1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1989, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #include "opt_capsicum.h"
38 #include "opt_ddb.h"
39 #include "opt_ktrace.h"
40
41 #define EXTERR_CATEGORY EXTERR_CAT_FILEDESC
42 #include <sys/systm.h>
43 #include <sys/capsicum.h>
44 #include <sys/conf.h>
45 #include <sys/exterrvar.h>
46 #include <sys/fcntl.h>
47 #include <sys/file.h>
48 #include <sys/filedesc.h>
49 #include <sys/filio.h>
50 #include <sys/jail.h>
51 #include <sys/kernel.h>
52 #include <sys/limits.h>
53 #include <sys/lock.h>
54 #include <sys/malloc.h>
55 #include <sys/mount.h>
56 #include <sys/mutex.h>
57 #include <sys/namei.h>
58 #include <sys/selinfo.h>
59 #include <sys/poll.h>
60 #include <sys/priv.h>
61 #include <sys/proc.h>
62 #include <sys/protosw.h>
63 #include <sys/racct.h>
64 #include <sys/resourcevar.h>
65 #include <sys/sbuf.h>
66 #include <sys/signalvar.h>
67 #include <sys/kdb.h>
68 #include <sys/smr.h>
69 #include <sys/stat.h>
70 #include <sys/sx.h>
71 #include <sys/syscallsubr.h>
72 #include <sys/sysctl.h>
73 #include <sys/sysproto.h>
74 #include <sys/unistd.h>
75 #include <sys/user.h>
76 #include <sys/vnode.h>
77 #include <sys/ktrace.h>
78
79 #include <net/vnet.h>
80
81 #include <security/audit/audit.h>
82
83 #include <vm/uma.h>
84 #include <vm/vm.h>
85
86 #include <ddb/ddb.h>
87
88 static MALLOC_DEFINE(M_FILEDESC, "filedesc", "Open file descriptor table");
89 static MALLOC_DEFINE(M_PWD, "pwd", "Descriptor table vnodes");
90 static MALLOC_DEFINE(M_PWDDESC, "pwddesc", "Pwd descriptors");
91 static MALLOC_DEFINE(M_FILEDESC_TO_LEADER, "filedesc_to_leader",
92 "file desc to leader structures");
93 static MALLOC_DEFINE(M_SIGIO, "sigio", "sigio structures");
94 MALLOC_DEFINE(M_FILECAPS, "filecaps", "descriptor capabilities");
95
96 MALLOC_DECLARE(M_FADVISE);
97
98 static __read_mostly uma_zone_t file_zone;
99 static __read_mostly uma_zone_t filedesc0_zone;
100 __read_mostly uma_zone_t pwd_zone;
101 VFS_SMR_DECLARE;
102
103 static int closefp(struct filedesc *fdp, int fd, struct file *fp,
104 struct thread *td, bool holdleaders, bool audit);
105 static void export_file_to_kinfo(struct file *fp, int fd,
106 cap_rights_t *rightsp, struct kinfo_file *kif,
107 struct filedesc *fdp, int flags);
108 static int fd_first_free(struct filedesc *fdp, int low, int size);
109 static void fdgrowtable(struct filedesc *fdp, int nfd);
110 static void fdgrowtable_exp(struct filedesc *fdp, int nfd);
111 static void fdunused(struct filedesc *fdp, int fd);
112 static void fdused(struct filedesc *fdp, int fd);
113 static int fget_unlocked_seq(struct thread *td, int fd,
114 const cap_rights_t *needrightsp, uint8_t *flagsp,
115 struct file **fpp, seqc_t *seqp);
116 static int getmaxfd(struct thread *td);
117 static u_long *filecaps_copy_prep(const struct filecaps *src);
118 static void filecaps_copy_finish(const struct filecaps *src,
119 struct filecaps *dst, u_long *ioctls);
120 static u_long *filecaps_free_prep(struct filecaps *fcaps);
121 static void filecaps_free_finish(u_long *ioctls);
122
123 static struct pwd *pwd_alloc(void);
124
125 /*
126 * Each process has:
127 *
128 * - An array of open file descriptors (fd_ofiles)
129 * - An array of file flags (fd_ofileflags)
130 * - A bitmap recording which descriptors are in use (fd_map)
131 *
132 * A process starts out with NDFILE descriptors. The value of NDFILE has
133 * been selected based the historical limit of 20 open files, and an
134 * assumption that the majority of processes, especially short-lived
135 * processes like shells, will never need more.
136 *
137 * If this initial allocation is exhausted, a larger descriptor table and
138 * map are allocated dynamically, and the pointers in the process's struct
139 * filedesc are updated to point to those. This is repeated every time
140 * the process runs out of file descriptors (provided it hasn't hit its
141 * resource limit).
142 *
143 * Since threads may hold references to individual descriptor table
144 * entries, the tables are never freed. Instead, they are placed on a
145 * linked list and freed only when the struct filedesc is released.
146 */
147 #define NDFILE 20
148 #define NDSLOTSIZE sizeof(NDSLOTTYPE)
149 #define NDENTRIES (NDSLOTSIZE * __CHAR_BIT)
150 #define NDSLOT(x) ((x) / NDENTRIES)
151 #define NDBIT(x) ((NDSLOTTYPE)1 << ((x) % NDENTRIES))
152 #define NDSLOTS(x) (((x) + NDENTRIES - 1) / NDENTRIES)
153
154 #define FILEDESC_FOREACH_FDE(fdp, _iterator, _fde) \
155 struct filedesc *_fdp = (fdp); \
156 int _lastfile = fdlastfile_single(_fdp); \
157 for (_iterator = 0; _iterator <= _lastfile; _iterator++) \
158 if ((_fde = &_fdp->fd_ofiles[_iterator])->fde_file != NULL)
159
160 #define FILEDESC_FOREACH_FP(fdp, _iterator, _fp) \
161 struct filedesc *_fdp = (fdp); \
162 int _lastfile = fdlastfile_single(_fdp); \
163 for (_iterator = 0; _iterator <= _lastfile; _iterator++) \
164 if ((_fp = _fdp->fd_ofiles[_iterator].fde_file) != NULL)
165
166 /*
167 * SLIST entry used to keep track of ofiles which must be reclaimed when
168 * the process exits.
169 */
170 struct freetable {
171 struct fdescenttbl *ft_table;
172 SLIST_ENTRY(freetable) ft_next;
173 };
174
175 /*
176 * Initial allocation: a filedesc structure + the head of SLIST used to
177 * keep track of old ofiles + enough space for NDFILE descriptors.
178 */
179
180 struct fdescenttbl0 {
181 int fdt_nfiles;
182 struct filedescent fdt_ofiles[NDFILE];
183 };
184
185 struct filedesc0 {
186 struct filedesc fd_fd;
187 SLIST_HEAD(, freetable) fd_free;
188 struct fdescenttbl0 fd_dfiles;
189 NDSLOTTYPE fd_dmap[NDSLOTS(NDFILE)];
190 };
191
192 /*
193 * Descriptor management.
194 */
195 static int __exclusive_cache_line openfiles; /* actual number of open files */
196 struct mtx sigio_lock; /* mtx to protect pointers to sigio */
197 void __read_mostly (*mq_fdclose)(struct thread *td, int fd, struct file *fp);
198
199 /*
200 * If low >= size, just return low. Otherwise find the first zero bit in the
201 * given bitmap, starting at low and not exceeding size - 1. Return size if
202 * not found.
203 */
204 static int
fd_first_free(struct filedesc * fdp,int low,int size)205 fd_first_free(struct filedesc *fdp, int low, int size)
206 {
207 NDSLOTTYPE *map = fdp->fd_map;
208 NDSLOTTYPE mask;
209 int off, maxoff;
210
211 if (low >= size)
212 return (low);
213
214 off = NDSLOT(low);
215 if (low % NDENTRIES) {
216 mask = ~(~(NDSLOTTYPE)0 >> (NDENTRIES - (low % NDENTRIES)));
217 if ((mask &= ~map[off]) != 0UL)
218 return (off * NDENTRIES + ffsl(mask) - 1);
219 ++off;
220 }
221 for (maxoff = NDSLOTS(size); off < maxoff; ++off)
222 if (map[off] != ~0UL)
223 return (off * NDENTRIES + ffsl(~map[off]) - 1);
224 return (size);
225 }
226
227 /*
228 * Find the last used fd.
229 *
230 * Call this variant if fdp can't be modified by anyone else (e.g, during exec).
231 * Otherwise use fdlastfile.
232 */
233 int
fdlastfile_single(struct filedesc * fdp)234 fdlastfile_single(struct filedesc *fdp)
235 {
236 NDSLOTTYPE *map = fdp->fd_map;
237 int off, minoff;
238
239 off = NDSLOT(fdp->fd_nfiles - 1);
240 for (minoff = NDSLOT(0); off >= minoff; --off)
241 if (map[off] != 0)
242 return (off * NDENTRIES + flsl(map[off]) - 1);
243 return (-1);
244 }
245
246 int
fdlastfile(struct filedesc * fdp)247 fdlastfile(struct filedesc *fdp)
248 {
249
250 FILEDESC_LOCK_ASSERT(fdp);
251 return (fdlastfile_single(fdp));
252 }
253
254 static int
fdisused(struct filedesc * fdp,int fd)255 fdisused(struct filedesc *fdp, int fd)
256 {
257
258 KASSERT(fd >= 0 && fd < fdp->fd_nfiles,
259 ("file descriptor %d out of range (0, %d)", fd, fdp->fd_nfiles));
260
261 return ((fdp->fd_map[NDSLOT(fd)] & NDBIT(fd)) != 0);
262 }
263
264 /*
265 * Mark a file descriptor as used.
266 */
267 static void
fdused_init(struct filedesc * fdp,int fd)268 fdused_init(struct filedesc *fdp, int fd)
269 {
270
271 KASSERT(!fdisused(fdp, fd), ("fd=%d is already used", fd));
272
273 fdp->fd_map[NDSLOT(fd)] |= NDBIT(fd);
274 }
275
276 static void
fdused(struct filedesc * fdp,int fd)277 fdused(struct filedesc *fdp, int fd)
278 {
279
280 FILEDESC_XLOCK_ASSERT(fdp);
281
282 fdused_init(fdp, fd);
283 if (fd == fdp->fd_freefile)
284 fdp->fd_freefile++;
285 }
286
287 /*
288 * Mark a file descriptor as unused.
289 */
290 static void
fdunused(struct filedesc * fdp,int fd)291 fdunused(struct filedesc *fdp, int fd)
292 {
293
294 FILEDESC_XLOCK_ASSERT(fdp);
295
296 KASSERT(fdisused(fdp, fd), ("fd=%d is already unused", fd));
297 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
298 ("fd=%d is still in use", fd));
299
300 fdp->fd_map[NDSLOT(fd)] &= ~NDBIT(fd);
301 if (fd < fdp->fd_freefile)
302 fdp->fd_freefile = fd;
303 }
304
305 /*
306 * Free a file descriptor.
307 *
308 * Avoid some work if fdp is about to be destroyed.
309 */
310 static inline void
fdefree_last(struct filedescent * fde)311 fdefree_last(struct filedescent *fde)
312 {
313
314 filecaps_free(&fde->fde_caps);
315 }
316
317 static inline void
fdfree(struct filedesc * fdp,int fd)318 fdfree(struct filedesc *fdp, int fd)
319 {
320 struct filedescent *fde;
321
322 FILEDESC_XLOCK_ASSERT(fdp);
323 fde = &fdp->fd_ofiles[fd];
324 #ifdef CAPABILITIES
325 seqc_write_begin(&fde->fde_seqc);
326 #endif
327 fde->fde_file = NULL;
328 #ifdef CAPABILITIES
329 seqc_write_end(&fde->fde_seqc);
330 #endif
331 fdefree_last(fde);
332 fdunused(fdp, fd);
333 }
334
335 /*
336 * System calls on descriptors.
337 */
338 #ifndef _SYS_SYSPROTO_H_
339 struct getdtablesize_args {
340 int dummy;
341 };
342 #endif
343 /* ARGSUSED */
344 int
sys_getdtablesize(struct thread * td,struct getdtablesize_args * uap)345 sys_getdtablesize(struct thread *td, struct getdtablesize_args *uap)
346 {
347 #ifdef RACCT
348 uint64_t lim;
349 #endif
350
351 td->td_retval[0] = getmaxfd(td);
352 #ifdef RACCT
353 PROC_LOCK(td->td_proc);
354 lim = racct_get_limit(td->td_proc, RACCT_NOFILE);
355 PROC_UNLOCK(td->td_proc);
356 if (lim < td->td_retval[0])
357 td->td_retval[0] = lim;
358 #endif
359 return (0);
360 }
361
362 /*
363 * Duplicate a file descriptor to a particular value.
364 *
365 * Note: keep in mind that a potential race condition exists when closing
366 * descriptors from a shared descriptor table (via rfork).
367 */
368 #ifndef _SYS_SYSPROTO_H_
369 struct dup2_args {
370 u_int from;
371 u_int to;
372 };
373 #endif
374 /* ARGSUSED */
375 int
sys_dup2(struct thread * td,struct dup2_args * uap)376 sys_dup2(struct thread *td, struct dup2_args *uap)
377 {
378
379 return (kern_dup(td, FDDUP_FIXED, 0, (int)uap->from, (int)uap->to));
380 }
381
382 /*
383 * Duplicate a file descriptor.
384 */
385 #ifndef _SYS_SYSPROTO_H_
386 struct dup_args {
387 u_int fd;
388 };
389 #endif
390 /* ARGSUSED */
391 int
sys_dup(struct thread * td,struct dup_args * uap)392 sys_dup(struct thread *td, struct dup_args *uap)
393 {
394
395 return (kern_dup(td, FDDUP_NORMAL, 0, (int)uap->fd, 0));
396 }
397
398 /*
399 * The file control system call.
400 */
401 #ifndef _SYS_SYSPROTO_H_
402 struct fcntl_args {
403 int fd;
404 int cmd;
405 long arg;
406 };
407 #endif
408 /* ARGSUSED */
409 int
sys_fcntl(struct thread * td,struct fcntl_args * uap)410 sys_fcntl(struct thread *td, struct fcntl_args *uap)
411 {
412
413 return (kern_fcntl_freebsd(td, uap->fd, uap->cmd, uap->arg));
414 }
415
416 int
kern_fcntl_freebsd(struct thread * td,int fd,int cmd,intptr_t arg)417 kern_fcntl_freebsd(struct thread *td, int fd, int cmd, intptr_t arg)
418 {
419 struct flock fl;
420 struct __oflock ofl;
421 intptr_t arg1;
422 int error, newcmd;
423
424 error = 0;
425 newcmd = cmd;
426 switch (cmd) {
427 case F_OGETLK:
428 case F_OSETLK:
429 case F_OSETLKW:
430 /*
431 * Convert old flock structure to new.
432 */
433 error = copyin((void *)arg, &ofl, sizeof(ofl));
434 fl.l_start = ofl.l_start;
435 fl.l_len = ofl.l_len;
436 fl.l_pid = ofl.l_pid;
437 fl.l_type = ofl.l_type;
438 fl.l_whence = ofl.l_whence;
439 fl.l_sysid = 0;
440
441 switch (cmd) {
442 case F_OGETLK:
443 newcmd = F_GETLK;
444 break;
445 case F_OSETLK:
446 newcmd = F_SETLK;
447 break;
448 case F_OSETLKW:
449 newcmd = F_SETLKW;
450 break;
451 }
452 arg1 = (intptr_t)&fl;
453 break;
454 case F_GETLK:
455 case F_SETLK:
456 case F_SETLKW:
457 case F_SETLK_REMOTE:
458 error = copyin((void *)arg, &fl, sizeof(fl));
459 arg1 = (intptr_t)&fl;
460 break;
461 default:
462 arg1 = arg;
463 break;
464 }
465 if (error)
466 return (error);
467 error = kern_fcntl(td, fd, newcmd, arg1);
468 if (error)
469 return (error);
470 if (cmd == F_OGETLK) {
471 ofl.l_start = fl.l_start;
472 ofl.l_len = fl.l_len;
473 ofl.l_pid = fl.l_pid;
474 ofl.l_type = fl.l_type;
475 ofl.l_whence = fl.l_whence;
476 error = copyout(&ofl, (void *)arg, sizeof(ofl));
477 } else if (cmd == F_GETLK) {
478 error = copyout(&fl, (void *)arg, sizeof(fl));
479 }
480 return (error);
481 }
482
483 struct flags_trans_elem {
484 u_int f;
485 u_int t;
486 };
487
488 static u_int
flags_trans(const struct flags_trans_elem * ftes,int nitems,u_int from_flags)489 flags_trans(const struct flags_trans_elem *ftes, int nitems, u_int from_flags)
490 {
491 u_int res;
492 int i;
493
494 res = 0;
495 for (i = 0; i < nitems; i++) {
496 if ((from_flags & ftes[i].f) != 0)
497 res |= ftes[i].t;
498 }
499 return (res);
500 }
501
502 static uint8_t
fd_to_fde_flags(int fd_flags)503 fd_to_fde_flags(int fd_flags)
504 {
505 static const struct flags_trans_elem fd_to_fde_flags_s[] = {
506 { .f = FD_CLOEXEC, .t = UF_EXCLOSE },
507 { .f = FD_CLOFORK, .t = UF_FOCLOSE },
508 { .f = FD_RESOLVE_BENEATH, .t = UF_RESOLVE_BENEATH },
509 };
510
511 return (flags_trans(fd_to_fde_flags_s, nitems(fd_to_fde_flags_s),
512 fd_flags));
513 }
514
515 static int
fde_to_fd_flags(uint8_t fde_flags)516 fde_to_fd_flags(uint8_t fde_flags)
517 {
518 static const struct flags_trans_elem fde_to_fd_flags_s[] = {
519 { .f = UF_EXCLOSE, .t = FD_CLOEXEC },
520 { .f = UF_FOCLOSE, .t = FD_CLOFORK },
521 { .f = UF_RESOLVE_BENEATH, .t = FD_RESOLVE_BENEATH },
522 };
523
524 return (flags_trans(fde_to_fd_flags_s, nitems(fde_to_fd_flags_s),
525 fde_flags));
526 }
527
528 static uint8_t
fddup_to_fde_flags(int fddup_flags)529 fddup_to_fde_flags(int fddup_flags)
530 {
531 static const struct flags_trans_elem fddup_to_fde_flags_s[] = {
532 { .f = FDDUP_FLAG_CLOEXEC, .t = UF_EXCLOSE },
533 { .f = FDDUP_FLAG_CLOFORK, .t = UF_FOCLOSE },
534 };
535
536 return (flags_trans(fddup_to_fde_flags_s, nitems(fddup_to_fde_flags_s),
537 fddup_flags));
538 }
539
540 static uint8_t
close_range_to_fde_flags(int close_range_flags)541 close_range_to_fde_flags(int close_range_flags)
542 {
543 static const struct flags_trans_elem close_range_to_fde_flags_s[] = {
544 { .f = CLOSE_RANGE_CLOEXEC, .t = UF_EXCLOSE },
545 { .f = CLOSE_RANGE_CLOFORK, .t = UF_FOCLOSE },
546 };
547
548 return (flags_trans(close_range_to_fde_flags_s,
549 nitems(close_range_to_fde_flags_s), close_range_flags));
550 }
551
552 static uint8_t
open_to_fde_flags(int open_flags,bool sticky_orb)553 open_to_fde_flags(int open_flags, bool sticky_orb)
554 {
555 static const struct flags_trans_elem open_to_fde_flags_s[] = {
556 { .f = O_CLOEXEC, .t = UF_EXCLOSE },
557 { .f = O_CLOFORK, .t = UF_FOCLOSE },
558 { .f = O_RESOLVE_BENEATH, .t = UF_RESOLVE_BENEATH },
559 };
560 _Static_assert(open_to_fde_flags_s[nitems(open_to_fde_flags_s) - 1].f ==
561 O_RESOLVE_BENEATH, "O_RESOLVE_BENEATH must be last, for sticky_orb");
562
563 return (flags_trans(open_to_fde_flags_s, nitems(open_to_fde_flags_s) -
564 (sticky_orb ? 0 : 1), open_flags));
565 }
566
567 int
kern_fcntl(struct thread * td,int fd,int cmd,intptr_t arg)568 kern_fcntl(struct thread *td, int fd, int cmd, intptr_t arg)
569 {
570 struct filedesc *fdp;
571 struct flock *flp;
572 struct file *fp, *fp2;
573 struct filedescent *fde;
574 struct proc *p;
575 struct vnode *vp;
576 struct mount *mp;
577 struct kinfo_file *kif;
578 int error, flg, kif_sz, seals, tmp, got_set, got_cleared;
579 uint64_t bsize;
580 off_t foffset;
581 int flags;
582
583 error = 0;
584 flg = F_POSIX;
585 p = td->td_proc;
586 fdp = p->p_fd;
587
588 AUDIT_ARG_FD(cmd);
589 AUDIT_ARG_CMD(cmd);
590 switch (cmd) {
591 case F_DUPFD:
592 tmp = arg;
593 error = kern_dup(td, FDDUP_FCNTL, 0, fd, tmp);
594 break;
595
596 case F_DUPFD_CLOEXEC:
597 tmp = arg;
598 error = kern_dup(td, FDDUP_FCNTL, FDDUP_FLAG_CLOEXEC, fd, tmp);
599 break;
600
601 case F_DUPFD_CLOFORK:
602 tmp = arg;
603 error = kern_dup(td, FDDUP_FCNTL, FDDUP_FLAG_CLOFORK, fd, tmp);
604 break;
605
606 case F_DUP2FD:
607 tmp = arg;
608 error = kern_dup(td, FDDUP_FIXED, 0, fd, tmp);
609 break;
610
611 case F_DUP2FD_CLOEXEC:
612 tmp = arg;
613 error = kern_dup(td, FDDUP_FIXED, FDDUP_FLAG_CLOEXEC, fd, tmp);
614 break;
615
616 case F_GETFD:
617 error = EBADF;
618 FILEDESC_SLOCK(fdp);
619 fde = fdeget_noref(fdp, fd);
620 if (fde != NULL) {
621 td->td_retval[0] = fde_to_fd_flags(fde->fde_flags);
622 error = 0;
623 }
624 FILEDESC_SUNLOCK(fdp);
625 break;
626
627 case F_SETFD:
628 error = EBADF;
629 FILEDESC_XLOCK(fdp);
630 fde = fdeget_noref(fdp, fd);
631 if (fde != NULL) {
632 /*
633 * UF_RESOLVE_BENEATH is sticky and cannot be cleared.
634 */
635 fde->fde_flags = (fde->fde_flags & ~UF_EXCLOSE) |
636 fd_to_fde_flags(arg);
637 error = 0;
638 }
639 FILEDESC_XUNLOCK(fdp);
640 break;
641
642 case F_GETFL:
643 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETFL, &fp);
644 if (error != 0)
645 break;
646 td->td_retval[0] = OFLAGS(fp->f_flag);
647 fdrop(fp, td);
648 break;
649
650 case F_SETFL:
651 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETFL, &fp);
652 if (error != 0)
653 break;
654 if (fp->f_ops == &path_fileops) {
655 fdrop(fp, td);
656 error = EBADF;
657 break;
658 }
659 do {
660 tmp = flg = fp->f_flag;
661 tmp &= ~FCNTLFLAGS;
662 tmp |= FFLAGS(arg & ~O_ACCMODE) & FCNTLFLAGS;
663 } while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
664 got_set = tmp & ~flg;
665 got_cleared = flg & ~tmp;
666 tmp = fp->f_flag & FNONBLOCK;
667 error = fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
668 if (error != 0)
669 goto revert_f_setfl;
670 tmp = fp->f_flag & FASYNC;
671 error = fo_ioctl(fp, FIOASYNC, &tmp, td->td_ucred, td);
672 if (error == 0) {
673 fdrop(fp, td);
674 break;
675 }
676 atomic_clear_int(&fp->f_flag, FNONBLOCK);
677 tmp = 0;
678 (void)fo_ioctl(fp, FIONBIO, &tmp, td->td_ucred, td);
679 revert_f_setfl:
680 do {
681 tmp = flg = fp->f_flag;
682 tmp &= ~FCNTLFLAGS;
683 tmp |= got_cleared;
684 tmp &= ~got_set;
685 } while (atomic_cmpset_int(&fp->f_flag, flg, tmp) == 0);
686 fdrop(fp, td);
687 break;
688
689 case F_GETOWN:
690 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_GETOWN, &fp);
691 if (error != 0)
692 break;
693 error = fo_ioctl(fp, FIOGETOWN, &tmp, td->td_ucred, td);
694 if (error == 0)
695 td->td_retval[0] = tmp;
696 fdrop(fp, td);
697 break;
698
699 case F_SETOWN:
700 error = fget_fcntl(td, fd, &cap_fcntl_rights, F_SETOWN, &fp);
701 if (error != 0)
702 break;
703 tmp = arg;
704 error = fo_ioctl(fp, FIOSETOWN, &tmp, td->td_ucred, td);
705 fdrop(fp, td);
706 break;
707
708 case F_SETLK_REMOTE:
709 error = priv_check(td, PRIV_NFS_LOCKD);
710 if (error != 0)
711 return (error);
712 flg = F_REMOTE;
713 goto do_setlk;
714
715 case F_SETLKW:
716 flg |= F_WAIT;
717 /* FALLTHROUGH F_SETLK */
718
719 case F_SETLK:
720 do_setlk:
721 flp = (struct flock *)arg;
722 if ((flg & F_REMOTE) != 0 && flp->l_sysid == 0) {
723 error = EINVAL;
724 break;
725 }
726
727 error = fget_unlocked(td, fd, &cap_flock_rights, &fp);
728 if (error != 0)
729 break;
730 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
731 error = EBADF;
732 fdrop(fp, td);
733 break;
734 }
735
736 if (flp->l_whence == SEEK_CUR) {
737 foffset = foffset_get(fp);
738 if (foffset < 0 ||
739 (flp->l_start > 0 &&
740 foffset > OFF_MAX - flp->l_start)) {
741 error = EOVERFLOW;
742 fdrop(fp, td);
743 break;
744 }
745 flp->l_start += foffset;
746 }
747
748 vp = fp->f_vnode;
749 switch (flp->l_type) {
750 case F_RDLCK:
751 if ((fp->f_flag & FREAD) == 0) {
752 error = EBADF;
753 break;
754 }
755 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
756 PROC_LOCK(p->p_leader);
757 p->p_leader->p_flag |= P_ADVLOCK;
758 PROC_UNLOCK(p->p_leader);
759 }
760 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
761 flp, flg);
762 break;
763 case F_WRLCK:
764 if ((fp->f_flag & FWRITE) == 0) {
765 error = EBADF;
766 break;
767 }
768 if ((p->p_leader->p_flag & P_ADVLOCK) == 0) {
769 PROC_LOCK(p->p_leader);
770 p->p_leader->p_flag |= P_ADVLOCK;
771 PROC_UNLOCK(p->p_leader);
772 }
773 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_SETLK,
774 flp, flg);
775 break;
776 case F_UNLCK:
777 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_UNLCK,
778 flp, flg);
779 break;
780 case F_UNLCKSYS:
781 if (flg != F_REMOTE) {
782 error = EINVAL;
783 break;
784 }
785 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
786 F_UNLCKSYS, flp, flg);
787 break;
788 default:
789 error = EINVAL;
790 break;
791 }
792 if (error != 0 || flp->l_type == F_UNLCK ||
793 flp->l_type == F_UNLCKSYS) {
794 fdrop(fp, td);
795 break;
796 }
797
798 /*
799 * Check for a race with close.
