1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
17 #include <linux/io.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
25 #include <linux/in.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
30
31 #include <net/arp.h>
32 #include <net/route.h>
33 #include <net/sock.h>
34 #include <net/pkt_sched.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37
38 #include "hyperv_net.h"
39
40 #define RING_SIZE_MIN 64
41
42 #define LINKCHANGE_INT (2 * HZ)
43 #define VF_TAKEOVER_INT (HZ / 10)
44
45 /* Macros to define the context of vf registration */
46 #define VF_REG_IN_PROBE 1
47 #define VF_REG_IN_NOTIFIER 2
48
49 static unsigned int ring_size __ro_after_init = 128;
50 module_param(ring_size, uint, 0444);
51 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of 4K pages)");
52 unsigned int netvsc_ring_bytes __ro_after_init;
53
54 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
55 NETIF_MSG_LINK | NETIF_MSG_IFUP |
56 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
57 NETIF_MSG_TX_ERR;
58
59 static int debug = -1;
60 module_param(debug, int, 0444);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static LIST_HEAD(netvsc_dev_list);
64
netvsc_change_rx_flags(struct net_device * net,int change)65 static void netvsc_change_rx_flags(struct net_device *net, int change)
66 {
67 struct net_device_context *ndev_ctx = netdev_priv(net);
68 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
69 int inc;
70
71 if (!vf_netdev)
72 return;
73
74 if (change & IFF_PROMISC) {
75 inc = (net->flags & IFF_PROMISC) ? 1 : -1;
76 dev_set_promiscuity(vf_netdev, inc);
77 }
78
79 if (change & IFF_ALLMULTI) {
80 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
81 dev_set_allmulti(vf_netdev, inc);
82 }
83 }
84
netvsc_set_rx_mode(struct net_device * net)85 static void netvsc_set_rx_mode(struct net_device *net)
86 {
87 struct net_device_context *ndev_ctx = netdev_priv(net);
88 struct net_device *vf_netdev;
89 struct netvsc_device *nvdev;
90
91 rcu_read_lock();
92 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
93 if (vf_netdev) {
94 dev_uc_sync(vf_netdev, net);
95 dev_mc_sync(vf_netdev, net);
96 }
97
98 nvdev = rcu_dereference(ndev_ctx->nvdev);
99 if (nvdev)
100 rndis_filter_update(nvdev);
101 rcu_read_unlock();
102 }
103
netvsc_tx_enable(struct netvsc_device * nvscdev,struct net_device * ndev)104 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
105 struct net_device *ndev)
106 {
107 nvscdev->tx_disable = false;
108 virt_wmb(); /* ensure queue wake up mechanism is on */
109
110 netif_tx_wake_all_queues(ndev);
111 }
112
netvsc_open(struct net_device * net)113 static int netvsc_open(struct net_device *net)
114 {
115 struct net_device_context *ndev_ctx = netdev_priv(net);
116 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
117 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
118 struct rndis_device *rdev;
119 int ret = 0;
120
121 netif_carrier_off(net);
122
123 /* Open up the device */
124 ret = rndis_filter_open(nvdev);
125 if (ret != 0) {
126 netdev_err(net, "unable to open device (ret %d).\n", ret);
127 return ret;
128 }
129
130 rdev = nvdev->extension;
131 if (!rdev->link_state) {
132 netif_carrier_on(net);
133 netvsc_tx_enable(nvdev, net);
134 }
135
136 if (vf_netdev) {
137 /* Setting synthetic device up transparently sets
138 * slave as up. If open fails, then slave will be
139 * still be offline (and not used).
140 */
141 ret = dev_open(vf_netdev, NULL);
142 if (ret)
143 netdev_warn(net,
144 "unable to open slave: %s: %d\n",
145 vf_netdev->name, ret);
146 }
147 return 0;
148 }
149
netvsc_wait_until_empty(struct netvsc_device * nvdev)150 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
151 {
152 unsigned int retry = 0;
153 int i;
154
155 /* Ensure pending bytes in ring are read */
156 for (;;) {
157 u32 aread = 0;
158
159 for (i = 0; i < nvdev->num_chn; i++) {
160 struct vmbus_channel *chn
161 = nvdev->chan_table[i].channel;
162
163 if (!chn)
164 continue;
165
166 /* make sure receive not running now */
167 napi_synchronize(&nvdev->chan_table[i].napi);
168
169 aread = hv_get_bytes_to_read(&chn->inbound);
170 if (aread)
171 break;
172
173 aread = hv_get_bytes_to_read(&chn->outbound);
174 if (aread)
175 break;
176 }
177
178 if (aread == 0)
179 return 0;
180
181 if (++retry > RETRY_MAX)
182 return -ETIMEDOUT;
183
184 usleep_range(RETRY_US_LO, RETRY_US_HI);
185 }
186 }
187
netvsc_tx_disable(struct netvsc_device * nvscdev,struct net_device * ndev)188 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
189 struct net_device *ndev)
190 {
191 if (nvscdev) {
192 nvscdev->tx_disable = true;
193 virt_wmb(); /* ensure txq will not wake up after stop */
194 }
195
196 netif_tx_disable(ndev);
197 }
198
netvsc_close(struct net_device * net)199 static int netvsc_close(struct net_device *net)
200 {
201 struct net_device_context *net_device_ctx = netdev_priv(net);
202 struct net_device *vf_netdev
203 = rtnl_dereference(net_device_ctx->vf_netdev);
204 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
205 int ret;
206
207 netvsc_tx_disable(nvdev, net);
208
209 /* No need to close rndis filter if it is removed already */
210 if (!nvdev)
211 return 0;
212
213 ret = rndis_filter_close(nvdev);
214 if (ret != 0) {
215 netdev_err(net, "unable to close device (ret %d).\n", ret);
216 return ret;
217 }
218
219 ret = netvsc_wait_until_empty(nvdev);
220 if (ret)
221 netdev_err(net, "Ring buffer not empty after closing rndis\n");
222
223 if (vf_netdev)
224 dev_close(vf_netdev);
225
226 return ret;
227 }
228
init_ppi_data(struct rndis_message * msg,u32 ppi_size,u32 pkt_type)229 static inline void *init_ppi_data(struct rndis_message *msg,
230 u32 ppi_size, u32 pkt_type)
231 {
232 struct rndis_packet *rndis_pkt = &msg->msg.pkt;
233 struct rndis_per_packet_info *ppi;
234
235 rndis_pkt->data_offset += ppi_size;
236 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
237 + rndis_pkt->per_pkt_info_len;
238
239 ppi->size = ppi_size;
240 ppi->type = pkt_type;
241 ppi->internal = 0;
242 ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
243
244 rndis_pkt->per_pkt_info_len += ppi_size;
245
246 return ppi + 1;
247 }
248
netvsc_get_tx_queue(struct net_device * ndev,struct sk_buff * skb,int old_idx)249 static inline int netvsc_get_tx_queue(struct net_device *ndev,
250 struct sk_buff *skb, int old_idx)
251 {
252 const struct net_device_context *ndc = netdev_priv(ndev);
253 struct sock *sk = skb->sk;
254 int q_idx;
255
256 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
257 (VRSS_SEND_TAB_SIZE - 1)];
258
259 /* If queue index changed record the new value */
260 if (q_idx != old_idx &&
261 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
262 sk_tx_queue_set(sk, q_idx);
263
264 return q_idx;
265 }
266
267 /*
268 * Select queue for transmit.
269 *
270 * If a valid queue has already been assigned, then use that.
271 * Otherwise compute tx queue based on hash and the send table.
272 *
273 * This is basically similar to default (netdev_pick_tx) with the added step
274 * of using the host send_table when no other queue has been assigned.
275 *
276 * TODO support XPS - but get_xps_queue not exported
277 */
netvsc_pick_tx(struct net_device * ndev,struct sk_buff * skb)278 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
279 {
280 int q_idx = sk_tx_queue_get(skb->sk);
281
282 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
283 /* If forwarding a packet, we use the recorded queue when
284 * available for better cache locality.
285 */
286 if (skb_rx_queue_recorded(skb))
287 q_idx = skb_get_rx_queue(skb);
288 else
289 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
290 }
291
292 return q_idx;
293 }
294
netvsc_select_queue(struct net_device * ndev,struct sk_buff * skb,struct net_device * sb_dev)295 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
296 struct net_device *sb_dev)
297 {
298 struct net_device_context *ndc = netdev_priv(ndev);
299 struct net_device *vf_netdev;
300 u16 txq;
301
302 rcu_read_lock();
303 vf_netdev = rcu_dereference(ndc->vf_netdev);
304 if (vf_netdev) {
305 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
306
307 if (vf_ops->ndo_select_queue)
308 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
309 else
310 txq = netdev_pick_tx(vf_netdev, skb, NULL);
311
312 /* Record the queue selected by VF so that it can be
313 * used for common case where VF has more queues than
314 * the synthetic device.
315 */
316 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
317 } else {
318 txq = netvsc_pick_tx(ndev, skb);
319 }
320 rcu_read_unlock();
321
322 while (txq >= ndev->real_num_tx_queues)
323 txq -= ndev->real_num_tx_queues;
324
325 return txq;
326 }
327
fill_pg_buf(unsigned long hvpfn,u32 offset,u32 len,struct hv_page_buffer * pb)328 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
329 struct hv_page_buffer *pb)
330 {
331 int j = 0;
332
333 hvpfn += offset >> HV_HYP_PAGE_SHIFT;
334 offset = offset & ~HV_HYP_PAGE_MASK;
335
336 while (len > 0) {
337 unsigned long bytes;
338
339 bytes = HV_HYP_PAGE_SIZE - offset;
340 if (bytes > len)
341 bytes = len;
342 pb[j].pfn = hvpfn;
343 pb[j].offset = offset;
344 pb[j].len = bytes;
345
346 offset += bytes;
347 len -= bytes;
348
349 if (offset == HV_HYP_PAGE_SIZE && len) {
350 hvpfn++;
351 offset = 0;
352 j++;
353 }
354 }
355
356 return j + 1;
357 }
358
init_page_array(void * hdr,u32 len,struct sk_buff * skb,struct hv_netvsc_packet * packet,struct hv_page_buffer * pb)359 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
360 struct hv_netvsc_packet *packet,
361 struct hv_page_buffer *pb)
362 {
363 u32 slots_used = 0;
364 char *data = skb->data;
365 int frags = skb_shinfo(skb)->nr_frags;
366 int i;
367
368 /* The packet is laid out thus:
369 * 1. hdr: RNDIS header and PPI
370 * 2. skb linear data
371 * 3. skb fragment data
372 */
373 slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
374 offset_in_hvpage(hdr),
375 len,
376 &pb[slots_used]);
377
378 packet->rmsg_size = len;
379 packet->rmsg_pgcnt = slots_used;
380
381 slots_used += fill_pg_buf(virt_to_hvpfn(data),
382 offset_in_hvpage(data),
383 skb_headlen(skb),
384 &pb[slots_used]);
385
386 for (i = 0; i < frags; i++) {
387 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
388
389 slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
390 skb_frag_off(frag),
391 skb_frag_size(frag),
392 &pb[slots_used]);
393 }
394 return slots_used;
395 }
396
count_skb_frag_slots(struct sk_buff * skb)397 static int count_skb_frag_slots(struct sk_buff *skb)
398 {
399 int i, frags = skb_shinfo(skb)->nr_frags;
400 int pages = 0;
401
402 for (i = 0; i < frags; i++) {
403 skb_frag_t *frag = skb_shinfo(skb)->frags + i;
404 unsigned long size = skb_frag_size(frag);
405 unsigned long offset = skb_frag_off(frag);
406
407 /* Skip unused frames from start of page */
408 offset &= ~HV_HYP_PAGE_MASK;
409 pages += HVPFN_UP(offset + size);
410 }
411 return pages;
412 }
413
netvsc_get_slots(struct sk_buff * skb)414 static int netvsc_get_slots(struct sk_buff *skb)
415 {
416 char *data = skb->data;
417 unsigned int offset = offset_in_hvpage(data);
418 unsigned int len = skb_headlen(skb);
419 int slots;
420 int frag_slots;
421
422 slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
423 frag_slots = count_skb_frag_slots(skb);
424 return slots + frag_slots;
425 }
426
net_checksum_info(struct sk_buff * skb)427 static u32 net_checksum_info(struct sk_buff *skb)
428 {
429 if (skb->protocol == htons(ETH_P_IP)) {
430 struct iphdr *ip = ip_hdr(skb);
431
432 if (ip->protocol == IPPROTO_TCP)
433 return TRANSPORT_INFO_IPV4_TCP;
434 else if (ip->protocol == IPPROTO_UDP)
435 return TRANSPORT_INFO_IPV4_UDP;
436 } else {
437 struct ipv6hdr *ip6 = ipv6_hdr(skb);
438
439 if (ip6->nexthdr == IPPROTO_TCP)
440 return TRANSPORT_INFO_IPV6_TCP;
441 else if (ip6->nexthdr == IPPROTO_UDP)
442 return TRANSPORT_INFO_IPV6_UDP;
443 }
444
445 return TRANSPORT_INFO_NOT_IP;
446 }
447
448 /* Send skb on the slave VF device. */
netvsc_vf_xmit(struct net_device * net,struct net_device * vf_netdev,struct sk_buff * skb)449 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
450 struct sk_buff *skb)
451 {
452 struct net_device_context *ndev_ctx = netdev_priv(net);
453 unsigned int len = skb->len;
454 int rc;
455
456 skb->dev = vf_netdev;
457 skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
458
459 rc = dev_queue_xmit(skb);
460 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
461 struct netvsc_vf_pcpu_stats *pcpu_stats
462 = this_cpu_ptr(ndev_ctx->vf_stats);
463
464 u64_stats_update_begin(&pcpu_stats->syncp);
465 pcpu_stats->tx_packets++;
466 pcpu_stats->tx_bytes += len;
467 u64_stats_update_end(&pcpu_stats->syncp);
468 } else {
469 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
470 }
471
472 return rc;
473 }
474
netvsc_xmit(struct sk_buff * skb,struct net_device * net,bool xdp_tx)475 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
476 {
477 struct net_device_context *net_device_ctx = netdev_priv(net);
478 struct hv_netvsc_packet *packet = NULL;
479 int ret;
480 unsigned int num_data_pgs;
481 struct rndis_message *rndis_msg;
482 struct net_device *vf_netdev;
483 u32 rndis_msg_size;
484 u32 hash;
485 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
486
487 /* If VF is present and up then redirect packets to it.
