1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (C) 2011-2014 Matteo Landi
5 * Copyright (C) 2011-2016 Luigi Rizzo
6 * Copyright (C) 2011-2016 Giuseppe Lettieri
7 * Copyright (C) 2011-2016 Vincenzo Maffione
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32
33 /*
34 *
35 * This module supports memory mapped access to network devices,
36 * see netmap(4).
37 *
38 * The module uses a large, memory pool allocated by the kernel
39 * and accessible as mmapped memory by multiple userspace threads/processes.
40 * The memory pool contains packet buffers and "netmap rings",
41 * i.e. user-accessible copies of the interface's queues.
42 *
43 * Access to the network card works like this:
44 * 1. a process/thread issues one or more open() on /dev/netmap, to create
45 * select()able file descriptor on which events are reported.
46 * 2. on each descriptor, the process issues an ioctl() to identify
47 * the interface that should report events to the file descriptor.
48 * 3. on each descriptor, the process issues an mmap() request to
49 * map the shared memory region within the process' address space.
50 * The list of interesting queues is indicated by a location in
51 * the shared memory region.
52 * 4. using the functions in the netmap(4) userspace API, a process
53 * can look up the occupation state of a queue, access memory buffers,
54 * and retrieve received packets or enqueue packets to transmit.
55 * 5. using some ioctl()s the process can synchronize the userspace view
56 * of the queue with the actual status in the kernel. This includes both
57 * receiving the notification of new packets, and transmitting new
58 * packets on the output interface.
59 * 6. select() or poll() can be used to wait for events on individual
60 * transmit or receive queues (or all queues for a given interface).
61 *
62
63 SYNCHRONIZATION (USER)
64
65 The netmap rings and data structures may be shared among multiple
66 user threads or even independent processes.
67 Any synchronization among those threads/processes is delegated
68 to the threads themselves. Only one thread at a time can be in
69 a system call on the same netmap ring. The OS does not enforce
70 this and only guarantees against system crashes in case of
71 invalid usage.
72
73 LOCKING (INTERNAL)
74
75 Within the kernel, access to the netmap rings is protected as follows:
76
77 - a spinlock on each ring, to handle producer/consumer races on
78 RX rings attached to the host stack (against multiple host
79 threads writing from the host stack to the same ring),
80 and on 'destination' rings attached to a VALE switch
81 (i.e. RX rings in VALE ports, and TX rings in NIC/host ports)
82 protecting multiple active senders for the same destination)
83
84 - an atomic variable to guarantee that there is at most one
85 instance of *_*xsync() on the ring at any time.
86 For rings connected to user file
87 descriptors, an atomic_test_and_set() protects this, and the
88 lock on the ring is not actually used.
89 For NIC RX rings connected to a VALE switch, an atomic_test_and_set()
90 is also used to prevent multiple executions (the driver might indeed
91 already guarantee this).
92 For NIC TX rings connected to a VALE switch, the lock arbitrates
93 access to the queue (both when allocating buffers and when pushing
94 them out).
95
96 - *xsync() should be protected against initializations of the card.
97 On FreeBSD most devices have the reset routine protected by
98 a RING lock (ixgbe, igb, em) or core lock (re). lem is missing
99 the RING protection on rx_reset(), this should be added.
100
101 On linux there is an external lock on the tx path, which probably
102 also arbitrates access to the reset routine. XXX to be revised
103
104 - a per-interface core_lock protecting access from the host stack
105 while interfaces may be detached from netmap mode.
106 XXX there should be no need for this lock if we detach the interfaces
107 only while they are down.
108
109
110 --- VALE SWITCH ---
111
112 NMG_LOCK() serializes all modifications to switches and ports.
113 A switch cannot be deleted until all ports are gone.
114
115 For each switch, an SX lock (RWlock on linux) protects
116 deletion of ports. When configuring or deleting a new port, the
117 lock is acquired in exclusive mode (after holding NMG_LOCK).
118 When forwarding, the lock is acquired in shared mode (without NMG_LOCK).
119 The lock is held throughout the entire forwarding cycle,
120 during which the thread may incur in a page fault.
121 Hence it is important that sleepable shared locks are used.
122
123 On the rx ring, the per-port lock is grabbed initially to reserve
124 a number of slot in the ring, then the lock is released,
125 packets are copied from source to destination, and then
126 the lock is acquired again and the receive ring is updated.