800 *
801 * The vnode is now advisory locked (or unlocked, but this case
802 * is not really important) as the caller requested.
803 * We had to drop the filedesc lock, so we need to recheck if
804 * the descriptor is still valid, because if it was closed
805 * in the meantime we need to remove advisory lock from the
806 * vnode - close on any descriptor leading to an advisory
807 * locked vnode, removes that lock.
808 * We will return 0 on purpose in that case, as the result of
809 * successful advisory lock might have been externally visible
810 * already. This is fine - effectively we pretend to the caller
811 * that the closing thread was a bit slower and that the
812 * advisory lock succeeded before the close.
813 */
814 error = fget_unlocked(td, fd, &cap_no_rights, &fp2);
815 if (error != 0) {
816 fdrop(fp, td);
817 break;
818 }
819 if (fp != fp2) {
820 flp->l_whence = SEEK_SET;
821 flp->l_start = 0;
822 flp->l_len = 0;
823 flp->l_type = F_UNLCK;
824 (void) VOP_ADVLOCK(vp, (caddr_t)p->p_leader,
825 F_UNLCK, flp, F_POSIX);
826 }
827 fdrop(fp, td);
828 fdrop(fp2, td);
829 break;
830
831 case F_GETLK:
832 error = fget_unlocked(td, fd, &cap_flock_rights, &fp);
833 if (error != 0)
834 break;
835 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
836 error = EBADF;
837 fdrop(fp, td);
838 break;
839 }
840 flp = (struct flock *)arg;
841 if (flp->l_type != F_RDLCK && flp->l_type != F_WRLCK &&
842 flp->l_type != F_UNLCK) {
843 error = EINVAL;
844 fdrop(fp, td);
845 break;
846 }
847 if (flp->l_whence == SEEK_CUR) {
848 foffset = foffset_get(fp);
849 if ((flp->l_start > 0 &&
850 foffset > OFF_MAX - flp->l_start) ||
851 (flp->l_start < 0 &&
852 foffset < OFF_MIN - flp->l_start)) {
853 error = EOVERFLOW;
854 fdrop(fp, td);
855 break;
856 }
857 flp->l_start += foffset;
858 }
859 vp = fp->f_vnode;
860 error = VOP_ADVLOCK(vp, (caddr_t)p->p_leader, F_GETLK, flp,
861 F_POSIX);
862 fdrop(fp, td);
863 break;
864
865 case F_ADD_SEALS:
866 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
867 if (error != 0)
868 break;
869 error = fo_add_seals(fp, arg);
870 fdrop(fp, td);
871 break;
872
873 case F_GET_SEALS:
874 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
875 if (error != 0)
876 break;
877 if (fo_get_seals(fp, &seals) == 0)
878 td->td_retval[0] = seals;
879 else
880 error = EINVAL;
881 fdrop(fp, td);
882 break;
883
884 case F_RDAHEAD:
885 arg = arg ? 128 * 1024: 0;
886 /* FALLTHROUGH */
887 case F_READAHEAD:
888 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
889 if (error != 0)
890 break;
891 if (fp->f_type != DTYPE_VNODE || fp->f_ops == &path_fileops) {
892 fdrop(fp, td);
893 error = EBADF;
894 break;
895 }
896 vp = fp->f_vnode;
897 if (vp->v_type != VREG) {
898 fdrop(fp, td);
899 error = ENOTTY;
900 break;
901 }
902
903 /*
904 * Exclusive lock synchronizes against f_seqcount reads and
905 * writes in sequential_heuristic().
906 */
907 error = vn_lock(vp, LK_EXCLUSIVE);
908 if (error != 0) {
909 fdrop(fp, td);
910 break;
911 }
912 if (arg >= 0) {
913 bsize = fp->f_vnode->v_mount->mnt_stat.f_iosize;
914 arg = MIN(arg, INT_MAX - bsize + 1);
915 fp->f_seqcount[UIO_READ] = MIN(IO_SEQMAX,
916 (arg + bsize - 1) / bsize);
917 atomic_set_int(&fp->f_flag, FRDAHEAD);
918 } else {
919 atomic_clear_int(&fp->f_flag, FRDAHEAD);
920 }
921 VOP_UNLOCK(vp);
922 fdrop(fp, td);
923 break;
924
925 case F_ISUNIONSTACK:
926 /*
927 * Check if the vnode is part of a union stack (either the
928 * "union" flag from mount(2) or unionfs).
929 *
930 * Prior to introduction of this op libc's readdir would call
931 * fstatfs(2), in effect unnecessarily copying kilobytes of
932 * data just to check fs name and a mount flag.
933 *
934 * Fixing the code to handle everything in the kernel instead
935 * is a non-trivial endeavor and has low priority, thus this
936 * horrible kludge facilitates the current behavior in a much
937 * cheaper manner until someone(tm) sorts this out.
938 */
939 error = fget_unlocked(td, fd, &cap_no_rights, &fp);
940 if (error != 0)
941 break;
942 if (fp->f_type != DTYPE_VNODE) {
943 fdrop(fp, td);
944 error = EBADF;
945 break;
946 }
947 vp = fp->f_vnode;
948 /*
949 * Since we don't prevent dooming the vnode even non-null mp
950 * found can become immediately stale. This is tolerable since
951 * mount points are type-stable (providing safe memory access)
952 * and any vfs op on this vnode going forward will return an
953 * error (meaning return value in this case is meaningless).
954 */
955 mp = atomic_load_ptr(&vp->v_mount);
956 if (__predict_false(mp == NULL)) {
957 fdrop(fp, td);
958 error = EBADF;
959 break;
960 }
961 td->td_retval[0] = 0;
962 if (mp->mnt_kern_flag & MNTK_UNIONFS ||
963 mp->mnt_flag & MNT_UNION)
964 td->td_retval[0] = 1;
965 fdrop(fp, td);
966 break;
967
968 case F_KINFO:
969 #ifdef CAPABILITY_MODE
970 if (CAP_TRACING(td))
971 ktrcapfail(CAPFAIL_SYSCALL, &cmd);
972 if (IN_CAPABILITY_MODE(td)) {
973 error = ECAPMODE;
974 break;
975 }
976 #endif
977 error = copyin((void *)arg, &kif_sz, sizeof(kif_sz));
978 if (error != 0)
979 break;
980 if (kif_sz != sizeof(*kif)) {
981 error = EINVAL;
982 break;
983 }
984 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK | M_ZERO);
985 FILEDESC_SLOCK(fdp);
986 error = fget_cap_noref(fdp, fd, &cap_fcntl_rights, &fp, NULL);
987 if (error == 0 && fhold(fp)) {
988 export_file_to_kinfo(fp, fd, NULL, kif, fdp, 0);
989 FILEDESC_SUNLOCK(fdp);
990 fdrop(fp, td);
991 if ((kif->kf_status & KF_ATTR_VALID) != 0) {
992 kif->kf_structsize = sizeof(*kif);
993 error = copyout(kif, (void *)arg, sizeof(*kif));
994 } else {
995 error = EBADF;
996 }
997 } else {
998 FILEDESC_SUNLOCK(fdp);
999 if (error == 0)
1000 error = EBADF;
1001 }
1002 free(kif, M_TEMP);
1003 break;
1004
1005 default:
1006 if ((cmd & ((1u << F_DUP3FD_SHIFT) - 1)) != F_DUP3FD)
1007 return (EXTERROR(EINVAL, "invalid fcntl cmd"));
1008 /* Handle F_DUP3FD */
1009 flags = (cmd >> F_DUP3FD_SHIFT);
1010 if ((flags & ~(FD_CLOEXEC | FD_CLOFORK)) != 0)
1011 return (EXTERROR(EINVAL, "invalid flags for F_DUP3FD"));
1012 tmp = arg;
1013 error = kern_dup(td, FDDUP_FIXED,
1014 ((flags & FD_CLOEXEC) != 0 ? FDDUP_FLAG_CLOEXEC : 0) |
1015 ((flags & FD_CLOFORK) != 0 ? FDDUP_FLAG_CLOFORK : 0),
1016 fd, tmp);
1017 break;
1018 }
1019 return (error);
1020 }
1021
1022 static int
getmaxfd(struct thread * td)1023 getmaxfd(struct thread *td)
1024 {
1025
1026 return (min((int)lim_cur(td, RLIMIT_NOFILE), maxfilesperproc));
1027 }
1028
1029 /*
1030 * Common code for dup, dup2, fcntl(F_DUPFD) and fcntl(F_DUP2FD).
1031 */
1032 int
kern_dup(struct thread * td,u_int mode,int flags,int old,int new)1033 kern_dup(struct thread *td, u_int mode, int flags, int old, int new)
1034 {
1035 struct filedesc *fdp;
1036 struct filedescent *oldfde, *newfde;
1037 struct proc *p;
1038 struct file *delfp, *oldfp;
1039 u_long *oioctls, *nioctls;
1040 int error, maxfd;
1041
1042 p = td->td_proc;
1043 fdp = p->p_fd;
1044 oioctls = NULL;
1045
1046 MPASS((flags & ~(FDDUP_FLAG_CLOEXEC | FDDUP_FLAG_CLOFORK)) == 0);
1047 MPASS(mode < FDDUP_LASTMODE);
1048
1049 AUDIT_ARG_FD(old);
1050 /* XXXRW: if (flags & FDDUP_FIXED) AUDIT_ARG_FD2(new); */
1051
1052 /*
1053 * Verify we have a valid descriptor to dup from and possibly to
1054 * dup to. Unlike dup() and dup2(), fcntl()'s F_DUPFD should
1055 * return EINVAL when the new descriptor is out of bounds.
1056 */
1057 if (old < 0)
1058 return (EBADF);
1059 if (new < 0)
1060 return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
1061 maxfd = getmaxfd(td);
1062 if (new >= maxfd)
1063 return (mode == FDDUP_FCNTL ? EINVAL : EBADF);
1064
1065 error = EBADF;
1066 FILEDESC_XLOCK(fdp);
1067 if (fget_noref(fdp, old) == NULL)
1068 goto unlock;
1069 if (mode == FDDUP_FIXED && old == new) {
1070 td->td_retval[0] = new;
1071 fdp->fd_ofiles[new].fde_flags |= fddup_to_fde_flags(flags);
1072 error = 0;
1073 goto unlock;
1074 }
1075
1076 oldfde = &fdp->fd_ofiles[old];
1077 oldfp = oldfde->fde_file;
1078 if (!fhold(oldfp))
1079 goto unlock;
1080
1081 /*
1082 * If the caller specified a file descriptor, make sure the file
1083 * table is large enough to hold it, and grab it. Otherwise, just
1084 * allocate a new descriptor the usual way.
1085 */
1086 switch (mode) {
1087 case FDDUP_NORMAL:
1088 case FDDUP_FCNTL:
1089 if ((error = fdalloc(td, new, &new)) != 0) {
1090 fdrop(oldfp, td);
1091 goto unlock;
1092 }
1093 break;
1094 case FDDUP_FIXED:
1095 if (new >= fdp->fd_nfiles) {
1096 /*
1097 * The resource limits are here instead of e.g.
1098 * fdalloc(), because the file descriptor table may be
1099 * shared between processes, so we can't really use
1100 * racct_add()/racct_sub(). Instead of counting the
1101 * number of actually allocated descriptors, just put
1102 * the limit on the size of the file descriptor table.
1103 */
1104 #ifdef RACCT
1105 if (RACCT_ENABLED()) {
1106 error = racct_set_unlocked(p, RACCT_NOFILE, new + 1);
1107 if (error != 0) {
1108 error = EMFILE;
1109 fdrop(oldfp, td);
1110 goto unlock;
1111 }
1112 }
1113 #endif
1114 fdgrowtable_exp(fdp, new + 1);
1115 }
1116 if (!fdisused(fdp, new))
1117 fdused(fdp, new);
1118 break;
1119 default:
1120 KASSERT(0, ("%s unsupported mode %d", __func__, mode));
1121 }
1122
1123 KASSERT(old != new, ("new fd is same as old"));
1124
1125 /* Refetch oldfde because the table may have grown and old one freed. */
1126 oldfde = &fdp->fd_ofiles[old];
1127 KASSERT(oldfp == oldfde->fde_file,
1128 ("fdt_ofiles shift from growth observed at fd %d",
1129 old));
1130
1131 newfde = &fdp->fd_ofiles[new];
1132 delfp = newfde->fde_file;
1133
1134 nioctls = filecaps_copy_prep(&oldfde->fde_caps);
1135
1136 /*
1137 * Duplicate the source descriptor.
1138 */
1139 #ifdef CAPABILITIES
1140 seqc_write_begin(&newfde->fde_seqc);
1141 #endif
1142 oioctls = filecaps_free_prep(&newfde->fde_caps);
1143 fde_copy(oldfde, newfde);
1144 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
1145 nioctls);
1146 newfde->fde_flags = (oldfde->fde_flags & ~(UF_EXCLOSE | UF_FOCLOSE)) |
1147 fddup_to_fde_flags(flags);
1148 #ifdef CAPABILITIES
1149 seqc_write_end(&newfde->fde_seqc);
1150 #endif
1151 td->td_retval[0] = new;
1152
1153 error = 0;
1154
1155 if (delfp != NULL) {
1156 (void) closefp(fdp, new, delfp, td, true, false);
1157 FILEDESC_UNLOCK_ASSERT(fdp);
1158 } else {
1159 unlock:
1160 FILEDESC_XUNLOCK(fdp);
1161 }
1162
1163 filecaps_free_finish(oioctls);
1164 return (error);
1165 }
1166
1167 static void
sigiofree(struct sigio * sigio)1168 sigiofree(struct sigio *sigio)
1169 {
1170 crfree(sigio->sio_ucred);
1171 free(sigio, M_SIGIO);
1172 }
1173
1174 static struct sigio *
funsetown_locked(struct sigio * sigio)1175 funsetown_locked(struct sigio *sigio)
1176 {
1177 struct proc *p;
1178 struct pgrp *pg;
1179
1180 SIGIO_ASSERT_LOCKED();
1181
1182 if (sigio == NULL)
1183 return (NULL);
1184 *sigio->sio_myref = NULL;
1185 if (sigio->sio_pgid < 0) {
1186 pg = sigio->sio_pgrp;
1187 PGRP_LOCK(pg);
1188 SLIST_REMOVE(&pg->pg_sigiolst, sigio, sigio, sio_pgsigio);
1189 PGRP_UNLOCK(pg);
1190 } else {
1191 p = sigio->sio_proc;
1192 PROC_LOCK(p);
1193 SLIST_REMOVE(&p->p_sigiolst, sigio, sigio, sio_pgsigio);
1194 PROC_UNLOCK(p);
1195 }
1196 return (sigio);
1197 }
1198
1199 /*
1200 * If sigio is on the list associated with a process or process group,
1201 * disable signalling from the device, remove sigio from the list and
1202 * free sigio.
1203 */
1204 void
funsetown(struct sigio ** sigiop)1205 funsetown(struct sigio **sigiop)
1206 {
1207 struct sigio *sigio;
1208
1209 /* Racy check, consumers must provide synchronization. */
1210 if (*sigiop == NULL)
1211 return;
1212
1213 SIGIO_LOCK();
1214 sigio = funsetown_locked(*sigiop);
1215 SIGIO_UNLOCK();
1216 if (sigio != NULL)
1217 sigiofree(sigio);
1218 }
1219
1220 /*
1221 * Free a list of sigio structures. The caller must ensure that new sigio
1222 * structures cannot be added after this point. For process groups this is
1223 * guaranteed using the proctree lock; for processes, the P_WEXIT flag serves
1224 * as an interlock.
1225 */
1226 void
funsetownlst(struct sigiolst * sigiolst)1227 funsetownlst(struct sigiolst *sigiolst)
1228 {
1229 struct proc *p;
1230 struct pgrp *pg;
1231 struct sigio *sigio, *tmp;
1232
1233 /* Racy check. */
1234 sigio = SLIST_FIRST(sigiolst);
1235 if (sigio == NULL)
1236 return;
1237
1238 p = NULL;
1239 pg = NULL;
1240
1241 SIGIO_LOCK();
1242 sigio = SLIST_FIRST(sigiolst);
1243 if (sigio == NULL) {
1244 SIGIO_UNLOCK();
1245 return;
1246 }
1247
1248 /*
1249 * Every entry of the list should belong to a single proc or pgrp.
1250 */
1251 if (sigio->sio_pgid < 0) {
1252 pg = sigio->sio_pgrp;
1253 sx_assert(&proctree_lock, SX_XLOCKED);
1254 PGRP_LOCK(pg);
1255 } else /* if (sigio->sio_pgid > 0) */ {
1256 p = sigio->sio_proc;
1257 PROC_LOCK(p);
1258 KASSERT((p->p_flag & P_WEXIT) != 0,
1259 ("%s: process %p is not exiting", __func__, p));
1260 }
1261
1262 SLIST_FOREACH(sigio, sigiolst, sio_pgsigio) {
1263 *sigio->sio_myref = NULL;
1264 if (pg != NULL) {
1265 KASSERT(sigio->sio_pgid < 0,
1266 ("Proc sigio in pgrp sigio list"));
1267 KASSERT(sigio->sio_pgrp == pg,
1268 ("Bogus pgrp in sigio list"));
1269 } else /* if (p != NULL) */ {
1270 KASSERT(sigio->sio_pgid > 0,
1271 ("Pgrp sigio in proc sigio list"));
1272 KASSERT(sigio->sio_proc == p,
1273 ("Bogus proc in sigio list"));
1274 }
1275 }
1276
1277 if (pg != NULL)
1278 PGRP_UNLOCK(pg);
1279 else
1280 PROC_UNLOCK(p);
1281 SIGIO_UNLOCK();
1282
1283 SLIST_FOREACH_SAFE(sigio, sigiolst, sio_pgsigio, tmp)
1284 sigiofree(sigio);
1285 }
1286
1287 /*
1288 * This is common code for FIOSETOWN ioctl called by fcntl(fd, F_SETOWN, arg).
1289 *
1290 * After permission checking, add a sigio structure to the sigio list for
1291 * the process or process group.
1292 */
1293 int
fsetown(pid_t pgid,struct sigio ** sigiop)1294 fsetown(pid_t pgid, struct sigio **sigiop)
1295 {
1296 struct proc *proc;
1297 struct pgrp *pgrp;
1298 struct sigio *osigio, *sigio;
1299 int ret;
1300
1301 if (pgid == 0) {
1302 funsetown(sigiop);
1303 return (0);
1304 }
1305
1306 sigio = malloc(sizeof(struct sigio), M_SIGIO, M_WAITOK);
1307 sigio->sio_pgid = pgid;
1308 sigio->sio_ucred = crhold(curthread->td_ucred);
1309 sigio->sio_myref = sigiop;
1310
1311 ret = 0;
1312 if (pgid > 0) {
1313 ret = pget(pgid, PGET_NOTWEXIT | PGET_NOTID | PGET_HOLD, &proc);
1314 SIGIO_LOCK();
1315 osigio = funsetown_locked(*sigiop);
1316 if (ret == 0) {
1317 PROC_LOCK(proc);
1318 _PRELE(proc);
1319 if ((proc->p_flag & P_WEXIT) != 0) {
1320 ret = ESRCH;
1321 } else if (proc->p_session !=
1322 curthread->td_proc->p_session) {
1323 /*
1324 * Policy - Don't allow a process to FSETOWN a
1325 * process in another session.
1326 *
1327 * Remove this test to allow maximum flexibility
1328 * or restrict FSETOWN to the current process or
1329 * process group for maximum safety.
1330 */
1331 ret = EPERM;
1332 } else {
1333 sigio->sio_proc = proc;
1334 SLIST_INSERT_HEAD(&proc->p_sigiolst, sigio,
1335 sio_pgsigio);
1336 }
1337 PROC_UNLOCK(proc);
1338 }
1339 } else /* if (pgid < 0) */ {
1340 sx_slock(&proctree_lock);
1341 SIGIO_LOCK();
1342 osigio = funsetown_locked(*sigiop);
1343 pgrp = pgfind(-pgid);
1344 if (pgrp == NULL) {
1345 ret = ESRCH;
1346 } else {
1347 if (pgrp->pg_session != curthread->td_proc->p_session) {
1348 /*
1349 * Policy - Don't allow a process to FSETOWN a
1350 * process in another session.
1351 *
1352 * Remove this test to allow maximum flexibility
1353 * or restrict FSETOWN to the current process or
1354 * process group for maximum safety.
1355 */
1356 ret = EPERM;
1357 } else {
1358 sigio->sio_pgrp = pgrp;
1359 SLIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio,
1360 sio_pgsigio);
1361 }
1362 PGRP_UNLOCK(pgrp);
1363 }
1364 sx_sunlock(&proctree_lock);
1365 }
1366 if (ret == 0)
1367 *sigiop = sigio;
1368 SIGIO_UNLOCK();
1369 if (osigio != NULL)
1370 sigiofree(osigio);
1371 return (ret);
1372 }
1373
1374 /*
1375 * This is common code for FIOGETOWN ioctl called by fcntl(fd, F_GETOWN, arg).
1376 */
1377 pid_t
fgetown(struct sigio ** sigiop)1378 fgetown(struct sigio **sigiop)
1379 {
1380 pid_t pgid;
1381
1382 SIGIO_LOCK();
1383 pgid = (*sigiop != NULL) ? (*sigiop)->sio_pgid : 0;
1384 SIGIO_UNLOCK();
1385 return (pgid);
1386 }
1387
1388 static int
closefp_impl(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool audit)1389 closefp_impl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1390 bool audit)
1391 {
1392 int error;
1393
1394 FILEDESC_XLOCK_ASSERT(fdp);
1395
1396 /*
1397 * We now hold the fp reference that used to be owned by the
1398 * descriptor array. We have to unlock the FILEDESC *AFTER*
1399 * knote_fdclose to prevent a race of the fd getting opened, a knote
1400 * added, and deleteing a knote for the new fd.
1401 */
1402 if (__predict_false(!TAILQ_EMPTY(&fdp->fd_kqlist)))
1403 knote_fdclose(td, fd);
1404
1405 /*
1406 * We need to notify mqueue if the object is of type mqueue.
1407 */
1408 if (__predict_false(fp->f_type == DTYPE_MQUEUE))
1409 mq_fdclose(td, fd, fp);
1410 FILEDESC_XUNLOCK(fdp);
1411
1412 #ifdef AUDIT
1413 if (AUDITING_TD(td) && audit)
1414 audit_sysclose(td, fd, fp);
1415 #endif
1416 error = closef(fp, td);
1417
1418 /*
1419 * All paths leading up to closefp() will have already removed or
1420 * replaced the fd in the filedesc table, so a restart would not
1421 * operate on the same file.
1422 */
1423 if (error == ERESTART)
1424 error = EINTR;
1425
1426 return (error);
1427 }
1428
1429 static int
closefp_hl(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool holdleaders,bool audit)1430 closefp_hl(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1431 bool holdleaders, bool audit)
1432 {
1433 int error;
1434
1435 FILEDESC_XLOCK_ASSERT(fdp);
1436
1437 if (holdleaders) {
1438 if (td->td_proc->p_fdtol != NULL) {
1439 /*
1440 * Ask fdfree() to sleep to ensure that all relevant
1441 * process leaders can be traversed in closef().
1442 */
1443 fdp->fd_holdleaderscount++;
1444 } else {
1445 holdleaders = false;
1446 }
1447 }
1448
1449 error = closefp_impl(fdp, fd, fp, td, audit);
1450 if (holdleaders) {
1451 FILEDESC_XLOCK(fdp);
1452 fdp->fd_holdleaderscount--;
1453 if (fdp->fd_holdleaderscount == 0 &&
1454 fdp->fd_holdleaderswakeup != 0) {
1455 fdp->fd_holdleaderswakeup = 0;
1456 wakeup(&fdp->fd_holdleaderscount);
1457 }
1458 FILEDESC_XUNLOCK(fdp);
1459 }
1460 return (error);
1461 }
1462
1463 static int
closefp(struct filedesc * fdp,int fd,struct file * fp,struct thread * td,bool holdleaders,bool audit)1464 closefp(struct filedesc *fdp, int fd, struct file *fp, struct thread *td,
1465 bool holdleaders, bool audit)
1466 {
1467
1468 FILEDESC_XLOCK_ASSERT(fdp);
1469
1470 if (__predict_false(td->td_proc->p_fdtol != NULL)) {
1471 return (closefp_hl(fdp, fd, fp, td, holdleaders, audit));
1472 } else {
1473 return (closefp_impl(fdp, fd, fp, td, audit));
1474 }
1475 }
1476
1477 /*
1478 * Close a file descriptor.