488 * Skip the VF if it is marked down or has no carrier.
489 * If netpoll is in uses, then VF can not be used either.
490 */
491 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
492 if (vf_netdev && netif_running(vf_netdev) &&
493 netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) &&
494 net_device_ctx->data_path_is_vf)
495 return netvsc_vf_xmit(net, vf_netdev, skb);
496
497 /* We will atmost need two pages to describe the rndis
498 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
499 * of pages in a single packet. If skb is scattered around
500 * more pages we try linearizing it.
501 */
502
503 num_data_pgs = netvsc_get_slots(skb) + 2;
504
505 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
506 ++net_device_ctx->eth_stats.tx_scattered;
507
508 if (skb_linearize(skb))
509 goto no_memory;
510
511 num_data_pgs = netvsc_get_slots(skb) + 2;
512 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
513 ++net_device_ctx->eth_stats.tx_too_big;
514 goto drop;
515 }
516 }
517
518 /*
519 * Place the rndis header in the skb head room and
520 * the skb->cb will be used for hv_netvsc_packet
521 * structure.
522 */
523 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
524 if (ret)
525 goto no_memory;
526
527 /* Use the skb control buffer for building up the packet */
528 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
529 sizeof_field(struct sk_buff, cb));
530 packet = (struct hv_netvsc_packet *)skb->cb;
531
532 packet->q_idx = skb_get_queue_mapping(skb);
533
534 packet->total_data_buflen = skb->len;
535 packet->total_bytes = skb->len;
536 packet->total_packets = 1;
537
538 rndis_msg = (struct rndis_message *)skb->head;
539
540 /* Add the rndis header */
541 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
542 rndis_msg->msg_len = packet->total_data_buflen;
543
544 rndis_msg->msg.pkt = (struct rndis_packet) {
545 .data_offset = sizeof(struct rndis_packet),
546 .data_len = packet->total_data_buflen,
547 .per_pkt_info_offset = sizeof(struct rndis_packet),
548 };
549
550 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
551
552 hash = skb_get_hash_raw(skb);
553 if (hash != 0 && net->real_num_tx_queues > 1) {
554 u32 *hash_info;
555
556 rndis_msg_size += NDIS_HASH_PPI_SIZE;
557 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
558 NBL_HASH_VALUE);
559 *hash_info = hash;
560 }
561
562 /* When using AF_PACKET we need to drop VLAN header from
563 * the frame and update the SKB to allow the HOST OS
564 * to transmit the 802.1Q packet
565 */
566 if (skb->protocol == htons(ETH_P_8021Q)) {
567 u16 vlan_tci;
568
569 skb_reset_mac_header(skb);
570 if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
571 if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
572 ++net_device_ctx->eth_stats.vlan_error;
573 goto drop;
574 }
575
576 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
577 /* Update the NDIS header pkt lengths */
578 packet->total_data_buflen -= VLAN_HLEN;
579 packet->total_bytes -= VLAN_HLEN;
580 rndis_msg->msg_len = packet->total_data_buflen;
581 rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
582 }
583 }
584
585 if (skb_vlan_tag_present(skb)) {
586 struct ndis_pkt_8021q_info *vlan;
587
588 rndis_msg_size += NDIS_VLAN_PPI_SIZE;
589 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
590 IEEE_8021Q_INFO);
591
592 vlan->value = 0;
593 vlan->vlanid = skb_vlan_tag_get_id(skb);
594 vlan->cfi = skb_vlan_tag_get_cfi(skb);
595 vlan->pri = skb_vlan_tag_get_prio(skb);
596 }
597
598 if (skb_is_gso(skb)) {
599 struct ndis_tcp_lso_info *lso_info;
600
601 rndis_msg_size += NDIS_LSO_PPI_SIZE;
602 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
603 TCP_LARGESEND_PKTINFO);
604
605 lso_info->value = 0;
606 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
607 if (skb->protocol == htons(ETH_P_IP)) {
608 lso_info->lso_v2_transmit.ip_version =
609 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
610 ip_hdr(skb)->tot_len = 0;
611 ip_hdr(skb)->check = 0;
612 tcp_hdr(skb)->check =
613 ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
614 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
615 } else {
616 lso_info->lso_v2_transmit.ip_version =
617 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
618 tcp_v6_gso_csum_prep(skb);
619 }
620 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
621 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
622 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
623 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
624 struct ndis_tcp_ip_checksum_info *csum_info;
625
626 rndis_msg_size += NDIS_CSUM_PPI_SIZE;
627 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
628 TCPIP_CHKSUM_PKTINFO);
629
630 csum_info->value = 0;
631 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
632
633 if (skb->protocol == htons(ETH_P_IP)) {
634 csum_info->transmit.is_ipv4 = 1;
635
636 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
637 csum_info->transmit.tcp_checksum = 1;
638 else
639 csum_info->transmit.udp_checksum = 1;
640 } else {
641 csum_info->transmit.is_ipv6 = 1;
642
643 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
644 csum_info->transmit.tcp_checksum = 1;
645 else
646 csum_info->transmit.udp_checksum = 1;
647 }
648 } else {
649 /* Can't do offload of this type of checksum */
650 if (skb_checksum_help(skb))
651 goto drop;
652 }
653 }
654
655 /* Start filling in the page buffers with the rndis hdr */
656 rndis_msg->msg_len += rndis_msg_size;
657 packet->total_data_buflen = rndis_msg->msg_len;
658 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
659 skb, packet, pb);
660
661 /* timestamp packet in software */
662 skb_tx_timestamp(skb);
663
664 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
665 if (likely(ret == 0))
666 return NETDEV_TX_OK;
667
668 if (ret == -EAGAIN) {
669 ++net_device_ctx->eth_stats.tx_busy;
670 return NETDEV_TX_BUSY;
671 }
672
673 if (ret == -ENOSPC)
674 ++net_device_ctx->eth_stats.tx_no_space;
675
676 drop:
677 dev_kfree_skb_any(skb);
678 net->stats.tx_dropped++;
679
680 return NETDEV_TX_OK;
681
682 no_memory:
683 ++net_device_ctx->eth_stats.tx_no_memory;
684 goto drop;
685 }
686
netvsc_start_xmit(struct sk_buff * skb,struct net_device * ndev)687 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
688 struct net_device *ndev)
689 {
690 return netvsc_xmit(skb, ndev, false);
691 }
692
693 /*
694 * netvsc_linkstatus_callback - Link up/down notification
695 */
netvsc_linkstatus_callback(struct net_device * net,struct rndis_message * resp,void * data,u32 data_buflen)696 void netvsc_linkstatus_callback(struct net_device *net,
697 struct rndis_message *resp,
698 void *data, u32 data_buflen)
699 {
700 struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
701 struct net_device_context *ndev_ctx = netdev_priv(net);
702 struct netvsc_reconfig *event;
703 unsigned long flags;
704
705 /* Ensure the packet is big enough to access its fields */
706 if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
707 netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
708 resp->msg_len);
709 return;
710 }
711
712 /* Copy the RNDIS indicate status into nvchan->recv_buf */
713 memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate));
714
715 /* Update the physical link speed when changing to another vSwitch */
716 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
717 u32 speed;
718
719 /* Validate status_buf_offset and status_buflen.
720 *
721 * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account
722 * for the status buffer field in resp->msg_len; perform the validation
723 * using data_buflen (>= resp->msg_len).
724 */
725 if (indicate->status_buflen < sizeof(speed) ||
726 indicate->status_buf_offset < sizeof(*indicate) ||
727 data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset ||
728 data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset
729 < indicate->status_buflen) {
730 netdev_err(net, "invalid rndis_indicate_status packet\n");
731 return;
732 }
733
734 speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000;
735 ndev_ctx->speed = speed;
736 return;
737 }
738
739 /* Handle these link change statuses below */
740 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
741 indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
742 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
743 return;
744
745 if (net->reg_state != NETREG_REGISTERED)
746 return;
747
748 event = kzalloc(sizeof(*event), GFP_ATOMIC);
749 if (!event)
750 return;
751 event->event = indicate->status;
752
753 spin_lock_irqsave(&ndev_ctx->lock, flags);
754 list_add_tail(&event->list, &ndev_ctx->reconfig_events);
755 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
756
757 schedule_delayed_work(&ndev_ctx->dwork, 0);
758 }
759
760 /* This function should only be called after skb_record_rx_queue() */
netvsc_xdp_xmit(struct sk_buff * skb,struct net_device * ndev)761 void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
762 {
763 int rc;
764
765 skb->queue_mapping = skb_get_rx_queue(skb);
766 __skb_push(skb, ETH_HLEN);
767
768 rc = netvsc_xmit(skb, ndev, true);
769
770 if (dev_xmit_complete(rc))
771 return;
772
773 dev_kfree_skb_any(skb);
774 ndev->stats.tx_dropped++;
775 }
776
netvsc_comp_ipcsum(struct sk_buff * skb)777 static void netvsc_comp_ipcsum(struct sk_buff *skb)
778 {
779 struct iphdr *iph = (struct iphdr *)skb->data;
780
781 iph->check = 0;
782 iph->check = ip_fast_csum(iph, iph->ihl);
783 }
784
netvsc_alloc_recv_skb(struct net_device * net,struct netvsc_channel * nvchan,struct xdp_buff * xdp)785 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
786 struct netvsc_channel *nvchan,
787 struct xdp_buff *xdp)
788 {
789 struct napi_struct *napi = &nvchan->napi;
790 const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan;
791 const struct ndis_tcp_ip_checksum_info *csum_info =
792 &nvchan->rsc.csum_info;
793 const u32 *hash_info = &nvchan->rsc.hash_info;
794 u8 ppi_flags = nvchan->rsc.ppi_flags;
795 struct sk_buff *skb;
796 void *xbuf = xdp->data_hard_start;
797 int i;
798
799 if (xbuf) {
800 unsigned int hdroom = xdp->data - xdp->data_hard_start;
801 unsigned int xlen = xdp->data_end - xdp->data;
802 unsigned int frag_size = xdp->frame_sz;
803
804 skb = build_skb(xbuf, frag_size);
805
806 if (!skb) {
807 __free_page(virt_to_page(xbuf));
808 return NULL;
809 }
810
811 skb_reserve(skb, hdroom);
812 skb_put(skb, xlen);
813 skb->dev = napi->dev;
814 } else {
815 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
816
817 if (!skb)
818 return NULL;
819
820 /* Copy to skb. This copy is needed here since the memory
821 * pointed by hv_netvsc_packet cannot be deallocated.
