rp->r_statelock);
4364 write_again:
4365 mutex_enter(&rp->r_statelock);
4366 count = MIN(bp->b_bcount, rp->r_size - offset);
4367 mutex_exit(&rp->r_statelock);
4368 if (count < 0)
4369 cmn_err(CE_PANIC, "nfs3_bio: write count < 0");
4370 #ifdef DEBUG
4371 if (count == 0) {
4372 zcmn_err(getzoneid(), CE_WARN,
4373 "nfs3_bio: zero length write at %lld",
4374 offset);
4375 nfs_printfhandle(&rp->r_fh);
4376 if (nfs3_bio_do_stop)
4377 debug_enter("nfs3_bio");
4378 }
4379 #endif
4380 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset,
4381 count, cred, stab_comm);
4382 if (error == EACCES) {
4383 mutex_enter(&rp->r_statelock);
4384 if (cred != cr) {
4385 if (rp->r_cred != NULL)
4386 crfree(rp->r_cred);
4387 rp->r_cred = cr;
4388 crhold(cr);
4389 crfree(cred);
4390 cred = cr;
4391 crhold(cred);
4392 mutex_exit(&rp->r_statelock);
4393 goto write_again;
4394 }
4395 mutex_exit(&rp->r_statelock);
4396 }
4397 bp->b_error = error;
4398 if (error && error != EINTR) {
4399 /*
4400 * Don't print EDQUOT errors on the console.
4401 * Don't print asynchronous EACCES errors.
4402 * Don't print EFBIG errors.
4403 * Print all other write errors.
4404 */
4405 if (error != EDQUOT && error != EFBIG &&
4406 (error != EACCES ||
4407 !(bp->b_flags & B_ASYNC)))
4408 nfs_write_error(bp->b_vp, error, cred);
4409 /*
4410 * Update r_error and r_flags as appropriate.
4411 * If the error was ESTALE, then mark the
4412 * rnode as not being writeable and save
4413 * the error status. Otherwise, save any
4414 * errors which occur from asynchronous
4415 * page invalidations. Any errors occurring
4416 * from other operations should be saved
4417 * by the caller.
4418 */
4419 mutex_enter(&rp->r_statelock);
4420 if (error == ESTALE) {
4421 rp->r_flags |= RSTALE;
4422 if (!rp->r_error)
4423 rp->r_error = error;
4424 } else if (!rp->r_error &&
4425 (bp->b_flags &
4426 (B_INVAL|B_FORCE|B_ASYNC)) ==
4427 (B_INVAL|B_FORCE|B_ASYNC)) {
4428 rp->r_error = error;
4429 }
4430 mutex_exit(&rp->r_statelock);
4431 }
4432 crfree(cred);
4433 } else {
4434 error = rp->r_error;
4435 /*
4436 * A close may have cleared r_error, if so,
4437 * propagate ESTALE error return properly
4438 */
4439 if (error == 0)
4440 error = ESTALE;
4441 }
4442 }
4443
4444 if (error != 0 && error != NFS_EOF)
4445 bp->b_flags |= B_ERROR;
4446
4447 DTRACE_IO1(done, struct buf *, bp);
4448
4449 return (error);
4450 }
4451
4452 /* ARGSUSED */
4453 static int
nfs3_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)4454 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4455 {
4456 rnode_t *rp;
4457
4458 if (nfs_zone() != VTOMI(vp)->mi_zone)
4459 return (EIO);
4460 rp = VTOR(vp);
4461
4462 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) {
4463 fidp->fid_len = rp->r_fh.fh_len;
4464 return (ENOSPC);
4465 }
4466 fidp->fid_len = rp->r_fh.fh_len;
4467 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len);
4468 return (0);
4469 }
4470
4471 /* ARGSUSED2 */
4472 static int
nfs3_rwlock(vnode_t * vp,int write_lock,caller_context_t * ctp)4473 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
4474 {
4475 rnode_t *rp = VTOR(vp);
4476
4477 if (!write_lock) {
4478 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
4479 return (V_WRITELOCK_FALSE);
4480 }
4481
4482 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) {
4483 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
4484 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp))
4485 return (V_WRITELOCK_FALSE);
4486 nfs_rw_exit(&rp->r_rwlock);
4487 }
4488
4489 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
4490 return (V_WRITELOCK_TRUE);
4491 }
4492
4493 /* ARGSUSED */
4494 static void
nfs3_rwunlock(vnode_t * vp,int write_lock,caller_context_t * ctp)4495 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
4496 {
4497 rnode_t *rp = VTOR(vp);
4498
4499 nfs_rw_exit(&rp->r_rwlock);
4500 }
4501
4502 /* ARGSUSED */
4503 static int
nfs3_seek(vnode_t * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)4504 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
4505 {
4506
4507 /*
4508 * Because we stuff the readdir cookie into the offset field
4509 * someone may attempt to do an lseek with the cookie which
4510 * we want to succeed.
4511 */
4512 if (vp->v_type == VDIR)
4513 return (0);
4514 if (*noffp < 0)
4515 return (EINVAL);
4516 return (0);
4517 }
4518
4519 /*
4520 * number of nfs3_bsize blocks to read ahead.
4521 */
4522 static int nfs3_nra = 4;
4523
4524 #ifdef DEBUG
4525 static int nfs3_lostpage = 0; /* number of times we lost original page */
4526 #endif
4527
4528 /*
4529 * Return all the pages from [off..off+len) in file
4530 */
4531 /* ARGSUSED */
4532 static int
nfs3_getpage(vnode_t * vp,offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr,caller_context_t * ct)4533 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4534 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4535 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4536 {
4537 rnode_t *rp;
4538 int error;
4539 mntinfo_t *mi;
4540
4541 if (vp->v_flag & VNOMAP)
4542 return (ENOSYS);
4543
4544 if (nfs_zone() != VTOMI(vp)->mi_zone)
4545 return (EIO);
4546 if (protp != NULL)
4547 *protp = PROT_ALL;
4548
4549 /*
4550 * Now valididate that the caches are up to date.
4551 */
4552 error = nfs3_validate_caches(vp, cr);
4553 if (error)
4554 return (error);
4555
4556 rp = VTOR(vp);
4557 mi = VTOMI(vp);
4558 retry:
4559 mutex_enter(&rp->r_statelock);
4560
4561 /*
4562 * Don't create dirty pages faster than they
4563 * can be cleaned so that the system doesn't
4564 * get imbalanced. If the async queue is
4565 * maxed out, then wait for it to drain before
4566 * creating more dirty pages. Also, wait for
4567 * any threads doing pagewalks in the vop_getattr
4568 * entry points so that they don't block for
4569 * long periods.
4570 */
4571 if (rw == S_CREATE) {
4572 while ((mi->mi_max_threads != 0 &&
4573 rp->r_awcount > 2 * mi->mi_max_threads) ||
4574 rp->r_gcount > 0)
4575 cv_wait(&rp->r_cv, &rp->r_statelock);
4576 }
4577
4578 /*
4579 * If we are getting called as a side effect of an nfs_write()
4580 * operation the local file size might not be extended yet.
4581 * In this case we want to be able to return pages of zeroes.
4582 */
4583 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
4584 mutex_exit(&rp->r_statelock);
4585 return (EFAULT); /* beyond EOF */
4586 }
4587
4588 mutex_exit(&rp->r_statelock);
4589
4590 error = pvn_getpages(nfs3_getapage, vp, off, len, protp,
4591 pl, plsz, seg, addr, rw, cr);
4592
4593 switch (error) {
4594 case NFS_EOF:
4595 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
4596 goto retry;
4597 case ESTALE:
4598 PURGE_STALE_FH(error, vp, cr);
4599 }
4600
4601 return (error);
4602 }
4603
4604 /*
4605 * Called from pvn_getpages to get a particular page.
4606 */
4607 /* ARGSUSED */
4608 static int
nfs3_getapage(vnode_t * vp,u_offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr)4609 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
4610 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4611 enum seg_rw rw, cred_t *cr)
4612 {
4613 rnode_t *rp;
4614 uint_t bsize;
4615 struct buf *bp;
4616 page_t *pp;
4617 u_offset_t lbn;
4618 u_offset_t io_off;
4619 u_offset_t blkoff;
4620 u_offset_t rablkoff;
4621 size_t io_len;
4622 uint_t blksize;
4623 int error;
4624 int readahead;
4625 int readahead_issued = 0;
4626 int ra_window; /* readahead window */
4627 page_t *pagefound;
4628 page_t *savepp;
4629
4630 if (nfs_zone() != VTOMI(vp)->mi_zone)
4631 return (EIO);
4632 rp = VTOR(vp);
4633 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4634
4635 reread:
4636 bp = NULL;
4637 pp = NULL;
4638 pagefound = NULL;
4639
4640 if (pl != NULL)
4641 pl[0] = NULL;
4642
4643 error = 0;
4644 lbn = off / bsize;
4645 blkoff = lbn * bsize;
4646
4647 /*
4648 * Queueing up the readahead before doing the synchronous read
4649 * results in a significant increase in read throughput because
4650 * of the increased parallelism between the async threads and
4651 * the process context.
4652 */
4653 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
4654 rw != S_CREATE &&
4655 !(vp->v_flag & VNOCACHE)) {
4656 mutex_enter(&rp->r_statelock);
4657
4658 /*
4659 * Calculate the number of readaheads to do.
4660 * a) No readaheads at offset = 0.
4661 * b) Do maximum(nfs3_nra) readaheads when the readahead
4662 * window is closed.
4663 * c) Do readaheads between 1 to (nfs3_nra - 1) depending
4664 * upon how far the readahead window is open or close.
4665 * d) No readaheads if rp->r_nextr is not within the scope
4666 * of the readahead window (random i/o).