127 (A similar thing is done on the tx ring for NIC and host stack
128 ports attached to the switch)
129
130 */
131
132
133 /* --- internals ----
134 *
135 * Roadmap to the code that implements the above.
136 *
137 * > 1. a process/thread issues one or more open() on /dev/netmap, to create
138 * > select()able file descriptor on which events are reported.
139 *
140 * Internally, we allocate a netmap_priv_d structure, that will be
141 * initialized on ioctl(NIOCREGIF). There is one netmap_priv_d
142 * structure for each open().
143 *
144 * os-specific:
145 * FreeBSD: see netmap_open() (netmap_freebsd.c)
146 * linux: see linux_netmap_open() (netmap_linux.c)
147 *
148 * > 2. on each descriptor, the process issues an ioctl() to identify
149 * > the interface that should report events to the file descriptor.
150 *
151 * Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0.
152 * Most important things happen in netmap_get_na() and
153 * netmap_do_regif(), called from there. Additional details can be
154 * found in the comments above those functions.
155 *
156 * In all cases, this action creates/takes-a-reference-to a
157 * netmap_*_adapter describing the port, and allocates a netmap_if
158 * and all necessary netmap rings, filling them with netmap buffers.
159 *
160 * In this phase, the sync callbacks for each ring are set (these are used
161 * in steps 5 and 6 below). The callbacks depend on the type of adapter.
162 * The adapter creation/initialization code puts them in the
163 * netmap_adapter (fields na->nm_txsync and na->nm_rxsync). Then, they
164 * are copied from there to the netmap_kring's during netmap_do_regif(), by
165 * the nm_krings_create() callback. All the nm_krings_create callbacks
166 * actually call netmap_krings_create() to perform this and the other
167 * common stuff. netmap_krings_create() also takes care of the host rings,
168 * if needed, by setting their sync callbacks appropriately.
169 *
170 * Additional actions depend on the kind of netmap_adapter that has been
171 * registered:
172 *
173 * - netmap_hw_adapter: [netmap.c]
174 * This is a system netdev/ifp with native netmap support.
175 * The ifp is detached from the host stack by redirecting:
176 * - transmissions (from the network stack) to netmap_transmit()
177 * - receive notifications to the nm_notify() callback for
178 * this adapter. The callback is normally netmap_notify(), unless
179 * the ifp is attached to a bridge using bwrap, in which case it
180 * is netmap_bwrap_intr_notify().
181 *
182 * - netmap_generic_adapter: [netmap_generic.c]
183 * A system netdev/ifp without native netmap support.
184 *
185 * (the decision about native/non native support is taken in
186 * netmap_get_hw_na(), called by netmap_get_na())
187 *
188 * - netmap_vp_adapter [netmap_vale.c]
189 * Returned by netmap_get_bdg_na().
190 * This is a persistent or ephemeral VALE port. Ephemeral ports
191 * are created on the fly if they don't already exist, and are
192 * always attached to a bridge.
193 * Persistent VALE ports must must be created separately, and i
194 * then attached like normal NICs. The NIOCREGIF we are examining
195 * will find them only if they had previously been created and
196 * attached (see VALE_CTL below).
197 *
198 * - netmap_pipe_adapter [netmap_pipe.c]
199 * Returned by netmap_get_pipe_na().
200 * Both pipe ends are created, if they didn't already exist.
201 *
202 * - netmap_monitor_adapter [netmap_monitor.c]
203 * Returned by netmap_get_monitor_na().
204 * If successful, the nm_sync callbacks of the monitored adapter
205 * will be intercepted by the returned monitor.
206 *
207 * - netmap_bwrap_adapter [netmap_vale.c]
208 * Cannot be obtained in this way, see VALE_CTL below
209 *
210 *
211 * os-specific:
212 * linux: we first go through linux_netmap_ioctl() to
213 * adapt the FreeBSD interface to the linux one.
214 *
215 *
216 * > 3. on each descriptor, the process issues an mmap() request to
217 * > map the shared memory region within the process' address space.
218 * > The list of interesting queues is indicated by a location in
219 * > the shared memory region.
220 *
221 * os-specific:
222 * FreeBSD: netmap_mmap_single (netmap_freebsd.c).
223 * linux: linux_netmap_mmap (netmap_linux.c).