822 */
823 for (i = 0; i < nvchan->rsc.cnt; i++)
824 skb_put_data(skb, nvchan->rsc.data[i],
825 nvchan->rsc.len[i]);
826 }
827
828 skb->protocol = eth_type_trans(skb, net);
829
830 /* skb is already created with CHECKSUM_NONE */
831 skb_checksum_none_assert(skb);
832
833 /* Incoming packets may have IP header checksum verified by the host.
834 * They may not have IP header checksum computed after coalescing.
835 * We compute it here if the flags are set, because on Linux, the IP
836 * checksum is always checked.
837 */
838 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid &&
839 csum_info->receive.ip_checksum_succeeded &&
840 skb->protocol == htons(ETH_P_IP)) {
841 /* Check that there is enough space to hold the IP header. */
842 if (skb_headlen(skb) < sizeof(struct iphdr)) {
843 kfree_skb(skb);
844 return NULL;
845 }
846 netvsc_comp_ipcsum(skb);
847 }
848
849 /* Do L4 checksum offload if enabled and present. */
850 if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) {
851 if (csum_info->receive.tcp_checksum_succeeded ||
852 csum_info->receive.udp_checksum_succeeded)
853 skb->ip_summed = CHECKSUM_UNNECESSARY;
854 }
855
856 if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH))
857 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
858
859 if (ppi_flags & NVSC_RSC_VLAN) {
860 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
861 (vlan->cfi ? VLAN_CFI_MASK : 0);
862
863 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
864 vlan_tci);
865 }
866
867 return skb;
868 }
869
870 /*
871 * netvsc_recv_callback - Callback when we receive a packet from the
872 * "wire" on the specified device.
873 */
netvsc_recv_callback(struct net_device * net,struct netvsc_device * net_device,struct netvsc_channel * nvchan)874 int netvsc_recv_callback(struct net_device *net,
875 struct netvsc_device *net_device,
876 struct netvsc_channel *nvchan)
877 {
878 struct net_device_context *net_device_ctx = netdev_priv(net);
879 struct vmbus_channel *channel = nvchan->channel;
880 u16 q_idx = channel->offermsg.offer.sub_channel_index;
881 struct sk_buff *skb;
882 struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats;
883 struct xdp_buff xdp;
884 u32 act;
885
886 if (net->reg_state != NETREG_REGISTERED)
887 return NVSP_STAT_FAIL;
888
889 act = netvsc_run_xdp(net, nvchan, &xdp);
890
891 if (act == XDP_REDIRECT)
892 return NVSP_STAT_SUCCESS;
893
894 if (act != XDP_PASS && act != XDP_TX) {
895 u64_stats_update_begin(&rx_stats->syncp);
896 rx_stats->xdp_drop++;
897 u64_stats_update_end(&rx_stats->syncp);
898
899 return NVSP_STAT_SUCCESS; /* consumed by XDP */
900 }
901
902 /* Allocate a skb - TODO direct I/O to pages? */
903 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
904
905 if (unlikely(!skb)) {
906 ++net_device_ctx->eth_stats.rx_no_memory;
907 return NVSP_STAT_FAIL;
908 }
909
910 skb_record_rx_queue(skb, q_idx);
911
912 /*
913 * Even if injecting the packet, record the statistics
914 * on the synthetic device because modifying the VF device
915 * statistics will not work correctly.
916 */
917 u64_stats_update_begin(&rx_stats->syncp);
918 if (act == XDP_TX)
919 rx_stats->xdp_tx++;
920
921 rx_stats->packets++;
922 rx_stats->bytes += nvchan->rsc.pktlen;
923
924 if (skb->pkt_type == PACKET_BROADCAST)
925 ++rx_stats->broadcast;
926 else if (skb->pkt_type == PACKET_MULTICAST)
927 ++rx_stats->multicast;
928 u64_stats_update_end(&rx_stats->syncp);
929
930 if (act == XDP_TX) {
931 netvsc_xdp_xmit(skb, net);
932 return NVSP_STAT_SUCCESS;
933 }
934
935 napi_gro_receive(&nvchan->napi, skb);
936 return NVSP_STAT_SUCCESS;
937 }
938
netvsc_get_drvinfo(struct net_device * net,struct ethtool_drvinfo * info)939 static void netvsc_get_drvinfo(struct net_device *net,
940 struct ethtool_drvinfo *info)
941 {
942 strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
943 strscpy(info->fw_version, "N/A", sizeof(info->fw_version));
944 }
945
netvsc_get_channels(struct net_device * net,struct ethtool_channels * channel)946 static void netvsc_get_channels(struct net_device *net,
947 struct ethtool_channels *channel)
948 {
949 struct net_device_context *net_device_ctx = netdev_priv(net);
950 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
951
952 if (nvdev) {
953 channel->max_combined = nvdev->max_chn;
954 channel->combined_count = nvdev->num_chn;
955 }
956 }
957
958 /* Alloc struct netvsc_device_info, and initialize it from either existing
959 * struct netvsc_device, or from default values.
960 */
961 static
netvsc_devinfo_get(struct netvsc_device * nvdev)962 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
963 {
964 struct netvsc_device_info *dev_info;
965 struct bpf_prog *prog;
966
967 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
968
969 if (!dev_info)
970 return NULL;
971
972 if (nvdev) {
973 ASSERT_RTNL();
974
975 dev_info->num_chn = nvdev->num_chn;
976 dev_info->send_sections = nvdev->send_section_cnt;
977 dev_info->send_section_size = nvdev->send_section_size;
978 dev_info->recv_sections = nvdev->recv_section_cnt;
979 dev_info->recv_section_size = nvdev->recv_section_size;
980
981 memcpy(dev_info->rss_key, nvdev->extension->rss_key,
982 NETVSC_HASH_KEYLEN);
983
984 prog = netvsc_xdp_get(nvdev);
985 if (prog) {
986 bpf_prog_inc(prog);
987 dev_info->bprog = prog;
988 }
989 } else {
990 dev_info->num_chn = max(VRSS_CHANNEL_DEFAULT,
991 netif_get_num_default_rss_queues());
992 dev_info->send_sections = NETVSC_DEFAULT_TX;
993 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
994 dev_info->recv_sections = NETVSC_DEFAULT_RX;
995 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
996 }
997
998 return dev_info;
999 }
1000
1001 /* Free struct netvsc_device_info */
netvsc_devinfo_put(struct netvsc_device_info * dev_info)1002 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1003 {
1004 if (dev_info->bprog) {
1005 ASSERT_RTNL();
1006 bpf_prog_put(dev_info->bprog);
1007 }
1008
1009 kfree(dev_info);
1010 }
1011
netvsc_detach(struct net_device * ndev,struct netvsc_device * nvdev)1012 static int netvsc_detach(struct net_device *ndev,
1013 struct netvsc_device *nvdev)
1014 {
1015 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1016 struct hv_device *hdev = ndev_ctx->device_ctx;
1017 int ret;
1018
1019 /* Don't try continuing to try and setup sub channels */
1020 if (cancel_work_sync(&nvdev->subchan_work))
1021 nvdev->num_chn = 1;
1022
1023 netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1024
1025 /* If device was up (receiving) then shutdown */
1026 if (netif_running(ndev)) {
1027 netvsc_tx_disable(nvdev, ndev);
1028
1029 ret = rndis_filter_close(nvdev);
1030 if (ret) {
1031 netdev_err(ndev,
1032 "unable to close device (ret %d).\n", ret);
1033 return ret;
1034 }
1035
1036 ret = netvsc_wait_until_empty(nvdev);
1037 if (ret) {
1038 netdev_err(ndev,
1039 "Ring buffer not empty after closing rndis\n");
1040 return ret;
1041 }
1042 }
1043
1044 netif_device_detach(ndev);
1045
1046 rndis_filter_device_remove(hdev, nvdev);
1047
1048 return 0;
1049 }
1050
netvsc_attach(struct net_device * ndev,struct netvsc_device_info * dev_info)1051 static int netvsc_attach(struct net_device *ndev,
1052 struct netvsc_device_info *dev_info)
1053 {
1054 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1055 struct hv_device *hdev = ndev_ctx->device_ctx;
1056 struct netvsc_device *nvdev;
1057 struct rndis_device *rdev;
1058 struct bpf_prog *prog;
1059 int ret = 0;
1060
1061 nvdev = rndis_filter_device_add(hdev, dev_info);
1062 if (IS_ERR(nvdev))
1063 return PTR_ERR(nvdev);
1064
1065 if (nvdev->num_chn > 1) {
1066 ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1067
1068 /* if unavailable, just proceed with one queue */
1069 if (ret) {
1070 nvdev->max_chn = 1;
1071 nvdev->num_chn = 1;
1072 }
1073 }
1074
1075 prog = dev_info->bprog;
1076 if (prog) {
1077 bpf_prog_inc(prog);
1078 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1079 if (ret) {
1080 bpf_prog_put(prog);
1081 goto err1;
1082 }
1083 }
1084
1085 /* In any case device is now ready */
1086 nvdev->tx_disable = false;
1087 netif_device_attach(ndev);
1088
1089 /* Note: enable and attach happen when sub-channels setup */
1090 netif_carrier_off(ndev);
1091
1092 if (netif_running(ndev)) {
1093 ret = rndis_filter_open(nvdev);
1094 if (ret)
1095 goto err2;
1096
1097 rdev = nvdev->extension;
1098 if (!rdev->link_state)
1099 netif_carrier_on(ndev);
1100 }
1101
1102 return 0;
1103
1104 err2:
1105 netif_device_detach(ndev);
1106
1107 err1:
1108 rndis_filter_device_remove(hdev, nvdev);
1109
1110 return ret;
1111 }
1112
netvsc_set_channels(struct net_device * net,struct ethtool_channels * channels)1113 static int netvsc_set_channels(struct net_device *net,
1114 struct ethtool_channels *channels)
1115 {
1116 struct net_device_context *net_device_ctx = netdev_priv(net);
1117 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1118 unsigned int orig, count = channels->combined_count;
1119 struct netvsc_device_info *device_info;
1120 int ret;
1121
1122 /* We do not support separate count for rx, tx, or other */
1123 if (count == 0 ||
1124 channels->rx_count || channels->tx_count || channels->other_count)
1125 return -EINVAL;
1126
1127 if (!nvdev || nvdev->destroy)
1128 return -ENODEV;
1129
1130 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1131 return -EINVAL;
1132
1133 if (count > nvdev->max_chn)
1134 return -EINVAL;
1135
1136 orig = nvdev->num_chn;
1137
1138 device_info = netvsc_devinfo_get(nvdev);
1139
1140 if (!device_info)
1141 return -ENOMEM;
1142
1143 device_info->num_chn = count;
1144
1145 ret = netvsc_detach(net, nvdev);
1146 if (ret)
1147 goto out;
1148
1149 ret = netvsc_attach(net, device_info);
1150 if (ret) {
1151 device_info->num_chn = orig;
1152 if (netvsc_attach(net, device_info))
1153 netdev_err(net, "restoring channel setting failed\n");
1154 }
1155
1156 out:
1157 netvsc_devinfo_put(device_info);
1158 return ret;
1159 }
1160
netvsc_init_settings(struct net_device * dev)1161 static void netvsc_init_settings(struct net_device *dev)
1162 {
