1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 1983,1984,1985,1986,1987,1988,1989 AT&T.
28 * All rights reserved.
29 */
30
31 /*
32 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
33 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
34 */
35
36 #include <sys/param.h>
37 #include <sys/types.h>
38 #include <sys/systm.h>
39 #include <sys/cred.h>
40 #include <sys/time.h>
41 #include <sys/vnode.h>
42 #include <sys/vfs.h>
43 #include <sys/vfs_opreg.h>
44 #include <sys/file.h>
45 #include <sys/filio.h>
46 #include <sys/uio.h>
47 #include <sys/buf.h>
48 #include <sys/mman.h>
49 #include <sys/pathname.h>
50 #include <sys/dirent.h>
51 #include <sys/debug.h>
52 #include <sys/vmsystm.h>
53 #include <sys/fcntl.h>
54 #include <sys/flock.h>
55 #include <sys/swap.h>
56 #include <sys/errno.h>
57 #include <sys/strsubr.h>
58 #include <sys/sysmacros.h>
59 #include <sys/kmem.h>
60 #include <sys/cmn_err.h>
61 #include <sys/pathconf.h>
62 #include <sys/utsname.h>
63 #include <sys/dnlc.h>
64 #include <sys/acl.h>
65 #include <sys/systeminfo.h>
66 #include <sys/atomic.h>
67 #include <sys/policy.h>
68 #include <sys/sdt.h>
69 #include <sys/zone.h>
70
71 #include <rpc/types.h>
72 #include <rpc/auth.h>
73 #include <rpc/clnt.h>
74 #include <rpc/rpc_rdma.h>
75
76 #include <nfs/nfs.h>
77 #include <nfs/nfs_clnt.h>
78 #include <nfs/rnode.h>
79 #include <nfs/nfs_acl.h>
80 #include <nfs/lm.h>
81
82 #include <vm/hat.h>
83 #include <vm/as.h>
84 #include <vm/page.h>
85 #include <vm/pvn.h>
86 #include <vm/seg.h>
87 #include <vm/seg_map.h>
88 #include <vm/seg_kpm.h>
89 #include <vm/seg_vn.h>
90
91 #include <fs/fs_subr.h>
92
93 #include <sys/ddi.h>
94
95 static int nfs3_rdwrlbn(vnode_t *, page_t *, u_offset_t, size_t, int,
96 cred_t *);
97 static int nfs3write(vnode_t *, caddr_t, u_offset_t, int, cred_t *,
98 stable_how *);
99 static int nfs3read(vnode_t *, caddr_t, offset_t, int, size_t *, cred_t *);
100 static int nfs3setattr(vnode_t *, struct vattr *, int, cred_t *);
101 static int nfs3_accessx(void *, int, cred_t *);
102 static int nfs3lookup_dnlc(vnode_t *, char *, vnode_t **, cred_t *);
103 static int nfs3lookup_otw(vnode_t *, char *, vnode_t **, cred_t *, int);
104 static int nfs3create(vnode_t *, char *, struct vattr *, enum vcexcl,
105 int, vnode_t **, cred_t *, int);
106 static int nfs3excl_create_settimes(vnode_t *, struct vattr *, cred_t *);
107 static int nfs3mknod(vnode_t *, char *, struct vattr *, enum vcexcl,
108 int, vnode_t **, cred_t *);
109 static int nfs3rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
110 caller_context_t *);
111 static int do_nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
112 static void nfs3readdir(vnode_t *, rddir_cache *, cred_t *);
113 static void nfs3readdirplus(vnode_t *, rddir_cache *, cred_t *);
114 static int nfs3_bio(struct buf *, stable_how *, cred_t *);
115 static int nfs3_getapage(vnode_t *, u_offset_t, size_t, uint_t *,
116 page_t *[], size_t, struct seg *, caddr_t,
117 enum seg_rw, cred_t *);
118 static void nfs3_readahead(vnode_t *, u_offset_t, caddr_t, struct seg *,
119 cred_t *);
120 static int nfs3_sync_putapage(vnode_t *, page_t *, u_offset_t, size_t,
121 int, cred_t *);
122 static int nfs3_sync_pageio(vnode_t *, page_t *, u_offset_t, size_t,
123 int, cred_t *);
124 static int nfs3_commit(vnode_t *, offset3, count3, cred_t *);
125 static void nfs3_set_mod(vnode_t *);
126 static void nfs3_get_commit(vnode_t *);
127 static void nfs3_get_commit_range(vnode_t *, u_offset_t, size_t);
128 static int nfs3_putpage_commit(vnode_t *, offset_t, size_t, cred_t *);
129 static int nfs3_commit_vp(vnode_t *, u_offset_t, size_t, cred_t *);
130 static int nfs3_sync_commit(vnode_t *, page_t *, offset3, count3,
131 cred_t *);
132 static void nfs3_async_commit(vnode_t *, page_t *, offset3, count3,
133 cred_t *);
134 static void nfs3_delmap_callback(struct as *, void *, uint_t);
135
136 /*
137 * Error flags used to pass information about certain special errors
138 * which need to be handled specially.
139 */
140 #define NFS_EOF -98
141 #define NFS_VERF_MISMATCH -97
142
143 /* ALIGN64 aligns the given buffer and adjust buffer size to 64 bit */
144 #define ALIGN64(x, ptr, sz) \
145 x = ((uintptr_t)(ptr)) & (sizeof (uint64_t) - 1); \
146 if (x) { \
147 x = sizeof (uint64_t) - (x); \
148 sz -= (x); \
149 ptr += (x); \
150 }
151
152 /*
153 * These are the vnode ops routines which implement the vnode interface to
154 * the networked file system. These routines just take their parameters,
155 * make them look networkish by putting the right info into interface structs,
156 * and then calling the appropriate remote routine(s) to do the work.
157 *
158 * Note on directory name lookup cacheing: If we detect a stale fhandle,
159 * we purge the directory cache relative to that vnode. This way, the
160 * user won't get burned by the cache repeatedly. See <nfs/rnode.h> for
161 * more details on rnode locking.
162 */
163
164 static int nfs3_open(vnode_t **, int, cred_t *, caller_context_t *);
165 static int nfs3_close(vnode_t *, int, int, offset_t, cred_t *,
166 caller_context_t *);
167 static int nfs3_read(vnode_t *, struct uio *, int, cred_t *,
168 caller_context_t *);
169 static int nfs3_write(vnode_t *, struct uio *, int, cred_t *,
170 caller_context_t *);
171 static int nfs3_ioctl(vnode_t *, int, intptr_t, int, cred_t *, int *,
172 caller_context_t *);
173 static int nfs3_getattr(vnode_t *, struct vattr *, int, cred_t *,
174 caller_context_t *);
175 static int nfs3_setattr(vnode_t *, struct vattr *, int, cred_t *,
176 caller_context_t *);
177 static int nfs3_access(vnode_t *, int, int, cred_t *, caller_context_t *);
178 static int nfs3_readlink(vnode_t *, struct uio *, cred_t *,
179 caller_context_t *);
180 static int nfs3_fsync(vnode_t *, int, cred_t *, caller_context_t *);
181 static void nfs3_inactive(vnode_t *, cred_t *, caller_context_t *);
182 static int nfs3_lookup(vnode_t *, char *, vnode_t **,
183 struct pathname *, int, vnode_t *, cred_t *,
184 caller_context_t *, int *, pathname_t *);
185 static int nfs3_create(vnode_t *, char *, struct vattr *, enum vcexcl,
186 int, vnode_t **, cred_t *, int, caller_context_t *,
187 vsecattr_t *);
188 static int nfs3_remove(vnode_t *, char *, cred_t *, caller_context_t *,
189 int);
190 static int nfs3_link(vnode_t *, vnode_t *, char *, cred_t *,
191 caller_context_t *, int);
192 static int nfs3_rename(vnode_t *, char *, vnode_t *, char *, cred_t *,
193 caller_context_t *, int);
194 static int nfs3_mkdir(vnode_t *, char *, struct vattr *, vnode_t **,
195 cred_t *, caller_context_t *, int, vsecattr_t *);
196 static int nfs3_rmdir(vnode_t *, char *, vnode_t *, cred_t *,
197 caller_context_t *, int);
198 static int nfs3_symlink(vnode_t *, char *, struct vattr *, char *,
199 cred_t *, caller_context_t *, int);
200 static int nfs3_readdir(vnode_t *, struct uio *, cred_t *, int *,
201 caller_context_t *, int);
202 static int nfs3_fid(vnode_t *, fid_t *, caller_context_t *);
203 static int nfs3_rwlock(vnode_t *, int, caller_context_t *);
204 static void nfs3_rwunlock(vnode_t *, int, caller_context_t *);
205 static int nfs3_seek(vnode_t *, offset_t, offset_t *, caller_context_t *);
206 static int nfs3_getpage(vnode_t *, offset_t, size_t, uint_t *,
207 page_t *[], size_t, struct seg *, caddr_t,
208 enum seg_rw, cred_t *, caller_context_t *);
209 static int nfs3_putpage(vnode_t *, offset_t, size_t, int, cred_t *,
210 caller_context_t *);
211 static int nfs3_map(vnode_t *, offset_t, struct as *, caddr_t *, size_t,
212 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
213 static int nfs3_addmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
214 uchar_t, uchar_t, uint_t, cred_t *, caller_context_t *);
215 static int nfs3_frlock(vnode_t *, int, struct flock64 *, int, offset_t,
216 struct flk_callback *, cred_t *, caller_context_t *);
217 static int nfs3_space(vnode_t *, int, struct flock64 *, int, offset_t,
218 cred_t *, caller_context_t *);
219 static int nfs3_realvp(vnode_t *, vnode_t **, caller_context_t *);
220 static int nfs3_delmap(vnode_t *, offset_t, struct as *, caddr_t, size_t,
221 uint_t, uint_t, uint_t, cred_t *, caller_context_t *);
222 static int nfs3_pathconf(vnode_t *, int, ulong_t *, cred_t *,
223 caller_context_t *);
224 static int nfs3_pageio(vnode_t *, page_t *, u_offset_t, size_t, int,
225 cred_t *, caller_context_t *);
226 static void nfs3_dispose(vnode_t *, page_t *, int, int, cred_t *,
227 caller_context_t *);
228 static int nfs3_setsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
229 caller_context_t *);
230 static int nfs3_getsecattr(vnode_t *, vsecattr_t *, int, cred_t *,
231 caller_context_t *);
232 static int nfs3_shrlock(vnode_t *, int, struct shrlock *, int, cred_t *,
233 caller_context_t *);
234
235 struct vnodeops *nfs3_vnodeops;
236
237 const fs_operation_def_t nfs3_vnodeops_template[] = {
238 VOPNAME_OPEN, { .vop_open = nfs3_open },
239 VOPNAME_CLOSE, { .vop_close = nfs3_close },
240 VOPNAME_READ, { .vop_read = nfs3_read },
241 VOPNAME_WRITE, { .vop_write = nfs3_write },
242 VOPNAME_IOCTL, { .vop_ioctl = nfs3_ioctl },
243 VOPNAME_GETATTR, { .vop_getattr = nfs3_getattr },
244 VOPNAME_SETATTR, { .vop_setattr = nfs3_setattr },
245 VOPNAME_ACCESS, { .vop_access = nfs3_access },
246 VOPNAME_LOOKUP, { .vop_lookup = nfs3_lookup },
247 VOPNAME_CREATE, { .vop_create = nfs3_create },
248 VOPNAME_REMOVE, { .vop_remove = nfs3_remove },
249 VOPNAME_LINK, { .vop_link = nfs3_link },
250 VOPNAME_RENAME, { .vop_rename = nfs3_rename },
251 VOPNAME_MKDIR, { .vop_mkdir = nfs3_mkdir },
252 VOPNAME_RMDIR, { .vop_rmdir = nfs3_rmdir },
253 VOPNAME_READDIR, { .vop_readdir = nfs3_readdir },
254 VOPNAME_SYMLINK, { .vop_symlink = nfs3_symlink },
255 VOPNAME_READLINK, { .vop_readlink = nfs3_readlink },
256 VOPNAME_FSYNC, { .vop_fsync = nfs3_fsync },
257 VOPNAME_INACTIVE, { .vop_inactive = nfs3_inactive },
258 VOPNAME_FID, { .vop_fid = nfs3_fid },
259 VOPNAME_RWLOCK, { .vop_rwlock = nfs3_rwlock },
260 VOPNAME_RWUNLOCK, { .vop_rwunlock = nfs3_rwunlock },
261 VOPNAME_SEEK, { .vop_seek = nfs3_seek },
262 VOPNAME_FRLOCK, { .vop_frlock = nfs3_frlock },
263 VOPNAME_SPACE, { .vop_space = nfs3_space },
264 VOPNAME_REALVP, { .vop_realvp = nfs3_realvp },
265 VOPNAME_GETPAGE, { .vop_getpage = nfs3_getpage },
266 VOPNAME_PUTPAGE, { .vop_putpage = nfs3_putpage },
267 VOPNAME_MAP, { .vop_map = nfs3_map },
268 VOPNAME_ADDMAP, { .vop_addmap = nfs3_addmap },
269 VOPNAME_DELMAP, { .vop_delmap = nfs3_delmap },
270 /* no separate nfs3_dump */
271 VOPNAME_DUMP, { .vop_dump = nfs_dump },
272 VOPNAME_PATHCONF, { .vop_pathconf = nfs3_pathconf },
273 VOPNAME_PAGEIO, { .vop_pageio = nfs3_pageio },
274 VOPNAME_DISPOSE, { .vop_dispose = nfs3_dispose },
275 VOPNAME_SETSECATTR, { .vop_setsecattr = nfs3_setsecattr },
276 VOPNAME_GETSECATTR, { .vop_getsecattr = nfs3_getsecattr },
277 VOPNAME_SHRLOCK, { .vop_shrlock = nfs3_shrlock },
278 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
279 NULL, NULL
280 };
281
282 /*
283 * XXX: This is referenced in modstubs.s
284 */
285 struct vnodeops *
nfs3_getvnodeops(void)286 nfs3_getvnodeops(void)
287 {
288 return (nfs3_vnodeops);
289 }
290
291 /* ARGSUSED */
292 static int
nfs3_open(vnode_t ** vpp,int flag,cred_t * cr,caller_context_t * ct)293 nfs3_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
294 {
295 int error;
296 struct vattr va;
297 rnode_t *rp;
298 vnode_t *vp;
299
300 vp = *vpp;
301 if (nfs_zone() != VTOMI(vp)->mi_zone)
302 return (EIO);
303 rp = VTOR(vp);
304 mutex_enter(&rp->r_statelock);
305 if (rp->r_cred == NULL) {
306 crhold(cr);
307 rp->r_cred = cr;
308 }
309 mutex_exit(&rp->r_statelock);
310
311 /*
312 * If there is no cached data or if close-to-open
313 * consistency checking is turned off, we can avoid
314 * the over the wire getattr. Otherwise, if the
315 * file system is mounted readonly, then just verify
316 * the caches are up to date using the normal mechanism.
317 * Else, if the file is not mmap'd, then just mark
318 * the attributes as timed out. They will be refreshed
319 * and the caches validated prior to being used.
320 * Else, the file system is mounted writeable so
321 * force an over the wire GETATTR in order to ensure
322 * that all cached data is valid.
323 */
324 if (vp->v_count > 1 ||
325 ((vn_has_cached_data(vp) || HAVE_RDDIR_CACHE(rp)) &&
326 !(VTOMI(vp)->mi_flags & MI_NOCTO))) {
327 if (vn_is_readonly(vp))
328 error = nfs3_validate_caches(vp, cr);
329 else if (rp->r_mapcnt == 0 && vp->v_count == 1) {
330 PURGE_ATTRCACHE(vp);
331 error = 0;
332 } else {
333 va.va_mask = AT_ALL;
334 error = nfs3_getattr_otw(vp, &va, cr);
335 }
336 } else
337 error = 0;
338
339 return (error);
340 }
341
342 /* ARGSUSED */
343 static int
nfs3_close(vnode_t * vp,int flag,int count,offset_t offset,cred_t * cr,caller_context_t * ct)344 nfs3_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
345 caller_context_t *ct)
346 {
347 rnode_t *rp;
348 int error;
349 struct vattr va;
350
351 /*
352 * zone_enter(2) prevents processes from changing zones with NFS files
353 * open; if we happen to get here from the wrong zone we can't do
354 * anything over the wire.
355 */
356 if (VTOMI(vp)->mi_zone != nfs_zone()) {
357 /*
358 * We could attempt to clean up locks, except we're sure
359 * that the current process didn't acquire any locks on
360 * the file: any attempt to lock a file belong to another zone
361 * will fail, and one can't lock an NFS file and then change
362 * zones, as that fails too.
363 *
364 * Returning an error here is the sane thing to do. A
365 * subsequent call to VN_RELE() which translates to a
366 * nfs3_inactive() will clean up state: if the zone of the
367 * vnode's origin is still alive and kicking, an async worker
368 * thread will handle the request (from the correct zone), and
369 * everything (minus the commit and final nfs3_getattr_otw()
370 * call) should be OK. If the zone is going away
371 * nfs_async_inactive() will throw away cached pages inline.
372 */
373 return (EIO);
374 }
375
376 /*
377 * If we are using local locking for this filesystem, then
378 * release all of the SYSV style record locks. Otherwise,
379 * we are doing network locking and we need to release all
380 * of the network locks. All of the locks held by this
381 * process on this file are released no matter what the
382 * incoming reference count is.
383 */
384 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
385 cleanlocks(vp, ttoproc(curthread)->p_pid, 0);
386 cleanshares(vp, ttoproc(curthread)->p_pid);
387 } else
388 nfs_lockrelease(vp, flag, offset, cr);
389
390 if (count > 1)
391 return (0);
392
393 /*
394 * If the file has been `unlinked', then purge the
395 * DNLC so that this vnode will get reycled quicker
396 * and the .nfs* file on the server will get removed.
397 */
398 rp = VTOR(vp);
399 if (rp->r_unldvp != NULL)
400 dnlc_purge_vp(vp);
401
402 /*
403 * If the file was open for write and there are pages,
404 * then if the file system was mounted using the "no-close-
405 * to-open" semantics, then start an asynchronous flush
406 * of the all of the pages in the file.
407 * else the file system was not mounted using the "no-close-
408 * to-open" semantics, then do a synchronous flush and
409 * commit of all of the dirty and uncommitted pages.
410 *
411 * The asynchronous flush of the pages in the "nocto" path
412 * mostly just associates a cred pointer with the rnode so
413 * writes which happen later will have a better chance of
414 * working. It also starts the data being written to the
415 * server, but without unnecessarily delaying the application.
416 */
417 if ((flag & FWRITE) && vn_has_cached_data(vp)) {
418 if (VTOMI(vp)->mi_flags & MI_NOCTO) {
419 error = nfs3_putpage(vp, (offset_t)0, 0, B_ASYNC,
420 cr, ct);
421 if (error == EAGAIN)
422 error = 0;
423 } else
424 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
425 if (!error) {
426 mutex_enter(&rp->r_statelock);
427 error = rp->r_error;
428 rp->r_error = 0;
429 mutex_exit(&rp->r_statelock);
430 }
431 } else {
432 mutex_enter(&rp->r_statelock);
433 error = rp->r_error;
434 rp->r_error = 0;
435 mutex_exit(&rp->r_statelock);
436 }
437
438 /*
439 * If RWRITEATTR is set, then issue an over the wire GETATTR to
440 * refresh the attribute cache with a set of attributes which
441 * weren't returned from a WRITE. This will enable the close-
442 * to-open processing to work.
443 */
444 if (rp->r_flags & RWRITEATTR)
445 (void) nfs3_getattr_otw(vp, &va, cr);
446
447 return (error);
448 }
449
450 /* ARGSUSED */
451 static int
nfs3_directio_read(vnode_t * vp,struct uio * uiop,cred_t * cr)452 nfs3_directio_read(vnode_t *vp, struct uio *uiop, cred_t *cr)
453 {
454 mntinfo_t *mi;
455 READ3args args;
456 READ3uiores res;
457 int tsize;
458 offset_t offset;
459 ssize_t count;
460 int error;
461 int douprintf;
462 failinfo_t fi;
463 char *sv_hostname;
464
465 mi = VTOMI(vp);
466 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
467 sv_hostname = VTOR(vp)->r_server->sv_hostname;
468
469 douprintf = 1;
470 args.file = *VTOFH3(vp);
471 fi.vp = vp;
472 fi.fhp = (caddr_t)&args.file;
473 fi.copyproc = nfs3copyfh;
474 fi.lookupproc = nfs3lookup;
475 fi.xattrdirproc = acl_getxattrdir3;
476
477 res.uiop = uiop;
478
479 res.wlist = NULL;
480
481 offset = uiop->uio_loffset;
482 count = uiop->uio_resid;
483
484 do {
485 if (mi->mi_io_kstats) {
486 mutex_enter(&mi->mi_lock);
487 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
488 mutex_exit(&mi->mi_lock);
489 }
490
491 do {
492 tsize = MIN(mi->mi_tsize, count);
493 args.offset = (offset3)offset;
494 args.count = (count3)tsize;
495 res.size = (uint_t)tsize;
496 args.res_uiop = uiop;
497 args.res_data_val_alt = NULL;
498
499 error = rfs3call(mi, NFSPROC3_READ,
500 xdr_READ3args, (caddr_t)&args,
501 xdr_READ3uiores, (caddr_t)&res, cr,
502 &douprintf, &res.status, 0, &fi);
503 } while (error == ENFS_TRYAGAIN);
504
505 if (mi->mi_io_kstats) {
506 mutex_enter(&mi->mi_lock);
507 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
508 mutex_exit(&mi->mi_lock);
509 }
510
511 if (error)
512 return (error);
513
514 error = geterrno3(res.status);
515 if (error)
516 return (error);
517
518 if (res.count != res.size) {
519 zcmn_err(getzoneid(), CE_WARN,
520 "nfs3_directio_read: server %s returned incorrect amount",
521 sv_hostname);
522 return (EIO);
523 }
524 count -= res.count;
525 offset += res.count;
526 if (mi->mi_io_kstats) {
527 mutex_enter(&mi->mi_lock);
528 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
529 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
530 mutex_exit(&mi->mi_lock);
531 }
532 lwp_stat_update(LWP_STAT_INBLK, 1);
533 } while (count && !res.eof);
534
535 return (0);
536 }
537
538 /* ARGSUSED */
539 static int
nfs3_read(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)540 nfs3_read(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
541 caller_context_t *ct)
542 {
543 rnode_t *rp;
544 u_offset_t off;
545 offset_t diff;
546 int on;
547 size_t n;
548 caddr_t base;
549 uint_t flags;
550 int error = 0;
551 mntinfo_t *mi;
552
553 rp = VTOR(vp);
554 mi = VTOMI(vp);
555
556 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
557
558 if (nfs_zone() != mi->mi_zone)
559 return (EIO);
560
561 if (vp->v_type != VREG)
562 return (EISDIR);
563
564 if (uiop->uio_resid == 0)
565 return (0);
566
567 if (uiop->uio_loffset < 0 || uiop->uio_loffset + uiop->uio_resid < 0)
568 return (EINVAL);
569
570 /*
571 * Bypass VM if caching has been disabled (e.g., locking) or if
572 * using client-side direct I/O and the file is not mmap'd and
573 * there are no cached pages.
574 */
575 if ((vp->v_flag & VNOCACHE) ||
576 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
577 rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
578 !vn_has_cached_data(vp))) {
579 return (nfs3_directio_read(vp, uiop, cr));
580 }
581
582 do {
583 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
584 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
585 n = MIN(MAXBSIZE - on, uiop->uio_resid);
586
587 error = nfs3_validate_caches(vp, cr);
588 if (error)
589 break;
590
591 mutex_enter(&rp->r_statelock);
592 while (rp->r_flags & RINCACHEPURGE) {
593 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
594 mutex_exit(&rp->r_statelock);
595 return (EINTR);
596 }
597 }
598 diff = rp->r_size - uiop->uio_loffset;
599 mutex_exit(&rp->r_statelock);
600 if (diff <= 0)
601 break;
602 if (diff < n)
603 n = (size_t)diff;
604
605 if (vpm_enable) {
606 /*
607 * Copy data.
608 */
609 error = vpm_data_copy(vp, off + on, n, uiop,
610 1, NULL, 0, S_READ);
611 } else {
612 base = segmap_getmapflt(segkmap, vp, off + on, n, 1,
613 S_READ);
614
615 error = uiomove(base + on, n, UIO_READ, uiop);
616 }
617
618 if (!error) {
619 /*
620 * If read a whole block or read to eof,
621 * won't need this buffer again soon.
622 */
623 mutex_enter(&rp->r_statelock);
624 if (n + on == MAXBSIZE ||
625 uiop->uio_loffset == rp->r_size)
626 flags = SM_DONTNEED;
627 else
628 flags = 0;
629 mutex_exit(&rp->r_statelock);
630 if (vpm_enable) {
631 error = vpm_sync_pages(vp, off, n, flags);
632 } else {
633 error = segmap_release(segkmap, base, flags);
634 }
635 } else {
636 if (vpm_enable) {
637 (void) vpm_sync_pages(vp, off, n, 0);
638 } else {
639 (void) segmap_release(segkmap, base, 0);
640 }
641 }
642 } while (!error && uiop->uio_resid > 0);
643
644 return (error);
645 }
646
647 /* ARGSUSED */
648 static int
nfs3_write(vnode_t * vp,struct uio * uiop,int ioflag,cred_t * cr,caller_context_t * ct)649 nfs3_write(vnode_t *vp, struct uio *uiop, int ioflag, cred_t *cr,
650 caller_context_t *ct)
651 {
652 rlim64_t limit = uiop->uio_llimit;
653 rnode_t *rp;
654 u_offset_t off;
655 caddr_t base;
656 uint_t flags;
657 int remainder;
658 size_t n;
659 int on;
660 int error;
661 int resid;
662 offset_t offset;
663 mntinfo_t *mi;
664 uint_t bsize;
665
666 rp = VTOR(vp);
667
668 if (vp->v_type != VREG)
669 return (EISDIR);
670
671 mi = VTOMI(vp);
672 if (nfs_zone() != mi->mi_zone)
673 return (EIO);
674 if (uiop->uio_resid == 0)
675 return (0);
676
677 if (ioflag & FAPPEND) {
678 struct vattr va;
679
680 /*
681 * Must serialize if appending.
682 */
683 if (nfs_rw_lock_held(&rp->r_rwlock, RW_READER)) {
684 nfs_rw_exit(&rp->r_rwlock);
685 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER,
686 INTR(vp)))
687 return (EINTR);
688 }
689
690 va.va_mask = AT_SIZE;
691 error = nfs3getattr(vp, &va, cr);
692 if (error)
693 return (error);
694 uiop->uio_loffset = va.va_size;
695 }
696
697 offset = uiop->uio_loffset + uiop->uio_resid;
698
699 if (uiop->uio_loffset < 0 || offset < 0)
700 return (EINVAL);
701
702 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
703 limit = MAXOFFSET_T;
704
705 /*
706 * Check to make sure that the process will not exceed
707 * its limit on file size. It is okay to write up to
708 * the limit, but not beyond. Thus, the write which
709 * reaches the limit will be short and the next write
710 * will return an error.
711 */
712 remainder = 0;
713 if (offset > limit) {
714 remainder = offset - limit;
715 uiop->uio_resid = limit - uiop->uio_loffset;
716 if (uiop->uio_resid <= 0) {
717 proc_t *p = ttoproc(curthread);
718
719 uiop->uio_resid += remainder;
720 mutex_enter(&p->p_lock);
721 (void) rctl_action(rctlproc_legacy[RLIMIT_FSIZE],
722 p->p_rctls, p, RCA_UNSAFE_SIGINFO);
723 mutex_exit(&p->p_lock);
724 return (EFBIG);
725 }
726 }
727
728 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp)))
729 return (EINTR);
730
731 /*
732 * Bypass VM if caching has been disabled (e.g., locking) or if
733 * using client-side direct I/O and the file is not mmap'd and
734 * there are no cached pages.
735 */
736 if ((vp->v_flag & VNOCACHE) ||
737 (((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO)) &&
738 rp->r_mapcnt == 0 && rp->r_inmap == 0 &&
739 !vn_has_cached_data(vp))) {
740 size_t bufsize;
741 int count;
742 u_offset_t org_offset;
743 stable_how stab_comm;
744
745 nfs3_fwrite:
746 if (rp->r_flags & RSTALE) {
747 resid = uiop->uio_resid;
748 offset = uiop->uio_loffset;
749 error = rp->r_error;
750 /*
751 * A close may have cleared r_error, if so,
752 * propagate ESTALE error return properly
753 */
754 if (error == 0)
755 error = ESTALE;
756 goto bottom;
757 }
758 bufsize = MIN(uiop->uio_resid, mi->mi_stsize);
759 base = kmem_alloc(bufsize, KM_SLEEP);
760 do {
761 if (ioflag & FDSYNC)
762 stab_comm = DATA_SYNC;
763 else
764 stab_comm = FILE_SYNC;
765 resid = uiop->uio_resid;
766 offset = uiop->uio_loffset;
767 count = MIN(uiop->uio_resid, bufsize);
768 org_offset = uiop->uio_loffset;
769 error = uiomove(base, count, UIO_WRITE, uiop);
770 if (!error) {
771 error = nfs3write(vp, base, org_offset,
772 count, cr, &stab_comm);
773 }
774 } while (!error && uiop->uio_resid > 0);
775 kmem_free(base, bufsize);
776 goto bottom;
777 }
778
779
780 bsize = vp->v_vfsp->vfs_bsize;
781
782 do {
783 off = uiop->uio_loffset & MAXBMASK; /* mapping offset */
784 on = uiop->uio_loffset & MAXBOFFSET; /* Relative offset */
785 n = MIN(MAXBSIZE - on, uiop->uio_resid);
786
787 resid = uiop->uio_resid;
788 offset = uiop->uio_loffset;
789
790 if (rp->r_flags & RSTALE) {
791 error = rp->r_error;
792 /*
793 * A close may have cleared r_error, if so,
794 * propagate ESTALE error return properly
795 */
796 if (error == 0)
797 error = ESTALE;
798 break;
799 }
800
801 /*
802 * Don't create dirty pages faster than they
803 * can be cleaned so that the system doesn't
804 * get imbalanced. If the async queue is
805 * maxed out, then wait for it to drain before
806 * creating more dirty pages. Also, wait for
807 * any threads doing pagewalks in the vop_getattr
808 * entry points so that they don't block for
809 * long periods.
