xref: /linux/tools/lib/bpf/usdt.c (revision cbf33b8e0b360f667b17106c15d9e2aac77a76a1)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3 #include <ctype.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <libelf.h>
8 #include <gelf.h>
9 #include <unistd.h>
10 #include <linux/ptrace.h>
11 #include <linux/kernel.h>
12 
13 /* s8 will be marked as poison while it's a reg of riscv */
14 #if defined(__riscv)
15 #define rv_s8 s8
16 #endif
17 
18 #include "bpf.h"
19 #include "libbpf.h"
20 #include "libbpf_common.h"
21 #include "libbpf_internal.h"
22 #include "hashmap.h"
23 
24 /* libbpf's USDT support consists of BPF-side state/code and user-space
25  * state/code working together in concert. BPF-side parts are defined in
26  * usdt.bpf.h header library. User-space state is encapsulated by struct
27  * usdt_manager and all the supporting code centered around usdt_manager.
28  *
29  * usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map
30  * and IP-to-spec-ID map, which is auxiliary map necessary for kernels that
31  * don't support BPF cookie (see below). These two maps are implicitly
32  * embedded into user's end BPF object file when user's code included
33  * usdt.bpf.h. This means that libbpf doesn't do anything special to create
34  * these USDT support maps. They are created by normal libbpf logic of
35  * instantiating BPF maps when opening and loading BPF object.
36  *
37  * As such, libbpf is basically unaware of the need to do anything
38  * USDT-related until the very first call to bpf_program__attach_usdt(), which
39  * can be called by user explicitly or happen automatically during skeleton
40  * attach (or, equivalently, through generic bpf_program__attach() call). At
41  * this point, libbpf will instantiate and initialize struct usdt_manager and
42  * store it in bpf_object. USDT manager is per-BPF object construct, as each
43  * independent BPF object might or might not have USDT programs, and thus all
44  * the expected USDT-related state. There is no coordination between two
45  * bpf_object in parts of USDT attachment, they are oblivious of each other's
46  * existence and libbpf is just oblivious, dealing with bpf_object-specific
47  * USDT state.
48  *
49  * Quick crash course on USDTs.
50  *
51  * From user-space application's point of view, USDT is essentially just
52  * a slightly special function call that normally has zero overhead, unless it
53  * is being traced by some external entity (e.g, BPF-based tool). Here's how
54  * a typical application can trigger USDT probe:
55  *
56  * #include <sys/sdt.h>  // provided by systemtap-sdt-devel package
57  * // folly also provide similar functionality in folly/tracing/StaticTracepoint.h
58  *
59  * STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y);
60  *
61  * USDT is identified by its <provider-name>:<probe-name> pair of names. Each
62  * individual USDT has a fixed number of arguments (3 in the above example)
63  * and specifies values of each argument as if it was a function call.
64  *
65  * USDT call is actually not a function call, but is instead replaced by
66  * a single NOP instruction (thus zero overhead, effectively). But in addition
67  * to that, those USDT macros generate special SHT_NOTE ELF records in
68  * .note.stapsdt ELF section. Here's an example USDT definition as emitted by
69  * `readelf -n <binary>`:
70  *
71  *   stapsdt              0x00000089       NT_STAPSDT (SystemTap probe descriptors)
72  *   Provider: test
73  *   Name: usdt12
74  *   Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e
75  *   Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil
76  *
77  * In this case we have USDT test:usdt12 with 12 arguments.
78  *
79  * Location and base are offsets used to calculate absolute IP address of that
80  * NOP instruction that kernel can replace with an interrupt instruction to
81  * trigger instrumentation code (BPF program for all that we care about).
82  *
83  * Semaphore above is an optional feature. It records an address of a 2-byte
84  * refcount variable (normally in '.probes' ELF section) used for signaling if
85  * there is anything that is attached to USDT. This is useful for user
86  * applications if, for example, they need to prepare some arguments that are
87  * passed only to USDTs and preparation is expensive. By checking if USDT is
88  * "activated", an application can avoid paying those costs unnecessarily.
89  * Recent enough kernel has built-in support for automatically managing this
90  * refcount, which libbpf expects and relies on. If USDT is defined without
91  * associated semaphore, this value will be zero. See selftests for semaphore
92  * examples.
93  *
94  * Arguments is the most interesting part. This USDT specification string is
95  * providing information about all the USDT arguments and their locations. The
96  * part before @ sign defined byte size of the argument (1, 2, 4, or 8) and
97  * whether the argument is signed or unsigned (negative size means signed).
98  * The part after @ sign is assembly-like definition of argument location
99  * (see [0] for more details). Technically, assembler can provide some pretty
100  * advanced definitions, but libbpf is currently supporting three most common
101  * cases:
102  *   1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9);
103  *   2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer
104  *      whose value is in register %rdx";
105  *   3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which
106  *      specifies signed 32-bit integer stored at offset -1204 bytes from
107  *      memory address stored in %rbp.
108  *
109  *   [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
110  *
111  * During attachment, libbpf parses all the relevant USDT specifications and
112  * prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side
113  * code through spec map. This allows BPF applications to quickly fetch the
114  * actual value at runtime using a simple BPF-side code.
115  *
116  * With basics out of the way, let's go over less immediately obvious aspects
117  * of supporting USDTs.
118  *
119  * First, there is no special USDT BPF program type. It is actually just
120  * a uprobe BPF program (which for kernel, at least currently, is just a kprobe
121  * program, so BPF_PROG_TYPE_KPROBE program type). With the only difference
122  * that uprobe is usually attached at the function entry, while USDT will
123  * normally be somewhere inside the function. But it should always be
124  * pointing to NOP instruction, which makes such uprobes the fastest uprobe
125  * kind.
126  *
127  * Second, it's important to realize that such STAP_PROBEn(provider, name, ...)
128  * macro invocations can end up being inlined many-many times, depending on
129  * specifics of each individual user application. So single conceptual USDT
130  * (identified by provider:name pair of identifiers) is, generally speaking,
131  * multiple uprobe locations (USDT call sites) in different places in user
132  * application. Further, again due to inlining, each USDT call site might end
133  * up having the same argument #N be located in a different place. In one call
134  * site it could be a constant, in another will end up in a register, and in
135  * yet another could be some other register or even somewhere on the stack.
136  *
137  * As such, "attaching to USDT" means (in general case) attaching the same
138  * uprobe BPF program to multiple target locations in user application, each
139  * potentially having a completely different USDT spec associated with it.
140  * To wire all this up together libbpf allocates a unique integer spec ID for
141  * each unique USDT spec. Spec IDs are allocated as sequential small integers
142  * so that they can be used as keys in array BPF map (for performance reasons).
143  * Spec ID allocation and accounting is big part of what usdt_manager is
144  * about. This state has to be maintained per-BPF object and coordinate
145  * between different USDT attachments within the same BPF object.
146  *
147  * Spec ID is the key in spec BPF map, value is the actual USDT spec layed out
148  * as struct usdt_spec. Each invocation of BPF program at runtime needs to
149  * know its associated spec ID. It gets it either through BPF cookie, which
150  * libbpf sets to spec ID during attach time, or, if kernel is too old to
151  * support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such
152  * case. The latter means that some modes of operation can't be supported
153  * without BPF cookie. Such a mode is attaching to shared library "generically",
154  * without specifying target process. In such case, it's impossible to
155  * calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode
156  * is not supported without BPF cookie support.