1163 struct net_device_context *ndc = netdev_priv(dev);
1164
1165 ndc->l4_hash = HV_DEFAULT_L4HASH;
1166
1167 ndc->speed = SPEED_UNKNOWN;
1168 ndc->duplex = DUPLEX_FULL;
1169
1170 dev->features = NETIF_F_LRO;
1171 }
1172
netvsc_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1173 static int netvsc_get_link_ksettings(struct net_device *dev,
1174 struct ethtool_link_ksettings *cmd)
1175 {
1176 struct net_device_context *ndc = netdev_priv(dev);
1177 struct net_device *vf_netdev;
1178
1179 vf_netdev = rtnl_dereference(ndc->vf_netdev);
1180
1181 if (vf_netdev)
1182 return __ethtool_get_link_ksettings(vf_netdev, cmd);
1183
1184 cmd->base.speed = ndc->speed;
1185 cmd->base.duplex = ndc->duplex;
1186 cmd->base.port = PORT_OTHER;
1187
1188 return 0;
1189 }
1190
netvsc_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1191 static int netvsc_set_link_ksettings(struct net_device *dev,
1192 const struct ethtool_link_ksettings *cmd)
1193 {
1194 struct net_device_context *ndc = netdev_priv(dev);
1195 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1196
1197 if (vf_netdev) {
1198 if (!vf_netdev->ethtool_ops->set_link_ksettings)
1199 return -EOPNOTSUPP;
1200
1201 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1202 cmd);
1203 }
1204
1205 return ethtool_virtdev_set_link_ksettings(dev, cmd,
1206 &ndc->speed, &ndc->duplex);
1207 }
1208
netvsc_change_mtu(struct net_device * ndev,int mtu)1209 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1210 {
1211 struct net_device_context *ndevctx = netdev_priv(ndev);
1212 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1213 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1214 int orig_mtu = ndev->mtu;
1215 struct netvsc_device_info *device_info;
1216 int ret = 0;
1217
1218 if (!nvdev || nvdev->destroy)
1219 return -ENODEV;
1220
1221 device_info = netvsc_devinfo_get(nvdev);
1222
1223 if (!device_info)
1224 return -ENOMEM;
1225
1226 /* Change MTU of underlying VF netdev first. */
1227 if (vf_netdev) {
1228 ret = dev_set_mtu(vf_netdev, mtu);
1229 if (ret)
1230 goto out;
1231 }
1232
1233 ret = netvsc_detach(ndev, nvdev);
1234 if (ret)
1235 goto rollback_vf;
1236
1237 WRITE_ONCE(ndev->mtu, mtu);
1238
1239 ret = netvsc_attach(ndev, device_info);
1240 if (!ret)
1241 goto out;
1242
1243 /* Attempt rollback to original MTU */
1244 WRITE_ONCE(ndev->mtu, orig_mtu);
1245
1246 if (netvsc_attach(ndev, device_info))
1247 netdev_err(ndev, "restoring mtu failed\n");
1248 rollback_vf:
1249 if (vf_netdev)
1250 dev_set_mtu(vf_netdev, orig_mtu);
1251
1252 out:
1253 netvsc_devinfo_put(device_info);
1254 return ret;
1255 }
1256
netvsc_get_vf_stats(struct net_device * net,struct netvsc_vf_pcpu_stats * tot)1257 static void netvsc_get_vf_stats(struct net_device *net,
1258 struct netvsc_vf_pcpu_stats *tot)
1259 {
1260 struct net_device_context *ndev_ctx = netdev_priv(net);
1261 int i;
1262
1263 memset(tot, 0, sizeof(*tot));
1264
1265 for_each_possible_cpu(i) {
1266 const struct netvsc_vf_pcpu_stats *stats
1267 = per_cpu_ptr(ndev_ctx->vf_stats, i);
1268 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1269 unsigned int start;
1270
1271 do {
1272 start = u64_stats_fetch_begin(&stats->syncp);
1273 rx_packets = stats->rx_packets;
1274 tx_packets = stats->tx_packets;
1275 rx_bytes = stats->rx_bytes;
1276 tx_bytes = stats->tx_bytes;
1277 } while (u64_stats_fetch_retry(&stats->syncp, start));
1278
1279 tot->rx_packets += rx_packets;
1280 tot->tx_packets += tx_packets;
1281 tot->rx_bytes += rx_bytes;
1282 tot->tx_bytes += tx_bytes;
1283 tot->tx_dropped += stats->tx_dropped;
1284 }
1285 }
1286
netvsc_get_pcpu_stats(struct net_device * net,struct netvsc_ethtool_pcpu_stats * pcpu_tot)1287 static void netvsc_get_pcpu_stats(struct net_device *net,
1288 struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1289 {
1290 struct net_device_context *ndev_ctx = netdev_priv(net);
1291 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1292 int i;
1293
1294 /* fetch percpu stats of vf */
1295 for_each_possible_cpu(i) {
1296 const struct netvsc_vf_pcpu_stats *stats =
1297 per_cpu_ptr(ndev_ctx->vf_stats, i);
1298 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1299 unsigned int start;
1300
1301 do {
1302 start = u64_stats_fetch_begin(&stats->syncp);
1303 this_tot->vf_rx_packets = stats->rx_packets;
1304 this_tot->vf_tx_packets = stats->tx_packets;
1305 this_tot->vf_rx_bytes = stats->rx_bytes;
1306 this_tot->vf_tx_bytes = stats->tx_bytes;
1307 } while (u64_stats_fetch_retry(&stats->syncp, start));
1308 this_tot->rx_packets = this_tot->vf_rx_packets;
1309 this_tot->tx_packets = this_tot->vf_tx_packets;
1310 this_tot->rx_bytes = this_tot->vf_rx_bytes;
1311 this_tot->tx_bytes = this_tot->vf_tx_bytes;
1312 }
1313
1314 /* fetch percpu stats of netvsc */
1315 for (i = 0; i < nvdev->num_chn; i++) {
1316 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1317 const struct netvsc_stats_tx *tx_stats;
1318 const struct netvsc_stats_rx *rx_stats;
1319 struct netvsc_ethtool_pcpu_stats *this_tot =
1320 &pcpu_tot[nvchan->channel->target_cpu];
1321 u64 packets, bytes;
1322 unsigned int start;
1323
1324 tx_stats = &nvchan->tx_stats;
1325 do {
1326 start = u64_stats_fetch_begin(&tx_stats->syncp);
1327 packets = tx_stats->packets;
1328 bytes = tx_stats->bytes;
1329 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1330
1331 this_tot->tx_bytes += bytes;
1332 this_tot->tx_packets += packets;
1333
1334 rx_stats = &nvchan->rx_stats;
1335 do {
1336 start = u64_stats_fetch_begin(&rx_stats->syncp);
1337 packets = rx_stats->packets;
1338 bytes = rx_stats->bytes;
1339 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1340
1341 this_tot->rx_bytes += bytes;
1342 this_tot->rx_packets += packets;
1343 }
1344 }
1345
netvsc_get_stats64(struct net_device * net,struct rtnl_link_stats64 * t)1346 static void netvsc_get_stats64(struct net_device *net,
1347 struct rtnl_link_stats64 *t)
1348 {
1349 struct net_device_context *ndev_ctx = netdev_priv(net);
1350 struct netvsc_device *nvdev;
1351 struct netvsc_vf_pcpu_stats vf_tot;
1352 int i;
1353
1354 rcu_read_lock();
1355
1356 nvdev = rcu_dereference(ndev_ctx->nvdev);
1357 if (!nvdev)
1358 goto out;
1359
1360 netdev_stats_to_stats64(t, &net->stats);
1361
1362 netvsc_get_vf_stats(net, &vf_tot);
1363 t->rx_packets += vf_tot.rx_packets;
1364 t->tx_packets += vf_tot.tx_packets;
1365 t->rx_bytes += vf_tot.rx_bytes;
1366 t->tx_bytes += vf_tot.tx_bytes;
1367 t->tx_dropped += vf_tot.tx_dropped;
1368
1369 for (i = 0; i < nvdev->num_chn; i++) {
1370 const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1371 const struct netvsc_stats_tx *tx_stats;
1372 const struct netvsc_stats_rx *rx_stats;
1373 u64 packets, bytes, multicast;
1374 unsigned int start;
1375
1376 tx_stats = &nvchan->tx_stats;
1377 do {
1378 start = u64_stats_fetch_begin(&tx_stats->syncp);
1379 packets = tx_stats->packets;
1380 bytes = tx_stats->bytes;
1381 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1382
1383 t->tx_bytes += bytes;
1384 t->tx_packets += packets;
1385
1386 rx_stats = &nvchan->rx_stats;
1387 do {
1388 start = u64_stats_fetch_begin(&rx_stats->syncp);
1389 packets = rx_stats->packets;
1390 bytes = rx_stats->bytes;
1391 multicast = rx_stats->multicast + rx_stats->broadcast;
1392 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1393
1394 t->rx_bytes += bytes;
1395 t->rx_packets += packets;
1396 t->multicast += multicast;
1397 }
1398 out:
1399 rcu_read_unlock();
1400 }
1401
netvsc_set_mac_addr(struct net_device * ndev,void * p)1402 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1403 {
1404 struct net_device_context *ndc = netdev_priv(ndev);
1405 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1406 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1407 struct sockaddr *addr = p;
1408 int err;
1409
1410 err = eth_prepare_mac_addr_change(ndev, p);
1411 if (err)
1412 return err;
1413
1414 if (!nvdev)
1415 return -ENODEV;
1416
1417 if (vf_netdev) {
1418 err = dev_set_mac_address(vf_netdev, addr, NULL);
1419 if (err)
1420 return err;
1421 }
1422
1423 err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1424 if (!err) {
1425 eth_commit_mac_addr_change(ndev, p);
1426 } else if (vf_netdev) {
1427 /* rollback change on VF */
1428 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1429 dev_set_mac_address(vf_netdev, addr, NULL);
1430 }
1431
1432 return err;
1433 }
1434
1435 static const struct {
1436 char name[ETH_GSTRING_LEN];
1437 u16 offset;
1438 } netvsc_stats[] = {
1439 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1440 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1441 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1442 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1443 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) },
1444 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1445 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1446 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1447 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1448 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1449 { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1450 }, pcpu_stats[] = {
1451 { "cpu%u_rx_packets",
1452 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1453 { "cpu%u_rx_bytes",
1454 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1455 { "cpu%u_tx_packets",
1456 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1457 { "cpu%u_tx_bytes",
1458 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1459 { "cpu%u_vf_rx_packets",
1460 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1461 { "cpu%u_vf_rx_bytes",
1462 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1463 { "cpu%u_vf_tx_packets",
1464 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1465 { "cpu%u_vf_tx_bytes",
1466 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1467 }, vf_stats[] = {
1468 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1469 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1470 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1471 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1472 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1473 };