1479 */
1480 #ifndef _SYS_SYSPROTO_H_
1481 struct close_args {
1482 int fd;
1483 };
1484 #endif
1485 /* ARGSUSED */
1486 int
sys_close(struct thread * td,struct close_args * uap)1487 sys_close(struct thread *td, struct close_args *uap)
1488 {
1489
1490 return (kern_close(td, uap->fd));
1491 }
1492
1493 int
kern_close(struct thread * td,int fd)1494 kern_close(struct thread *td, int fd)
1495 {
1496 struct filedesc *fdp;
1497 struct file *fp;
1498
1499 fdp = td->td_proc->p_fd;
1500
1501 FILEDESC_XLOCK(fdp);
1502 if ((fp = fget_noref(fdp, fd)) == NULL) {
1503 FILEDESC_XUNLOCK(fdp);
1504 return (EBADF);
1505 }
1506 fdfree(fdp, fd);
1507
1508 /* closefp() drops the FILEDESC lock for us. */
1509 return (closefp(fdp, fd, fp, td, true, true));
1510 }
1511
1512 static int
close_range_flags(struct thread * td,u_int lowfd,u_int highfd,int flags)1513 close_range_flags(struct thread *td, u_int lowfd, u_int highfd, int flags)
1514 {
1515 struct filedesc *fdp;
1516 struct fdescenttbl *fdt;
1517 struct filedescent *fde;
1518 int fd, fde_flags;
1519
1520 fde_flags = close_range_to_fde_flags(flags);
1521 fdp = td->td_proc->p_fd;
1522 FILEDESC_XLOCK(fdp);
1523 fdt = atomic_load_ptr(&fdp->fd_files);
1524 highfd = MIN(highfd, fdt->fdt_nfiles - 1);
1525 fd = lowfd;
1526 if (__predict_false(fd > highfd)) {
1527 goto out_locked;
1528 }
1529 for (; fd <= highfd; fd++) {
1530 fde = &fdt->fdt_ofiles[fd];
1531 if (fde->fde_file != NULL)
1532 fde->fde_flags |= fde_flags;
1533 }
1534 out_locked:
1535 FILEDESC_XUNLOCK(fdp);
1536 return (0);
1537 }
1538
1539 static int
close_range_impl(struct thread * td,u_int lowfd,u_int highfd)1540 close_range_impl(struct thread *td, u_int lowfd, u_int highfd)
1541 {
1542 struct filedesc *fdp;
1543 const struct fdescenttbl *fdt;
1544 struct file *fp;
1545 int fd;
1546
1547 fdp = td->td_proc->p_fd;
1548 FILEDESC_XLOCK(fdp);
1549 fdt = atomic_load_ptr(&fdp->fd_files);
1550 highfd = MIN(highfd, fdt->fdt_nfiles - 1);
1551 fd = lowfd;
1552 if (__predict_false(fd > highfd)) {
1553 goto out_locked;
1554 }
1555 for (;;) {
1556 fp = fdt->fdt_ofiles[fd].fde_file;
1557 if (fp == NULL) {
1558 if (fd == highfd)
1559 goto out_locked;
1560 } else {
1561 fdfree(fdp, fd);
1562 (void) closefp(fdp, fd, fp, td, true, true);
1563 if (fd == highfd)
1564 goto out_unlocked;
1565 FILEDESC_XLOCK(fdp);
1566 fdt = atomic_load_ptr(&fdp->fd_files);
1567 }
1568 fd++;
1569 }
1570 out_locked:
1571 FILEDESC_XUNLOCK(fdp);
1572 out_unlocked:
1573 return (0);
1574 }
1575
1576 int
kern_close_range(struct thread * td,int flags,u_int lowfd,u_int highfd)1577 kern_close_range(struct thread *td, int flags, u_int lowfd, u_int highfd)
1578 {
1579
1580 /*
1581 * Check this prior to clamping; closefrom(3) with only fd 0, 1, and 2
1582 * open should not be a usage error. From a close_range() perspective,
1583 * close_range(3, ~0U, 0) in the same scenario should also likely not
1584 * be a usage error as all fd above 3 are in-fact already closed.
1585 */
1586 if (highfd < lowfd) {
1587 return (EINVAL);
1588 }
1589
1590 if ((flags & (CLOSE_RANGE_CLOEXEC | CLOSE_RANGE_CLOFORK)) != 0)
1591 return (close_range_flags(td, lowfd, highfd, flags));
1592
1593 return (close_range_impl(td, lowfd, highfd));
1594 }
1595
1596 #ifndef _SYS_SYSPROTO_H_
1597 struct close_range_args {
1598 u_int lowfd;
1599 u_int highfd;
1600 int flags;
1601 };
1602 #endif
1603 int
sys_close_range(struct thread * td,struct close_range_args * uap)1604 sys_close_range(struct thread *td, struct close_range_args *uap)
1605 {
1606
1607 AUDIT_ARG_FD(uap->lowfd);
1608 AUDIT_ARG_CMD(uap->highfd);
1609 AUDIT_ARG_FFLAGS(uap->flags);
1610
1611 if ((uap->flags & ~(CLOSE_RANGE_CLOEXEC | CLOSE_RANGE_CLOFORK)) != 0)
1612 return (EINVAL);
1613 return (kern_close_range(td, uap->flags, uap->lowfd, uap->highfd));
1614 }
1615
1616 #ifdef COMPAT_FREEBSD12
1617 /*
1618 * Close open file descriptors.
1619 */
1620 #ifndef _SYS_SYSPROTO_H_
1621 struct freebsd12_closefrom_args {
1622 int lowfd;
1623 };
1624 #endif
1625 /* ARGSUSED */
1626 int
freebsd12_closefrom(struct thread * td,struct freebsd12_closefrom_args * uap)1627 freebsd12_closefrom(struct thread *td, struct freebsd12_closefrom_args *uap)
1628 {
1629 u_int lowfd;
1630
1631 AUDIT_ARG_FD(uap->lowfd);
1632
1633 /*
1634 * Treat negative starting file descriptor values identical to
1635 * closefrom(0) which closes all files.
1636 */
1637 lowfd = MAX(0, uap->lowfd);
1638 return (kern_close_range(td, 0, lowfd, ~0U));
1639 }
1640 #endif /* COMPAT_FREEBSD12 */
1641
1642 #if defined(COMPAT_43)
1643 /*
1644 * Return status information about a file descriptor.
1645 */
1646 #ifndef _SYS_SYSPROTO_H_
1647 struct ofstat_args {
1648 int fd;
1649 struct ostat *sb;
1650 };
1651 #endif
1652 /* ARGSUSED */
1653 int
ofstat(struct thread * td,struct ofstat_args * uap)1654 ofstat(struct thread *td, struct ofstat_args *uap)
1655 {
1656 struct ostat oub;
1657 struct stat ub;
1658 int error;
1659
1660 error = kern_fstat(td, uap->fd, &ub);
1661 if (error == 0) {
1662 cvtstat(&ub, &oub);
1663 error = copyout(&oub, uap->sb, sizeof(oub));
1664 }
1665 return (error);
1666 }
1667 #endif /* COMPAT_43 */
1668
1669 #if defined(COMPAT_FREEBSD11)
1670 int
freebsd11_fstat(struct thread * td,struct freebsd11_fstat_args * uap)1671 freebsd11_fstat(struct thread *td, struct freebsd11_fstat_args *uap)
1672 {
1673 struct stat sb;
1674 struct freebsd11_stat osb;
1675 int error;
1676
1677 error = kern_fstat(td, uap->fd, &sb);
1678 if (error != 0)
1679 return (error);
1680 error = freebsd11_cvtstat(&sb, &osb);
1681 if (error == 0)
1682 error = copyout(&osb, uap->sb, sizeof(osb));
1683 return (error);
1684 }
1685 #endif /* COMPAT_FREEBSD11 */
1686
1687 /*
1688 * Return status information about a file descriptor.
1689 */
1690 #ifndef _SYS_SYSPROTO_H_
1691 struct fstat_args {
1692 int fd;
1693 struct stat *sb;
1694 };
1695 #endif
1696 /* ARGSUSED */
1697 int
sys_fstat(struct thread * td,struct fstat_args * uap)1698 sys_fstat(struct thread *td, struct fstat_args *uap)
1699 {
1700 struct stat ub;
1701 int error;
1702
1703 error = kern_fstat(td, uap->fd, &ub);
1704 if (error == 0)
1705 error = copyout(&ub, uap->sb, sizeof(ub));
1706 return (error);
1707 }
1708
1709 int
kern_fstat(struct thread * td,int fd,struct stat * sbp)1710 kern_fstat(struct thread *td, int fd, struct stat *sbp)
1711 {
1712 struct file *fp;
1713 int error;
1714
1715 AUDIT_ARG_FD(fd);
1716
1717 error = fget(td, fd, &cap_fstat_rights, &fp);
1718 if (__predict_false(error != 0))
1719 return (error);
1720
1721 AUDIT_ARG_FILE(td->td_proc, fp);
1722
1723 sbp->st_filerev = 0;
1724 sbp->st_bsdflags = 0;
1725 error = fo_stat(fp, sbp, td->td_ucred);
1726 fdrop(fp, td);
1727 #ifdef __STAT_TIME_T_EXT
1728 sbp->st_atim_ext = 0;
1729 sbp->st_mtim_ext = 0;
1730 sbp->st_ctim_ext = 0;
1731 sbp->st_btim_ext = 0;
1732 #endif
1733 #ifdef KTRACE
1734 if (KTRPOINT(td, KTR_STRUCT))
1735 ktrstat_error(sbp, error);
1736 #endif
1737 return (error);
1738 }
1739
1740 #if defined(COMPAT_FREEBSD11)
1741 /*
1742 * Return status information about a file descriptor.
1743 */
1744 #ifndef _SYS_SYSPROTO_H_
1745 struct freebsd11_nfstat_args {
1746 int fd;
1747 struct nstat *sb;
1748 };
1749 #endif
1750 /* ARGSUSED */
1751 int
freebsd11_nfstat(struct thread * td,struct freebsd11_nfstat_args * uap)1752 freebsd11_nfstat(struct thread *td, struct freebsd11_nfstat_args *uap)
1753 {
1754 struct nstat nub;
1755 struct stat ub;
1756 int error;
1757
1758 error = kern_fstat(td, uap->fd, &ub);
1759 if (error != 0)
1760 return (error);
1761 error = freebsd11_cvtnstat(&ub, &nub);
1762 if (error != 0)
1763 error = copyout(&nub, uap->sb, sizeof(nub));
1764 return (error);
1765 }
1766 #endif /* COMPAT_FREEBSD11 */
1767
1768 /*
1769 * Return pathconf information about a file descriptor.
1770 */
1771 #ifndef _SYS_SYSPROTO_H_
1772 struct fpathconf_args {
1773 int fd;
1774 int name;
1775 };
1776 #endif
1777 /* ARGSUSED */
1778 int
sys_fpathconf(struct thread * td,struct fpathconf_args * uap)1779 sys_fpathconf(struct thread *td, struct fpathconf_args *uap)
1780 {
1781 long value;
1782 int error;
1783
1784 error = kern_fpathconf(td, uap->fd, uap->name, &value);
1785 if (error == 0)
1786 td->td_retval[0] = value;
1787 return (error);
1788 }
1789
1790 int
kern_fpathconf(struct thread * td,int fd,int name,long * valuep)1791 kern_fpathconf(struct thread *td, int fd, int name, long *valuep)
1792 {
1793 struct file *fp;
1794 struct vnode *vp;
1795 int error;
1796
1797 error = fget(td, fd, &cap_fpathconf_rights, &fp);
1798 if (error != 0)
1799 return (error);
1800
1801 if (name == _PC_ASYNC_IO) {
1802 *valuep = _POSIX_ASYNCHRONOUS_IO;
1803 goto out;
1804 }
1805 vp = fp->f_vnode;
1806 if (vp != NULL) {
1807 vn_lock(vp, LK_SHARED | LK_RETRY);
1808 error = VOP_PATHCONF(vp, name, valuep);
1809 VOP_UNLOCK(vp);
1810 } else if (fp->f_type == DTYPE_PIPE || fp->f_type == DTYPE_SOCKET) {
1811 if (name != _PC_PIPE_BUF) {
1812 error = EINVAL;
1813 } else {
1814 *valuep = PIPE_BUF;
1815 error = 0;
1816 }
1817 } else {
1818 error = EOPNOTSUPP;
1819 }
1820 out:
1821 fdrop(fp, td);
1822 return (error);
1823 }
1824
1825 /*
1826 * Copy filecaps structure allocating memory for ioctls array if needed.
1827 *
1828 * The last parameter indicates whether the fdtable is locked. If it is not and
1829 * ioctls are encountered, copying fails and the caller must lock the table.
1830 *
1831 * Note that if the table was not locked, the caller has to check the relevant
1832 * sequence counter to determine whether the operation was successful.
1833 */
1834 bool
filecaps_copy(const struct filecaps * src,struct filecaps * dst,bool locked)1835 filecaps_copy(const struct filecaps *src, struct filecaps *dst, bool locked)
1836 {
1837 size_t size;
1838
1839 if (src->fc_ioctls != NULL && !locked)
1840 return (false);
1841 memcpy(dst, src, sizeof(*src));
1842 if (src->fc_ioctls == NULL)
1843 return (true);
1844
1845 KASSERT(src->fc_nioctls > 0,
1846 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
1847
1848 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1849 dst->fc_ioctls = malloc(size, M_FILECAPS, M_WAITOK);
1850 memcpy(dst->fc_ioctls, src->fc_ioctls, size);
1851 return (true);
1852 }
1853
1854 static u_long *
filecaps_copy_prep(const struct filecaps * src)1855 filecaps_copy_prep(const struct filecaps *src)
1856 {
1857 u_long *ioctls;
1858 size_t size;
1859
1860 if (__predict_true(src->fc_ioctls == NULL))
1861 return (NULL);
1862
1863 KASSERT(src->fc_nioctls > 0,
1864 ("fc_ioctls != NULL, but fc_nioctls=%hd", src->fc_nioctls));
1865
1866 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1867 ioctls = malloc(size, M_FILECAPS, M_WAITOK);
1868 return (ioctls);
1869 }
1870
1871 static void
filecaps_copy_finish(const struct filecaps * src,struct filecaps * dst,u_long * ioctls)1872 filecaps_copy_finish(const struct filecaps *src, struct filecaps *dst,
1873 u_long *ioctls)
1874 {
1875 size_t size;
1876
1877 *dst = *src;
1878 if (__predict_true(src->fc_ioctls == NULL)) {
1879 MPASS(ioctls == NULL);
1880 return;
1881 }
1882
1883 size = sizeof(src->fc_ioctls[0]) * src->fc_nioctls;
1884 dst->fc_ioctls = ioctls;
1885 bcopy(src->fc_ioctls, dst->fc_ioctls, size);
1886 }
1887
1888 /*
1889 * Move filecaps structure to the new place and clear the old place.
1890 */
1891 void
filecaps_move(struct filecaps * src,struct filecaps * dst)1892 filecaps_move(struct filecaps *src, struct filecaps *dst)
1893 {
1894
1895 *dst = *src;
1896 bzero(src, sizeof(*src));
1897 }
1898
1899 /*
1900 * Fill the given filecaps structure with full rights.
1901 */
1902 static void
filecaps_fill(struct filecaps * fcaps)1903 filecaps_fill(struct filecaps *fcaps)
1904 {
1905
1906 CAP_ALL(&fcaps->fc_rights);
1907 fcaps->fc_ioctls = NULL;
1908 fcaps->fc_nioctls = -1;
1909 fcaps->fc_fcntls = CAP_FCNTL_ALL;
1910 }
1911
1912 /*
1913 * Free memory allocated within filecaps structure.
1914 */
1915 static void
filecaps_free_ioctl(struct filecaps * fcaps)1916 filecaps_free_ioctl(struct filecaps *fcaps)
1917 {
1918
1919 free(fcaps->fc_ioctls, M_FILECAPS);
1920 fcaps->fc_ioctls = NULL;
1921 }
1922
1923 void
filecaps_free(struct filecaps * fcaps)1924 filecaps_free(struct filecaps *fcaps)
1925 {
1926
1927 filecaps_free_ioctl(fcaps);
1928 bzero(fcaps, sizeof(*fcaps));
1929 }
1930
1931 static u_long *
filecaps_free_prep(struct filecaps * fcaps)1932 filecaps_free_prep(struct filecaps *fcaps)
1933 {
1934 u_long *ioctls;
1935
1936 ioctls = fcaps->fc_ioctls;
1937 bzero(fcaps, sizeof(*fcaps));
1938 return (ioctls);
1939 }
1940
1941 static void
filecaps_free_finish(u_long * ioctls)1942 filecaps_free_finish(u_long *ioctls)
1943 {
1944
1945 free(ioctls, M_FILECAPS);
1946 }
1947
1948 /*
1949 * Validate the given filecaps structure.
1950 */
1951 static void
filecaps_validate(const struct filecaps * fcaps,const char * func)1952 filecaps_validate(const struct filecaps *fcaps, const char *func)
1953 {
1954
1955 KASSERT(cap_rights_is_valid(&fcaps->fc_rights),
1956 ("%s: invalid rights", func));
1957 KASSERT((fcaps->fc_fcntls & ~CAP_FCNTL_ALL) == 0,
1958 ("%s: invalid fcntls", func));
1959 KASSERT(fcaps->fc_fcntls == 0 ||
1960 cap_rights_is_set(&fcaps->fc_rights, CAP_FCNTL),
1961 ("%s: fcntls without CAP_FCNTL", func));
1962 /*
1963 * open calls without WANTIOCTLCAPS free caps but leave the counter
1964 */
1965 #if 0
1966 KASSERT(fcaps->fc_ioctls != NULL ? fcaps->fc_nioctls > 0 :
1967 (fcaps->fc_nioctls == -1 || fcaps->fc_nioctls == 0),
1968 ("%s: invalid ioctls", func));
1969 #endif
1970 KASSERT(fcaps->fc_nioctls == 0 ||
1971 cap_rights_is_set(&fcaps->fc_rights, CAP_IOCTL),
1972 ("%s: ioctls without CAP_IOCTL", func));
1973 }
1974
1975 static void
fdgrowtable_exp(struct filedesc * fdp,int nfd)1976 fdgrowtable_exp(struct filedesc *fdp, int nfd)
1977 {
1978 int nfd1;
1979
1980 FILEDESC_XLOCK_ASSERT(fdp);
1981
1982 nfd1 = fdp->fd_nfiles * 2;
1983 if (nfd1 < nfd)
1984 nfd1 = nfd;
1985 fdgrowtable(fdp, nfd1);
1986 }
1987
1988 /*
1989 * Grow the file table to accommodate (at least) nfd descriptors.
1990 */
1991 static void
fdgrowtable(struct filedesc * fdp,int nfd)1992 fdgrowtable(struct filedesc *fdp, int nfd)
1993 {
1994 struct filedesc0 *fdp0;
1995 struct freetable *ft;
1996 struct fdescenttbl *ntable;
1997 struct fdescenttbl *otable;
1998 int nnfiles, onfiles;
1999 NDSLOTTYPE *nmap, *omap;
2000
2001 KASSERT(fdp->fd_nfiles > 0, ("zero-length file table"));
2002
2003 /* save old values */
2004 onfiles = fdp->fd_nfiles;
2005 otable = fdp->fd_files;
2006 omap = fdp->fd_map;
2007
2008 /* compute the size of the new table */
2009 nnfiles = NDSLOTS(nfd) * NDENTRIES; /* round up */
2010 if (nnfiles <= onfiles)
2011 /* the table is already large enough */
2012 return;
2013
2014 /*
2015 * Allocate a new table. We need enough space for the number of
2016 * entries, file entries themselves and the struct freetable we will use
2017 * when we decommission the table and place it on the freelist.
2018 * We place the struct freetable in the middle so we don't have
2019 * to worry about padding.
2020 */
2021 ntable = malloc(offsetof(struct fdescenttbl, fdt_ofiles) +
2022 nnfiles * sizeof(ntable->fdt_ofiles[0]) +
2023 sizeof(struct freetable),
2024 M_FILEDESC, M_ZERO | M_WAITOK);
2025 /* copy the old data */
2026 ntable->fdt_nfiles = nnfiles;
2027 memcpy(ntable->fdt_ofiles, otable->fdt_ofiles,
2028 onfiles * sizeof(ntable->fdt_ofiles[0]));
2029
2030 /*
2031 * Allocate a new map only if the old is not large enough. It will
2032 * grow at a slower rate than the table as it can map more
2033 * entries than the table can hold.
2034 */
2035 if (NDSLOTS(nnfiles) > NDSLOTS(onfiles)) {
2036 nmap = malloc(NDSLOTS(nnfiles) * NDSLOTSIZE, M_FILEDESC,
2037 M_ZERO | M_WAITOK);
2038 /* copy over the old data and update the pointer */
2039 memcpy(nmap, omap, NDSLOTS(onfiles) * sizeof(*omap));
2040 fdp->fd_map = nmap;
2041 }
2042
2043 /*
2044 * Make sure that ntable is correctly initialized before we replace
2045 * fd_files poiner. Otherwise fget_unlocked() may see inconsistent
2046 * data.
2047 */
2048 atomic_store_rel_ptr((volatile void *)&fdp->fd_files, (uintptr_t)ntable);
2049
2050 /*
2051 * Free the old file table when not shared by other threads or processes.
2052 * The old file table is considered to be shared when either are true:
2053 * - The process has more than one thread.
2054 * - The file descriptor table has been shared via fdshare().
2055 *
2056 * When shared, the old file table will be placed on a freelist
2057 * which will be processed when the struct filedesc is released.
2058 *
2059 * Note that if onfiles == NDFILE, we're dealing with the original
2060 * static allocation contained within (struct filedesc0 *)fdp,
2061 * which must not be freed.
2062 */
2063 if (onfiles > NDFILE) {
2064 /*
2065 * Note we may be called here from fdinit while allocating a
2066 * table for a new process in which case ->p_fd points
2067 * elsewhere.
2068 */
2069 if (curproc->p_fd != fdp || FILEDESC_IS_ONLY_USER(fdp)) {
2070 free(otable, M_FILEDESC);
2071 } else {
2072 ft = (struct freetable *)&otable->fdt_ofiles[onfiles];
2073 fdp0 = (struct filedesc0 *)fdp;
2074 ft->ft_table = otable;
2075 SLIST_INSERT_HEAD(&fdp0->fd_free, ft, ft_next);
2076 }
2077 }
2078 /*
2079 * The map does not have the same possibility of threads still
2080 * holding references to it. So always free it as long as it
2081 * does not reference the original static allocation.
2082 */
2083 if (NDSLOTS(onfiles) > NDSLOTS(NDFILE))
2084 free(omap, M_FILEDESC);
2085 }
2086
2087 /*
2088 * Allocate a file descriptor for the process.
2089 */
2090 int
fdalloc(struct thread * td,int minfd,int * result)2091 fdalloc(struct thread *td, int minfd, int *result)
2092 {
2093 struct proc *p = td->td_proc;
2094 struct filedesc *fdp = p->p_fd;
2095 int fd, maxfd, allocfd;
2096 #ifdef RACCT
2097 int error;
2098 #endif
2099
2100 FILEDESC_XLOCK_ASSERT(fdp);
2101
2102 if (fdp->fd_freefile > minfd)
2103 minfd = fdp->fd_freefile;
2104
2105 maxfd = getmaxfd(td);
2106
2107 /*
2108 * Search the bitmap for a free descriptor starting at minfd.
2109 * If none is found, grow the file table.
2110 */
2111 fd = fd_first_free(fdp, minfd, fdp->fd_nfiles);
2112 if (__predict_false(fd >= maxfd))
2113 return (EMFILE);
2114 if (__predict_false(fd >= fdp->fd_nfiles)) {
2115 allocfd = min(fd * 2, maxfd);
2116 #ifdef RACCT
2117 if (RACCT_ENABLED()) {
2118 error = racct_set_unlocked(p, RACCT_NOFILE, allocfd);
2119 if (error != 0)
2120 return (EMFILE);
2121 }
2122 #endif
2123 /*
2124 * fd is already equal to first free descriptor >= minfd, so
2125 * we only need to grow the table and we are done.
2126 */
2127 fdgrowtable_exp(fdp, allocfd);
2128 }
2129
2130 /*
2131 * Perform some sanity checks, then mark the file descriptor as
2132 * used and return it to the caller.
2133 */
2134 KASSERT(fd >= 0 && fd < min(maxfd, fdp->fd_nfiles),
2135 ("invalid descriptor %d", fd));
2136 KASSERT(!fdisused(fdp, fd),
2137 ("fd_first_free() returned non-free descriptor"));
2138 KASSERT(fdp->fd_ofiles[fd].fde_file == NULL,
2139 ("file descriptor isn't free"));
2140 fdused(fdp, fd);
2141 *result = fd;
2142 return (0);
2143 }
2144
2145 /*
2146 * Allocate n file descriptors for the process.
2147 */
2148 int
fdallocn(struct thread * td,int minfd,int * fds,int n)2149 fdallocn(struct thread *td, int minfd, int *fds, int n)
2150 {
2151 struct proc *p = td->td_proc;
2152 struct filedesc *fdp = p->p_fd;
2153 int i;
2154
2155 FILEDESC_XLOCK_ASSERT(fdp);
2156
2157 for (i = 0; i < n; i++)
2158 if (fdalloc(td, 0, &fds[i]) != 0)
2159 break;
2160
2161 if (i < n) {
2162 for (i--; i >= 0; i--)
2163 fdunused(fdp, fds[i]);
2164 return (EMFILE);
2165 }
2166
2167 return (0);
2168 }
2169
2170 /*
2171 * Create a new open file structure and allocate a file descriptor for the
2172 * process that refers to it. We add one reference to the file for the
2173 * descriptor table and one reference for resultfp. This is to prevent us
2174 * being preempted and the entry in the descriptor table closed after we
2175 * release the FILEDESC lock.