224 *
225 * > 4. using the functions in the netmap(4) userspace API, a process
226 * > can look up the occupation state of a queue, access memory buffers,
227 * > and retrieve received packets or enqueue packets to transmit.
228 *
229 * these actions do not involve the kernel.
230 *
231 * > 5. using some ioctl()s the process can synchronize the userspace view
232 * > of the queue with the actual status in the kernel. This includes both
233 * > receiving the notification of new packets, and transmitting new
234 * > packets on the output interface.
235 *
236 * These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC
237 * cases. They invoke the nm_sync callbacks on the netmap_kring
238 * structures, as initialized in step 2 and maybe later modified
239 * by a monitor. Monitors, however, will always call the original
240 * callback before doing anything else.
241 *
242 *
243 * > 6. select() or poll() can be used to wait for events on individual
244 * > transmit or receive queues (or all queues for a given interface).
245 *
246 * Implemented in netmap_poll(). This will call the same nm_sync()
247 * callbacks as in step 5 above.
248 *
249 * os-specific:
250 * linux: we first go through linux_netmap_poll() to adapt
251 * the FreeBSD interface to the linux one.
252 *
253 *
254 * ---- VALE_CTL -----
255 *
256 * VALE switches are controlled by issuing a NIOCREGIF with a non-null
257 * nr_cmd in the nmreq structure. These subcommands are handled by
258 * netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created
259 * and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF
260 * subcommands, respectively.
261 *
262 * Any network interface known to the system (including a persistent VALE
263 * port) can be attached to a VALE switch by issuing the
264 * NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports
265 * look exactly like ephemeral VALE ports (as created in step 2 above). The
266 * attachment of other interfaces, instead, requires the creation of a
267 * netmap_bwrap_adapter. Moreover, the attached interface must be put in
268 * netmap mode. This may require the creation of a netmap_generic_adapter if
269 * we have no native support for the interface, or if generic adapters have
270 * been forced by sysctl.
271 *
272 * Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(),
273 * called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach()
274 * callback. In the case of the bwrap, the callback creates the
275 * netmap_bwrap_adapter. The initialization of the bwrap is then
276 * completed by calling netmap_do_regif() on it, in the nm_bdg_ctl()
277 * callback (netmap_bwrap_bdg_ctl in netmap_vale.c).
278 * A generic adapter for the wrapped ifp will be created if needed, when
279 * netmap_get_bdg_na() calls netmap_get_hw_na().
280 *
281 *
282 * ---- DATAPATHS -----
283 *
284 * -= SYSTEM DEVICE WITH NATIVE SUPPORT =-
285 *
286 * na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach()
287 *
288 * - tx from netmap userspace:
289 * concurrently:
290 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
291 * kring->nm_sync() == DEVICE_netmap_txsync()
292 * 2) device interrupt handler
293 * na->nm_notify() == netmap_notify()
294 * - rx from netmap userspace:
295 * concurrently:
296 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
297 * kring->nm_sync() == DEVICE_netmap_rxsync()
298 * 2) device interrupt handler
299 * na->nm_notify() == netmap_notify()
300 * - rx from host stack
301 * concurrently:
302 * 1) host stack
303 * netmap_transmit()
304 * na->nm_notify == netmap_notify()
305 * 2) ioctl(NIOCRXSYNC)/netmap_poll() in process context
306 * kring->nm_sync() == netmap_rxsync_from_host
307 * netmap_rxsync_from_host(na, NULL, NULL)