1474
1475 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats)
1476 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats)
1477
1478 /* statistics per queue (rx/tx packets/bytes) */
1479 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1480
1481 /* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */
1482 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8)
1483
netvsc_get_sset_count(struct net_device * dev,int string_set)1484 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1485 {
1486 struct net_device_context *ndc = netdev_priv(dev);
1487 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1488
1489 if (!nvdev)
1490 return -ENODEV;
1491
1492 switch (string_set) {
1493 case ETH_SS_STATS:
1494 return NETVSC_GLOBAL_STATS_LEN
1495 + NETVSC_VF_STATS_LEN
1496 + NETVSC_QUEUE_STATS_LEN(nvdev)
1497 + NETVSC_PCPU_STATS_LEN;
1498 default:
1499 return -EINVAL;
1500 }
1501 }
1502
netvsc_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1503 static void netvsc_get_ethtool_stats(struct net_device *dev,
1504 struct ethtool_stats *stats, u64 *data)
1505 {
1506 struct net_device_context *ndc = netdev_priv(dev);
1507 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1508 const void *nds = &ndc->eth_stats;
1509 const struct netvsc_stats_tx *tx_stats;
1510 const struct netvsc_stats_rx *rx_stats;
1511 struct netvsc_vf_pcpu_stats sum;
1512 struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1513 unsigned int start;
1514 u64 packets, bytes;
1515 u64 xdp_drop;
1516 u64 xdp_redirect;
1517 u64 xdp_tx;
1518 u64 xdp_xmit;
1519 int i, j, cpu;
1520
1521 if (!nvdev)
1522 return;
1523
1524 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1525 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1526
1527 netvsc_get_vf_stats(dev, &sum);
1528 for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1529 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1530
1531 for (j = 0; j < nvdev->num_chn; j++) {
1532 tx_stats = &nvdev->chan_table[j].tx_stats;
1533
1534 do {
1535 start = u64_stats_fetch_begin(&tx_stats->syncp);
1536 packets = tx_stats->packets;
1537 bytes = tx_stats->bytes;
1538 xdp_xmit = tx_stats->xdp_xmit;
1539 } while (u64_stats_fetch_retry(&tx_stats->syncp, start));
1540 data[i++] = packets;
1541 data[i++] = bytes;
1542 data[i++] = xdp_xmit;
1543
1544 rx_stats = &nvdev->chan_table[j].rx_stats;
1545 do {
1546 start = u64_stats_fetch_begin(&rx_stats->syncp);
1547 packets = rx_stats->packets;
1548 bytes = rx_stats->bytes;
1549 xdp_drop = rx_stats->xdp_drop;
1550 xdp_redirect = rx_stats->xdp_redirect;
1551 xdp_tx = rx_stats->xdp_tx;
1552 } while (u64_stats_fetch_retry(&rx_stats->syncp, start));
1553 data[i++] = packets;
1554 data[i++] = bytes;
1555 data[i++] = xdp_drop;
1556 data[i++] = xdp_redirect;
1557 data[i++] = xdp_tx;
1558 }
1559
1560 pcpu_sum = kvmalloc_array(num_possible_cpus(),
1561 sizeof(struct netvsc_ethtool_pcpu_stats),
1562 GFP_KERNEL);
1563 if (!pcpu_sum)
1564 return;
1565
1566 netvsc_get_pcpu_stats(dev, pcpu_sum);
1567 for_each_present_cpu(cpu) {
1568 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1569
1570 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1571 data[i++] = *(u64 *)((void *)this_sum
1572 + pcpu_stats[j].offset);
1573 }
1574 kvfree(pcpu_sum);
1575 }
1576
netvsc_get_strings(struct net_device * dev,u32 stringset,u8 * data)1577 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1578 {
1579 struct net_device_context *ndc = netdev_priv(dev);
1580 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1581 u8 *p = data;
1582 int i, cpu;
1583
1584 if (!nvdev)
1585 return;
1586
1587 switch (stringset) {
1588 case ETH_SS_STATS:
1589 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++)
1590 ethtool_puts(&p, netvsc_stats[i].name);
1591
1592 for (i = 0; i < ARRAY_SIZE(vf_stats); i++)
1593 ethtool_puts(&p, vf_stats[i].name);
1594
1595 for (i = 0; i < nvdev->num_chn; i++) {
1596 ethtool_sprintf(&p, "tx_queue_%u_packets", i);
1597 ethtool_sprintf(&p, "tx_queue_%u_bytes", i);
1598 ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i);
1599 ethtool_sprintf(&p, "rx_queue_%u_packets", i);
1600 ethtool_sprintf(&p, "rx_queue_%u_bytes", i);
1601 ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i);
1602 ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i);
1603 ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i);
1604 }
1605
1606 for_each_present_cpu(cpu) {
1607 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++)
1608 ethtool_sprintf(&p, pcpu_stats[i].name, cpu);
1609 }
1610
1611 break;
1612 }
1613 }
1614
1615 static int
netvsc_get_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1616 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1617 struct ethtool_rxnfc *info)
1618 {
1619 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1620
1621 info->data = RXH_IP_SRC | RXH_IP_DST;
1622
1623 switch (info->flow_type) {
1624 case TCP_V4_FLOW:
1625 if (ndc->l4_hash & HV_TCP4_L4HASH)
1626 info->data |= l4_flag;
1627
1628 break;
1629
1630 case TCP_V6_FLOW:
1631 if (ndc->l4_hash & HV_TCP6_L4HASH)
1632 info->data |= l4_flag;
1633
1634 break;
1635
1636 case UDP_V4_FLOW:
1637 if (ndc->l4_hash & HV_UDP4_L4HASH)
1638 info->data |= l4_flag;
1639
1640 break;
1641
1642 case UDP_V6_FLOW:
1643 if (ndc->l4_hash & HV_UDP6_L4HASH)
1644 info->data |= l4_flag;
1645
1646 break;
1647
1648 case IPV4_FLOW:
1649 case IPV6_FLOW:
1650 break;
1651 default:
1652 info->data = 0;
1653 break;
1654 }
1655
1656 return 0;
1657 }
1658
1659 static int
netvsc_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * info,u32 * rules)1660 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1661 u32 *rules)
1662 {
1663 struct net_device_context *ndc = netdev_priv(dev);
1664 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1665
1666 if (!nvdev)
1667 return -ENODEV;
1668
1669 switch (info->cmd) {
1670 case ETHTOOL_GRXRINGS:
1671 info->data = nvdev->num_chn;
1672 return 0;
1673
1674 case ETHTOOL_GRXFH:
1675 return netvsc_get_rss_hash_opts(ndc, info);
1676 }
1677 return -EOPNOTSUPP;
1678 }
1679
netvsc_set_rss_hash_opts(struct net_device_context * ndc,struct ethtool_rxnfc * info)1680 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1681 struct ethtool_rxnfc *info)
1682 {
1683 if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1684 RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1685 switch (info->flow_type) {
1686 case TCP_V4_FLOW:
1687 ndc->l4_hash |= HV_TCP4_L4HASH;
1688 break;
1689
1690 case TCP_V6_FLOW:
1691 ndc->l4_hash |= HV_TCP6_L4HASH;
1692 break;
1693
1694 case UDP_V4_FLOW:
1695 ndc->l4_hash |= HV_UDP4_L4HASH;
1696 break;
1697
1698 case UDP_V6_FLOW:
1699 ndc->l4_hash |= HV_UDP6_L4HASH;
1700 break;
1701
1702 default:
1703 return -EOPNOTSUPP;
1704 }
1705
1706 return 0;
1707 }
1708
1709 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1710 switch (info->flow_type) {
1711 case TCP_V4_FLOW:
1712 ndc->l4_hash &= ~HV_TCP4_L4HASH;
1713 break;
1714
1715 case TCP_V6_FLOW:
1716 ndc->l4_hash &= ~HV_TCP6_L4HASH;
1717 break;
1718
1719 case UDP_V4_FLOW:
1720 ndc->l4_hash &= ~HV_UDP4_L4HASH;
1721 break;
1722
1723 case UDP_V6_FLOW:
1724 ndc->l4_hash &= ~HV_UDP6_L4HASH;
1725 break;
1726
1727 default:
1728 return -EOPNOTSUPP;
1729 }
1730
1731 return 0;
1732 }
1733
1734 return -EOPNOTSUPP;
1735 }
1736
1737 static int
netvsc_set_rxnfc(struct net_device * ndev,struct ethtool_rxnfc * info)1738 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1739 {
1740 struct net_device_context *ndc = netdev_priv(ndev);
1741
1742 if (info->cmd == ETHTOOL_SRXFH)
1743 return netvsc_set_rss_hash_opts(ndc, info);
1744
1745 return -EOPNOTSUPP;
1746 }
1747
netvsc_get_rxfh_key_size(struct net_device * dev)1748 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1749 {
1750 return NETVSC_HASH_KEYLEN;
1751 }
1752
netvsc_rss_indir_size(struct net_device * dev)1753 static u32 netvsc_rss_indir_size(struct net_device *dev)
1754 {
1755 struct net_device_context *ndc = netdev_priv(dev);
1756
1757 return ndc->rx_table_sz;
1758 }
1759
netvsc_get_rxfh(struct net_device * dev,struct ethtool_rxfh_param * rxfh)1760 static int netvsc_get_rxfh(struct net_device *dev,
1761 struct ethtool_rxfh_param *rxfh)
1762 {
1763 struct net_device_context *ndc = netdev_priv(dev);
1764 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1765 struct rndis_device *rndis_dev;
1766 int i;
1767
1768 if (!ndev)
1769 return -ENODEV;
1770
1771 rxfh->hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */
1772
1773 rndis_dev = ndev->extension;
1774 if (rxfh->indir) {
1775 for (i = 0; i < ndc->rx_table_sz; i++)
1776 rxfh->indir[i] = ndc->rx_table[i];
1777 }
1778
1779 if (rxfh->key)
1780 memcpy(rxfh->key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1781
1782 return 0;
1783 }
1784
netvsc_set_rxfh(struct net_device * dev,struct ethtool_rxfh_param * rxfh,struct netlink_ext_ack * extack)1785 static int netvsc_set_rxfh(struct net_device *dev,
1786 struct ethtool_rxfh_param *rxfh,
1787 struct netlink_ext_ack *extack)
1788 {
1789 struct net_device_context *ndc = netdev_priv(dev);
1790 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1791 struct rndis_device *rndis_dev;
1792 u8 *key = rxfh->key;
1793 int i;
1794
1795 if (!ndev)
1796 return -ENODEV;
1797
1798 if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE &&
1799 rxfh->hfunc != ETH_RSS_HASH_TOP)
1800 return -EOPNOTSUPP;
1801
1802 rndis_dev = ndev->extension;
1803 if (rxfh->indir) {
1804 for (i = 0; i < ndc->rx_table_sz; i++)
1805 if (rxfh->indir[i] >= ndev->num_chn)
1806 return -EINVAL;
1807
1808 for (i = 0; i < ndc->rx_table_sz; i++)
1809 ndc->rx_table[i] = rxfh->indir[i];
1810 }
1811
1812 if (!key) {
1813 if (!rxfh->indir)
1814 return 0;
1815
1816 key = rndis_dev->rss_key;
1817 }
1818
1819 return rndis_filter_set_rss_param(rndis_dev, key);
1820 }
1821
1822 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1823 * It does have pre-allocated receive area which is divided into sections.