2176 */
2177 int
falloc_caps(struct thread * td,struct file ** resultfp,int * resultfd,int flags,struct filecaps * fcaps)2178 falloc_caps(struct thread *td, struct file **resultfp, int *resultfd, int flags,
2179 struct filecaps *fcaps)
2180 {
2181 struct file *fp;
2182 int error, fd;
2183
2184 MPASS(resultfp != NULL);
2185 MPASS(resultfd != NULL);
2186
2187 error = _falloc_noinstall(td, &fp, 2);
2188 if (__predict_false(error != 0)) {
2189 return (error);
2190 }
2191
2192 error = finstall_refed(td, fp, &fd, flags, fcaps);
2193 if (__predict_false(error != 0)) {
2194 falloc_abort(td, fp);
2195 return (error);
2196 }
2197
2198 *resultfp = fp;
2199 *resultfd = fd;
2200
2201 return (0);
2202 }
2203
2204 /*
2205 * Create a new open file structure without allocating a file descriptor.
2206 */
2207 int
_falloc_noinstall(struct thread * td,struct file ** resultfp,u_int n)2208 _falloc_noinstall(struct thread *td, struct file **resultfp, u_int n)
2209 {
2210 struct file *fp;
2211 int maxuserfiles = maxfiles - (maxfiles / 20);
2212 int openfiles_new;
2213 static struct timeval lastfail;
2214 static int curfail;
2215
2216 KASSERT(resultfp != NULL, ("%s: resultfp == NULL", __func__));
2217 MPASS(n > 0);
2218
2219 openfiles_new = atomic_fetchadd_int(&openfiles, 1) + 1;
2220 if ((openfiles_new >= maxuserfiles &&
2221 priv_check(td, PRIV_MAXFILES) != 0) ||
2222 openfiles_new >= maxfiles) {
2223 atomic_subtract_int(&openfiles, 1);
2224 if (ppsratecheck(&lastfail, &curfail, 1)) {
2225 printf("kern.maxfiles limit exceeded by uid %i, (%s) "
2226 "please see tuning(7).\n", td->td_ucred->cr_ruid, td->td_proc->p_comm);
2227 }
2228 return (ENFILE);
2229 }
2230 fp = uma_zalloc(file_zone, M_WAITOK);
2231 bzero(fp, sizeof(*fp));
2232 refcount_init(&fp->f_count, n);
2233 fp->f_cred = crhold(td->td_ucred);
2234 fp->f_ops = &badfileops;
2235 *resultfp = fp;
2236 return (0);
2237 }
2238
2239 void
falloc_abort(struct thread * td,struct file * fp)2240 falloc_abort(struct thread *td, struct file *fp)
2241 {
2242
2243 /*
2244 * For assertion purposes.
2245 */
2246 refcount_init(&fp->f_count, 0);
2247 _fdrop(fp, td);
2248 }
2249
2250 /*
2251 * Install a file in a file descriptor table.
2252 */
2253 void
_finstall(struct filedesc * fdp,struct file * fp,int fd,int flags,struct filecaps * fcaps)2254 _finstall(struct filedesc *fdp, struct file *fp, int fd, int flags,
2255 struct filecaps *fcaps)
2256 {
2257 struct filedescent *fde;
2258
2259 MPASS(fp != NULL);
2260 if (fcaps != NULL)
2261 filecaps_validate(fcaps, __func__);
2262 FILEDESC_XLOCK_ASSERT(fdp);
2263
2264 fde = &fdp->fd_ofiles[fd];
2265 #ifdef CAPABILITIES
2266 seqc_write_begin(&fde->fde_seqc);
2267 #endif
2268 fde->fde_file = fp;
2269 fde->fde_flags = open_to_fde_flags(flags, true);
2270 if (fcaps != NULL)
2271 filecaps_move(fcaps, &fde->fde_caps);
2272 else
2273 filecaps_fill(&fde->fde_caps);
2274 #ifdef CAPABILITIES
2275 seqc_write_end(&fde->fde_seqc);
2276 #endif
2277 }
2278
2279 int
finstall_refed(struct thread * td,struct file * fp,int * fd,int flags,struct filecaps * fcaps)2280 finstall_refed(struct thread *td, struct file *fp, int *fd, int flags,
2281 struct filecaps *fcaps)
2282 {
2283 struct filedesc *fdp = td->td_proc->p_fd;
2284 int error;
2285
2286 MPASS(fd != NULL);
2287
2288 FILEDESC_XLOCK(fdp);
2289 error = fdalloc(td, 0, fd);
2290 if (__predict_true(error == 0)) {
2291 _finstall(fdp, fp, *fd, flags, fcaps);
2292 }
2293 FILEDESC_XUNLOCK(fdp);
2294 return (error);
2295 }
2296
2297 int
finstall(struct thread * td,struct file * fp,int * fd,int flags,struct filecaps * fcaps)2298 finstall(struct thread *td, struct file *fp, int *fd, int flags,
2299 struct filecaps *fcaps)
2300 {
2301 int error;
2302
2303 MPASS(fd != NULL);
2304
2305 if (!fhold(fp))
2306 return (EBADF);
2307 error = finstall_refed(td, fp, fd, flags, fcaps);
2308 if (__predict_false(error != 0)) {
2309 fdrop(fp, td);
2310 }
2311 return (error);
2312 }
2313
2314 /*
2315 * Build a new filedesc structure from another.
2316 *
2317 * If fdp is not NULL, return with it shared locked.
2318 */
2319 struct filedesc *
fdinit(void)2320 fdinit(void)
2321 {
2322 struct filedesc0 *newfdp0;
2323 struct filedesc *newfdp;
2324
2325 newfdp0 = uma_zalloc(filedesc0_zone, M_WAITOK | M_ZERO);
2326 newfdp = &newfdp0->fd_fd;
2327
2328 /* Create the file descriptor table. */
2329 FILEDESC_LOCK_INIT(newfdp);
2330 refcount_init(&newfdp->fd_refcnt, 1);
2331 refcount_init(&newfdp->fd_holdcnt, 1);
2332 newfdp->fd_map = newfdp0->fd_dmap;
2333 newfdp->fd_files = (struct fdescenttbl *)&newfdp0->fd_dfiles;
2334 newfdp->fd_files->fdt_nfiles = NDFILE;
2335
2336 return (newfdp);
2337 }
2338
2339 /*
2340 * Build a pwddesc structure from another.
2341 * Copy the current, root, and jail root vnode references.
2342 *
2343 * If pdp is not NULL and keeplock is true, return with it (exclusively) locked.
2344 */
2345 struct pwddesc *
pdinit(struct pwddesc * pdp,bool keeplock)2346 pdinit(struct pwddesc *pdp, bool keeplock)
2347 {
2348 struct pwddesc *newpdp;
2349 struct pwd *newpwd;
2350
2351 newpdp = malloc(sizeof(*newpdp), M_PWDDESC, M_WAITOK | M_ZERO);
2352
2353 PWDDESC_LOCK_INIT(newpdp);
2354 refcount_init(&newpdp->pd_refcount, 1);
2355 newpdp->pd_cmask = CMASK;
2356
2357 if (pdp == NULL) {
2358 newpwd = pwd_alloc();
2359 smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
2360 return (newpdp);
2361 }
2362
2363 PWDDESC_XLOCK(pdp);
2364 newpwd = pwd_hold_pwddesc(pdp);
2365 smr_serialized_store(&newpdp->pd_pwd, newpwd, true);
2366 if (!keeplock)
2367 PWDDESC_XUNLOCK(pdp);
2368 return (newpdp);
2369 }
2370
2371 /*
2372 * Hold either filedesc or pwddesc of the passed process.
2373 *
2374 * The process lock is used to synchronize against the target exiting and
2375 * freeing the data.
2376 *
2377 * Clearing can be ilustrated in 3 steps:
2378 * 1. set the pointer to NULL. Either routine can race against it, hence
2379 * atomic_load_ptr.
2380 * 2. observe the process lock as not taken. Until then fdhold/pdhold can
2381 * race to either still see the pointer or find NULL. It is still safe to
2382 * grab a reference as clearing is stalled.
2383 * 3. after the lock is observed as not taken, any fdhold/pdhold calls are
2384 * guaranteed to see NULL, making it safe to finish clearing
2385 */
2386 static struct filedesc *
fdhold(struct proc * p)2387 fdhold(struct proc *p)
2388 {
2389 struct filedesc *fdp;
2390
2391 PROC_LOCK_ASSERT(p, MA_OWNED);
2392 fdp = atomic_load_ptr(&p->p_fd);
2393 if (fdp != NULL)
2394 refcount_acquire(&fdp->fd_holdcnt);
2395 return (fdp);
2396 }
2397
2398 static struct pwddesc *
pdhold(struct proc * p)2399 pdhold(struct proc *p)
2400 {
2401 struct pwddesc *pdp;
2402
2403 PROC_LOCK_ASSERT(p, MA_OWNED);
2404 pdp = atomic_load_ptr(&p->p_pd);
2405 if (pdp != NULL)
2406 refcount_acquire(&pdp->pd_refcount);
2407 return (pdp);
2408 }
2409
2410 static void
fddrop(struct filedesc * fdp)2411 fddrop(struct filedesc *fdp)
2412 {
2413
2414 if (refcount_load(&fdp->fd_holdcnt) > 1) {
2415 if (refcount_release(&fdp->fd_holdcnt) == 0)
2416 return;
2417 }
2418
2419 FILEDESC_LOCK_DESTROY(fdp);
2420 uma_zfree(filedesc0_zone, fdp);
2421 }
2422
2423 static void
pddrop(struct pwddesc * pdp)2424 pddrop(struct pwddesc *pdp)
2425 {
2426 struct pwd *pwd;
2427
2428 if (refcount_release_if_not_last(&pdp->pd_refcount))
2429 return;
2430
2431 PWDDESC_XLOCK(pdp);
2432 if (refcount_release(&pdp->pd_refcount) == 0) {
2433 PWDDESC_XUNLOCK(pdp);
2434 return;
2435 }
2436 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
2437 pwd_set(pdp, NULL);
2438 PWDDESC_XUNLOCK(pdp);
2439 pwd_drop(pwd);
2440
2441 PWDDESC_LOCK_DESTROY(pdp);
2442 free(pdp, M_PWDDESC);
2443 }
2444
2445 /*
2446 * Share a filedesc structure.
2447 */
2448 struct filedesc *
fdshare(struct filedesc * fdp)2449 fdshare(struct filedesc *fdp)
2450 {
2451
2452 refcount_acquire(&fdp->fd_refcnt);
2453 return (fdp);
2454 }
2455
2456 /*
2457 * Share a pwddesc structure.
2458 */
2459 struct pwddesc *
pdshare(struct pwddesc * pdp)2460 pdshare(struct pwddesc *pdp)
2461 {
2462 refcount_acquire(&pdp->pd_refcount);
2463 return (pdp);
2464 }
2465
2466 /*
2467 * Unshare a filedesc structure, if necessary by making a copy
2468 */
2469 void
fdunshare(struct thread * td)2470 fdunshare(struct thread *td)
2471 {
2472 struct filedesc *tmp;
2473 struct proc *p = td->td_proc;
2474
2475 if (refcount_load(&p->p_fd->fd_refcnt) == 1)
2476 return;
2477
2478 tmp = fdcopy(p->p_fd);
2479 fdescfree(td);
2480 p->p_fd = tmp;
2481 }
2482
2483 /*
2484 * Unshare a pwddesc structure.
2485 */
2486 void
pdunshare(struct thread * td)2487 pdunshare(struct thread *td)
2488 {
2489 struct pwddesc *pdp;
2490 struct proc *p;
2491
2492 p = td->td_proc;
2493 /* Not shared. */
2494 if (refcount_load(&p->p_pd->pd_refcount) == 1)
2495 return;
2496
2497 pdp = pdcopy(p->p_pd);
2498 pdescfree(td);
2499 p->p_pd = pdp;
2500 }
2501
2502 /*
2503 * Copy a filedesc structure. A NULL pointer in returns a NULL reference,
2504 * this is to ease callers, not catch errors.
2505 */
2506 struct filedesc *
fdcopy(struct filedesc * fdp)2507 fdcopy(struct filedesc *fdp)
2508 {
2509 struct filedesc *newfdp;
2510 struct filedescent *nfde, *ofde;
2511 int i, lastfile;
2512
2513 MPASS(fdp != NULL);
2514
2515 newfdp = fdinit();
2516 FILEDESC_SLOCK(fdp);
2517 for (;;) {
2518 lastfile = fdlastfile(fdp);
2519 if (lastfile < newfdp->fd_nfiles)
2520 break;
2521 FILEDESC_SUNLOCK(fdp);
2522 fdgrowtable(newfdp, lastfile + 1);
2523 FILEDESC_SLOCK(fdp);
2524 }
2525 /* copy all passable descriptors (i.e. not kqueue) */
2526 newfdp->fd_freefile = fdp->fd_freefile;
2527 FILEDESC_FOREACH_FDE(fdp, i, ofde) {
2528 if ((ofde->fde_file->f_ops->fo_flags & DFLAG_PASSABLE) == 0 ||
2529 (ofde->fde_flags & UF_FOCLOSE) != 0 ||
2530 !fhold(ofde->fde_file)) {
2531 if (newfdp->fd_freefile == fdp->fd_freefile)
2532 newfdp->fd_freefile = i;
2533 continue;
2534 }
2535 nfde = &newfdp->fd_ofiles[i];
2536 *nfde = *ofde;
2537 filecaps_copy(&ofde->fde_caps, &nfde->fde_caps, true);
2538 fdused_init(newfdp, i);
2539 }
2540 MPASS(newfdp->fd_freefile != -1);
2541 FILEDESC_SUNLOCK(fdp);
2542 return (newfdp);
2543 }
2544
2545 /*
2546 * Copy a pwddesc structure.
2547 */
2548 struct pwddesc *
pdcopy(struct pwddesc * pdp)2549 pdcopy(struct pwddesc *pdp)
2550 {
2551 struct pwddesc *newpdp;
2552
2553 MPASS(pdp != NULL);
2554
2555 newpdp = pdinit(pdp, true);
2556 newpdp->pd_cmask = pdp->pd_cmask;
2557 PWDDESC_XUNLOCK(pdp);
2558 return (newpdp);
2559 }
2560
2561 /*
2562 * Clear POSIX style locks. This is only used when fdp looses a reference (i.e.
2563 * one of processes using it exits) and the table used to be shared.
2564 */
2565 static void
fdclearlocks(struct thread * td)2566 fdclearlocks(struct thread *td)
2567 {
2568 struct filedesc *fdp;
2569 struct filedesc_to_leader *fdtol;
2570 struct flock lf;
2571 struct file *fp;
2572 struct proc *p;
2573 struct vnode *vp;
2574 int i;
2575
2576 p = td->td_proc;
2577 fdp = p->p_fd;
2578 fdtol = p->p_fdtol;
2579 MPASS(fdtol != NULL);
2580
2581 FILEDESC_XLOCK(fdp);
2582 KASSERT(fdtol->fdl_refcount > 0,
2583 ("filedesc_to_refcount botch: fdl_refcount=%d",
2584 fdtol->fdl_refcount));
2585 if (fdtol->fdl_refcount == 1 &&
2586 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2587 FILEDESC_FOREACH_FP(fdp, i, fp) {
2588 if (fp->f_type != DTYPE_VNODE ||
2589 !fhold(fp))
2590 continue;
2591 FILEDESC_XUNLOCK(fdp);
2592 lf.l_whence = SEEK_SET;
2593 lf.l_start = 0;
2594 lf.l_len = 0;
2595 lf.l_type = F_UNLCK;
2596 vp = fp->f_vnode;
2597 (void) VOP_ADVLOCK(vp,
2598 (caddr_t)p->p_leader, F_UNLCK,
2599 &lf, F_POSIX);
2600 FILEDESC_XLOCK(fdp);
2601 fdrop(fp, td);
2602 }
2603 }
2604 retry:
2605 if (fdtol->fdl_refcount == 1) {
2606 if (fdp->fd_holdleaderscount > 0 &&
2607 (p->p_leader->p_flag & P_ADVLOCK) != 0) {
2608 /*
2609 * close() or kern_dup() has cleared a reference
2610 * in a shared file descriptor table.
2611 */
2612 fdp->fd_holdleaderswakeup = 1;
2613 sx_sleep(&fdp->fd_holdleaderscount,
2614 FILEDESC_LOCK(fdp), PLOCK, "fdlhold", 0);
2615 goto retry;
2616 }
2617 if (fdtol->fdl_holdcount > 0) {
2618 /*
2619 * Ensure that fdtol->fdl_leader remains
2620 * valid in closef().
2621 */
2622 fdtol->fdl_wakeup = 1;
2623 sx_sleep(fdtol, FILEDESC_LOCK(fdp), PLOCK,
2624 "fdlhold", 0);
2625 goto retry;
2626 }
2627 }
2628 fdtol->fdl_refcount--;
2629 if (fdtol->fdl_refcount == 0 &&
2630 fdtol->fdl_holdcount == 0) {
2631 fdtol->fdl_next->fdl_prev = fdtol->fdl_prev;
2632 fdtol->fdl_prev->fdl_next = fdtol->fdl_next;
2633 } else
2634 fdtol = NULL;
2635 p->p_fdtol = NULL;
2636 FILEDESC_XUNLOCK(fdp);
2637 if (fdtol != NULL)
2638 free(fdtol, M_FILEDESC_TO_LEADER);
2639 }
2640
2641 /*
2642 * Release a filedesc structure.
2643 */
2644 static void
fdescfree_fds(struct thread * td,struct filedesc * fdp)2645 fdescfree_fds(struct thread *td, struct filedesc *fdp)
2646 {
2647 struct filedesc0 *fdp0;
2648 struct freetable *ft, *tft;
2649 struct filedescent *fde;
2650 struct file *fp;
2651 int i;
2652
2653 KASSERT(refcount_load(&fdp->fd_refcnt) == 0,
2654 ("%s: fd table %p carries references", __func__, fdp));
2655
2656 /*
2657 * Serialize with threads iterating over the table, if any.
2658 */
2659 if (refcount_load(&fdp->fd_holdcnt) > 1) {
2660 FILEDESC_XLOCK(fdp);
2661 FILEDESC_XUNLOCK(fdp);
2662 }
2663
2664 FILEDESC_FOREACH_FDE(fdp, i, fde) {
2665 fp = fde->fde_file;
2666 fdefree_last(fde);
2667 (void) closef(fp, td);
2668 }
2669
2670 if (NDSLOTS(fdp->fd_nfiles) > NDSLOTS(NDFILE))
2671 free(fdp->fd_map, M_FILEDESC);
2672 if (fdp->fd_nfiles > NDFILE)
2673 free(fdp->fd_files, M_FILEDESC);
2674
2675 fdp0 = (struct filedesc0 *)fdp;
2676 SLIST_FOREACH_SAFE(ft, &fdp0->fd_free, ft_next, tft)
2677 free(ft->ft_table, M_FILEDESC);
2678
2679 fddrop(fdp);
2680 }
2681
2682 void
fdescfree(struct thread * td)2683 fdescfree(struct thread *td)
2684 {
2685 struct proc *p;
2686 struct filedesc *fdp;
2687
2688 p = td->td_proc;
2689 fdp = p->p_fd;
2690 MPASS(fdp != NULL);
2691
2692 #ifdef RACCT
2693 if (RACCT_ENABLED())
2694 racct_set_unlocked(p, RACCT_NOFILE, 0);
2695 #endif
2696
2697 if (p->p_fdtol != NULL)
2698 fdclearlocks(td);
2699
2700 /*
2701 * Check fdhold for an explanation.
2702 */
2703 atomic_store_ptr(&p->p_fd, NULL);
2704 atomic_thread_fence_seq_cst();
2705 PROC_WAIT_UNLOCKED(p);
2706
2707 if (refcount_release(&fdp->fd_refcnt) == 0)
2708 return;
2709
2710 fdescfree_fds(td, fdp);
2711 }
2712
2713 void
pdescfree(struct thread * td)2714 pdescfree(struct thread *td)
2715 {
2716 struct proc *p;
2717 struct pwddesc *pdp;
2718
2719 p = td->td_proc;
2720 pdp = p->p_pd;
2721 MPASS(pdp != NULL);
2722
2723 /*
2724 * Check pdhold for an explanation.
2725 */
2726 atomic_store_ptr(&p->p_pd, NULL);
2727 atomic_thread_fence_seq_cst();
2728 PROC_WAIT_UNLOCKED(p);
2729
2730 pddrop(pdp);
2731 }
2732
2733 /*
2734 * For setugid programs, we don't want to people to use that setugidness
2735 * to generate error messages which write to a file which otherwise would
2736 * otherwise be off-limits to the process. We check for filesystems where
2737 * the vnode can change out from under us after execve (like [lin]procfs).
2738 *
2739 * Since fdsetugidsafety calls this only for fd 0, 1 and 2, this check is
2740 * sufficient. We also don't check for setugidness since we know we are.
2741 */
2742 static bool
is_unsafe(struct file * fp)2743 is_unsafe(struct file *fp)
2744 {
2745 struct vnode *vp;
2746
2747 if (fp->f_type != DTYPE_VNODE)
2748 return (false);
2749
2750 vp = fp->f_vnode;
2751 return ((vp->v_vflag & VV_PROCDEP) != 0);
2752 }
2753
2754 /*
2755 * Make this setguid thing safe, if at all possible.
2756 */
2757 void
fdsetugidsafety(struct thread * td)2758 fdsetugidsafety(struct thread *td)
2759 {
2760 struct filedesc *fdp;
2761 struct file *fp;
2762 int i;
2763
2764 fdp = td->td_proc->p_fd;
2765 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2766 ("the fdtable should not be shared"));
2767 MPASS(fdp->fd_nfiles >= 3);
2768 for (i = 0; i <= 2; i++) {
2769 fp = fdp->fd_ofiles[i].fde_file;
2770 if (fp != NULL && is_unsafe(fp)) {
2771 FILEDESC_XLOCK(fdp);
2772 knote_fdclose(td, i);
2773 /*
2774 * NULL-out descriptor prior to close to avoid
2775 * a race while close blocks.
2776 */
2777 fdfree(fdp, i);
2778 FILEDESC_XUNLOCK(fdp);
2779 (void) closef(fp, td);
2780 }
2781 }
2782 }
2783
2784 /*
2785 * If a specific file object occupies a specific file descriptor, close the
2786 * file descriptor entry and drop a reference on the file object. This is a
2787 * convenience function to handle a subsequent error in a function that calls
2788 * falloc() that handles the race that another thread might have closed the
2789 * file descriptor out from under the thread creating the file object.
2790 */
2791 void
fdclose(struct thread * td,struct file * fp,int idx)2792 fdclose(struct thread *td, struct file *fp, int idx)
2793 {
2794 struct filedesc *fdp = td->td_proc->p_fd;
2795
2796 FILEDESC_XLOCK(fdp);
2797 if (fdp->fd_ofiles[idx].fde_file == fp) {
2798 fdfree(fdp, idx);
2799 FILEDESC_XUNLOCK(fdp);
2800 fdrop(fp, td);
2801 } else
2802 FILEDESC_XUNLOCK(fdp);
2803 }
2804
2805 /*
2806 * Close any files on exec?
2807 */
2808 void
fdcloseexec(struct thread * td)2809 fdcloseexec(struct thread *td)
2810 {
2811 struct filedesc *fdp;
2812 struct filedescent *fde;
2813 struct file *fp;
2814 int i;
2815
2816 fdp = td->td_proc->p_fd;
2817 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2818 ("the fdtable should not be shared"));
2819 FILEDESC_FOREACH_FDE(fdp, i, fde) {
2820 fp = fde->fde_file;
2821 if (fp->f_type == DTYPE_MQUEUE ||
2822 (fde->fde_flags & UF_EXCLOSE)) {
2823 FILEDESC_XLOCK(fdp);
2824 fdfree(fdp, i);
2825 (void) closefp(fdp, i, fp, td, false, false);
2826 FILEDESC_UNLOCK_ASSERT(fdp);
2827 } else if (fde->fde_flags & UF_FOCLOSE) {
2828 /*
2829 * https://austingroupbugs.net/view.php?id=1851
2830 * FD_CLOFORK should not be preserved across exec
2831 */
2832 fde->fde_flags &= ~UF_FOCLOSE;
2833 }
2834 }
2835 }
2836
2837 /*
2838 * It is unsafe for set[ug]id processes to be started with file
2839 * descriptors 0..2 closed, as these descriptors are given implicit
2840 * significance in the Standard C library. fdcheckstd() will create a
2841 * descriptor referencing /dev/null for each of stdin, stdout, and
2842 * stderr that is not already open.
2843 */
2844 int
fdcheckstd(struct thread * td)2845 fdcheckstd(struct thread *td)
2846 {
2847 struct filedesc *fdp;
2848 register_t save;
2849 int i, error, devnull;
2850
2851 fdp = td->td_proc->p_fd;
2852 KASSERT(refcount_load(&fdp->fd_refcnt) == 1,
2853 ("the fdtable should not be shared"));
2854 MPASS(fdp->fd_nfiles >= 3);
2855 devnull = -1;
2856 for (i = 0; i <= 2; i++) {
2857 if (fdp->fd_ofiles[i].fde_file != NULL)
2858 continue;
2859
2860 save = td->td_retval[0];
2861 if (devnull != -1) {
2862 error = kern_dup(td, FDDUP_FIXED, 0, devnull, i);
2863 } else {
2864 error = kern_openat(td, AT_FDCWD, "/dev/null",
2865 UIO_SYSSPACE, O_RDWR, 0);
2866 if (error == 0) {
2867 devnull = td->td_retval[0];
2868 KASSERT(devnull == i, ("we didn't get our fd"));
2869 }
2870 }
2871 td->td_retval[0] = save;
2872 if (error != 0)
2873 return (error);
2874 }
2875 return (0);
2876 }
2877
2878 /*
2879 * Internal form of close. Decrement reference count on file structure.
2880 * Note: td may be NULL when closing a file that was being passed in a
2881 * message.
2882 */
2883 int
closef(struct file * fp,struct thread * td)2884 closef(struct file *fp, struct thread *td)
2885 {
2886 struct vnode *vp;
2887 struct flock lf;
2888 struct filedesc_to_leader *fdtol;
2889 struct filedesc *fdp;
2890
2891 MPASS(td != NULL);
2892
2893 /*
2894 * POSIX record locking dictates that any close releases ALL
2895 * locks owned by this process. This is handled by setting
2896 * a flag in the unlock to free ONLY locks obeying POSIX
2897 * semantics, and not to free BSD-style file locks.