308 * - tx to host stack
309 * ioctl(NIOCTXSYNC)/netmap_poll() in process context
310 * kring->nm_sync() == netmap_txsync_to_host
311 * netmap_txsync_to_host(na)
312 * nm_os_send_up()
313 * FreeBSD: na->if_input() == ether_input()
314 * linux: netif_rx() with NM_MAGIC_PRIORITY_RX
315 *
316 *
317 * -= SYSTEM DEVICE WITH GENERIC SUPPORT =-
318 *
319 * na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach()
320 *
321 * - tx from netmap userspace:
322 * concurrently:
323 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
324 * kring->nm_sync() == generic_netmap_txsync()
325 * nm_os_generic_xmit_frame()
326 * linux: dev_queue_xmit() with NM_MAGIC_PRIORITY_TX
327 * ifp->ndo_start_xmit == generic_ndo_start_xmit()
328 * gna->save_start_xmit == orig. dev. start_xmit
329 * FreeBSD: na->if_transmit() == orig. dev if_transmit
330 * 2) generic_mbuf_destructor()
331 * na->nm_notify() == netmap_notify()
332 * - rx from netmap userspace:
333 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
334 * kring->nm_sync() == generic_netmap_rxsync()
335 * mbq_safe_dequeue()
336 * 2) device driver
337 * generic_rx_handler()
338 * mbq_safe_enqueue()
339 * na->nm_notify() == netmap_notify()
340 * - rx from host stack
341 * FreeBSD: same as native
342 * Linux: same as native except:
343 * 1) host stack
344 * dev_queue_xmit() without NM_MAGIC_PRIORITY_TX
345 * ifp->ndo_start_xmit == generic_ndo_start_xmit()
346 * netmap_transmit()
347 * na->nm_notify() == netmap_notify()
348 * - tx to host stack (same as native):
349 *
350 *
351 * -= VALE =-
352 *
353 * INCOMING:
354 *
355 * - VALE ports:
356 * ioctl(NIOCTXSYNC)/netmap_poll() in process context
357 * kring->nm_sync() == netmap_vp_txsync()
358 *
359 * - system device with native support:
360 * from cable:
361 * interrupt
362 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
363 * kring->nm_sync() == DEVICE_netmap_rxsync()
364 * netmap_vp_txsync()
365 * kring->nm_sync() == DEVICE_netmap_rxsync()
366 * from host stack:
367 * netmap_transmit()
368 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
369 * kring->nm_sync() == netmap_rxsync_from_host()
370 * netmap_vp_txsync()
371 *
372 * - system device with generic support:
373 * from device driver:
374 * generic_rx_handler()
375 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
376 * kring->nm_sync() == generic_netmap_rxsync()
377 * netmap_vp_txsync()
378 * kring->nm_sync() == generic_netmap_rxsync()
379 * from host stack:
380 * netmap_transmit()
381 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
382 * kring->nm_sync() == netmap_rxsync_from_host()
383 * netmap_vp_txsync()
384 *
385 * (all cases) --> nm_bdg_flush()
386 * dest_na->nm_notify() == (see below)
387 *
388 * OUTGOING:
389 *
390 * - VALE ports:
391 * concurrently:
392 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
393 * kring->nm_sync() == netmap_vp_rxsync()
394 * 2) from nm_bdg_flush()
395 * na->nm_notify() == netmap_notify()
396 *
397 * - system device with native support:
398 * to cable:
399 * na->nm_notify() == netmap_bwrap_notify()
400 * netmap_vp_rxsync()
401 * kring->nm_sync() == DEVICE_netmap_txsync()
402 * netmap_vp_rxsync()
403 * to host stack:
404 * netmap_vp_rxsync()
405 * kring->nm_sync() == netmap_txsync_to_host
406 * netmap_vp_rxsync_locked()
407 *
408 * - system device with generic adapter:
409 * to device driver:
410 * na->nm_notify() == netmap_bwrap_notify()
411 * netmap_vp_rxsync()
412 * kring->nm_sync() == generic_netmap_txsync()
413 * netmap_vp_rxsync()
414 * to host stack:
415 * netmap_vp_rxsync()
416 * kring->nm_sync() == netmap_txsync_to_host
417 * netmap_vp_rxsync()
418 *
419 */
420
421 /*
422 * OS-specific code that is used only within this file.