1824 */
__netvsc_get_ringparam(struct netvsc_device * nvdev,struct ethtool_ringparam * ring)1825 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1826 struct ethtool_ringparam *ring)
1827 {
1828 u32 max_buf_size;
1829
1830 ring->rx_pending = nvdev->recv_section_cnt;
1831 ring->tx_pending = nvdev->send_section_cnt;
1832
1833 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1834 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1835 else
1836 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1837
1838 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1839 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1840 / nvdev->send_section_size;
1841 }
1842
netvsc_get_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1843 static void netvsc_get_ringparam(struct net_device *ndev,
1844 struct ethtool_ringparam *ring,
1845 struct kernel_ethtool_ringparam *kernel_ring,
1846 struct netlink_ext_ack *extack)
1847 {
1848 struct net_device_context *ndevctx = netdev_priv(ndev);
1849 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1850
1851 if (!nvdev)
1852 return;
1853
1854 __netvsc_get_ringparam(nvdev, ring);
1855 }
1856
netvsc_set_ringparam(struct net_device * ndev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1857 static int netvsc_set_ringparam(struct net_device *ndev,
1858 struct ethtool_ringparam *ring,
1859 struct kernel_ethtool_ringparam *kernel_ring,
1860 struct netlink_ext_ack *extack)
1861 {
1862 struct net_device_context *ndevctx = netdev_priv(ndev);
1863 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1864 struct netvsc_device_info *device_info;
1865 struct ethtool_ringparam orig;
1866 u32 new_tx, new_rx;
1867 int ret = 0;
1868
1869 if (!nvdev || nvdev->destroy)
1870 return -ENODEV;
1871
1872 memset(&orig, 0, sizeof(orig));
1873 __netvsc_get_ringparam(nvdev, &orig);
1874
1875 new_tx = clamp_t(u32, ring->tx_pending,
1876 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1877 new_rx = clamp_t(u32, ring->rx_pending,
1878 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1879
1880 if (new_tx == orig.tx_pending &&
1881 new_rx == orig.rx_pending)
1882 return 0; /* no change */
1883
1884 device_info = netvsc_devinfo_get(nvdev);
1885
1886 if (!device_info)
1887 return -ENOMEM;
1888
1889 device_info->send_sections = new_tx;
1890 device_info->recv_sections = new_rx;
1891
1892 ret = netvsc_detach(ndev, nvdev);
1893 if (ret)
1894 goto out;
1895
1896 ret = netvsc_attach(ndev, device_info);
1897 if (ret) {
1898 device_info->send_sections = orig.tx_pending;
1899 device_info->recv_sections = orig.rx_pending;
1900
1901 if (netvsc_attach(ndev, device_info))
1902 netdev_err(ndev, "restoring ringparam failed");
1903 }
1904
1905 out:
1906 netvsc_devinfo_put(device_info);
1907 return ret;
1908 }
1909
netvsc_fix_features(struct net_device * ndev,netdev_features_t features)1910 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1911 netdev_features_t features)
1912 {
1913 struct net_device_context *ndevctx = netdev_priv(ndev);
1914 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1915
1916 if (!nvdev || nvdev->destroy)
1917 return features;
1918
1919 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1920 features ^= NETIF_F_LRO;
1921 netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1922 }
1923
1924 return features;
1925 }
1926
netvsc_set_features(struct net_device * ndev,netdev_features_t features)1927 static int netvsc_set_features(struct net_device *ndev,
1928 netdev_features_t features)
1929 {
1930 netdev_features_t change = features ^ ndev->features;
1931 struct net_device_context *ndevctx = netdev_priv(ndev);
1932 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1933 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1934 struct ndis_offload_params offloads;
1935 int ret = 0;
1936
1937 if (!nvdev || nvdev->destroy)
1938 return -ENODEV;
1939
1940 if (!(change & NETIF_F_LRO))
1941 goto syncvf;
1942
1943 memset(&offloads, 0, sizeof(struct ndis_offload_params));
1944
1945 if (features & NETIF_F_LRO) {
1946 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1947 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1948 } else {
1949 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1950 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1951 }
1952
1953 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1954
1955 if (ret) {
1956 features ^= NETIF_F_LRO;
1957 ndev->features = features;
1958 }
1959
1960 syncvf:
1961 if (!vf_netdev)
1962 return ret;
1963
1964 vf_netdev->wanted_features = features;
1965 netdev_update_features(vf_netdev);
1966
1967 return ret;
1968 }
1969
netvsc_get_regs_len(struct net_device * netdev)1970 static int netvsc_get_regs_len(struct net_device *netdev)
1971 {
1972 return VRSS_SEND_TAB_SIZE * sizeof(u32);
1973 }
1974
netvsc_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)1975 static void netvsc_get_regs(struct net_device *netdev,
1976 struct ethtool_regs *regs, void *p)
1977 {
1978 struct net_device_context *ndc = netdev_priv(netdev);
1979 u32 *regs_buff = p;
1980
1981 /* increase the version, if buffer format is changed. */
1982 regs->version = 1;
1983
1984 memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1985 }
1986
netvsc_get_msglevel(struct net_device * ndev)1987 static u32 netvsc_get_msglevel(struct net_device *ndev)
1988 {
1989 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1990
1991 return ndev_ctx->msg_enable;
1992 }
1993
netvsc_set_msglevel(struct net_device * ndev,u32 val)1994 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1995 {
1996 struct net_device_context *ndev_ctx = netdev_priv(ndev);
1997
1998 ndev_ctx->msg_enable = val;
1999 }
2000
2001 static const struct ethtool_ops ethtool_ops = {
2002 .get_drvinfo = netvsc_get_drvinfo,
2003 .get_regs_len = netvsc_get_regs_len,
2004 .get_regs = netvsc_get_regs,
2005 .get_msglevel = netvsc_get_msglevel,
2006 .set_msglevel = netvsc_set_msglevel,
2007 .get_link = ethtool_op_get_link,
2008 .get_ethtool_stats = netvsc_get_ethtool_stats,
2009 .get_sset_count = netvsc_get_sset_count,
2010 .get_strings = netvsc_get_strings,
2011 .get_channels = netvsc_get_channels,
2012 .set_channels = netvsc_set_channels,
2013 .get_ts_info = ethtool_op_get_ts_info,
2014 .get_rxnfc = netvsc_get_rxnfc,
2015 .set_rxnfc = netvsc_set_rxnfc,
2016 .get_rxfh_key_size = netvsc_get_rxfh_key_size,
2017 .get_rxfh_indir_size = netvsc_rss_indir_size,
2018 .get_rxfh = netvsc_get_rxfh,
2019 .set_rxfh = netvsc_set_rxfh,
2020 .get_link_ksettings = netvsc_get_link_ksettings,
2021 .set_link_ksettings = netvsc_set_link_ksettings,
2022 .get_ringparam = netvsc_get_ringparam,
2023 .set_ringparam = netvsc_set_ringparam,
2024 };
2025
2026 static const struct net_device_ops device_ops = {
2027 .ndo_open = netvsc_open,
2028 .ndo_stop = netvsc_close,
2029 .ndo_start_xmit = netvsc_start_xmit,
2030 .ndo_change_rx_flags = netvsc_change_rx_flags,
2031 .ndo_set_rx_mode = netvsc_set_rx_mode,
2032 .ndo_fix_features = netvsc_fix_features,
2033 .ndo_set_features = netvsc_set_features,
2034 .ndo_change_mtu = netvsc_change_mtu,
2035 .ndo_validate_addr = eth_validate_addr,
2036 .ndo_set_mac_address = netvsc_set_mac_addr,
2037 .ndo_select_queue = netvsc_select_queue,
2038 .ndo_get_stats64 = netvsc_get_stats64,
2039 .ndo_bpf = netvsc_bpf,
2040 .ndo_xdp_xmit = netvsc_ndoxdp_xmit,
2041 };
2042
2043 /*
2044 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2045 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2046 * present send GARP packet to network peers with netif_notify_peers().
2047 */
netvsc_link_change(struct work_struct * w)2048 static void netvsc_link_change(struct work_struct *w)
2049 {
2050 struct net_device_context *ndev_ctx =
2051 container_of(w, struct net_device_context, dwork.work);
2052 struct hv_device *device_obj = ndev_ctx->device_ctx;
2053 struct net_device *net = hv_get_drvdata(device_obj);
2054 unsigned long flags, next_reconfig, delay;
2055 struct netvsc_reconfig *event = NULL;
2056 struct netvsc_device *net_device;
2057 struct rndis_device *rdev;
2058 bool reschedule = false;
2059
2060 /* if changes are happening, comeback later */
2061 if (!rtnl_trylock()) {
2062 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2063 return;
2064 }
2065
2066 net_device = rtnl_dereference(ndev_ctx->nvdev);
2067 if (!net_device)
2068 goto out_unlock;
2069
2070 rdev = net_device->extension;
2071
2072 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2073 if (time_is_after_jiffies(next_reconfig)) {
2074 /* link_watch only sends one notification with current state
2075 * per second, avoid doing reconfig more frequently. Handle
2076 * wrap around.
2077 */
2078 delay = next_reconfig - jiffies;
2079 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2080 schedule_delayed_work(&ndev_ctx->dwork, delay);
2081 goto out_unlock;
2082 }
2083 ndev_ctx->last_reconfig = jiffies;
2084
2085 spin_lock_irqsave(&ndev_ctx->lock, flags);
2086 if (!list_empty(&ndev_ctx->reconfig_events)) {
2087 event = list_first_entry(&ndev_ctx->reconfig_events,
2088 struct netvsc_reconfig, list);
2089 list_del(&event->list);
2090 reschedule = !list_empty(&ndev_ctx->reconfig_events);
2091 }
2092 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2093
2094 if (!event)
2095 goto out_unlock;
2096
2097 switch (event->event) {
2098 /* Only the following events are possible due to the check in
2099 * netvsc_linkstatus_callback()
2100 */
2101 case RNDIS_STATUS_MEDIA_CONNECT:
2102 if (rdev->link_state) {
2103 rdev->link_state = false;
2104 netif_carrier_on(net);
2105 netvsc_tx_enable(net_device, net);
2106 } else {
2107 __netdev_notify_peers(net);
2108 }
2109 kfree(event);
2110 break;
2111 case RNDIS_STATUS_MEDIA_DISCONNECT:
2112 if (!rdev->link_state) {
2113 rdev->link_state = true;
2114 netif_carrier_off(net);
2115 netvsc_tx_disable(net_device, net);
2116 }
2117 kfree(event);
2118 break;
2119 case RNDIS_STATUS_NETWORK_CHANGE:
2120 /* Only makes sense if carrier is present */
2121 if (!rdev->link_state) {
2122 rdev->link_state = true;
2123 netif_carrier_off(net);
2124 netvsc_tx_disable(net_device, net);
2125 event->event = RNDIS_STATUS_MEDIA_CONNECT;
2126 spin_lock_irqsave(&ndev_ctx->lock, flags);
2127 list_add(&event->list, &ndev_ctx->reconfig_events);
2128 spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2129 reschedule = true;
2130 }
2131 break;
2132 }
2133
2134 rtnl_unlock();
2135
2136 /* link_watch only sends one notification with current state per
2137 * second, handle next reconfig event in 2 seconds.
2138 */
2139 if (reschedule)
2140 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2141
2142 return;
2143
2144 out_unlock:
2145 rtnl_unlock();
2146 }
2147
get_netvsc_byref(struct net_device * vf_netdev)2148 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2149 {
2150 struct net_device_context *net_device_ctx;
2151 struct net_device *dev;
2152
2153 dev = netdev_master_upper_dev_get(vf_netdev);
2154 if (!dev || dev->netdev_ops != &device_ops)
2155 return NULL; /* not a netvsc device */
2156
2157 net_device_ctx = netdev_priv(dev);
2158 if (!rtnl_dereference(net_device_ctx->nvdev))
2159 return NULL; /* device is removed */
2160
2161 return dev;
2162 }
2163
2164 /* Called when VF is injecting data into network stack.
2165 * Change the associated network device from VF to netvsc.
2166 * note: already called with rcu_read_lock
2167 */
netvsc_vf_handle_frame(struct sk_buff ** pskb)2168 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2169 {
2170 struct sk_buff *skb = *pskb;
2171 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2172 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2173 struct netvsc_vf_pcpu_stats *pcpu_stats
2174 = this_cpu_ptr(ndev_ctx->vf_stats);
2175
2176 skb = skb_share_check(skb, GFP_ATOMIC);
2177 if (unlikely(!skb))
2178 return RX_HANDLER_CONSUMED;
2179
2180 *pskb = skb;
2181
2182 skb->dev = ndev;
2183
2184 u64_stats_update_begin(&pcpu_stats->syncp);
2185 pcpu_stats->rx_packets++;
2186 pcpu_stats->rx_bytes += skb->len;
2187 u64_stats_update_end(&pcpu_stats->syncp);
2188
2189 return RX_HANDLER_ANOTHER;
2190 }
2191
netvsc_vf_join(struct net_device * vf_netdev,struct net_device * ndev,int context)2192 static int netvsc_vf_join(struct net_device *vf_netdev,
2193 struct net_device *ndev, int context)
2194 {
2195 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2196 int ret;
2197
2198 ret = netdev_rx_handler_register(vf_netdev,
2199 netvsc_vf_handle_frame, ndev);
2200 if (ret != 0) {
2201 netdev_err(vf_netdev,
2202 "can not register netvsc VF receive handler (err = %d)\n",
2203 ret);
2204 goto rx_handler_failed;
2205 }
2206
2207 ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2208 NULL, NULL, NULL);
2209 if (ret != 0) {
2210 netdev_err(vf_netdev,
2211 "can not set master device %s (err = %d)\n",
2212 ndev->name, ret);
2213 goto upper_link_failed;
2214 }
2215
2216 /* If this registration is called from probe context vf_takeover
2217 * is taken care of later in probe itself.