810 */
811 mutex_enter(&rp->r_statelock);
812 while ((mi->mi_max_threads != 0 &&
813 rp->r_awcount > 2 * mi->mi_max_threads) ||
814 rp->r_gcount > 0) {
815 if (INTR(vp)) {
816 klwp_t *lwp = ttolwp(curthread);
817
818 if (lwp != NULL)
819 lwp->lwp_nostop++;
820 if (!cv_wait_sig(&rp->r_cv, &rp->r_statelock)) {
821 mutex_exit(&rp->r_statelock);
822 if (lwp != NULL)
823 lwp->lwp_nostop--;
824 error = EINTR;
825 goto bottom;
826 }
827 if (lwp != NULL)
828 lwp->lwp_nostop--;
829 } else
830 cv_wait(&rp->r_cv, &rp->r_statelock);
831 }
832 mutex_exit(&rp->r_statelock);
833
834 /*
835 * Touch the page and fault it in if it is not in core
836 * before segmap_getmapflt or vpm_data_copy can lock it.
837 * This is to avoid the deadlock if the buffer is mapped
838 * to the same file through mmap which we want to write.
839 */
840 uio_prefaultpages((long)n, uiop);
841
842 if (vpm_enable) {
843 /*
844 * It will use kpm mappings, so no need to
845 * pass an address.
846 */
847 error = writerp(rp, NULL, n, uiop, 0);
848 } else {
849 if (segmap_kpm) {
850 int pon = uiop->uio_loffset & PAGEOFFSET;
851 size_t pn = MIN(PAGESIZE - pon,
852 uiop->uio_resid);
853 int pagecreate;
854
855 mutex_enter(&rp->r_statelock);
856 pagecreate = (pon == 0) && (pn == PAGESIZE ||
857 uiop->uio_loffset + pn >= rp->r_size);
858 mutex_exit(&rp->r_statelock);
859
860 base = segmap_getmapflt(segkmap, vp, off + on,
861 pn, !pagecreate, S_WRITE);
862
863 error = writerp(rp, base + pon, n, uiop,
864 pagecreate);
865
866 } else {
867 base = segmap_getmapflt(segkmap, vp, off + on,
868 n, 0, S_READ);
869 error = writerp(rp, base + on, n, uiop, 0);
870 }
871 }
872
873 if (!error) {
874 if (mi->mi_flags & MI_NOAC)
875 flags = SM_WRITE;
876 else if ((uiop->uio_loffset % bsize) == 0 ||
877 IS_SWAPVP(vp)) {
878 /*
879 * Have written a whole block.
880 * Start an asynchronous write
881 * and mark the buffer to
882 * indicate that it won't be
883 * needed again soon.
884 */
885 flags = SM_WRITE | SM_ASYNC | SM_DONTNEED;
886 } else
887 flags = 0;
888 if ((ioflag & (FSYNC|FDSYNC)) ||
889 (rp->r_flags & ROUTOFSPACE)) {
890 flags &= ~SM_ASYNC;
891 flags |= SM_WRITE;
892 }
893 if (vpm_enable) {
894 error = vpm_sync_pages(vp, off, n, flags);
895 } else {
896 error = segmap_release(segkmap, base, flags);
897 }
898 } else {
899 if (vpm_enable) {
900 (void) vpm_sync_pages(vp, off, n, 0);
901 } else {
902 (void) segmap_release(segkmap, base, 0);
903 }
904 /*
905 * In the event that we got an access error while
906 * faulting in a page for a write-only file just
907 * force a write.
908 */
909 if (error == EACCES)
910 goto nfs3_fwrite;
911 }
912 } while (!error && uiop->uio_resid > 0);
913
914 bottom:
915 if (error) {
916 uiop->uio_resid = resid + remainder;
917 uiop->uio_loffset = offset;
918 } else
919 uiop->uio_resid += remainder;
920
921 nfs_rw_exit(&rp->r_lkserlock);
922
923 return (error);
924 }
925
926 /*
927 * Flags are composed of {B_ASYNC, B_INVAL, B_FREE, B_DONTNEED}
928 */
929 static int
nfs3_rdwrlbn(vnode_t * vp,page_t * pp,u_offset_t off,size_t len,int flags,cred_t * cr)930 nfs3_rdwrlbn(vnode_t *vp, page_t *pp, u_offset_t off, size_t len,
931 int flags, cred_t *cr)
932 {
933 struct buf *bp;
934 int error;
935 page_t *savepp;
936 uchar_t fsdata;
937 stable_how stab_comm;
938
939 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
940 bp = pageio_setup(pp, len, vp, flags);
941 ASSERT(bp != NULL);
942
943 /*
944 * pageio_setup should have set b_addr to 0. This
945 * is correct since we want to do I/O on a page
946 * boundary. bp_mapin will use this addr to calculate
947 * an offset, and then set b_addr to the kernel virtual
948 * address it allocated for us.
949 */
950 ASSERT(bp->b_un.b_addr == 0);
951
952 bp->b_edev = 0;
953 bp->b_dev = 0;
954 bp->b_lblkno = lbtodb(off);
955 bp->b_file = vp;
956 bp->b_offset = (offset_t)off;
957 bp_mapin(bp);
958
959 /*
960 * Calculate the desired level of stability to write data
961 * on the server and then mark all of the pages to reflect
962 * this.
963 */
964 if ((flags & (B_WRITE|B_ASYNC)) == (B_WRITE|B_ASYNC) &&
965 freemem > desfree) {
966 stab_comm = UNSTABLE;
967 fsdata = C_DELAYCOMMIT;
968 } else {
969 stab_comm = FILE_SYNC;
970 fsdata = C_NOCOMMIT;
971 }
972
973 savepp = pp;
974 do {
975 pp->p_fsdata = fsdata;
976 } while ((pp = pp->p_next) != savepp);
977
978 error = nfs3_bio(bp, &stab_comm, cr);
979
980 bp_mapout(bp);
981 pageio_done(bp);
982
983 /*
984 * If the server wrote pages in a more stable fashion than
985 * was requested, then clear all of the marks in the pages
986 * indicating that COMMIT operations were required.
987 */
988 if (stab_comm != UNSTABLE && fsdata == C_DELAYCOMMIT) {
989 do {
990 pp->p_fsdata = C_NOCOMMIT;
991 } while ((pp = pp->p_next) != savepp);
992 }
993
994 return (error);
995 }
996
997 /*
998 * Write to file. Writes to remote server in largest size
999 * chunks that the server can handle. Write is synchronous.
1000 */
1001 static int
nfs3write(vnode_t * vp,caddr_t base,u_offset_t offset,int count,cred_t * cr,stable_how * stab_comm)1002 nfs3write(vnode_t *vp, caddr_t base, u_offset_t offset, int count, cred_t *cr,
1003 stable_how *stab_comm)
1004 {
1005 mntinfo_t *mi;
1006 WRITE3args args;
1007 WRITE3res res;
1008 int error;
1009 int tsize;
1010 rnode_t *rp;
1011 int douprintf;
1012
1013 rp = VTOR(vp);
1014 mi = VTOMI(vp);
1015
1016 ASSERT(nfs_zone() == mi->mi_zone);
1017
1018 args.file = *VTOFH3(vp);
1019 args.stable = *stab_comm;
1020
1021 *stab_comm = FILE_SYNC;
1022
1023 douprintf = 1;
1024
1025 do {
1026 if ((vp->v_flag & VNOCACHE) ||
1027 (rp->r_flags & RDIRECTIO) ||
1028 (mi->mi_flags & MI_DIRECTIO))
1029 tsize = MIN(mi->mi_stsize, count);
1030 else
1031 tsize = MIN(mi->mi_curwrite, count);
1032 args.offset = (offset3)offset;
1033 args.count = (count3)tsize;
1034 args.data.data_len = (uint_t)tsize;
1035 args.data.data_val = base;
1036
1037 if (mi->mi_io_kstats) {
1038 mutex_enter(&mi->mi_lock);
1039 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1040 mutex_exit(&mi->mi_lock);
1041 }
1042 args.mblk = NULL;
1043 do {
1044 error = rfs3call(mi, NFSPROC3_WRITE,
1045 xdr_WRITE3args, (caddr_t)&args,
1046 xdr_WRITE3res, (caddr_t)&res, cr,
1047 &douprintf, &res.status, 0, NULL);
1048 } while (error == ENFS_TRYAGAIN);
1049 if (mi->mi_io_kstats) {
1050 mutex_enter(&mi->mi_lock);
1051 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1052 mutex_exit(&mi->mi_lock);
1053 }
1054
1055 if (error)
1056 return (error);
1057 error = geterrno3(res.status);
1058 if (!error) {
1059 if (res.resok.count > args.count) {
1060 zcmn_err(getzoneid(), CE_WARN,
1061 "nfs3write: server %s wrote %u, "
1062 "requested was %u",
1063 rp->r_server->sv_hostname,
1064 res.resok.count, args.count);
1065 return (EIO);
1066 }
1067 if (res.resok.committed == UNSTABLE) {
1068 *stab_comm = UNSTABLE;
1069 if (args.stable == DATA_SYNC ||
1070 args.stable == FILE_SYNC) {
1071 zcmn_err(getzoneid(), CE_WARN,
1072 "nfs3write: server %s did not commit to stable storage",
1073 rp->r_server->sv_hostname);
1074 return (EIO);
1075 }
1076 }
1077 tsize = (int)res.resok.count;
1078 count -= tsize;
1079 base += tsize;
1080 offset += tsize;
1081 if (mi->mi_io_kstats) {
1082 mutex_enter(&mi->mi_lock);
1083 KSTAT_IO_PTR(mi->mi_io_kstats)->writes++;
1084 KSTAT_IO_PTR(mi->mi_io_kstats)->nwritten +=
1085 tsize;
1086 mutex_exit(&mi->mi_lock);
1087 }
1088 lwp_stat_update(LWP_STAT_OUBLK, 1);
1089 mutex_enter(&rp->r_statelock);
1090 if (rp->r_flags & RHAVEVERF) {
1091 if (rp->r_verf != res.resok.verf) {
1092 nfs3_set_mod(vp);
1093 rp->r_verf = res.resok.verf;
1094 /*
1095 * If the data was written UNSTABLE,
1096 * then might as well stop because
1097 * the whole block will have to get
1098 * rewritten anyway.
1099 */
1100 if (*stab_comm == UNSTABLE) {
1101 mutex_exit(&rp->r_statelock);
1102 break;
1103 }
1104 }
1105 } else {
1106 rp->r_verf = res.resok.verf;
1107 rp->r_flags |= RHAVEVERF;
1108 }
1109 /*
1110 * Mark the attribute cache as timed out and
1111 * set RWRITEATTR to indicate that the file
1112 * was modified with a WRITE operation and
1113 * that the attributes can not be trusted.
1114 */
1115 PURGE_ATTRCACHE_LOCKED(rp);
1116 rp->r_flags |= RWRITEATTR;
1117 mutex_exit(&rp->r_statelock);
1118 }
1119 } while (!error && count);
1120
1121 return (error);
1122 }
1123
1124 /*
1125 * Read from a file. Reads data in largest chunks our interface can handle.
1126 */
1127 static int
nfs3read(vnode_t * vp,caddr_t base,offset_t offset,int count,size_t * residp,cred_t * cr)1128 nfs3read(vnode_t *vp, caddr_t base, offset_t offset, int count,
1129 size_t *residp, cred_t *cr)
1130 {
1131 mntinfo_t *mi;
1132 READ3args args;
1133 READ3vres res;
1134 int tsize;
1135 int error;
1136 int douprintf;
1137 failinfo_t fi;
1138 rnode_t *rp;
1139 struct vattr va;
1140 hrtime_t t;
1141
1142 rp = VTOR(vp);
1143 mi = VTOMI(vp);
1144 ASSERT(nfs_zone() == mi->mi_zone);
1145 douprintf = 1;
1146
1147 args.file = *VTOFH3(vp);
1148 fi.vp = vp;
1149 fi.fhp = (caddr_t)&args.file;
1150 fi.copyproc = nfs3copyfh;
1151 fi.lookupproc = nfs3lookup;
1152 fi.xattrdirproc = acl_getxattrdir3;
1153
1154 res.pov.fres.vp = vp;
1155 res.pov.fres.vap = &va;
1156
1157 res.wlist = NULL;
1158 *residp = count;
1159 do {
1160 if (mi->mi_io_kstats) {
1161 mutex_enter(&mi->mi_lock);
1162 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
1163 mutex_exit(&mi->mi_lock);
1164 }
1165
1166 do {
1167 if ((vp->v_flag & VNOCACHE) ||
1168 (rp->r_flags & RDIRECTIO) ||
1169 (mi->mi_flags & MI_DIRECTIO))
1170 tsize = MIN(mi->mi_tsize, count);
1171 else
1172 tsize = MIN(mi->mi_curread, count);
1173 res.data.data_val = base;
1174 res.data.data_len = tsize;
1175 args.offset = (offset3)offset;
1176 args.count = (count3)tsize;
1177 args.res_uiop = NULL;
1178 args.res_data_val_alt = base;
1179
1180 t = gethrtime();
1181 error = rfs3call(mi, NFSPROC3_READ,
1182 xdr_READ3args, (caddr_t)&args,
1183 xdr_READ3vres, (caddr_t)&res, cr,
1184 &douprintf, &res.status, 0, &fi);
1185 } while (error == ENFS_TRYAGAIN);
1186
1187 if (mi->mi_io_kstats) {
1188 mutex_enter(&mi->mi_lock);
1189 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
1190 mutex_exit(&mi->mi_lock);
1191 }
1192
1193 if (error)
1194 return (error);
1195
1196 error = geterrno3(res.status);
1197 if (error)
1198 return (error);
1199
1200 if (res.count != res.data.data_len) {
1201 zcmn_err(getzoneid(), CE_WARN,
1202 "nfs3read: server %s returned incorrect amount",
1203 rp->r_server->sv_hostname);
1204 return (EIO);
1205 }
1206
1207 count -= res.count;
1208 *residp = count;
1209 base += res.count;
1210 offset += res.count;
1211 if (mi->mi_io_kstats) {
1212 mutex_enter(&mi->mi_lock);
1213 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
1214 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.count;
1215 mutex_exit(&mi->mi_lock);
1216 }
1217 lwp_stat_update(LWP_STAT_INBLK, 1);
1218 } while (count && !res.eof);
1219
1220 if (res.pov.attributes) {
1221 mutex_enter(&rp->r_statelock);
1222 if (!CACHE_VALID(rp, va.va_mtime, va.va_size)) {
1223 mutex_exit(&rp->r_statelock);
1224 PURGE_ATTRCACHE(vp);
1225 } else {
1226 if (rp->r_mtime <= t)
1227 nfs_attrcache_va(vp, &va);
1228 mutex_exit(&rp->r_statelock);
1229 }
1230 }
1231
1232 return (0);
1233 }
1234
1235 /* ARGSUSED */
1236 static int
nfs3_ioctl(vnode_t * vp,int cmd,intptr_t arg,int flag,cred_t * cr,int * rvalp,caller_context_t * ct)1237 nfs3_ioctl(vnode_t *vp, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp,
1238 caller_context_t *ct)
1239 {
1240
1241 if (nfs_zone() != VTOMI(vp)->mi_zone)
1242 return (EIO);
1243 switch (cmd) {
1244 case _FIODIRECTIO:
1245 return (nfs_directio(vp, (int)arg, cr));
1246 default:
1247 return (ENOTTY);
1248 }
1249 }
1250
1251 /* ARGSUSED */
1252 static int
nfs3_getattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)1253 nfs3_getattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1254 caller_context_t *ct)
1255 {
1256 int error;
1257 rnode_t *rp;
1258
1259 if (nfs_zone() != VTOMI(vp)->mi_zone)
1260 return (EIO);
1261 /*
1262 * If it has been specified that the return value will
1263 * just be used as a hint, and we are only being asked
1264 * for size, fsid or rdevid, then return the client's
1265 * notion of these values without checking to make sure
1266 * that the attribute cache is up to date.
1267 * The whole point is to avoid an over the wire GETATTR
1268 * call.
1269 */
1270 rp = VTOR(vp);
1271 if (flags & ATTR_HINT) {
1272 if (vap->va_mask ==
1273 (vap->va_mask & (AT_SIZE | AT_FSID | AT_RDEV))) {
1274 mutex_enter(&rp->r_statelock);
1275 if (vap->va_mask | AT_SIZE)
1276 vap->va_size = rp->r_size;
1277 if (vap->va_mask | AT_FSID)
1278 vap->va_fsid = rp->r_attr.va_fsid;
1279 if (vap->va_mask | AT_RDEV)
1280 vap->va_rdev = rp->r_attr.va_rdev;
1281 mutex_exit(&rp->r_statelock);
1282 return (0);
1283 }
1284 }
1285
1286 /*
1287 * Only need to flush pages if asking for the mtime
1288 * and if there any dirty pages or any outstanding
1289 * asynchronous (write) requests for this file.
1290 */
1291 if (vap->va_mask & AT_MTIME) {
1292 if (vn_has_cached_data(vp) &&
1293 ((rp->r_flags & RDIRTY) || rp->r_awcount > 0)) {
1294 mutex_enter(&rp->r_statelock);
1295 rp->r_gcount++;
1296 mutex_exit(&rp->r_statelock);
1297 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct);
1298 mutex_enter(&rp->r_statelock);
1299 if (error && (error == ENOSPC || error == EDQUOT)) {
1300 if (!rp->r_error)
1301 rp->r_error = error;
1302 }
1303 if (--rp->r_gcount == 0)
1304 cv_broadcast(&rp->r_cv);
1305 mutex_exit(&rp->r_statelock);
1306 }
1307 }
1308
1309 return (nfs3getattr(vp, vap, cr));
1310 }
1311
1312 /*ARGSUSED4*/
1313 static int
nfs3_setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr,caller_context_t * ct)1314 nfs3_setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr,
1315 caller_context_t *ct)
1316 {
1317 int error;
1318 struct vattr va;
1319
1320 if (vap->va_mask & AT_NOSET)
1321 return (EINVAL);
1322 if (nfs_zone() != VTOMI(vp)->mi_zone)
1323 return (EIO);
1324
1325 va.va_mask = AT_UID | AT_MODE;
1326 error = nfs3getattr(vp, &va, cr);
1327 if (error)
1328 return (error);
1329
1330 error = secpolicy_vnode_setattr(cr, vp, vap, &va, flags, nfs3_accessx,
1331 vp);
1332 if (error)
1333 return (error);
1334
1335 error = nfs3setattr(vp, vap, flags, cr);
1336
1337 if (error == 0 && (vap->va_mask & AT_SIZE) && vap->va_size == 0)
1338 vnevent_truncate(vp, ct);
1339
1340 return (error);
1341 }
1342
1343 static int
nfs3setattr(vnode_t * vp,struct vattr * vap,int flags,cred_t * cr)1344 nfs3setattr(vnode_t *vp, struct vattr *vap, int flags, cred_t *cr)
1345 {
1346 int error;
1347 uint_t mask;
1348 SETATTR3args args;
1349 SETATTR3res res;
1350 int douprintf;
1351 rnode_t *rp;
1352 struct vattr va;
1353 mode_t omode;
1354 vsecattr_t *vsp;
1355 hrtime_t t;
1356
1357 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
1358 mask = vap->va_mask;
1359
1360 rp = VTOR(vp);
1361
1362 /*
1363 * Only need to flush pages if there are any pages and
1364 * if the file is marked as dirty in some fashion. The
1365 * file must be flushed so that we can accurately
1366 * determine the size of the file and the cached data
1367 * after the SETATTR returns. A file is considered to
1368 * be dirty if it is either marked with RDIRTY, has
1369 * outstanding i/o's active, or is mmap'd. In this
1370 * last case, we can't tell whether there are dirty
1371 * pages, so we flush just to be sure.
1372 */
1373 if (vn_has_cached_data(vp) &&
1374 ((rp->r_flags & RDIRTY) ||
1375 rp->r_count > 0 ||
1376 rp->r_mapcnt > 0)) {
1377 ASSERT(vp->v_type != VCHR);
1378 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, NULL);
1379 if (error && (error == ENOSPC || error == EDQUOT)) {
1380 mutex_enter(&rp->r_statelock);
1381 if (!rp->r_error)
1382 rp->r_error = error;
1383 mutex_exit(&rp->r_statelock);
1384 }
1385 }
1386
1387 args.object = *RTOFH3(rp);
1388 /*
1389 * If the intent is for the server to set the times,
1390 * there is no point in have the mask indicating set mtime or
1391 * atime, because the vap values may be junk, and so result
1392 * in an overflow error. Remove these flags from the vap mask
1393 * before calling in this case, and restore them afterwards.
1394 */
1395 if ((mask & (AT_ATIME | AT_MTIME)) && !(flags & ATTR_UTIME)) {
1396 /* Use server times, so don't set the args time fields */
1397 vap->va_mask &= ~(AT_ATIME | AT_MTIME);
1398 error = vattr_to_sattr3(vap, &args.new_attributes);
1399 vap->va_mask |= (mask & (AT_ATIME | AT_MTIME));
1400 if (mask & AT_ATIME) {
1401 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
1402 }
1403 if (mask & AT_MTIME) {
1404 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
1405 }
1406 } else {
1407 /* Either do not set times or use the client specified times */
1408 error = vattr_to_sattr3(vap, &args.new_attributes);
1409 }
1410
1411 if (error) {
1412 /* req time field(s) overflow - return immediately */
1413 return (error);
1414 }
1415
1416 va.va_mask = AT_MODE | AT_CTIME;
1417 error = nfs3getattr(vp, &va, cr);
1418 if (error)
1419 return (error);
1420 omode = va.va_mode;
1421
1422 tryagain:
1423 if (mask & AT_SIZE) {
1424 args.guard.check = TRUE;
1425 args.guard.obj_ctime.seconds = va.va_ctime.tv_sec;
1426 args.guard.obj_ctime.nseconds = va.va_ctime.tv_nsec;
1427 } else
1428 args.guard.check = FALSE;
1429
1430 douprintf = 1;
1431
1432 t = gethrtime();
1433
1434 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
1435 xdr_SETATTR3args, (caddr_t)&args,
1436 xdr_SETATTR3res, (caddr_t)&res, cr,
1437 &douprintf, &res.status, 0, NULL);
1438
1439 /*
1440 * Purge the access cache and ACL cache if changing either the
1441 * owner of the file, the group owner, or the mode. These may
1442 * change the access permissions of the file, so purge old
1443 * information and start over again.
1444 */
1445 if (mask & (AT_UID | AT_GID | AT_MODE)) {
1446 (void) nfs_access_purge_rp(rp);
1447 if (rp->r_secattr != NULL) {
1448 mutex_enter(&rp->r_statelock);
1449 vsp = rp->r_secattr;
1450 rp->r_secattr = NULL;
1451 mutex_exit(&rp->r_statelock);
1452 if (vsp != NULL)
1453 nfs_acl_free(vsp);
1454 }
1455 }
1456
1457 if (error) {
1458 PURGE_ATTRCACHE(vp);
1459 return (error);
1460 }
1461
1462 error = geterrno3(res.status);
1463 if (!error) {
1464 /*
1465 * If changing the size of the file, invalidate
1466 * any local cached data which is no longer part
1467 * of the file. We also possibly invalidate the
1468 * last page in the file. We could use
1469 * pvn_vpzero(), but this would mark the page as
1470 * modified and require it to be written back to
1471 * the server for no particularly good reason.
1472 * This way, if we access it, then we bring it
1473 * back in. A read should be cheaper than a
1474 * write.
1475 */
1476 if (mask & AT_SIZE) {
1477 nfs_invalidate_pages(vp,
1478 (vap->va_size & PAGEMASK), cr);
1479 }
1480 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
1481 /*
1482 * Some servers will change the mode to clear the setuid
1483 * and setgid bits when changing the uid or gid. The
1484 * client needs to compensate appropriately.
1485 */
1486 if (mask & (AT_UID | AT_GID)) {
1487 int terror;
1488
1489 va.va_mask = AT_MODE;
1490 terror = nfs3getattr(vp, &va, cr);
1491 if (!terror &&
1492 (((mask & AT_MODE) && va.va_mode != vap->va_mode) ||
1493 (!(mask & AT_MODE) && va.va_mode != omode))) {
1494 va.va_mask = AT_MODE;
1495 if (mask & AT_MODE)
1496 va.va_mode = vap->va_mode;
1497 else
1498 va.va_mode = omode;
1499 (void) nfs3setattr(vp, &va, 0, cr);
1500 }
1501 }
1502 } else {
1503 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
1504 /*
1505 * If we got back a "not synchronized" error, then
1506 * we need to retry with a new guard value. The
1507 * guard value used is the change time. If the
1508 * server returned post_op_attr, then we can just
1509 * retry because we have the latest attributes.
1510 * Otherwise, we issue a GETATTR to get the latest
1511 * attributes and then retry. If we couldn't get
1512 * the attributes this way either, then we give
1513 * up because we can't complete the operation as
1514 * required.
1515 */
1516 if (res.status == NFS3ERR_NOT_SYNC) {
1517 va.va_mask = AT_CTIME;
1518 if (nfs3getattr(vp, &va, cr) == 0)
1519 goto tryagain;
1520 }
1521 PURGE_STALE_FH(error, vp, cr);
1522 }
1523
1524 return (error);
1525 }
1526
1527 static int
nfs3_accessx(void * vp,int mode,cred_t * cr)1528 nfs3_accessx(void *vp, int mode, cred_t *cr)
1529 {
1530 ASSERT(nfs_zone() == VTOMI((vnode_t *)vp)->mi_zone);
1531 return (nfs3_access(vp, mode, 0, cr, NULL));
1532 }
1533
1534 /* ARGSUSED */
1535 static int
nfs3_access(vnode_t * vp,int mode,int flags,cred_t * cr,caller_context_t * ct)1536 nfs3_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
1537 {
1538 int error;
1539 ACCESS3args args;
1540 ACCESS3res res;
1541 int douprintf;
1542 uint32 acc;
1543 rnode_t *rp;
1544 cred_t *cred, *ncr, *ncrfree = NULL;
1545 failinfo_t fi;
1546 nfs_access_type_t cacc;
1547 hrtime_t t;
1548
1549 acc = 0;
1550 if (nfs_zone() != VTOMI(vp)->mi_zone)
1551 return (EIO);
1552 if (mode & VREAD)
1553 acc |= ACCESS3_READ;
1554 if (mode & VWRITE) {
1555 if (vn_is_readonly(vp) && !IS_DEVVP(vp))
1556 return (EROFS);
1557 if (vp->v_type == VDIR)
1558 acc |= ACCESS3_DELETE;
1559 acc |= ACCESS3_MODIFY | ACCESS3_EXTEND;
1560 }
1561 if (mode & VEXEC) {
1562 if (vp->v_type == VDIR)
1563 acc |= ACCESS3_LOOKUP;
1564 else
1565 acc |= ACCESS3_EXECUTE;
1566 }
1567
1568 rp = VTOR(vp);
1569 args.object = *VTOFH3(vp);
1570 if (vp->v_type == VDIR) {
1571 args.access = ACCESS3_READ | ACCESS3_DELETE | ACCESS3_MODIFY |
1572 ACCESS3_EXTEND | ACCESS3_LOOKUP;
1573 } else {
1574 args.access = ACCESS3_READ | ACCESS3_MODIFY | ACCESS3_EXTEND |
1575 ACCESS3_EXECUTE;
1576 }
1577 fi.vp = vp;
1578 fi.fhp = (caddr_t)&args.object;
1579 fi.copyproc = nfs3copyfh;
1580 fi.lookupproc = nfs3lookup;
1581 fi.xattrdirproc = acl_getxattrdir3;
1582
1583 cred = cr;
1584 /*
1585 * ncr and ncrfree both initially
1586 * point to the memory area returned
1587 * by crnetadjust();
1588 * ncrfree not NULL when exiting means
1589 * that we need to release it
1590 */
1591 ncr = crnetadjust(cred);
1592 ncrfree = ncr;
1593 tryagain:
1594 if (rp->r_acache != NULL) {
1595 cacc = nfs_access_check(rp, acc, cred);
1596 if (cacc == NFS_ACCESS_ALLOWED) {
1597 if (ncrfree != NULL)
1598 crfree(ncrfree);
1599 return (0);
1600 }
1601 if (cacc == NFS_ACCESS_DENIED) {
1602 /*
1603 * If the cred can be adjusted, try again
1604 * with the new cred.
1605 */
1606 if (ncr != NULL) {
1607 cred = ncr;
1608 ncr = NULL;
1609 goto tryagain;
1610 }
1611 if (ncrfree != NULL)
1612 crfree(ncrfree);
1613 return (EACCES);
1614 }
1615 }
1616
1617 douprintf = 1;
1618
1619 t = gethrtime();
1620
1621 error = rfs3call(VTOMI(vp), NFSPROC3_ACCESS,
1622 xdr_ACCESS3args, (caddr_t)&args,
1623 xdr_ACCESS3res, (caddr_t)&res, cred,
1624 &douprintf, &res.status, 0, &fi);
1625
1626 if (error) {
1627 if (ncrfree != NULL)
1628 crfree(ncrfree);
1629 return (error);
1630 }
1631
1632 error = geterrno3(res.status);
1633 if (!error) {
1634 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
1635 nfs_access_cache(rp, args.access, res.resok.access, cred);
1636 /*
1637 * we just cached results with cred; if cred is the
1638 * adjusted credentials from crnetadjust, we do not want
1639 * to release them before exiting: hence setting ncrfree
1640 * to NULL
1641 */
1642 if (cred != cr)
1643 ncrfree = NULL;
1644 if ((acc & res.resok.access) != acc) {
1645 /*
1646 * If the cred can be adjusted, try again
1647 * with the new cred.