423 * Other OS-specific code that must be accessed by drivers
424 * is present in netmap_kern.h
425 */
426
427 #if defined(__FreeBSD__)
428 #include <sys/cdefs.h> /* prerequisite */
429 #include <sys/types.h>
430 #include <sys/errno.h>
431 #include <sys/param.h> /* defines used in kernel.h */
432 #include <sys/kernel.h> /* types used in module initialization */
433 #include <sys/conf.h> /* cdevsw struct, UID, GID */
434 #include <sys/filio.h> /* FIONBIO */
435 #include <sys/sockio.h>
436 #include <sys/socketvar.h> /* struct socket */
437 #include <sys/malloc.h>
438 #include <sys/poll.h>
439 #include <sys/proc.h>
440 #include <sys/rwlock.h>
441 #include <sys/socket.h> /* sockaddrs */
442 #include <sys/selinfo.h>
443 #include <sys/sysctl.h>
444 #include <sys/jail.h>
445 #include <sys/epoch.h>
446 #include <net/vnet.h>
447 #include <net/if.h>
448 #include <net/if_var.h>
449 #include <net/bpf.h> /* BIOCIMMEDIATE */
450 #include <machine/bus.h> /* bus_dmamap_* */
451 #include <sys/endian.h>
452 #include <sys/refcount.h>
453 #include <net/ethernet.h> /* ETHER_BPF_MTAP */
454
455
456 #elif defined(linux)
457
458 #include "bsd_glue.h"
459
460 #elif defined(__APPLE__)
461
462 #warning OSX support is only partial
463 #include "osx_glue.h"
464
465 #elif defined (_WIN32)
466
467 #include "win_glue.h"
468
469 #else
470
471 #error Unsupported platform
472
473 #endif /* unsupported */
474
475 /*
476 * common headers
477 */
478 #include <net/netmap.h>
479 #include <dev/netmap/netmap_kern.h>
480 #include <dev/netmap/netmap_mem2.h>
481
482
483 /* user-controlled variables */
484 int netmap_verbose;
485 #ifdef CONFIG_NETMAP_DEBUG
486 int netmap_debug;
487 #endif /* CONFIG_NETMAP_DEBUG */
488
489 static int netmap_no_timestamp; /* don't timestamp on rxsync */
490 int netmap_no_pendintr = 1;
491 int netmap_txsync_retry = 2;
492 static int netmap_fwd = 0; /* force transparent forwarding */
493
494 /*
495 * netmap_admode selects the netmap mode to use.
496 * Invalid values are reset to NETMAP_ADMODE_BEST
497 */
498 enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */
499 NETMAP_ADMODE_NATIVE, /* either native or none */
500 NETMAP_ADMODE_GENERIC, /* force generic */
501 NETMAP_ADMODE_LAST };
502 static int netmap_admode = NETMAP_ADMODE_BEST;
503
504 /* netmap_generic_mit controls mitigation of RX notifications for
505 * the generic netmap adapter. The value is a time interval in
506 * nanoseconds. */
507 int netmap_generic_mit = 100*1000;
508
509 /* We use by default netmap-aware qdiscs with generic netmap adapters,
510 * even if there can be a little performance hit with hardware NICs.
511 * However, using the qdisc is the safer approach, for two reasons:
512 * 1) it prevents non-fifo qdiscs to break the TX notification
513 * scheme, which is based on mbuf destructors when txqdisc is
514 * not used.
515 * 2) it makes it possible to transmit over software devices that
516 * change skb->dev, like bridge, veth, ...
517 *
518 * Anyway users looking for the best performance should
519 * use native adapters.
520 */
521 #ifdef linux
522 int netmap_generic_txqdisc = 1;
523 #endif
524
525 /* Default number of slots and queues for generic adapters. */
526 int netmap_generic_ringsize = 1024;
527 int netmap_generic_rings = 1;
528
529 /* Non-zero to enable checksum offloading in NIC drivers */
530 int netmap_generic_hwcsum = 0;
531
532 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */
533 int ptnet_vnet_hdr = 1;
534
535 /*
536 * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated
537 * in some other operating systems
538 */
539 SYSBEGIN(main_init);
540
541 SYSCTL_DECL(_dev_netmap);
542 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
543 "Netmap args");
544 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
545 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
546 #ifdef CONFIG_NETMAP_DEBUG
547 SYSCTL_INT(_dev_netmap, OID_AUTO, debug,
548 CTLFLAG_RW, &netmap_debug, 0, "Debug messages");
549 #endif /* CONFIG_NETMAP_DEBUG */
550 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
551 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
552 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr,
553 0, "Always look for new received packets.");
554 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
555 &netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush.");
556
557 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0,
558 "Force NR_FORWARD mode");
559 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0,
560 "Adapter mode. 0 selects the best option available,"
561 "1 forces native adapter, 2 forces emulated adapter");
562 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum,
563 0, "Hardware checksums. 0 to disable checksum generation by the NIC (default),"
564 "1 to enable checksum generation by the NIC");
565 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit,
566 0, "RX notification interval in nanoseconds");
567 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW,
568 &netmap_generic_ringsize, 0,
569 "Number of per-ring slots for emulated netmap mode");
570 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW,
571 &netmap_generic_rings, 0,
572 "Number of TX/RX queues for emulated netmap adapters");
573 #ifdef linux
574 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW,
575 &netmap_generic_txqdisc, 0, "Use qdisc for generic adapters");
576 #endif
577 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr,
578 0, "Allow ptnet devices to use virtio-net headers");
579
580 SYSEND;
581
582 NMG_LOCK_T netmap_global_lock;
583
584 /*
585 * mark the ring as stopped, and run through the locks
586 * to make sure other users get to see it.