2218 */
2219 if (context == VF_REG_IN_NOTIFIER)
2220 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2221
2222 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2223
2224 netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2225 return 0;
2226
2227 upper_link_failed:
2228 netdev_rx_handler_unregister(vf_netdev);
2229 rx_handler_failed:
2230 return ret;
2231 }
2232
__netvsc_vf_setup(struct net_device * ndev,struct net_device * vf_netdev)2233 static void __netvsc_vf_setup(struct net_device *ndev,
2234 struct net_device *vf_netdev)
2235 {
2236 int ret;
2237
2238 /* Align MTU of VF with master */
2239 ret = dev_set_mtu(vf_netdev, ndev->mtu);
2240 if (ret)
2241 netdev_warn(vf_netdev,
2242 "unable to change mtu to %u\n", ndev->mtu);
2243
2244 /* set multicast etc flags on VF */
2245 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2246
2247 /* sync address list from ndev to VF */
2248 netif_addr_lock_bh(ndev);
2249 dev_uc_sync(vf_netdev, ndev);
2250 dev_mc_sync(vf_netdev, ndev);
2251 netif_addr_unlock_bh(ndev);
2252
2253 if (netif_running(ndev)) {
2254 ret = dev_open(vf_netdev, NULL);
2255 if (ret)
2256 netdev_warn(vf_netdev,
2257 "unable to open: %d\n", ret);
2258 }
2259 }
2260
2261 /* Setup VF as slave of the synthetic device.
2262 * Runs in workqueue to avoid recursion in netlink callbacks.
2263 */
netvsc_vf_setup(struct work_struct * w)2264 static void netvsc_vf_setup(struct work_struct *w)
2265 {
2266 struct net_device_context *ndev_ctx
2267 = container_of(w, struct net_device_context, vf_takeover.work);
2268 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2269 struct net_device *vf_netdev;
2270
2271 if (!rtnl_trylock()) {
2272 schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2273 return;
2274 }
2275
2276 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2277 if (vf_netdev)
2278 __netvsc_vf_setup(ndev, vf_netdev);
2279
2280 rtnl_unlock();
2281 }
2282
2283 /* Find netvsc by VF serial number.
2284 * The PCI hyperv controller records the serial number as the slot kobj name.
2285 */
get_netvsc_byslot(const struct net_device * vf_netdev)2286 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2287 {
2288 struct device *parent = vf_netdev->dev.parent;
2289 struct net_device_context *ndev_ctx;
2290 struct net_device *ndev;
2291 struct pci_dev *pdev;
2292 u32 serial;
2293
2294 if (!parent || !dev_is_pci(parent))
2295 return NULL; /* not a PCI device */
2296
2297 pdev = to_pci_dev(parent);
2298 if (!pdev->slot) {
2299 netdev_notice(vf_netdev, "no PCI slot information\n");
2300 return NULL;
2301 }
2302
2303 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2304 netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2305 pci_slot_name(pdev->slot));
2306 return NULL;
2307 }
2308
2309 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2310 if (!ndev_ctx->vf_alloc)
2311 continue;
2312
2313 if (ndev_ctx->vf_serial != serial)
2314 continue;
2315
2316 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2317 if (ndev->addr_len != vf_netdev->addr_len ||
2318 memcmp(ndev->perm_addr, vf_netdev->perm_addr,
2319 ndev->addr_len) != 0)
2320 continue;
2321
2322 return ndev;
2323
2324 }
2325
2326 /* Fallback path to check synthetic vf with help of mac addr.
2327 * Because this function can be called before vf_netdev is
2328 * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied
2329 * from dev_addr, also try to match to its dev_addr.
2330 * Note: On Hyper-V and Azure, it's not possible to set a MAC address
2331 * on a VF that matches to the MAC of a unrelated NETVSC device.
2332 */
2333 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2334 ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2335 if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) ||
2336 ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr))
2337 return ndev;
2338 }
2339
2340 netdev_notice(vf_netdev,
2341 "no netdev found for vf serial:%u\n", serial);
2342 return NULL;
2343 }
2344
netvsc_prepare_bonding(struct net_device * vf_netdev)2345 static int netvsc_prepare_bonding(struct net_device *vf_netdev)
2346 {
2347 struct net_device *ndev;
2348
2349 ndev = get_netvsc_byslot(vf_netdev);
2350 if (!ndev)
2351 return NOTIFY_DONE;
2352
2353 /* set slave flag before open to prevent IPv6 addrconf */
2354 vf_netdev->flags |= IFF_SLAVE;
2355 return NOTIFY_DONE;
2356 }
2357
netvsc_register_vf(struct net_device * vf_netdev,int context)2358 static int netvsc_register_vf(struct net_device *vf_netdev, int context)
2359 {
2360 struct net_device_context *net_device_ctx;
2361 struct netvsc_device *netvsc_dev;
2362 struct bpf_prog *prog;
2363 struct net_device *ndev;
2364 int ret;
2365
2366 if (vf_netdev->addr_len != ETH_ALEN)
2367 return NOTIFY_DONE;
2368
2369 ndev = get_netvsc_byslot(vf_netdev);
2370 if (!ndev)
2371 return NOTIFY_DONE;
2372
2373 net_device_ctx = netdev_priv(ndev);
2374 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2375 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2376 return NOTIFY_DONE;
2377
2378 /* if synthetic interface is a different namespace,
2379 * then move the VF to that namespace; join will be
2380 * done again in that context.
2381 */
2382 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2383 ret = dev_change_net_namespace(vf_netdev,
2384 dev_net(ndev), "eth%d");
2385 if (ret)
2386 netdev_err(vf_netdev,
2387 "could not move to same namespace as %s: %d\n",
2388 ndev->name, ret);
2389 else
2390 netdev_info(vf_netdev,
2391 "VF moved to namespace with: %s\n",
2392 ndev->name);
2393 return NOTIFY_DONE;
2394 }
2395
2396 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2397
2398 if (netvsc_vf_join(vf_netdev, ndev, context) != 0)
2399 return NOTIFY_DONE;
2400
2401 dev_hold(vf_netdev);
2402 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2403
2404 if (ndev->needed_headroom < vf_netdev->needed_headroom)
2405 ndev->needed_headroom = vf_netdev->needed_headroom;
2406
2407 vf_netdev->wanted_features = ndev->features;
2408 netdev_update_features(vf_netdev);
2409
2410 prog = netvsc_xdp_get(netvsc_dev);
2411 netvsc_vf_setxdp(vf_netdev, prog);
2412
2413 return NOTIFY_OK;
2414 }
2415
2416 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2417 *
2418 * Typically a UP or DOWN event is followed by a CHANGE event, so
2419 * net_device_ctx->data_path_is_vf is used to cache the current data path
2420 * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2421 * message.
2422 *
2423 * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2424 * interface, there is only the CHANGE event and no UP or DOWN event.
2425 */
netvsc_vf_changed(struct net_device * vf_netdev,unsigned long event)2426 static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event)
2427 {
2428 struct net_device_context *net_device_ctx;
2429 struct netvsc_device *netvsc_dev;
2430 struct net_device *ndev;
2431 bool vf_is_up = false;
2432 int ret;
2433
2434 if (event != NETDEV_GOING_DOWN)
2435 vf_is_up = netif_running(vf_netdev);
2436
2437 ndev = get_netvsc_byref(vf_netdev);
2438 if (!ndev)
2439 return NOTIFY_DONE;
2440
2441 net_device_ctx = netdev_priv(ndev);
2442 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2443 if (!netvsc_dev)
2444 return NOTIFY_DONE;
2445
2446 if (net_device_ctx->data_path_is_vf == vf_is_up)
2447 return NOTIFY_OK;
2448
2449 if (vf_is_up && !net_device_ctx->vf_alloc) {
2450 netdev_info(ndev, "Waiting for the VF association from host\n");
2451 wait_for_completion(&net_device_ctx->vf_add);
2452 }
2453
2454 ret = netvsc_switch_datapath(ndev, vf_is_up);
2455
2456 if (ret) {
2457 netdev_err(ndev,
2458 "Data path failed to switch %s VF: %s, err: %d\n",
2459 vf_is_up ? "to" : "from", vf_netdev->name, ret);
2460 return NOTIFY_DONE;
2461 } else {
2462 netdev_info(ndev, "Data path switched %s VF: %s\n",
2463 vf_is_up ? "to" : "from", vf_netdev->name);
2464 }
2465
2466 return NOTIFY_OK;
2467 }
2468
netvsc_unregister_vf(struct net_device * vf_netdev)2469 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2470 {
2471 struct net_device *ndev;
2472 struct net_device_context *net_device_ctx;
2473
2474 ndev = get_netvsc_byref(vf_netdev);
2475 if (!ndev)
2476 return NOTIFY_DONE;
2477
2478 net_device_ctx = netdev_priv(ndev);
2479 cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2480
2481 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2482
2483 netvsc_vf_setxdp(vf_netdev, NULL);
2484
2485 reinit_completion(&net_device_ctx->vf_add);
2486 netdev_rx_handler_unregister(vf_netdev);
2487 netdev_upper_dev_unlink(vf_netdev, ndev);
2488 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2489 dev_put(vf_netdev);
2490
2491 ndev->needed_headroom = RNDIS_AND_PPI_SIZE;
2492
2493 return NOTIFY_OK;
2494 }
2495
check_dev_is_matching_vf(struct net_device * event_ndev)2496 static int check_dev_is_matching_vf(struct net_device *event_ndev)
2497 {
2498 /* Skip NetVSC interfaces */
2499 if (event_ndev->netdev_ops == &device_ops)
2500 return -ENODEV;
2501
2502 /* Avoid non-Ethernet type devices */
2503 if (event_ndev->type != ARPHRD_ETHER)
2504 return -ENODEV;
2505
2506 /* Avoid Vlan dev with same MAC registering as VF */
2507 if (is_vlan_dev(event_ndev))
2508 return -ENODEV;
2509
2510 /* Avoid Bonding master dev with same MAC registering as VF */
2511 if (netif_is_bond_master(event_ndev))
2512 return -ENODEV;
2513
2514 return 0;
2515 }
2516
netvsc_probe(struct hv_device * dev,const struct hv_vmbus_device_id * dev_id)2517 static int netvsc_probe(struct hv_device *dev,
2518 const struct hv_vmbus_device_id *dev_id)
2519 {
2520 struct net_device *net = NULL, *vf_netdev;
2521 struct net_device_context *net_device_ctx;
2522 struct netvsc_device_info *device_info = NULL;
2523 struct netvsc_device *nvdev;
2524 int ret = -ENOMEM;
2525
2526 net = alloc_etherdev_mq(sizeof(struct net_device_context),
2527 VRSS_CHANNEL_MAX);
2528 if (!net)
2529 goto no_net;
2530
2531 netif_carrier_off(net);
2532
2533 netvsc_init_settings(net);
2534
2535 net_device_ctx = netdev_priv(net);
2536 net_device_ctx->device_ctx = dev;
2537 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2538 if (netif_msg_probe(net_device_ctx))
2539 netdev_dbg(net, "netvsc msg_enable: %d\n",
2540 net_device_ctx->msg_enable);
2541
2542 hv_set_drvdata(dev, net);
2543
2544 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2545
2546 init_completion(&net_device_ctx->vf_add);
2547 spin_lock_init(&net_device_ctx->lock);
2548 INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2549 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2550
2551 net_device_ctx->vf_stats
2552 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2553 if (!net_device_ctx->vf_stats)
2554 goto no_stats;
2555
2556 net->netdev_ops = &device_ops;
2557 net->ethtool_ops = ðtool_ops;
2558 SET_NETDEV_DEV(net, &dev->device);
2559 dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1);
2560
2561 /* We always need headroom for rndis header */
2562 net->needed_headroom = RNDIS_AND_PPI_SIZE;
2563
2564 /* Initialize the number of queues to be 1, we may change it if more
2565 * channels are offered later.