1648 */
1649 if (ncr != NULL) {
1650 cred = ncr;
1651 ncr = NULL;
1652 goto tryagain;
1653 }
1654 error = EACCES;
1655 }
1656 } else {
1657 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
1658 PURGE_STALE_FH(error, vp, cr);
1659 }
1660
1661 if (ncrfree != NULL)
1662 crfree(ncrfree);
1663
1664 return (error);
1665 }
1666
1667 static int nfs3_do_symlink_cache = 1;
1668
1669 /* ARGSUSED */
1670 static int
nfs3_readlink(vnode_t * vp,struct uio * uiop,cred_t * cr,caller_context_t * ct)1671 nfs3_readlink(vnode_t *vp, struct uio *uiop, cred_t *cr, caller_context_t *ct)
1672 {
1673 int error;
1674 READLINK3args args;
1675 READLINK3res res;
1676 nfspath3 resdata_backup;
1677 rnode_t *rp;
1678 int douprintf;
1679 int len;
1680 failinfo_t fi;
1681 hrtime_t t;
1682
1683 /*
1684 * Can't readlink anything other than a symbolic link.
1685 */
1686 if (vp->v_type != VLNK)
1687 return (EINVAL);
1688 if (nfs_zone() != VTOMI(vp)->mi_zone)
1689 return (EIO);
1690
1691 rp = VTOR(vp);
1692 if (nfs3_do_symlink_cache && rp->r_symlink.contents != NULL) {
1693 error = nfs3_validate_caches(vp, cr);
1694 if (error)
1695 return (error);
1696 mutex_enter(&rp->r_statelock);
1697 if (rp->r_symlink.contents != NULL) {
1698 error = uiomove(rp->r_symlink.contents,
1699 rp->r_symlink.len, UIO_READ, uiop);
1700 mutex_exit(&rp->r_statelock);
1701 return (error);
1702 }
1703 mutex_exit(&rp->r_statelock);
1704 }
1705
1706 args.symlink = *VTOFH3(vp);
1707 fi.vp = vp;
1708 fi.fhp = (caddr_t)&args.symlink;
1709 fi.copyproc = nfs3copyfh;
1710 fi.lookupproc = nfs3lookup;
1711 fi.xattrdirproc = acl_getxattrdir3;
1712
1713 res.resok.data = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1714
1715 resdata_backup = res.resok.data;
1716
1717 douprintf = 1;
1718
1719 t = gethrtime();
1720
1721 error = rfs3call(VTOMI(vp), NFSPROC3_READLINK,
1722 xdr_READLINK3args, (caddr_t)&args,
1723 xdr_READLINK3res, (caddr_t)&res, cr,
1724 &douprintf, &res.status, 0, &fi);
1725
1726 if (res.resok.data == nfs3nametoolong)
1727 error = EINVAL;
1728
1729 if (error) {
1730 kmem_free(resdata_backup, MAXPATHLEN);
1731 return (error);
1732 }
1733
1734 error = geterrno3(res.status);
1735 if (!error) {
1736 nfs3_cache_post_op_attr(vp, &res.resok.symlink_attributes, t,
1737 cr);
1738 len = strlen(res.resok.data);
1739 error = uiomove(res.resok.data, len, UIO_READ, uiop);
1740 if (nfs3_do_symlink_cache && rp->r_symlink.contents == NULL) {
1741 mutex_enter(&rp->r_statelock);
1742 if (rp->r_symlink.contents == NULL) {
1743 rp->r_symlink.contents = res.resok.data;
1744 rp->r_symlink.len = len;
1745 rp->r_symlink.size = MAXPATHLEN;
1746 mutex_exit(&rp->r_statelock);
1747 } else {
1748 mutex_exit(&rp->r_statelock);
1749
1750 kmem_free((void *)res.resok.data, MAXPATHLEN);
1751 }
1752 } else {
1753 kmem_free((void *)res.resok.data, MAXPATHLEN);
1754 }
1755 } else {
1756 nfs3_cache_post_op_attr(vp,
1757 &res.resfail.symlink_attributes, t, cr);
1758 PURGE_STALE_FH(error, vp, cr);
1759
1760 kmem_free((void *)res.resok.data, MAXPATHLEN);
1761
1762 }
1763
1764 /*
1765 * The over the wire error for attempting to readlink something
1766 * other than a symbolic link is ENXIO. However, we need to
1767 * return EINVAL instead of ENXIO, so we map it here.
1768 */
1769 return (error == ENXIO ? EINVAL : error);
1770 }
1771
1772 /*
1773 * Flush local dirty pages to stable storage on the server.
1774 *
1775 * If FNODSYNC is specified, then there is nothing to do because
1776 * metadata changes are not cached on the client before being
1777 * sent to the server.
1778 */
1779 /* ARGSUSED */
1780 static int
nfs3_fsync(vnode_t * vp,int syncflag,cred_t * cr,caller_context_t * ct)1781 nfs3_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
1782 {
1783 int error;
1784
1785 if ((syncflag & FNODSYNC) || IS_SWAPVP(vp))
1786 return (0);
1787 if (nfs_zone() != VTOMI(vp)->mi_zone)
1788 return (EIO);
1789
1790 error = nfs3_putpage_commit(vp, (offset_t)0, 0, cr);
1791 if (!error)
1792 error = VTOR(vp)->r_error;
1793 return (error);
1794 }
1795
1796 /*
1797 * Weirdness: if the file was removed or the target of a rename
1798 * operation while it was open, it got renamed instead. Here we
1799 * remove the renamed file.
1800 */
1801 /* ARGSUSED */
1802 static void
nfs3_inactive(vnode_t * vp,cred_t * cr,caller_context_t * ct)1803 nfs3_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1804 {
1805 rnode_t *rp;
1806
1807 ASSERT(vp != DNLC_NO_VNODE);
1808
1809 /*
1810 * If this is coming from the wrong zone, we let someone in the right
1811 * zone take care of it asynchronously. We can get here due to
1812 * VN_RELE() being called from pageout() or fsflush(). This call may
1813 * potentially turn into an expensive no-op if, for instance, v_count
1814 * gets incremented in the meantime, but it's still correct.
1815 */
1816 if (nfs_zone() != VTOMI(vp)->mi_zone) {
1817 nfs_async_inactive(vp, cr, nfs3_inactive);
1818 return;
1819 }
1820
1821 rp = VTOR(vp);
1822 redo:
1823 if (rp->r_unldvp != NULL) {
1824 /*
1825 * Save the vnode pointer for the directory where the
1826 * unlinked-open file got renamed, then set it to NULL
1827 * to prevent another thread from getting here before
1828 * we're done with the remove. While we have the
1829 * statelock, make local copies of the pertinent rnode
1830 * fields. If we weren't to do this in an atomic way, the
1831 * the unl* fields could become inconsistent with respect
1832 * to each other due to a race condition between this
1833 * code and nfs_remove(). See bug report 1034328.
1834 */
1835 mutex_enter(&rp->r_statelock);
1836 if (rp->r_unldvp != NULL) {
1837 vnode_t *unldvp;
1838 char *unlname;
1839 cred_t *unlcred;
1840 REMOVE3args args;
1841 REMOVE3res res;
1842 int douprintf;
1843 int error;
1844 hrtime_t t;
1845
1846 unldvp = rp->r_unldvp;
1847 rp->r_unldvp = NULL;
1848 unlname = rp->r_unlname;
1849 rp->r_unlname = NULL;
1850 unlcred = rp->r_unlcred;
1851 rp->r_unlcred = NULL;
1852 mutex_exit(&rp->r_statelock);
1853
1854 /*
1855 * If there are any dirty pages left, then flush
1856 * them. This is unfortunate because they just
1857 * may get thrown away during the remove operation,
1858 * but we have to do this for correctness.
1859 */
1860 if (vn_has_cached_data(vp) &&
1861 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
1862 ASSERT(vp->v_type != VCHR);
1863 error = nfs3_putpage(vp, (offset_t)0, 0, 0,
1864 cr, ct);
1865 if (error) {
1866 mutex_enter(&rp->r_statelock);
1867 if (!rp->r_error)
1868 rp->r_error = error;
1869 mutex_exit(&rp->r_statelock);
1870 }
1871 }
1872
1873 /*
1874 * Do the remove operation on the renamed file
1875 */
1876 setdiropargs3(&args.object, unlname, unldvp);
1877
1878 douprintf = 1;
1879
1880 t = gethrtime();
1881
1882 error = rfs3call(VTOMI(unldvp), NFSPROC3_REMOVE,
1883 xdr_diropargs3, (caddr_t)&args,
1884 xdr_REMOVE3res, (caddr_t)&res, unlcred,
1885 &douprintf, &res.status, 0, NULL);
1886
1887 if (error) {
1888 PURGE_ATTRCACHE(unldvp);
1889 } else {
1890 error = geterrno3(res.status);
1891 if (!error) {
1892 nfs3_cache_wcc_data(unldvp,
1893 &res.resok.dir_wcc, t, cr);
1894 if (HAVE_RDDIR_CACHE(VTOR(unldvp)))
1895 nfs_purge_rddir_cache(unldvp);
1896 } else {
1897 nfs3_cache_wcc_data(unldvp,
1898 &res.resfail.dir_wcc, t, cr);
1899 PURGE_STALE_FH(error, unldvp, cr);
1900 }
1901 }
1902
1903 /*
1904 * Release stuff held for the remove
1905 */
1906 VN_RELE(unldvp);
1907 kmem_free(unlname, MAXNAMELEN);
1908 crfree(unlcred);
1909 goto redo;
1910 }
1911 mutex_exit(&rp->r_statelock);
1912 }
1913
1914 rp_addfree(rp, cr);
1915 }
1916
1917 /*
1918 * Remote file system operations having to do with directory manipulation.
1919 */
1920
1921 /* ARGSUSED */
1922 static int
nfs3_lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,caller_context_t * ct,int * direntflags,pathname_t * realpnp)1923 nfs3_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1924 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1925 int *direntflags, pathname_t *realpnp)
1926 {
1927 int error;
1928 vnode_t *vp;
1929 vnode_t *avp = NULL;
1930 rnode_t *drp;
1931
1932 if (nfs_zone() != VTOMI(dvp)->mi_zone)
1933 return (EPERM);
1934
1935 drp = VTOR(dvp);
1936
1937 /*
1938 * Are we looking up extended attributes? If so, "dvp" is
1939 * the file or directory for which we want attributes, and
1940 * we need a lookup of the hidden attribute directory
1941 * before we lookup the rest of the path.
1942 */
1943 if (flags & LOOKUP_XATTR) {
1944 bool_t cflag = ((flags & CREATE_XATTR_DIR) != 0);
1945 mntinfo_t *mi;
1946
1947 mi = VTOMI(dvp);
1948 if (!(mi->mi_flags & MI_EXTATTR))
1949 return (EINVAL);
1950
1951 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp)))
1952 return (EINTR);
1953
1954 (void) nfs3lookup_dnlc(dvp, XATTR_DIR_NAME, &avp, cr);
1955 if (avp == NULL)
1956 error = acl_getxattrdir3(dvp, &avp, cflag, cr, 0);
1957 else
1958 error = 0;
1959
1960 nfs_rw_exit(&drp->r_rwlock);
1961
1962 if (error) {
1963 if (mi->mi_flags & MI_EXTATTR)
1964 return (error);
1965 return (EINVAL);
1966 }
1967 dvp = avp;
1968 drp = VTOR(dvp);
1969 }
1970
1971 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_READER, INTR(dvp))) {
1972 error = EINTR;
1973 goto out;
1974 }
1975
1976 error = nfs3lookup(dvp, nm, vpp, pnp, flags, rdir, cr, 0);
1977
1978 nfs_rw_exit(&drp->r_rwlock);
1979
1980 /*
1981 * If vnode is a device, create special vnode.
1982 */
1983 if (!error && IS_DEVVP(*vpp)) {
1984 vp = *vpp;
1985 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
1986 VN_RELE(vp);
1987 }
1988
1989 out:
1990 if (avp != NULL)
1991 VN_RELE(avp);
1992
1993 return (error);
1994 }
1995
1996 static int nfs3_lookup_neg_cache = 1;
1997
1998 #ifdef DEBUG
1999 static int nfs3_lookup_dnlc_hits = 0;
2000 static int nfs3_lookup_dnlc_misses = 0;
2001 static int nfs3_lookup_dnlc_neg_hits = 0;
2002 static int nfs3_lookup_dnlc_disappears = 0;
2003 static int nfs3_lookup_dnlc_lookups = 0;
2004 #endif
2005
2006 /* ARGSUSED */
2007 int
nfs3lookup(vnode_t * dvp,char * nm,vnode_t ** vpp,struct pathname * pnp,int flags,vnode_t * rdir,cred_t * cr,int rfscall_flags)2008 nfs3lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
2009 int flags, vnode_t *rdir, cred_t *cr, int rfscall_flags)
2010 {
2011 int error;
2012 rnode_t *drp;
2013
2014 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2015 /*
2016 * If lookup is for "", just return dvp. Don't need
2017 * to send it over the wire, look it up in the dnlc,
2018 * or perform any access checks.
2019 */
2020 if (*nm == '\0') {
2021 VN_HOLD(dvp);
2022 *vpp = dvp;
2023 return (0);
2024 }
2025
2026 /*
2027 * Can't do lookups in non-directories.
2028 */
2029 if (dvp->v_type != VDIR)
2030 return (ENOTDIR);
2031
2032 /*
2033 * If we're called with RFSCALL_SOFT, it's important that
2034 * the only rfscall is one we make directly; if we permit
2035 * an access call because we're looking up "." or validating
2036 * a dnlc hit, we'll deadlock because that rfscall will not
2037 * have the RFSCALL_SOFT set.
2038 */
2039 if (rfscall_flags & RFSCALL_SOFT)
2040 goto callit;
2041
2042 /*
2043 * If lookup is for ".", just return dvp. Don't need
2044 * to send it over the wire or look it up in the dnlc,
2045 * just need to check access.
2046 */
2047 if (strcmp(nm, ".") == 0) {
2048 error = nfs3_access(dvp, VEXEC, 0, cr, NULL);
2049 if (error)
2050 return (error);
2051 VN_HOLD(dvp);
2052 *vpp = dvp;
2053 return (0);
2054 }
2055
2056 drp = VTOR(dvp);
2057 if (!(drp->r_flags & RLOOKUP)) {
2058 mutex_enter(&drp->r_statelock);
2059 drp->r_flags |= RLOOKUP;
2060 mutex_exit(&drp->r_statelock);
2061 }
2062
2063 /*
2064 * Lookup this name in the DNLC. If there was a valid entry,
2065 * then return the results of the lookup.
2066 */
2067 error = nfs3lookup_dnlc(dvp, nm, vpp, cr);
2068 if (error || *vpp != NULL)
2069 return (error);
2070
2071 callit:
2072 error = nfs3lookup_otw(dvp, nm, vpp, cr, rfscall_flags);
2073
2074 return (error);
2075 }
2076
2077 static int
nfs3lookup_dnlc(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr)2078 nfs3lookup_dnlc(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr)
2079 {
2080 int error;
2081 vnode_t *vp;
2082
2083 ASSERT(*nm != '\0');
2084 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2085 /*
2086 * Lookup this name in the DNLC. If successful, then validate
2087 * the caches and then recheck the DNLC. The DNLC is rechecked
2088 * just in case this entry got invalidated during the call
2089 * to nfs3_validate_caches.
2090 *
2091 * An assumption is being made that it is safe to say that a
2092 * file exists which may not on the server. Any operations to
2093 * the server will fail with ESTALE.
2094 */
2095 #ifdef DEBUG
2096 nfs3_lookup_dnlc_lookups++;
2097 #endif
2098 vp = dnlc_lookup(dvp, nm);
2099 if (vp != NULL) {
2100 VN_RELE(vp);
2101 if (vp == DNLC_NO_VNODE && !vn_is_readonly(dvp)) {
2102 PURGE_ATTRCACHE(dvp);
2103 }
2104 error = nfs3_validate_caches(dvp, cr);
2105 if (error)
2106 return (error);
2107 vp = dnlc_lookup(dvp, nm);
2108 if (vp != NULL) {
2109 error = nfs3_access(dvp, VEXEC, 0, cr, NULL);
2110 if (error) {
2111 VN_RELE(vp);
2112 return (error);
2113 }
2114 if (vp == DNLC_NO_VNODE) {
2115 VN_RELE(vp);
2116 #ifdef DEBUG
2117 nfs3_lookup_dnlc_neg_hits++;
2118 #endif
2119 return (ENOENT);
2120 }
2121 *vpp = vp;
2122 #ifdef DEBUG
2123 nfs3_lookup_dnlc_hits++;
2124 #endif
2125 return (0);
2126 }
2127 #ifdef DEBUG
2128 nfs3_lookup_dnlc_disappears++;
2129 #endif
2130 }
2131 #ifdef DEBUG
2132 else
2133 nfs3_lookup_dnlc_misses++;
2134 #endif
2135
2136 *vpp = NULL;
2137
2138 return (0);
2139 }
2140
2141 static int
nfs3lookup_otw(vnode_t * dvp,char * nm,vnode_t ** vpp,cred_t * cr,int rfscall_flags)2142 nfs3lookup_otw(vnode_t *dvp, char *nm, vnode_t **vpp, cred_t *cr,
2143 int rfscall_flags)
2144 {
2145 int error;
2146 LOOKUP3args args;
2147 LOOKUP3vres res;
2148 int douprintf;
2149 struct vattr vattr;
2150 struct vattr dvattr;
2151 vnode_t *vp;
2152 failinfo_t fi;
2153 hrtime_t t;
2154
2155 ASSERT(*nm != '\0');
2156 ASSERT(dvp->v_type == VDIR);
2157 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2158
2159 setdiropargs3(&args.what, nm, dvp);
2160
2161 fi.vp = dvp;
2162 fi.fhp = (caddr_t)&args.what.dir;
2163 fi.copyproc = nfs3copyfh;
2164 fi.lookupproc = nfs3lookup;
2165 fi.xattrdirproc = acl_getxattrdir3;
2166 res.obj_attributes.fres.vp = dvp;
2167 res.obj_attributes.fres.vap = &vattr;
2168 res.dir_attributes.fres.vp = dvp;
2169 res.dir_attributes.fres.vap = &dvattr;
2170
2171 douprintf = 1;
2172
2173 t = gethrtime();
2174
2175 error = rfs3call(VTOMI(dvp), NFSPROC3_LOOKUP,
2176 xdr_diropargs3, (caddr_t)&args,
2177 xdr_LOOKUP3vres, (caddr_t)&res, cr,
2178 &douprintf, &res.status, rfscall_flags, &fi);
2179
2180 if (error)
2181 return (error);
2182
2183 nfs3_cache_post_op_vattr(dvp, &res.dir_attributes, t, cr);
2184
2185 error = geterrno3(res.status);
2186 if (error) {
2187 PURGE_STALE_FH(error, dvp, cr);
2188 if (error == ENOENT && nfs3_lookup_neg_cache)
2189 dnlc_enter(dvp, nm, DNLC_NO_VNODE);
2190 return (error);
2191 }
2192
2193 if (res.obj_attributes.attributes) {
2194 vp = makenfs3node_va(&res.object, res.obj_attributes.fres.vap,
2195 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
2196 } else {
2197 vp = makenfs3node_va(&res.object, NULL,
2198 dvp->v_vfsp, t, cr, VTOR(dvp)->r_path, nm);
2199 if (vp->v_type == VNON) {
2200 vattr.va_mask = AT_TYPE;
2201 error = nfs3getattr(vp, &vattr, cr);
2202 if (error) {
2203 VN_RELE(vp);
2204 return (error);
2205 }
2206 vp->v_type = vattr.va_type;
2207 }
2208 }
2209
2210 if (!(rfscall_flags & RFSCALL_SOFT))
2211 dnlc_update(dvp, nm, vp);
2212
2213 *vpp = vp;
2214
2215 return (error);
2216 }
2217
2218 #ifdef DEBUG
2219 static int nfs3_create_misses = 0;
2220 #endif
2221
2222 /* ARGSUSED */
2223 static int
nfs3_create(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr,int lfaware,caller_context_t * ct,vsecattr_t * vsecp)2224 nfs3_create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2225 int mode, vnode_t **vpp, cred_t *cr, int lfaware, caller_context_t *ct,
2226 vsecattr_t *vsecp)
2227 {
2228 int error;
2229 vnode_t *vp;
2230 rnode_t *rp;
2231 struct vattr vattr;
2232 rnode_t *drp;
2233 vnode_t *tempvp;
2234
2235 drp = VTOR(dvp);
2236 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2237 return (EPERM);
2238 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2239 return (EINTR);
2240
2241 top:
2242 /*
2243 * We make a copy of the attributes because the caller does not
2244 * expect us to change what va points to.
2245 */
2246 vattr = *va;
2247
2248 /*
2249 * If the pathname is "", just use dvp. Don't need
2250 * to send it over the wire, look it up in the dnlc,
2251 * or perform any access checks.
2252 */
2253 if (*nm == '\0') {
2254 error = 0;
2255 VN_HOLD(dvp);
2256 vp = dvp;
2257 /*
2258 * If the pathname is ".", just use dvp. Don't need
2259 * to send it over the wire or look it up in the dnlc,
2260 * just need to check access.
2261 */
2262 } else if (strcmp(nm, ".") == 0) {
2263 error = nfs3_access(dvp, VEXEC, 0, cr, ct);
2264 if (error) {
2265 nfs_rw_exit(&drp->r_rwlock);
2266 return (error);
2267 }
2268 VN_HOLD(dvp);
2269 vp = dvp;
2270 /*
2271 * We need to go over the wire, just to be sure whether the
2272 * file exists or not. Using the DNLC can be dangerous in
2273 * this case when making a decision regarding existence.
2274 */
2275 } else {
2276 error = nfs3lookup_otw(dvp, nm, &vp, cr, 0);
2277 }
2278 if (!error) {
2279 if (exclusive == EXCL)
2280 error = EEXIST;
2281 else if (vp->v_type == VDIR && (mode & VWRITE))
2282 error = EISDIR;
2283 else {
2284 /*
2285 * If vnode is a device, create special vnode.
2286 */
2287 if (IS_DEVVP(vp)) {
2288 tempvp = vp;
2289 vp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2290 VN_RELE(tempvp);
2291 }
2292 if (!(error = VOP_ACCESS(vp, mode, 0, cr, ct))) {
2293 if ((vattr.va_mask & AT_SIZE) &&
2294 vp->v_type == VREG) {
2295 rp = VTOR(vp);
2296 /*
2297 * Check here for large file handled
2298 * by LF-unaware process (as
2299 * ufs_create() does)
2300 */
2301 if (!(lfaware & FOFFMAX)) {
2302 mutex_enter(&rp->r_statelock);
2303 if (rp->r_size > MAXOFF32_T)
2304 error = EOVERFLOW;
2305 mutex_exit(&rp->r_statelock);
2306 }
2307 if (!error) {
2308 vattr.va_mask = AT_SIZE;
2309 error = nfs3setattr(vp,
2310 &vattr, 0, cr);
2311
2312 /*
2313 * Existing file was truncated;
2314 * emit a create event.
2315 */
2316 vnevent_create(vp, ct);
2317 }
2318 }
2319 }
2320 }
2321 nfs_rw_exit(&drp->r_rwlock);
2322 if (error) {
2323 VN_RELE(vp);
2324 } else {
2325 *vpp = vp;
2326 }
2327
2328 return (error);
2329 }
2330
2331 dnlc_remove(dvp, nm);
2332
2333 /*
2334 * Decide what the group-id of the created file should be.
2335 * Set it in attribute list as advisory...
2336 */
2337 error = setdirgid(dvp, &vattr.va_gid, cr);
2338 if (error) {
2339 nfs_rw_exit(&drp->r_rwlock);
2340 return (error);
2341 }
2342 vattr.va_mask |= AT_GID;
2343
2344 ASSERT(vattr.va_mask & AT_TYPE);
2345 if (vattr.va_type == VREG) {
2346 ASSERT(vattr.va_mask & AT_MODE);
2347 if (MANDMODE(vattr.va_mode)) {
2348 nfs_rw_exit(&drp->r_rwlock);
2349 return (EACCES);
2350 }
2351 error = nfs3create(dvp, nm, &vattr, exclusive, mode, vpp, cr,
2352 lfaware);
2353 /*
2354 * If this is not an exclusive create, then the CREATE
2355 * request will be made with the GUARDED mode set. This
2356 * means that the server will return EEXIST if the file
2357 * exists. The file could exist because of a retransmitted
2358 * request. In this case, we recover by starting over and
2359 * checking to see whether the file exists. This second
2360 * time through it should and a CREATE request will not be
2361 * sent.
2362 *
2363 * This handles the problem of a dangling CREATE request
2364 * which contains attributes which indicate that the file
2365 * should be truncated. This retransmitted request could
2366 * possibly truncate valid data in the file if not caught
2367 * by the duplicate request mechanism on the server or if
2368 * not caught by other means. The scenario is:
2369 *
2370 * Client transmits CREATE request with size = 0
2371 * Client times out, retransmits request.
2372 * Response to the first request arrives from the server
2373 * and the client proceeds on.
2374 * Client writes data to the file.
2375 * The server now processes retransmitted CREATE request
2376 * and truncates file.
2377 *
2378 * The use of the GUARDED CREATE request prevents this from
2379 * happening because the retransmitted CREATE would fail
2380 * with EEXIST and would not truncate the file.
2381 */
2382 if (error == EEXIST && exclusive == NONEXCL) {
2383 #ifdef DEBUG
2384 nfs3_create_misses++;
2385 #endif
2386 goto top;
2387 }
2388 nfs_rw_exit(&drp->r_rwlock);
2389 return (error);
2390 }
2391 error = nfs3mknod(dvp, nm, &vattr, exclusive, mode, vpp, cr);
2392 nfs_rw_exit(&drp->r_rwlock);
2393 return (error);
2394 }
2395
2396 /* ARGSUSED */
2397 static int
nfs3create(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr,int lfaware)2398 nfs3create(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2399 int mode, vnode_t **vpp, cred_t *cr, int lfaware)
2400 {
2401 int error;
2402 CREATE3args args;
2403 CREATE3res res;
2404 int douprintf;
2405 vnode_t *vp;
2406 struct vattr vattr;
2407 nfstime3 *verfp;
2408 rnode_t *rp;
2409 timestruc_t now;
2410 hrtime_t t;
2411
2412 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2413 setdiropargs3(&args.where, nm, dvp);
2414 if (exclusive == EXCL) {
2415 args.how.mode = EXCLUSIVE;
2416 /*
2417 * Construct the create verifier. This verifier needs
2418 * to be unique between different clients. It also needs
2419 * to vary for each exclusive create request generated
2420 * from the client to the server.
2421 *
2422 * The first attempt is made to use the hostid and a
2423 * unique number on the client. If the hostid has not
2424 * been set, the high resolution time that the exclusive
2425 * create request is being made is used. This will work
2426 * unless two different clients, both with the hostid
2427 * not set, attempt an exclusive create request on the
2428 * same file, at exactly the same clock time. The
2429 * chances of this happening seem small enough to be
2430 * reasonable.
2431 */
2432 verfp = (nfstime3 *)&args.how.createhow3_u.verf;
2433 verfp->seconds = zone_get_hostid(NULL);
2434 if (verfp->seconds != 0)
2435 verfp->nseconds = newnum();
2436 else {
2437 gethrestime(&now);
2438 verfp->seconds = now.tv_sec;
2439 verfp->nseconds = now.tv_nsec;
2440 }
2441 /*
2442 * Since the server will use this value for the mtime,
2443 * make sure that it can't overflow. Zero out the MSB.
2444 * The actual value does not matter here, only its uniqeness.
2445 */
2446 verfp->seconds %= INT32_MAX;
2447 } else {
2448 /*
2449 * Issue the non-exclusive create in guarded mode. This
2450 * may result in some false EEXIST responses for
2451 * retransmitted requests, but these will be handled at
2452 * a higher level. By using GUARDED, duplicate requests
2453 * to do file truncation and possible access problems
2454 * can be avoided.
2455 */
2456 args.how.mode = GUARDED;
2457 error = vattr_to_sattr3(va,
2458 &args.how.createhow3_u.obj_attributes);
2459 if (error) {
2460 /* req time field(s) overflow - return immediately */
2461 return (error);
2462 }
2463 }
2464
2465 douprintf = 1;
2466
2467 t = gethrtime();
2468
2469 error = rfs3call(VTOMI(dvp), NFSPROC3_CREATE,
2470 xdr_CREATE3args, (caddr_t)&args,
2471 xdr_CREATE3res, (caddr_t)&res, cr,
2472 &douprintf, &res.status, 0, NULL);
2473
2474 if (error) {
2475 PURGE_ATTRCACHE(dvp);
2476 return (error);
2477 }
2478
2479 error = geterrno3(res.status);
2480 if (!error) {
2481 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
2482 if (HAVE_RDDIR_CACHE(VTOR(dvp)))
2483 nfs_purge_rddir_cache(dvp);
2484
2485 /*
2486 * On exclusive create the times need to be explicitly
2487 * set to clear any potential verifier that may be stored
2488 * in one of these fields (see comment below). This
2489 * is done here to cover the case where no post op attrs
2490 * were returned or a 'invalid' time was returned in
2491 * the attributes.
2492 */
2493 if (exclusive == EXCL)
2494 va->va_mask |= (AT_MTIME | AT_ATIME);
2495
2496 if (!res.resok.obj.handle_follows) {
2497 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2498 if (error)
2499 return (error);
2500 } else {
2501 if (res.resok.obj_attributes.attributes) {
2502 vp = makenfs3node(&res.resok.obj.handle,
2503 &res.resok.obj_attributes.attr,
2504 dvp->v_vfsp, t, cr, NULL, NULL);
2505 } else {
2506 vp = makenfs3node(&res.resok.obj.handle, NULL,
2507 dvp->v_vfsp, t, cr, NULL, NULL);
2508
2509 /*
2510 * On an exclusive create, it is possible
2511 * that attributes were returned but those
2512 * postop attributes failed to decode
2513 * properly. If this is the case,
2514 * then most likely the atime or mtime
2515 * were invalid for our client; this
2516 * is caused by the server storing the
2517 * create verifier in one of the time
2518 * fields(most likely mtime).
2519 * So... we are going to setattr just the
2520 * atime/mtime to clear things up.
2521 */
2522 if (exclusive == EXCL) {
2523 if (error =
2524 nfs3excl_create_settimes(vp,
2525 va, cr)) {
2526 /*
2527 * Setting the times failed.
2528 * Remove the file and return
2529 * the error.
2530 */
2531 VN_RELE(vp);
2532 (void) nfs3_remove(dvp,
2533 nm, cr, NULL, 0);
2534 return (error);
2535 }
2536 }
2537
2538 /*
2539 * This handles the non-exclusive case
2540 * and the exclusive case where no post op
2541 * attrs were returned.