4667 */
4668
4669 if (off == 0)
4670 readahead = 0;
4671 else if (blkoff == rp->r_nextr)
4672 readahead = nfs3_nra;
4673 else if (rp->r_nextr > blkoff &&
4674 ((ra_window = (rp->r_nextr - blkoff) / bsize)
4675 <= (nfs3_nra - 1)))
4676 readahead = nfs3_nra - ra_window;
4677 else
4678 readahead = 0;
4679
4680 rablkoff = rp->r_nextr;
4681 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
4682 mutex_exit(&rp->r_statelock);
4683 if (nfs_async_readahead(vp, rablkoff + bsize,
4684 addr + (rablkoff + bsize - off), seg, cr,
4685 nfs3_readahead) < 0) {
4686 mutex_enter(&rp->r_statelock);
4687 break;
4688 }
4689 readahead--;
4690 rablkoff += bsize;
4691 /*
4692 * Indicate that we did a readahead so
4693 * readahead offset is not updated
4694 * by the synchronous read below.
4695 */
4696 readahead_issued = 1;
4697 mutex_enter(&rp->r_statelock);
4698 /*
4699 * set readahead offset to
4700 * offset of last async readahead
4701 * request.
4702 */
4703 rp->r_nextr = rablkoff;
4704 }
4705 mutex_exit(&rp->r_statelock);
4706 }
4707
4708 again:
4709 if ((pagefound = page_exists(vp, off)) == NULL) {
4710 if (pl == NULL) {
4711 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr,
4712 nfs3_readahead);
4713 } else if (rw == S_CREATE) {
4714 /*
4715 * Block for this page is not allocated, or the offset
4716 * is beyond the current allocation size, or we're
4717 * allocating a swap slot and the page was not found,
4718 * so allocate it and return a zero page.
4719 */
4720 if ((pp = page_create_va(vp, off,
4721 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
4722 cmn_err(CE_PANIC, "nfs3_getapage: page_create");
4723 io_len = PAGESIZE;
4724 mutex_enter(&rp->r_statelock);
4725 rp->r_nextr = off + PAGESIZE;
4726 mutex_exit(&rp->r_statelock);
4727 } else {
4728 /*
4729 * Need to go to server to get a BLOCK, exception to
4730 * that being while reading at offset = 0 or doing
4731 * random i/o, in that case read only a PAGE.
4732 */
4733 mutex_enter(&rp->r_statelock);
4734 if (blkoff < rp->r_size &&
4735 blkoff + bsize >= rp->r_size) {
4736 /*
4737 * If only a block or less is left in
4738 * the file, read all that is remaining.
4739 */
4740 if (rp->r_size <= off) {
4741 /*
4742 * Trying to access beyond EOF,
4743 * set up to get at least one page.
4744 */
4745 blksize = off + PAGESIZE - blkoff;
4746 } else
4747 blksize = rp->r_size - blkoff;
4748 } else if ((off == 0) ||
4749 (off != rp->r_nextr && !readahead_issued)) {
4750 blksize = PAGESIZE;
4751 blkoff = off; /* block = page here */
4752 } else
4753 blksize = bsize;
4754 mutex_exit(&rp->r_statelock);
4755
4756 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4757 &io_len, blkoff, blksize, 0);
4758
4759 /*
4760 * Some other thread has entered the page,
4761 * so just use it.
4762 */
4763 if (pp == NULL)
4764 goto again;
4765
4766 /*
4767 * Now round the request size up to page boundaries.
4768 * This ensures that the entire page will be
4769 * initialized to zeroes if EOF is encountered.
4770 */
4771 io_len = ptob(btopr(io_len));
4772
4773 bp = pageio_setup(pp, io_len, vp, B_READ);
4774 ASSERT(bp != NULL);
4775
4776 /*
4777 * pageio_setup should have set b_addr to 0. This
4778 * is correct since we want to do I/O on a page
4779 * boundary. bp_mapin will use this addr to calculate
4780 * an offset, and then set b_addr to the kernel virtual
4781 * address it allocated for us.
4782 */
4783 ASSERT(bp->b_un.b_addr == 0);
4784
4785 bp->b_edev = 0;
4786 bp->b_dev = 0;
4787 bp->b_lblkno = lbtodb(io_off);
4788 bp->b_file = vp;
4789 bp->b_offset = (offset_t)off;
4790 bp_mapin(bp);
4791
4792 /*
4793 * If doing a write beyond what we believe is EOF,
4794 * don't bother trying to read the pages from the
4795 * server, we'll just zero the pages here. We
4796 * don't check that the rw flag is S_WRITE here
4797 * because some implementations may attempt a
4798 * read access to the buffer before copying data.
4799 */
4800 mutex_enter(&rp->r_statelock);
4801 if (io_off >= rp->r_size && seg == segkmap) {
4802 mutex_exit(&rp->r_statelock);
4803 bzero(bp->b_un.b_addr, io_len);
4804 } else {
4805 mutex_exit(&rp->r_statelock);
4806 error = nfs3_bio(bp, NULL, cr);
4807 }
4808
4809 /*
4810 * Unmap the buffer before freeing it.
4811 */
4812 bp_mapout(bp);
4813 pageio_done(bp);
4814
4815 savepp = pp;
4816 do {
4817 pp->p_fsdata = C_NOCOMMIT;
4818 } while ((pp = pp->p_next) != savepp);
4819
4820 if (error == NFS_EOF) {
4821 /*
4822 * If doing a write system call just return
4823 * zeroed pages, else user tried to get pages
4824 * beyond EOF, return error. We don't check
4825 * that the rw flag is S_WRITE here because
4826 * some implementations may attempt a read
4827 * access to the buffer before copying data.
4828 */
4829 if (seg == segkmap)
4830 error = 0;
4831 else
4832 error = EFAULT;
4833 }
4834
4835 if (!readahead_issued && !error) {
4836 mutex_enter(&rp->r_statelock);
4837 rp->r_nextr = io_off + io_len;
4838 mutex_exit(&rp->r_statelock);
4839 }
4840 }
4841 }
4842
4843 out:
4844 if (pl == NULL)
4845 return (error);
4846
4847 if (error) {
4848 if (pp != NULL)
4849 pvn_read_done(pp, B_ERROR);
4850 return (error);
4851 }
4852
4853 if (pagefound) {
4854 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
4855
4856 /*
4857 * Page exists in the cache, acquire the appropriate lock.
4858 * If this fails, start all over again.
4859 */
4860 if ((pp = page_lookup(vp, off, se)) == NULL) {
4861 #ifdef DEBUG
4862 nfs3_lostpage++;
4863 #endif
4864 goto reread;
4865 }
4866 pl[0] = pp;
4867 pl[1] = NULL;
4868 return (0);
4869 }
4870
4871 if (pp != NULL)
4872 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4873
4874 return (error);
4875 }
4876
4877 static void
nfs3_readahead(vnode_t * vp,u_offset_t blkoff,caddr_t addr,struct seg * seg,cred_t * cr)4878 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
4879 cred_t *cr)
4880 {
4881 int error;
4882 page_t *pp;
4883 u_offset_t io_off;
4884 size_t io_len;
4885 struct buf *bp;
4886 uint_t bsize, blksize;
4887 rnode_t *rp = VTOR(vp);
4888 page_t *savepp;
4889
4890 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4891 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4892
4893 mutex_enter(&rp->r_statelock);
4894 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
4895 /*
4896 * If less than a block left in file read less
4897 * than a block.
4898 */
4899 blksize = rp->r_size - blkoff;
4900 } else
4901 blksize = bsize;
4902 mutex_exit(&rp->r_statelock);
4903
4904 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
4905 &io_off, &io_len, blkoff, blksize, 1);
4906 /*
4907 * The isra flag passed to the kluster function is 1, we may have
4908 * gotten a return value of NULL for a variety of reasons (# of free
4909 * pages < minfree, someone entered the page on the vnode etc). In all
4910 * cases, we want to punt on the readahead.
4911 */
4912 if (pp == NULL)
4913 return;
4914
4915 /*
4916 * Now round the request size up to page boundaries.
4917 * This ensures that the entire page will be
4918 * initialized to zeroes if EOF is encountered.
4919 */
4920 io_len = ptob(btopr(io_len));
4921
4922 bp = pageio_setup(pp, io_len, vp, B_READ);
4923 ASSERT(bp != NULL);
4924
4925 /*
4926 * pageio_setup should have set b_addr to 0. This is correct since
4927 * we want to do I/O on a page boundary. bp_mapin() will use this addr
4928 * to calculate an offset, and then set b_addr to the kernel virtual
4929 * address it allocated for us.
4930 */
4931 ASSERT(bp->b_un.b_addr == 0);
4932
4933 bp->b_edev = 0;
4934 bp->b_dev = 0;
4935 bp->b_lblkno = lbtodb(io_off);
4936 bp->b_file = vp;
4937 bp->b_offset = (offset_t)blkoff;
4938 bp_mapin(bp);
4939
4940 /*
4941 * If doing a write beyond what we believe is EOF, don't bother trying
4942 * to read the pages from the server, we'll just zero the pages here.
4943 * We don't check that the rw flag is S_WRITE here because some
4944 * implementations may attempt a read access to the buffer before
4945 * copying data.
4946 */
4947 mutex_enter(&rp->r_statelock);
4948 if (io_off >= rp->r_size && seg == segkmap) {
4949 mutex_exit(&rp->r_statelock);
4950 bzero(bp->b_un.b_addr, io_len);
4951 error = 0;
4952 } else {
4953 mutex_exit(&rp->r_statelock);
4954 error = nfs3_bio(bp, NULL, cr);
4955 if (error == NFS_EOF)
4956 error = 0;
4957 }
4958
4959 /*
4960 * Unmap the buffer before freeing it.