157  *
158  * Note that libbpf is using BPF cookie functionality for its own internal
159  * needs, so user itself can't rely on BPF cookie feature. To that end, libbpf
160  * provides conceptually equivalent USDT cookie support. It's still u64
161  * user-provided value that can be associated with USDT attachment. Note that
162  * this will be the same value for all USDT call sites within the same single
163  * *logical* USDT attachment. This makes sense because to user attaching to
164  * USDT is a single BPF program triggered for singular USDT probe. The fact
165  * that this is done at multiple actual locations is a mostly hidden
166  * implementation details. This USDT cookie value can be fetched with
167  * bpf_usdt_cookie(ctx) API provided by usdt.bpf.h
168  *
169  * Lastly, while single USDT can have tons of USDT call sites, it doesn't
170  * necessarily have that many different USDT specs. It very well might be
171  * that 1000 USDT call sites only need 5 different USDT specs, because all the
172  * arguments are typically contained in a small set of registers or stack
173  * locations. As such, it's wasteful to allocate as many USDT spec IDs as
174  * there are USDT call sites. So libbpf tries to be frugal and performs
175  * on-the-fly deduplication during a single USDT attachment to only allocate
176  * the minimal required amount of unique USDT specs (and thus spec IDs). This
177  * is trivially achieved by using USDT spec string (Arguments string from USDT
178  * note) as a lookup key in a hashmap. USDT spec string uniquely defines
179  * everything about how to fetch USDT arguments, so two USDT call sites
180  * sharing USDT spec string can safely share the same USDT spec and spec ID.
181  * Note, this spec string deduplication is happening only during the same USDT
182  * attachment, so each USDT spec shares the same USDT cookie value. This is
183  * not generally true for other USDT attachments within the same BPF object,
184  * as even if USDT spec string is the same, USDT cookie value can be
185  * different. It was deemed excessive to try to deduplicate across independent
186  * USDT attachments by taking into account USDT spec string *and* USDT cookie
187  * value, which would complicate spec ID accounting significantly for little
188  * gain.
189  */
190 
191 #define USDT_BASE_SEC ".stapsdt.base"
192 #define USDT_SEMA_SEC ".probes"
193 #define USDT_NOTE_SEC  ".note.stapsdt"
194 #define USDT_NOTE_TYPE 3
195 #define USDT_NOTE_NAME "stapsdt"
196 
197 /* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */
198 enum usdt_arg_type {
199 	USDT_ARG_CONST,
200 	USDT_ARG_REG,
201 	USDT_ARG_REG_DEREF,
202 	USDT_ARG_SIB,
203 };
204 
205 /* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */
206 struct usdt_arg_spec {
207 	__u64 val_off;
208 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
209 	enum usdt_arg_type arg_type: 8;
210 	__u16	idx_reg_off: 12;
211 	__u16	scale_bitshift: 4;
212 	__u8 __reserved: 8;     /* keep reg_off offset stable */
213 #else
214 	__u8 __reserved: 8;     /* keep reg_off offset stable */
215 	__u16	idx_reg_off: 12;
216 	__u16	scale_bitshift: 4;
217 	enum usdt_arg_type arg_type: 8;
218 #endif
219 	short reg_off;
220 	bool arg_signed;
221 	char arg_bitshift;
222 };
223 
224 /* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */
225 #define USDT_MAX_ARG_CNT 12
226 
227 /* should match struct __bpf_usdt_spec from usdt.bpf.h */
228 struct usdt_spec {
229 	struct usdt_arg_spec args[USDT_MAX_ARG_CNT];
230 	__u64 usdt_cookie;
231 	short arg_cnt;
232 };
233 
234 struct usdt_note {
235 	const char *provider;
236 	const char *name;
237 	/* USDT args specification string, e.g.:
238 	 * "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx"
239 	 */
240 	const char *args;
241 	long loc_addr;
242 	long base_addr;
243 	long sema_addr;
244 };
245 
246 struct usdt_target {
247 	long abs_ip;
248 	long rel_ip;
249 	long sema_off;
250 	struct usdt_spec spec;
251 	const char *spec_str;
252 };
253 
254 struct usdt_manager {
255 	struct bpf_map *specs_map;
256 	struct bpf_map *ip_to_spec_id_map;
257 
258 	int *free_spec_ids;
259 	size_t free_spec_cnt;
260 	size_t next_free_spec_id;
261 
262 	bool has_bpf_cookie;
263 	bool has_sema_refcnt;
264 	bool has_uprobe_multi;
265 };
266 
267 struct usdt_manager *usdt_manager_new(struct bpf_object *obj)
268 {
269 	static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset";
270 	struct usdt_manager *man;
271 	struct bpf_map *specs_map, *ip_to_spec_id_map;
272 
273 	specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs");
274 	ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id");
275 	if (!specs_map || !ip_to_spec_id_map) {
276 		pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n");
277 		return ERR_PTR(-ESRCH);
278 	}
279 
280 	man = calloc(1, sizeof(*man));
281 	if (!man)
282 		return ERR_PTR(-ENOMEM);
283 
284 	man->specs_map = specs_map;
285 	man->ip_to_spec_id_map = ip_to_spec_id_map;
286 
287 	/* Detect if BPF cookie is supported for kprobes.
288 	 * We don't need IP-to-ID mapping if we can use BPF cookies.
289 	 * Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value")
290 	 */
291 	man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE);
292 
293 	/* Detect kernel support for automatic refcounting of USDT semaphore.
294 	 * If this is not supported, USDTs with semaphores will not be supported.
295 	 * Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe")
296 	 */
297 	man->has_sema_refcnt = faccessat(AT_FDCWD, ref_ctr_sysfs_path, F_OK, AT_EACCESS) == 0;
298 
299 	/*
300 	 * Detect kernel support for uprobe multi link to be used for attaching
301 	 * usdt probes.