2542 */
2543 if (vp->v_type == VNON) {
2544 vattr.va_mask = AT_TYPE;
2545 error = nfs3getattr(vp, &vattr, cr);
2546 if (error) {
2547 VN_RELE(vp);
2548 return (error);
2549 }
2550 vp->v_type = vattr.va_type;
2551 }
2552 }
2553 dnlc_update(dvp, nm, vp);
2554 }
2555
2556 rp = VTOR(vp);
2557
2558 /*
2559 * Check here for large file handled by
2560 * LF-unaware process (as ufs_create() does)
2561 */
2562 if ((va->va_mask & AT_SIZE) && vp->v_type == VREG &&
2563 !(lfaware & FOFFMAX)) {
2564 mutex_enter(&rp->r_statelock);
2565 if (rp->r_size > MAXOFF32_T) {
2566 mutex_exit(&rp->r_statelock);
2567 VN_RELE(vp);
2568 return (EOVERFLOW);
2569 }
2570 mutex_exit(&rp->r_statelock);
2571 }
2572
2573 if (exclusive == EXCL &&
2574 (va->va_mask & ~(AT_GID | AT_SIZE))) {
2575 /*
2576 * If doing an exclusive create, then generate
2577 * a SETATTR to set the initial attributes.
2578 * Try to set the mtime and the atime to the
2579 * server's current time. It is somewhat
2580 * expected that these fields will be used to
2581 * store the exclusive create cookie. If not,
2582 * server implementors will need to know that
2583 * a SETATTR will follow an exclusive create
2584 * and the cookie should be destroyed if
2585 * appropriate. This work may have been done
2586 * earlier in this function if post op attrs
2587 * were not available.
2588 *
2589 * The AT_GID and AT_SIZE bits are turned off
2590 * so that the SETATTR request will not attempt
2591 * to process these. The gid will be set
2592 * separately if appropriate. The size is turned
2593 * off because it is assumed that a new file will
2594 * be created empty and if the file wasn't empty,
2595 * then the exclusive create will have failed
2596 * because the file must have existed already.
2597 * Therefore, no truncate operation is needed.
2598 */
2599 va->va_mask &= ~(AT_GID | AT_SIZE);
2600 error = nfs3setattr(vp, va, 0, cr);
2601 if (error) {
2602 /*
2603 * Couldn't correct the attributes of
2604 * the newly created file and the
2605 * attributes are wrong. Remove the
2606 * file and return an error to the
2607 * application.
2608 */
2609 VN_RELE(vp);
2610 (void) nfs3_remove(dvp, nm, cr, NULL, 0);
2611 return (error);
2612 }
2613 }
2614
2615 if (va->va_gid != rp->r_attr.va_gid) {
2616 /*
2617 * If the gid on the file isn't right, then
2618 * generate a SETATTR to attempt to change
2619 * it. This may or may not work, depending
2620 * upon the server's semantics for allowing
2621 * file ownership changes.
2622 */
2623 va->va_mask = AT_GID;
2624 (void) nfs3setattr(vp, va, 0, cr);
2625 }
2626
2627 /*
2628 * If vnode is a device create special vnode
2629 */
2630 if (IS_DEVVP(vp)) {
2631 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2632 VN_RELE(vp);
2633 } else
2634 *vpp = vp;
2635 } else {
2636 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
2637 PURGE_STALE_FH(error, dvp, cr);
2638 }
2639
2640 return (error);
2641 }
2642
2643 /*
2644 * Special setattr function to take care of rest of atime/mtime
2645 * after successful exclusive create. This function exists to avoid
2646 * handling attributes from the server; exclusive the atime/mtime fields
2647 * may be 'invalid' in client's view and therefore can not be trusted.
2648 */
2649 static int
nfs3excl_create_settimes(vnode_t * vp,struct vattr * vap,cred_t * cr)2650 nfs3excl_create_settimes(vnode_t *vp, struct vattr *vap, cred_t *cr)
2651 {
2652 int error;
2653 uint_t mask;
2654 SETATTR3args args;
2655 SETATTR3res res;
2656 int douprintf;
2657 rnode_t *rp;
2658 hrtime_t t;
2659
2660 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
2661 /* save the caller's mask so that it can be reset later */
2662 mask = vap->va_mask;
2663
2664 rp = VTOR(vp);
2665
2666 args.object = *RTOFH3(rp);
2667 args.guard.check = FALSE;
2668
2669 /* Use the mask to initialize the arguments */
2670 vap->va_mask = 0;
2671 error = vattr_to_sattr3(vap, &args.new_attributes);
2672
2673 /* We want to set just atime/mtime on this request */
2674 args.new_attributes.atime.set_it = SET_TO_SERVER_TIME;
2675 args.new_attributes.mtime.set_it = SET_TO_SERVER_TIME;
2676
2677 douprintf = 1;
2678
2679 t = gethrtime();
2680
2681 error = rfs3call(VTOMI(vp), NFSPROC3_SETATTR,
2682 xdr_SETATTR3args, (caddr_t)&args,
2683 xdr_SETATTR3res, (caddr_t)&res, cr,
2684 &douprintf, &res.status, 0, NULL);
2685
2686 if (error) {
2687 vap->va_mask = mask;
2688 return (error);
2689 }
2690
2691 error = geterrno3(res.status);
2692 if (!error) {
2693 /*
2694 * It is important to pick up the attributes.
2695 * Since this is the exclusive create path, the
2696 * attributes on the initial create were ignored
2697 * and we need these to have the correct info.
2698 */
2699 nfs3_cache_wcc_data(vp, &res.resok.obj_wcc, t, cr);
2700 /*
2701 * No need to do the atime/mtime work again so clear
2702 * the bits.
2703 */
2704 mask &= ~(AT_ATIME | AT_MTIME);
2705 } else {
2706 nfs3_cache_wcc_data(vp, &res.resfail.obj_wcc, t, cr);
2707 }
2708
2709 vap->va_mask = mask;
2710
2711 return (error);
2712 }
2713
2714 /* ARGSUSED */
2715 static int
nfs3mknod(vnode_t * dvp,char * nm,struct vattr * va,enum vcexcl exclusive,int mode,vnode_t ** vpp,cred_t * cr)2716 nfs3mknod(vnode_t *dvp, char *nm, struct vattr *va, enum vcexcl exclusive,
2717 int mode, vnode_t **vpp, cred_t *cr)
2718 {
2719 int error;
2720 MKNOD3args args;
2721 MKNOD3res res;
2722 int douprintf;
2723 vnode_t *vp;
2724 struct vattr vattr;
2725 hrtime_t t;
2726
2727 ASSERT(nfs_zone() == VTOMI(dvp)->mi_zone);
2728 switch (va->va_type) {
2729 case VCHR:
2730 case VBLK:
2731 setdiropargs3(&args.where, nm, dvp);
2732 args.what.type = (va->va_type == VCHR) ? NF3CHR : NF3BLK;
2733 error = vattr_to_sattr3(va,
2734 &args.what.mknoddata3_u.device.dev_attributes);
2735 if (error) {
2736 /* req time field(s) overflow - return immediately */
2737 return (error);
2738 }
2739 args.what.mknoddata3_u.device.spec.specdata1 =
2740 getmajor(va->va_rdev);
2741 args.what.mknoddata3_u.device.spec.specdata2 =
2742 getminor(va->va_rdev);
2743 break;
2744
2745 case VFIFO:
2746 case VSOCK:
2747 setdiropargs3(&args.where, nm, dvp);
2748 args.what.type = (va->va_type == VFIFO) ? NF3FIFO : NF3SOCK;
2749 error = vattr_to_sattr3(va,
2750 &args.what.mknoddata3_u.pipe_attributes);
2751 if (error) {
2752 /* req time field(s) overflow - return immediately */
2753 return (error);
2754 }
2755 break;
2756
2757 default:
2758 return (EINVAL);
2759 }
2760
2761 douprintf = 1;
2762
2763 t = gethrtime();
2764
2765 error = rfs3call(VTOMI(dvp), NFSPROC3_MKNOD,
2766 xdr_MKNOD3args, (caddr_t)&args,
2767 xdr_MKNOD3res, (caddr_t)&res, cr,
2768 &douprintf, &res.status, 0, NULL);
2769
2770 if (error) {
2771 PURGE_ATTRCACHE(dvp);
2772 return (error);
2773 }
2774
2775 error = geterrno3(res.status);
2776 if (!error) {
2777 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
2778 if (HAVE_RDDIR_CACHE(VTOR(dvp)))
2779 nfs_purge_rddir_cache(dvp);
2780
2781 if (!res.resok.obj.handle_follows) {
2782 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2783 if (error)
2784 return (error);
2785 } else {
2786 if (res.resok.obj_attributes.attributes) {
2787 vp = makenfs3node(&res.resok.obj.handle,
2788 &res.resok.obj_attributes.attr,
2789 dvp->v_vfsp, t, cr, NULL, NULL);
2790 } else {
2791 vp = makenfs3node(&res.resok.obj.handle, NULL,
2792 dvp->v_vfsp, t, cr, NULL, NULL);
2793 if (vp->v_type == VNON) {
2794 vattr.va_mask = AT_TYPE;
2795 error = nfs3getattr(vp, &vattr, cr);
2796 if (error) {
2797 VN_RELE(vp);
2798 return (error);
2799 }
2800 vp->v_type = vattr.va_type;
2801 }
2802
2803 }
2804 dnlc_update(dvp, nm, vp);
2805 }
2806
2807 if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
2808 va->va_mask = AT_GID;
2809 (void) nfs3setattr(vp, va, 0, cr);
2810 }
2811
2812 /*
2813 * If vnode is a device create special vnode
2814 */
2815 if (IS_DEVVP(vp)) {
2816 *vpp = specvp(vp, vp->v_rdev, vp->v_type, cr);
2817 VN_RELE(vp);
2818 } else
2819 *vpp = vp;
2820 } else {
2821 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
2822 PURGE_STALE_FH(error, dvp, cr);
2823 }
2824 return (error);
2825 }
2826
2827 /*
2828 * Weirdness: if the vnode to be removed is open
2829 * we rename it instead of removing it and nfs_inactive
2830 * will remove the new name.
2831 */
2832 /* ARGSUSED */
2833 static int
nfs3_remove(vnode_t * dvp,char * nm,cred_t * cr,caller_context_t * ct,int flags)2834 nfs3_remove(vnode_t *dvp, char *nm, cred_t *cr, caller_context_t *ct, int flags)
2835 {
2836 int error;
2837 REMOVE3args args;
2838 REMOVE3res res;
2839 vnode_t *vp;
2840 char *tmpname;
2841 int douprintf;
2842 rnode_t *rp;
2843 rnode_t *drp;
2844 hrtime_t t;
2845
2846 if (nfs_zone() != VTOMI(dvp)->mi_zone)
2847 return (EPERM);
2848 drp = VTOR(dvp);
2849 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
2850 return (EINTR);
2851
2852 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
2853 if (error) {
2854 nfs_rw_exit(&drp->r_rwlock);
2855 return (error);
2856 }
2857
2858 if (vp->v_type == VDIR && secpolicy_fs_linkdir(cr, dvp->v_vfsp)) {
2859 VN_RELE(vp);
2860 nfs_rw_exit(&drp->r_rwlock);
2861 return (EPERM);
2862 }
2863
2864 /*
2865 * First just remove the entry from the name cache, as it
2866 * is most likely the only entry for this vp.
2867 */
2868 dnlc_remove(dvp, nm);
2869
2870 /*
2871 * If the file has a v_count > 1 then there may be more than one
2872 * entry in the name cache due multiple links or an open file,
2873 * but we don't have the real reference count so flush all
2874 * possible entries.
2875 */
2876 if (vp->v_count > 1)
2877 dnlc_purge_vp(vp);
2878
2879 /*
2880 * Now we have the real reference count on the vnode
2881 */
2882 rp = VTOR(vp);
2883 mutex_enter(&rp->r_statelock);
2884 if (vp->v_count > 1 &&
2885 (rp->r_unldvp == NULL || strcmp(nm, rp->r_unlname) == 0)) {
2886 mutex_exit(&rp->r_statelock);
2887 tmpname = newname();
2888 error = nfs3rename(dvp, nm, dvp, tmpname, cr, ct);
2889 if (error)
2890 kmem_free(tmpname, MAXNAMELEN);
2891 else {
2892 mutex_enter(&rp->r_statelock);
2893 if (rp->r_unldvp == NULL) {
2894 VN_HOLD(dvp);
2895 rp->r_unldvp = dvp;
2896 if (rp->r_unlcred != NULL)
2897 crfree(rp->r_unlcred);
2898 crhold(cr);
2899 rp->r_unlcred = cr;
2900 rp->r_unlname = tmpname;
2901 } else {
2902 kmem_free(rp->r_unlname, MAXNAMELEN);
2903 rp->r_unlname = tmpname;
2904 }
2905 mutex_exit(&rp->r_statelock);
2906 }
2907 } else {
2908 mutex_exit(&rp->r_statelock);
2909 /*
2910 * We need to flush any dirty pages which happen to
2911 * be hanging around before removing the file. This
2912 * shouldn't happen very often and mostly on file
2913 * systems mounted "nocto".
2914 */
2915 if (vn_has_cached_data(vp) &&
2916 ((rp->r_flags & RDIRTY) || rp->r_count > 0)) {
2917 error = nfs3_putpage(vp, (offset_t)0, 0, 0, cr, ct);
2918 if (error && (error == ENOSPC || error == EDQUOT)) {
2919 mutex_enter(&rp->r_statelock);
2920 if (!rp->r_error)
2921 rp->r_error = error;
2922 mutex_exit(&rp->r_statelock);
2923 }
2924 }
2925
2926 setdiropargs3(&args.object, nm, dvp);
2927
2928 douprintf = 1;
2929
2930 t = gethrtime();
2931
2932 error = rfs3call(VTOMI(dvp), NFSPROC3_REMOVE,
2933 xdr_diropargs3, (caddr_t)&args,
2934 xdr_REMOVE3res, (caddr_t)&res, cr,
2935 &douprintf, &res.status, 0, NULL);
2936
2937 /*
2938 * The xattr dir may be gone after last attr is removed,
2939 * so flush it from dnlc.
2940 */
2941 if (dvp->v_flag & V_XATTRDIR)
2942 dnlc_purge_vp(dvp);
2943
2944 PURGE_ATTRCACHE(vp);
2945
2946 if (error) {
2947 PURGE_ATTRCACHE(dvp);
2948 } else {
2949 error = geterrno3(res.status);
2950 if (!error) {
2951 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t,
2952 cr);
2953 if (HAVE_RDDIR_CACHE(drp))
2954 nfs_purge_rddir_cache(dvp);
2955 } else {
2956 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc,
2957 t, cr);
2958 PURGE_STALE_FH(error, dvp, cr);
2959 }
2960 }
2961 }
2962
2963 if (error == 0) {
2964 vnevent_remove(vp, dvp, nm, ct);
2965 }
2966 VN_RELE(vp);
2967
2968 nfs_rw_exit(&drp->r_rwlock);
2969
2970 return (error);
2971 }
2972
2973 /* ARGSUSED */
2974 static int
nfs3_link(vnode_t * tdvp,vnode_t * svp,char * tnm,cred_t * cr,caller_context_t * ct,int flags)2975 nfs3_link(vnode_t *tdvp, vnode_t *svp, char *tnm, cred_t *cr,
2976 caller_context_t *ct, int flags)
2977 {
2978 int error;
2979 LINK3args args;
2980 LINK3res res;
2981 vnode_t *realvp;
2982 int douprintf;
2983 mntinfo_t *mi;
2984 rnode_t *tdrp;
2985 hrtime_t t;
2986
2987 if (nfs_zone() != VTOMI(tdvp)->mi_zone)
2988 return (EPERM);
2989 if (VOP_REALVP(svp, &realvp, ct) == 0)
2990 svp = realvp;
2991
2992 mi = VTOMI(svp);
2993
2994 if (!(mi->mi_flags & MI_LINK))
2995 return (EOPNOTSUPP);
2996
2997 args.file = *VTOFH3(svp);
2998 setdiropargs3(&args.link, tnm, tdvp);
2999
3000 tdrp = VTOR(tdvp);
3001 if (nfs_rw_enter_sig(&tdrp->r_rwlock, RW_WRITER, INTR(tdvp)))
3002 return (EINTR);
3003
3004 dnlc_remove(tdvp, tnm);
3005
3006 douprintf = 1;
3007
3008 t = gethrtime();
3009
3010 error = rfs3call(mi, NFSPROC3_LINK,
3011 xdr_LINK3args, (caddr_t)&args,
3012 xdr_LINK3res, (caddr_t)&res, cr,
3013 &douprintf, &res.status, 0, NULL);
3014
3015 if (error) {
3016 PURGE_ATTRCACHE(tdvp);
3017 PURGE_ATTRCACHE(svp);
3018 nfs_rw_exit(&tdrp->r_rwlock);
3019 return (error);
3020 }
3021
3022 error = geterrno3(res.status);
3023
3024 if (!error) {
3025 nfs3_cache_post_op_attr(svp, &res.resok.file_attributes, t, cr);
3026 nfs3_cache_wcc_data(tdvp, &res.resok.linkdir_wcc, t, cr);
3027 if (HAVE_RDDIR_CACHE(tdrp))
3028 nfs_purge_rddir_cache(tdvp);
3029 dnlc_update(tdvp, tnm, svp);
3030 } else {
3031 nfs3_cache_post_op_attr(svp, &res.resfail.file_attributes, t,
3032 cr);
3033 nfs3_cache_wcc_data(tdvp, &res.resfail.linkdir_wcc, t, cr);
3034 if (error == EOPNOTSUPP) {
3035 mutex_enter(&mi->mi_lock);
3036 mi->mi_flags &= ~MI_LINK;
3037 mutex_exit(&mi->mi_lock);
3038 }
3039 }
3040
3041 nfs_rw_exit(&tdrp->r_rwlock);
3042
3043 if (!error) {
3044 /*
3045 * Notify the source file of this link operation.
3046 */
3047 vnevent_link(svp, ct);
3048 }
3049 return (error);
3050 }
3051
3052 /* ARGSUSED */
3053 static int
nfs3_rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct,int flags)3054 nfs3_rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
3055 caller_context_t *ct, int flags)
3056 {
3057 vnode_t *realvp;
3058
3059 if (nfs_zone() != VTOMI(odvp)->mi_zone)
3060 return (EPERM);
3061 if (VOP_REALVP(ndvp, &realvp, ct) == 0)
3062 ndvp = realvp;
3063
3064 return (nfs3rename(odvp, onm, ndvp, nnm, cr, ct));
3065 }
3066
3067 /*
3068 * nfs3rename does the real work of renaming in NFS Version 3.
3069 */
3070 static int
nfs3rename(vnode_t * odvp,char * onm,vnode_t * ndvp,char * nnm,cred_t * cr,caller_context_t * ct)3071 nfs3rename(vnode_t *odvp, char *onm, vnode_t *ndvp, char *nnm, cred_t *cr,
3072 caller_context_t *ct)
3073 {
3074 int error;
3075 RENAME3args args;
3076 RENAME3res res;
3077 int douprintf;
3078 vnode_t *nvp = NULL;
3079 vnode_t *ovp = NULL;
3080 char *tmpname;
3081 rnode_t *rp;
3082 rnode_t *odrp;
3083 rnode_t *ndrp;
3084 hrtime_t t;
3085
3086 ASSERT(nfs_zone() == VTOMI(odvp)->mi_zone);
3087
3088 if (strcmp(onm, ".") == 0 || strcmp(onm, "..") == 0 ||
3089 strcmp(nnm, ".") == 0 || strcmp(nnm, "..") == 0)
3090 return (EINVAL);
3091
3092 odrp = VTOR(odvp);
3093 ndrp = VTOR(ndvp);
3094 if ((intptr_t)odrp < (intptr_t)ndrp) {
3095 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp)))
3096 return (EINTR);
3097 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp))) {
3098 nfs_rw_exit(&odrp->r_rwlock);
3099 return (EINTR);
3100 }
3101 } else {
3102 if (nfs_rw_enter_sig(&ndrp->r_rwlock, RW_WRITER, INTR(ndvp)))
3103 return (EINTR);
3104 if (nfs_rw_enter_sig(&odrp->r_rwlock, RW_WRITER, INTR(odvp))) {
3105 nfs_rw_exit(&ndrp->r_rwlock);
3106 return (EINTR);
3107 }
3108 }
3109
3110 /*
3111 * Lookup the target file. If it exists, it needs to be
3112 * checked to see whether it is a mount point and whether
3113 * it is active (open).
3114 */
3115 error = nfs3lookup(ndvp, nnm, &nvp, NULL, 0, NULL, cr, 0);
3116 if (!error) {
3117 /*
3118 * If this file has been mounted on, then just
3119 * return busy because renaming to it would remove
3120 * the mounted file system from the name space.
3121 */
3122 if (vn_mountedvfs(nvp) != NULL) {
3123 VN_RELE(nvp);
3124 nfs_rw_exit(&odrp->r_rwlock);
3125 nfs_rw_exit(&ndrp->r_rwlock);
3126 return (EBUSY);
3127 }
3128
3129 /*
3130 * Purge the name cache of all references to this vnode
3131 * so that we can check the reference count to infer
3132 * whether it is active or not.
3133 */
3134 /*
3135 * First just remove the entry from the name cache, as it
3136 * is most likely the only entry for this vp.
3137 */
3138 dnlc_remove(ndvp, nnm);
3139 /*
3140 * If the file has a v_count > 1 then there may be more
3141 * than one entry in the name cache due multiple links
3142 * or an open file, but we don't have the real reference
3143 * count so flush all possible entries.
3144 */
3145 if (nvp->v_count > 1)
3146 dnlc_purge_vp(nvp);
3147
3148 /*
3149 * If the vnode is active and is not a directory,
3150 * arrange to rename it to a
3151 * temporary file so that it will continue to be
3152 * accessible. This implements the "unlink-open-file"
3153 * semantics for the target of a rename operation.
3154 * Before doing this though, make sure that the
3155 * source and target files are not already the same.
3156 */
3157 if (nvp->v_count > 1 && nvp->v_type != VDIR) {
3158 /*
3159 * Lookup the source name.
3160 */
3161 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL,
3162 cr, 0);
3163
3164 /*
3165 * The source name *should* already exist.
3166 */
3167 if (error) {
3168 VN_RELE(nvp);
3169 nfs_rw_exit(&odrp->r_rwlock);
3170 nfs_rw_exit(&ndrp->r_rwlock);
3171 return (error);
3172 }
3173
3174 /*
3175 * Compare the two vnodes. If they are the same,
3176 * just release all held vnodes and return success.
3177 */
3178 if (ovp == nvp) {
3179 VN_RELE(ovp);
3180 VN_RELE(nvp);
3181 nfs_rw_exit(&odrp->r_rwlock);
3182 nfs_rw_exit(&ndrp->r_rwlock);
3183 return (0);
3184 }
3185
3186 /*
3187 * Can't mix and match directories and non-
3188 * directories in rename operations. We already
3189 * know that the target is not a directory. If
3190 * the source is a directory, return an error.
3191 */
3192 if (ovp->v_type == VDIR) {
3193 VN_RELE(ovp);
3194 VN_RELE(nvp);
3195 nfs_rw_exit(&odrp->r_rwlock);
3196 nfs_rw_exit(&ndrp->r_rwlock);
3197 return (ENOTDIR);
3198 }
3199
3200 /*
3201 * The target file exists, is not the same as
3202 * the source file, and is active. Link it
3203 * to a temporary filename to avoid having
3204 * the server removing the file completely.
3205 */
3206 tmpname = newname();
3207 error = nfs3_link(ndvp, nvp, tmpname, cr, NULL, 0);
3208 if (error == EOPNOTSUPP) {
3209 error = nfs3_rename(ndvp, nnm, ndvp, tmpname,
3210 cr, NULL, 0);
3211 }
3212 if (error) {
3213 kmem_free(tmpname, MAXNAMELEN);
3214 VN_RELE(ovp);
3215 VN_RELE(nvp);
3216 nfs_rw_exit(&odrp->r_rwlock);
3217 nfs_rw_exit(&ndrp->r_rwlock);
3218 return (error);
3219 }
3220 rp = VTOR(nvp);
3221 mutex_enter(&rp->r_statelock);
3222 if (rp->r_unldvp == NULL) {
3223 VN_HOLD(ndvp);
3224 rp->r_unldvp = ndvp;
3225 if (rp->r_unlcred != NULL)
3226 crfree(rp->r_unlcred);
3227 crhold(cr);
3228 rp->r_unlcred = cr;
3229 rp->r_unlname = tmpname;
3230 } else {
3231 kmem_free(rp->r_unlname, MAXNAMELEN);
3232 rp->r_unlname = tmpname;
3233 }
3234 mutex_exit(&rp->r_statelock);
3235 }
3236 }
3237
3238 if (ovp == NULL) {
3239 /*
3240 * When renaming directories to be a subdirectory of a
3241 * different parent, the dnlc entry for ".." will no
3242 * longer be valid, so it must be removed.
3243 *
3244 * We do a lookup here to determine whether we are renaming
3245 * a directory and we need to check if we are renaming
3246 * an unlinked file. This might have already been done
3247 * in previous code, so we check ovp == NULL to avoid
3248 * doing it twice.
3249 */
3250
3251 error = nfs3lookup(odvp, onm, &ovp, NULL, 0, NULL, cr, 0);
3252 /*
3253 * The source name *should* already exist.
3254 */
3255 if (error) {
3256 nfs_rw_exit(&odrp->r_rwlock);
3257 nfs_rw_exit(&ndrp->r_rwlock);
3258 if (nvp) {
3259 VN_RELE(nvp);
3260 }
3261 return (error);
3262 }
3263 ASSERT(ovp != NULL);
3264 }
3265
3266 dnlc_remove(odvp, onm);
3267 dnlc_remove(ndvp, nnm);
3268
3269 setdiropargs3(&args.from, onm, odvp);
3270 setdiropargs3(&args.to, nnm, ndvp);
3271
3272 douprintf = 1;
3273
3274 t = gethrtime();
3275
3276 error = rfs3call(VTOMI(odvp), NFSPROC3_RENAME,
3277 xdr_RENAME3args, (caddr_t)&args,
3278 xdr_RENAME3res, (caddr_t)&res, cr,
3279 &douprintf, &res.status, 0, NULL);
3280
3281 if (error) {
3282 PURGE_ATTRCACHE(odvp);
3283 PURGE_ATTRCACHE(ndvp);
3284 VN_RELE(ovp);
3285 nfs_rw_exit(&odrp->r_rwlock);
3286 nfs_rw_exit(&ndrp->r_rwlock);
3287 if (nvp) {
3288 VN_RELE(nvp);
3289 }
3290 return (error);
3291 }
3292
3293 error = geterrno3(res.status);
3294
3295 if (!error) {
3296 nfs3_cache_wcc_data(odvp, &res.resok.fromdir_wcc, t, cr);
3297 if (HAVE_RDDIR_CACHE(odrp))
3298 nfs_purge_rddir_cache(odvp);
3299 if (ndvp != odvp) {
3300 nfs3_cache_wcc_data(ndvp, &res.resok.todir_wcc, t, cr);
3301 if (HAVE_RDDIR_CACHE(ndrp))
3302 nfs_purge_rddir_cache(ndvp);
3303 }
3304 /*
3305 * when renaming directories to be a subdirectory of a
3306 * different parent, the dnlc entry for ".." will no
3307 * longer be valid, so it must be removed
3308 */
3309 rp = VTOR(ovp);
3310 if (ndvp != odvp) {
3311 if (ovp->v_type == VDIR) {
3312 dnlc_remove(ovp, "..");
3313 if (HAVE_RDDIR_CACHE(rp))
3314 nfs_purge_rddir_cache(ovp);
3315 }
3316 }
3317
3318 /*
3319 * If we are renaming the unlinked file, update the
3320 * r_unldvp and r_unlname as needed.
3321 */
3322 mutex_enter(&rp->r_statelock);
3323 if (rp->r_unldvp != NULL) {
3324 if (strcmp(rp->r_unlname, onm) == 0) {
3325 (void) strncpy(rp->r_unlname, nnm, MAXNAMELEN);
3326 rp->r_unlname[MAXNAMELEN - 1] = '\0';
3327
3328 if (ndvp != rp->r_unldvp) {
3329 VN_RELE(rp->r_unldvp);
3330 rp->r_unldvp = ndvp;
3331 VN_HOLD(ndvp);
3332 }
3333 }
3334 }
3335 mutex_exit(&rp->r_statelock);
3336 } else {
3337 nfs3_cache_wcc_data(odvp, &res.resfail.fromdir_wcc, t, cr);
3338 if (ndvp != odvp) {
3339 nfs3_cache_wcc_data(ndvp, &res.resfail.todir_wcc, t,
3340 cr);
3341 }
3342 /*
3343 * System V defines rename to return EEXIST, not
3344 * ENOTEMPTY if the target directory is not empty.
3345 * Over the wire, the error is NFSERR_ENOTEMPTY
3346 * which geterrno maps to ENOTEMPTY.
3347 */
3348 if (error == ENOTEMPTY)
3349 error = EEXIST;
3350 }
3351
3352 if (error == 0) {
3353 if (nvp)
3354 vnevent_rename_dest(nvp, ndvp, nnm, ct);
3355
3356 if (odvp != ndvp)
3357 vnevent_rename_dest_dir(ndvp, ct);
3358 ASSERT(ovp != NULL);
3359 vnevent_rename_src(ovp, odvp, onm, ct);
3360 }
3361
3362 if (nvp) {
3363 VN_RELE(nvp);
3364 }
3365 VN_RELE(ovp);
3366
3367 nfs_rw_exit(&odrp->r_rwlock);
3368 nfs_rw_exit(&ndrp->r_rwlock);
3369
3370 return (error);
3371 }
3372
3373 /* ARGSUSED */
3374 static int
nfs3_mkdir(vnode_t * dvp,char * nm,struct vattr * va,vnode_t ** vpp,cred_t * cr,caller_context_t * ct,int flags,vsecattr_t * vsecp)3375 nfs3_mkdir(vnode_t *dvp, char *nm, struct vattr *va, vnode_t **vpp, cred_t *cr,
3376 caller_context_t *ct, int flags, vsecattr_t *vsecp)
3377 {
3378 int error;
3379 MKDIR3args args;
3380 MKDIR3res res;
3381 int douprintf;
3382 struct vattr vattr;
3383 vnode_t *vp;
3384 rnode_t *drp;
3385 hrtime_t t;
3386
3387 if (nfs_zone() != VTOMI(dvp)->mi_zone)
3388 return (EPERM);
3389 setdiropargs3(&args.where, nm, dvp);
3390
3391 /*
3392 * Decide what the group-id and set-gid bit of the created directory
3393 * should be. May have to do a setattr to get the gid right.