4961 */
4962 bp_mapout(bp);
4963 pageio_done(bp);
4964
4965 savepp = pp;
4966 do {
4967 pp->p_fsdata = C_NOCOMMIT;
4968 } while ((pp = pp->p_next) != savepp);
4969
4970 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
4971
4972 /*
4973 * In case of error set readahead offset
4974 * to the lowest offset.
4975 * pvn_read_done() calls VN_DISPOSE to destroy the pages
4976 */
4977 if (error && rp->r_nextr > io_off) {
4978 mutex_enter(&rp->r_statelock);
4979 if (rp->r_nextr > io_off)
4980 rp->r_nextr = io_off;
4981 mutex_exit(&rp->r_statelock);
4982 }
4983 }
4984
4985 /*
4986 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
4987 * If len == 0, do from off to EOF.
4988 *
4989 * The normal cases should be len == 0 && off == 0 (entire vp list),
4990 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
4991 * (from pageout).
4992 */
4993 /* ARGSUSED */
4994 static int
nfs3_putpage(vnode_t * vp,offset_t off,size_t len,int flags,cred_t * cr,caller_context_t * ct)4995 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4996 caller_context_t *ct)
4997 {
4998 int error;
4999 rnode_t *rp;
5000
5001 ASSERT(cr != NULL);
5002
5003 /*
5004 * XXX - Why should this check be made here?
5005 */
5006 if (vp->v_flag & VNOMAP)
5007 return (ENOSYS);
5008 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp))
5009 return (0);
5010 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
5011 return (EIO);
5012
5013 rp = VTOR(vp);
5014 mutex_enter(&rp->r_statelock);
5015 rp->r_count++;
5016 mutex_exit(&rp->r_statelock);
5017 error = nfs_putpages(vp, off, len, flags, cr);
5018 mutex_enter(&rp->r_statelock);
5019 rp->r_count--;
5020 cv_broadcast(&rp->r_cv);
5021 mutex_exit(&rp->r_statelock);
5022
5023 return (error);
5024 }
5025
5026 /*
5027 * Write out a single page, possibly klustering adjacent dirty pages.
5028 */
5029 int
nfs3_putapage(vnode_t * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,cred_t * cr)5030 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
5031 int flags, cred_t *cr)
5032 {
5033 u_offset_t io_off;
5034 u_offset_t lbn_off;
5035 u_offset_t lbn;
5036 size_t io_len;
5037 uint_t bsize;
5038 int error;
5039 rnode_t *rp;
5040
5041 ASSERT(!vn_is_readonly(vp));
5042 ASSERT(pp != NULL);
5043 ASSERT(cr != NULL);
5044 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone);
5045
5046 rp = VTOR(vp);
5047 ASSERT(rp->r_count > 0);
5048
5049 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
5050 lbn = pp->p_offset / bsize;
5051 lbn_off = lbn * bsize;
5052
5053 /*
5054 * Find a kluster that fits in one block, or in
5055 * one page if pages are bigger than blocks. If
5056 * there is less file space allocated than a whole
5057 * page, we'll shorten the i/o request below.
5058 */
5059 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
5060 roundup(bsize, PAGESIZE), flags);
5061
5062 /*
5063 * pvn_write_kluster shouldn't have returned a page with offset
5064 * behind the original page we were given. Verify that.
5065 */
5066 ASSERT((pp->p_offset / bsize) >= lbn);
5067
5068 /*
5069 * Now pp will have the list of kept dirty pages marked for
5070 * write back. It will also handle invalidation and freeing
5071 * of pages that are not dirty. Check for page length rounding
5072 * problems.
5073 */
5074 if (io_off + io_len > lbn_off + bsize) {
5075 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
5076 io_len = lbn_off + bsize - io_off;
5077 }
5078 /*
5079 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
5080 * consistent value of r_size. RMODINPROGRESS is set in writerp().
5081 * When RMODINPROGRESS is set it indicates that a uiomove() is in
5082 * progress and the r_size has not been made consistent with the
5083 * new size of the file. When the uiomove() completes the r_size is
5084 * updated and the RMODINPROGRESS flag is cleared.
5085 *
5086 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
5087 * consistent value of r_size. Without this handshaking, it is
5088 * possible that nfs(3)_bio() picks up the old value of r_size
5089 * before the uiomove() in writerp() completes. This will result
5090 * in the write through nfs(3)_bio() being dropped.
5091 *
5092 * More precisely, there is a window between the time the uiomove()
5093 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
5094 * operation intervenes in this window, the page will be picked up,
5095 * because it is dirty (it will be unlocked, unless it was
5096 * pagecreate'd). When the page is picked up as dirty, the dirty
5097 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is
5098 * checked. This will still be the old size. Therefore the page will
5099 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
5100 * the page will be found to be clean and the write will be dropped.
5101 */
5102 if (rp->r_flags & RMODINPROGRESS) {
5103 mutex_enter(&rp->r_statelock);
5104 if ((rp->r_flags & RMODINPROGRESS) &&
5105 rp->r_modaddr + MAXBSIZE > io_off &&
5106 rp->r_modaddr < io_off + io_len) {
5107 page_t *plist;
5108 /*
5109 * A write is in progress for this region of the file.
5110 * If we did not detect RMODINPROGRESS here then this
5111 * path through nfs_putapage() would eventually go to
5112 * nfs(3)_bio() and may not write out all of the data
5113 * in the pages. We end up losing data. So we decide
5114 * to set the modified bit on each page in the page
5115 * list and mark the rnode with RDIRTY. This write
5116 * will be restarted at some later time.
5117 */
5118 plist = pp;
5119 while (plist != NULL) {
5120 pp = plist;
5121 page_sub(&plist, pp);
5122 hat_setmod(pp);
5123 page_io_unlock(pp);
5124 page_unlock(pp);
5125 }
5126 rp->r_flags |= RDIRTY;
5127 mutex_exit(&rp->r_statelock);
5128 if (offp)
5129 *offp = io_off;
5130 if (lenp)
5131 *lenp = io_len;
5132 return (0);
5133 }
5134 mutex_exit(&rp->r_statelock);
5135 }
5136
5137 if (flags & B_ASYNC) {
5138 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr,
5139 nfs3_sync_putapage);
5140 } else
5141 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr);
5142
5143 if (offp)
5144 *offp = io_off;
5145 if (lenp)
5146 *lenp = io_len;
5147 return (error);
5148 }
5149
5150 static int
nfs3_sync_putapage(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)5151 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5152 int flags, cred_t *cr)
5153 {
5154 int error;
5155 rnode_t *rp;
5156
5157 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5158
5159 flags |= B_WRITE;
5160
5161 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5162
5163 rp = VTOR(vp);
5164
5165 if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
5166 error == EACCES) &&
5167 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
5168 if (!(rp->r_flags & ROUTOFSPACE)) {
5169 mutex_enter(&rp->r_statelock);
5170 rp->r_flags |= ROUTOFSPACE;
5171 mutex_exit(&rp->r_statelock);
5172 }
5173 flags |= B_ERROR;
5174 pvn_write_done(pp, flags);
5175 /*
5176 * If this was not an async thread, then try again to
5177 * write out the pages, but this time, also destroy
5178 * them whether or not the write is successful. This
5179 * will prevent memory from filling up with these
5180 * pages and destroying them is the only alternative
5181 * if they can't be written out.
5182 *
5183 * Don't do this if this is an async thread because
5184 * when the pages are unlocked in pvn_write_done,
5185 * some other thread could have come along, locked
5186 * them, and queued for an async thread. It would be
5187 * possible for all of the async threads to be tied
5188 * up waiting to lock the pages again and they would
5189 * all already be locked and waiting for an async
5190 * thread to handle them. Deadlock.
5191 */
5192 if (!(flags & B_ASYNC)) {
5193 error = nfs3_putpage(vp, io_off, io_len,
5194 B_INVAL | B_FORCE, cr, NULL);
5195 }
5196 } else {
5197 if (error)
5198 flags |= B_ERROR;
5199 else if (rp->r_flags & ROUTOFSPACE) {
5200 mutex_enter(&rp->r_statelock);
5201 rp->r_flags &= ~ROUTOFSPACE;
5202 mutex_exit(&rp->r_statelock);
5203 }
5204 pvn_write_done(pp, flags);
5205 if (freemem < desfree)
5206 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr);
5207 }
5208
5209 return (error);
5210 }
5211
5212 /* ARGSUSED */
5213 static int
nfs3_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)5214 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
5215 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
5216 cred_t *cr, caller_context_t *ct)
5217 {
5218 struct segvn_crargs vn_a;
5219 int error;
5220 rnode_t *rp;
5221 struct vattr va;
5222
5223 if (nfs_zone() != VTOMI(vp)->mi_zone)
5224 return (EIO);
5225
5226 if (vp->v_flag & VNOMAP)
5227 return (ENOSYS);
5228
5229 if (off < 0 || off + len < 0)
5230 return (ENXIO);
5231
5232 if (vp->v_type != VREG)
5233 return (ENODEV);
5234
5235 /*
5236 * If there is cached data and if close-to-open consistency
5237 * checking is not turned off and if the file system is not
5238 * mounted readonly, then force an over the wire getattr.
5239 * Otherwise, just invoke nfs3getattr to get a copy of the
5240 * attributes. The attribute cache will be used unless it
5241 * is timed out and if it is, then an over the wire getattr
5242 * will be issued.
5243 */
5244 va.va_mask = AT_ALL;
5245 if (vn_has_cached_data(vp) &&
5246 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp))
5247 error = nfs3_getattr_otw(vp, &va, cr);
5248 else
5249 error = nfs3getattr(vp, &va, cr);
5250 if (error)
5251 return (error);
5252
5253 /*
5254 * Check to see if the vnode is currently marked as not cachable.
5255 * This means portions of the file are locked (through VOP_FRLOCK).