2566 */
2567 netif_set_real_num_tx_queues(net, 1);
2568 netif_set_real_num_rx_queues(net, 1);
2569
2570 /* Notify the netvsc driver of the new device */
2571 device_info = netvsc_devinfo_get(NULL);
2572
2573 if (!device_info) {
2574 ret = -ENOMEM;
2575 goto devinfo_failed;
2576 }
2577
2578 /* We must get rtnl lock before scheduling nvdev->subchan_work,
2579 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2580 * all subchannels to show up, but that may not happen because
2581 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2582 * -> ... -> device_add() -> ... -> __device_attach() can't get
2583 * the device lock, so all the subchannels can't be processed --
2584 * finally netvsc_subchan_work() hangs forever.
2585 *
2586 * The rtnl lock also needs to be held before rndis_filter_device_add()
2587 * which advertises nvsp_2_vsc_capability / sriov bit, and triggers
2588 * VF NIC offering and registering. If VF NIC finished register_netdev()
2589 * earlier it may cause name based config failure.
2590 */
2591 rtnl_lock();
2592
2593 nvdev = rndis_filter_device_add(dev, device_info);
2594 if (IS_ERR(nvdev)) {
2595 ret = PTR_ERR(nvdev);
2596 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2597 goto rndis_failed;
2598 }
2599
2600 eth_hw_addr_set(net, device_info->mac_adr);
2601
2602 if (nvdev->num_chn > 1)
2603 schedule_work(&nvdev->subchan_work);
2604
2605 /* hw_features computed in rndis_netdev_set_hwcaps() */
2606 net->features = net->hw_features |
2607 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2608 NETIF_F_HW_VLAN_CTAG_RX;
2609 net->vlan_features = net->features;
2610
2611 netdev_lockdep_set_classes(net);
2612
2613 net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2614 NETDEV_XDP_ACT_NDO_XMIT;
2615
2616 /* MTU range: 68 - 1500 or 65521 */
2617 net->min_mtu = NETVSC_MTU_MIN;
2618 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2619 net->max_mtu = NETVSC_MTU - ETH_HLEN;
2620 else
2621 net->max_mtu = ETH_DATA_LEN;
2622
2623 nvdev->tx_disable = false;
2624
2625 ret = register_netdevice(net);
2626 if (ret != 0) {
2627 pr_err("Unable to register netdev.\n");
2628 goto register_failed;
2629 }
2630
2631 list_add(&net_device_ctx->list, &netvsc_dev_list);
2632
2633 /* When the hv_netvsc driver is unloaded and reloaded, the
2634 * NET_DEVICE_REGISTER for the vf device is replayed before probe
2635 * is complete. This is because register_netdevice_notifier() gets
2636 * registered before vmbus_driver_register() so that callback func
2637 * is set before probe and we don't miss events like NETDEV_POST_INIT
2638 * So, in this section we try to register the matching vf device that
2639 * is present as a netdevice, knowing that its register call is not
2640 * processed in the netvsc_netdev_notifier(as probing is progress and
2641 * get_netvsc_byslot fails).
2642 */
2643 for_each_netdev(dev_net(net), vf_netdev) {
2644 ret = check_dev_is_matching_vf(vf_netdev);
2645 if (ret != 0)
2646 continue;
2647
2648 if (net != get_netvsc_byslot(vf_netdev))
2649 continue;
2650
2651 netvsc_prepare_bonding(vf_netdev);
2652 netvsc_register_vf(vf_netdev, VF_REG_IN_PROBE);
2653 __netvsc_vf_setup(net, vf_netdev);
2654 break;
2655 }
2656 rtnl_unlock();
2657
2658 netvsc_devinfo_put(device_info);
2659 return 0;
2660
2661 register_failed:
2662 rndis_filter_device_remove(dev, nvdev);
2663 rndis_failed:
2664 rtnl_unlock();
2665 netvsc_devinfo_put(device_info);
2666 devinfo_failed:
2667 free_percpu(net_device_ctx->vf_stats);
2668 no_stats:
2669 hv_set_drvdata(dev, NULL);
2670 free_netdev(net);
2671 no_net:
2672 return ret;
2673 }
2674
netvsc_remove(struct hv_device * dev)2675 static void netvsc_remove(struct hv_device *dev)
2676 {
2677 struct net_device_context *ndev_ctx;
2678 struct net_device *vf_netdev, *net;
2679 struct netvsc_device *nvdev;
2680
2681 net = hv_get_drvdata(dev);
2682 if (net == NULL) {
2683 dev_err(&dev->device, "No net device to remove\n");
2684 return;
2685 }
2686
2687 ndev_ctx = netdev_priv(net);
2688
2689 cancel_delayed_work_sync(&ndev_ctx->dwork);
2690
2691 rtnl_lock();
2692 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2693 if (nvdev) {
2694 cancel_work_sync(&nvdev->subchan_work);
2695 netvsc_xdp_set(net, NULL, NULL, nvdev);
2696 }
2697
2698 /*
2699 * Call to the vsc driver to let it know that the device is being
2700 * removed. Also blocks mtu and channel changes.
2701 */
2702 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2703 if (vf_netdev)
2704 netvsc_unregister_vf(vf_netdev);
2705
2706 if (nvdev)
2707 rndis_filter_device_remove(dev, nvdev);
2708
2709 unregister_netdevice(net);
2710 list_del(&ndev_ctx->list);
2711
2712 rtnl_unlock();
2713
2714 hv_set_drvdata(dev, NULL);
2715
2716 free_percpu(ndev_ctx->vf_stats);
2717 free_netdev(net);
2718 }
2719
netvsc_suspend(struct hv_device * dev)2720 static int netvsc_suspend(struct hv_device *dev)
2721 {
2722 struct net_device_context *ndev_ctx;
2723 struct netvsc_device *nvdev;
2724 struct net_device *net;
2725 int ret;
2726
2727 net = hv_get_drvdata(dev);
2728
2729 ndev_ctx = netdev_priv(net);
2730 cancel_delayed_work_sync(&ndev_ctx->dwork);
2731
2732 rtnl_lock();
2733
2734 nvdev = rtnl_dereference(ndev_ctx->nvdev);
2735 if (nvdev == NULL) {
2736 ret = -ENODEV;
2737 goto out;
2738 }
2739
2740 /* Save the current config info */
2741 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2742 if (!ndev_ctx->saved_netvsc_dev_info) {
2743 ret = -ENOMEM;
2744 goto out;
2745 }
2746 ret = netvsc_detach(net, nvdev);
2747 out:
2748 rtnl_unlock();
2749
2750 return ret;
2751 }
2752
netvsc_resume(struct hv_device * dev)2753 static int netvsc_resume(struct hv_device *dev)
2754 {
2755 struct net_device *net = hv_get_drvdata(dev);
2756 struct net_device_context *net_device_ctx;
2757 struct netvsc_device_info *device_info;
2758 int ret;
2759
2760 rtnl_lock();
2761
2762 net_device_ctx = netdev_priv(net);
2763
2764 /* Reset the data path to the netvsc NIC before re-opening the vmbus
2765 * channel. Later netvsc_netdev_event() will switch the data path to
2766 * the VF upon the UP or CHANGE event.
2767 */
2768 net_device_ctx->data_path_is_vf = false;
2769 device_info = net_device_ctx->saved_netvsc_dev_info;
2770
2771 ret = netvsc_attach(net, device_info);
2772
2773 netvsc_devinfo_put(device_info);
2774 net_device_ctx->saved_netvsc_dev_info = NULL;
2775
2776 rtnl_unlock();
2777
2778 return ret;
2779 }
2780 static const struct hv_vmbus_device_id id_table[] = {
2781 /* Network guid */
2782 { HV_NIC_GUID, },
2783 { },
2784 };
2785
2786 MODULE_DEVICE_TABLE(vmbus, id_table);
2787
2788 /* The one and only one */
2789 static struct hv_driver netvsc_drv = {
2790 .name = KBUILD_MODNAME,
2791 .id_table = id_table,
2792 .probe = netvsc_probe,
2793 .remove = netvsc_remove,
2794 .suspend = netvsc_suspend,
2795 .resume = netvsc_resume,
2796 .driver = {
2797 .probe_type = PROBE_FORCE_SYNCHRONOUS,
2798 },
2799 };
2800
2801 /* Set VF's namespace same as the synthetic NIC */
netvsc_event_set_vf_ns(struct net_device * ndev)2802 static void netvsc_event_set_vf_ns(struct net_device *ndev)
2803 {
2804 struct net_device_context *ndev_ctx = netdev_priv(ndev);
2805 struct net_device *vf_netdev;
2806 int ret;
2807
2808 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2809 if (!vf_netdev)
2810 return;
2811
2812 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2813 ret = dev_change_net_namespace(vf_netdev, dev_net(ndev),
2814 "eth%d");
2815 if (ret)
2816 netdev_err(vf_netdev,
2817 "Cannot move to same namespace as %s: %d\n",
2818 ndev->name, ret);
2819 else
2820 netdev_info(vf_netdev,
2821 "Moved VF to namespace with: %s\n",
2822 ndev->name);
2823 }
2824 }
2825
2826 /*
2827 * On Hyper-V, every VF interface is matched with a corresponding
2828 * synthetic interface. The synthetic interface is presented first
2829 * to the guest. When the corresponding VF instance is registered,
2830 * we will take care of switching the data path.
2831 */
netvsc_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)2832 static int netvsc_netdev_event(struct notifier_block *this,
2833 unsigned long event, void *ptr)
2834 {
2835 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2836 int ret = 0;
2837
2838 if (event_dev->netdev_ops == &device_ops && event == NETDEV_REGISTER) {
2839 netvsc_event_set_vf_ns(event_dev);
2840 return NOTIFY_DONE;
2841 }
2842
2843 ret = check_dev_is_matching_vf(event_dev);
2844 if (ret != 0)
2845 return NOTIFY_DONE;
2846
2847 switch (event) {
2848 case NETDEV_POST_INIT:
2849 return netvsc_prepare_bonding(event_dev);
2850 case NETDEV_REGISTER:
2851 return netvsc_register_vf(event_dev, VF_REG_IN_NOTIFIER);
2852 case NETDEV_UNREGISTER:
2853 return netvsc_unregister_vf(event_dev);
2854 case NETDEV_UP:
2855 case NETDEV_DOWN:
2856 case NETDEV_CHANGE:
2857 case NETDEV_GOING_DOWN:
2858 return netvsc_vf_changed(event_dev, event);
2859 default:
2860 return NOTIFY_DONE;
2861 }
2862 }
2863
2864 static struct notifier_block netvsc_netdev_notifier = {
2865 .notifier_call = netvsc_netdev_event,
2866 };
2867
netvsc_drv_exit(void)2868 static void __exit netvsc_drv_exit(void)
2869 {
2870 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2871 vmbus_driver_unregister(&netvsc_drv);
2872 }
2873
netvsc_drv_init(void)2874 static int __init netvsc_drv_init(void)
2875 {
2876 int ret;
2877
2878 if (ring_size < RING_SIZE_MIN) {
2879 ring_size = RING_SIZE_MIN;
2880 pr_info("Increased ring_size to %u (min allowed)\n",
2881 ring_size);
2882 }
2883 netvsc_ring_bytes = VMBUS_RING_SIZE(ring_size * 4096);
2884
2885 register_netdevice_notifier(&netvsc_netdev_notifier);
2886
2887 ret = vmbus_driver_register(&netvsc_drv);
2888 if (ret)
2889 goto err_vmbus_reg;
2890
2891 return 0;
2892
2893 err_vmbus_reg:
2894 unregister_netdevice_notifier(&netvsc_netdev_notifier);
2895 return ret;
2896 }
2897
2898 MODULE_LICENSE("GPL");
2899 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2900
2901 module_init(netvsc_drv_init);
2902 module_exit(netvsc_drv_exit);
2903