3394 */
3395 error = setdirgid(dvp, &va->va_gid, cr);
3396 if (error)
3397 return (error);
3398 error = setdirmode(dvp, &va->va_mode, cr);
3399 if (error)
3400 return (error);
3401 va->va_mask |= AT_MODE|AT_GID;
3402
3403 error = vattr_to_sattr3(va, &args.attributes);
3404 if (error) {
3405 /* req time field(s) overflow - return immediately */
3406 return (error);
3407 }
3408
3409 drp = VTOR(dvp);
3410 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3411 return (EINTR);
3412
3413 dnlc_remove(dvp, nm);
3414
3415 douprintf = 1;
3416
3417 t = gethrtime();
3418
3419 error = rfs3call(VTOMI(dvp), NFSPROC3_MKDIR,
3420 xdr_MKDIR3args, (caddr_t)&args,
3421 xdr_MKDIR3res, (caddr_t)&res, cr,
3422 &douprintf, &res.status, 0, NULL);
3423
3424 if (error) {
3425 PURGE_ATTRCACHE(dvp);
3426 nfs_rw_exit(&drp->r_rwlock);
3427 return (error);
3428 }
3429
3430 error = geterrno3(res.status);
3431 if (!error) {
3432 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3433 if (HAVE_RDDIR_CACHE(drp))
3434 nfs_purge_rddir_cache(dvp);
3435
3436 if (!res.resok.obj.handle_follows) {
3437 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
3438 if (error) {
3439 nfs_rw_exit(&drp->r_rwlock);
3440 return (error);
3441 }
3442 } else {
3443 if (res.resok.obj_attributes.attributes) {
3444 vp = makenfs3node(&res.resok.obj.handle,
3445 &res.resok.obj_attributes.attr,
3446 dvp->v_vfsp, t, cr, NULL, NULL);
3447 } else {
3448 vp = makenfs3node(&res.resok.obj.handle, NULL,
3449 dvp->v_vfsp, t, cr, NULL, NULL);
3450 if (vp->v_type == VNON) {
3451 vattr.va_mask = AT_TYPE;
3452 error = nfs3getattr(vp, &vattr, cr);
3453 if (error) {
3454 VN_RELE(vp);
3455 nfs_rw_exit(&drp->r_rwlock);
3456 return (error);
3457 }
3458 vp->v_type = vattr.va_type;
3459 }
3460 }
3461 dnlc_update(dvp, nm, vp);
3462 }
3463 if (va->va_gid != VTOR(vp)->r_attr.va_gid) {
3464 va->va_mask = AT_GID;
3465 (void) nfs3setattr(vp, va, 0, cr);
3466 }
3467 *vpp = vp;
3468 } else {
3469 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3470 PURGE_STALE_FH(error, dvp, cr);
3471 }
3472
3473 nfs_rw_exit(&drp->r_rwlock);
3474
3475 return (error);
3476 }
3477
3478 /* ARGSUSED */
3479 static int
nfs3_rmdir(vnode_t * dvp,char * nm,vnode_t * cdir,cred_t * cr,caller_context_t * ct,int flags)3480 nfs3_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
3481 caller_context_t *ct, int flags)
3482 {
3483 int error;
3484 RMDIR3args args;
3485 RMDIR3res res;
3486 vnode_t *vp;
3487 int douprintf;
3488 rnode_t *drp;
3489 hrtime_t t;
3490
3491 if (nfs_zone() != VTOMI(dvp)->mi_zone)
3492 return (EPERM);
3493 drp = VTOR(dvp);
3494 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3495 return (EINTR);
3496
3497 /*
3498 * Attempt to prevent a rmdir(".") from succeeding.
3499 */
3500 error = nfs3lookup(dvp, nm, &vp, NULL, 0, NULL, cr, 0);
3501 if (error) {
3502 nfs_rw_exit(&drp->r_rwlock);
3503 return (error);
3504 }
3505
3506 if (vp == cdir) {
3507 VN_RELE(vp);
3508 nfs_rw_exit(&drp->r_rwlock);
3509 return (EINVAL);
3510 }
3511
3512 setdiropargs3(&args.object, nm, dvp);
3513
3514 /*
3515 * First just remove the entry from the name cache, as it
3516 * is most likely an entry for this vp.
3517 */
3518 dnlc_remove(dvp, nm);
3519
3520 /*
3521 * If there vnode reference count is greater than one, then
3522 * there may be additional references in the DNLC which will
3523 * need to be purged. First, trying removing the entry for
3524 * the parent directory and see if that removes the additional
3525 * reference(s). If that doesn't do it, then use dnlc_purge_vp
3526 * to completely remove any references to the directory which
3527 * might still exist in the DNLC.
3528 */
3529 if (vp->v_count > 1) {
3530 dnlc_remove(vp, "..");
3531 if (vp->v_count > 1)
3532 dnlc_purge_vp(vp);
3533 }
3534
3535 douprintf = 1;
3536
3537 t = gethrtime();
3538
3539 error = rfs3call(VTOMI(dvp), NFSPROC3_RMDIR,
3540 xdr_diropargs3, (caddr_t)&args,
3541 xdr_RMDIR3res, (caddr_t)&res, cr,
3542 &douprintf, &res.status, 0, NULL);
3543
3544 PURGE_ATTRCACHE(vp);
3545
3546 if (error) {
3547 PURGE_ATTRCACHE(dvp);
3548 VN_RELE(vp);
3549 nfs_rw_exit(&drp->r_rwlock);
3550 return (error);
3551 }
3552
3553 error = geterrno3(res.status);
3554 if (!error) {
3555 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3556 if (HAVE_RDDIR_CACHE(drp))
3557 nfs_purge_rddir_cache(dvp);
3558 if (HAVE_RDDIR_CACHE(VTOR(vp)))
3559 nfs_purge_rddir_cache(vp);
3560 } else {
3561 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3562 PURGE_STALE_FH(error, dvp, cr);
3563 /*
3564 * System V defines rmdir to return EEXIST, not
3565 * ENOTEMPTY if the directory is not empty. Over
3566 * the wire, the error is NFSERR_ENOTEMPTY which
3567 * geterrno maps to ENOTEMPTY.
3568 */
3569 if (error == ENOTEMPTY)
3570 error = EEXIST;
3571 }
3572
3573 if (error == 0) {
3574 vnevent_rmdir(vp, dvp, nm, ct);
3575 }
3576 VN_RELE(vp);
3577
3578 nfs_rw_exit(&drp->r_rwlock);
3579
3580 return (error);
3581 }
3582
3583 /* ARGSUSED */
3584 static int
nfs3_symlink(vnode_t * dvp,char * lnm,struct vattr * tva,char * tnm,cred_t * cr,caller_context_t * ct,int flags)3585 nfs3_symlink(vnode_t *dvp, char *lnm, struct vattr *tva, char *tnm, cred_t *cr,
3586 caller_context_t *ct, int flags)
3587 {
3588 int error;
3589 SYMLINK3args args;
3590 SYMLINK3res res;
3591 int douprintf;
3592 mntinfo_t *mi;
3593 vnode_t *vp;
3594 rnode_t *rp;
3595 char *contents;
3596 rnode_t *drp;
3597 hrtime_t t;
3598
3599 mi = VTOMI(dvp);
3600
3601 if (nfs_zone() != mi->mi_zone)
3602 return (EPERM);
3603 if (!(mi->mi_flags & MI_SYMLINK))
3604 return (EOPNOTSUPP);
3605
3606 setdiropargs3(&args.where, lnm, dvp);
3607 error = vattr_to_sattr3(tva, &args.symlink.symlink_attributes);
3608 if (error) {
3609 /* req time field(s) overflow - return immediately */
3610 return (error);
3611 }
3612 args.symlink.symlink_data = tnm;
3613
3614 drp = VTOR(dvp);
3615 if (nfs_rw_enter_sig(&drp->r_rwlock, RW_WRITER, INTR(dvp)))
3616 return (EINTR);
3617
3618 dnlc_remove(dvp, lnm);
3619
3620 douprintf = 1;
3621
3622 t = gethrtime();
3623
3624 error = rfs3call(mi, NFSPROC3_SYMLINK,
3625 xdr_SYMLINK3args, (caddr_t)&args,
3626 xdr_SYMLINK3res, (caddr_t)&res, cr,
3627 &douprintf, &res.status, 0, NULL);
3628
3629 if (error) {
3630 PURGE_ATTRCACHE(dvp);
3631 nfs_rw_exit(&drp->r_rwlock);
3632 return (error);
3633 }
3634
3635 error = geterrno3(res.status);
3636 if (!error) {
3637 nfs3_cache_wcc_data(dvp, &res.resok.dir_wcc, t, cr);
3638 if (HAVE_RDDIR_CACHE(drp))
3639 nfs_purge_rddir_cache(dvp);
3640
3641 if (res.resok.obj.handle_follows) {
3642 if (res.resok.obj_attributes.attributes) {
3643 vp = makenfs3node(&res.resok.obj.handle,
3644 &res.resok.obj_attributes.attr,
3645 dvp->v_vfsp, t, cr, NULL, NULL);
3646 } else {
3647 vp = makenfs3node(&res.resok.obj.handle, NULL,
3648 dvp->v_vfsp, t, cr, NULL, NULL);
3649 vp->v_type = VLNK;
3650 vp->v_rdev = 0;
3651 }
3652 dnlc_update(dvp, lnm, vp);
3653 rp = VTOR(vp);
3654 if (nfs3_do_symlink_cache &&
3655 rp->r_symlink.contents == NULL) {
3656
3657 contents = kmem_alloc(MAXPATHLEN,
3658 KM_NOSLEEP);
3659
3660 if (contents != NULL) {
3661 mutex_enter(&rp->r_statelock);
3662 if (rp->r_symlink.contents == NULL) {
3663 rp->r_symlink.len = strlen(tnm);
3664 bcopy(tnm, contents,
3665 rp->r_symlink.len);
3666 rp->r_symlink.contents =
3667 contents;
3668 rp->r_symlink.size = MAXPATHLEN;
3669 mutex_exit(&rp->r_statelock);
3670 } else {
3671 mutex_exit(&rp->r_statelock);
3672 kmem_free((void *)contents,
3673 MAXPATHLEN);
3674 }
3675 }
3676 }
3677 VN_RELE(vp);
3678 }
3679 } else {
3680 nfs3_cache_wcc_data(dvp, &res.resfail.dir_wcc, t, cr);
3681 PURGE_STALE_FH(error, dvp, cr);
3682 if (error == EOPNOTSUPP) {
3683 mutex_enter(&mi->mi_lock);
3684 mi->mi_flags &= ~MI_SYMLINK;
3685 mutex_exit(&mi->mi_lock);
3686 }
3687 }
3688
3689 nfs_rw_exit(&drp->r_rwlock);
3690
3691 return (error);
3692 }
3693
3694 #ifdef DEBUG
3695 static int nfs3_readdir_cache_hits = 0;
3696 static int nfs3_readdir_cache_shorts = 0;
3697 static int nfs3_readdir_cache_waits = 0;
3698 static int nfs3_readdir_cache_misses = 0;
3699 static int nfs3_readdir_readahead = 0;
3700 #endif
3701
3702 static int nfs3_shrinkreaddir = 0;
3703
3704 /*
3705 * Read directory entries.
3706 * There are some weird things to look out for here. The uio_loffset
3707 * field is either 0 or it is the offset returned from a previous
3708 * readdir. It is an opaque value used by the server to find the
3709 * correct directory block to read. The count field is the number
3710 * of blocks to read on the server. This is advisory only, the server
3711 * may return only one block's worth of entries. Entries may be compressed
3712 * on the server.
3713 */
3714 /* ARGSUSED */
3715 static int
nfs3_readdir(vnode_t * vp,struct uio * uiop,cred_t * cr,int * eofp,caller_context_t * ct,int flags)3716 nfs3_readdir(vnode_t *vp, struct uio *uiop, cred_t *cr, int *eofp,
3717 caller_context_t *ct, int flags)
3718 {
3719 int error;
3720 size_t count;
3721 rnode_t *rp;
3722 rddir_cache *rdc;
3723 rddir_cache *nrdc;
3724 rddir_cache *rrdc;
3725 #ifdef DEBUG
3726 int missed;
3727 #endif
3728 int doreadahead;
3729 rddir_cache srdc;
3730 avl_index_t where;
3731
3732 if (nfs_zone() != VTOMI(vp)->mi_zone)
3733 return (EIO);
3734 rp = VTOR(vp);
3735
3736 ASSERT(nfs_rw_lock_held(&rp->r_rwlock, RW_READER));
3737
3738 /*
3739 * Make sure that the directory cache is valid.
3740 */
3741 if (HAVE_RDDIR_CACHE(rp)) {
3742 if (nfs_disable_rddir_cache) {
3743 /*
3744 * Setting nfs_disable_rddir_cache in /etc/system
3745 * allows interoperability with servers that do not
3746 * properly update the attributes of directories.
3747 * Any cached information gets purged before an
3748 * access is made to it.
3749 */
3750 nfs_purge_rddir_cache(vp);
3751 } else {
3752 error = nfs3_validate_caches(vp, cr);
3753 if (error)
3754 return (error);
3755 }
3756 }
3757
3758 /*
3759 * It is possible that some servers may not be able to correctly
3760 * handle a large READDIR or READDIRPLUS request due to bugs in
3761 * their implementation. In order to continue to interoperate
3762 * with them, this workaround is provided to limit the maximum
3763 * size of a READDIRPLUS request to 1024. In any case, the request
3764 * size is limited to MAXBSIZE.
3765 */
3766 count = MIN(uiop->uio_iov->iov_len,
3767 nfs3_shrinkreaddir ? 1024 : MAXBSIZE);
3768
3769 nrdc = NULL;
3770 #ifdef DEBUG
3771 missed = 0;
3772 #endif
3773 top:
3774 /*
3775 * Short circuit last readdir which always returns 0 bytes.
3776 * This can be done after the directory has been read through
3777 * completely at least once. This will set r_direof which
3778 * can be used to find the value of the last cookie.
3779 */
3780 mutex_enter(&rp->r_statelock);
3781 if (rp->r_direof != NULL &&
3782 uiop->uio_loffset == rp->r_direof->nfs3_ncookie) {
3783 mutex_exit(&rp->r_statelock);
3784 #ifdef DEBUG
3785 nfs3_readdir_cache_shorts++;
3786 #endif
3787 if (eofp)
3788 *eofp = 1;
3789 if (nrdc != NULL)
3790 rddir_cache_rele(nrdc);
3791 return (0);
3792 }
3793 /*
3794 * Look for a cache entry. Cache entries are identified
3795 * by the NFS cookie value and the byte count requested.
3796 */
3797 srdc.nfs3_cookie = uiop->uio_loffset;
3798 srdc.buflen = count;
3799 rdc = avl_find(&rp->r_dir, &srdc, &where);
3800 if (rdc != NULL) {
3801 rddir_cache_hold(rdc);
3802 /*
3803 * If the cache entry is in the process of being
3804 * filled in, wait until this completes. The
3805 * RDDIRWAIT bit is set to indicate that someone
3806 * is waiting and then the thread currently
3807 * filling the entry is done, it should do a
3808 * cv_broadcast to wakeup all of the threads
3809 * waiting for it to finish.
3810 */
3811 if (rdc->flags & RDDIR) {
3812 nfs_rw_exit(&rp->r_rwlock);
3813 rdc->flags |= RDDIRWAIT;
3814 #ifdef DEBUG
3815 nfs3_readdir_cache_waits++;
3816 #endif
3817 if (!cv_wait_sig(&rdc->cv, &rp->r_statelock)) {
3818 /*
3819 * We got interrupted, probably
3820 * the user typed ^C or an alarm
3821 * fired. We free the new entry
3822 * if we allocated one.
3823 */
3824 mutex_exit(&rp->r_statelock);
3825 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3826 RW_READER, FALSE);
3827 rddir_cache_rele(rdc);
3828 if (nrdc != NULL)
3829 rddir_cache_rele(nrdc);
3830 return (EINTR);
3831 }
3832 mutex_exit(&rp->r_statelock);
3833 (void) nfs_rw_enter_sig(&rp->r_rwlock,
3834 RW_READER, FALSE);
3835 rddir_cache_rele(rdc);
3836 goto top;
3837 }
3838 /*
3839 * Check to see if a readdir is required to
3840 * fill the entry. If so, mark this entry
3841 * as being filled, remove our reference,
3842 * and branch to the code to fill the entry.
3843 */
3844 if (rdc->flags & RDDIRREQ) {
3845 rdc->flags &= ~RDDIRREQ;
3846 rdc->flags |= RDDIR;
3847 if (nrdc != NULL)
3848 rddir_cache_rele(nrdc);
3849 nrdc = rdc;
3850 mutex_exit(&rp->r_statelock);
3851 goto bottom;
3852 }
3853 #ifdef DEBUG
3854 if (!missed)
3855 nfs3_readdir_cache_hits++;
3856 #endif
3857 /*
3858 * If an error occurred while attempting
3859 * to fill the cache entry, just return it.
3860 */
3861 if (rdc->error) {
3862 error = rdc->error;
3863 mutex_exit(&rp->r_statelock);
3864 rddir_cache_rele(rdc);
3865 if (nrdc != NULL)
3866 rddir_cache_rele(nrdc);
3867 return (error);
3868 }
3869
3870 /*
3871 * The cache entry is complete and good,
3872 * copyout the dirent structs to the calling
3873 * thread.
3874 */
3875 error = uiomove(rdc->entries, rdc->entlen, UIO_READ, uiop);
3876
3877 /*
3878 * If no error occurred during the copyout,
3879 * update the offset in the uio struct to
3880 * contain the value of the next cookie
3881 * and set the eof value appropriately.
3882 */
3883 if (!error) {
3884 uiop->uio_loffset = rdc->nfs3_ncookie;
3885 if (eofp)
3886 *eofp = rdc->eof;
3887 }
3888
3889 /*
3890 * Decide whether to do readahead.
3891 *
3892 * Don't if have already read to the end of
3893 * directory. There is nothing more to read.
3894 *
3895 * Don't if the application is not doing
3896 * lookups in the directory. The readahead
3897 * is only effective if the application can
3898 * be doing work while an async thread is
3899 * handling the over the wire request.
3900 */
3901 if (rdc->eof) {
3902 rp->r_direof = rdc;
3903 doreadahead = FALSE;
3904 } else if (!(rp->r_flags & RLOOKUP))
3905 doreadahead = FALSE;
3906 else
3907 doreadahead = TRUE;
3908
3909 if (!doreadahead) {
3910 mutex_exit(&rp->r_statelock);
3911 rddir_cache_rele(rdc);
3912 if (nrdc != NULL)
3913 rddir_cache_rele(nrdc);
3914 return (error);
3915 }
3916
3917 /*
3918 * Check to see whether we found an entry
3919 * for the readahead. If so, we don't need
3920 * to do anything further, so free the new
3921 * entry if one was allocated. Otherwise,
3922 * allocate a new entry, add it to the cache,
3923 * and then initiate an asynchronous readdir
3924 * operation to fill it.
3925 */
3926 srdc.nfs3_cookie = rdc->nfs3_ncookie;
3927 srdc.buflen = count;
3928 rrdc = avl_find(&rp->r_dir, &srdc, &where);
3929 if (rrdc != NULL) {
3930 if (nrdc != NULL)
3931 rddir_cache_rele(nrdc);
3932 } else {
3933 if (nrdc != NULL)
3934 rrdc = nrdc;
3935 else {
3936 rrdc = rddir_cache_alloc(KM_NOSLEEP);
3937 }
3938 if (rrdc != NULL) {
3939 rrdc->nfs3_cookie = rdc->nfs3_ncookie;
3940 rrdc->buflen = count;
3941 avl_insert(&rp->r_dir, rrdc, where);
3942 rddir_cache_hold(rrdc);
3943 mutex_exit(&rp->r_statelock);
3944 rddir_cache_rele(rdc);
3945 #ifdef DEBUG
3946 nfs3_readdir_readahead++;
3947 #endif
3948 nfs_async_readdir(vp, rrdc, cr, do_nfs3readdir);
3949 return (error);
3950 }
3951 }
3952
3953 mutex_exit(&rp->r_statelock);
3954 rddir_cache_rele(rdc);
3955 return (error);
3956 }
3957
3958 /*
3959 * Didn't find an entry in the cache. Construct a new empty
3960 * entry and link it into the cache. Other processes attempting
3961 * to access this entry will need to wait until it is filled in.
3962 *
3963 * Since kmem_alloc may block, another pass through the cache
3964 * will need to be taken to make sure that another process
3965 * hasn't already added an entry to the cache for this request.
3966 */
3967 if (nrdc == NULL) {
3968 mutex_exit(&rp->r_statelock);
3969 nrdc = rddir_cache_alloc(KM_SLEEP);
3970 nrdc->nfs3_cookie = uiop->uio_loffset;
3971 nrdc->buflen = count;
3972 goto top;
3973 }
3974
3975 /*
3976 * Add this entry to the cache.
3977 */
3978 avl_insert(&rp->r_dir, nrdc, where);
3979 rddir_cache_hold(nrdc);
3980 mutex_exit(&rp->r_statelock);
3981
3982 bottom:
3983 #ifdef DEBUG
3984 missed = 1;
3985 nfs3_readdir_cache_misses++;
3986 #endif
3987 /*
3988 * Do the readdir. This routine decides whether to use
3989 * READDIR or READDIRPLUS.
3990 */
3991 error = do_nfs3readdir(vp, nrdc, cr);
3992
3993 /*
3994 * If this operation failed, just return the error which occurred.
3995 */
3996 if (error != 0)
3997 return (error);
3998
3999 /*
4000 * Since the RPC operation will have taken sometime and blocked
4001 * this process, another pass through the cache will need to be
4002 * taken to find the correct cache entry. It is possible that
4003 * the correct cache entry will not be there (although one was
4004 * added) because the directory changed during the RPC operation
4005 * and the readdir cache was flushed. In this case, just start
4006 * over. It is hoped that this will not happen too often... :-)
4007 */
4008 nrdc = NULL;
4009 goto top;
4010 /* NOTREACHED */
4011 }
4012
4013 static int
do_nfs3readdir(vnode_t * vp,rddir_cache * rdc,cred_t * cr)4014 do_nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4015 {
4016 int error;
4017 rnode_t *rp;
4018 mntinfo_t *mi;
4019
4020 rp = VTOR(vp);
4021 mi = VTOMI(vp);
4022 ASSERT(nfs_zone() == mi->mi_zone);
4023 /*
4024 * Issue the proper request.
4025 *
4026 * If the server does not support READDIRPLUS, then use READDIR.
4027 *
4028 * Otherwise --
4029 * Issue a READDIRPLUS if reading to fill an empty cache or if
4030 * an application has performed a lookup in the directory which
4031 * required an over the wire lookup. The use of READDIRPLUS
4032 * will help to (re)populate the DNLC.
4033 */
4034 if (!(mi->mi_flags & MI_READDIRONLY) &&
4035 (rp->r_flags & (RLOOKUP | RREADDIRPLUS))) {
4036 if (rp->r_flags & RREADDIRPLUS) {
4037 mutex_enter(&rp->r_statelock);
4038 rp->r_flags &= ~RREADDIRPLUS;
4039 mutex_exit(&rp->r_statelock);
4040 }
4041 nfs3readdirplus(vp, rdc, cr);
4042 if (rdc->error == EOPNOTSUPP)
4043 nfs3readdir(vp, rdc, cr);
4044 } else
4045 nfs3readdir(vp, rdc, cr);
4046
4047 mutex_enter(&rp->r_statelock);
4048 rdc->flags &= ~RDDIR;
4049 if (rdc->flags & RDDIRWAIT) {
4050 rdc->flags &= ~RDDIRWAIT;
4051 cv_broadcast(&rdc->cv);
4052 }
4053 error = rdc->error;
4054 if (error)
4055 rdc->flags |= RDDIRREQ;
4056 mutex_exit(&rp->r_statelock);
4057
4058 rddir_cache_rele(rdc);
4059
4060 return (error);
4061 }
4062
4063 static void
nfs3readdir(vnode_t * vp,rddir_cache * rdc,cred_t * cr)4064 nfs3readdir(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4065 {
4066 int error;
4067 READDIR3args args;
4068 READDIR3vres res;
4069 vattr_t dva;
4070 rnode_t *rp;
4071 int douprintf;
4072 failinfo_t fi, *fip = NULL;
4073 mntinfo_t *mi;
4074 hrtime_t t;
4075
4076 rp = VTOR(vp);
4077 mi = VTOMI(vp);
4078 ASSERT(nfs_zone() == mi->mi_zone);
4079
4080 args.dir = *RTOFH3(rp);
4081 args.cookie = (cookie3)rdc->nfs3_cookie;
4082 args.cookieverf = rp->r_cookieverf;
4083 args.count = rdc->buflen;
4084
4085 /*
4086 * NFS client failover support
4087 * suppress failover unless we have a zero cookie
4088 */
4089 if (args.cookie == (cookie3) 0) {
4090 fi.vp = vp;
4091 fi.fhp = (caddr_t)&args.dir;
4092 fi.copyproc = nfs3copyfh;
4093 fi.lookupproc = nfs3lookup;
4094 fi.xattrdirproc = acl_getxattrdir3;
4095 fip = &fi;
4096 }
4097
4098 #ifdef DEBUG
4099 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
4100 #else
4101 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
4102 #endif
4103
4104 res.entries = (dirent64_t *)rdc->entries;
4105 res.entries_size = rdc->buflen;
4106 res.dir_attributes.fres.vap = &dva;
4107 res.dir_attributes.fres.vp = vp;
4108 res.loff = rdc->nfs3_cookie;
4109
4110 douprintf = 1;
4111
4112 if (mi->mi_io_kstats) {
4113 mutex_enter(&mi->mi_lock);
4114 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
4115 mutex_exit(&mi->mi_lock);
4116 }
4117
4118 t = gethrtime();
4119
4120 error = rfs3call(VTOMI(vp), NFSPROC3_READDIR,
4121 xdr_READDIR3args, (caddr_t)&args,
4122 xdr_READDIR3vres, (caddr_t)&res, cr,
4123 &douprintf, &res.status, 0, fip);
4124
4125 if (mi->mi_io_kstats) {
4126 mutex_enter(&mi->mi_lock);
4127 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
4128 mutex_exit(&mi->mi_lock);
4129 }
4130
4131 if (error)
4132 goto err;
4133
4134 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, t, cr);
4135
4136 error = geterrno3(res.status);
4137 if (error) {
4138 PURGE_STALE_FH(error, vp, cr);
4139 goto err;
4140 }
4141
4142 if (mi->mi_io_kstats) {
4143 mutex_enter(&mi->mi_lock);
4144 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
4145 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
4146 mutex_exit(&mi->mi_lock);
4147 }
4148
4149 rdc->nfs3_ncookie = res.loff;
4150 rp->r_cookieverf = res.cookieverf;
4151 rdc->eof = res.eof ? 1 : 0;
4152 rdc->entlen = res.size;
4153 ASSERT(rdc->entlen <= rdc->buflen);
4154 rdc->error = 0;
4155 return;
4156
4157 err:
4158 kmem_free(rdc->entries, rdc->buflen);
4159 rdc->entries = NULL;
4160 rdc->error = error;
4161 }
4162
4163 /*
4164 * Read directory entries.
4165 * There are some weird things to look out for here. The uio_loffset
4166 * field is either 0 or it is the offset returned from a previous
4167 * readdir. It is an opaque value used by the server to find the
4168 * correct directory block to read. The count field is the number
4169 * of blocks to read on the server. This is advisory only, the server
4170 * may return only one block's worth of entries. Entries may be compressed
4171 * on the server.