302 	 */
303 	man->has_uprobe_multi = kernel_supports(obj, FEAT_UPROBE_MULTI_LINK);
304 	return man;
305 }
306 
307 void usdt_manager_free(struct usdt_manager *man)
308 {
309 	if (IS_ERR_OR_NULL(man))
310 		return;
311 
312 	free(man->free_spec_ids);
313 	free(man);
314 }
315 
316 static int sanity_check_usdt_elf(Elf *elf, const char *path)
317 {
318 	GElf_Ehdr ehdr;
319 	int endianness;
320 
321 	if (elf_kind(elf) != ELF_K_ELF) {
322 		pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path);
323 		return -EBADF;
324 	}
325 
326 	switch (gelf_getclass(elf)) {
327 	case ELFCLASS64:
328 		if (sizeof(void *) != 8) {
329 			pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path);
330 			return -EBADF;
331 		}
332 		break;
333 	case ELFCLASS32:
334 		if (sizeof(void *) != 4) {
335 			pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path);
336 			return -EBADF;
337 		}
338 		break;
339 	default:
340 		pr_warn("usdt: unsupported ELF class for '%s'\n", path);
341 		return -EBADF;
342 	}
343 
344 	if (!gelf_getehdr(elf, &ehdr))
345 		return -EINVAL;
346 
347 	if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) {
348 		pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n",
349 			path, ehdr.e_type);
350 		return -EBADF;
351 	}
352 
353 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
354 	endianness = ELFDATA2LSB;
355 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
356 	endianness = ELFDATA2MSB;
357 #else
358 # error "Unrecognized __BYTE_ORDER__"
359 #endif
360 	if (endianness != ehdr.e_ident[EI_DATA]) {
361 		pr_warn("usdt: ELF endianness mismatch for '%s'\n", path);
362 		return -EBADF;
363 	}
364 
365 	return 0;
366 }
367 
368 static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn)
369 {
370 	Elf_Scn *sec = NULL;
371 	size_t shstrndx;
372 
373 	if (elf_getshdrstrndx(elf, &shstrndx))
374 		return -EINVAL;
375 
376 	/* check if ELF is corrupted and avoid calling elf_strptr if yes */
377 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL))
378 		return -EINVAL;
379 
380 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
381 		char *name;
382 
383 		if (!gelf_getshdr(sec, shdr))
384 			return -EINVAL;
385 
386 		name = elf_strptr(elf, shstrndx, shdr->sh_name);
387 		if (name && strcmp(sec_name, name) == 0) {
388 			*scn = sec;
389 			return 0;
390 		}
391 	}
392 
393 	return -ENOENT;
394 }
395 
396 struct elf_seg {
397 	long start;
398 	long end;
399 	long offset;
400 	bool is_exec;
401 };
402 
403 static int cmp_elf_segs(const void *_a, const void *_b)
404 {
405 	const struct elf_seg *a = _a;
406 	const struct elf_seg *b = _b;
407 
408 	return a->start < b->start ? -1 : 1;
409 }
410 
411 static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt)
412 {
413 	GElf_Phdr phdr;
414 	size_t n;
415 	int i, err;
416 	struct elf_seg *seg;
417 	void *tmp;
418 
419 	*seg_cnt = 0;
420 
421 	if (elf_getphdrnum(elf, &n)) {
422 		err = -errno;
423 		return err;
424 	}
425 
426 	for (i = 0; i < n; i++) {
427 		if (!gelf_getphdr(elf, i, &phdr)) {
428 			err = -errno;
429 			return err;
430 		}
431 
432 		pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n",
433 			 i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset,
434 			 (long)phdr.p_type, (long)phdr.p_flags);
435 		if (phdr.p_type != PT_LOAD)
436 			continue;
437 
438 		tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
439 		if (!tmp)
440 			return -ENOMEM;
441 
442 		*segs = tmp;
443 		seg = *segs + *seg_cnt;
444 		(*seg_cnt)++;
445 
446 		seg->start = phdr.p_vaddr;
447 		seg->end = phdr.p_vaddr + phdr.p_memsz;
448 		seg->offset = phdr.p_offset;
449 		seg->is_exec = phdr.p_flags & PF_X;
450 	}
451 
452 	if (*seg_cnt == 0) {
453 		pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path);
454 		return -ESRCH;
455 	}
456 
457 	qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
458 	return 0;
459 }
460 
461 static int parse_vma_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt)
462 {
463 	char path[PATH_MAX], line[PATH_MAX], mode[16];
464 	size_t seg_start, seg_end, seg_off;
465 	struct elf_seg *seg;
466 	int tmp_pid, i, err;
467 	FILE *f;
468 
469 	*seg_cnt = 0;
470 
471 	/* Handle containerized binaries only accessible from
472 	 * /proc/<pid>/root/<path>. They will be reported as just /<path> in
473 	 * /proc/<pid>/maps.
474 	 */
475 	if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid)
476 		goto proceed;
477 
478 	if (!realpath(lib_path, path)) {
479 		pr_warn("usdt: failed to get absolute path of '%s' (err %s), using path as is...\n",
480 			lib_path, errstr(-errno));
481 		libbpf_strlcpy(path, lib_path, sizeof(path));
482 	}
483 
484 proceed:
485 	sprintf(line, "/proc/%d/maps", pid);
486 	f = fopen(line, "re");
487 	if (!f) {
488 		err = -errno;
489 		pr_warn("usdt: failed to open '%s' to get base addr of '%s': %s\n",
490 			line, lib_path, errstr(err));
491 		return err;
492 	}
493 
494 	/* We need to handle lines with no path at the end:
495 	 *
496 	 * 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613      /usr/lib64/libc-2.17.so
497 	 * 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0
498 	 * 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598    /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so
499 	 */
500 	while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n",
501 		      &seg_start, &seg_end, mode, &seg_off, line) == 5) {
502 		void *tmp;
503 
504 		/* to handle no path case (see above) we need to capture line
505 		 * without skipping any whitespaces. So we need to strip
506 		 * leading whitespaces manually here
507 		 */
508 		i = 0;
509 		while (isblank(line[i]))
510 			i++;
511 		if (strcmp(line + i, path) != 0)
512 			continue;
513 
514 		pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n",
515 			 path, seg_start, seg_end, mode, seg_off);
516 
517 		/* ignore non-executable sections for shared libs */
518 		if (mode[2] != 'x')
519 			continue;
520 
521 		tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
522 		if (!tmp) {
523 			err = -ENOMEM;
524 			goto err_out;
525 		}
526 
527 		*segs = tmp;
528 		seg = *segs + *seg_cnt;
529 		*seg_cnt += 1;
530 
531 		seg->start = seg_start;
532 		seg->end = seg_end;
533 		seg->offset = seg_off;
534 		seg->is_exec = true;
535 	}
536 
537 	if (*seg_cnt == 0) {
538 		pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n",
539 			lib_path, path, pid);
540 		err = -ESRCH;
541 		goto err_out;
542 	}
543 
544 	qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
545 	err = 0;
546 err_out:
547 	fclose(f);
548 	return err;
549 }
550 
551 static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long virtaddr)
552 {
553 	struct elf_seg *seg;
554 	int i;
555 
556 	/* for ELF binaries (both executables and shared libraries), we are
557 	 * given virtual address (absolute for executables, relative for
558 	 * libraries) which should match address range of [seg_start, seg_end)
559 	 */
560 	for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
561 		if (seg->start <= virtaddr && virtaddr < seg->end)
562 			return seg;
563 	}
564 	return NULL;
565 }
566 
567 static struct elf_seg *find_vma_seg(struct elf_seg *segs, size_t seg_cnt, long offset)
568 {
569 	struct elf_seg *seg;
570 	int i;
571 
572 	/* for VMA segments from /proc/<pid>/maps file, provided "address" is
573 	 * actually a file offset, so should be fall within logical
574 	 * offset-based range of [offset_start, offset_end)
575 	 */
576 	for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
577 		if (seg->offset <= offset && offset < seg->offset + (seg->end - seg->start))
578 			return seg;
579 	}
580 	return NULL;
581 }
582 
583 static int parse_usdt_note(GElf_Nhdr *nhdr, const char *data, size_t name_off,
584 			   size_t desc_off, struct usdt_note *usdt_note);
585 
586 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie);
587 
588 static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid,
589 				const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie,
590 				struct usdt_target **out_targets, size_t *out_target_cnt)
591 {
592 	size_t off, name_off, desc_off, seg_cnt = 0, vma_seg_cnt = 0, target_cnt = 0;
593 	struct elf_seg *segs = NULL, *vma_segs = NULL;
594 	struct usdt_target *targets = NULL, *target;
595 	long base_addr = 0;
596 	Elf_Scn *notes_scn, *base_scn;
597 	GElf_Shdr base_shdr, notes_shdr;
598 	GElf_Ehdr ehdr;
599 	GElf_Nhdr nhdr;
600 	Elf_Data *data;
601 	int err;
602 
603 	*out_targets = NULL;
604 	*out_target_cnt = 0;
605 
606 	err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, &notes_shdr, &notes_scn);
607 	if (err) {
608 		pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path);
609 		return err;
610 	}
611 
612 	if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) {
613 		pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path);
614 		return -EINVAL;
615 	}
616 
617 	err = parse_elf_segs(elf, path, &segs, &seg_cnt);
618 	if (err) {
619 		pr_warn("usdt: failed to process ELF program segments for '%s': %s\n",
620 			path, errstr(err));
621 		goto err_out;
622 	}
623 
624 	/* .stapsdt.base ELF section is optional, but is used for prelink
625 	 * offset compensation (see a big comment further below)
626 	 */
627 	if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0)
628 		base_addr = base_shdr.sh_addr;
629 
630 	data = elf_getdata(notes_scn, 0);
631 	off = 0;
632 	while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) {
633 		long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0;
634 		struct usdt_note note;
635 		struct elf_seg *seg = NULL;
636 		void *tmp;
637 
638 		err = parse_usdt_note(&nhdr, data->d_buf, name_off, desc_off, &note);
639 		if (err)
640 			goto err_out;
641 
642 		if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0)
643 			continue;
644 
645 		/* We need to compensate "prelink effect". See [0] for details,
646 		 * relevant parts quoted here:
647 		 *
648 		 * Each SDT probe also expands into a non-allocated ELF note. You can
649 		 * find this by looking at SHT_NOTE sections and decoding the format;
650 		 * see below for details. Because the note is non-allocated, it means
651 		 * there is no runtime cost, and also preserved in both stripped files
652 		 * and .debug files.