2898 * If the descriptor was in a message, POSIX-style locks
2899 * aren't passed with the descriptor, and the thread pointer
2900 * will be NULL. Callers should be careful only to pass a
2901 * NULL thread pointer when there really is no owning
2902 * context that might have locks, or the locks will be
2903 * leaked.
2904 */
2905 if (fp->f_type == DTYPE_VNODE) {
2906 vp = fp->f_vnode;
2907 if ((td->td_proc->p_leader->p_flag & P_ADVLOCK) != 0) {
2908 lf.l_whence = SEEK_SET;
2909 lf.l_start = 0;
2910 lf.l_len = 0;
2911 lf.l_type = F_UNLCK;
2912 (void) VOP_ADVLOCK(vp, (caddr_t)td->td_proc->p_leader,
2913 F_UNLCK, &lf, F_POSIX);
2914 }
2915 fdtol = td->td_proc->p_fdtol;
2916 if (fdtol != NULL) {
2917 /*
2918 * Handle special case where file descriptor table is
2919 * shared between multiple process leaders.
2920 */
2921 fdp = td->td_proc->p_fd;
2922 FILEDESC_XLOCK(fdp);
2923 for (fdtol = fdtol->fdl_next;
2924 fdtol != td->td_proc->p_fdtol;
2925 fdtol = fdtol->fdl_next) {
2926 if ((fdtol->fdl_leader->p_flag &
2927 P_ADVLOCK) == 0)
2928 continue;
2929 fdtol->fdl_holdcount++;
2930 FILEDESC_XUNLOCK(fdp);
2931 lf.l_whence = SEEK_SET;
2932 lf.l_start = 0;
2933 lf.l_len = 0;
2934 lf.l_type = F_UNLCK;
2935 vp = fp->f_vnode;
2936 (void) VOP_ADVLOCK(vp,
2937 (caddr_t)fdtol->fdl_leader, F_UNLCK, &lf,
2938 F_POSIX);
2939 FILEDESC_XLOCK(fdp);
2940 fdtol->fdl_holdcount--;
2941 if (fdtol->fdl_holdcount == 0 &&
2942 fdtol->fdl_wakeup != 0) {
2943 fdtol->fdl_wakeup = 0;
2944 wakeup(fdtol);
2945 }
2946 }
2947 FILEDESC_XUNLOCK(fdp);
2948 }
2949 }
2950 return (fdrop_close(fp, td));
2951 }
2952
2953 /*
2954 * Hack for file descriptor passing code.
2955 */
2956 void
closef_nothread(struct file * fp)2957 closef_nothread(struct file *fp)
2958 {
2959
2960 fdrop(fp, NULL);
2961 }
2962
2963 /*
2964 * Initialize the file pointer with the specified properties.
2965 *
2966 * The ops are set with release semantics to be certain that the flags, type,
2967 * and data are visible when ops is. This is to prevent ops methods from being
2968 * called with bad data.
2969 */
2970 void
finit(struct file * fp,u_int flag,short type,void * data,const struct fileops * ops)2971 finit(struct file *fp, u_int flag, short type, void *data,
2972 const struct fileops *ops)
2973 {
2974 fp->f_data = data;
2975 fp->f_flag = flag;
2976 fp->f_type = type;
2977 atomic_store_rel_ptr((volatile uintptr_t *)&fp->f_ops, (uintptr_t)ops);
2978 }
2979
2980 void
finit_vnode(struct file * fp,u_int flag,void * data,const struct fileops * ops)2981 finit_vnode(struct file *fp, u_int flag, void *data, const struct fileops *ops)
2982 {
2983 fp->f_seqcount[UIO_READ] = 1;
2984 fp->f_seqcount[UIO_WRITE] = 1;
2985 finit(fp, (flag & FMASK) | (fp->f_flag & FHASLOCK), DTYPE_VNODE,
2986 data, ops);
2987 }
2988
2989 int
fget_cap_noref(struct filedesc * fdp,int fd,const cap_rights_t * needrightsp,struct file ** fpp,struct filecaps * havecapsp)2990 fget_cap_noref(struct filedesc *fdp, int fd, const cap_rights_t *needrightsp,
2991 struct file **fpp, struct filecaps *havecapsp)
2992 {
2993 struct filedescent *fde;
2994 int error;
2995
2996 FILEDESC_LOCK_ASSERT(fdp);
2997
2998 *fpp = NULL;
2999 fde = fdeget_noref(fdp, fd);
3000 if (fde == NULL) {
3001 error = EBADF;
3002 goto out;
3003 }
3004
3005 #ifdef CAPABILITIES
3006 error = cap_check(cap_rights_fde_inline(fde), needrightsp);
3007 if (error != 0)
3008 goto out;
3009 #endif
3010
3011 if (havecapsp != NULL)
3012 filecaps_copy(&fde->fde_caps, havecapsp, true);
3013
3014 *fpp = fde->fde_file;
3015
3016 error = 0;
3017 out:
3018 return (error);
3019 }
3020
3021 #ifdef CAPABILITIES
3022 int
fget_cap(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,struct filecaps * havecapsp)3023 fget_cap(struct thread *td, int fd, const cap_rights_t *needrightsp,
3024 uint8_t *flagsp, struct file **fpp, struct filecaps *havecapsp)
3025 {
3026 struct filedesc *fdp = td->td_proc->p_fd;
3027 int error;
3028 struct file *fp;
3029 seqc_t seq;
3030
3031 *fpp = NULL;
3032 for (;;) {
3033 error = fget_unlocked_seq(td, fd, needrightsp, flagsp, &fp,
3034 &seq);
3035 if (error != 0)
3036 return (error);
3037
3038 if (havecapsp != NULL) {
3039 if (!filecaps_copy(&fdp->fd_ofiles[fd].fde_caps,
3040 havecapsp, false)) {
3041 fdrop(fp, td);
3042 goto get_locked;
3043 }
3044 }
3045
3046 if (!fd_modified(fdp, fd, seq))
3047 break;
3048 fdrop(fp, td);
3049 }
3050
3051 *fpp = fp;
3052 return (0);
3053
3054 get_locked:
3055 FILEDESC_SLOCK(fdp);
3056 error = fget_cap_noref(fdp, fd, needrightsp, fpp, havecapsp);
3057 if (error == 0 && !fhold(*fpp))
3058 error = EBADF;
3059 FILEDESC_SUNLOCK(fdp);
3060 return (error);
3061 }
3062 #else
3063 int
fget_cap(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,struct filecaps * havecapsp)3064 fget_cap(struct thread *td, int fd, const cap_rights_t *needrightsp,
3065 uint8_t *flagsp, struct file **fpp, struct filecaps *havecapsp)
3066 {
3067 int error;
3068 error = fget_unlocked_flags(td, fd, needrightsp, flagsp, fpp);
3069 if (havecapsp != NULL && error == 0)
3070 filecaps_fill(havecapsp);
3071
3072 return (error);
3073 }
3074 #endif
3075
3076 int
fget_remote(struct thread * td,struct proc * p,int fd,struct file ** fpp)3077 fget_remote(struct thread *td, struct proc *p, int fd, struct file **fpp)
3078 {
3079 struct filedesc *fdp;
3080 struct file *fp;
3081 int error;
3082
3083 if (p == td->td_proc) /* curproc */
3084 return (fget_unlocked(td, fd, &cap_no_rights, fpp));
3085
3086 PROC_LOCK(p);
3087 fdp = fdhold(p);
3088 PROC_UNLOCK(p);
3089 if (fdp == NULL)
3090 return (ENOENT);
3091 FILEDESC_SLOCK(fdp);
3092 if (refcount_load(&fdp->fd_refcnt) != 0) {
3093 fp = fget_noref(fdp, fd);
3094 if (fp != NULL && fhold(fp)) {
3095 *fpp = fp;
3096 error = 0;
3097 } else {
3098 error = EBADF;
3099 }
3100 } else {
3101 error = ENOENT;
3102 }
3103 FILEDESC_SUNLOCK(fdp);
3104 fddrop(fdp);
3105 return (error);
3106 }
3107
3108 int
fget_remote_foreach(struct thread * td,struct proc * p,int (* fn)(struct proc *,int,struct file *,void *),void * arg)3109 fget_remote_foreach(struct thread *td, struct proc *p,
3110 int (*fn)(struct proc *, int, struct file *, void *), void *arg)
3111 {
3112 struct filedesc *fdp;
3113 struct fdescenttbl *fdt;
3114 struct file *fp;
3115 int error, error1, fd, highfd;
3116
3117 error = 0;
3118 PROC_LOCK(p);
3119 fdp = fdhold(p);
3120 PROC_UNLOCK(p);
3121 if (fdp == NULL)
3122 return (ENOENT);
3123
3124 FILEDESC_SLOCK(fdp);
3125 if (refcount_load(&fdp->fd_refcnt) != 0) {
3126 fdt = atomic_load_ptr(&fdp->fd_files);
3127 highfd = fdt->fdt_nfiles - 1;
3128 FILEDESC_SUNLOCK(fdp);
3129 } else {
3130 error = ENOENT;
3131 FILEDESC_SUNLOCK(fdp);
3132 goto out;
3133 }
3134
3135 for (fd = 0; fd <= highfd; fd++) {
3136 error1 = fget_remote(td, p, fd, &fp);
3137 if (error1 != 0)
3138 continue;
3139 error = fn(p, fd, fp, arg);
3140 fdrop(fp, td);
3141 if (error != 0)
3142 break;
3143 }
3144 out:
3145 fddrop(fdp);
3146 return (error);
3147 }
3148
3149 #ifdef CAPABILITIES
3150 int
fgetvp_lookup_smr(struct nameidata * ndp,struct vnode ** vpp,int * flagsp)3151 fgetvp_lookup_smr(struct nameidata *ndp, struct vnode **vpp, int *flagsp)
3152 {
3153 const struct filedescent *fde;
3154 const struct fdescenttbl *fdt;
3155 struct filedesc *fdp;
3156 struct file *fp;
3157 struct vnode *vp;
3158 const cap_rights_t *haverights;
3159 cap_rights_t rights;
3160 seqc_t seq;
3161 int fd, flags;
3162
3163 VFS_SMR_ASSERT_ENTERED();
3164
3165 fd = ndp->ni_dirfd;
3166 rights = *ndp->ni_rightsneeded;
3167 cap_rights_set_one(&rights, CAP_LOOKUP);
3168
3169 fdp = curproc->p_fd;
3170 fdt = fdp->fd_files;
3171 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3172 return (EBADF);
3173 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3174 fde = &fdt->fdt_ofiles[fd];
3175 haverights = cap_rights_fde_inline(fde);
3176 fp = fde->fde_file;
3177 if (__predict_false(fp == NULL))
3178 return (EAGAIN);
3179 if (__predict_false(cap_check_inline_transient(haverights, &rights)))
3180 return (EAGAIN);
3181 flags = fp->f_flag & FSEARCH;
3182 flags |= (fde->fde_flags & UF_RESOLVE_BENEATH) != 0 ?
3183 O_RESOLVE_BENEATH : 0;
3184 vp = fp->f_vnode;
3185 if (__predict_false(vp == NULL)) {
3186 return (EAGAIN);
3187 }
3188 if (!filecaps_copy(&fde->fde_caps, &ndp->ni_filecaps, false)) {
3189 return (EAGAIN);
3190 }
3191 /*
3192 * Use an acquire barrier to force re-reading of fdt so it is
3193 * refreshed for verification.
3194 */
3195 atomic_thread_fence_acq();
3196 fdt = fdp->fd_files;
3197 if (__predict_false(!seqc_consistent_no_fence(fd_seqc(fdt, fd), seq)))
3198 return (EAGAIN);
3199 /*
3200 * If file descriptor doesn't have all rights,
3201 * all lookups relative to it must also be
3202 * strictly relative.
3203 *
3204 * Not yet supported by fast path.
3205 */
3206 CAP_ALL(&rights);
3207 if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
3208 ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
3209 ndp->ni_filecaps.fc_nioctls != -1) {
3210 #ifdef notyet
3211 ndp->ni_lcf |= NI_LCF_STRICTREL;
3212 #else
3213 return (EAGAIN);
3214 #endif
3215 }
3216 *vpp = vp;
3217 *flagsp = flags;
3218 return (0);
3219 }
3220 #else
3221 int
fgetvp_lookup_smr(struct nameidata * ndp,struct vnode ** vpp,int * flagsp)3222 fgetvp_lookup_smr(struct nameidata *ndp, struct vnode **vpp, int *flagsp)
3223 {
3224 const struct filedescent *fde;
3225 const struct fdescenttbl *fdt;
3226 struct filedesc *fdp;
3227 struct file *fp;
3228 struct vnode *vp;
3229 int fd, flags;
3230
3231 VFS_SMR_ASSERT_ENTERED();
3232
3233 fd = ndp->ni_dirfd;
3234 fdp = curproc->p_fd;
3235 fdt = fdp->fd_files;
3236 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3237 return (EBADF);
3238 fde = &fdt->fdt_ofiles[fd];
3239 fp = fde->fde_file;
3240 if (__predict_false(fp == NULL))
3241 return (EAGAIN);
3242 flags = fp->f_flag & FSEARCH;
3243 flags |= (fde->fde_flags & UF_RESOLVE_BENEATH) != 0 ?
3244 O_RESOLVE_BENEATH : 0;
3245 vp = fp->f_vnode;
3246 if (__predict_false(vp == NULL || vp->v_type != VDIR)) {
3247 return (EAGAIN);
3248 }
3249 /*
3250 * Use an acquire barrier to force re-reading of fdt so it is
3251 * refreshed for verification.
3252 */
3253 atomic_thread_fence_acq();
3254 fdt = fdp->fd_files;
3255 if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
3256 return (EAGAIN);
3257 filecaps_fill(&ndp->ni_filecaps);
3258 *vpp = vp;
3259 *flagsp = flags;
3260 return (0);
3261 }
3262 #endif
3263
3264 int
fgetvp_lookup(struct nameidata * ndp,struct vnode ** vpp)3265 fgetvp_lookup(struct nameidata *ndp, struct vnode **vpp)
3266 {
3267 struct thread *td;
3268 struct file *fp;
3269 struct vnode *vp;
3270 struct componentname *cnp;
3271 cap_rights_t rights;
3272 int error;
3273 uint8_t flags;
3274
3275 td = curthread;
3276 rights = *ndp->ni_rightsneeded;
3277 cap_rights_set_one(&rights, CAP_LOOKUP);
3278 cnp = &ndp->ni_cnd;
3279
3280 error = fget_cap(td, ndp->ni_dirfd, &rights, &flags, &fp,
3281 &ndp->ni_filecaps);
3282 if (__predict_false(error != 0))
3283 return (error);
3284 if (__predict_false(fp->f_ops == &badfileops)) {
3285 error = EBADF;
3286 goto out_free;
3287 }
3288 vp = fp->f_vnode;
3289 if (__predict_false(vp == NULL)) {
3290 error = ENOTDIR;
3291 goto out_free;
3292 }
3293 vrefact(vp);
3294 /*
3295 * XXX does not check for VDIR, handled by namei_setup
3296 */
3297 if ((fp->f_flag & FSEARCH) != 0)
3298 cnp->cn_flags |= NOEXECCHECK;
3299 if ((flags & UF_RESOLVE_BENEATH) != 0) {
3300 cnp->cn_flags |= RBENEATH;
3301 ndp->ni_resflags |= NIRES_BENEATH;
3302 }
3303 fdrop(fp, td);
3304
3305 #ifdef CAPABILITIES
3306 /*
3307 * If file descriptor doesn't have all rights,
3308 * all lookups relative to it must also be
3309 * strictly relative.
3310 */
3311 CAP_ALL(&rights);
3312 if (!cap_rights_contains(&ndp->ni_filecaps.fc_rights, &rights) ||
3313 ndp->ni_filecaps.fc_fcntls != CAP_FCNTL_ALL ||
3314 ndp->ni_filecaps.fc_nioctls != -1) {
3315 ndp->ni_lcf |= NI_LCF_STRICTREL;
3316 ndp->ni_resflags |= NIRES_STRICTREL;
3317 }
3318 #endif
3319
3320 /*
3321 * TODO: avoid copying ioctl caps if it can be helped to begin with
3322 */
3323 if ((cnp->cn_flags & WANTIOCTLCAPS) == 0)
3324 filecaps_free_ioctl(&ndp->ni_filecaps);
3325
3326 *vpp = vp;
3327 return (0);
3328
3329 out_free:
3330 filecaps_free(&ndp->ni_filecaps);
3331 fdrop(fp, td);
3332 return (error);
3333 }
3334
3335 /*
3336 * Fetch the descriptor locklessly.
3337 *
3338 * We avoid fdrop() races by never raising a refcount above 0. To accomplish
3339 * this we have to use a cmpset loop rather than an atomic_add. The descriptor
3340 * must be re-verified once we acquire a reference to be certain that the
3341 * identity is still correct and we did not lose a race due to preemption.
3342 *
3343 * Force a reload of fdt when looping. Another thread could reallocate
3344 * the table before this fd was closed, so it is possible that there is
3345 * a stale fp pointer in cached version.
3346 */
3347 #ifdef CAPABILITIES
3348 static int
fget_unlocked_seq(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,seqc_t * seqp)3349 fget_unlocked_seq(struct thread *td, int fd, const cap_rights_t *needrightsp,
3350 uint8_t *flagsp, struct file **fpp, seqc_t *seqp)
3351 {
3352 struct filedesc *fdp;
3353 const struct filedescent *fde;
3354 const struct fdescenttbl *fdt;
3355 struct file *fp;
3356 seqc_t seq;
3357 cap_rights_t haverights;
3358 int error;
3359 uint8_t flags;
3360
3361 fdp = td->td_proc->p_fd;
3362 fdt = fdp->fd_files;
3363 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3364 return (EBADF);
3365
3366 for (;;) {
3367 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3368 fde = &fdt->fdt_ofiles[fd];
3369 haverights = *cap_rights_fde_inline(fde);
3370 fp = fde->fde_file;
3371 flags = fde->fde_flags;
3372 if (__predict_false(fp == NULL)) {
3373 if (seqc_consistent(fd_seqc(fdt, fd), seq))
3374 return (EBADF);
3375 fdt = atomic_load_ptr(&fdp->fd_files);
3376 continue;
3377 }
3378 error = cap_check_inline(&haverights, needrightsp);
3379 if (__predict_false(error != 0)) {
3380 if (seqc_consistent(fd_seqc(fdt, fd), seq))
3381 return (error);
3382 fdt = atomic_load_ptr(&fdp->fd_files);
3383 continue;
3384 }
3385 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
3386 fdt = atomic_load_ptr(&fdp->fd_files);
3387 continue;
3388 }
3389 /*
3390 * Use an acquire barrier to force re-reading of fdt so it is
3391 * refreshed for verification.
3392 */
3393 atomic_thread_fence_acq();
3394 fdt = fdp->fd_files;
3395 if (seqc_consistent_no_fence(fd_seqc(fdt, fd), seq))
3396 break;
3397 fdrop(fp, td);
3398 }
3399 *fpp = fp;
3400 if (flagsp != NULL)
3401 *flagsp = flags;
3402 if (seqp != NULL)
3403 *seqp = seq;
3404 return (0);
3405 }
3406 #else
3407 static int
fget_unlocked_seq(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp,seqc_t * seqp __unused)3408 fget_unlocked_seq(struct thread *td, int fd, const cap_rights_t *needrightsp,
3409 uint8_t *flagsp, struct file **fpp, seqc_t *seqp __unused)
3410 {
3411 struct filedesc *fdp;
3412 const struct fdescenttbl *fdt;
3413 struct file *fp;
3414 uint8_t flags;
3415
3416 fdp = td->td_proc->p_fd;
3417 fdt = fdp->fd_files;
3418 if (__predict_false((u_int)fd >= fdt->fdt_nfiles))
3419 return (EBADF);
3420
3421 for (;;) {
3422 fp = fdt->fdt_ofiles[fd].fde_file;
3423 flags = fdt->fdt_ofiles[fd].fde_flags;
3424 if (__predict_false(fp == NULL))
3425 return (EBADF);
3426 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count))) {
3427 fdt = atomic_load_ptr(&fdp->fd_files);
3428 continue;
3429 }
3430 /*
3431 * Use an acquire barrier to force re-reading of fdt so it is
3432 * refreshed for verification.
3433 */
3434 atomic_thread_fence_acq();
3435 fdt = fdp->fd_files;
3436 if (__predict_true(fp == fdt->fdt_ofiles[fd].fde_file))
3437 break;
3438 fdrop(fp, td);
3439 }
3440 if (flagsp != NULL)
3441 *flagsp = flags;
3442 *fpp = fp;
3443 return (0);
3444 }
3445 #endif
3446
3447 /*
3448 * See the comments in fget_unlocked_seq for an explanation of how this works.
3449 *
3450 * This is a simplified variant which bails out to the aforementioned routine
3451 * if anything goes wrong. In practice this only happens when userspace is
3452 * racing with itself.
3453 */
3454 int
fget_unlocked_flags(struct thread * td,int fd,const cap_rights_t * needrightsp,uint8_t * flagsp,struct file ** fpp)3455 fget_unlocked_flags(struct thread *td, int fd, const cap_rights_t *needrightsp,
3456 uint8_t *flagsp, struct file **fpp)
3457 {
3458 struct filedesc *fdp;
3459 #ifdef CAPABILITIES
3460 const struct filedescent *fde;
3461 #endif
3462 const struct fdescenttbl *fdt;
3463 struct file *fp;
3464 #ifdef CAPABILITIES
3465 seqc_t seq;
3466 const cap_rights_t *haverights;
3467 #endif
3468 uint8_t flags;
3469
3470 fdp = td->td_proc->p_fd;
3471 fdt = fdp->fd_files;
3472 if (__predict_false((u_int)fd >= fdt->fdt_nfiles)) {
3473 *fpp = NULL;
3474 return (EBADF);
3475 }
3476 #ifdef CAPABILITIES
3477 seq = seqc_read_notmodify(fd_seqc(fdt, fd));
3478 fde = &fdt->fdt_ofiles[fd];
3479 haverights = cap_rights_fde_inline(fde);
3480 fp = fde->fde_file;
3481 flags = fde->fde_flags;
3482 #else
3483 fp = fdt->fdt_ofiles[fd].fde_file;
3484 flags = fdt->fdt_ofiles[fd].fde_flags;
3485 #endif
3486 if (__predict_false(fp == NULL))
3487 goto out_fallback;
3488 #ifdef CAPABILITIES
3489 if (__predict_false(cap_check_inline_transient(haverights, needrightsp)))
3490 goto out_fallback;
3491 #endif
3492 if (__predict_false(!refcount_acquire_if_not_zero(&fp->f_count)))
3493 goto out_fallback;
3494
3495 /*
3496 * Use an acquire barrier to force re-reading of fdt so it is
3497 * refreshed for verification.
3498 */
3499 atomic_thread_fence_acq();
3500 fdt = fdp->fd_files;
3501 #ifdef CAPABILITIES
3502 if (__predict_false(!seqc_consistent_no_fence(fd_seqc(fdt, fd), seq)))
3503 #else
3504 if (__predict_false(fp != fdt->fdt_ofiles[fd].fde_file))
3505 #endif
3506 goto out_fdrop;
3507 *fpp = fp;
3508 if (flagsp != NULL)
3509 *flagsp = flags;
3510 return (0);
3511 out_fdrop:
3512 fdrop(fp, td);
3513 out_fallback:
3514 *fpp = NULL;
3515 return (fget_unlocked_seq(td, fd, needrightsp, flagsp, fpp, NULL));
3516 }
3517
3518 int
fget_unlocked(struct thread * td,int fd,const cap_rights_t * needrightsp,struct file ** fpp)3519 fget_unlocked(struct thread *td, int fd, const cap_rights_t *needrightsp,
3520 struct file **fpp)
3521 {
3522 return (fget_unlocked_flags(td, fd, needrightsp, NULL, fpp));
3523 }
3524
3525 /*
3526 * Translate fd -> file when the caller guarantees the file descriptor table
3527 * can't be changed by others.
3528 *
3529 * Note this does not mean the file object itself is only visible to the caller,
3530 * merely that it wont disappear without having to be referenced.
3531 *
3532 * Must be paired with fput_only_user.
3533 */
3534 #ifdef CAPABILITIES
3535 int
fget_only_user(struct filedesc * fdp,int fd,const cap_rights_t * needrightsp,struct file ** fpp)3536 fget_only_user(struct filedesc *fdp, int fd, const cap_rights_t *needrightsp,
3537 struct file **fpp)
3538 {
3539 const struct filedescent *fde;
3540 const struct fdescenttbl *fdt;
3541 const cap_rights_t *haverights;
3542 struct file *fp;
3543 int error;
3544
3545 MPASS(FILEDESC_IS_ONLY_USER(fdp));
3546
3547 *fpp = NULL;
3548 if (__predict_false(fd >= fdp->fd_nfiles))
3549 return (EBADF);
3550
3551 fdt = fdp->fd_files;
3552 fde = &fdt->fdt_ofiles[fd];
3553 fp = fde->fde_file;
3554 if (__predict_false(fp == NULL))
3555 return (EBADF);
3556 MPASS(refcount_load(&fp->f_count) > 0);
3557 haverights = cap_rights_fde_inline(fde);
3558 error = cap_check_inline(haverights, needrightsp);
3559 if (__predict_false(error != 0))
3560 return (error);
3561 *fpp = fp;
3562 return (0);
3563 }
3564 #else
3565 int
fget_only_user(struct filedesc * fdp,int fd,const cap_rights_t * needrightsp,struct file ** fpp)3566 fget_only_user(struct filedesc *fdp, int fd, const cap_rights_t *needrightsp,
3567 struct file **fpp)
3568 {
3569 struct file *fp;
3570
3571 MPASS(FILEDESC_IS_ONLY_USER(fdp));
3572
3573 *fpp = NULL;
3574 if (__predict_false(fd >= fdp->fd_nfiles))
3575 return (EBADF);
3576
3577 fp = fdp->fd_ofiles[fd].fde_file;
3578 if (__predict_false(fp == NULL))
3579 return (EBADF);
3580
3581 MPASS(refcount_load(&fp->f_count) > 0);
3582 *fpp = fp;
3583 return (0);
3584 }
3585 #endif
3586
3587 /*
3588 * Extract the file pointer associated with the specified descriptor for the
3589 * current user process.