4172 */
4173 static void
nfs3readdirplus(vnode_t * vp,rddir_cache * rdc,cred_t * cr)4174 nfs3readdirplus(vnode_t *vp, rddir_cache *rdc, cred_t *cr)
4175 {
4176 int error;
4177 READDIRPLUS3args args;
4178 READDIRPLUS3vres res;
4179 vattr_t dva;
4180 rnode_t *rp;
4181 mntinfo_t *mi;
4182 int douprintf;
4183 failinfo_t fi, *fip = NULL;
4184
4185 rp = VTOR(vp);
4186 mi = VTOMI(vp);
4187 ASSERT(nfs_zone() == mi->mi_zone);
4188
4189 args.dir = *RTOFH3(rp);
4190 args.cookie = (cookie3)rdc->nfs3_cookie;
4191 args.cookieverf = rp->r_cookieverf;
4192 args.dircount = rdc->buflen;
4193 args.maxcount = mi->mi_tsize;
4194
4195 /*
4196 * NFS client failover support
4197 * suppress failover unless we have a zero cookie
4198 */
4199 if (args.cookie == (cookie3)0) {
4200 fi.vp = vp;
4201 fi.fhp = (caddr_t)&args.dir;
4202 fi.copyproc = nfs3copyfh;
4203 fi.lookupproc = nfs3lookup;
4204 fi.xattrdirproc = acl_getxattrdir3;
4205 fip = &fi;
4206 }
4207
4208 #ifdef DEBUG
4209 rdc->entries = rddir_cache_buf_alloc(rdc->buflen, KM_SLEEP);
4210 #else
4211 rdc->entries = kmem_alloc(rdc->buflen, KM_SLEEP);
4212 #endif
4213
4214 res.entries = (dirent64_t *)rdc->entries;
4215 res.entries_size = rdc->buflen;
4216 res.dir_attributes.fres.vap = &dva;
4217 res.dir_attributes.fres.vp = vp;
4218 res.loff = rdc->nfs3_cookie;
4219 res.credentials = cr;
4220
4221 douprintf = 1;
4222
4223 if (mi->mi_io_kstats) {
4224 mutex_enter(&mi->mi_lock);
4225 kstat_runq_enter(KSTAT_IO_PTR(mi->mi_io_kstats));
4226 mutex_exit(&mi->mi_lock);
4227 }
4228
4229 res.time = gethrtime();
4230
4231 error = rfs3call(mi, NFSPROC3_READDIRPLUS,
4232 xdr_READDIRPLUS3args, (caddr_t)&args,
4233 xdr_READDIRPLUS3vres, (caddr_t)&res, cr,
4234 &douprintf, &res.status, 0, fip);
4235
4236 if (mi->mi_io_kstats) {
4237 mutex_enter(&mi->mi_lock);
4238 kstat_runq_exit(KSTAT_IO_PTR(mi->mi_io_kstats));
4239 mutex_exit(&mi->mi_lock);
4240 }
4241
4242 if (error) {
4243 goto err;
4244 }
4245
4246 nfs3_cache_post_op_vattr(vp, &res.dir_attributes, res.time, cr);
4247
4248 error = geterrno3(res.status);
4249 if (error) {
4250 PURGE_STALE_FH(error, vp, cr);
4251 if (error == EOPNOTSUPP) {
4252 mutex_enter(&mi->mi_lock);
4253 mi->mi_flags |= MI_READDIRONLY;
4254 mutex_exit(&mi->mi_lock);
4255 }
4256 goto err;
4257 }
4258
4259 if (mi->mi_io_kstats) {
4260 mutex_enter(&mi->mi_lock);
4261 KSTAT_IO_PTR(mi->mi_io_kstats)->reads++;
4262 KSTAT_IO_PTR(mi->mi_io_kstats)->nread += res.size;
4263 mutex_exit(&mi->mi_lock);
4264 }
4265
4266 rdc->nfs3_ncookie = res.loff;
4267 rp->r_cookieverf = res.cookieverf;
4268 rdc->eof = res.eof ? 1 : 0;
4269 rdc->entlen = res.size;
4270 ASSERT(rdc->entlen <= rdc->buflen);
4271 rdc->error = 0;
4272
4273 return;
4274
4275 err:
4276 kmem_free(rdc->entries, rdc->buflen);
4277 rdc->entries = NULL;
4278 rdc->error = error;
4279 }
4280
4281 #ifdef DEBUG
4282 static int nfs3_bio_do_stop = 0;
4283 #endif
4284
4285 static int
nfs3_bio(struct buf * bp,stable_how * stab_comm,cred_t * cr)4286 nfs3_bio(struct buf *bp, stable_how *stab_comm, cred_t *cr)
4287 {
4288 rnode_t *rp = VTOR(bp->b_vp);
4289 int count;
4290 int error;
4291 cred_t *cred;
4292 offset_t offset;
4293
4294 ASSERT(nfs_zone() == VTOMI(bp->b_vp)->mi_zone);
4295 offset = ldbtob(bp->b_lblkno);
4296
4297 DTRACE_IO1(start, struct buf *, bp);
4298
4299 if (bp->b_flags & B_READ) {
4300 mutex_enter(&rp->r_statelock);
4301 if (rp->r_cred != NULL) {
4302 cred = rp->r_cred;
4303 crhold(cred);
4304 } else {
4305 rp->r_cred = cr;
4306 crhold(cr);
4307 cred = cr;
4308 crhold(cred);
4309 }
4310 mutex_exit(&rp->r_statelock);
4311 read_again:
4312 error = bp->b_error = nfs3read(bp->b_vp, bp->b_un.b_addr,
4313 offset, bp->b_bcount, &bp->b_resid, cred);
4314 crfree(cred);
4315 if (!error) {
4316 if (bp->b_resid) {
4317 /*
4318 * Didn't get it all because we hit EOF,
4319 * zero all the memory beyond the EOF.
4320 */
4321 /* bzero(rdaddr + */
4322 bzero(bp->b_un.b_addr +
4323 bp->b_bcount - bp->b_resid, bp->b_resid);
4324 }
4325 mutex_enter(&rp->r_statelock);
4326 if (bp->b_resid == bp->b_bcount &&
4327 offset >= rp->r_size) {
4328 /*
4329 * We didn't read anything at all as we are
4330 * past EOF. Return an error indicator back
4331 * but don't destroy the pages (yet).
4332 */
4333 error = NFS_EOF;
4334 }
4335 mutex_exit(&rp->r_statelock);
4336 } else if (error == EACCES) {
4337 mutex_enter(&rp->r_statelock);
4338 if (cred != cr) {
4339 if (rp->r_cred != NULL)
4340 crfree(rp->r_cred);
4341 rp->r_cred = cr;
4342 crhold(cr);
4343 cred = cr;
4344 crhold(cred);
4345 mutex_exit(&rp->r_statelock);
4346 goto read_again;
4347 }
4348 mutex_exit(&rp->r_statelock);
4349 }
4350 } else {
4351 if (!(rp->r_flags & RSTALE)) {
4352 mutex_enter(&rp->r_statelock);
4353 if (rp->r_cred != NULL) {
4354 cred = rp->r_cred;
4355 crhold(cred);
4356 } else {
4357 rp->r_cred = cr;
4358 crhold(cr);
4359 cred = cr;
4360 crhold(cred);
4361 }
4362 mutex_exit(&rp->r_statelock);
4363 write_again:
4364 mutex_enter(&rp->r_statelock);
4365 count = MIN(bp->b_bcount, rp->r_size - offset);
4366 mutex_exit(&rp->r_statelock);
4367 if (count < 0)
4368 cmn_err(CE_PANIC, "nfs3_bio: write count < 0");
4369 #ifdef DEBUG
4370 if (count == 0) {
4371 zcmn_err(getzoneid(), CE_WARN,
4372 "nfs3_bio: zero length write at %lld",
4373 offset);
4374 nfs_printfhandle(&rp->r_fh);
4375 if (nfs3_bio_do_stop)
4376 debug_enter("nfs3_bio");
4377 }
4378 #endif
4379 error = nfs3write(bp->b_vp, bp->b_un.b_addr, offset,
4380 count, cred, stab_comm);
4381 if (error == EACCES) {
4382 mutex_enter(&rp->r_statelock);
4383 if (cred != cr) {
4384 if (rp->r_cred != NULL)
4385 crfree(rp->r_cred);
4386 rp->r_cred = cr;
4387 crhold(cr);
4388 crfree(cred);
4389 cred = cr;
4390 crhold(cred);
4391 mutex_exit(&rp->r_statelock);
4392 goto write_again;
4393 }
4394 mutex_exit(&rp->r_statelock);
4395 }
4396 bp->b_error = error;
4397 if (error && error != EINTR) {
4398 /*
4399 * Don't print EDQUOT errors on the console.
4400 * Don't print asynchronous EACCES errors.
4401 * Don't print EFBIG errors.
4402 * Print all other write errors.
4403 */
4404 if (error != EDQUOT && error != EFBIG &&
4405 (error != EACCES ||
4406 !(bp->b_flags & B_ASYNC)))
4407 nfs_write_error(bp->b_vp, error, cred);
4408 /*
4409 * Update r_error and r_flags as appropriate.
4410 * If the error was ESTALE, then mark the
4411 * rnode as not being writeable and save
4412 * the error status. Otherwise, save any
4413 * errors which occur from asynchronous
4414 * page invalidations. Any errors occurring
4415 * from other operations should be saved
4416 * by the caller.
4417 */
4418 mutex_enter(&rp->r_statelock);
4419 if (error == ESTALE) {
4420 rp->r_flags |= RSTALE;
4421 if (!rp->r_error)
4422 rp->r_error = error;
4423 } else if (!rp->r_error &&
4424 (bp->b_flags &
4425 (B_INVAL|B_FORCE|B_ASYNC)) ==
4426 (B_INVAL|B_FORCE|B_ASYNC)) {
4427 rp->r_error = error;
4428 }
4429 mutex_exit(&rp->r_statelock);
4430 }
4431 crfree(cred);
4432 } else {
4433 error = rp->r_error;
4434 /*
4435 * A close may have cleared r_error, if so,
4436 * propagate ESTALE error return properly
4437 */
4438 if (error == 0)
4439 error = ESTALE;
4440 }
4441 }
4442
4443 if (error != 0 && error != NFS_EOF)
4444 bp->b_flags |= B_ERROR;
4445
4446 DTRACE_IO1(done, struct buf *, bp);
4447
4448 return (error);
4449 }
4450
4451 /* ARGSUSED */
4452 static int
nfs3_fid(vnode_t * vp,fid_t * fidp,caller_context_t * ct)4453 nfs3_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4454 {
4455 rnode_t *rp;
4456
4457 if (nfs_zone() != VTOMI(vp)->mi_zone)
4458 return (EIO);
4459 rp = VTOR(vp);
4460
4461 if (fidp->fid_len < (ushort_t)rp->r_fh.fh_len) {
4462 fidp->fid_len = rp->r_fh.fh_len;
4463 return (ENOSPC);
4464 }
4465 fidp->fid_len = rp->r_fh.fh_len;
4466 bcopy(rp->r_fh.fh_buf, fidp->fid_data, fidp->fid_len);
4467 return (0);
4468 }
4469
4470 /* ARGSUSED2 */
4471 static int
nfs3_rwlock(vnode_t * vp,int write_lock,caller_context_t * ctp)4472 nfs3_rwlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
4473 {
4474 rnode_t *rp = VTOR(vp);
4475
4476 if (!write_lock) {
4477 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
4478 return (V_WRITELOCK_FALSE);
4479 }
4480
4481 if ((rp->r_flags & RDIRECTIO) || (VTOMI(vp)->mi_flags & MI_DIRECTIO)) {
4482 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_READER, FALSE);
4483 if (rp->r_mapcnt == 0 && !vn_has_cached_data(vp))
4484 return (V_WRITELOCK_FALSE);
4485 nfs_rw_exit(&rp->r_rwlock);
4486 }
4487
4488 (void) nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, FALSE);
4489 return (V_WRITELOCK_TRUE);
4490 }
4491
4492 /* ARGSUSED */
4493 static void
nfs3_rwunlock(vnode_t * vp,int write_lock,caller_context_t * ctp)4494 nfs3_rwunlock(vnode_t *vp, int write_lock, caller_context_t *ctp)
4495 {
4496 rnode_t *rp = VTOR(vp);
4497
4498 nfs_rw_exit(&rp->r_rwlock);
4499 }
4500
4501 /* ARGSUSED */
4502 static int
nfs3_seek(vnode_t * vp,offset_t ooff,offset_t * noffp,caller_context_t * ct)4503 nfs3_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, caller_context_t *ct)
4504 {
4505
4506 /*
4507 * Because we stuff the readdir cookie into the offset field
4508 * someone may attempt to do an lseek with the cookie which
4509 * we want to succeed.
4510 */
4511 if (vp->v_type == VDIR)
4512 return (0);
4513 if (*noffp < 0)
4514 return (EINVAL);
4515 return (0);
4516 }
4517
4518 /*
4519 * number of nfs3_bsize blocks to read ahead.
4520 */
4521 static int nfs3_nra = 4;
4522
4523 #ifdef DEBUG
4524 static int nfs3_lostpage = 0; /* number of times we lost original page */
4525 #endif
4526
4527 /*
4528 * Return all the pages from [off..off+len) in file
4529 */
4530 /* ARGSUSED */
4531 static int
nfs3_getpage(vnode_t * vp,offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr,caller_context_t * ct)4532 nfs3_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4533 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4534 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4535 {
4536 rnode_t *rp;
4537 int error;
4538 mntinfo_t *mi;
4539
4540 if (vp->v_flag & VNOMAP)
4541 return (ENOSYS);
4542
4543 if (nfs_zone() != VTOMI(vp)->mi_zone)
4544 return (EIO);
4545 if (protp != NULL)
4546 *protp = PROT_ALL;
4547
4548 /*
4549 * Now valididate that the caches are up to date.
4550 */
4551 error = nfs3_validate_caches(vp, cr);
4552 if (error)
4553 return (error);
4554
4555 rp = VTOR(vp);
4556 mi = VTOMI(vp);
4557 retry:
4558 mutex_enter(&rp->r_statelock);
4559
4560 /*
4561 * Don't create dirty pages faster than they
4562 * can be cleaned so that the system doesn't
4563 * get imbalanced. If the async queue is
4564 * maxed out, then wait for it to drain before
4565 * creating more dirty pages. Also, wait for
4566 * any threads doing pagewalks in the vop_getattr
4567 * entry points so that they don't block for
4568 * long periods.
4569 */
4570 if (rw == S_CREATE) {
4571 while ((mi->mi_max_threads != 0 &&
4572 rp->r_awcount > 2 * mi->mi_max_threads) ||
4573 rp->r_gcount > 0)
4574 cv_wait(&rp->r_cv, &rp->r_statelock);
4575 }
4576
4577 /*
4578 * If we are getting called as a side effect of an nfs_write()
4579 * operation the local file size might not be extended yet.
4580 * In this case we want to be able to return pages of zeroes.
4581 */
4582 if (off + len > rp->r_size + PAGEOFFSET && seg != segkmap) {
4583 mutex_exit(&rp->r_statelock);
4584 return (EFAULT); /* beyond EOF */
4585 }
4586
4587 mutex_exit(&rp->r_statelock);
4588
4589 error = pvn_getpages(nfs3_getapage, vp, off, len, protp,
4590 pl, plsz, seg, addr, rw, cr);
4591
4592 switch (error) {
4593 case NFS_EOF:
4594 nfs_purge_caches(vp, NFS_NOPURGE_DNLC, cr);
4595 goto retry;
4596 case ESTALE:
4597 PURGE_STALE_FH(error, vp, cr);
4598 }
4599
4600 return (error);
4601 }
4602
4603 /*
4604 * Called from pvn_getpages to get a particular page.
4605 */
4606 /* ARGSUSED */
4607 static int
nfs3_getapage(vnode_t * vp,u_offset_t off,size_t len,uint_t * protp,page_t * pl[],size_t plsz,struct seg * seg,caddr_t addr,enum seg_rw rw,cred_t * cr)4608 nfs3_getapage(vnode_t *vp, u_offset_t off, size_t len, uint_t *protp,
4609 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4610 enum seg_rw rw, cred_t *cr)
4611 {
4612 rnode_t *rp;
4613 uint_t bsize;
4614 struct buf *bp;
4615 page_t *pp;
4616 u_offset_t lbn;
4617 u_offset_t io_off;
4618 u_offset_t blkoff;
4619 u_offset_t rablkoff;
4620 size_t io_len;
4621 uint_t blksize;
4622 int error;
4623 int readahead;
4624 int readahead_issued = 0;
4625 int ra_window; /* readahead window */
4626 page_t *pagefound;
4627 page_t *savepp;
4628
4629 if (nfs_zone() != VTOMI(vp)->mi_zone)
4630 return (EIO);
4631 rp = VTOR(vp);
4632 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4633
4634 reread:
4635 bp = NULL;
4636 pp = NULL;
4637 pagefound = NULL;
4638
4639 if (pl != NULL)
4640 pl[0] = NULL;
4641
4642 error = 0;
4643 lbn = off / bsize;
4644 blkoff = lbn * bsize;
4645
4646 /*
4647 * Queueing up the readahead before doing the synchronous read
4648 * results in a significant increase in read throughput because
4649 * of the increased parallelism between the async threads and
4650 * the process context.
4651 */
4652 if ((off & ((vp->v_vfsp->vfs_bsize) - 1)) == 0 &&
4653 rw != S_CREATE &&
4654 !(vp->v_flag & VNOCACHE)) {
4655 mutex_enter(&rp->r_statelock);
4656
4657 /*
4658 * Calculate the number of readaheads to do.
4659 * a) No readaheads at offset = 0.
4660 * b) Do maximum(nfs3_nra) readaheads when the readahead
4661 * window is closed.
4662 * c) Do readaheads between 1 to (nfs3_nra - 1) depending
4663 * upon how far the readahead window is open or close.
4664 * d) No readaheads if rp->r_nextr is not within the scope
4665 * of the readahead window (random i/o).
4666 */
4667
4668 if (off == 0)
4669 readahead = 0;
4670 else if (blkoff == rp->r_nextr)
4671 readahead = nfs3_nra;
4672 else if (rp->r_nextr > blkoff &&
4673 ((ra_window = (rp->r_nextr - blkoff) / bsize)
4674 <= (nfs3_nra - 1)))
4675 readahead = nfs3_nra - ra_window;
4676 else
4677 readahead = 0;
4678
4679 rablkoff = rp->r_nextr;
4680 while (readahead > 0 && rablkoff + bsize < rp->r_size) {
4681 mutex_exit(&rp->r_statelock);
4682 if (nfs_async_readahead(vp, rablkoff + bsize,
4683 addr + (rablkoff + bsize - off), seg, cr,
4684 nfs3_readahead) < 0) {
4685 mutex_enter(&rp->r_statelock);
4686 break;
4687 }
4688 readahead--;
4689 rablkoff += bsize;
4690 /*
4691 * Indicate that we did a readahead so
4692 * readahead offset is not updated
4693 * by the synchronous read below.
4694 */
4695 readahead_issued = 1;
4696 mutex_enter(&rp->r_statelock);
4697 /*
4698 * set readahead offset to
4699 * offset of last async readahead
4700 * request.
4701 */
4702 rp->r_nextr = rablkoff;
4703 }
4704 mutex_exit(&rp->r_statelock);
4705 }
4706
4707 again:
4708 if ((pagefound = page_exists(vp, off)) == NULL) {
4709 if (pl == NULL) {
4710 (void) nfs_async_readahead(vp, blkoff, addr, seg, cr,
4711 nfs3_readahead);
4712 } else if (rw == S_CREATE) {
4713 /*
4714 * Block for this page is not allocated, or the offset
4715 * is beyond the current allocation size, or we're
4716 * allocating a swap slot and the page was not found,
4717 * so allocate it and return a zero page.
4718 */
4719 if ((pp = page_create_va(vp, off,
4720 PAGESIZE, PG_WAIT, seg, addr)) == NULL)
4721 cmn_err(CE_PANIC, "nfs3_getapage: page_create");
4722 io_len = PAGESIZE;
4723 mutex_enter(&rp->r_statelock);
4724 rp->r_nextr = off + PAGESIZE;
4725 mutex_exit(&rp->r_statelock);
4726 } else {
4727 /*
4728 * Need to go to server to get a BLOCK, exception to
4729 * that being while reading at offset = 0 or doing
4730 * random i/o, in that case read only a PAGE.
4731 */
4732 mutex_enter(&rp->r_statelock);
4733 if (blkoff < rp->r_size &&
4734 blkoff + bsize >= rp->r_size) {
4735 /*
4736 * If only a block or less is left in
4737 * the file, read all that is remaining.
4738 */
4739 if (rp->r_size <= off) {
4740 /*
4741 * Trying to access beyond EOF,
4742 * set up to get at least one page.
4743 */
4744 blksize = off + PAGESIZE - blkoff;
4745 } else
4746 blksize = rp->r_size - blkoff;
4747 } else if ((off == 0) ||
4748 (off != rp->r_nextr && !readahead_issued)) {
4749 blksize = PAGESIZE;
4750 blkoff = off; /* block = page here */
4751 } else
4752 blksize = bsize;
4753 mutex_exit(&rp->r_statelock);
4754
4755 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4756 &io_len, blkoff, blksize, 0);
4757
4758 /*
4759 * Some other thread has entered the page,
4760 * so just use it.
4761 */
4762 if (pp == NULL)
4763 goto again;
4764
4765 /*
4766 * Now round the request size up to page boundaries.
4767 * This ensures that the entire page will be
4768 * initialized to zeroes if EOF is encountered.
4769 */
4770 io_len = ptob(btopr(io_len));
4771
4772 bp = pageio_setup(pp, io_len, vp, B_READ);
4773 ASSERT(bp != NULL);
4774
4775 /*
4776 * pageio_setup should have set b_addr to 0. This
4777 * is correct since we want to do I/O on a page
4778 * boundary. bp_mapin will use this addr to calculate
4779 * an offset, and then set b_addr to the kernel virtual
4780 * address it allocated for us.
4781 */
4782 ASSERT(bp->b_un.b_addr == 0);
4783
4784 bp->b_edev = 0;
4785 bp->b_dev = 0;
4786 bp->b_lblkno = lbtodb(io_off);
4787 bp->b_file = vp;
4788 bp->b_offset = (offset_t)off;
4789 bp_mapin(bp);
4790
4791 /*
4792 * If doing a write beyond what we believe is EOF,
4793 * don't bother trying to read the pages from the
4794 * server, we'll just zero the pages here. We
4795 * don't check that the rw flag is S_WRITE here
4796 * because some implementations may attempt a
4797 * read access to the buffer before copying data.
4798 */
4799 mutex_enter(&rp->r_statelock);
4800 if (io_off >= rp->r_size && seg == segkmap) {
4801 mutex_exit(&rp->r_statelock);
4802 bzero(bp->b_un.b_addr, io_len);
4803 } else {
4804 mutex_exit(&rp->r_statelock);
4805 error = nfs3_bio(bp, NULL, cr);
4806 }
4807
4808 /*
4809 * Unmap the buffer before freeing it.
4810 */
4811 bp_mapout(bp);
4812 pageio_done(bp);
4813
4814 savepp = pp;
4815 do {
4816 pp->p_fsdata = C_NOCOMMIT;
4817 } while ((pp = pp->p_next) != savepp);
4818
4819 if (error == NFS_EOF) {
4820 /*
4821 * If doing a write system call just return
4822 * zeroed pages, else user tried to get pages
4823 * beyond EOF, return error. We don't check
4824 * that the rw flag is S_WRITE here because
4825 * some implementations may attempt a read
4826 * access to the buffer before copying data.
4827 */
4828 if (seg == segkmap)
4829 error = 0;
4830 else
4831 error = EFAULT;
4832 }
4833
4834 if (!readahead_issued && !error) {
4835 mutex_enter(&rp->r_statelock);
4836 rp->r_nextr = io_off + io_len;
4837 mutex_exit(&rp->r_statelock);
4838 }
4839 }
4840 }
4841
4842 out:
4843 if (pl == NULL)
4844 return (error);
4845
4846 if (error) {
4847 if (pp != NULL)
4848 pvn_read_done(pp, B_ERROR);
4849 return (error);
4850 }
4851
4852 if (pagefound) {
4853 se_t se = (rw == S_CREATE ? SE_EXCL : SE_SHARED);
4854
4855 /*
4856 * Page exists in the cache, acquire the appropriate lock.
4857 * If this fails, start all over again.
4858 */
4859 if ((pp = page_lookup(vp, off, se)) == NULL) {
4860 #ifdef DEBUG
4861 nfs3_lostpage++;
4862 #endif
4863 goto reread;
4864 }
4865 pl[0] = pp;
4866 pl[1] = NULL;
4867 return (0);
4868 }
4869
4870 if (pp != NULL)
4871 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4872
4873 return (error);
4874 }
4875
4876 static void
nfs3_readahead(vnode_t * vp,u_offset_t blkoff,caddr_t addr,struct seg * seg,cred_t * cr)4877 nfs3_readahead(vnode_t *vp, u_offset_t blkoff, caddr_t addr, struct seg *seg,
4878 cred_t *cr)
4879 {
4880 int error;
4881 page_t *pp;
4882 u_offset_t io_off;
4883 size_t io_len;
4884 struct buf *bp;
4885 uint_t bsize, blksize;
4886 rnode_t *rp = VTOR(vp);
4887 page_t *savepp;
4888
4889 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
4890 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
4891
4892 mutex_enter(&rp->r_statelock);
4893 if (blkoff < rp->r_size && blkoff + bsize > rp->r_size) {
4894 /*
4895 * If less than a block left in file read less
4896 * than a block.
4897 */
4898 blksize = rp->r_size - blkoff;
4899 } else
4900 blksize = bsize;
4901 mutex_exit(&rp->r_statelock);
4902
4903 pp = pvn_read_kluster(vp, blkoff, segkmap, addr,
4904 &io_off, &io_len, blkoff, blksize, 1);
4905 /*
4906 * The isra flag passed to the kluster function is 1, we may have
4907 * gotten a return value of NULL for a variety of reasons (# of free
4908 * pages < minfree, someone entered the page on the vnode etc). In all
4909 * cases, we want to punt on the readahead.
4910 */
4911 if (pp == NULL)
4912 return;
4913
4914 /*
4915 * Now round the request size up to page boundaries.
4916 * This ensures that the entire page will be
4917 * initialized to zeroes if EOF is encountered.
4918 */
4919 io_len = ptob(btopr(io_len));
4920
4921 bp = pageio_setup(pp, io_len, vp, B_READ);
4922 ASSERT(bp != NULL);
4923
4924 /*
4925 * pageio_setup should have set b_addr to 0. This is correct since
4926 * we want to do I/O on a page boundary. bp_mapin() will use this addr
4927 * to calculate an offset, and then set b_addr to the kernel virtual
4928 * address it allocated for us.
4929 */
4930 ASSERT(bp->b_un.b_addr == 0);
4931
4932 bp->b_edev = 0;
4933 bp->b_dev = 0;
4934 bp->b_lblkno = lbtodb(io_off);
4935 bp->b_file = vp;
4936 bp->b_offset = (offset_t)blkoff;
4937 bp_mapin(bp);
4938
4939 /*
4940 * If doing a write beyond what we believe is EOF, don't bother trying
4941 * to read the pages from the server, we'll just zero the pages here.
4942 * We don't check that the rw flag is S_WRITE here because some
4943 * implementations may attempt a read access to the buffer before
4944 * copying data.
4945 */
4946 mutex_enter(&rp->r_statelock);
4947 if (io_off >= rp->r_size && seg == segkmap) {
4948 mutex_exit(&rp->r_statelock);
4949 bzero(bp->b_un.b_addr, io_len);
4950 error = 0;
4951 } else {
4952 mutex_exit(&rp->r_statelock);
4953 error = nfs3_bio(bp, NULL, cr);
4954 if (error == NFS_EOF)
4955 error = 0;
4956 }
4957
4958 /*
4959 * Unmap the buffer before freeing it.
4960 */
4961 bp_mapout(bp);
4962 pageio_done(bp);
4963
4964 savepp = pp;
4965 do {
4966 pp->p_fsdata = C_NOCOMMIT;
4967 } while ((pp = pp->p_next) != savepp);
4968
4969 pvn_read_done(pp, error ? B_READ | B_ERROR : B_READ);
4970
4971 /*
4972 * In case of error set readahead offset
4973 * to the lowest offset.
4974 * pvn_read_done() calls VN_DISPOSE to destroy the pages
4975 */
4976 if (error && rp->r_nextr > io_off) {
4977 mutex_enter(&rp->r_statelock);
4978 if (rp->r_nextr > io_off)
4979 rp->r_nextr = io_off;
4980 mutex_exit(&rp->r_statelock);
4981 }
4982 }
4983
4984 /*
4985 * Flags are composed of {B_INVAL, B_FREE, B_DONTNEED, B_FORCE}
4986 * If len == 0, do from off to EOF.
4987 *
4988 * The normal cases should be len == 0 && off == 0 (entire vp list),
4989 * len == MAXBSIZE (from segmap_release actions), and len == PAGESIZE
4990 * (from pageout).
4991 */
4992 /* ARGSUSED */
4993 static int
nfs3_putpage(vnode_t * vp,offset_t off,size_t len,int flags,cred_t * cr,caller_context_t * ct)4994 nfs3_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4995 caller_context_t *ct)
4996 {
4997 int error;
4998 rnode_t *rp;
4999
5000 ASSERT(cr != NULL);
5001
5002 /*
5003 * XXX - Why should this check be made here?
5004 */
5005 if (vp->v_flag & VNOMAP)
5006 return (ENOSYS);
5007 if (len == 0 && !(flags & B_INVAL) && vn_is_readonly(vp))
5008 return (0);
5009 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
5010 return (EIO);
5011
5012 rp = VTOR(vp);
5013 mutex_enter(&rp->r_statelock);
5014 rp->r_count++;
5015 mutex_exit(&rp->r_statelock);
5016 error = nfs_putpages(vp, off, len, flags, cr);
5017 mutex_enter(&rp->r_statelock);
5018 rp->r_count--;
5019 cv_broadcast(&rp->r_cv);
5020 mutex_exit(&rp->r_statelock);
5021
5022 return (error);
5023 }
5024
5025 /*
5026 * Write out a single page, possibly klustering adjacent dirty pages.
5027 */
5028 int
nfs3_putapage(vnode_t * vp,page_t * pp,u_offset_t * offp,size_t * lenp,int flags,cred_t * cr)5029 nfs3_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
5030 int flags, cred_t *cr)
5031 {
5032 u_offset_t io_off;
5033 u_offset_t lbn_off;
5034 u_offset_t lbn;
5035 size_t io_len;
5036 uint_t bsize;
5037 int error;
5038 rnode_t *rp;
5039
5040 ASSERT(!vn_is_readonly(vp));
5041 ASSERT(pp != NULL);
5042 ASSERT(cr != NULL);
5043 ASSERT((flags & B_ASYNC) || nfs_zone() == VTOMI(vp)->mi_zone);
5044
5045 rp = VTOR(vp);
5046 ASSERT(rp->r_count > 0);
5047
5048 bsize = MAX(vp->v_vfsp->vfs_bsize, PAGESIZE);
5049 lbn = pp->p_offset / bsize;
5050 lbn_off = lbn * bsize;
5051
5052 /*
5053 * Find a kluster that fits in one block, or in
5054 * one page if pages are bigger than blocks. If
5055 * there is less file space allocated than a whole
5056 * page, we'll shorten the i/o request below.
5057 */
5058 pp = pvn_write_kluster(vp, pp, &io_off, &io_len, lbn_off,
5059 roundup(bsize, PAGESIZE), flags);
5060
5061 /*
5062 * pvn_write_kluster shouldn't have returned a page with offset
5063 * behind the original page we were given. Verify that.
5064 */
5065 ASSERT((pp->p_offset / bsize) >= lbn);
5066
5067 /*
5068 * Now pp will have the list of kept dirty pages marked for
5069 * write back. It will also handle invalidation and freeing
5070 * of pages that are not dirty. Check for page length rounding
5071 * problems.
5072 */
5073 if (io_off + io_len > lbn_off + bsize) {
5074 ASSERT((io_off + io_len) - (lbn_off + bsize) < PAGESIZE);
5075 io_len = lbn_off + bsize - io_off;
5076 }
5077 /*
5078 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
5079 * consistent value of r_size. RMODINPROGRESS is set in writerp().