587 * stopped must be either NR_KR_STOPPED (for unbounded stop)
588 * of NR_KR_LOCKED (brief stop for mutual exclusion purposes)
589 */
590 static void
netmap_disable_ring(struct netmap_kring * kr,int stopped)591 netmap_disable_ring(struct netmap_kring *kr, int stopped)
592 {
593 nm_kr_stop(kr, stopped);
594 // XXX check if nm_kr_stop is sufficient
595 mtx_lock(&kr->q_lock);
596 mtx_unlock(&kr->q_lock);
597 nm_kr_put(kr);
598 }
599
600 /* stop or enable a single ring */
601 void
netmap_set_ring(struct netmap_adapter * na,u_int ring_id,enum txrx t,int stopped)602 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped)
603 {
604 if (stopped)
605 netmap_disable_ring(NMR(na, t)[ring_id], stopped);
606 else
607 NMR(na, t)[ring_id]->nkr_stopped = 0;
608 }
609
610
611 /* stop or enable all the rings of na */
612 void
netmap_set_all_rings(struct netmap_adapter * na,int stopped)613 netmap_set_all_rings(struct netmap_adapter *na, int stopped)
614 {
615 int i;
616 enum txrx t;
617
618 if (!nm_netmap_on(na))
619 return;
620
621 if (netmap_verbose) {
622 nm_prinf("%s: %sable all rings", na->name,
623 (stopped ? "dis" : "en"));
624 }
625 for_rx_tx(t) {
626 for (i = 0; i < netmap_real_rings(na, t); i++) {
627 netmap_set_ring(na, i, t, stopped);
628 }
629 }
630 }
631
632 /*
633 * Convenience function used in drivers. Waits for current txsync()s/rxsync()s
634 * to finish and prevents any new one from starting. Call this before turning
635 * netmap mode off, or before removing the hardware rings (e.g., on module
636 * onload).
637 */
638 void
netmap_disable_all_rings(if_t ifp)639 netmap_disable_all_rings(if_t ifp)
640 {
641 if (NM_NA_VALID(ifp)) {
642 netmap_set_all_rings(NA(ifp), NM_KR_LOCKED);
643 }
644 }
645
646 /*
647 * Convenience function used in drivers. Re-enables rxsync and txsync on the
648 * adapter's rings In linux drivers, this should be placed near each
649 * napi_enable().
650 */
651 void
netmap_enable_all_rings(if_t ifp)652 netmap_enable_all_rings(if_t ifp)
653 {
654 if (NM_NA_VALID(ifp)) {
655 netmap_set_all_rings(NA(ifp), 0 /* enabled */);
656 }
657 }
658
659 void
netmap_make_zombie(if_t ifp)660 netmap_make_zombie(if_t ifp)
661 {
662 if (NM_NA_VALID(ifp)) {
663 struct netmap_adapter *na = NA(ifp);
664 netmap_set_all_rings(na, NM_KR_LOCKED);
665 na->na_flags |= NAF_ZOMBIE;
666 netmap_set_all_rings(na, 0);
667 }
668 }
669
670 void
netmap_undo_zombie(if_t ifp)671 netmap_undo_zombie(if_t ifp)
672 {
673 if (NM_NA_VALID(ifp)) {
674 struct netmap_adapter *na = NA(ifp);
675 if (na->na_flags & NAF_ZOMBIE) {
676 netmap_set_all_rings(na, NM_KR_LOCKED);
677 na->na_flags &= ~NAF_ZOMBIE;
678 netmap_set_all_rings(na, 0);
679 }
680 }
681 }
682
683 /*
684 * generic bound_checking function
685 */
686 u_int
nm_bound_var(u_int * v,u_int dflt,u_int lo,u_int hi,const char * msg)687 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg)
688 {
689 u_int oldv = *v;
690 const char *op = NULL;
691
692 if (dflt < lo)
693 dflt = lo;
694 if (dflt > hi)
695 dflt = hi;
696 if (oldv < lo) {
697 *v = dflt;
698 op = "Bump";
699 } else if (oldv > hi) {
700 *v = hi;
701 op = "Clamp";
702 }
703 if (op && msg)
704 nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv);
705 return *v;
706 }
707
708
709 /*
710 * packet-dump function, user-supplied or static buffer.