653 		 *
654 		 * However, this means that prelink won't adjust the note's contents
655 		 * for address offsets. Instead, this is done via the .stapsdt.base
656 		 * section. This is a special section that is added to the text. We
657 		 * will only ever have one of these sections in a final link and it
658 		 * will only ever be one byte long. Nothing about this section itself
659 		 * matters, we just use it as a marker to detect prelink address
660 		 * adjustments.
661 		 *
662 		 * Each probe note records the link-time address of the .stapsdt.base
663 		 * section alongside the probe PC address. The decoder compares the
664 		 * base address stored in the note with the .stapsdt.base section's
665 		 * sh_addr. Initially these are the same, but the section header will
666 		 * be adjusted by prelink. So the decoder applies the difference to
667 		 * the probe PC address to get the correct prelinked PC address; the
668 		 * same adjustment is applied to the semaphore address, if any.
669 		 *
670 		 *   [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
671 		 */
672 		usdt_abs_ip = note.loc_addr;
673 		if (base_addr && note.base_addr)
674 			usdt_abs_ip += base_addr - note.base_addr;
675 
676 		/* When attaching uprobes (which is what USDTs basically are)
677 		 * kernel expects file offset to be specified, not a relative
678 		 * virtual address, so we need to translate virtual address to
679 		 * file offset, for both ET_EXEC and ET_DYN binaries.
680 		 */
681 		seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip);
682 		if (!seg) {
683 			err = -ESRCH;
684 			pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n",
685 				usdt_provider, usdt_name, path, usdt_abs_ip);
686 			goto err_out;
687 		}
688 		if (!seg->is_exec) {
689 			err = -ESRCH;
690 			pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n",
691 				path, seg->start, seg->end, usdt_provider, usdt_name,
692 				usdt_abs_ip);
693 			goto err_out;
694 		}
695 		/* translate from virtual address to file offset */
696 		usdt_rel_ip = usdt_abs_ip - seg->start + seg->offset;
697 
698 		if (ehdr.e_type == ET_DYN && !man->has_bpf_cookie) {
699 			/* If we don't have BPF cookie support but need to
700 			 * attach to a shared library, we'll need to know and
701 			 * record absolute addresses of attach points due to
702 			 * the need to lookup USDT spec by absolute IP of
703 			 * triggered uprobe. Doing this resolution is only
704 			 * possible when we have a specific PID of the process
705 			 * that's using specified shared library. BPF cookie
706 			 * removes the absolute address limitation as we don't
707 			 * need to do this lookup (we just use BPF cookie as
708 			 * an index of USDT spec), so for newer kernels with
709 			 * BPF cookie support libbpf supports USDT attachment
710 			 * to shared libraries with no PID filter.
711 			 */
712 			if (pid < 0) {
713 				pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n");
714 				err = -ENOTSUP;
715 				goto err_out;
716 			}
717 
718 			/* vma_segs are lazily initialized only if necessary */
719 			if (vma_seg_cnt == 0) {
720 				err = parse_vma_segs(pid, path, &vma_segs, &vma_seg_cnt);
721 				if (err) {
722 					pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %s\n",
723 						pid, path, errstr(err));
724 					goto err_out;
725 				}
726 			}
727 
728 			seg = find_vma_seg(vma_segs, vma_seg_cnt, usdt_rel_ip);
729 			if (!seg) {
730 				err = -ESRCH;
731 				pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n",
732 					usdt_provider, usdt_name, path, usdt_rel_ip);
733 				goto err_out;
734 			}
735 
736 			usdt_abs_ip = seg->start - seg->offset + usdt_rel_ip;
737 		}
738 
739 		pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n",
740 			 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path,
741 			 note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args,
742 			 seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0);
743 
744 		/* Adjust semaphore address to be a file offset */
745 		if (note.sema_addr) {
746 			if (!man->has_sema_refcnt) {
747 				pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n",
748 					usdt_provider, usdt_name, path);
749 				err = -ENOTSUP;
750 				goto err_out;
751 			}
752 
753 			seg = find_elf_seg(segs, seg_cnt, note.sema_addr);
754 			if (!seg) {
755 				err = -ESRCH;
756 				pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n",
757 					usdt_provider, usdt_name, path, note.sema_addr);
758 				goto err_out;
759 			}
760 			if (seg->is_exec) {
761 				err = -ESRCH;
762 				pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n",
763 					path, seg->start, seg->end, usdt_provider, usdt_name,
764 					note.sema_addr);
765 				goto err_out;
766 			}
767 
768 			usdt_sema_off = note.sema_addr - seg->start + seg->offset;
769 
770 			pr_debug("usdt: sema  for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n",
771 				 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ",
772 				 path, note.sema_addr, note.base_addr, usdt_sema_off,
773 				 seg->start, seg->end, seg->offset);
774 		}
775 
776 		/* Record adjusted addresses and offsets and parse USDT spec */
777 		tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets));
778 		if (!tmp) {
779 			err = -ENOMEM;
780 			goto err_out;
781 		}
782 		targets = tmp;
783 
784 		target = &targets[target_cnt];
785 		memset(target, 0, sizeof(*target));
786 
787 		target->abs_ip = usdt_abs_ip;
788 		target->rel_ip = usdt_rel_ip;
789 		target->sema_off = usdt_sema_off;
790 
791 		/* notes.args references strings from ELF itself, so they can
792 		 * be referenced safely until elf_end() call
793 		 */
794 		target->spec_str = note.args;
795 
796 		err = parse_usdt_spec(&target->spec, &note, usdt_cookie);
797 		if (err)
798 			goto err_out;
799 
800 		target_cnt++;
801 	}
802 
803 	*out_targets = targets;
804 	*out_target_cnt = target_cnt;
805 	err = target_cnt;
806 
807 err_out:
808 	free(segs);
809 	free(vma_segs);
810 	if (err < 0)
811 		free(targets);
812 	return err;
813 }
814 
815 struct bpf_link_usdt {
816 	struct bpf_link link;
817 
818 	struct usdt_manager *usdt_man;
819 
820 	size_t spec_cnt;
821 	int *spec_ids;
822 
823 	size_t uprobe_cnt;
824 	struct {
825 		long abs_ip;
826 		struct bpf_link *link;
827 	} *uprobes;
828 
829 	struct bpf_link *multi_link;
830 };
831 
832 static int bpf_link_usdt_detach(struct bpf_link *link)
833 {
834 	struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
835 	struct usdt_manager *man = usdt_link->usdt_man;
836 	int i;
837 
838 	bpf_link__destroy(usdt_link->multi_link);
839 
840 	/* When having multi_link, uprobe_cnt is 0 */
841 	for (i = 0; i < usdt_link->uprobe_cnt; i++) {
842 		/* detach underlying uprobe link */
843 		bpf_link__destroy(usdt_link->uprobes[i].link);
844 		/* there is no need to update specs map because it will be
845 		 * unconditionally overwritten on subsequent USDT attaches,
846 		 * but if BPF cookies are not used we need to remove entry
847 		 * from ip_to_spec_id map, otherwise we'll run into false
848 		 * conflicting IP errors
849 		 */
850 		if (!man->has_bpf_cookie) {
851 			/* not much we can do about errors here */
852 			(void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map),
853 						  &usdt_link->uprobes[i].abs_ip);
854 		}
855 	}
856 
857 	/* try to return the list of previously used spec IDs to usdt_manager
858 	 * for future reuse for subsequent USDT attaches
859 	 */
860 	if (!man->free_spec_ids) {
861 		/* if there were no free spec IDs yet, just transfer our IDs */
862 		man->free_spec_ids = usdt_link->spec_ids;
863 		man->free_spec_cnt = usdt_link->spec_cnt;
864 		usdt_link->spec_ids = NULL;
865 	} else {
866 		/* otherwise concat IDs */
867 		size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt;
868 		int *new_free_ids;
869 
870 		new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt,
871 						   sizeof(*new_free_ids));
872 		/* If we couldn't resize free_spec_ids, we'll just leak
873 		 * a bunch of free IDs; this is very unlikely to happen and if
874 		 * system is so exhausted on memory, it's the least of user's
875 		 * concerns, probably.