3590 *
3591 * If the descriptor doesn't exist or doesn't match 'flags', EBADF is
3592 * returned.
3593 *
3594 * File's rights will be checked against the capability rights mask.
3595 *
3596 * If an error occurred the non-zero error is returned and *fpp is set to
3597 * NULL. Otherwise *fpp is held and set and zero is returned. Caller is
3598 * responsible for fdrop().
3599 */
3600 static __inline int
_fget(struct thread * td,int fd,struct file ** fpp,int flags,const cap_rights_t * needrightsp)3601 _fget(struct thread *td, int fd, struct file **fpp, int flags,
3602 const cap_rights_t *needrightsp)
3603 {
3604 struct file *fp;
3605 int error;
3606
3607 *fpp = NULL;
3608 error = fget_unlocked(td, fd, needrightsp, &fp);
3609 if (__predict_false(error != 0))
3610 return (error);
3611 if (__predict_false(fp->f_ops == &badfileops)) {
3612 fdrop(fp, td);
3613 return (EBADF);
3614 }
3615
3616 /*
3617 * FREAD and FWRITE failure return EBADF as per POSIX.
3618 */
3619 error = 0;
3620 switch (flags) {
3621 case FREAD:
3622 case FWRITE:
3623 if ((fp->f_flag & flags) == 0)
3624 error = EBADF;
3625 break;
3626 case FEXEC:
3627 if (fp->f_ops != &path_fileops &&
3628 ((fp->f_flag & (FREAD | FEXEC)) == 0 ||
3629 (fp->f_flag & FWRITE) != 0))
3630 error = EBADF;
3631 break;
3632 case 0:
3633 break;
3634 default:
3635 KASSERT(0, ("wrong flags"));
3636 }
3637
3638 if (error != 0) {
3639 fdrop(fp, td);
3640 return (error);
3641 }
3642
3643 *fpp = fp;
3644 return (0);
3645 }
3646
3647 int
fget(struct thread * td,int fd,const cap_rights_t * rightsp,struct file ** fpp)3648 fget(struct thread *td, int fd, const cap_rights_t *rightsp, struct file **fpp)
3649 {
3650
3651 return (_fget(td, fd, fpp, 0, rightsp));
3652 }
3653
3654 int
fget_mmap(struct thread * td,int fd,const cap_rights_t * rightsp,vm_prot_t * maxprotp,struct file ** fpp)3655 fget_mmap(struct thread *td, int fd, const cap_rights_t *rightsp,
3656 vm_prot_t *maxprotp, struct file **fpp)
3657 {
3658 int error;
3659 #ifndef CAPABILITIES
3660 error = _fget(td, fd, fpp, 0, rightsp);
3661 if (maxprotp != NULL)
3662 *maxprotp = VM_PROT_ALL;
3663 return (error);
3664 #else
3665 cap_rights_t fdrights;
3666 struct filedesc *fdp;
3667 struct file *fp;
3668 seqc_t seq;
3669
3670 *fpp = NULL;
3671 fdp = td->td_proc->p_fd;
3672 MPASS(cap_rights_is_set(rightsp, CAP_MMAP));
3673 for (;;) {
3674 error = fget_unlocked_seq(td, fd, rightsp, NULL, &fp, &seq);
3675 if (__predict_false(error != 0))
3676 return (error);
3677 if (__predict_false(fp->f_ops == &badfileops)) {
3678 fdrop(fp, td);
3679 return (EBADF);
3680 }
3681 if (maxprotp != NULL)
3682 fdrights = *cap_rights(fdp, fd);
3683 if (!fd_modified(fdp, fd, seq))
3684 break;
3685 fdrop(fp, td);
3686 }
3687
3688 /*
3689 * If requested, convert capability rights to access flags.
3690 */
3691 if (maxprotp != NULL)
3692 *maxprotp = cap_rights_to_vmprot(&fdrights);
3693 *fpp = fp;
3694 return (0);
3695 #endif
3696 }
3697
3698 int
fget_read(struct thread * td,int fd,const cap_rights_t * rightsp,struct file ** fpp)3699 fget_read(struct thread *td, int fd, const cap_rights_t *rightsp,
3700 struct file **fpp)
3701 {
3702
3703 return (_fget(td, fd, fpp, FREAD, rightsp));
3704 }
3705
3706 int
fget_write(struct thread * td,int fd,const cap_rights_t * rightsp,struct file ** fpp)3707 fget_write(struct thread *td, int fd, const cap_rights_t *rightsp,
3708 struct file **fpp)
3709 {
3710
3711 return (_fget(td, fd, fpp, FWRITE, rightsp));
3712 }
3713
3714 int
fget_fcntl(struct thread * td,int fd,const cap_rights_t * rightsp,int needfcntl,struct file ** fpp)3715 fget_fcntl(struct thread *td, int fd, const cap_rights_t *rightsp,
3716 int needfcntl, struct file **fpp)
3717 {
3718 #ifndef CAPABILITIES
3719 return (fget_unlocked(td, fd, rightsp, fpp));
3720 #else
3721 struct filedesc *fdp = td->td_proc->p_fd;
3722 struct file *fp;
3723 int error;
3724 seqc_t seq;
3725
3726 *fpp = NULL;
3727 MPASS(cap_rights_is_set(rightsp, CAP_FCNTL));
3728 for (;;) {
3729 error = fget_unlocked_seq(td, fd, rightsp, NULL, &fp, &seq);
3730 if (error != 0)
3731 return (error);
3732 error = cap_fcntl_check(fdp, fd, needfcntl);
3733 if (!fd_modified(fdp, fd, seq))
3734 break;
3735 fdrop(fp, td);
3736 }
3737 if (error != 0) {
3738 fdrop(fp, td);
3739 return (error);
3740 }
3741 *fpp = fp;
3742 return (0);
3743 #endif
3744 }
3745
3746 /*
3747 * Like fget() but loads the underlying vnode, or returns an error if the
3748 * descriptor does not represent a vnode. Note that pipes use vnodes but
3749 * never have VM objects. The returned vnode will be vref()'d.
3750 *
3751 * XXX: what about the unused flags ?
3752 */
3753 static __inline int
_fgetvp(struct thread * td,int fd,int flags,const cap_rights_t * needrightsp,struct vnode ** vpp)3754 _fgetvp(struct thread *td, int fd, int flags, const cap_rights_t *needrightsp,
3755 struct vnode **vpp)
3756 {
3757 struct file *fp;
3758 int error;
3759
3760 *vpp = NULL;
3761 error = _fget(td, fd, &fp, flags, needrightsp);
3762 if (error != 0)
3763 return (error);
3764 if (fp->f_vnode == NULL) {
3765 error = EINVAL;
3766 } else {
3767 *vpp = fp->f_vnode;
3768 vrefact(*vpp);
3769 }
3770 fdrop(fp, td);
3771
3772 return (error);
3773 }
3774
3775 int
fgetvp(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3776 fgetvp(struct thread *td, int fd, const cap_rights_t *rightsp,
3777 struct vnode **vpp)
3778 {
3779
3780 return (_fgetvp(td, fd, 0, rightsp, vpp));
3781 }
3782
3783 int
fgetvp_rights(struct thread * td,int fd,const cap_rights_t * needrightsp,struct filecaps * havecaps,struct vnode ** vpp)3784 fgetvp_rights(struct thread *td, int fd, const cap_rights_t *needrightsp,
3785 struct filecaps *havecaps, struct vnode **vpp)
3786 {
3787 struct filecaps caps;
3788 struct file *fp;
3789 int error;
3790
3791 error = fget_cap(td, fd, needrightsp, NULL, &fp, &caps);
3792 if (error != 0)
3793 return (error);
3794 if (fp->f_ops == &badfileops) {
3795 error = EBADF;
3796 goto out;
3797 }
3798 if (fp->f_vnode == NULL) {
3799 error = EINVAL;
3800 goto out;
3801 }
3802
3803 *havecaps = caps;
3804 *vpp = fp->f_vnode;
3805 vrefact(*vpp);
3806 fdrop(fp, td);
3807
3808 return (0);
3809 out:
3810 filecaps_free(&caps);
3811 fdrop(fp, td);
3812 return (error);
3813 }
3814
3815 int
fgetvp_read(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3816 fgetvp_read(struct thread *td, int fd, const cap_rights_t *rightsp,
3817 struct vnode **vpp)
3818 {
3819
3820 return (_fgetvp(td, fd, FREAD, rightsp, vpp));
3821 }
3822
3823 int
fgetvp_exec(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3824 fgetvp_exec(struct thread *td, int fd, const cap_rights_t *rightsp,
3825 struct vnode **vpp)
3826 {
3827
3828 return (_fgetvp(td, fd, FEXEC, rightsp, vpp));
3829 }
3830
3831 #ifdef notyet
3832 int
fgetvp_write(struct thread * td,int fd,const cap_rights_t * rightsp,struct vnode ** vpp)3833 fgetvp_write(struct thread *td, int fd, const cap_rights_t *rightsp,
3834 struct vnode **vpp)
3835 {
3836
3837 return (_fgetvp(td, fd, FWRITE, rightsp, vpp));
3838 }
3839 #endif
3840
3841 /*
3842 * Handle the last reference to a file being closed.
3843 *
3844 * Without the noinline attribute clang keeps inlining the func thorough this
3845 * file when fdrop is used.
3846 */
3847 int __noinline
_fdrop(struct file * fp,struct thread * td)3848 _fdrop(struct file *fp, struct thread *td)
3849 {
3850 int error;
3851
3852 KASSERT(refcount_load(&fp->f_count) == 0,
3853 ("fdrop: fp %p count %d", fp, refcount_load(&fp->f_count)));
3854
3855 error = fo_close(fp, td);
3856 atomic_subtract_int(&openfiles, 1);
3857 crfree(fp->f_cred);
3858 free(fp->f_advice, M_FADVISE);
3859 uma_zfree(file_zone, fp);
3860
3861 return (error);
3862 }
3863
3864 /*
3865 * Apply an advisory lock on a file descriptor.
3866 *
3867 * Just attempt to get a record lock of the requested type on the entire file
3868 * (l_whence = SEEK_SET, l_start = 0, l_len = 0).
3869 */
3870 #ifndef _SYS_SYSPROTO_H_
3871 struct flock_args {
3872 int fd;
3873 int how;
3874 };
3875 #endif
3876 /* ARGSUSED */
3877 int
sys_flock(struct thread * td,struct flock_args * uap)3878 sys_flock(struct thread *td, struct flock_args *uap)
3879 {
3880 struct file *fp;
3881 struct vnode *vp;
3882 struct flock lf;
3883 int error;
3884
3885 error = fget(td, uap->fd, &cap_flock_rights, &fp);
3886 if (error != 0)
3887 return (error);
3888 error = EOPNOTSUPP;
3889 if (fp->f_type != DTYPE_VNODE && fp->f_type != DTYPE_FIFO) {
3890 goto done;
3891 }
3892 if (fp->f_ops == &path_fileops) {
3893 goto done;
3894 }
3895
3896 error = 0;
3897 vp = fp->f_vnode;
3898 lf.l_whence = SEEK_SET;
3899 lf.l_start = 0;
3900 lf.l_len = 0;
3901 if (uap->how & LOCK_UN) {
3902 lf.l_type = F_UNLCK;
3903 atomic_clear_int(&fp->f_flag, FHASLOCK);
3904 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_UNLCK, &lf, F_FLOCK);
3905 goto done;
3906 }
3907 if (uap->how & LOCK_EX)
3908 lf.l_type = F_WRLCK;
3909 else if (uap->how & LOCK_SH)
3910 lf.l_type = F_RDLCK;
3911 else {
3912 error = EBADF;
3913 goto done;
3914 }
3915 atomic_set_int(&fp->f_flag, FHASLOCK);
3916 error = VOP_ADVLOCK(vp, (caddr_t)fp, F_SETLK, &lf,
3917 (uap->how & LOCK_NB) ? F_FLOCK : F_FLOCK | F_WAIT);
3918 done:
3919 fdrop(fp, td);
3920 return (error);
3921 }
3922 /*
3923 * Duplicate the specified descriptor to a free descriptor.
3924 */
3925 int
dupfdopen(struct thread * td,struct filedesc * fdp,int dfd,int mode,int openerror,int * indxp)3926 dupfdopen(struct thread *td, struct filedesc *fdp, int dfd, int mode,
3927 int openerror, int *indxp)
3928 {
3929 struct filedescent *newfde, *oldfde;
3930 struct file *fp;
3931 u_long *ioctls;
3932 int error, indx;
3933
3934 KASSERT(openerror == ENODEV || openerror == ENXIO,
3935 ("unexpected error %d in %s", openerror, __func__));
3936
3937 /*
3938 * If the to-be-dup'd fd number is greater than the allowed number
3939 * of file descriptors, or the fd to be dup'd has already been
3940 * closed, then reject.
3941 */
3942 FILEDESC_XLOCK(fdp);
3943 if ((fp = fget_noref(fdp, dfd)) == NULL) {
3944 FILEDESC_XUNLOCK(fdp);
3945 return (EBADF);
3946 }
3947
3948 error = fdalloc(td, 0, &indx);
3949 if (error != 0) {
3950 FILEDESC_XUNLOCK(fdp);
3951 return (error);
3952 }
3953
3954 /*
3955 * There are two cases of interest here.
3956 *
3957 * For ENODEV simply dup (dfd) to file descriptor (indx) and return.
3958 *
3959 * For ENXIO steal away the file structure from (dfd) and store it in
3960 * (indx). (dfd) is effectively closed by this operation.
3961 */
3962 switch (openerror) {
3963 case ENODEV:
3964 /*
3965 * Check that the mode the file is being opened for is a
3966 * subset of the mode of the existing descriptor.
3967 */
3968 if (((mode & (FREAD|FWRITE)) | fp->f_flag) != fp->f_flag) {
3969 fdunused(fdp, indx);
3970 FILEDESC_XUNLOCK(fdp);
3971 return (EACCES);
3972 }
3973 if (!fhold(fp)) {
3974 fdunused(fdp, indx);
3975 FILEDESC_XUNLOCK(fdp);
3976 return (EBADF);
3977 }
3978 newfde = &fdp->fd_ofiles[indx];
3979 oldfde = &fdp->fd_ofiles[dfd];
3980 ioctls = filecaps_copy_prep(&oldfde->fde_caps);
3981 #ifdef CAPABILITIES
3982 seqc_write_begin(&newfde->fde_seqc);
3983 #endif
3984 fde_copy(oldfde, newfde);
3985 filecaps_copy_finish(&oldfde->fde_caps, &newfde->fde_caps,
3986 ioctls);
3987 #ifdef CAPABILITIES
3988 seqc_write_end(&newfde->fde_seqc);
3989 #endif
3990 break;
3991 case ENXIO:
3992 /*
3993 * Steal away the file pointer from dfd and stuff it into indx.
3994 */
3995 newfde = &fdp->fd_ofiles[indx];
3996 oldfde = &fdp->fd_ofiles[dfd];
3997 #ifdef CAPABILITIES
3998 seqc_write_begin(&oldfde->fde_seqc);
3999 seqc_write_begin(&newfde->fde_seqc);
4000 #endif
4001 fde_copy(oldfde, newfde);
4002 oldfde->fde_file = NULL;
4003 fdunused(fdp, dfd);
4004 #ifdef CAPABILITIES
4005 seqc_write_end(&newfde->fde_seqc);
4006 seqc_write_end(&oldfde->fde_seqc);
4007 #endif
4008 break;
4009 }
4010 FILEDESC_XUNLOCK(fdp);
4011 *indxp = indx;
4012 return (0);
4013 }
4014
4015 /*
4016 * This sysctl determines if we will allow a process to chroot(2) if it
4017 * has a directory open:
4018 * 0: disallowed for all processes.
4019 * 1: allowed for processes that were not already chroot(2)'ed.
4020 * 2: allowed for all processes.
4021 */
4022
4023 static int chroot_allow_open_directories = 1;
4024
4025 SYSCTL_INT(_kern, OID_AUTO, chroot_allow_open_directories, CTLFLAG_RW,
4026 &chroot_allow_open_directories, 0,
4027 "Allow a process to chroot(2) if it has a directory open");
4028
4029 /*
4030 * Helper function for raised chroot(2) security function: Refuse if
4031 * any filedescriptors are open directories.
4032 */
4033 static int
chroot_refuse_vdir_fds(struct filedesc * fdp)4034 chroot_refuse_vdir_fds(struct filedesc *fdp)
4035 {
4036 struct vnode *vp;
4037 struct file *fp;
4038 int i;
4039
4040 FILEDESC_LOCK_ASSERT(fdp);
4041
4042 FILEDESC_FOREACH_FP(fdp, i, fp) {
4043 if (fp->f_type == DTYPE_VNODE) {
4044 vp = fp->f_vnode;
4045 if (vp->v_type == VDIR)
4046 return (EPERM);
4047 }
4048 }
4049 return (0);
4050 }
4051
4052 static void
pwd_fill(struct pwd * oldpwd,struct pwd * newpwd)4053 pwd_fill(struct pwd *oldpwd, struct pwd *newpwd)
4054 {
4055
4056 if (newpwd->pwd_cdir == NULL && oldpwd->pwd_cdir != NULL) {
4057 vrefact(oldpwd->pwd_cdir);
4058 newpwd->pwd_cdir = oldpwd->pwd_cdir;
4059 }
4060
4061 if (newpwd->pwd_rdir == NULL && oldpwd->pwd_rdir != NULL) {
4062 vrefact(oldpwd->pwd_rdir);
4063 newpwd->pwd_rdir = oldpwd->pwd_rdir;
4064 }
4065
4066 if (newpwd->pwd_jdir == NULL && oldpwd->pwd_jdir != NULL) {
4067 vrefact(oldpwd->pwd_jdir);
4068 newpwd->pwd_jdir = oldpwd->pwd_jdir;
4069 }
4070
4071 if (newpwd->pwd_adir == NULL && oldpwd->pwd_adir != NULL) {
4072 vrefact(oldpwd->pwd_adir);
4073 newpwd->pwd_adir = oldpwd->pwd_adir;
4074 }
4075 }
4076
4077 struct pwd *
pwd_hold_pwddesc(struct pwddesc * pdp)4078 pwd_hold_pwddesc(struct pwddesc *pdp)
4079 {
4080 struct pwd *pwd;
4081
4082 PWDDESC_ASSERT_XLOCKED(pdp);
4083 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4084 if (pwd != NULL)
4085 refcount_acquire(&pwd->pwd_refcount);
4086 return (pwd);
4087 }
4088
4089 bool
pwd_hold_smr(struct pwd * pwd)4090 pwd_hold_smr(struct pwd *pwd)
4091 {
4092
4093 MPASS(pwd != NULL);
4094 if (__predict_true(refcount_acquire_if_not_zero(&pwd->pwd_refcount))) {
4095 return (true);
4096 }
4097 return (false);
4098 }
4099
4100 struct pwd *
pwd_hold(struct thread * td)4101 pwd_hold(struct thread *td)
4102 {
4103 struct pwddesc *pdp;
4104 struct pwd *pwd;
4105
4106 pdp = td->td_proc->p_pd;
4107
4108 vfs_smr_enter();
4109 pwd = vfs_smr_entered_load(&pdp->pd_pwd);
4110 if (pwd_hold_smr(pwd)) {
4111 vfs_smr_exit();
4112 return (pwd);
4113 }
4114 vfs_smr_exit();
4115 PWDDESC_XLOCK(pdp);
4116 pwd = pwd_hold_pwddesc(pdp);
4117 MPASS(pwd != NULL);
4118 PWDDESC_XUNLOCK(pdp);
4119 return (pwd);
4120 }
4121
4122 struct pwd *
pwd_hold_proc(struct proc * p)4123 pwd_hold_proc(struct proc *p)
4124 {
4125 struct pwddesc *pdp;
4126 struct pwd *pwd;
4127
4128 PROC_ASSERT_HELD(p);
4129 PROC_LOCK(p);
4130 pdp = pdhold(p);
4131 MPASS(pdp != NULL);
4132 PROC_UNLOCK(p);
4133
4134 PWDDESC_XLOCK(pdp);
4135 pwd = pwd_hold_pwddesc(pdp);
4136 MPASS(pwd != NULL);
4137 PWDDESC_XUNLOCK(pdp);
4138 pddrop(pdp);
4139 return (pwd);
4140 }
4141
4142 static struct pwd *
pwd_alloc(void)4143 pwd_alloc(void)
4144 {
4145 struct pwd *pwd;
4146
4147 pwd = uma_zalloc_smr(pwd_zone, M_WAITOK);
4148 bzero(pwd, sizeof(*pwd));
4149 refcount_init(&pwd->pwd_refcount, 1);
4150 return (pwd);
4151 }
4152
4153 void
pwd_drop(struct pwd * pwd)4154 pwd_drop(struct pwd *pwd)
4155 {
4156
4157 if (!refcount_release(&pwd->pwd_refcount))
4158 return;
4159
4160 if (pwd->pwd_cdir != NULL)
4161 vrele(pwd->pwd_cdir);
4162 if (pwd->pwd_rdir != NULL)
4163 vrele(pwd->pwd_rdir);
4164 if (pwd->pwd_jdir != NULL)
4165 vrele(pwd->pwd_jdir);
4166 if (pwd->pwd_adir != NULL)
4167 vrele(pwd->pwd_adir);
4168 uma_zfree_smr(pwd_zone, pwd);
4169 }
4170
4171 /*
4172 * The caller is responsible for invoking priv_check() and
4173 * mac_vnode_check_chroot() to authorize this operation.
4174 */
4175 int
pwd_chroot(struct thread * td,struct vnode * vp)4176 pwd_chroot(struct thread *td, struct vnode *vp)
4177 {
4178 struct pwddesc *pdp;
4179 struct filedesc *fdp;
4180 struct pwd *newpwd, *oldpwd;
4181 int error;
4182
4183 fdp = td->td_proc->p_fd;
4184 pdp = td->td_proc->p_pd;
4185 newpwd = pwd_alloc();
4186 FILEDESC_SLOCK(fdp);
4187 PWDDESC_XLOCK(pdp);
4188 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4189 if (chroot_allow_open_directories == 0 ||
4190 (chroot_allow_open_directories == 1 &&
4191 oldpwd->pwd_rdir != rootvnode)) {
4192 error = chroot_refuse_vdir_fds(fdp);
4193 FILEDESC_SUNLOCK(fdp);
4194 if (error != 0) {
4195 PWDDESC_XUNLOCK(pdp);
4196 pwd_drop(newpwd);
4197 return (error);
4198 }
4199 } else {
4200 FILEDESC_SUNLOCK(fdp);
4201 }
4202
4203 vrefact(vp);
4204 newpwd->pwd_rdir = vp;
4205 vrefact(vp);
4206 newpwd->pwd_adir = vp;
4207 if (oldpwd->pwd_jdir == NULL) {
4208 vrefact(vp);
4209 newpwd->pwd_jdir = vp;
4210 }
4211 pwd_fill(oldpwd, newpwd);
4212 pwd_set(pdp, newpwd);
4213 PWDDESC_XUNLOCK(pdp);
4214 pwd_drop(oldpwd);
4215 return (0);
4216 }
4217
4218 void
pwd_chdir(struct thread * td,struct vnode * vp)4219 pwd_chdir(struct thread *td, struct vnode *vp)
4220 {
4221 struct pwddesc *pdp;
4222 struct pwd *newpwd, *oldpwd;
4223
4224 VNPASS(vp->v_usecount > 0, vp);
4225
4226 newpwd = pwd_alloc();
4227 pdp = td->td_proc->p_pd;
4228 PWDDESC_XLOCK(pdp);
4229 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4230 newpwd->pwd_cdir = vp;
4231 pwd_fill(oldpwd, newpwd);
4232 pwd_set(pdp, newpwd);
4233 PWDDESC_XUNLOCK(pdp);
4234 pwd_drop(oldpwd);
4235 }
4236
4237 /*
4238 * Process is transitioning to/from a non-native ABI.
4239 */
4240 void
pwd_altroot(struct thread * td,struct vnode * altroot_vp)4241 pwd_altroot(struct thread *td, struct vnode *altroot_vp)
4242 {
4243 struct pwddesc *pdp;
4244 struct pwd *newpwd, *oldpwd;
4245
4246 newpwd = pwd_alloc();
4247 pdp = td->td_proc->p_pd;
4248 PWDDESC_XLOCK(pdp);
4249 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4250 if (altroot_vp != NULL) {
4251 /*
4252 * Native process to a non-native ABI.
4253 */
4254
4255 vrefact(altroot_vp);
4256 newpwd->pwd_adir = altroot_vp;
4257 } else {
4258 /*
4259 * Non-native process to the native ABI.
4260 */
4261
4262 vrefact(oldpwd->pwd_rdir);
4263 newpwd->pwd_adir = oldpwd->pwd_rdir;
4264 }
4265 pwd_fill(oldpwd, newpwd);
4266 pwd_set(pdp, newpwd);
4267 PWDDESC_XUNLOCK(pdp);
4268 pwd_drop(oldpwd);
4269 }
4270
4271 /*
4272 * jail_attach(2) changes both root and working directories.