5256 * In this case the map request must be refused. We use
5257 * rp->r_lkserlock to avoid a race with concurrent lock requests.
5258 */
5259 rp = VTOR(vp);
5260
5261 /*
5262 * Atomically increment r_inmap after acquiring r_rwlock. The
5263 * idea here is to acquire r_rwlock to block read/write and
5264 * not to protect r_inmap. r_inmap will inform nfs3_read/write()
5265 * that we are in nfs3_map(). Now, r_rwlock is acquired in order
5266 * and we can prevent the deadlock that would have occurred
5267 * when nfs3_addmap() would have acquired it out of order.
5268 *
5269 * Since we are not protecting r_inmap by any lock, we do not
5270 * hold any lock when we decrement it. We atomically decrement
5271 * r_inmap after we release r_lkserlock.
5272 */
5273
5274 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp)))
5275 return (EINTR);
5276 atomic_inc_uint(&rp->r_inmap);
5277 nfs_rw_exit(&rp->r_rwlock);
5278
5279 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) {
5280 atomic_dec_uint(&rp->r_inmap);
5281 return (EINTR);
5282 }
5283
5284 if (vp->v_flag & VNOCACHE) {
5285 error = EAGAIN;
5286 goto done;
5287 }
5288
5289 /*
5290 * Don't allow concurrent locks and mapping if mandatory locking is
5291 * enabled.
5292 */
5293 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) &&
5294 MANDLOCK(vp, va.va_mode)) {
5295 error = EAGAIN;
5296 goto done;
5297 }
5298
5299 as_rangelock(as);
5300 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5301 if (error != 0) {
5302 as_rangeunlock(as);
5303 goto done;
5304 }
5305
5306 vn_a.vp = vp;
5307 vn_a.offset = off;
5308 vn_a.type = (flags & MAP_TYPE);
5309 vn_a.prot = (uchar_t)prot;
5310 vn_a.maxprot = (uchar_t)maxprot;
5311 vn_a.flags = (flags & ~MAP_TYPE);
5312 vn_a.cred = cr;
5313 vn_a.amp = NULL;
5314 vn_a.szc = 0;
5315 vn_a.lgrp_mem_policy_flags = 0;
5316
5317 error = as_map(as, *addrp, len, segvn_create, &vn_a);
5318 as_rangeunlock(as);
5319
5320 done:
5321 nfs_rw_exit(&rp->r_lkserlock);
5322 atomic_dec_uint(&rp->r_inmap);
5323 return (error);
5324 }
5325
5326 /* ARGSUSED */
5327 static int
nfs3_addmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)5328 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5329 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
5330 cred_t *cr, caller_context_t *ct)
5331 {
5332 rnode_t *rp;
5333
5334 if (vp->v_flag & VNOMAP)
5335 return (ENOSYS);
5336 if (nfs_zone() != VTOMI(vp)->mi_zone)
5337 return (EIO);
5338
5339 rp = VTOR(vp);
5340 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
5341
5342 return (0);
5343 }
5344
5345 /* ARGSUSED */
5346 static int
nfs3_frlock(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,struct flk_callback * flk_cbp,cred_t * cr,caller_context_t * ct)5347 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
5348 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
5349 caller_context_t *ct)
5350 {
5351 netobj lm_fh3;
5352 int rc;
5353 u_offset_t start, end;
5354 rnode_t *rp;
5355 int error = 0, intr = INTR(vp);
5356
5357 if (nfs_zone() != VTOMI(vp)->mi_zone)
5358 return (EIO);
5359
5360 /* check for valid cmd parameter */
5361 switch (cmd) {
5362 case F_FLOCK:
5363 case F_FLOCKW:
5364 case F_OFD_GETLK:
5365 case F_OFD_SETLK:
5366 case F_OFD_SETLKW:
5367 return (EOPNOTSUPP);
5368 case F_GETLK:
5369 case F_SETLK:
5370 case F_SETLKW:
5371 break;
5372 default:
5373 return (EINVAL);
5374 }
5375
5376 /* Verify l_type. */
5377 switch (bfp->l_type) {
5378 case F_RDLCK:
5379 if (cmd != F_GETLK && !(flag & FREAD))
5380 return (EBADF);
5381 break;
5382 case F_WRLCK:
5383 if (cmd != F_GETLK && !(flag & FWRITE))
5384 return (EBADF);
5385 break;
5386 case F_UNLCK:
5387 intr = 0;
5388 break;
5389
5390 default:
5391 return (EINVAL);
5392 }
5393
5394 /* check the validity of the lock range */
5395 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
5396 return (rc);
5397 if (rc = flk_check_lock_data(start, end, MAXEND))
5398 return (rc);
5399
5400 /*
5401 * If the filesystem is mounted using local locking, pass the
5402 * request off to the local locking code.
5403 */
5404 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
5405 if (cmd == F_SETLK || cmd == F_SETLKW) {
5406 /*
5407 * For complete safety, we should be holding
5408 * r_lkserlock. However, we can't call
5409 * lm_safelock and then fs_frlock while
5410 * holding r_lkserlock, so just invoke
5411 * lm_safelock and expect that this will
5412 * catch enough of the cases.
5413 */
5414 if (!lm_safelock(vp, bfp, cr))
5415 return (EAGAIN);
5416 }
5417 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
5418 }
5419
5420 rp = VTOR(vp);
5421
5422 /*
5423 * Check whether the given lock request can proceed, given the
5424 * current file mappings.
5425 */
5426 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
5427 return (EINTR);
5428 if (cmd == F_SETLK || cmd == F_SETLKW) {
5429 if (!lm_safelock(vp, bfp, cr)) {
5430 rc = EAGAIN;
5431 goto done;
5432 }
5433 }
5434
5435 /*
5436 * Flush the cache after waiting for async I/O to finish. For new
5437 * locks, this is so that the process gets the latest bits from the
5438 * server. For unlocks, this is so that other clients see the
5439 * latest bits once the file has been unlocked. If currently dirty
5440 * pages can't be flushed, then don't allow a lock to be set. But
5441 * allow unlocks to succeed, to avoid having orphan locks on the
5442 * server.
5443 */
5444 if (cmd != F_GETLK) {
5445 mutex_enter(&rp->r_statelock);
5446 while (rp->r_count > 0) {
5447 if (intr) {
5448 klwp_t *lwp = ttolwp(curthread);
5449
5450 if (lwp != NULL)
5451 lwp->lwp_nostop++;
5452 if (cv_wait_sig(&rp->r_cv,
5453 &rp->r_statelock) == 0) {
5454 if (lwp != NULL)
5455 lwp->lwp_nostop--;
5456 rc = EINTR;
5457 break;
5458 }
5459 if (lwp != NULL)
5460 lwp->lwp_nostop--;
5461 } else
5462 cv_wait(&rp->r_cv, &rp->r_statelock);
5463 }
5464 mutex_exit(&rp->r_statelock);
5465 if (rc != 0)
5466 goto done;
5467 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
5468 if (error) {
5469 if (error == ENOSPC || error == EDQUOT) {
5470 mutex_enter(&rp->r_statelock);
5471 if (!rp->r_error)
5472 rp->r_error = error;
5473 mutex_exit(&rp->r_statelock);
5474 }
5475 if (bfp->l_type != F_UNLCK) {
5476 rc = ENOLCK;
5477 goto done;
5478 }
5479 }
5480 }
5481
5482 lm_fh3.n_len = VTOFH3(vp)->fh3_length;
5483 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
5484
5485 /*
5486 * Call the lock manager to do the real work of contacting
5487 * the server and obtaining the lock.
5488 */
5489 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp);
5490
5491 if (rc == 0)
5492 nfs_lockcompletion(vp, cmd);
5493
5494 done:
5495 nfs_rw_exit(&rp->r_lkserlock);
5496 return (rc);
5497 }
5498
5499 /*
5500 * Free storage space associated with the specified vnode. The portion
5501 * to be freed is specified by bfp->l_start and bfp->l_len (already
5502 * normalized to a "whence" of 0).
5503 *
5504 * This is an experimental facility whose continued existence is not
5505 * guaranteed. Currently, we only support the special case
5506 * of l_len == 0, meaning free to end of file.
5507 */
5508 /* ARGSUSED */
5509 static int
nfs3_space(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)5510 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
5511 offset_t offset, cred_t *cr, caller_context_t *ct)
5512 {
5513 int error;
5514
5515 ASSERT(vp->v_type == VREG);
5516 if (cmd != F_FREESP)
5517 return (EINVAL);
5518 if (nfs_zone() != VTOMI(vp)->mi_zone)
5519 return (EIO);
5520
5521 error = convoff(vp, bfp, 0, offset);
5522 if (!error) {
5523 ASSERT(bfp->l_start >= 0);
5524 if (bfp->l_len == 0) {
5525 struct vattr va;
5526
5527 /*
5528 * ftruncate should not change the ctime and
5529 * mtime if we truncate the file to its
5530 * previous size.
5531 */
5532 va.va_mask = AT_SIZE;
5533 error = nfs3getattr(vp, &va, cr);
5534 if (error || va.va_size == bfp->l_start)
5535 return (error);
5536 va.va_mask = AT_SIZE;
5537 va.va_size = bfp->l_start;
5538 error = nfs3setattr(vp, &va, 0, cr);
5539
5540 if (error == 0 && bfp->l_start == 0)
5541 vnevent_truncate(vp, ct);
5542 } else
5543 error = EINVAL;
5544 }
5545
5546 return (error);
5547 }
5548
5549 /* ARGSUSED */
5550 static int
nfs3_realvp(vnode_t * vp,vnode_t ** vpp,caller_context_t * ct)5551 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
5552 {
5553
5554 return (EINVAL);
5555 }
5556
5557 /*
5558 * Setup and add an address space callback to do the work of the delmap call.