876 		 * So just do our best here to return those IDs to usdt_manager.
877 		 * Another edge case when we can legitimately get NULL is when
878 		 * new_cnt is zero, which can happen in some edge cases, so we
879 		 * need to be careful about that.
880 		 */
881 		if (new_free_ids || new_cnt == 0) {
882 			memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids,
883 			       usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids));
884 			man->free_spec_ids = new_free_ids;
885 			man->free_spec_cnt = new_cnt;
886 		}
887 	}
888 
889 	return 0;
890 }
891 
892 static void bpf_link_usdt_dealloc(struct bpf_link *link)
893 {
894 	struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
895 
896 	free(usdt_link->spec_ids);
897 	free(usdt_link->uprobes);
898 	free(usdt_link);
899 }
900 
901 static size_t specs_hash_fn(long key, void *ctx)
902 {
903 	return str_hash((char *)key);
904 }
905 
906 static bool specs_equal_fn(long key1, long key2, void *ctx)
907 {
908 	return strcmp((char *)key1, (char *)key2) == 0;
909 }
910 
911 static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash,
912 			    struct bpf_link_usdt *link, struct usdt_target *target,
913 			    int *spec_id, bool *is_new)
914 {
915 	long tmp;
916 	void *new_ids;
917 	int err;
918 
919 	/* check if we already allocated spec ID for this spec string */
920 	if (hashmap__find(specs_hash, target->spec_str, &tmp)) {
921 		*spec_id = tmp;
922 		*is_new = false;
923 		return 0;
924 	}
925 
926 	/* otherwise it's a new ID that needs to be set up in specs map and
927 	 * returned back to usdt_manager when USDT link is detached
928 	 */
929 	new_ids = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids));
930 	if (!new_ids)
931 		return -ENOMEM;
932 	link->spec_ids = new_ids;
933 
934 	/* get next free spec ID, giving preference to free list, if not empty */
935 	if (man->free_spec_cnt) {
936 		*spec_id = man->free_spec_ids[man->free_spec_cnt - 1];
937 
938 		/* cache spec ID for current spec string for future lookups */
939 		err = hashmap__add(specs_hash, target->spec_str, *spec_id);
940 		if (err)
941 			 return err;
942 
943 		man->free_spec_cnt--;
944 	} else {
945 		/* don't allocate spec ID bigger than what fits in specs map */
946 		if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map))
947 			return -E2BIG;
948 
949 		*spec_id = man->next_free_spec_id;
950 
951 		/* cache spec ID for current spec string for future lookups */
952 		err = hashmap__add(specs_hash, target->spec_str, *spec_id);
953 		if (err)
954 			 return err;
955 
956 		man->next_free_spec_id++;
957 	}
958 
959 	/* remember new spec ID in the link for later return back to free list on detach */
960 	link->spec_ids[link->spec_cnt] = *spec_id;
961 	link->spec_cnt++;
962 	*is_new = true;
963 	return 0;
964 }
965 
966 struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog,
967 					  pid_t pid, const char *path,
968 					  const char *usdt_provider, const char *usdt_name,
969 					  __u64 usdt_cookie)
970 {
971 	unsigned long *offsets = NULL, *ref_ctr_offsets = NULL;
972 	int i, err, spec_map_fd, ip_map_fd;
973 	LIBBPF_OPTS(bpf_uprobe_opts, opts);
974 	struct hashmap *specs_hash = NULL;
975 	struct bpf_link_usdt *link = NULL;
976 	struct usdt_target *targets = NULL;
977 	__u64 *cookies = NULL;
978 	struct elf_fd elf_fd;
979 	size_t target_cnt;
980 
981 	spec_map_fd = bpf_map__fd(man->specs_map);
982 	ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map);
983 
984 	err = elf_open(path, &elf_fd);
985 	if (err)
986 		return libbpf_err_ptr(err);
987 
988 	err = sanity_check_usdt_elf(elf_fd.elf, path);
989 	if (err)
990 		goto err_out;
991 
992 	/* normalize PID filter */
993 	if (pid < 0)
994 		pid = -1;
995 	else if (pid == 0)
996 		pid = getpid();
997 
998 	/* discover USDT in given binary, optionally limiting
999 	 * activations to a given PID, if pid > 0
1000 	 */
1001 	err = collect_usdt_targets(man, elf_fd.elf, path, pid, usdt_provider, usdt_name,
1002 				   usdt_cookie, &targets, &target_cnt);
1003 	if (err <= 0) {
1004 		err = (err == 0) ? -ENOENT : err;
1005 		goto err_out;
1006 	}
1007 
1008 	specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL);
1009 	if (IS_ERR(specs_hash)) {
1010 		err = PTR_ERR(specs_hash);
1011 		goto err_out;
1012 	}
1013 
1014 	link = calloc(1, sizeof(*link));
1015 	if (!link) {
1016 		err = -ENOMEM;
1017 		goto err_out;
1018 	}
1019 
1020 	link->usdt_man = man;
1021 	link->link.detach = &bpf_link_usdt_detach;
1022 	link->link.dealloc = &bpf_link_usdt_dealloc;
1023 
1024 	if (man->has_uprobe_multi) {
1025 		offsets = calloc(target_cnt, sizeof(*offsets));
1026 		cookies = calloc(target_cnt, sizeof(*cookies));
1027 		ref_ctr_offsets = calloc(target_cnt, sizeof(*ref_ctr_offsets));
1028 
1029 		if (!offsets || !ref_ctr_offsets || !cookies) {
1030 			err = -ENOMEM;
1031 			goto err_out;
1032 		}
1033 	} else {
1034 		link->uprobes = calloc(target_cnt, sizeof(*link->uprobes));
1035 		if (!link->uprobes) {
1036 			err = -ENOMEM;
1037 			goto err_out;
1038 		}
1039 	}
1040 
1041 	for (i = 0; i < target_cnt; i++) {
1042 		struct usdt_target *target = &targets[i];
1043 		struct bpf_link *uprobe_link;
1044 		bool is_new;
1045 		int spec_id;
1046 
1047 		/* Spec ID can be either reused or newly allocated. If it is
1048 		 * newly allocated, we'll need to fill out spec map, otherwise
1049 		 * entire spec should be valid and can be just used by a new
1050 		 * uprobe. We reuse spec when USDT arg spec is identical. We
1051 		 * also never share specs between two different USDT
1052 		 * attachments ("links"), so all the reused specs already
1053 		 * share USDT cookie value implicitly.