5080 * When RMODINPROGRESS is set it indicates that a uiomove() is in
5081 * progress and the r_size has not been made consistent with the
5082 * new size of the file. When the uiomove() completes the r_size is
5083 * updated and the RMODINPROGRESS flag is cleared.
5084 *
5085 * The RMODINPROGRESS flag makes sure that nfs(3)_bio() sees a
5086 * consistent value of r_size. Without this handshaking, it is
5087 * possible that nfs(3)_bio() picks up the old value of r_size
5088 * before the uiomove() in writerp() completes. This will result
5089 * in the write through nfs(3)_bio() being dropped.
5090 *
5091 * More precisely, there is a window between the time the uiomove()
5092 * completes and the time the r_size is updated. If a VOP_PUTPAGE()
5093 * operation intervenes in this window, the page will be picked up,
5094 * because it is dirty (it will be unlocked, unless it was
5095 * pagecreate'd). When the page is picked up as dirty, the dirty
5096 * bit is reset (pvn_getdirty()). In nfs(3)write(), r_size is
5097 * checked. This will still be the old size. Therefore the page will
5098 * not be written out. When segmap_release() calls VOP_PUTPAGE(),
5099 * the page will be found to be clean and the write will be dropped.
5100 */
5101 if (rp->r_flags & RMODINPROGRESS) {
5102 mutex_enter(&rp->r_statelock);
5103 if ((rp->r_flags & RMODINPROGRESS) &&
5104 rp->r_modaddr + MAXBSIZE > io_off &&
5105 rp->r_modaddr < io_off + io_len) {
5106 page_t *plist;
5107 /*
5108 * A write is in progress for this region of the file.
5109 * If we did not detect RMODINPROGRESS here then this
5110 * path through nfs_putapage() would eventually go to
5111 * nfs(3)_bio() and may not write out all of the data
5112 * in the pages. We end up losing data. So we decide
5113 * to set the modified bit on each page in the page
5114 * list and mark the rnode with RDIRTY. This write
5115 * will be restarted at some later time.
5116 */
5117 plist = pp;
5118 while (plist != NULL) {
5119 pp = plist;
5120 page_sub(&plist, pp);
5121 hat_setmod(pp);
5122 page_io_unlock(pp);
5123 page_unlock(pp);
5124 }
5125 rp->r_flags |= RDIRTY;
5126 mutex_exit(&rp->r_statelock);
5127 if (offp)
5128 *offp = io_off;
5129 if (lenp)
5130 *lenp = io_len;
5131 return (0);
5132 }
5133 mutex_exit(&rp->r_statelock);
5134 }
5135
5136 if (flags & B_ASYNC) {
5137 error = nfs_async_putapage(vp, pp, io_off, io_len, flags, cr,
5138 nfs3_sync_putapage);
5139 } else
5140 error = nfs3_sync_putapage(vp, pp, io_off, io_len, flags, cr);
5141
5142 if (offp)
5143 *offp = io_off;
5144 if (lenp)
5145 *lenp = io_len;
5146 return (error);
5147 }
5148
5149 static int
nfs3_sync_putapage(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)5150 nfs3_sync_putapage(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5151 int flags, cred_t *cr)
5152 {
5153 int error;
5154 rnode_t *rp;
5155
5156 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5157
5158 flags |= B_WRITE;
5159
5160 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5161
5162 rp = VTOR(vp);
5163
5164 if ((error == ENOSPC || error == EDQUOT || error == EFBIG ||
5165 error == EACCES) &&
5166 (flags & (B_INVAL|B_FORCE)) != (B_INVAL|B_FORCE)) {
5167 if (!(rp->r_flags & ROUTOFSPACE)) {
5168 mutex_enter(&rp->r_statelock);
5169 rp->r_flags |= ROUTOFSPACE;
5170 mutex_exit(&rp->r_statelock);
5171 }
5172 flags |= B_ERROR;
5173 pvn_write_done(pp, flags);
5174 /*
5175 * If this was not an async thread, then try again to
5176 * write out the pages, but this time, also destroy
5177 * them whether or not the write is successful. This
5178 * will prevent memory from filling up with these
5179 * pages and destroying them is the only alternative
5180 * if they can't be written out.
5181 *
5182 * Don't do this if this is an async thread because
5183 * when the pages are unlocked in pvn_write_done,
5184 * some other thread could have come along, locked
5185 * them, and queued for an async thread. It would be
5186 * possible for all of the async threads to be tied
5187 * up waiting to lock the pages again and they would
5188 * all already be locked and waiting for an async
5189 * thread to handle them. Deadlock.
5190 */
5191 if (!(flags & B_ASYNC)) {
5192 error = nfs3_putpage(vp, io_off, io_len,
5193 B_INVAL | B_FORCE, cr, NULL);
5194 }
5195 } else {
5196 if (error)
5197 flags |= B_ERROR;
5198 else if (rp->r_flags & ROUTOFSPACE) {
5199 mutex_enter(&rp->r_statelock);
5200 rp->r_flags &= ~ROUTOFSPACE;
5201 mutex_exit(&rp->r_statelock);
5202 }
5203 pvn_write_done(pp, flags);
5204 if (freemem < desfree)
5205 (void) nfs3_commit_vp(vp, (u_offset_t)0, 0, cr);
5206 }
5207
5208 return (error);
5209 }
5210
5211 /* ARGSUSED */
5212 static int
nfs3_map(vnode_t * vp,offset_t off,struct as * as,caddr_t * addrp,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)5213 nfs3_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
5214 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
5215 cred_t *cr, caller_context_t *ct)
5216 {
5217 struct segvn_crargs vn_a;
5218 int error;
5219 rnode_t *rp;
5220 struct vattr va;
5221
5222 if (nfs_zone() != VTOMI(vp)->mi_zone)
5223 return (EIO);
5224
5225 if (vp->v_flag & VNOMAP)
5226 return (ENOSYS);
5227
5228 if (off < 0 || off + len < 0)
5229 return (ENXIO);
5230
5231 if (vp->v_type != VREG)
5232 return (ENODEV);
5233
5234 /*
5235 * If there is cached data and if close-to-open consistency
5236 * checking is not turned off and if the file system is not
5237 * mounted readonly, then force an over the wire getattr.
5238 * Otherwise, just invoke nfs3getattr to get a copy of the
5239 * attributes. The attribute cache will be used unless it
5240 * is timed out and if it is, then an over the wire getattr
5241 * will be issued.
5242 */
5243 va.va_mask = AT_ALL;
5244 if (vn_has_cached_data(vp) &&
5245 !(VTOMI(vp)->mi_flags & MI_NOCTO) && !vn_is_readonly(vp))
5246 error = nfs3_getattr_otw(vp, &va, cr);
5247 else
5248 error = nfs3getattr(vp, &va, cr);
5249 if (error)
5250 return (error);
5251
5252 /*
5253 * Check to see if the vnode is currently marked as not cachable.
5254 * This means portions of the file are locked (through VOP_FRLOCK).
5255 * In this case the map request must be refused. We use
5256 * rp->r_lkserlock to avoid a race with concurrent lock requests.
5257 */
5258 rp = VTOR(vp);
5259
5260 /*
5261 * Atomically increment r_inmap after acquiring r_rwlock. The
5262 * idea here is to acquire r_rwlock to block read/write and
5263 * not to protect r_inmap. r_inmap will inform nfs3_read/write()
5264 * that we are in nfs3_map(). Now, r_rwlock is acquired in order
5265 * and we can prevent the deadlock that would have occurred
5266 * when nfs3_addmap() would have acquired it out of order.
5267 *
5268 * Since we are not protecting r_inmap by any lock, we do not
5269 * hold any lock when we decrement it. We atomically decrement
5270 * r_inmap after we release r_lkserlock.
5271 */
5272
5273 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_WRITER, INTR(vp)))
5274 return (EINTR);
5275 atomic_inc_uint(&rp->r_inmap);
5276 nfs_rw_exit(&rp->r_rwlock);
5277
5278 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_READER, INTR(vp))) {
5279 atomic_dec_uint(&rp->r_inmap);
5280 return (EINTR);
5281 }
5282
5283 if (vp->v_flag & VNOCACHE) {
5284 error = EAGAIN;
5285 goto done;
5286 }
5287
5288 /*
5289 * Don't allow concurrent locks and mapping if mandatory locking is
5290 * enabled.
5291 */
5292 if ((flk_has_remote_locks(vp) || lm_has_sleep(vp)) &&
5293 MANDLOCK(vp, va.va_mode)) {
5294 error = EAGAIN;
5295 goto done;
5296 }
5297
5298 as_rangelock(as);
5299 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
5300 if (error != 0) {
5301 as_rangeunlock(as);
5302 goto done;
5303 }
5304
5305 vn_a.vp = vp;
5306 vn_a.offset = off;
5307 vn_a.type = (flags & MAP_TYPE);
5308 vn_a.prot = (uchar_t)prot;
5309 vn_a.maxprot = (uchar_t)maxprot;
5310 vn_a.flags = (flags & ~MAP_TYPE);
5311 vn_a.cred = cr;
5312 vn_a.amp = NULL;
5313 vn_a.szc = 0;
5314 vn_a.lgrp_mem_policy_flags = 0;
5315
5316 error = as_map(as, *addrp, len, segvn_create, &vn_a);
5317 as_rangeunlock(as);
5318
5319 done:
5320 nfs_rw_exit(&rp->r_lkserlock);
5321 atomic_dec_uint(&rp->r_inmap);
5322 return (error);
5323 }
5324
5325 /* ARGSUSED */
5326 static int
nfs3_addmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uchar_t prot,uchar_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)5327 nfs3_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5328 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags,
5329 cred_t *cr, caller_context_t *ct)
5330 {
5331 rnode_t *rp;
5332
5333 if (vp->v_flag & VNOMAP)
5334 return (ENOSYS);
5335 if (nfs_zone() != VTOMI(vp)->mi_zone)
5336 return (EIO);
5337
5338 rp = VTOR(vp);
5339 atomic_add_long((ulong_t *)&rp->r_mapcnt, btopr(len));
5340
5341 return (0);
5342 }
5343
5344 /* ARGSUSED */
5345 static int
nfs3_frlock(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,struct flk_callback * flk_cbp,cred_t * cr,caller_context_t * ct)5346 nfs3_frlock(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
5347 offset_t offset, struct flk_callback *flk_cbp, cred_t *cr,
5348 caller_context_t *ct)
5349 {
5350 netobj lm_fh3;
5351 int rc;
5352 u_offset_t start, end;
5353 rnode_t *rp;
5354 int error = 0, intr = INTR(vp);
5355
5356 if (nfs_zone() != VTOMI(vp)->mi_zone)
5357 return (EIO);
5358 /* check for valid cmd parameter */
5359 if (cmd != F_GETLK && cmd != F_SETLK && cmd != F_SETLKW)
5360 return (EINVAL);
5361
5362 /* Verify l_type. */
5363 switch (bfp->l_type) {
5364 case F_RDLCK:
5365 if (cmd != F_GETLK && !(flag & FREAD))
5366 return (EBADF);
5367 break;
5368 case F_WRLCK:
5369 if (cmd != F_GETLK && !(flag & FWRITE))
5370 return (EBADF);
5371 break;
5372 case F_UNLCK:
5373 intr = 0;
5374 break;
5375
5376 default:
5377 return (EINVAL);
5378 }
5379
5380 /* check the validity of the lock range */
5381 if (rc = flk_convert_lock_data(vp, bfp, &start, &end, offset))
5382 return (rc);
5383 if (rc = flk_check_lock_data(start, end, MAXEND))
5384 return (rc);
5385
5386 /*
5387 * If the filesystem is mounted using local locking, pass the
5388 * request off to the local locking code.
5389 */
5390 if (VTOMI(vp)->mi_flags & MI_LLOCK) {
5391 if (cmd == F_SETLK || cmd == F_SETLKW) {
5392 /*
5393 * For complete safety, we should be holding
5394 * r_lkserlock. However, we can't call
5395 * lm_safelock and then fs_frlock while
5396 * holding r_lkserlock, so just invoke
5397 * lm_safelock and expect that this will
5398 * catch enough of the cases.
5399 */
5400 if (!lm_safelock(vp, bfp, cr))
5401 return (EAGAIN);
5402 }
5403 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
5404 }
5405
5406 rp = VTOR(vp);
5407
5408 /*
5409 * Check whether the given lock request can proceed, given the
5410 * current file mappings.
5411 */
5412 if (nfs_rw_enter_sig(&rp->r_lkserlock, RW_WRITER, intr))
5413 return (EINTR);
5414 if (cmd == F_SETLK || cmd == F_SETLKW) {
5415 if (!lm_safelock(vp, bfp, cr)) {
5416 rc = EAGAIN;
5417 goto done;
5418 }
5419 }
5420
5421 /*
5422 * Flush the cache after waiting for async I/O to finish. For new
5423 * locks, this is so that the process gets the latest bits from the
5424 * server. For unlocks, this is so that other clients see the
5425 * latest bits once the file has been unlocked. If currently dirty
5426 * pages can't be flushed, then don't allow a lock to be set. But
5427 * allow unlocks to succeed, to avoid having orphan locks on the
5428 * server.
5429 */
5430 if (cmd != F_GETLK) {
5431 mutex_enter(&rp->r_statelock);
5432 while (rp->r_count > 0) {
5433 if (intr) {
5434 klwp_t *lwp = ttolwp(curthread);
5435
5436 if (lwp != NULL)
5437 lwp->lwp_nostop++;
5438 if (cv_wait_sig(&rp->r_cv,
5439 &rp->r_statelock) == 0) {
5440 if (lwp != NULL)
5441 lwp->lwp_nostop--;
5442 rc = EINTR;
5443 break;
5444 }
5445 if (lwp != NULL)
5446 lwp->lwp_nostop--;
5447 } else
5448 cv_wait(&rp->r_cv, &rp->r_statelock);
5449 }
5450 mutex_exit(&rp->r_statelock);
5451 if (rc != 0)
5452 goto done;
5453 error = nfs3_putpage(vp, (offset_t)0, 0, B_INVAL, cr, ct);
5454 if (error) {
5455 if (error == ENOSPC || error == EDQUOT) {
5456 mutex_enter(&rp->r_statelock);
5457 if (!rp->r_error)
5458 rp->r_error = error;
5459 mutex_exit(&rp->r_statelock);
5460 }
5461 if (bfp->l_type != F_UNLCK) {
5462 rc = ENOLCK;
5463 goto done;
5464 }
5465 }
5466 }
5467
5468 lm_fh3.n_len = VTOFH3(vp)->fh3_length;
5469 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
5470
5471 /*
5472 * Call the lock manager to do the real work of contacting
5473 * the server and obtaining the lock.
5474 */
5475 rc = lm4_frlock(vp, cmd, bfp, flag, offset, cr, &lm_fh3, flk_cbp);
5476
5477 if (rc == 0)
5478 nfs_lockcompletion(vp, cmd);
5479
5480 done:
5481 nfs_rw_exit(&rp->r_lkserlock);
5482 return (rc);
5483 }
5484
5485 /*
5486 * Free storage space associated with the specified vnode. The portion
5487 * to be freed is specified by bfp->l_start and bfp->l_len (already
5488 * normalized to a "whence" of 0).
5489 *
5490 * This is an experimental facility whose continued existence is not
5491 * guaranteed. Currently, we only support the special case
5492 * of l_len == 0, meaning free to end of file.
5493 */
5494 /* ARGSUSED */
5495 static int
nfs3_space(vnode_t * vp,int cmd,struct flock64 * bfp,int flag,offset_t offset,cred_t * cr,caller_context_t * ct)5496 nfs3_space(vnode_t *vp, int cmd, struct flock64 *bfp, int flag,
5497 offset_t offset, cred_t *cr, caller_context_t *ct)
5498 {
5499 int error;
5500
5501 ASSERT(vp->v_type == VREG);
5502 if (cmd != F_FREESP)
5503 return (EINVAL);
5504 if (nfs_zone() != VTOMI(vp)->mi_zone)
5505 return (EIO);
5506
5507 error = convoff(vp, bfp, 0, offset);
5508 if (!error) {
5509 ASSERT(bfp->l_start >= 0);
5510 if (bfp->l_len == 0) {
5511 struct vattr va;
5512
5513 /*
5514 * ftruncate should not change the ctime and
5515 * mtime if we truncate the file to its
5516 * previous size.
5517 */
5518 va.va_mask = AT_SIZE;
5519 error = nfs3getattr(vp, &va, cr);
5520 if (error || va.va_size == bfp->l_start)
5521 return (error);
5522 va.va_mask = AT_SIZE;
5523 va.va_size = bfp->l_start;
5524 error = nfs3setattr(vp, &va, 0, cr);
5525
5526 if (error == 0 && bfp->l_start == 0)
5527 vnevent_truncate(vp, ct);
5528 } else
5529 error = EINVAL;
5530 }
5531
5532 return (error);
5533 }
5534
5535 /* ARGSUSED */
5536 static int
nfs3_realvp(vnode_t * vp,vnode_t ** vpp,caller_context_t * ct)5537 nfs3_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
5538 {
5539
5540 return (EINVAL);
5541 }
5542
5543 /*
5544 * Setup and add an address space callback to do the work of the delmap call.
5545 * The callback will (and must be) deleted in the actual callback function.
5546 *
5547 * This is done in order to take care of the problem that we have with holding
5548 * the address space's a_lock for a long period of time (e.g. if the NFS server
5549 * is down). Callbacks will be executed in the address space code while the
5550 * a_lock is not held. Holding the address space's a_lock causes things such
5551 * as ps and fork to hang because they are trying to acquire this lock as well.
5552 */
5553 /* ARGSUSED */
5554 static int
nfs3_delmap(vnode_t * vp,offset_t off,struct as * as,caddr_t addr,size_t len,uint_t prot,uint_t maxprot,uint_t flags,cred_t * cr,caller_context_t * ct)5555 nfs3_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
5556 size_t len, uint_t prot, uint_t maxprot, uint_t flags,
5557 cred_t *cr, caller_context_t *ct)
5558 {
5559 int caller_found;
5560 int error;
5561 rnode_t *rp;
5562 nfs_delmap_args_t *dmapp;
5563 nfs_delmapcall_t *delmap_call;
5564
5565 if (vp->v_flag & VNOMAP)
5566 return (ENOSYS);
5567 /*
5568 * A process may not change zones if it has NFS pages mmap'ed
5569 * in, so we can't legitimately get here from the wrong zone.
5570 */
5571 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5572
5573 rp = VTOR(vp);
5574
5575 /*
5576 * The way that the address space of this process deletes its mapping
5577 * of this file is via the following call chains:
5578 * - as_free()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap()
5579 * - as_unmap()->SEGOP_UNMAP()/segvn_unmap()->VOP_DELMAP()/nfs3_delmap()
5580 *
5581 * With the use of address space callbacks we are allowed to drop the
5582 * address space lock, a_lock, while executing the NFS operations that
5583 * need to go over the wire. Returning EAGAIN to the caller of this
5584 * function is what drives the execution of the callback that we add
5585 * below. The callback will be executed by the address space code
5586 * after dropping the a_lock. When the callback is finished, since
5587 * we dropped the a_lock, it must be re-acquired and segvn_unmap()
5588 * is called again on the same segment to finish the rest of the work
5589 * that needs to happen during unmapping.
5590 *
5591 * This action of calling back into the segment driver causes
5592 * nfs3_delmap() to get called again, but since the callback was
5593 * already executed at this point, it already did the work and there
5594 * is nothing left for us to do.
5595 *
5596 * To Summarize:
5597 * - The first time nfs3_delmap is called by the current thread is when
5598 * we add the caller associated with this delmap to the delmap caller
5599 * list, add the callback, and return EAGAIN.
5600 * - The second time in this call chain when nfs3_delmap is called we
5601 * will find this caller in the delmap caller list and realize there
5602 * is no more work to do thus removing this caller from the list and
5603 * returning the error that was set in the callback execution.
5604 */
5605 caller_found = nfs_find_and_delete_delmapcall(rp, &error);
5606 if (caller_found) {
5607 /*
5608 * 'error' is from the actual delmap operations. To avoid
5609 * hangs, we need to handle the return of EAGAIN differently
5610 * since this is what drives the callback execution.
5611 * In this case, we don't want to return EAGAIN and do the
5612 * callback execution because there are none to execute.
5613 */
5614 if (error == EAGAIN)
5615 return (0);
5616 else
5617 return (error);
5618 }
5619
5620 /* current caller was not in the list */
5621 delmap_call = nfs_init_delmapcall();
5622
5623 mutex_enter(&rp->r_statelock);
5624 list_insert_tail(&rp->r_indelmap, delmap_call);
5625 mutex_exit(&rp->r_statelock);
5626
5627 dmapp = kmem_alloc(sizeof (nfs_delmap_args_t), KM_SLEEP);
5628
5629 dmapp->vp = vp;
5630 dmapp->off = off;
5631 dmapp->addr = addr;
5632 dmapp->len = len;
5633 dmapp->prot = prot;
5634 dmapp->maxprot = maxprot;
5635 dmapp->flags = flags;
5636 dmapp->cr = cr;
5637 dmapp->caller = delmap_call;
5638
5639 error = as_add_callback(as, nfs3_delmap_callback, dmapp,
5640 AS_UNMAP_EVENT, addr, len, KM_SLEEP);
5641
5642 return (error ? error : EAGAIN);
5643 }
5644
5645 /*
5646 * Remove some pages from an mmap'd vnode. Just update the
5647 * count of pages. If doing close-to-open, then flush and
5648 * commit all of the pages associated with this file.
5649 * Otherwise, start an asynchronous page flush to write out
5650 * any dirty pages. This will also associate a credential
5651 * with the rnode which can be used to write the pages.
5652 */
5653 /* ARGSUSED */
5654 static void
nfs3_delmap_callback(struct as * as,void * arg,uint_t event)5655 nfs3_delmap_callback(struct as *as, void *arg, uint_t event)
5656 {
5657 int error;
5658 rnode_t *rp;
5659 mntinfo_t *mi;
5660 nfs_delmap_args_t *dmapp = (nfs_delmap_args_t *)arg;
5661
5662 rp = VTOR(dmapp->vp);
5663 mi = VTOMI(dmapp->vp);
5664
5665 atomic_add_long((ulong_t *)&rp->r_mapcnt, -btopr(dmapp->len));
5666 ASSERT(rp->r_mapcnt >= 0);
5667
5668 /*
5669 * Initiate a page flush and potential commit if there are
5670 * pages, the file system was not mounted readonly, the segment
5671 * was mapped shared, and the pages themselves were writeable.
5672 */
5673 if (vn_has_cached_data(dmapp->vp) && !vn_is_readonly(dmapp->vp) &&
5674 dmapp->flags == MAP_SHARED && (dmapp->maxprot & PROT_WRITE)) {
5675 mutex_enter(&rp->r_statelock);
5676 rp->r_flags |= RDIRTY;
5677 mutex_exit(&rp->r_statelock);
5678 /*
5679 * If this is a cross-zone access a sync putpage won't work, so
5680 * the best we can do is try an async putpage. That seems
5681 * better than something more draconian such as discarding the
5682 * dirty pages.
5683 */
5684 if ((mi->mi_flags & MI_NOCTO) ||
5685 nfs_zone() != mi->mi_zone)
5686 error = nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
5687 B_ASYNC, dmapp->cr, NULL);
5688 else
5689 error = nfs3_putpage_commit(dmapp->vp, dmapp->off,
5690 dmapp->len, dmapp->cr);
5691 if (!error) {
5692 mutex_enter(&rp->r_statelock);
5693 error = rp->r_error;
5694 rp->r_error = 0;
5695 mutex_exit(&rp->r_statelock);
5696 }
5697 } else
5698 error = 0;
5699
5700 if ((rp->r_flags & RDIRECTIO) || (mi->mi_flags & MI_DIRECTIO))
5701 (void) nfs3_putpage(dmapp->vp, dmapp->off, dmapp->len,
5702 B_INVAL, dmapp->cr, NULL);
5703
5704 dmapp->caller->error = error;
5705 (void) as_delete_callback(as, arg);
5706 kmem_free(dmapp, sizeof (nfs_delmap_args_t));
5707 }
5708
5709 static int nfs3_pathconf_disable_cache = 0;
5710
5711 #ifdef DEBUG
5712 static int nfs3_pathconf_cache_hits = 0;
5713 static int nfs3_pathconf_cache_misses = 0;
5714 #endif
5715
5716 /* ARGSUSED */
5717 static int
nfs3_pathconf(vnode_t * vp,int cmd,ulong_t * valp,cred_t * cr,caller_context_t * ct)5718 nfs3_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
5719 caller_context_t *ct)
5720 {
5721 int error;
5722 PATHCONF3args args;
5723 PATHCONF3res res;
5724 int douprintf;
5725 failinfo_t fi;
5726 rnode_t *rp;
5727 hrtime_t t;
5728
5729 if (nfs_zone() != VTOMI(vp)->mi_zone)
5730 return (EIO);
5731 /*
5732 * Large file spec - need to base answer on info stored
5733 * on original FSINFO response.
5734 */
5735 if (cmd == _PC_FILESIZEBITS) {
5736 unsigned long long ll;
5737 long l = 1;
5738
5739 ll = VTOMI(vp)->mi_maxfilesize;
5740
5741 if (ll == 0) {
5742 *valp = 0;
5743 return (0);
5744 }
5745
5746 if (ll & 0xffffffff00000000) {
5747 l += 32; ll >>= 32;
5748 }
5749 if (ll & 0xffff0000) {
5750 l += 16; ll >>= 16;
5751 }
5752 if (ll & 0xff00) {
5753 l += 8; ll >>= 8;
5754 }
5755 if (ll & 0xf0) {
5756 l += 4; ll >>= 4;
5757 }
5758 if (ll & 0xc) {
5759 l += 2; ll >>= 2;
5760 }
5761 if (ll & 0x2)
5762 l += 2;
5763 else if (ll & 0x1)
5764 l += 1;
5765 *valp = l;
5766 return (0);
5767 }
5768
5769 if (cmd == _PC_ACL_ENABLED) {
5770 *valp = _ACL_ACLENT_ENABLED;
5771 return (0);
5772 }
5773
5774 if (cmd == _PC_XATTR_EXISTS) {
5775 error = 0;
5776 *valp = 0;
5777 if (vp->v_vfsp->vfs_flag & VFS_XATTR) {
5778 vnode_t *avp;
5779 rnode_t *rp;
5780 int error = 0;
5781 mntinfo_t *mi = VTOMI(vp);
5782
5783 if (!(mi->mi_flags & MI_EXTATTR))
5784 return (0);
5785
5786 rp = VTOR(vp);
5787 if (nfs_rw_enter_sig(&rp->r_rwlock, RW_READER,
5788 INTR(vp)))
5789 return (EINTR);
5790
5791 error = nfs3lookup_dnlc(vp, XATTR_DIR_NAME, &avp, cr);
5792 if (error || avp == NULL)
5793 error = acl_getxattrdir3(vp, &avp, 0, cr, 0);
5794
5795 nfs_rw_exit(&rp->r_rwlock);
5796
5797 if (error == 0 && avp != NULL) {
5798 error = do_xattr_exists_check(avp, valp, cr);
5799 VN_RELE(avp);
5800 } else if (error == ENOENT) {
5801 error = 0;
5802 *valp = 0;
5803 }
5804 }
5805 return (error);
5806 }
5807
5808 rp = VTOR(vp);
5809 if (rp->r_pathconf != NULL) {
5810 mutex_enter(&rp->r_statelock);
5811 if (rp->r_pathconf != NULL && nfs3_pathconf_disable_cache) {
5812 kmem_free(rp->r_pathconf, sizeof (*rp->r_pathconf));
5813 rp->r_pathconf = NULL;
5814 }
5815 if (rp->r_pathconf != NULL) {
5816 error = 0;
5817 switch (cmd) {
5818 case _PC_LINK_MAX:
5819 *valp = rp->r_pathconf->link_max;
5820 break;
5821 case _PC_NAME_MAX:
5822 *valp = rp->r_pathconf->name_max;
5823 break;
5824 case _PC_PATH_MAX:
5825 case _PC_SYMLINK_MAX:
5826 *valp = MAXPATHLEN;
5827 break;
5828 case _PC_CHOWN_RESTRICTED:
5829 *valp = rp->r_pathconf->chown_restricted;
5830 break;
5831 case _PC_NO_TRUNC:
5832 *valp = rp->r_pathconf->no_trunc;
5833 break;
5834 default:
5835 error = EINVAL;
5836 break;
5837 }
5838 mutex_exit(&rp->r_statelock);
5839 #ifdef DEBUG
5840 nfs3_pathconf_cache_hits++;
5841 #endif
5842 return (error);
5843 }
5844 mutex_exit(&rp->r_statelock);
5845 }
5846 #ifdef DEBUG
5847 nfs3_pathconf_cache_misses++;
5848 #endif
5849
5850 args.object = *VTOFH3(vp);
5851 fi.vp = vp;
5852 fi.fhp = (caddr_t)&args.object;
5853 fi.copyproc = nfs3copyfh;
5854 fi.lookupproc = nfs3lookup;
5855 fi.xattrdirproc = acl_getxattrdir3;
5856
5857 douprintf = 1;
5858
5859 t = gethrtime();
5860
5861 error = rfs3call(VTOMI(vp), NFSPROC3_PATHCONF,
5862 xdr_nfs_fh3, (caddr_t)&args,
5863 xdr_PATHCONF3res, (caddr_t)&res, cr,
5864 &douprintf, &res.status, 0, &fi);
5865
5866 if (error)
5867 return (error);
5868
5869 error = geterrno3(res.status);
5870
5871 if (!error) {
5872 nfs3_cache_post_op_attr(vp, &res.resok.obj_attributes, t, cr);
5873 if (!nfs3_pathconf_disable_cache) {
5874 mutex_enter(&rp->r_statelock);
5875 if (rp->r_pathconf == NULL) {
5876 rp->r_pathconf = kmem_alloc(
5877 sizeof (*rp->r_pathconf), KM_NOSLEEP);
5878 if (rp->r_pathconf != NULL)
5879 *rp->r_pathconf = res.resok.info;
5880 }
5881 mutex_exit(&rp->r_statelock);
5882 }
5883 switch (cmd) {
5884 case _PC_LINK_MAX:
5885 *valp = res.resok.info.link_max;
5886 break;
5887 case _PC_NAME_MAX:
5888 *valp = res.resok.info.name_max;
5889 break;
5890 case _PC_PATH_MAX:
5891 case _PC_SYMLINK_MAX:
5892 *valp = MAXPATHLEN;
5893 break;
5894 case _PC_CHOWN_RESTRICTED:
5895 *valp = res.resok.info.chown_restricted;
5896 break;
5897 case _PC_NO_TRUNC:
5898 *valp = res.resok.info.no_trunc;
5899 break;
5900 default:
5901 return (EINVAL);
5902 }
5903 } else {
5904 nfs3_cache_post_op_attr(vp, &res.resfail.obj_attributes, t, cr);
5905 PURGE_STALE_FH(error, vp, cr);
5906 }
5907
5908 return (error);
5909 }
5910
5911 /*
5912 * Called by async thread to do synchronous pageio. Do the i/o, wait
5913 * for it to complete, and cleanup the page list when done.