5559 * The callback will (and must be) deleted in the actual callback function.
5560 *
5561 * This is done in order to take care of the problem that we have with holding
5562 * the address space's a_lock for a long period of time (e.g. if the NFS server
5563 * is down). Callbacks will be executed in the address space code while the
5564 * a_lock is not held. Holding the address space's a_lock causes things such
5565 * as ps and fork to hang because they are trying to acquire this lock as well.
5566 */
5567 /* ARGSUSED */
5568 static int
nfs3_delmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)5569 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5570 size_t len, uint_t prot, uint_t maxprot, uint_t flags,
5571 cred_t *cr, caller_context_t *ct)
5572 {
5573 int caller_found;
5574 int error;
5575 rnode_t *rp;
5576 nfs_delmap_args_t *dmapp;
5577 nfs_delmapcall_t *delmap_call;
5578
5579 if (vp->v_flag & VNOMAP)
5580 return (ENOSYS);
5581 /*
5582 * A process may not change zones if it has NFS pages mmap'ed
5583 * in, so we can't legitimately get here from the wrong zone.
5584 */
5585 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5586
5587 rp = VTOR(vp);
5588
5589 /*
5590 * The way that the address space of this process deletes its mapping
5591 * of this file is via the following call chains:
5592 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap()
5593 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap()
5594 *
5595 * With the use of address space callbacks we are allowed to drop the
5596 * address space lock, a_lock, while executing the NFS operations that
5597 * need to go over the wire. Returning EAGAIN to the caller of this
5598 * function is what drives the execution of the callback that we add
5599 * below. The callback will be executed by the address space code
5600 * after dropping the a_lock. When the callback is finished, since
5601 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
5602 * is called again on the same segment to finish the rest of the work
5603 * that needs to happen during unmapping.
5604 *
5605 * This action of calling back into the segment driver causes
5606 * nfs3_delmap() to get called again, but since the callback was
5607 * already executed at this point, it already did the work and there
5608 * is nothing left for us to do.
5609 *
5610 * To Summarize:
5611 * - The first time nfs3_delmap is called by the current thread is when
5612 * we add the caller associated with this delmap to the delmap caller
5613 * list, add the callback, and return EAGAIN.
5614 * - The second time in this call chain when nfs3_delmap is called we
5615 * will find this caller in the delmap caller list and realize there
5616 * is no more work to do thus removing this caller from the list and
5617 * returning the error that was set in the callback execution.
5618 */
5619 caller_found = nfs_find_and_delete_delmapcall(rp, &error);
5620 if (caller_found) {
5621 /*
5622 * 'error' is from the actual delmap operations. To avoid
5623 * hangs, we need to handle the return of EAGAIN differently
5624 * since this is what drives the callback execution.
5625 * In this case, we don't want to return EAGAIN and do the
5626 * callback execution because there are none to execute.
5627 */
5628 if (error == EAGAIN)
5629 return (0);
5630 else
5631 return (error);
5632 }
5633
5634 /* current caller was not in the list */
5635 delmap_call = nfs_init_delmapcall();
5636
5637 mutex_enter(&rp->r_statelock);
5638 list_insert_tail(&rp->r_indelmap, delmap_call);
5639 mutex_exit(&rp->r_statelock);
5640
5641 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP);
5642
5643 dmapp->vp = vp;
5644 dmapp->off = off;
5645 dmapp->addr = addr;
5646 dmapp->len = len;
5647 dmapp->prot = prot;
5648 dmapp->maxprot = maxprot;
5649 dmapp->flags = flags;
5650 dmapp->cr = cr;
5651 dmapp->caller = delmap_call;
5652
5653 error = as_add_callback(as, nfs3_delmap_callback, dmapp,
5654 AS_UNMAP_EVENT, addr, len, KM_SLEEP);
5655
5656 return (error ? error : EAGAIN);
5657 }
5658
5659 /*
5660 * Remove some pages from an mmap'd vnode. Just update the
5661 * count of pages. If doing close-to-open, then flush and
5662 * commit all of the pages associated with this file.
5663 * Otherwise, start an asynchronous page flush to write out
5664 * any dirty pages. This will also associate a credential
5665 * with the rnode which can be used to write the pages.
5666 */
5667 /* ARGSUSED */
5668 static void
nfs3_delmap_callback(struct as * as,void * arg,uint_t event)5669 nfs3_delmap_callback(struct as *as, void *arg, uint_t event)
5670 {
5671 int error;
5672 rnode_t *rp;
5673 mntinfo_t *mi;
5674 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg;
5675
5676 rp = VTOR(dmapp->vp);
5677 mi = VTOMI(dmapp->vp);
5678
5679 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
5680 ASSERT(rp->r_mapcnt >= 0);
5681
5682 /*
5683 * Initiate a page flush and potential commit if there are
5684 * pages, the file system was not mounted readonly, the segment
5685 * was mapped shared, and the pages themselves were writeable.
5686 */
5687 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) &&
5688 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
5689 mutex_enter(&rp->r_statelock);
5690 rp->r_flags |= RDIRTY;
5691 mutex_exit(&rp->r_statelock);
5692 /*
5693 * If this is a cross-zone access a sync putpage won't work, so
5694 * the best we can do is try an async putpage. That seems
5695 * better than something more draconian such as discarding the
5696 * dirty pages.
5697 */
5698 if ((mi->mi_flags & MI_NOCTO) ||
5699 nfs_zone() != mi->mi_zone)
5700 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
5701 B_ASYNC, dmapp->cr, NULL);
5702 else
5703 error = nfs3_putpage_commit(dmapp->vp, dmapp->off,
5704 dmapp->len, dmapp->cr);
5705 if (!error) {
5706 mutex_enter(&rp->r_statelock);
5707 error = rp->r_error;
5708 rp->r_error = 0;
5709 mutex_exit(&rp->r_statelock);
5710 }
5711 } else
5712 error = 0;
5713
5714 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO))
5715 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
5716 B_INVAL, dmapp->cr, NULL);
5717
5718 dmapp->caller->error = error;
5719 (void) as_delete_callback(as, arg);
5720 kmem_free(dmapp, sizeof (nfs_delmap_args_t));
5721 }
5722
5723 static int nfs3_pathconf_disable_cache = 0;
5724
5725 #ifdef DEBUG
5726 static int nfs3_pathconf_cache_hits = 0;
5727 static int nfs3_pathconf_cache_misses = 0;
5728 #endif
5729
5730 /* ARGSUSED */
5731 static int
nfs3_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)5732 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5733 caller_context_t *ct)
5734 {
5735 int error;
5736 PATHCONF3args args;
5737 PATHCONF3res res;
5738 int douprintf;
5739 failinfo_t fi;
5740 rnode_t *rp;
5741 hrtime_t t;
5742
5743 if (nfs_zone() != VTOMI(vp)->mi_zone)
5744 return (EIO);
5745 /*
5746 * Large file spec - need to base answer on info stored
5747 * on original FSINFO response.