1054 		 */
1055 		err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new);
1056 		if (err)
1057 			goto err_out;
1058 
1059 		if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) {
1060 			err = -errno;
1061 			pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %s\n",
1062 				spec_id, usdt_provider, usdt_name, path, errstr(err));
1063 			goto err_out;
1064 		}
1065 		if (!man->has_bpf_cookie &&
1066 		    bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) {
1067 			err = -errno;
1068 			if (err == -EEXIST) {
1069 				pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n",
1070 				        spec_id, usdt_provider, usdt_name, path);
1071 			} else {
1072 				pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %s\n",
1073 					target->abs_ip, spec_id, usdt_provider, usdt_name,
1074 					path, errstr(err));
1075 			}
1076 			goto err_out;
1077 		}
1078 
1079 		if (man->has_uprobe_multi) {
1080 			offsets[i] = target->rel_ip;
1081 			ref_ctr_offsets[i] = target->sema_off;
1082 			cookies[i] = spec_id;
1083 		} else {
1084 			opts.ref_ctr_offset = target->sema_off;
1085 			opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0;
1086 			uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path,
1087 								      target->rel_ip, &opts);
1088 			err = libbpf_get_error(uprobe_link);
1089 			if (err) {
1090 				pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %s\n",
1091 					i, usdt_provider, usdt_name, path, errstr(err));
1092 				goto err_out;
1093 			}
1094 
1095 			link->uprobes[i].link = uprobe_link;
1096 			link->uprobes[i].abs_ip = target->abs_ip;
1097 			link->uprobe_cnt++;
1098 		}
1099 	}
1100 
1101 	if (man->has_uprobe_multi) {
1102 		LIBBPF_OPTS(bpf_uprobe_multi_opts, opts_multi,
1103 			.ref_ctr_offsets = ref_ctr_offsets,
1104 			.offsets = offsets,
1105 			.cookies = cookies,
1106 			.cnt = target_cnt,
1107 		);
1108 
1109 		link->multi_link = bpf_program__attach_uprobe_multi(prog, pid, path,
1110 								    NULL, &opts_multi);
1111 		if (!link->multi_link) {
1112 			err = -errno;
1113 			pr_warn("usdt: failed to attach uprobe multi for '%s:%s' in '%s': %s\n",
1114 				usdt_provider, usdt_name, path, errstr(err));
1115 			goto err_out;
1116 		}
1117 
1118 		free(offsets);
1119 		free(ref_ctr_offsets);
1120 		free(cookies);
1121 	}
1122 
1123 	free(targets);
1124 	hashmap__free(specs_hash);
1125 	elf_close(&elf_fd);
1126 	return &link->link;
1127 
1128 err_out:
1129 	free(offsets);
1130 	free(ref_ctr_offsets);
1131 	free(cookies);
1132 
1133 	if (link)
1134 		bpf_link__destroy(&link->link);
1135 	free(targets);
1136 	hashmap__free(specs_hash);
1137 	elf_close(&elf_fd);
1138 	return libbpf_err_ptr(err);
1139 }
1140 
1141 /* Parse out USDT ELF note from '.note.stapsdt' section.
1142  * Logic inspired by perf's code.
1143  */
1144 static int parse_usdt_note(GElf_Nhdr *nhdr, const char *data, size_t name_off, size_t desc_off,
1145 			   struct usdt_note *note)
1146 {
1147 	const char *provider, *name, *args;
1148 	long addrs[3];
1149 	size_t len;
1150 
1151 	/* sanity check USDT note name and type first */
1152 	if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0)
1153 		return -EINVAL;
1154 	if (nhdr->n_type != USDT_NOTE_TYPE)
1155 		return -EINVAL;
1156 
1157 	/* sanity check USDT note contents ("description" in ELF terminology) */
1158 	len = nhdr->n_descsz;
1159 	data = data + desc_off;
1160 
1161 	/* +3 is the very minimum required to store three empty strings */
1162 	if (len < sizeof(addrs) + 3)
1163 		return -EINVAL;
1164 
1165 	/* get location, base, and semaphore addrs */
1166 	memcpy(&addrs, data, sizeof(addrs));
1167 
1168 	/* parse string fields: provider, name, args */
1169 	provider = data + sizeof(addrs);
1170 
1171 	name = (const char *)memchr(provider, '\0', data + len - provider);
1172 	if (!name) /* non-zero-terminated provider */
1173 		return -EINVAL;
1174 	name++;
1175 	if (name >= data + len || *name == '\0') /* missing or empty name */
1176 		return -EINVAL;
1177 
1178 	args = memchr(name, '\0', data + len - name);
1179 	if (!args) /* non-zero-terminated name */
1180 		return -EINVAL;
1181 	++args;
1182 	if (args >= data + len) /* missing arguments spec */
1183 		return -EINVAL;
1184 
1185 	note->provider = provider;
1186 	note->name = name;
1187 	if (*args == '\0' || *args == ':')
1188 		note->args = "";
1189 	else
1190 		note->args = args;
1191 	note->loc_addr = addrs[0];
1192 	note->base_addr = addrs[1];
1193 	note->sema_addr = addrs[2];
1194 
1195 	return 0;
1196 }
1197 
1198 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz);
1199 
1200 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie)
1201 {
1202 	struct usdt_arg_spec *arg;
1203 	const char *s;
1204 	int arg_sz, len;
1205 
1206 	spec->usdt_cookie = usdt_cookie;
1207 	spec->arg_cnt = 0;
1208 
1209 	s = note->args;
1210 	while (s[0]) {
1211 		if (spec->arg_cnt >= USDT_MAX_ARG_CNT) {
1212 			pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n",
1213 				USDT_MAX_ARG_CNT, note->provider, note->name, note->args);
1214 			return -E2BIG;
1215 		}
1216 
1217 		arg = &spec->args[spec->arg_cnt];
1218 		len = parse_usdt_arg(s, spec->arg_cnt, arg, &arg_sz);
1219 		if (len < 0)
1220 			return len;
1221 
1222 		arg->arg_signed = arg_sz < 0;
1223 		if (arg_sz < 0)
1224 			arg_sz = -arg_sz;
1225 
1226 		switch (arg_sz) {
1227 		case 1: case 2: case 4: case 8:
1228 			arg->arg_bitshift = 64 - arg_sz * 8;
1229 			break;
1230 		default:
1231 			pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n",
1232 				spec->arg_cnt, s, arg_sz);
1233 			return -EINVAL;
1234 		}
1235 
1236 		s += len;
1237 		spec->arg_cnt++;
1238 	}
1239 
1240 	return 0;
1241 }
1242 
1243 /* Architecture-specific logic for parsing USDT argument location specs */
1244 
1245 #if defined(__x86_64__) || defined(__i386__)
1246 
1247 static int calc_pt_regs_off(const char *reg_name)
1248 {
1249 	static struct {
1250 		const char *names[4];
1251 		size_t pt_regs_off;
1252 	} reg_map[] = {
1253 #ifdef __x86_64__
1254 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64)
1255 #else
1256 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32)
1257 #endif
1258 		{ {"rip", "eip", "", ""}, reg_off(rip, eip) },
1259 		{ {"rax", "eax", "ax", "al"}, reg_off(rax, eax) },
1260 		{ {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) },
1261 		{ {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) },
1262 		{ {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) },
1263 		{ {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) },
1264 		{ {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) },
1265 		{ {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) },
1266 		{ {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) },
1267 #undef reg_off
1268 #ifdef __x86_64__