5914 */
5915 static int
nfs3_sync_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr)5916 nfs3_sync_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5917 int flags, cred_t *cr)
5918 {
5919 int error;
5920
5921 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
5922 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5923 if (flags & B_READ)
5924 pvn_read_done(pp, (error ? B_ERROR : 0) | flags);
5925 else
5926 pvn_write_done(pp, (error ? B_ERROR : 0) | flags);
5927 return (error);
5928 }
5929
5930 /* ARGSUSED */
5931 static int
nfs3_pageio(vnode_t * vp,page_t * pp,u_offset_t io_off,size_t io_len,int flags,cred_t * cr,caller_context_t * ct)5932 nfs3_pageio(vnode_t *vp, page_t *pp, u_offset_t io_off, size_t io_len,
5933 int flags, cred_t *cr, caller_context_t *ct)
5934 {
5935 int error;
5936 rnode_t *rp;
5937
5938 if (pp == NULL)
5939 return (EINVAL);
5940 if (!(flags & B_ASYNC) && nfs_zone() != VTOMI(vp)->mi_zone)
5941 return (EIO);
5942
5943 rp = VTOR(vp);
5944 mutex_enter(&rp->r_statelock);
5945 rp->r_count++;
5946 mutex_exit(&rp->r_statelock);
5947
5948 if (flags & B_ASYNC) {
5949 error = nfs_async_pageio(vp, pp, io_off, io_len, flags, cr,
5950 nfs3_sync_pageio);
5951 } else
5952 error = nfs3_rdwrlbn(vp, pp, io_off, io_len, flags, cr);
5953 mutex_enter(&rp->r_statelock);
5954 rp->r_count--;
5955 cv_broadcast(&rp->r_cv);
5956 mutex_exit(&rp->r_statelock);
5957 return (error);
5958 }
5959
5960 /* ARGSUSED */
5961 static void
nfs3_dispose(vnode_t * vp,page_t * pp,int fl,int dn,cred_t * cr,caller_context_t * ct)5962 nfs3_dispose(vnode_t *vp, page_t *pp, int fl, int dn, cred_t *cr,
5963 caller_context_t *ct)
5964 {
5965 int error;
5966 rnode_t *rp;
5967 page_t *plist;
5968 page_t *pptr;
5969 offset3 offset;
5970 count3 len;
5971 k_sigset_t smask;
5972
5973 /*
5974 * We should get called with fl equal to either B_FREE or
5975 * B_INVAL. Any other value is illegal.
5976 *
5977 * The page that we are either supposed to free or destroy
5978 * should be exclusive locked and its io lock should not
5979 * be held.
5980 */
5981 ASSERT(fl == B_FREE || fl == B_INVAL);
5982 ASSERT((PAGE_EXCL(pp) && !page_iolock_assert(pp)) || panicstr);
5983 rp = VTOR(vp);
5984
5985 /*
5986 * If the page doesn't need to be committed or we shouldn't
5987 * even bother attempting to commit it, then just make sure
5988 * that the p_fsdata byte is clear and then either free or
5989 * destroy the page as appropriate.
5990 */
5991 if (pp->p_fsdata == C_NOCOMMIT || (rp->r_flags & RSTALE)) {
5992 pp->p_fsdata = C_NOCOMMIT;
5993 if (fl == B_FREE)
5994 page_free(pp, dn);
5995 else
5996 page_destroy(pp, dn);
5997 return;
5998 }
5999
6000 /*
6001 * If there is a page invalidation operation going on, then
6002 * if this is one of the pages being destroyed, then just
6003 * clear the p_fsdata byte and then either free or destroy
6004 * the page as appropriate.
6005 */
6006 mutex_enter(&rp->r_statelock);
6007 if ((rp->r_flags & RTRUNCATE) && pp->p_offset >= rp->r_truncaddr) {
6008 mutex_exit(&rp->r_statelock);
6009 pp->p_fsdata = C_NOCOMMIT;
6010 if (fl == B_FREE)
6011 page_free(pp, dn);
6012 else
6013 page_destroy(pp, dn);
6014 return;
6015 }
6016
6017 /*
6018 * If we are freeing this page and someone else is already
6019 * waiting to do a commit, then just unlock the page and
6020 * return. That other thread will take care of commiting
6021 * this page. The page can be freed sometime after the
6022 * commit has finished. Otherwise, if the page is marked
6023 * as delay commit, then we may be getting called from
6024 * pvn_write_done, one page at a time. This could result
6025 * in one commit per page, so we end up doing lots of small
6026 * commits instead of fewer larger commits. This is bad,
6027 * we want do as few commits as possible.
6028 */
6029 if (fl == B_FREE) {
6030 if (rp->r_flags & RCOMMITWAIT) {
6031 page_unlock(pp);
6032 mutex_exit(&rp->r_statelock);
6033 return;
6034 }
6035 if (pp->p_fsdata == C_DELAYCOMMIT) {
6036 pp->p_fsdata = C_COMMIT;
6037 page_unlock(pp);
6038 mutex_exit(&rp->r_statelock);
6039 return;
6040 }
6041 }
6042
6043 /*
6044 * Check to see if there is a signal which would prevent an
6045 * attempt to commit the pages from being successful. If so,
6046 * then don't bother with all of the work to gather pages and
6047 * generate the unsuccessful RPC. Just return from here and
6048 * let the page be committed at some later time.
6049 */
6050 sigintr(&smask, VTOMI(vp)->mi_flags & MI_INT);
6051 if (ttolwp(curthread) != NULL && ISSIG(curthread, JUSTLOOKING)) {
6052 sigunintr(&smask);
6053 page_unlock(pp);
6054 mutex_exit(&rp->r_statelock);
6055 return;
6056 }
6057 sigunintr(&smask);
6058
6059 /*
6060 * We are starting to need to commit pages, so let's try
6061 * to commit as many as possible at once to reduce the
6062 * overhead.
6063 *
6064 * Set the `commit inprogress' state bit. We must
6065 * first wait until any current one finishes. Then
6066 * we initialize the c_pages list with this page.
6067 */
6068 while (rp->r_flags & RCOMMIT) {
6069 rp->r_flags |= RCOMMITWAIT;
6070 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
6071 rp->r_flags &= ~RCOMMITWAIT;
6072 }
6073 rp->r_flags |= RCOMMIT;
6074 mutex_exit(&rp->r_statelock);
6075 ASSERT(rp->r_commit.c_pages == NULL);
6076 rp->r_commit.c_pages = pp;
6077 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6078 rp->r_commit.c_commlen = PAGESIZE;
6079
6080 /*
6081 * Gather together all other pages which can be committed.
6082 * They will all be chained off r_commit.c_pages.
6083 */
6084 nfs3_get_commit(vp);
6085
6086 /*
6087 * Clear the `commit inprogress' status and disconnect
6088 * the list of pages to be committed from the rnode.
6089 * At this same time, we also save the starting offset
6090 * and length of data to be committed on the server.
6091 */
6092 plist = rp->r_commit.c_pages;
6093 rp->r_commit.c_pages = NULL;
6094 offset = rp->r_commit.c_commbase;
6095 len = rp->r_commit.c_commlen;
6096 mutex_enter(&rp->r_statelock);
6097 rp->r_flags &= ~RCOMMIT;
6098 cv_broadcast(&rp->r_commit.c_cv);
6099 mutex_exit(&rp->r_statelock);
6100
6101 if (curproc == proc_pageout || curproc == proc_fsflush ||
6102 nfs_zone() != VTOMI(vp)->mi_zone) {
6103 nfs_async_commit(vp, plist, offset, len, cr, nfs3_async_commit);
6104 return;
6105 }
6106
6107 /*
6108 * Actually generate the COMMIT3 over the wire operation.
6109 */
6110 error = nfs3_commit(vp, offset, len, cr);
6111
6112 /*
6113 * If we got an error during the commit, just unlock all
6114 * of the pages. The pages will get retransmitted to the
6115 * server during a putpage operation.
6116 */
6117 if (error) {
6118 while (plist != NULL) {
6119 pptr = plist;
6120 page_sub(&plist, pptr);
6121 page_unlock(pptr);
6122 }
6123 return;
6124 }
6125
6126 /*
6127 * We've tried as hard as we can to commit the data to stable
6128 * storage on the server. We release the rest of the pages
6129 * and clear the commit required state. They will be put
6130 * onto the tail of the cachelist if they are nolonger
6131 * mapped.
6132 */
6133 while (plist != pp) {
6134 pptr = plist;
6135 page_sub(&plist, pptr);
6136 pptr->p_fsdata = C_NOCOMMIT;
6137 (void) page_release(pptr, 1);
6138 }
6139
6140 /*
6141 * It is possible that nfs3_commit didn't return error but
6142 * some other thread has modified the page we are going
6143 * to free/destroy.
6144 * In this case we need to rewrite the page. Do an explicit check
6145 * before attempting to free/destroy the page. If modified, needs to
6146 * be rewritten so unlock the page and return.
6147 */
6148 if (hat_ismod(pp)) {
6149 pp->p_fsdata = C_NOCOMMIT;
6150 page_unlock(pp);
6151 return;
6152 }
6153
6154 /*
6155 * Now, as appropriate, either free or destroy the page
6156 * that we were called with.
6157 */
6158 pp->p_fsdata = C_NOCOMMIT;
6159 if (fl == B_FREE)
6160 page_free(pp, dn);
6161 else
6162 page_destroy(pp, dn);
6163 }
6164
6165 static int
nfs3_commit(vnode_t * vp,offset3 offset,count3 count,cred_t * cr)6166 nfs3_commit(vnode_t *vp, offset3 offset, count3 count, cred_t *cr)
6167 {
6168 int error;
6169 rnode_t *rp;
6170 COMMIT3args args;
6171 COMMIT3res res;
6172 int douprintf;
6173 cred_t *cred;
6174
6175 rp = VTOR(vp);
6176 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6177
6178 mutex_enter(&rp->r_statelock);
6179 if (rp->r_cred != NULL) {
6180 cred = rp->r_cred;
6181 crhold(cred);
6182 } else {
6183 rp->r_cred = cr;
6184 crhold(cr);
6185 cred = cr;
6186 crhold(cred);
6187 }
6188 mutex_exit(&rp->r_statelock);
6189
6190 args.file = *VTOFH3(vp);
6191 args.offset = offset;
6192 args.count = count;
6193
6194 doitagain:
6195 douprintf = 1;
6196 error = rfs3call(VTOMI(vp), NFSPROC3_COMMIT,
6197 xdr_COMMIT3args, (caddr_t)&args,
6198 xdr_COMMIT3res, (caddr_t)&res, cred,
6199 &douprintf, &res.status, 0, NULL);
6200
6201 crfree(cred);
6202
6203 if (error)
6204 return (error);
6205
6206 error = geterrno3(res.status);
6207 if (!error) {
6208 ASSERT(rp->r_flags & RHAVEVERF);
6209 mutex_enter(&rp->r_statelock);
6210 if (rp->r_verf == res.resok.verf) {
6211 mutex_exit(&rp->r_statelock);
6212 return (0);
6213 }
6214 nfs3_set_mod(vp);
6215 rp->r_verf = res.resok.verf;
6216 mutex_exit(&rp->r_statelock);
6217 error = NFS_VERF_MISMATCH;
6218 } else {
6219 if (error == EACCES) {
6220 mutex_enter(&rp->r_statelock);
6221 if (cred != cr) {
6222 if (rp->r_cred != NULL)
6223 crfree(rp->r_cred);
6224 rp->r_cred = cr;
6225 crhold(cr);
6226 cred = cr;
6227 crhold(cred);
6228 mutex_exit(&rp->r_statelock);
6229 goto doitagain;
6230 }
6231 mutex_exit(&rp->r_statelock);
6232 }
6233 /*
6234 * Can't do a PURGE_STALE_FH here because this
6235 * can cause a deadlock. nfs3_commit can
6236 * be called from nfs3_dispose which can be called
6237 * indirectly via pvn_vplist_dirty. PURGE_STALE_FH
6238 * can call back to pvn_vplist_dirty.
6239 */
6240 if (error == ESTALE) {
6241 mutex_enter(&rp->r_statelock);
6242 rp->r_flags |= RSTALE;
6243 if (!rp->r_error)
6244 rp->r_error = error;
6245 mutex_exit(&rp->r_statelock);
6246 PURGE_ATTRCACHE(vp);
6247 } else {
6248 mutex_enter(&rp->r_statelock);
6249 if (!rp->r_error)
6250 rp->r_error = error;
6251 mutex_exit(&rp->r_statelock);
6252 }
6253 }
6254
6255 return (error);
6256 }
6257
6258 static void
nfs3_set_mod(vnode_t * vp)6259 nfs3_set_mod(vnode_t *vp)
6260 {
6261 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6262
6263 pvn_vplist_setdirty(vp, nfs_setmod_check);
6264 }
6265
6266 /*
6267 * This routine is used to gather together a page list of the pages
6268 * which are to be committed on the server. This routine must not
6269 * be called if the calling thread holds any locked pages.
6270 *
6271 * The calling thread must have set RCOMMIT. This bit is used to
6272 * serialize access to the commit structure in the rnode. As long
6273 * as the thread has set RCOMMIT, then it can manipulate the commit
6274 * structure without requiring any other locks.
6275 */
6276 static void
nfs3_get_commit(vnode_t * vp)6277 nfs3_get_commit(vnode_t *vp)
6278 {
6279 rnode_t *rp;
6280 page_t *pp;
6281 kmutex_t *vphm;
6282
6283 rp = VTOR(vp);
6284
6285 ASSERT(rp->r_flags & RCOMMIT);
6286
6287 vphm = page_vnode_mutex(vp);
6288 mutex_enter(vphm);
6289
6290 /*
6291 * If there are no pages associated with this vnode, then
6292 * just return.
6293 */
6294 if ((pp = vp->v_pages) == NULL) {
6295 mutex_exit(vphm);
6296 return;
6297 }
6298
6299 /*
6300 * Step through all of the pages associated with this vnode
6301 * looking for pages which need to be committed.
6302 */
6303 do {
6304 /* Skip marker pages. */
6305 if (pp->p_hash == PVN_VPLIST_HASH_TAG)
6306 continue;
6307
6308 /*
6309 * If this page does not need to be committed or is
6310 * modified, then just skip it.
6311 */
6312 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp))
6313 continue;
6314
6315 /*
6316 * Attempt to lock the page. If we can't, then
6317 * someone else is messing with it and we will
6318 * just skip it.
6319 */
6320 if (!page_trylock(pp, SE_EXCL))
6321 continue;
6322
6323 /*
6324 * If this page does not need to be committed or is
6325 * modified, then just skip it. Recheck now that
6326 * the page is locked.
6327 */
6328 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
6329 page_unlock(pp);
6330 continue;
6331 }
6332
6333 if (PP_ISFREE(pp)) {
6334 cmn_err(CE_PANIC, "nfs3_get_commit: %p is free",
6335 (void *)pp);
6336 }
6337
6338 /*
6339 * The page needs to be committed and we locked it.
6340 * Update the base and length parameters and add it
6341 * to r_pages.
6342 */
6343 if (rp->r_commit.c_pages == NULL) {
6344 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6345 rp->r_commit.c_commlen = PAGESIZE;
6346 } else if (pp->p_offset < rp->r_commit.c_commbase) {
6347 rp->r_commit.c_commlen = rp->r_commit.c_commbase -
6348 (offset3)pp->p_offset + rp->r_commit.c_commlen;
6349 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6350 } else if ((rp->r_commit.c_commbase + rp->r_commit.c_commlen)
6351 <= pp->p_offset) {
6352 rp->r_commit.c_commlen = (offset3)pp->p_offset -
6353 rp->r_commit.c_commbase + PAGESIZE;
6354 }
6355 page_add(&rp->r_commit.c_pages, pp);
6356 } while ((pp = pp->p_vpnext) != vp->v_pages);
6357
6358 mutex_exit(vphm);
6359 }
6360
6361 /*
6362 * This routine is used to gather together a page list of the pages
6363 * which are to be committed on the server. This routine must not
6364 * be called if the calling thread holds any locked pages.
6365 *
6366 * The calling thread must have set RCOMMIT. This bit is used to
6367 * serialize access to the commit structure in the rnode. As long
6368 * as the thread has set RCOMMIT, then it can manipulate the commit
6369 * structure without requiring any other locks.
6370 */
6371 static void
nfs3_get_commit_range(vnode_t * vp,u_offset_t soff,size_t len)6372 nfs3_get_commit_range(vnode_t *vp, u_offset_t soff, size_t len)
6373 {
6374
6375 rnode_t *rp;
6376 page_t *pp;
6377 u_offset_t end;
6378 u_offset_t off;
6379
6380 ASSERT(len != 0);
6381
6382 rp = VTOR(vp);
6383
6384 ASSERT(rp->r_flags & RCOMMIT);
6385 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6386
6387 /*
6388 * If there are no pages associated with this vnode, then
6389 * just return.
6390 */
6391 if ((pp = vp->v_pages) == NULL)
6392 return;
6393
6394 /*
6395 * Calculate the ending offset.
6396 */
6397 end = soff + len;
6398
6399 for (off = soff; off < end; off += PAGESIZE) {
6400 /*
6401 * Lookup each page by vp, offset.
6402 */
6403 if ((pp = page_lookup_nowait(vp, off, SE_EXCL)) == NULL)
6404 continue;
6405
6406 /*
6407 * If this page does not need to be committed or is
6408 * modified, then just skip it.
6409 */
6410 if (pp->p_fsdata == C_NOCOMMIT || hat_ismod(pp)) {
6411 page_unlock(pp);
6412 continue;
6413 }
6414
6415 ASSERT(PP_ISFREE(pp) == 0);
6416
6417 /*
6418 * The page needs to be committed and we locked it.
6419 * Update the base and length parameters and add it
6420 * to r_pages.
6421 */
6422 if (rp->r_commit.c_pages == NULL) {
6423 rp->r_commit.c_commbase = (offset3)pp->p_offset;
6424 rp->r_commit.c_commlen = PAGESIZE;
6425 } else {
6426 rp->r_commit.c_commlen = (offset3)pp->p_offset -
6427 rp->r_commit.c_commbase + PAGESIZE;
6428 }
6429 page_add(&rp->r_commit.c_pages, pp);
6430 }
6431 }
6432
6433 static int
nfs3_putpage_commit(vnode_t * vp,offset_t poff,size_t plen,cred_t * cr)6434 nfs3_putpage_commit(vnode_t *vp, offset_t poff, size_t plen, cred_t *cr)
6435 {
6436 int error;
6437 writeverf3 write_verf;
6438 rnode_t *rp = VTOR(vp);
6439
6440 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6441 /*
6442 * Flush the data portion of the file and then commit any
6443 * portions which need to be committed. This may need to
6444 * be done twice if the server has changed state since
6445 * data was last written. The data will need to be
6446 * rewritten to the server and then a new commit done.
6447 *
6448 * In fact, this may need to be done several times if the
6449 * server is having problems and crashing while we are
6450 * attempting to do this.
6451 */
6452
6453 top:
6454 /*
6455 * Do a flush based on the poff and plen arguments. This
6456 * will asynchronously write out any modified pages in the
6457 * range specified by (poff, plen). This starts all of the
6458 * i/o operations which will be waited for in the next
6459 * call to nfs3_putpage
6460 */
6461
6462 mutex_enter(&rp->r_statelock);
6463 write_verf = rp->r_verf;
6464 mutex_exit(&rp->r_statelock);
6465
6466 error = nfs3_putpage(vp, poff, plen, B_ASYNC, cr, NULL);
6467 if (error == EAGAIN)
6468 error = 0;
6469
6470 /*
6471 * Do a flush based on the poff and plen arguments. This
6472 * will synchronously write out any modified pages in the
6473 * range specified by (poff, plen) and wait until all of
6474 * the asynchronous i/o's in that range are done as well.
6475 */
6476 if (!error)
6477 error = nfs3_putpage(vp, poff, plen, 0, cr, NULL);
6478
6479 if (error)
6480 return (error);
6481
6482 mutex_enter(&rp->r_statelock);
6483 if (rp->r_verf != write_verf) {
6484 mutex_exit(&rp->r_statelock);
6485 goto top;
6486 }
6487 mutex_exit(&rp->r_statelock);
6488
6489 /*
6490 * Now commit any pages which might need to be committed.
6491 * If the error, NFS_VERF_MISMATCH, is returned, then
6492 * start over with the flush operation.
6493 */
6494
6495 error = nfs3_commit_vp(vp, poff, plen, cr);
6496
6497 if (error == NFS_VERF_MISMATCH)
6498 goto top;
6499
6500 return (error);
6501 }
6502
6503 static int
nfs3_commit_vp(vnode_t * vp,u_offset_t poff,size_t plen,cred_t * cr)6504 nfs3_commit_vp(vnode_t *vp, u_offset_t poff, size_t plen, cred_t *cr)
6505 {
6506 rnode_t *rp;
6507 page_t *plist;
6508 offset3 offset;
6509 count3 len;
6510
6511
6512 rp = VTOR(vp);
6513
6514 if (nfs_zone() != VTOMI(vp)->mi_zone)
6515 return (EIO);
6516 /*
6517 * Set the `commit inprogress' state bit. We must
6518 * first wait until any current one finishes.
6519 */
6520 mutex_enter(&rp->r_statelock);
6521 while (rp->r_flags & RCOMMIT) {
6522 rp->r_flags |= RCOMMITWAIT;
6523 cv_wait(&rp->r_commit.c_cv, &rp->r_statelock);
6524 rp->r_flags &= ~RCOMMITWAIT;
6525 }
6526 rp->r_flags |= RCOMMIT;
6527 mutex_exit(&rp->r_statelock);
6528
6529 /*
6530 * Gather together all of the pages which need to be
6531 * committed.
6532 */
6533 if (plen == 0)
6534 nfs3_get_commit(vp);
6535 else
6536 nfs3_get_commit_range(vp, poff, plen);
6537
6538 /*
6539 * Clear the `commit inprogress' bit and disconnect the
6540 * page list which was gathered together in nfs3_get_commit.
6541 */
6542 plist = rp->r_commit.c_pages;
6543 rp->r_commit.c_pages = NULL;
6544 offset = rp->r_commit.c_commbase;
6545 len = rp->r_commit.c_commlen;
6546 mutex_enter(&rp->r_statelock);
6547 rp->r_flags &= ~RCOMMIT;
6548 cv_broadcast(&rp->r_commit.c_cv);
6549 mutex_exit(&rp->r_statelock);
6550
6551 /*
6552 * If any pages need to be committed, commit them and
6553 * then unlock them so that they can be freed some
6554 * time later.
6555 */
6556 if (plist != NULL) {
6557 /*
6558 * No error occurred during the flush portion
6559 * of this operation, so now attempt to commit
6560 * the data to stable storage on the server.
6561 *
6562 * This will unlock all of the pages on the list.
6563 */
6564 return (nfs3_sync_commit(vp, plist, offset, len, cr));
6565 }
6566 return (0);
6567 }
6568
6569 static int
nfs3_sync_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr)6570 nfs3_sync_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
6571 cred_t *cr)
6572 {
6573 int error;
6574 page_t *pp;
6575
6576 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6577 error = nfs3_commit(vp, offset, count, cr);
6578
6579 /*
6580 * If we got an error, then just unlock all of the pages
6581 * on the list.
6582 */
6583 if (error) {
6584 while (plist != NULL) {
6585 pp = plist;
6586 page_sub(&plist, pp);
6587 page_unlock(pp);
6588 }
6589 return (error);
6590 }
6591 /*
6592 * We've tried as hard as we can to commit the data to stable
6593 * storage on the server. We just unlock the pages and clear
6594 * the commit required state. They will get freed later.
6595 */
6596 while (plist != NULL) {
6597 pp = plist;
6598 page_sub(&plist, pp);
6599 pp->p_fsdata = C_NOCOMMIT;
6600 page_unlock(pp);
6601 }
6602
6603 return (error);
6604 }
6605
6606 static void
nfs3_async_commit(vnode_t * vp,page_t * plist,offset3 offset,count3 count,cred_t * cr)6607 nfs3_async_commit(vnode_t *vp, page_t *plist, offset3 offset, count3 count,
6608 cred_t *cr)
6609 {
6610 ASSERT(nfs_zone() == VTOMI(vp)->mi_zone);
6611 (void) nfs3_sync_commit(vp, plist, offset, count, cr);
6612 }
6613
6614 /* ARGSUSED */
6615 static int
nfs3_setsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)6616 nfs3_setsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
6617 caller_context_t *ct)
6618 {
6619 int error;
6620 mntinfo_t *mi;
6621
6622 mi = VTOMI(vp);
6623
6624 if (nfs_zone() != mi->mi_zone)
6625 return (EIO);
6626
6627 if (mi->mi_flags & MI_ACL) {
6628 error = acl_setacl3(vp, vsecattr, flag, cr);
6629 if (mi->mi_flags & MI_ACL)
6630 return (error);
6631 }
6632
6633 return (ENOSYS);
6634 }
6635
6636 /* ARGSUSED */
6637 static int
nfs3_getsecattr(vnode_t * vp,vsecattr_t * vsecattr,int flag,cred_t * cr,caller_context_t * ct)6638 nfs3_getsecattr(vnode_t *vp, vsecattr_t *vsecattr, int flag, cred_t *cr,
6639 caller_context_t *ct)
6640 {
6641 int error;
6642 mntinfo_t *mi;
6643
6644 mi = VTOMI(vp);
6645
6646 if (nfs_zone() != mi->mi_zone)
6647 return (EIO);
6648
6649 if (mi->mi_flags & MI_ACL) {
6650 error = acl_getacl3(vp, vsecattr, flag, cr);
6651 if (mi->mi_flags & MI_ACL)
6652 return (error);
6653 }
6654
6655 return (fs_fab_acl(vp, vsecattr, flag, cr, ct));
6656 }
6657
6658 /* ARGSUSED */
6659 static int
nfs3_shrlock(vnode_t * vp,int cmd,struct shrlock * shr,int flag,cred_t * cr,caller_context_t * ct)6660 nfs3_shrlock(vnode_t *vp, int cmd, struct shrlock *shr, int flag, cred_t *cr,
6661 caller_context_t *ct)
6662 {
6663 int error;
6664 struct shrlock nshr;
6665 struct nfs_owner nfs_owner;
6666 netobj lm_fh3;
6667
6668 if (nfs_zone() != VTOMI(vp)->mi_zone)
6669 return (EIO);
6670
6671 /*
6672 * check for valid cmd parameter
6673 */
6674 if (cmd != F_SHARE && cmd != F_UNSHARE && cmd != F_HASREMOTELOCKS)
6675 return (EINVAL);
6676
6677 /*
6678 * Check access permissions
6679 */
6680 if (cmd == F_SHARE &&
6681 (((shr->s_access & F_RDACC) && !(flag & FREAD)) ||
6682 ((shr->s_access & F_WRACC) && !(flag & FWRITE))))
6683 return (EBADF);
6684
6685 /*
6686 * If the filesystem is mounted using local locking, pass the
6687 * request off to the local share code.
6688 */
6689 if (VTOMI(vp)->mi_flags & MI_LLOCK)
6690 return (fs_shrlock(vp, cmd, shr, flag, cr, ct));
6691
6692 switch (cmd) {
6693 case F_SHARE:
6694 case F_UNSHARE:
6695 lm_fh3.n_len = VTOFH3(vp)->fh3_length;
6696 lm_fh3.n_bytes = (char *)&(VTOFH3(vp)->fh3_u.data);
6697
6698 /*
6699 * If passed an owner that is too large to fit in an
6700 * nfs_owner it is likely a recursive call from the
6701 * lock manager client and pass it straight through. If
6702 * it is not a nfs_owner then simply return an error.
6703 */
6704 if (shr->s_own_len > sizeof (nfs_owner.lowner)) {
6705 if (((struct nfs_owner *)shr->s_owner)->magic !=
6706 NFS_OWNER_MAGIC)
6707 return (EINVAL);
6708
6709 if (error = lm4_shrlock(vp, cmd, shr, flag, &lm_fh3)) {
6710 error = set_errno(error);
6711 }
6712 return (error);
6713 }
6714 /*
6715 * Remote share reservations owner is a combination of
6716 * a magic number, hostname, and the local owner
6717 */
6718 bzero(&nfs_owner, sizeof (nfs_owner));
6719 nfs_owner.magic = NFS_OWNER_MAGIC;
6720 (void) strncpy(nfs_owner.hname, uts_nodename(),
6721 sizeof (nfs_owner.hname));
6722 bcopy(shr->s_owner, nfs_owner.lowner, shr->s_own_len);
6723 nshr.s_access = shr->s_access;
6724 nshr.s_deny = shr->s_deny;
6725 nshr.s_sysid = 0;
6726 nshr.s_pid = ttoproc(curthread)->p_pid;
6727 nshr.s_own_len = sizeof (nfs_owner);
6728 nshr.s_owner = (caddr_t)&nfs_owner;
6729
6730 if (error = lm4_shrlock(vp, cmd, &nshr, flag, &lm_fh3)) {
6731 error = set_errno(error);
6732 }
6733
6734 break;
6735
6736 case F_HASREMOTELOCKS:
6737 /*
6738 * NFS client can't store remote locks itself
6739 */
6740 shr->s_access = 0;
6741 error = 0;
6742 break;
6743
6744 default:
6745 error = EINVAL;
6746 break;
6747 }
6748
6749 return (error);
6750 }
6751