5748 */
5749 if (cmd == _PC_FILESIZEBITS) {
5750 unsigned long long ll;
5751 long l = 1;
5752
5753 ll = VTOMI(vp)->mi_maxfilesize;
5754
5755 if (ll == 0) {
5756 *valp = 0;
5757 return (0);
5758 }
5759
5760 if (ll & 0xffffffff00000000) {
5761 l += 32; ll >>= 32;
5762 }
5763 if (ll & 0xffff0000) {
5764 l += 16; ll >>= 16;
5765 }
5766 if (ll & 0xff00) {
5767 l += 8; ll >>= 8;
5768 }
5769 if (ll & 0xf0) {
5770 l += 4; ll >>= 4;
5771 }
5772 if (ll & 0xc) {
5773 l += 2; ll >>= 2;
5774 }
5775 if (ll & 0x2)
5776 l += 2;
5777 else if (ll & 0x1)
5778 l += 1;
5779 *valp = l;
5780 return (0);
5781 }
5782
5783 if (cmd == _PC_ACL_ENABLED) {
5784 *valp = _ACL_ACLENT_ENABLED;
5785 return (0);
5786 }
5787
5788 if (cmd == _PC_XATTR_EXISTS) {
5789 error = 0;
5790 *valp = 0;
5791 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
5792 vnode_t *avp;
5793 rnode_t *rp;
5794 int error = 0;
5795 mntinfo_t *mi = VTOMI(vp);
5796
5797 if (!(mi->mi_flags & MI_EXTATTR))
5798 return (0);
5799
5800 rp = VTOR(vp);
5801 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER,
5802 INTR(vp)))
5803 return (EINTR);
5804
5805 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr);
5806 if (error || avp == NULL)
5807 error = acl_getxattrdir3(vp, &avp, 0, cr, 0);
5808
5809 nfs_rw_exit(&rp->r_rwlock);
5810
5811 if (error == 0 && avp != NULL) {
5812 error = do_xattr_exists_check(avp, valp, cr);
5813 VN_RELE(avp);
5814 } else if (error == ENOENT) {
5815 error = 0;
5816 *valp = 0;
5817 }
5818 }
5819 return (error);
5820 }
5821
5822 rp = VTOR(vp);
5823 if (rp->r_pathconf != NULL) {
5824 mutex_enter(&rp->r_statelock);
5825 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) {
5826 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf));
5827 rp->r_pathconf = NULL;
5828 }
5829 if (rp->r_pathconf != NULL) {
5830 error = 0;
5831 switch (cmd) {
5832 case _PC_LINK_MAX:
5833 *valp = rp->r_pathconf->link_max;
5834 break;
5835 case _PC_NAME_MAX:
5836 *valp = rp->r_pathconf->name_max;
5837 break;
5838 case _PC_PATH_MAX:
5839 case _PC_SYMLINK_MAX:
5840 *valp = MAXPATHLEN;
5841 break;
5842 case _PC_CHOWN_RESTRICTED:
5843 *valp = rp->r_pathconf->chown_restricted;
5844 break;
5845 case _PC_NO_TRUNC:
5846 *valp = rp->r_pathconf->no_trunc;
5847 break;
5848 default:
5849 error = EINVAL;
5850 break;
5851 }
5852 mutex_exit(&rp->r_statelock);
5853 #ifdef DEBUG
5854 nfs3_pathconf_cache_hits++;
5855 #endif
5856 return (error);
5857 }
5858 mutex_exit(&rp->r_statelock);
5859 }
5860 #ifdef DEBUG
5861 nfs3_pathconf_cache_misses++;
5862 #endif
5863
5864 args.object = *VTOFH3(vp);
5865 fi.vp = vp;
5866 fi.fhp = (caddr_t)&args.object;
5867 fi.copyproc = nfs3copyfh;
5868 fi.lookupproc = nfs3lookup;
5869 fi.xattrdirproc = acl_getxattrdir3;
5870
5871 douprintf = 1;
5872
5873 t = gethrtime();
5874
5875 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF,
5876 xdr_nfs_fh3, (caddr_t)&args,
5877 xdr_PATHCONF3res, (caddr_t)&res, cr,
5878 &douprintf, &res.status, 0, &fi);
5879
5880 if (error)
5881 return (error);
5882
5883 error = geterrno3(res.status);
5884
5885 if (!error) {
5886 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
5887 if (!nfs3_pathconf_disable_cache) {
5888 mutex_enter(&rp->r_statelock);
5889 if (rp->r_pathconf == NULL) {
5890 rp->r_pathconf = kmem_alloc(
5891 sizeof (*rp->r_pathconf), KM_NOSLEEP);
5892 if (rp->r_pathconf != NULL)
5893 *rp->r_pathconf = res.resok.info;
5894 }
5895 mutex_exit(&rp->r_statelock);
5896 }
5897 switch (cmd) {
5898 case _PC_LINK_MAX:
5899 *valp = res.resok.info.link_max;
5900 break;
5901 case _PC_NAME_MAX:
5902 *valp = res.resok.info.name_max;
5903 break;
5904 case _PC_PATH_MAX:
5905 case _PC_SYMLINK_MAX:
5906 *valp = MAXPATHLEN;
5907 break;
5908 case _PC_CHOWN_RESTRICTED:
5909 *valp = res.resok.info.chown_restricted;
5910 break;
5911 case _PC_NO_TRUNC:
5912 *valp = res.resok.info.no_trunc;
5913 break;
5914 default:
5915 return (EINVAL);
5916 }
5917 } else {
5918 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
5919 PURGE_STALE_FH(error, vp, cr);
5920 }
5921
5922 return (error);
5923 }
5924
5925 /*
5926 * Called by async thread to do synchronous pageio. Do the i/o, wait
5927 * for it to complete, and cleanup the page list when done.
5928 */
5929 static int
nfs3_sync_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)5930 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5931 int flags, cred_t *cr)
5932 {
5933 int error;
5934
5935 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5936 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5937 if (flags & B_READ)
5938 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
5939 else
5940 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
5941 return (error);
5942 }
5943
5944 /* ARGSUSED */
5945 static int
nfs3_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr,caller_context_t * ct)5946 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5947 int flags, cred_t *cr, caller_context_t *ct)
5948 {
5949 int error;
5950 rnode_t *rp;
5951
5952 if (pp == NULL)
5953 return (EINVAL);
5954 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
5955 return (EIO);
5956
5957 rp = VTOR(vp);
5958 mutex_enter(&rp->r_statelock);
5959 rp->r_count++;
5960 mutex_exit(&rp->r_statelock);
5961
5962 if (flags & B_ASYNC) {
5963 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr,
5964 nfs3_sync_pageio);
5965 } else
5966 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5967 mutex_enter(&rp->r_statelock);
5968 rp->r_count--;
5969 cv_broadcast(&rp->r_cv);
5970 mutex_exit(&rp->r_statelock);
5971 return (error);
5972 }
5973
5974 /* ARGSUSED */
5975 static void
nfs3_dispose(vnode_t * vp,page_t * pp,int fl,int dn,cred_t * cr,caller_context_t * ct)5976 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
5977 caller_context_t *ct)
5978 {
5979 int error;
5980 rnode_t *rp;
5981 page_t *plist;
5982 page_t *pptr;
5983 offset3 offset;
5984 count3 len;
5985 k_sigset_t smask;
5986
5987 /*
5988 * We should get called with fl equal to either B_FREE or
5989 * B_INVAL. Any other value is illegal.
5990 *
5991 * The page that we are either supposed to free or destroy
5992 * should be exclusive locked and its io lock should not
5993 * be held.
5994 */
5995 ASSERT(fl == B_FREE || fl == B_INVAL);
5996 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
5997 rp = VTOR(vp);
5998
5999 /*
6000 * If the page doesn't need to be committed or we shouldn't
6001 * even bother attempting to commit it, then just make sure
6002 * that the p_fsdata byte is clear and then either free or
6003 * destroy the page as appropriate.
6004 */
6005 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) {
6006 pp->p_fsdata = C_NOCOMMIT;
6007 if (fl == B_FREE)
6008 page_free(pp, dn);
6009 else
6010 page_destroy(pp, dn);
6011 return;
6012 }
6013
6014 /*
6015 * If there is a page invalidation operation going on, then
6016 * if this is one of the pages being destroyed, then just
6017 * clear the p_fsdata byte and then either free or destroy
6018 * the page as appropriate.
6019 */
6020 mutex_enter(&rp->r_statelock);
6021 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
6022 mutex_exit(&rp->r_statelock);
6023 pp->p_fsdata = C_NOCOMMIT;
6024 if (fl == B_FREE)
6025 page_free(pp, dn);
6026 else
6027 page_destroy(pp, dn);
6028 return;
6029 }
6030
6031 /*
6032 * If we are freeing this page and someone else is already
6033 * waiting to do a commit, then just unlock the page and
6034 * return. That other thread will take care of commiting
6035 * this page. The page can be freed sometime after the
6036 * commit has finished. Otherwise, if the page is marked
6037 * as delay commit, then we may be getting called from
6038 * pvn_write_done, one page at a time. This could result
6039 * in one commit per page, so we end up doing lots of small
6040 * commits instead of fewer larger commits. This is bad,
6041 * we want do as few commits as possible.
6042 */
6043 if (fl == B_FREE) {
6044 if (rp->r_flags & RCOMMITWAIT) {
6045 page_unlock(pp);
6046 mutex_exit(&rp->r_statelock);
6047 return;
6048 }
6049 if (pp->p_fsdata == C_DELAYCOMMIT) {
6050 pp->p_fsdata = C_COMMIT;
6051 page_unlock(pp);
6052 mutex_exit(&rp->r_statelock);
6053 return;
6054 }
6055 }
6056
6057 /*
6058 * Check to see if there is a signal which would prevent an
6059 * attempt to commit the pages from being successful. If so,
6060 * then don't bother with all of the work to gather pages and
6061 * generate the unsuccessful RPC. Just return from here and
6062 * let the page be committed at some later time.
6063 */
6064 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
6065 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
6066 sigunintr(&smask);
6067 page_unlock(pp);
6068 mutex_exit(&rp->r_statelock);
6069 return;
6070 }
6071 sigunintr(&smask);
6072
6073 /*
6074 * We are starting to need to commit pages, so let's try
6075 * to commit as many as possible at once to reduce the
6076 * overhead.
6077 *
6078 * Set the `commit inprogress' state bit. We must
6079 * first wait until any current one finishes. Then
6080 * we initialize the c_pages list with this page.
6081 */
6082 while (rp->r_flags & RCOMMIT) {
6083 rp->r_flags |= RCOMMITWAIT;
6084 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
6085 rp->r_flags &= ~RCOMMITWAIT;
6086 }
6087 rp->r_flags |= RCOMMIT;
6088 mutex_exit(&rp->r_statelock);
6089 ASSERT(rp->r_commit.c_pages == NULL);
6090 rp->r_commit.c_pages = pp;
6091 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6092 rp->r_commit.c_commlen = PAGESIZE;
6093
6094 /*
6095 * Gather together all other pages which can be committed.
6096 * They will all be chained off r_commit.c_pages.
6097 */
6098 nfs3_get_commit(vp);
6099
6100 /*
6101 * Clear the `commit inprogress' status and disconnect
6102 * the list of pages to be committed from the rnode.
6103 * At this same time, we also save the starting offset
6104 * and length of data to be committed on the server.
6105 */
6106 plist = rp->r_commit.c_pages;
6107 rp->r_commit.c_pages = NULL;
6108 offset = rp->r_commit.c_commbase;
6109 len = rp->r_commit.c_commlen;
6110 mutex_enter(&rp->r_statelock);
6111 rp->r_flags &= ~RCOMMIT;
6112 cv_broadcast(&rp->r_commit.c_cv);
6113 mutex_exit(&rp->r_statelock);
6114
6115 if (curproc == proc_pageout || curproc == proc_fsflush ||
6116 nfs_zone() != VTOMI(vp)->mi_zone) {
6117 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit);
6118 return;
6119 }
6120
6121 /*
6122 * Actually generate the COMMIT3 over the wire operation.
6123 */
6124 error = nfs3_commit(vp, offset, len, cr);
6125
6126 /*
6127 * If we got an error during the commit, just unlock all
6128 * of the pages. The pages will get retransmitted to the
6129 * server during a putpage operation.