4273 */
4274 int
pwd_chroot_chdir(struct thread * td,struct vnode * vp)4275 pwd_chroot_chdir(struct thread *td, struct vnode *vp)
4276 {
4277 struct pwddesc *pdp;
4278 struct filedesc *fdp;
4279 struct pwd *newpwd, *oldpwd;
4280 int error;
4281
4282 fdp = td->td_proc->p_fd;
4283 pdp = td->td_proc->p_pd;
4284 newpwd = pwd_alloc();
4285 FILEDESC_SLOCK(fdp);
4286 PWDDESC_XLOCK(pdp);
4287 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4288 error = chroot_refuse_vdir_fds(fdp);
4289 FILEDESC_SUNLOCK(fdp);
4290 if (error != 0) {
4291 PWDDESC_XUNLOCK(pdp);
4292 pwd_drop(newpwd);
4293 return (error);
4294 }
4295
4296 vrefact(vp);
4297 newpwd->pwd_rdir = vp;
4298 vrefact(vp);
4299 newpwd->pwd_cdir = vp;
4300 if (oldpwd->pwd_jdir == NULL) {
4301 vrefact(vp);
4302 newpwd->pwd_jdir = vp;
4303 }
4304 vrefact(vp);
4305 newpwd->pwd_adir = vp;
4306 pwd_fill(oldpwd, newpwd);
4307 pwd_set(pdp, newpwd);
4308 PWDDESC_XUNLOCK(pdp);
4309 pwd_drop(oldpwd);
4310 return (0);
4311 }
4312
4313 void
pwd_ensure_dirs(void)4314 pwd_ensure_dirs(void)
4315 {
4316 struct pwddesc *pdp;
4317 struct pwd *oldpwd, *newpwd;
4318
4319 pdp = curproc->p_pd;
4320 PWDDESC_XLOCK(pdp);
4321 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4322 if (oldpwd->pwd_cdir != NULL && oldpwd->pwd_rdir != NULL &&
4323 oldpwd->pwd_adir != NULL) {
4324 PWDDESC_XUNLOCK(pdp);
4325 return;
4326 }
4327 PWDDESC_XUNLOCK(pdp);
4328
4329 newpwd = pwd_alloc();
4330 PWDDESC_XLOCK(pdp);
4331 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4332 pwd_fill(oldpwd, newpwd);
4333 if (newpwd->pwd_cdir == NULL) {
4334 vrefact(rootvnode);
4335 newpwd->pwd_cdir = rootvnode;
4336 }
4337 if (newpwd->pwd_rdir == NULL) {
4338 vrefact(rootvnode);
4339 newpwd->pwd_rdir = rootvnode;
4340 }
4341 if (newpwd->pwd_adir == NULL) {
4342 vrefact(rootvnode);
4343 newpwd->pwd_adir = rootvnode;
4344 }
4345 pwd_set(pdp, newpwd);
4346 PWDDESC_XUNLOCK(pdp);
4347 pwd_drop(oldpwd);
4348 }
4349
4350 void
pwd_set_rootvnode(void)4351 pwd_set_rootvnode(void)
4352 {
4353 struct pwddesc *pdp;
4354 struct pwd *oldpwd, *newpwd;
4355
4356 pdp = curproc->p_pd;
4357
4358 newpwd = pwd_alloc();
4359 PWDDESC_XLOCK(pdp);
4360 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4361 vrefact(rootvnode);
4362 newpwd->pwd_cdir = rootvnode;
4363 vrefact(rootvnode);
4364 newpwd->pwd_rdir = rootvnode;
4365 vrefact(rootvnode);
4366 newpwd->pwd_adir = rootvnode;
4367 pwd_fill(oldpwd, newpwd);
4368 pwd_set(pdp, newpwd);
4369 PWDDESC_XUNLOCK(pdp);
4370 pwd_drop(oldpwd);
4371 }
4372
4373 /*
4374 * Scan all active processes and prisons to see if any of them have a current
4375 * or root directory of `olddp'. If so, replace them with the new mount point.
4376 */
4377 void
mountcheckdirs(struct vnode * olddp,struct vnode * newdp)4378 mountcheckdirs(struct vnode *olddp, struct vnode *newdp)
4379 {
4380 struct pwddesc *pdp;
4381 struct pwd *newpwd, *oldpwd;
4382 struct prison *pr;
4383 struct proc *p;
4384 int nrele;
4385
4386 if (vrefcnt(olddp) == 1)
4387 return;
4388 nrele = 0;
4389 newpwd = pwd_alloc();
4390 sx_slock(&allproc_lock);
4391 FOREACH_PROC_IN_SYSTEM(p) {
4392 PROC_LOCK(p);
4393 pdp = pdhold(p);
4394 PROC_UNLOCK(p);
4395 if (pdp == NULL)
4396 continue;
4397 PWDDESC_XLOCK(pdp);
4398 oldpwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
4399 if (oldpwd == NULL ||
4400 (oldpwd->pwd_cdir != olddp &&
4401 oldpwd->pwd_rdir != olddp &&
4402 oldpwd->pwd_jdir != olddp &&
4403 oldpwd->pwd_adir != olddp)) {
4404 PWDDESC_XUNLOCK(pdp);
4405 pddrop(pdp);
4406 continue;
4407 }
4408 if (oldpwd->pwd_cdir == olddp) {
4409 vrefact(newdp);
4410 newpwd->pwd_cdir = newdp;
4411 }
4412 if (oldpwd->pwd_rdir == olddp) {
4413 vrefact(newdp);
4414 newpwd->pwd_rdir = newdp;
4415 }
4416 if (oldpwd->pwd_jdir == olddp) {
4417 vrefact(newdp);
4418 newpwd->pwd_jdir = newdp;
4419 }
4420 if (oldpwd->pwd_adir == olddp) {
4421 vrefact(newdp);
4422 newpwd->pwd_adir = newdp;
4423 }
4424 pwd_fill(oldpwd, newpwd);
4425 pwd_set(pdp, newpwd);
4426 PWDDESC_XUNLOCK(pdp);
4427 pwd_drop(oldpwd);
4428 pddrop(pdp);
4429 newpwd = pwd_alloc();
4430 }
4431 sx_sunlock(&allproc_lock);
4432 pwd_drop(newpwd);
4433 if (rootvnode == olddp) {
4434 vrefact(newdp);
4435 rootvnode = newdp;
4436 nrele++;
4437 }
4438 mtx_lock(&prison0.pr_mtx);
4439 if (prison0.pr_root == olddp) {
4440 vrefact(newdp);
4441 prison0.pr_root = newdp;
4442 nrele++;
4443 }
4444 mtx_unlock(&prison0.pr_mtx);
4445 sx_slock(&allprison_lock);
4446 TAILQ_FOREACH(pr, &allprison, pr_list) {
4447 mtx_lock(&pr->pr_mtx);
4448 if (pr->pr_root == olddp) {
4449 vrefact(newdp);
4450 pr->pr_root = newdp;
4451 nrele++;
4452 }
4453 mtx_unlock(&pr->pr_mtx);
4454 }
4455 sx_sunlock(&allprison_lock);
4456 while (nrele--)
4457 vrele(olddp);
4458 }
4459
4460 int
descrip_check_write_mp(struct filedesc * fdp,struct mount * mp)4461 descrip_check_write_mp(struct filedesc *fdp, struct mount *mp)
4462 {
4463 struct file *fp;
4464 struct vnode *vp;
4465 int error, i;
4466
4467 error = 0;
4468 FILEDESC_SLOCK(fdp);
4469 FILEDESC_FOREACH_FP(fdp, i, fp) {
4470 if (fp->f_type != DTYPE_VNODE ||
4471 (atomic_load_int(&fp->f_flag) & FWRITE) == 0)
4472 continue;
4473 vp = fp->f_vnode;
4474 if (vp->v_mount == mp) {
4475 error = EDEADLK;
4476 break;
4477 }
4478 }
4479 FILEDESC_SUNLOCK(fdp);
4480 return (error);
4481 }
4482
4483 struct filedesc_to_leader *
filedesc_to_leader_alloc(struct filedesc_to_leader * old,struct filedesc * fdp,struct proc * leader)4484 filedesc_to_leader_alloc(struct filedesc_to_leader *old, struct filedesc *fdp,
4485 struct proc *leader)
4486 {
4487 struct filedesc_to_leader *fdtol;
4488
4489 fdtol = malloc(sizeof(struct filedesc_to_leader),
4490 M_FILEDESC_TO_LEADER, M_WAITOK);
4491 fdtol->fdl_refcount = 1;
4492 fdtol->fdl_holdcount = 0;
4493 fdtol->fdl_wakeup = 0;
4494 fdtol->fdl_leader = leader;
4495 if (old != NULL) {
4496 FILEDESC_XLOCK(fdp);
4497 fdtol->fdl_next = old->fdl_next;
4498 fdtol->fdl_prev = old;
4499 old->fdl_next = fdtol;
4500 fdtol->fdl_next->fdl_prev = fdtol;
4501 FILEDESC_XUNLOCK(fdp);
4502 } else {
4503 fdtol->fdl_next = fdtol;
4504 fdtol->fdl_prev = fdtol;
4505 }
4506 return (fdtol);
4507 }
4508
4509 struct filedesc_to_leader *
filedesc_to_leader_share(struct filedesc_to_leader * fdtol,struct filedesc * fdp)4510 filedesc_to_leader_share(struct filedesc_to_leader *fdtol, struct filedesc *fdp)
4511 {
4512 FILEDESC_XLOCK(fdp);
4513 fdtol->fdl_refcount++;
4514 FILEDESC_XUNLOCK(fdp);
4515 return (fdtol);
4516 }
4517
4518 static int
filedesc_nfiles(struct filedesc * fdp)4519 filedesc_nfiles(struct filedesc *fdp)
4520 {
4521 NDSLOTTYPE *map;
4522 int count, off, minoff;
4523
4524 if (fdp == NULL)
4525 return (0);
4526 count = 0;
4527 FILEDESC_SLOCK(fdp);
4528 map = fdp->fd_map;
4529 off = NDSLOT(fdp->fd_nfiles - 1);
4530 for (minoff = NDSLOT(0); off >= minoff; --off)
4531 count += bitcountl(map[off]);
4532 FILEDESC_SUNLOCK(fdp);
4533 return (count);
4534 }
4535
4536 int
proc_nfiles(struct proc * p)4537 proc_nfiles(struct proc *p)
4538 {
4539 struct filedesc *fdp;
4540 int res;
4541
4542 PROC_LOCK(p);
4543 fdp = fdhold(p);
4544 PROC_UNLOCK(p);
4545 res = filedesc_nfiles(fdp);
4546 fddrop(fdp);
4547 return (res);
4548 }
4549
4550 static int
sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)4551 sysctl_kern_proc_nfds(SYSCTL_HANDLER_ARGS)
4552 {
4553 u_int namelen;
4554 int count;
4555
4556 namelen = arg2;
4557 if (namelen != 1)
4558 return (EINVAL);
4559
4560 if (*(int *)arg1 != 0)
4561 return (EINVAL);
4562
4563 count = filedesc_nfiles(curproc->p_fd);
4564 return (SYSCTL_OUT(req, &count, sizeof(count)));
4565 }
4566
4567 static SYSCTL_NODE(_kern_proc, KERN_PROC_NFDS, nfds,
4568 CTLFLAG_RD|CTLFLAG_CAPRD|CTLFLAG_MPSAFE, sysctl_kern_proc_nfds,
4569 "Number of open file descriptors");
4570
4571 /*
4572 * Get file structures globally.
4573 */
4574 static int
sysctl_kern_file(SYSCTL_HANDLER_ARGS)4575 sysctl_kern_file(SYSCTL_HANDLER_ARGS)
4576 {
4577 struct xfile xf;
4578 struct filedesc *fdp;
4579 struct file *fp;
4580 struct proc *p;
4581 int error, n;
4582
4583 error = sysctl_wire_old_buffer(req, 0);
4584 if (error != 0)
4585 return (error);
4586 if (req->oldptr == NULL) {
4587 n = 0;
4588 sx_slock(&allproc_lock);
4589 FOREACH_PROC_IN_SYSTEM(p) {
4590 PROC_LOCK(p);
4591 if (p->p_state == PRS_NEW) {
4592 PROC_UNLOCK(p);
4593 continue;
4594 }
4595 fdp = fdhold(p);
4596 PROC_UNLOCK(p);
4597 if (fdp == NULL)
4598 continue;
4599 /* overestimates sparse tables. */
4600 n += fdp->fd_nfiles;
4601 fddrop(fdp);
4602 }
4603 sx_sunlock(&allproc_lock);
4604 return (SYSCTL_OUT(req, 0, n * sizeof(xf)));
4605 }
4606 error = 0;
4607 bzero(&xf, sizeof(xf));
4608 xf.xf_size = sizeof(xf);
4609 sx_slock(&allproc_lock);
4610 FOREACH_PROC_IN_SYSTEM(p) {
4611 PROC_LOCK(p);
4612 if (p->p_state == PRS_NEW) {
4613 PROC_UNLOCK(p);
4614 continue;
4615 }
4616 if (p_cansee(req->td, p) != 0) {
4617 PROC_UNLOCK(p);
4618 continue;
4619 }
4620 xf.xf_pid = p->p_pid;
4621 xf.xf_uid = p->p_ucred->cr_uid;
4622 fdp = fdhold(p);
4623 PROC_UNLOCK(p);
4624 if (fdp == NULL)
4625 continue;
4626 FILEDESC_SLOCK(fdp);
4627 if (refcount_load(&fdp->fd_refcnt) == 0)
4628 goto nextproc;
4629 FILEDESC_FOREACH_FP(fdp, n, fp) {
4630 xf.xf_fd = n;
4631 xf.xf_file = (uintptr_t)fp;
4632 xf.xf_data = (uintptr_t)fp->f_data;
4633 xf.xf_vnode = (uintptr_t)fp->f_vnode;
4634 xf.xf_type = (uintptr_t)fp->f_type;
4635 xf.xf_count = refcount_load(&fp->f_count);
4636 xf.xf_msgcount = 0;
4637 xf.xf_offset = foffset_get(fp);
4638 xf.xf_flag = fp->f_flag;
4639 error = SYSCTL_OUT(req, &xf, sizeof(xf));
4640
4641 /*
4642 * There is no need to re-check the fdtable refcount
4643 * here since the filedesc lock is not dropped in the
4644 * loop body.
4645 */
4646 if (error != 0)
4647 break;
4648 }
4649 nextproc:
4650 FILEDESC_SUNLOCK(fdp);
4651 fddrop(fdp);
4652 if (error)
4653 break;
4654 }
4655 sx_sunlock(&allproc_lock);
4656 return (error);
4657 }
4658
4659 SYSCTL_PROC(_kern, KERN_FILE, file, CTLTYPE_OPAQUE|CTLFLAG_RD|CTLFLAG_MPSAFE,
4660 0, 0, sysctl_kern_file, "S,xfile", "Entire file table");
4661
4662 #ifdef KINFO_FILE_SIZE
4663 CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
4664 #endif
4665
4666 static int
xlate_fflags(int fflags)4667 xlate_fflags(int fflags)
4668 {
4669 static const struct {
4670 int fflag;
4671 int kf_fflag;
4672 } fflags_table[] = {
4673 { FAPPEND, KF_FLAG_APPEND },
4674 { FASYNC, KF_FLAG_ASYNC },
4675 { FFSYNC, KF_FLAG_FSYNC },
4676 { FHASLOCK, KF_FLAG_HASLOCK },
4677 { FNONBLOCK, KF_FLAG_NONBLOCK },
4678 { FREAD, KF_FLAG_READ },
4679 { FWRITE, KF_FLAG_WRITE },
4680 { O_CREAT, KF_FLAG_CREAT },
4681 { O_DIRECT, KF_FLAG_DIRECT },
4682 { O_EXCL, KF_FLAG_EXCL },
4683 { O_EXEC, KF_FLAG_EXEC },
4684 { O_EXLOCK, KF_FLAG_EXLOCK },
4685 { O_NOFOLLOW, KF_FLAG_NOFOLLOW },
4686 { O_SHLOCK, KF_FLAG_SHLOCK },
4687 { O_TRUNC, KF_FLAG_TRUNC }
4688 };
4689 unsigned int i;
4690 int kflags;
4691
4692 kflags = 0;
4693 for (i = 0; i < nitems(fflags_table); i++)
4694 if (fflags & fflags_table[i].fflag)
4695 kflags |= fflags_table[i].kf_fflag;
4696 return (kflags);
4697 }
4698
4699 /* Trim unused data from kf_path by truncating the structure size. */
4700 void
pack_kinfo(struct kinfo_file * kif)4701 pack_kinfo(struct kinfo_file *kif)
4702 {
4703
4704 kif->kf_structsize = offsetof(struct kinfo_file, kf_path) +
4705 strlen(kif->kf_path) + 1;
4706 kif->kf_structsize = roundup(kif->kf_structsize, sizeof(uint64_t));
4707 }
4708
4709 static void
export_file_to_kinfo(struct file * fp,int fd,cap_rights_t * rightsp,struct kinfo_file * kif,struct filedesc * fdp,int flags)4710 export_file_to_kinfo(struct file *fp, int fd, cap_rights_t *rightsp,
4711 struct kinfo_file *kif, struct filedesc *fdp, int flags)
4712 {
4713 int error;
4714
4715 bzero(kif, sizeof(*kif));
4716
4717 /* Set a default type to allow for empty fill_kinfo() methods. */
4718 kif->kf_type = KF_TYPE_UNKNOWN;
4719 kif->kf_flags = xlate_fflags(fp->f_flag);
4720 if (rightsp != NULL)
4721 kif->kf_cap_rights = *rightsp;
4722 else
4723 cap_rights_init_zero(&kif->kf_cap_rights);
4724 kif->kf_fd = fd;
4725 kif->kf_ref_count = refcount_load(&fp->f_count);
4726 kif->kf_offset = foffset_get(fp);
4727
4728 /*
4729 * This may drop the filedesc lock, so the 'fp' cannot be
4730 * accessed after this call.
4731 */
4732 error = fo_fill_kinfo(fp, kif, fdp);
4733 if (error == 0)
4734 kif->kf_status |= KF_ATTR_VALID;
4735 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
4736 pack_kinfo(kif);
4737 else
4738 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
4739 }
4740
4741 static void
export_vnode_to_kinfo(struct vnode * vp,int fd,int fflags,struct kinfo_file * kif,int flags)4742 export_vnode_to_kinfo(struct vnode *vp, int fd, int fflags,
4743 struct kinfo_file *kif, int flags)
4744 {
4745 int error;
4746
4747 bzero(kif, sizeof(*kif));
4748
4749 kif->kf_type = KF_TYPE_VNODE;
4750 error = vn_fill_kinfo_vnode(vp, kif);
4751 if (error == 0)
4752 kif->kf_status |= KF_ATTR_VALID;
4753 kif->kf_flags = xlate_fflags(fflags);
4754 cap_rights_init_zero(&kif->kf_cap_rights);
4755 kif->kf_fd = fd;
4756 kif->kf_ref_count = -1;
4757 kif->kf_offset = -1;
4758 if ((flags & KERN_FILEDESC_PACK_KINFO) != 0)
4759 pack_kinfo(kif);
4760 else
4761 kif->kf_structsize = roundup2(sizeof(*kif), sizeof(uint64_t));
4762 vrele(vp);
4763 }
4764
4765 struct export_fd_buf {
4766 struct filedesc *fdp;
4767 struct pwddesc *pdp;
4768 struct sbuf *sb;
4769 ssize_t remainder;
4770 struct kinfo_file kif;
4771 int flags;
4772 };
4773
4774 static int
export_kinfo_to_sb(struct export_fd_buf * efbuf)4775 export_kinfo_to_sb(struct export_fd_buf *efbuf)
4776 {
4777 struct kinfo_file *kif;
4778
4779 kif = &efbuf->kif;
4780 if (efbuf->remainder != -1) {
4781 if (efbuf->remainder < kif->kf_structsize)
4782 return (ENOMEM);
4783 efbuf->remainder -= kif->kf_structsize;
4784 }
4785 if (sbuf_bcat(efbuf->sb, kif, kif->kf_structsize) != 0)
4786 return (sbuf_error(efbuf->sb));
4787 return (0);
4788 }
4789
4790 static int
export_file_to_sb(struct file * fp,int fd,cap_rights_t * rightsp,struct export_fd_buf * efbuf)4791 export_file_to_sb(struct file *fp, int fd, cap_rights_t *rightsp,
4792 struct export_fd_buf *efbuf)
4793 {
4794 int error;
4795
4796 if (efbuf->remainder == 0)
4797 return (ENOMEM);
4798 export_file_to_kinfo(fp, fd, rightsp, &efbuf->kif, efbuf->fdp,
4799 efbuf->flags);
4800 FILEDESC_SUNLOCK(efbuf->fdp);
4801 error = export_kinfo_to_sb(efbuf);
4802 FILEDESC_SLOCK(efbuf->fdp);
4803 return (error);
4804 }
4805
4806 static int
export_vnode_to_sb(struct vnode * vp,int fd,int fflags,struct export_fd_buf * efbuf)4807 export_vnode_to_sb(struct vnode *vp, int fd, int fflags,
4808 struct export_fd_buf *efbuf)
4809 {
4810 int error;
4811
4812 if (efbuf->remainder == 0)
4813 return (ENOMEM);
4814 if (efbuf->pdp != NULL)
4815 PWDDESC_XUNLOCK(efbuf->pdp);
4816 export_vnode_to_kinfo(vp, fd, fflags, &efbuf->kif, efbuf->flags);
4817 error = export_kinfo_to_sb(efbuf);
4818 if (efbuf->pdp != NULL)
4819 PWDDESC_XLOCK(efbuf->pdp);
4820 return (error);
4821 }
4822
4823 /*
4824 * Store a process file descriptor information to sbuf.
4825 *
4826 * Takes a locked proc as argument, and returns with the proc unlocked.
4827 */
4828 int
kern_proc_filedesc_out(struct proc * p,struct sbuf * sb,ssize_t maxlen,int flags)4829 kern_proc_filedesc_out(struct proc *p, struct sbuf *sb, ssize_t maxlen,
4830 int flags)
4831 {
4832 struct file *fp;
4833 struct filedesc *fdp;
4834 struct pwddesc *pdp;
4835 struct export_fd_buf *efbuf;
4836 struct vnode *cttyvp, *textvp, *tracevp;
4837 struct pwd *pwd;
4838 int error, i;
4839 cap_rights_t rights;
4840
4841 PROC_LOCK_ASSERT(p, MA_OWNED);
4842
4843 /* ktrace vnode */
4844 tracevp = ktr_get_tracevp(p, true);
4845 /* text vnode */
4846 textvp = p->p_textvp;
4847 if (textvp != NULL)
4848 vrefact(textvp);
4849 /* Controlling tty. */
4850 cttyvp = NULL;
4851 if (p->p_pgrp != NULL && p->p_pgrp->pg_session != NULL) {
4852 cttyvp = p->p_pgrp->pg_session->s_ttyvp;
4853 if (cttyvp != NULL)
4854 vrefact(cttyvp);
4855 }
4856 fdp = fdhold(p);
4857 pdp = pdhold(p);
4858 PROC_UNLOCK(p);
4859
4860 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
4861 efbuf->fdp = NULL;
4862 efbuf->pdp = NULL;
4863 efbuf->sb = sb;
4864 efbuf->remainder = maxlen;
4865 efbuf->flags = flags;
4866
4867 error = 0;
4868 if (tracevp != NULL)
4869 error = export_vnode_to_sb(tracevp, KF_FD_TYPE_TRACE,
4870 FREAD | FWRITE, efbuf);
4871 if (error == 0 && textvp != NULL)
4872 error = export_vnode_to_sb(textvp, KF_FD_TYPE_TEXT, FREAD,
4873 efbuf);
4874 if (error == 0 && cttyvp != NULL)
4875 error = export_vnode_to_sb(cttyvp, KF_FD_TYPE_CTTY,
4876 FREAD | FWRITE, efbuf);
4877 if (error != 0 || pdp == NULL || fdp == NULL)
4878 goto fail;
4879 efbuf->fdp = fdp;
4880 efbuf->pdp = pdp;
4881 PWDDESC_XLOCK(pdp);
4882 pwd = pwd_hold_pwddesc(pdp);
4883 if (pwd != NULL) {
4884 /* working directory */
4885 if (pwd->pwd_cdir != NULL) {
4886 vrefact(pwd->pwd_cdir);
4887 error = export_vnode_to_sb(pwd->pwd_cdir,
4888 KF_FD_TYPE_CWD, FREAD, efbuf);
4889 }
4890 /* root directory */
4891 if (error == 0 && pwd->pwd_rdir != NULL) {
4892 vrefact(pwd->pwd_rdir);
4893 error = export_vnode_to_sb(pwd->pwd_rdir,
4894 KF_FD_TYPE_ROOT, FREAD, efbuf);
4895 }
4896 /* jail directory */
4897 if (error == 0 && pwd->pwd_jdir != NULL) {
4898 vrefact(pwd->pwd_jdir);
4899 error = export_vnode_to_sb(pwd->pwd_jdir,
4900 KF_FD_TYPE_JAIL, FREAD, efbuf);
4901 }
4902 }
4903 PWDDESC_XUNLOCK(pdp);
4904 if (error != 0)
4905 goto fail;
4906 if (pwd != NULL)
4907 pwd_drop(pwd);
4908 FILEDESC_SLOCK(fdp);
4909 if (refcount_load(&fdp->fd_refcnt) == 0)
4910 goto skip;
4911 FILEDESC_FOREACH_FP(fdp, i, fp) {
4912 #ifdef CAPABILITIES
4913 rights = *cap_rights(fdp, i);
4914 #else /* !CAPABILITIES */
4915 rights = cap_no_rights;
4916 #endif
4917 /*
4918 * Create sysctl entry. It is OK to drop the filedesc
4919 * lock inside of export_file_to_sb() as we will
4920 * re-validate and re-evaluate its properties when the
4921 * loop continues.
4922 */
4923 error = export_file_to_sb(fp, i, &rights, efbuf);
4924 if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
4925 break;
4926 }
4927 skip:
4928 FILEDESC_SUNLOCK(fdp);
4929 fail:
4930 if (fdp != NULL)
4931 fddrop(fdp);
4932 if (pdp != NULL)
4933 pddrop(pdp);
4934 free(efbuf, M_TEMP);
4935 return (error);
4936 }
4937
4938 #define FILEDESC_SBUF_SIZE (sizeof(struct kinfo_file) * 5)
4939
4940 /*
4941 * Get per-process file descriptors for use by procstat(1), et al.