1269 		{ {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) },
1270 		{ {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) },
1271 		{ {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) },
1272 		{ {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) },
1273 		{ {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) },
1274 		{ {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) },
1275 		{ {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) },
1276 		{ {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) },
1277 #endif
1278 	};
1279 	int i, j;
1280 
1281 	for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1282 		for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) {
1283 			if (strcmp(reg_name, reg_map[i].names[j]) == 0)
1284 				return reg_map[i].pt_regs_off;
1285 		}
1286 	}
1287 
1288 	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1289 	return -ENOENT;
1290 }
1291 
1292 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1293 {
1294 	char reg_name[16] = {0}, idx_reg_name[16] = {0};
1295 	int len, reg_off, idx_reg_off, scale = 1;
1296 	long off = 0;
1297 
1298 	if (sscanf(arg_str, " %d @ %ld ( %%%15[^,] , %%%15[^,] , %d ) %n",
1299 		   arg_sz, &off, reg_name, idx_reg_name, &scale, &len) == 5 ||
1300 		sscanf(arg_str, " %d @ ( %%%15[^,] , %%%15[^,] , %d ) %n",
1301 		       arg_sz, reg_name, idx_reg_name, &scale, &len) == 4 ||
1302 		sscanf(arg_str, " %d @ %ld ( %%%15[^,] , %%%15[^)] ) %n",
1303 		       arg_sz, &off, reg_name, idx_reg_name, &len) == 4 ||
1304 		sscanf(arg_str, " %d @ ( %%%15[^,] , %%%15[^)] ) %n",
1305 		       arg_sz, reg_name, idx_reg_name, &len) == 3
1306 		) {
1307 		/*
1308 		 * Scale Index Base case:
1309 		 * 1@-96(%rbp,%rax,8)
1310 		 * 1@(%rbp,%rax,8)
1311 		 * 1@-96(%rbp,%rax)
1312 		 * 1@(%rbp,%rax)
1313 		 */
1314 		arg->arg_type = USDT_ARG_SIB;
1315 		arg->val_off = off;
1316 
1317 		reg_off = calc_pt_regs_off(reg_name);
1318 		if (reg_off < 0)
1319 			return reg_off;
1320 		arg->reg_off = reg_off;
1321 
1322 		idx_reg_off = calc_pt_regs_off(idx_reg_name);
1323 		if (idx_reg_off < 0)
1324 			return idx_reg_off;
1325 		arg->idx_reg_off = idx_reg_off;
1326 
1327 		/* validate scale factor and set fields directly */
1328 		switch (scale) {
1329 		case 1: arg->scale_bitshift = 0; break;
1330 		case 2: arg->scale_bitshift = 1; break;
1331 		case 4: arg->scale_bitshift = 2; break;
1332 		case 8: arg->scale_bitshift = 3; break;
1333 		default:
1334 			pr_warn("usdt: invalid SIB scale %d, expected 1, 2, 4, 8\n", scale);
1335 			return -EINVAL;
1336 		}
1337 	} else if (sscanf(arg_str, " %d @ %ld ( %%%15[^)] ) %n",
1338 				arg_sz, &off, reg_name, &len) == 3) {
1339 		/* Memory dereference case, e.g., -4@-20(%rbp) */
1340 		arg->arg_type = USDT_ARG_REG_DEREF;
1341 		arg->val_off = off;
1342 		reg_off = calc_pt_regs_off(reg_name);
1343 		if (reg_off < 0)
1344 			return reg_off;
1345 		arg->reg_off = reg_off;
1346 	} else if (sscanf(arg_str, " %d @ ( %%%15[^)] ) %n", arg_sz, reg_name, &len) == 2) {
1347 		/* Memory dereference case without offset, e.g., 8@(%rsp) */
1348 		arg->arg_type = USDT_ARG_REG_DEREF;
1349 		arg->val_off = 0;
1350 		reg_off = calc_pt_regs_off(reg_name);
1351 		if (reg_off < 0)
1352 			return reg_off;
1353 		arg->reg_off = reg_off;
1354 	} else if (sscanf(arg_str, " %d @ %%%15s %n", arg_sz, reg_name, &len) == 2) {
1355 		/* Register read case, e.g., -4@%eax */
1356 		arg->arg_type = USDT_ARG_REG;
1357 		/* register read has no memory offset */
1358 		arg->val_off = 0;
1359 
1360 		reg_off = calc_pt_regs_off(reg_name);
1361 		if (reg_off < 0)
1362 			return reg_off;
1363 		arg->reg_off = reg_off;
1364 	} else if (sscanf(arg_str, " %d @ $%ld %n", arg_sz, &off, &len) == 2) {
1365 		/* Constant value case, e.g., 4@$71 */
1366 		arg->arg_type = USDT_ARG_CONST;
1367 		arg->val_off = off;
1368 		arg->reg_off = 0;
1369 	} else {
1370 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1371 		return -EINVAL;
1372 	}
1373 
1374 	return len;
1375 }
1376 
1377 #elif defined(__s390x__)
1378 
1379 /* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */
1380 
1381 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1382 {
1383 	unsigned int reg;
1384 	int len;
1385 	long off;
1386 
1387 	if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", arg_sz, &off, &reg, &len) == 3) {
1388 		/* Memory dereference case, e.g., -2@-28(%r15) */
1389 		arg->arg_type = USDT_ARG_REG_DEREF;
1390 		arg->val_off = off;
1391 		if (reg > 15) {
1392 			pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1393 			return -EINVAL;
1394 		}
1395 		arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1396 	} else if (sscanf(arg_str, " %d @ %%r%u %n", arg_sz, &reg, &len) == 2) {
1397 		/* Register read case, e.g., -8@%r0 */
1398 		arg->arg_type = USDT_ARG_REG;
1399 		arg->val_off = 0;
1400 		if (reg > 15) {
1401 			pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1402 			return -EINVAL;
1403 		}
1404 		arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1405 	} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1406 		/* Constant value case, e.g., 4@71 */
1407 		arg->arg_type = USDT_ARG_CONST;
1408 		arg->val_off = off;
1409 		arg->reg_off = 0;
1410 	} else {
1411 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1412 		return -EINVAL;
1413 	}
1414 
1415 	return len;
1416 }
1417 
1418 #elif defined(__aarch64__)
1419 
1420 static int calc_pt_regs_off(const char *reg_name)
1421 {
1422 	int reg_num;
1423 
1424 	if (sscanf(reg_name, "x%d", &reg_num) == 1) {
1425 		if (reg_num >= 0 && reg_num < 31)
1426 			return offsetof(struct user_pt_regs, regs[reg_num]);
1427 	} else if (strcmp(reg_name, "sp") == 0) {
1428 		return offsetof(struct user_pt_regs, sp);
1429 	}
1430 	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1431 	return -ENOENT;
1432 }
1433 
1434 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1435 {
1436 	char reg_name[16];
1437 	int len, reg_off;
1438 	long off;
1439 
1440 	if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , %ld ] %n", arg_sz, reg_name, &off, &len) == 3) {
1441 		/* Memory dereference case, e.g., -4@[sp, 96] */
1442 		arg->arg_type = USDT_ARG_REG_DEREF;
1443 		arg->val_off = off;
1444 		reg_off = calc_pt_regs_off(reg_name);
1445 		if (reg_off < 0)
1446 			return reg_off;
1447 		arg->reg_off = reg_off;
1448 	} else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1449 		/* Memory dereference case, e.g., -4@[sp] */
1450 		arg->arg_type = USDT_ARG_REG_DEREF;
1451 		arg->val_off = 0;
1452 		reg_off = calc_pt_regs_off(reg_name);
1453 		if (reg_off < 0)
1454 			return reg_off;
1455 		arg->reg_off = reg_off;
1456 	} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1457 		/* Constant value case, e.g., 4@5 */
1458 		arg->arg_type = USDT_ARG_CONST;
1459 		arg->val_off = off;