6130 */
6131 if (error) {
6132 while (plist != NULL) {
6133 pptr = plist;
6134 page_sub(&plist, pptr);
6135 page_unlock(pptr);
6136 }
6137 return;
6138 }
6139
6140 /*
6141 * We've tried as hard as we can to commit the data to stable
6142 * storage on the server. We release the rest of the pages
6143 * and clear the commit required state. They will be put
6144 * onto the tail of the cachelist if they are nolonger
6145 * mapped.
6146 */
6147 while (plist != pp) {
6148 pptr = plist;
6149 page_sub(&plist, pptr);
6150 pptr->p_fsdata = C_NOCOMMIT;
6151 (void) page_release(pptr, 1);
6152 }
6153
6154 /*
6155 * It is possible that nfs3_commit didn't return error but
6156 * some other thread has modified the page we are going
6157 * to free/destroy.
6158 * In this case we need to rewrite the page. Do an explicit check
6159 * before attempting to free/destroy the page. If modified, needs to
6160 * be rewritten so unlock the page and return.
6161 */
6162 if (hat_ismod(pp)) {
6163 pp->p_fsdata = C_NOCOMMIT;
6164 page_unlock(pp);
6165 return;
6166 }
6167
6168 /*
6169 * Now, as appropriate, either free or destroy the page
6170 * that we were called with.
6171 */
6172 pp->p_fsdata = C_NOCOMMIT;
6173 if (fl == B_FREE)
6174 page_free(pp, dn);
6175 else
6176 page_destroy(pp, dn);
6177 }
6178
6179 static int
nfs3_commit(vnode_t * vp,offset3 offset,count3 count,cred_t * cr)6180 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr)
6181 {
6182 int error;
6183 rnode_t *rp;
6184 COMMIT3args args;
6185 COMMIT3res res;
6186 int douprintf;
6187 cred_t *cred;
6188
6189 rp = VTOR(vp);
6190 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6191
6192 mutex_enter(&rp->r_statelock);
6193 if (rp->r_cred != NULL) {
6194 cred = rp->r_cred;
6195 crhold(cred);
6196 } else {
6197 rp->r_cred = cr;
6198 crhold(cr);
6199 cred = cr;
6200 crhold(cred);
6201 }
6202 mutex_exit(&rp->r_statelock);
6203
6204 args.file = *VTOFH3(vp);
6205 args.offset = offset;
6206 args.count = count;
6207
6208 doitagain:
6209 douprintf = 1;
6210 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT,
6211 xdr_COMMIT3args, (caddr_t)&args,
6212 xdr_COMMIT3res, (caddr_t)&res, cred,
6213 &douprintf, &res.status, 0, NULL);
6214
6215 crfree(cred);
6216
6217 if (error)
6218 return (error);
6219
6220 error = geterrno3(res.status);
6221 if (!error) {
6222 ASSERT(rp->r_flags & RHAVEVERF);
6223 mutex_enter(&rp->r_statelock);
6224 if (rp->r_verf == res.resok.verf) {
6225 mutex_exit(&rp->r_statelock);
6226 return (0);
6227 }
6228 nfs3_set_mod(vp);
6229 rp->r_verf = res.resok.verf;
6230 mutex_exit(&rp->r_statelock);
6231 error = NFS_VERF_MISMATCH;
6232 } else {
6233 if (error == EACCES) {
6234 mutex_enter(&rp->r_statelock);
6235 if (cred != cr) {
6236 if (rp->r_cred != NULL)
6237 crfree(rp->r_cred);
6238 rp->r_cred = cr;
6239 crhold(cr);
6240 cred = cr;
6241 crhold(cred);
6242 mutex_exit(&rp->r_statelock);
6243 goto doitagain;
6244 }
6245 mutex_exit(&rp->r_statelock);
6246 }
6247 /*
6248 * Can't do a PURGE_STALE_FH here because this
6249 * can cause a deadlock. nfs3_commit can
6250 * be called from nfs3_dispose which can be called
6251 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH
6252 * can call back to pvn_vplist_dirty.
6253 */
6254 if (error == ESTALE) {
6255 mutex_enter(&rp->r_statelock);
6256 rp->r_flags |= RSTALE;
6257 if (!rp->r_error)
6258 rp->r_error = error;
6259 mutex_exit(&rp->r_statelock);
6260 PURGE_ATTRCACHE(vp);
6261 } else {
6262 mutex_enter(&rp->r_statelock);
6263 if (!rp->r_error)
6264 rp->r_error = error;
6265 mutex_exit(&rp->r_statelock);
6266 }
6267 }
6268
6269 return (error);
6270 }
6271
6272 static void
nfs3_set_mod(vnode_t * vp)6273 nfs3_set_mod(vnode_t *vp)
6274 {
6275 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6276
6277 pvn_vplist_setdirty(vp, nfs_setmod_check);
6278 }
6279
6280 /*
6281 * This routine is used to gather together a page list of the pages
6282 * which are to be committed on the server. This routine must not
6283 * be called if the calling thread holds any locked pages.
6284 *
6285 * The calling thread must have set RCOMMIT. This bit is used to
6286 * serialize access to the commit structure in the rnode. As long
6287 * as the thread has set RCOMMIT, then it can manipulate the commit
6288 * structure without requiring any other locks.
6289 */
6290 static void
nfs3_get_commit(vnode_t * vp)6291 nfs3_get_commit(vnode_t *vp)
6292 {
6293 rnode_t *rp;
6294 page_t *pp;
6295 kmutex_t *vphm;
6296
6297 rp = VTOR(vp);
6298
6299 ASSERT(rp->r_flags & RCOMMIT);
6300
6301 vphm = page_vnode_mutex(vp);
6302 mutex_enter(vphm);
6303
6304 /*
6305 * If there are no pages associated with this vnode, then
6306 * just return.
6307 */
6308 if ((pp = vp->v_pages) == NULL) {
6309 mutex_exit(vphm);
6310 return;
6311 }
6312
6313 /*
6314 * Step through all of the pages associated with this vnode
6315 * looking for pages which need to be committed.
6316 */
6317 do {
6318 /* Skip marker pages. */
6319 if (pp->p_hash == PVN_VPLIST_HASH_TAG)
6320 continue;
6321
6322 /*
6323 * If this page does not need to be committed or is
6324 * modified, then just skip it.
6325 */
6326 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
6327 continue;
6328
6329 /*
6330 * Attempt to lock the page. If we can't, then
6331 * someone else is messing with it and we will
6332 * just skip it.
6333 */
6334 if (!page_trylock(pp, SE_EXCL))
6335 continue;
6336
6337 /*
6338 * If this page does not need to be committed or is
6339 * modified, then just skip it. Recheck now that
6340 * the page is locked.
6341 */
6342 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
6343 page_unlock(pp);
6344 continue;
6345 }
6346
6347 if (PP_ISFREE(pp)) {
6348 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free",
6349 (void *)pp);
6350 }
6351
6352 /*
6353 * The page needs to be committed and we locked it.
6354 * Update the base and length parameters and add it
6355 * to r_pages.
6356 */
6357 if (rp->r_commit.c_pages == NULL) {
6358 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6359 rp->r_commit.c_commlen = PAGESIZE;
6360 } else if (pp->p_offset < rp->r_commit.c_commbase) {
6361 rp->r_commit.c_commlen = rp->r_commit.c_commbase -
6362 (offset3)pp->p_offset + rp->r_commit.c_commlen;
6363 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6364 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
6365 <= pp->p_offset) {
6366 rp->r_commit.c_commlen = (offset3)pp->p_offset -
6367 rp->r_commit.c_commbase + PAGESIZE;
6368 }
6369 page_add(&rp->r_commit.c_pages, pp);
6370 } while ((pp = pp->p_vpnext) != vp->v_pages);
6371
6372 mutex_exit(vphm);
6373 }
6374
6375 /*
6376 * This routine is used to gather together a page list of the pages
6377 * which are to be committed on the server. This routine must not
6378 * be called if the calling thread holds any locked pages.
6379 *
6380 * The calling thread must have set RCOMMIT. This bit is used to
6381 * serialize access to the commit structure in the rnode. As long
6382 * as the thread has set RCOMMIT, then it can manipulate the commit
6383 * structure without requiring any other locks.
6384 */
6385 static void
nfs3_get_commit_range(vnode_t * vp,u_offset_t soff,size_t len)6386 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
6387 {
6388
6389 rnode_t *rp;
6390 page_t *pp;
6391 u_offset_t end;
6392 u_offset_t off;
6393
6394 ASSERT(len != 0);
6395
6396 rp = VTOR(vp);
6397
6398 ASSERT(rp->r_flags & RCOMMIT);
6399 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6400
6401 /*
6402 * If there are no pages associated with this vnode, then
6403 * just return.
6404 */
6405 if ((pp = vp->v_pages) == NULL)
6406 return;
6407
6408 /*
6409 * Calculate the ending offset.
6410 */
6411 end = soff + len;
6412
6413 for (off = soff; off < end; off += PAGESIZE) {
6414 /*
6415 * Lookup each page by vp, offset.
6416 */
6417 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
6418 continue;
6419
6420 /*
6421 * If this page does not need to be committed or is
6422 * modified, then just skip it.
6423 */
6424 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
6425 page_unlock(pp);
6426 continue;
6427 }
6428
6429 ASSERT(PP_ISFREE(pp) == 0);
6430
6431 /*
6432 * The page needs to be committed and we locked it.
6433 * Update the base and length parameters and add it
6434 * to r_pages.
6435 */
6436 if (rp->r_commit.c_pages == NULL) {
6437 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6438 rp->r_commit.c_commlen = PAGESIZE;
6439 } else {
6440 rp->r_commit.c_commlen = (offset3)pp->p_offset -
6441 rp->r_commit.c_commbase + PAGESIZE;
6442 }
6443 page_add(&rp->r_commit.c_pages, pp);
6444 }
6445 }
6446
6447 static int
nfs3_putpage_commit(vnode_t * vp,offset_t poff,size_t plen,cred_t * cr)6448 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
6449 {
6450 int error;
6451 writeverf3 write_verf;
6452 rnode_t *rp = VTOR(vp);
6453
6454 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6455 /*
6456 * Flush the data portion of the file and then commit any
6457 * portions which need to be committed. This may need to
6458 * be done twice if the server has changed state since
6459 * data was last written. The data will need to be
6460 * rewritten to the server and then a new commit done.