4942 */
4943 static int
sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)4944 sysctl_kern_proc_filedesc(SYSCTL_HANDLER_ARGS)
4945 {
4946 struct sbuf sb;
4947 struct proc *p;
4948 ssize_t maxlen;
4949 u_int namelen;
4950 int error, error2, *name;
4951
4952 namelen = arg2;
4953 if (namelen != 1)
4954 return (EINVAL);
4955
4956 name = (int *)arg1;
4957
4958 sbuf_new_for_sysctl(&sb, NULL, FILEDESC_SBUF_SIZE, req);
4959 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
4960 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
4961 if (error != 0) {
4962 sbuf_delete(&sb);
4963 return (error);
4964 }
4965 maxlen = req->oldptr != NULL ? req->oldlen : -1;
4966 error = kern_proc_filedesc_out(p, &sb, maxlen,
4967 KERN_FILEDESC_PACK_KINFO);
4968 error2 = sbuf_finish(&sb);
4969 sbuf_delete(&sb);
4970 return (error != 0 ? error : error2);
4971 }
4972
4973 #ifdef COMPAT_FREEBSD7
4974 #ifdef KINFO_OFILE_SIZE
4975 CTASSERT(sizeof(struct kinfo_ofile) == KINFO_OFILE_SIZE);
4976 #endif
4977
4978 static void
kinfo_to_okinfo(struct kinfo_file * kif,struct kinfo_ofile * okif)4979 kinfo_to_okinfo(struct kinfo_file *kif, struct kinfo_ofile *okif)
4980 {
4981
4982 okif->kf_structsize = sizeof(*okif);
4983 okif->kf_type = kif->kf_type;
4984 okif->kf_fd = kif->kf_fd;
4985 okif->kf_ref_count = kif->kf_ref_count;
4986 okif->kf_flags = kif->kf_flags & (KF_FLAG_READ | KF_FLAG_WRITE |
4987 KF_FLAG_APPEND | KF_FLAG_ASYNC | KF_FLAG_FSYNC | KF_FLAG_NONBLOCK |
4988 KF_FLAG_DIRECT | KF_FLAG_HASLOCK);
4989 okif->kf_offset = kif->kf_offset;
4990 if (kif->kf_type == KF_TYPE_VNODE)
4991 okif->kf_vnode_type = kif->kf_un.kf_file.kf_file_type;
4992 else
4993 okif->kf_vnode_type = KF_VTYPE_VNON;
4994 strlcpy(okif->kf_path, kif->kf_path, sizeof(okif->kf_path));
4995 if (kif->kf_type == KF_TYPE_SOCKET) {
4996 okif->kf_sock_domain = kif->kf_un.kf_sock.kf_sock_domain0;
4997 okif->kf_sock_type = kif->kf_un.kf_sock.kf_sock_type0;
4998 okif->kf_sock_protocol = kif->kf_un.kf_sock.kf_sock_protocol0;
4999 okif->kf_sa_local = kif->kf_un.kf_sock.kf_sa_local;
5000 okif->kf_sa_peer = kif->kf_un.kf_sock.kf_sa_peer;
5001 } else {
5002 okif->kf_sa_local.ss_family = AF_UNSPEC;
5003 okif->kf_sa_peer.ss_family = AF_UNSPEC;
5004 }
5005 }
5006
5007 static int
export_vnode_for_osysctl(struct vnode * vp,int type,struct kinfo_file * kif,struct kinfo_ofile * okif,struct pwddesc * pdp,struct sysctl_req * req)5008 export_vnode_for_osysctl(struct vnode *vp, int type, struct kinfo_file *kif,
5009 struct kinfo_ofile *okif, struct pwddesc *pdp, struct sysctl_req *req)
5010 {
5011 int error;
5012
5013 vrefact(vp);
5014 PWDDESC_XUNLOCK(pdp);
5015 export_vnode_to_kinfo(vp, type, 0, kif, KERN_FILEDESC_PACK_KINFO);
5016 kinfo_to_okinfo(kif, okif);
5017 error = SYSCTL_OUT(req, okif, sizeof(*okif));
5018 PWDDESC_XLOCK(pdp);
5019 return (error);
5020 }
5021
5022 /*
5023 * Get per-process file descriptors for use by procstat(1), et al.
5024 */
5025 static int
sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)5026 sysctl_kern_proc_ofiledesc(SYSCTL_HANDLER_ARGS)
5027 {
5028 struct kinfo_ofile *okif;
5029 struct kinfo_file *kif;
5030 struct filedesc *fdp;
5031 struct pwddesc *pdp;
5032 struct pwd *pwd;
5033 u_int namelen;
5034 int error, i, *name;
5035 struct file *fp;
5036 struct proc *p;
5037
5038 namelen = arg2;
5039 if (namelen != 1)
5040 return (EINVAL);
5041
5042 name = (int *)arg1;
5043 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
5044 if (error != 0)
5045 return (error);
5046 fdp = fdhold(p);
5047 if (fdp != NULL)
5048 pdp = pdhold(p);
5049 PROC_UNLOCK(p);
5050 if (fdp == NULL || pdp == NULL) {
5051 if (fdp != NULL)
5052 fddrop(fdp);
5053 return (ENOENT);
5054 }
5055 kif = malloc(sizeof(*kif), M_TEMP, M_WAITOK);
5056 okif = malloc(sizeof(*okif), M_TEMP, M_WAITOK);
5057 PWDDESC_XLOCK(pdp);
5058 pwd = pwd_hold_pwddesc(pdp);
5059 if (pwd != NULL) {
5060 if (pwd->pwd_cdir != NULL)
5061 export_vnode_for_osysctl(pwd->pwd_cdir, KF_FD_TYPE_CWD, kif,
5062 okif, pdp, req);
5063 if (pwd->pwd_rdir != NULL)
5064 export_vnode_for_osysctl(pwd->pwd_rdir, KF_FD_TYPE_ROOT, kif,
5065 okif, pdp, req);
5066 if (pwd->pwd_jdir != NULL)
5067 export_vnode_for_osysctl(pwd->pwd_jdir, KF_FD_TYPE_JAIL, kif,
5068 okif, pdp, req);
5069 }
5070 PWDDESC_XUNLOCK(pdp);
5071 if (pwd != NULL)
5072 pwd_drop(pwd);
5073 FILEDESC_SLOCK(fdp);
5074 if (refcount_load(&fdp->fd_refcnt) == 0)
5075 goto skip;
5076 FILEDESC_FOREACH_FP(fdp, i, fp) {
5077 export_file_to_kinfo(fp, i, NULL, kif, fdp,
5078 KERN_FILEDESC_PACK_KINFO);
5079 FILEDESC_SUNLOCK(fdp);
5080 kinfo_to_okinfo(kif, okif);
5081 error = SYSCTL_OUT(req, okif, sizeof(*okif));
5082 FILEDESC_SLOCK(fdp);
5083 if (error != 0 || refcount_load(&fdp->fd_refcnt) == 0)
5084 break;
5085 }
5086 skip:
5087 FILEDESC_SUNLOCK(fdp);
5088 fddrop(fdp);
5089 pddrop(pdp);
5090 free(kif, M_TEMP);
5091 free(okif, M_TEMP);
5092 return (0);
5093 }
5094
5095 static SYSCTL_NODE(_kern_proc, KERN_PROC_OFILEDESC, ofiledesc,
5096 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_ofiledesc,
5097 "Process ofiledesc entries");
5098 #endif /* COMPAT_FREEBSD7 */
5099
5100 int
vntype_to_kinfo(int vtype)5101 vntype_to_kinfo(int vtype)
5102 {
5103 struct {
5104 int vtype;
5105 int kf_vtype;
5106 } vtypes_table[] = {
5107 { VBAD, KF_VTYPE_VBAD },
5108 { VBLK, KF_VTYPE_VBLK },
5109 { VCHR, KF_VTYPE_VCHR },
5110 { VDIR, KF_VTYPE_VDIR },
5111 { VFIFO, KF_VTYPE_VFIFO },
5112 { VLNK, KF_VTYPE_VLNK },
5113 { VNON, KF_VTYPE_VNON },
5114 { VREG, KF_VTYPE_VREG },
5115 { VSOCK, KF_VTYPE_VSOCK }
5116 };
5117 unsigned int i;
5118
5119 /*
5120 * Perform vtype translation.
5121 */
5122 for (i = 0; i < nitems(vtypes_table); i++)
5123 if (vtypes_table[i].vtype == vtype)
5124 return (vtypes_table[i].kf_vtype);
5125
5126 return (KF_VTYPE_UNKNOWN);
5127 }
5128
5129 static SYSCTL_NODE(_kern_proc, KERN_PROC_FILEDESC, filedesc,
5130 CTLFLAG_RD|CTLFLAG_MPSAFE, sysctl_kern_proc_filedesc,
5131 "Process filedesc entries");
5132
5133 /*
5134 * Store a process current working directory information to sbuf.
5135 *
5136 * Takes a locked proc as argument, and returns with the proc unlocked.
5137 */
5138 int
kern_proc_cwd_out(struct proc * p,struct sbuf * sb,ssize_t maxlen)5139 kern_proc_cwd_out(struct proc *p, struct sbuf *sb, ssize_t maxlen)
5140 {
5141 struct pwddesc *pdp;
5142 struct pwd *pwd;
5143 struct export_fd_buf *efbuf;
5144 struct vnode *cdir;
5145 int error;
5146
5147 PROC_LOCK_ASSERT(p, MA_OWNED);
5148
5149 pdp = pdhold(p);
5150 PROC_UNLOCK(p);
5151 if (pdp == NULL)
5152 return (EINVAL);
5153
5154 efbuf = malloc(sizeof(*efbuf), M_TEMP, M_WAITOK);
5155 efbuf->fdp = NULL;
5156 efbuf->pdp = pdp;
5157 efbuf->sb = sb;
5158 efbuf->remainder = maxlen;
5159 efbuf->flags = 0;
5160
5161 PWDDESC_XLOCK(pdp);
5162 pwd = PWDDESC_XLOCKED_LOAD_PWD(pdp);
5163 cdir = pwd->pwd_cdir;
5164 if (cdir == NULL) {
5165 error = EINVAL;
5166 } else {
5167 vrefact(cdir);
5168 error = export_vnode_to_sb(cdir, KF_FD_TYPE_CWD, FREAD, efbuf);
5169 }
5170 PWDDESC_XUNLOCK(pdp);
5171 pddrop(pdp);
5172 free(efbuf, M_TEMP);
5173 return (error);
5174 }
5175
5176 /*
5177 * Get per-process current working directory.
5178 */
5179 static int
sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)5180 sysctl_kern_proc_cwd(SYSCTL_HANDLER_ARGS)
5181 {
5182 struct sbuf sb;
5183 struct proc *p;
5184 ssize_t maxlen;
5185 u_int namelen;
5186 int error, error2, *name;
5187
5188 namelen = arg2;
5189 if (namelen != 1)
5190 return (EINVAL);
5191
5192 name = (int *)arg1;
5193
5194 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_file), req);
5195 sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
5196 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
5197 if (error != 0) {
5198 sbuf_delete(&sb);
5199 return (error);
5200 }
5201 maxlen = req->oldptr != NULL ? req->oldlen : -1;
5202 error = kern_proc_cwd_out(p, &sb, maxlen);
5203 error2 = sbuf_finish(&sb);
5204 sbuf_delete(&sb);
5205 return (error != 0 ? error : error2);
5206 }
5207
5208 static SYSCTL_NODE(_kern_proc, KERN_PROC_CWD, cwd, CTLFLAG_RD|CTLFLAG_MPSAFE,
5209 sysctl_kern_proc_cwd, "Process current working directory");
5210
5211 #ifdef DDB
5212 /*
5213 * For the purposes of debugging, generate a human-readable string for the
5214 * file type.
5215 */
5216 static const char *
file_type_to_name(short type)5217 file_type_to_name(short type)
5218 {
5219
5220 switch (type) {
5221 case 0:
5222 return ("zero");
5223 case DTYPE_VNODE:
5224 return ("vnode");
5225 case DTYPE_SOCKET:
5226 return ("socket");
5227 case DTYPE_PIPE:
5228 return ("pipe");
5229 case DTYPE_FIFO:
5230 return ("fifo");
5231 case DTYPE_KQUEUE:
5232 return ("kqueue");
5233 case DTYPE_CRYPTO:
5234 return ("crypto");
5235 case DTYPE_MQUEUE:
5236 return ("mqueue");
5237 case DTYPE_SHM:
5238 return ("shm");
5239 case DTYPE_SEM:
5240 return ("ksem");
5241 case DTYPE_PTS:
5242 return ("pts");
5243 case DTYPE_DEV:
5244 return ("dev");
5245 case DTYPE_PROCDESC:
5246 return ("proc");
5247 case DTYPE_EVENTFD:
5248 return ("eventfd");
5249 case DTYPE_TIMERFD:
5250 return ("timerfd");
5251 default:
5252 return ("unkn");
5253 }
5254 }
5255
5256 /*
5257 * For the purposes of debugging, identify a process (if any, perhaps one of
5258 * many) that references the passed file in its file descriptor array. Return
5259 * NULL if none.
5260 */
5261 static struct proc *
file_to_first_proc(struct file * fp)5262 file_to_first_proc(struct file *fp)
5263 {
5264 struct filedesc *fdp;
5265 struct proc *p;
5266 int n;
5267
5268 FOREACH_PROC_IN_SYSTEM(p) {
5269 if (p->p_state == PRS_NEW)
5270 continue;
5271 fdp = p->p_fd;
5272 if (fdp == NULL)
5273 continue;
5274 for (n = 0; n < fdp->fd_nfiles; n++) {
5275 if (fp == fdp->fd_ofiles[n].fde_file)
5276 return (p);
5277 }
5278 }
5279 return (NULL);
5280 }
5281
5282 static void
db_print_file(struct file * fp,int header)5283 db_print_file(struct file *fp, int header)
5284 {
5285 #define XPTRWIDTH ((int)howmany(sizeof(void *) * NBBY, 4))
5286 struct proc *p;
5287
5288 if (header)
5289 db_printf("%*s %6s %*s %8s %4s %5s %6s %*s %5s %s\n",
5290 XPTRWIDTH, "File", "Type", XPTRWIDTH, "Data", "Flag",
5291 "GCFl", "Count", "MCount", XPTRWIDTH, "Vnode", "FPID",
5292 "FCmd");
5293 p = file_to_first_proc(fp);
5294 db_printf("%*p %6s %*p %08x %04x %5d %6d %*p %5d %s\n", XPTRWIDTH,
5295 fp, file_type_to_name(fp->f_type), XPTRWIDTH, fp->f_data,
5296 fp->f_flag, 0, refcount_load(&fp->f_count), 0, XPTRWIDTH, fp->f_vnode,
5297 p != NULL ? p->p_pid : -1, p != NULL ? p->p_comm : "-");
5298
5299 #undef XPTRWIDTH
5300 }
5301
DB_SHOW_COMMAND(file,db_show_file)5302 DB_SHOW_COMMAND(file, db_show_file)
5303 {
5304 struct file *fp;
5305
5306 if (!have_addr) {
5307 db_printf("usage: show file <addr>\n");
5308 return;
5309 }
5310 fp = (struct file *)addr;
5311 db_print_file(fp, 1);
5312 }
5313
DB_SHOW_COMMAND_FLAGS(files,db_show_files,DB_CMD_MEMSAFE)5314 DB_SHOW_COMMAND_FLAGS(files, db_show_files, DB_CMD_MEMSAFE)
5315 {
5316 struct filedesc *fdp;
5317 struct file *fp;
5318 struct proc *p;
5319 int header;
5320 int n;
5321
5322 header = 1;
5323 FOREACH_PROC_IN_SYSTEM(p) {
5324 if (p->p_state == PRS_NEW)
5325 continue;
5326 if ((fdp = p->p_fd) == NULL)
5327 continue;
5328 for (n = 0; n < fdp->fd_nfiles; ++n) {
5329 if ((fp = fdp->fd_ofiles[n].fde_file) == NULL)
5330 continue;
5331 db_print_file(fp, header);
5332 header = 0;
5333 }
5334 }
5335 }
5336 #endif
5337
5338 SYSCTL_INT(_kern, KERN_MAXFILESPERPROC, maxfilesperproc,
5339 CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
5340 &maxfilesperproc, 0, "Maximum files allowed open per process");
5341
5342 SYSCTL_INT(_kern, KERN_MAXFILES, maxfiles, CTLFLAG_RWTUN | CTLFLAG_NOFETCH,
5343 &maxfiles, 0, "Maximum number of files");
5344
5345 SYSCTL_INT(_kern, OID_AUTO, openfiles, CTLFLAG_RD,
5346 &openfiles, 0, "System-wide number of open files");
5347
5348 /* ARGSUSED*/
5349 static void
filelistinit(void * dummy)5350 filelistinit(void *dummy)
5351 {
5352
5353 file_zone = uma_zcreate("Files", sizeof(struct file), NULL, NULL,
5354 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
5355 filedesc0_zone = uma_zcreate("filedesc0", sizeof(struct filedesc0),
5356 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
5357 pwd_zone = uma_zcreate("PWD", sizeof(struct pwd), NULL, NULL,
5358 NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_SMR);
5359 /*
5360 * XXXMJG this is a temporary hack due to boot ordering issues against
5361 * the vnode zone.
5362 */
5363 vfs_smr = uma_zone_get_smr(pwd_zone);
5364 mtx_init(&sigio_lock, "sigio lock", NULL, MTX_DEF);
5365 }
5366 SYSINIT(select, SI_SUB_LOCK, SI_ORDER_FIRST, filelistinit, NULL);
5367
5368 /*-------------------------------------------------------------------*/
5369
5370 static int
badfo_readwrite(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)5371 badfo_readwrite(struct file *fp, struct uio *uio, struct ucred *active_cred,
5372 int flags, struct thread *td)
5373 {
5374
5375 return (EBADF);
5376 }
5377
5378 static int
badfo_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)5379 badfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
5380 struct thread *td)
5381 {
5382
5383 return (EINVAL);
5384 }
5385
5386 static int
badfo_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)5387 badfo_ioctl(struct file *fp, u_long com, void *data, struct ucred *active_cred,
5388 struct thread *td)
5389 {
5390
5391 return (EBADF);
5392 }
5393
5394 static int
badfo_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5395 badfo_poll(struct file *fp, int events, struct ucred *active_cred,
5396 struct thread *td)
5397 {
5398
5399 return (0);
5400 }
5401
5402 static int
badfo_kqfilter(struct file * fp,struct knote * kn)5403 badfo_kqfilter(struct file *fp, struct knote *kn)
5404 {
5405
5406 return (EBADF);
5407 }
5408
5409 static int
badfo_stat(struct file * fp,struct stat * sb,struct ucred * active_cred)5410 badfo_stat(struct file *fp, struct stat *sb, struct ucred *active_cred)
5411 {
5412
5413 return (EBADF);
5414 }
5415
5416 static int
badfo_close(struct file * fp,struct thread * td)5417 badfo_close(struct file *fp, struct thread *td)
5418 {
5419
5420 return (0);
5421 }
5422
5423 static int
badfo_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)5424 badfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
5425 struct thread *td)
5426 {
5427
5428 return (EBADF);
5429 }
5430
5431 static int
badfo_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)5432 badfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
5433 struct thread *td)
5434 {
5435
5436 return (EBADF);
5437 }
5438
5439 static int
badfo_sendfile(struct file * fp,int sockfd,struct uio * hdr_uio,struct uio * trl_uio,off_t offset,size_t nbytes,off_t * sent,int flags,struct thread * td)5440 badfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
5441 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
5442 struct thread *td)
5443 {
5444
5445 return (EBADF);
5446 }
5447
5448 static int
badfo_fill_kinfo(struct file * fp,struct kinfo_file * kif,struct filedesc * fdp)5449 badfo_fill_kinfo(struct file *fp, struct kinfo_file *kif, struct filedesc *fdp)
5450 {
5451
5452 return (0);
5453 }
5454
5455 const struct fileops badfileops = {
5456 .fo_read = badfo_readwrite,
5457 .fo_write = badfo_readwrite,
5458 .fo_truncate = badfo_truncate,
5459 .fo_ioctl = badfo_ioctl,
5460 .fo_poll = badfo_poll,
5461 .fo_kqfilter = badfo_kqfilter,
5462 .fo_stat = badfo_stat,
5463 .fo_close = badfo_close,
5464 .fo_chmod = badfo_chmod,
5465 .fo_chown = badfo_chown,
5466 .fo_sendfile = badfo_sendfile,
5467 .fo_fill_kinfo = badfo_fill_kinfo,
5468 };
5469
5470 static int
path_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5471 path_poll(struct file *fp, int events, struct ucred *active_cred,
5472 struct thread *td)
5473 {
5474 return (POLLNVAL);
5475 }
5476
5477 static int
path_close(struct file * fp,struct thread * td)5478 path_close(struct file *fp, struct thread *td)
5479 {
5480 MPASS(fp->f_type == DTYPE_VNODE);
5481 fp->f_ops = &badfileops;
5482 vrele(fp->f_vnode);
5483 return (0);
5484 }
5485
5486 const struct fileops path_fileops = {
5487 .fo_read = badfo_readwrite,
5488 .fo_write = badfo_readwrite,
5489 .fo_truncate = badfo_truncate,
5490 .fo_ioctl = badfo_ioctl,
5491 .fo_poll = path_poll,
5492 .fo_kqfilter = vn_kqfilter_opath,
5493 .fo_stat = vn_statfile,
5494 .fo_close = path_close,
5495 .fo_chmod = badfo_chmod,
5496 .fo_chown = badfo_chown,
5497 .fo_sendfile = badfo_sendfile,
5498 .fo_fill_kinfo = vn_fill_kinfo,
5499 .fo_cmp = vn_cmp,
5500 .fo_flags = DFLAG_PASSABLE,
5501 };
5502
5503 int
invfo_rdwr(struct file * fp,struct uio * uio,struct ucred * active_cred,int flags,struct thread * td)5504 invfo_rdwr(struct file *fp, struct uio *uio, struct ucred *active_cred,
5505 int flags, struct thread *td)
5506 {
5507
5508 return (EOPNOTSUPP);
5509 }
5510
5511 int
invfo_truncate(struct file * fp,off_t length,struct ucred * active_cred,struct thread * td)5512 invfo_truncate(struct file *fp, off_t length, struct ucred *active_cred,
5513 struct thread *td)
5514 {
5515
5516 return (EINVAL);
5517 }
5518
5519 int
invfo_ioctl(struct file * fp,u_long com,void * data,struct ucred * active_cred,struct thread * td)5520 invfo_ioctl(struct file *fp, u_long com, void *data,
5521 struct ucred *active_cred, struct thread *td)
5522 {
5523
5524 return (ENOTTY);
5525 }
5526
5527 int
invfo_poll(struct file * fp,int events,struct ucred * active_cred,struct thread * td)5528 invfo_poll(struct file *fp, int events, struct ucred *active_cred,
5529 struct thread *td)
5530 {
5531
5532 return (poll_no_poll(events));
5533 }
5534
5535 int
invfo_kqfilter(struct file * fp,struct knote * kn)5536 invfo_kqfilter(struct file *fp, struct knote *kn)
5537 {
5538
5539 return (EINVAL);
5540 }
5541
5542 int
invfo_chmod(struct file * fp,mode_t mode,struct ucred * active_cred,struct thread * td)5543 invfo_chmod(struct file *fp, mode_t mode, struct ucred *active_cred,
5544 struct thread *td)
5545 {
5546
5547 return (EINVAL);
5548 }
5549
5550 int
invfo_chown(struct file * fp,uid_t uid,gid_t gid,struct ucred * active_cred,struct thread * td)5551 invfo_chown(struct file *fp, uid_t uid, gid_t gid, struct ucred *active_cred,
5552 struct thread *td)
5553 {
5554
5555 return (EINVAL);
5556 }
5557
5558 int
invfo_sendfile(struct file * fp,int sockfd,struct uio * hdr_uio,struct uio * trl_uio,off_t offset,size_t nbytes,off_t * sent,int flags,struct thread * td)5559 invfo_sendfile(struct file *fp, int sockfd, struct uio *hdr_uio,
5560 struct uio *trl_uio, off_t offset, size_t nbytes, off_t *sent, int flags,
5561 struct thread *td)
5562 {
5563
5564 return (EINVAL);
5565 }
5566
5567 /*-------------------------------------------------------------------*/
5568
5569 /*
5570 * File Descriptor pseudo-device driver (/dev/fd/).
5571 *
5572 * Opening minor device N dup()s the file (if any) connected to file
5573 * descriptor N belonging to the calling process. Note that this driver
5574 * consists of only the ``open()'' routine, because all subsequent
5575 * references to this file will be direct to the other driver.
5576 *
5577 * XXX: we could give this one a cloning event handler if necessary.
5578 */
5579
5580 /* ARGSUSED */
5581 static int
fdopen(struct cdev * dev,int mode,int type,struct thread * td)5582 fdopen(struct cdev *dev, int mode, int type, struct thread *td)
5583 {
5584
5585 /*
5586 * XXX Kludge: set curthread->td_dupfd to contain the value of the
5587 * the file descriptor being sought for duplication. The error
5588 * return ensures that the vnode for this device will be released
5589 * by vn_open. Open will detect this special error and take the
5590 * actions in dupfdopen below. Other callers of vn_open or VOP_OPEN
5591 * will simply report the error.
5592 */
5593 td->td_dupfd = dev2unit(dev);
5594 return (ENODEV);
5595 }
5596
5597 static struct cdevsw fildesc_cdevsw = {
5598 .d_version = D_VERSION,
5599 .d_open = fdopen,
5600 .d_name = "FD",
5601 };
5602
5603 static void
fildesc_drvinit(void * unused)5604 fildesc_drvinit(void *unused)
5605 {
5606 struct cdev *dev;
5607
5608 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 0, NULL,
5609 UID_ROOT, GID_WHEEL, 0666, "fd/0");
5610 make_dev_alias(dev, "stdin");
5611 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 1, NULL,
5612 UID_ROOT, GID_WHEEL, 0666, "fd/1");
5613 make_dev_alias(dev, "stdout");
5614 dev = make_dev_credf(MAKEDEV_ETERNAL, &fildesc_cdevsw, 2, NULL,
5615 UID_ROOT, GID_WHEEL, 0666, "fd/2");
5616 make_dev_alias(dev, "stderr");
5617 }
5618
5619 SYSINIT(fildescdev, SI_SUB_DRIVERS, SI_ORDER_MIDDLE, fildesc_drvinit, NULL);
5620