1460 		arg->reg_off = 0;
1461 	} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1462 		/* Register read case, e.g., -8@x4 */
1463 		arg->arg_type = USDT_ARG_REG;
1464 		arg->val_off = 0;
1465 		reg_off = calc_pt_regs_off(reg_name);
1466 		if (reg_off < 0)
1467 			return reg_off;
1468 		arg->reg_off = reg_off;
1469 	} else {
1470 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1471 		return -EINVAL;
1472 	}
1473 
1474 	return len;
1475 }
1476 
1477 #elif defined(__riscv)
1478 
1479 static int calc_pt_regs_off(const char *reg_name)
1480 {
1481 	static struct {
1482 		const char *name;
1483 		size_t pt_regs_off;
1484 	} reg_map[] = {
1485 		{ "ra", offsetof(struct user_regs_struct, ra) },
1486 		{ "sp", offsetof(struct user_regs_struct, sp) },
1487 		{ "gp", offsetof(struct user_regs_struct, gp) },
1488 		{ "tp", offsetof(struct user_regs_struct, tp) },
1489 		{ "a0", offsetof(struct user_regs_struct, a0) },
1490 		{ "a1", offsetof(struct user_regs_struct, a1) },
1491 		{ "a2", offsetof(struct user_regs_struct, a2) },
1492 		{ "a3", offsetof(struct user_regs_struct, a3) },
1493 		{ "a4", offsetof(struct user_regs_struct, a4) },
1494 		{ "a5", offsetof(struct user_regs_struct, a5) },
1495 		{ "a6", offsetof(struct user_regs_struct, a6) },
1496 		{ "a7", offsetof(struct user_regs_struct, a7) },
1497 		{ "s0", offsetof(struct user_regs_struct, s0) },
1498 		{ "s1", offsetof(struct user_regs_struct, s1) },
1499 		{ "s2", offsetof(struct user_regs_struct, s2) },
1500 		{ "s3", offsetof(struct user_regs_struct, s3) },
1501 		{ "s4", offsetof(struct user_regs_struct, s4) },
1502 		{ "s5", offsetof(struct user_regs_struct, s5) },
1503 		{ "s6", offsetof(struct user_regs_struct, s6) },
1504 		{ "s7", offsetof(struct user_regs_struct, s7) },
1505 		{ "s8", offsetof(struct user_regs_struct, rv_s8) },
1506 		{ "s9", offsetof(struct user_regs_struct, s9) },
1507 		{ "s10", offsetof(struct user_regs_struct, s10) },
1508 		{ "s11", offsetof(struct user_regs_struct, s11) },
1509 		{ "t0", offsetof(struct user_regs_struct, t0) },
1510 		{ "t1", offsetof(struct user_regs_struct, t1) },
1511 		{ "t2", offsetof(struct user_regs_struct, t2) },
1512 		{ "t3", offsetof(struct user_regs_struct, t3) },
1513 		{ "t4", offsetof(struct user_regs_struct, t4) },
1514 		{ "t5", offsetof(struct user_regs_struct, t5) },
1515 		{ "t6", offsetof(struct user_regs_struct, t6) },
1516 	};
1517 	int i;
1518 
1519 	for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1520 		if (strcmp(reg_name, reg_map[i].name) == 0)
1521 			return reg_map[i].pt_regs_off;
1522 	}
1523 
1524 	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1525 	return -ENOENT;
1526 }
1527 
1528 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1529 {
1530 	char reg_name[16];
1531 	int len, reg_off;
1532 	long off;
1533 
1534 	if (sscanf(arg_str, " %d @ %ld ( %15[a-z0-9] ) %n", arg_sz, &off, reg_name, &len) == 3) {
1535 		/* Memory dereference case, e.g., -8@-88(s0) */
1536 		arg->arg_type = USDT_ARG_REG_DEREF;
1537 		arg->val_off = off;
1538 		reg_off = calc_pt_regs_off(reg_name);
1539 		if (reg_off < 0)
1540 			return reg_off;
1541 		arg->reg_off = reg_off;
1542 	} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1543 		/* Constant value case, e.g., 4@5 */
1544 		arg->arg_type = USDT_ARG_CONST;
1545 		arg->val_off = off;
1546 		arg->reg_off = 0;
1547 	} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1548 		/* Register read case, e.g., -8@a1 */
1549 		arg->arg_type = USDT_ARG_REG;
1550 		arg->val_off = 0;
1551 		reg_off = calc_pt_regs_off(reg_name);
1552 		if (reg_off < 0)
1553 			return reg_off;
1554 		arg->reg_off = reg_off;
1555 	} else {
1556 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1557 		return -EINVAL;
1558 	}
1559 
1560 	return len;
1561 }
1562 
1563 #elif defined(__arm__)
1564 
1565 static int calc_pt_regs_off(const char *reg_name)
1566 {
1567 	static struct {
1568 		const char *name;
1569 		size_t pt_regs_off;
1570 	} reg_map[] = {
1571 		{ "r0", offsetof(struct pt_regs, uregs[0]) },
1572 		{ "r1", offsetof(struct pt_regs, uregs[1]) },
1573 		{ "r2", offsetof(struct pt_regs, uregs[2]) },
1574 		{ "r3", offsetof(struct pt_regs, uregs[3]) },
1575 		{ "r4", offsetof(struct pt_regs, uregs[4]) },
1576 		{ "r5", offsetof(struct pt_regs, uregs[5]) },
1577 		{ "r6", offsetof(struct pt_regs, uregs[6]) },
1578 		{ "r7", offsetof(struct pt_regs, uregs[7]) },
1579 		{ "r8", offsetof(struct pt_regs, uregs[8]) },
1580 		{ "r9", offsetof(struct pt_regs, uregs[9]) },
1581 		{ "r10", offsetof(struct pt_regs, uregs[10]) },
1582 		{ "fp", offsetof(struct pt_regs, uregs[11]) },
1583 		{ "ip", offsetof(struct pt_regs, uregs[12]) },
1584 		{ "sp", offsetof(struct pt_regs, uregs[13]) },
1585 		{ "lr", offsetof(struct pt_regs, uregs[14]) },
1586 		{ "pc", offsetof(struct pt_regs, uregs[15]) },
1587 	};
1588 	int i;
1589 
1590 	for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1591 		if (strcmp(reg_name, reg_map[i].name) == 0)
1592 			return reg_map[i].pt_regs_off;
1593 	}
1594 
1595 	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1596 	return -ENOENT;
1597 }
1598 
1599 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1600 {
1601 	char reg_name[16];
1602 	int len, reg_off;
1603 	long off;
1604 
1605 	if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , #%ld ] %n",
1606 		   arg_sz, reg_name, &off, &len) == 3) {
1607 		/* Memory dereference case, e.g., -4@[fp, #96] */
1608 		arg->arg_type = USDT_ARG_REG_DEREF;
1609 		arg->val_off = off;
1610 		reg_off = calc_pt_regs_off(reg_name);
1611 		if (reg_off < 0)
1612 			return reg_off;
1613 		arg->reg_off = reg_off;
1614 	} else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1615 		/* Memory dereference case, e.g., -4@[sp] */
1616 		arg->arg_type = USDT_ARG_REG_DEREF;
1617 		arg->val_off = 0;
1618 		reg_off = calc_pt_regs_off(reg_name);
1619 		if (reg_off < 0)
1620 			return reg_off;
1621 		arg->reg_off = reg_off;
1622 	} else if (sscanf(arg_str, " %d @ #%ld %n", arg_sz, &off, &len) == 2) {
1623 		/* Constant value case, e.g., 4@#5 */
1624 		arg->arg_type = USDT_ARG_CONST;
1625 		arg->val_off = off;
1626 		arg->reg_off = 0;
1627 	} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1628 		/* Register read case, e.g., -8@r4 */
1629 		arg->arg_type = USDT_ARG_REG;
1630 		arg->val_off = 0;
1631 		reg_off = calc_pt_regs_off(reg_name);
1632 		if (reg_off < 0)
1633 			return reg_off;
1634 		arg->reg_off = reg_off;
1635 	} else {
1636 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1637 		return -EINVAL;
1638 	}
1639 
1640 	return len;
1641 }
1642 
1643 #else
1644 
1645 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1646 {
1647 	pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n");
1648 	return -ENOTSUP;
1649 }
1650 
1651 #endif
1652