6461 *
6462 * In fact, this may need to be done several times if the
6463 * server is having problems and crashing while we are
6464 * attempting to do this.
6465 */
6466
6467 top:
6468 /*
6469 * Do a flush based on the poff and plen arguments. This
6470 * will asynchronously write out any modified pages in the
6471 * range specified by (poff, plen). This starts all of the
6472 * i/o operations which will be waited for in the next
6473 * call to nfs3_putpage
6474 */
6475
6476 mutex_enter(&rp->r_statelock);
6477 write_verf = rp->r_verf;
6478 mutex_exit(&rp->r_statelock);
6479
6480 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
6481 if (error == EAGAIN)
6482 error = 0;
6483
6484 /*
6485 * Do a flush based on the poff and plen arguments. This
6486 * will synchronously write out any modified pages in the
6487 * range specified by (poff, plen) and wait until all of
6488 * the asynchronous i/o's in that range are done as well.
6489 */
6490 if (!error)
6491 error = nfs3_putpage(vp, poff, plen, 0, cr, NULL);
6492
6493 if (error)
6494 return (error);
6495
6496 mutex_enter(&rp->r_statelock);
6497 if (rp->r_verf != write_verf) {
6498 mutex_exit(&rp->r_statelock);
6499 goto top;
6500 }
6501 mutex_exit(&rp->r_statelock);
6502
6503 /*
6504 * Now commit any pages which might need to be committed.
6505 * If the error, NFS_VERF_MISMATCH, is returned, then
6506 * start over with the flush operation.
6507 */
6508
6509 error = nfs3_commit_vp(vp, poff, plen, cr);
6510
6511 if (error == NFS_VERF_MISMATCH)
6512 goto top;
6513
6514 return (error);
6515 }
6516
6517 static int
nfs3_commit_vp(vnode_t * vp,u_offset_t poff,size_t plen,cred_t * cr)6518 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr)
6519 {
6520 rnode_t *rp;
6521 page_t *plist;
6522 offset3 offset;
6523 count3 len;
6524
6525
6526 rp = VTOR(vp);
6527
6528 if (nfs_zone() != VTOMI(vp)->mi_zone)
6529 return (EIO);
6530 /*
6531 * Set the `commit inprogress' state bit. We must
6532 * first wait until any current one finishes.
6533 */
6534 mutex_enter(&rp->r_statelock);
6535 while (rp->r_flags & RCOMMIT) {
6536 rp->r_flags |= RCOMMITWAIT;
6537 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
6538 rp->r_flags &= ~RCOMMITWAIT;
6539 }
6540 rp->r_flags |= RCOMMIT;
6541 mutex_exit(&rp->r_statelock);
6542
6543 /*
6544 * Gather together all of the pages which need to be
6545 * committed.
6546 */
6547 if (plen == 0)
6548 nfs3_get_commit(vp);
6549 else
6550 nfs3_get_commit_range(vp, poff, plen);
6551
6552 /*
6553 * Clear the `commit inprogress' bit and disconnect the
6554 * page list which was gathered together in nfs3_get_commit.
6555 */
6556 plist = rp->r_commit.c_pages;
6557 rp->r_commit.c_pages = NULL;
6558 offset = rp->r_commit.c_commbase;
6559 len = rp->r_commit.c_commlen;
6560 mutex_enter(&rp->r_statelock);
6561 rp->r_flags &= ~RCOMMIT;
6562 cv_broadcast(&rp->r_commit.c_cv);
6563 mutex_exit(&rp->r_statelock);
6564
6565 /*
6566 * If any pages need to be committed, commit them and
6567 * then unlock them so that they can be freed some
6568 * time later.
6569 */
6570 if (plist != NULL) {
6571 /*
6572 * No error occurred during the flush portion
6573 * of this operation, so now attempt to commit
6574 * the data to stable storage on the server.
6575 *
6576 * This will unlock all of the pages on the list.
6577 */
6578 return (nfs3_sync_commit(vp, plist, offset, len, cr));
6579 }
6580 return (0);
6581 }
6582
6583 static int
nfs3_sync_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr)6584 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
6585 cred_t *cr)
6586 {
6587 int error;
6588 page_t *pp;
6589
6590 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6591 error = nfs3_commit(vp, offset, count, cr);
6592
6593 /*
6594 * If we got an error, then just unlock all of the pages
6595 * on the list.
6596 */
6597 if (error) {
6598 while (plist != NULL) {
6599 pp = plist;
6600 page_sub(&plist, pp);
6601 page_unlock(pp);
6602 }
6603 return (error);
6604 }
6605 /*
6606 * We've tried as hard as we can to commit the data to stable
6607 * storage on the server. We just unlock the pages and clear
6608 * the commit required state. They will get freed later.
6609 */
6610 while (plist != NULL) {
6611 pp = plist;
6612 page_sub(&plist, pp);
6613 pp->p_fsdata = C_NOCOMMIT;
6614 page_unlock(pp);
6615 }
6616
6617 return (error);
6618 }
6619
6620 static void
nfs3_async_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr)6621 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
6622 cred_t *cr)
6623 {
6624 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6625 (void) nfs3_sync_commit(vp, plist, offset, count, cr);
6626 }
6627
6628 /* ARGSUSED */
6629 static int
nfs3_setsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)6630 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
6631 caller_context_t *ct)
6632 {
6633 int error;
6634 mntinfo_t *mi;
6635
6636 mi = VTOMI(vp);
6637
6638 if (nfs_zone() != mi->mi_zone)
6639 return (EIO);
6640
6641 if (mi->mi_flags & MI_ACL) {
6642 error = acl_setacl3(vp, vsecattr, flag, cr);
6643 if (mi->mi_flags & MI_ACL)
6644 return (error);
6645 }
6646
6647 return (ENOSYS);
6648 }
6649
6650 /* ARGSUSED */
6651 static int
nfs3_getsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)6652 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
6653 caller_context_t *ct)
6654 {
6655 int error;
6656 mntinfo_t *mi;
6657
6658 mi = VTOMI(vp);
6659
6660 if (nfs_zone() != mi->mi_zone)
6661 return (EIO);
6662
6663 if (mi->mi_flags & MI_ACL) {
6664 error = acl_getacl3(vp, vsecattr, flag, cr);
6665 if (mi->mi_flags & MI_ACL)
6666 return (error);
6667 }
6668
6669 return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
6670 }
6671
6672 /* ARGSUSED */
6673 static int
nfs3_shrlock(vnode_t * vp,int cmd,struct shrlock * shr,int flag,cred_t * cr,caller_context_t * ct)6674 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
6675 caller_context_t *ct)
6676 {
6677 int error;
6678 struct shrlock nshr;
6679 struct nfs_owner nfs_owner;
6680 netobj lm_fh3;
6681
6682 if (nfs_zone() != VTOMI(vp)->mi_zone)
6683 return (EIO);
6684
6685 /*
6686 * check for valid cmd parameter
6687 */
6688 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
6689 return (EINVAL);
6690
6691 /*
6692 * Check access permissions
6693 */
6694 if (cmd == F_SHARE &&
6695 (((shr->s_access & F_RDACC) && !(flag & FREAD)) ||
6696 ((shr->s_access & F_WRACC) && !(flag & FWRITE))))
6697 return (EBADF);
6698
6699 /*
6700 * If the filesystem is mounted using local locking, pass the
6701 * request off to the local share code.
6702 */
6703 if (VTOMI(vp)->mi_flags & MI_LLOCK)
6704 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
6705
6706 switch (cmd) {
6707 case F_SHARE:
6708 case F_UNSHARE:
6709 lm_fh3.n_len = VTOFH3(vp)->fh3_length;
6710 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
6711
6712 /*
6713 * If passed an owner that is too large to fit in an
6714 * nfs_owner it is likely a recursive call from the
6715 * lock manager client and pass it straight through. If
6716 * it is not a nfs_owner then simply return an error.
6717 */
6718 if (shr->s_own_len > sizeof (nfs_owner.lowner)) {
6719 if (((struct nfs_owner *)shr->s_owner)->magic !=
6720 NFS_OWNER_MAGIC)
6721 return (EINVAL);
6722
6723 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) {
6724 error = set_errno(error);
6725 }
6726 return (error);
6727 }
6728 /*
6729 * Remote share reservations owner is a combination of
6730 * a magic number, hostname, and the local owner
6731 */
6732 bzero(&nfs_owner, sizeof (nfs_owner));
6733 nfs_owner.magic = NFS_OWNER_MAGIC;
6734 (void) strncpy(nfs_owner.hname, uts_nodename(),
6735 sizeof (nfs_owner.hname));
6736 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len);
6737 nshr.s_access = shr->s_access;
6738 nshr.s_deny = shr->s_deny;
6739 nshr.s_sysid = 0;
6740 nshr.s_pid = ttoproc(curthread)->p_pid;
6741 nshr.s_own_len = sizeof (nfs_owner);
6742 nshr.s_owner = (caddr_t)&nfs_owner;
6743
6744 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) {
6745 error = set_errno(error);
6746 }
6747
6748 break;
6749
6750 case F_HASREMOTELOCKS:
6751 /*
6752 * NFS client can't store remote locks itself
6753 */
6754 shr->s_access = 0;
6755 error = 0;
6756 break;
6757
6758 default:
6759 error = EINVAL;
6760 break;
6761 }
6762
6763 return (error);
6764 }
6765