711 * The destination buffer must be at least 30+4*len
712 */
713 const char *
nm_dump_buf(char * p,int len,int lim,char * dst)714 nm_dump_buf(char *p, int len, int lim, char *dst)
715 {
716 static char _dst[8192];
717 int i, j, i0;
718 static char hex[] ="0123456789abcdef";
719 char *o; /* output position */
720
721 #define P_HI(x) hex[((x) & 0xf0)>>4]
722 #define P_LO(x) hex[((x) & 0xf)]
723 #define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.')
724 if (!dst)
725 dst = _dst;
726 if (lim <= 0 || lim > len)
727 lim = len;
728 o = dst;
729 sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim);
730 o += strlen(o);
731 /* hexdump routine */
732 for (i = 0; i < lim; ) {
733 sprintf(o, "%5d: ", i);
734 o += strlen(o);
735 memset(o, ' ', 48);
736 i0 = i;
737 for (j=0; j < 16 && i < lim; i++, j++) {
738 o[j*3] = P_HI(p[i]);
739 o[j*3+1] = P_LO(p[i]);
740 }
741 i = i0;
742 for (j=0; j < 16 && i < lim; i++, j++)
743 o[j + 48] = P_C(p[i]);
744 o[j+48] = '\n';
745 o += j+49;
746 }
747 *o = '\0';
748 #undef P_HI
749 #undef P_LO
750 #undef P_C
751 return dst;
752 }
753
754
755 /*
756 * Fetch configuration from the device, to cope with dynamic
757 * reconfigurations after loading the module.
758 */
759 /* call with NMG_LOCK held */
760 int
netmap_update_config(struct netmap_adapter * na)761 netmap_update_config(struct netmap_adapter *na)
762 {
763 struct nm_config_info info;
764
765 if (na->ifp && !nm_is_bwrap(na)) {
766 strlcpy(na->name, if_name(na->ifp), sizeof(na->name));
767 }
768
769 bzero(&info, sizeof(info));
770 if (na->nm_config == NULL ||
771 na->nm_config(na, &info)) {
772 /* take whatever we had at init time */
773 info.num_tx_rings = na->num_tx_rings;
774 info.num_tx_descs = na->num_tx_desc;
775 info.num_rx_rings = na->num_rx_rings;
776 info.num_rx_descs = na->num_rx_desc;
777 info.rx_buf_maxsize = na->rx_buf_maxsize;
778 }
779
780 if (na->num_tx_rings == info.num_tx_rings &&
781 na->num_tx_desc == info.num_tx_descs &&
782 na->num_rx_rings == info.num_rx_rings &&
783 na->num_rx_desc == info.num_rx_descs &&
784 na->rx_buf_maxsize == info.rx_buf_maxsize)
785 return 0; /* nothing changed */
786 if (na->active_fds == 0) {
787 na->num_tx_rings = info.num_tx_rings;
788 na->num_tx_desc = info.num_tx_descs;
789 na->num_rx_rings = info.num_rx_rings;
790 na->num_rx_desc = info.num_rx_descs;
791 na->rx_buf_maxsize = info.rx_buf_maxsize;
792 if (netmap_verbose)
793 nm_prinf("configuration changed for %s: txring %d x %d, "
794 "rxring %d x %d, rxbufsz %d",
795 na->name, na->num_tx_rings, na->num_tx_desc,
796 na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize);
797 return 0;
798 }
799 nm_prerr("WARNING: configuration changed for %s while active: "
800 "txring %d x %d, rxring %d x %d, rxbufsz %d",
801 na->name, info.num_tx_rings, info.num_tx_descs,
802 info.num_rx_rings, info.num_rx_descs,
803 info.rx_buf_maxsize);
804 return 1;
805 }
806
807 /* nm_sync callbacks for the host rings */
808 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags);
809 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags);
810
811 static int
netmap_default_bufcfg(struct netmap_kring * kring,uint64_t target)812 netmap_default_bufcfg(struct netmap_kring *kring, uint64_t target)
813 {
814 kring->hwbuf_len = target;
815 kring->buf_align = 0; /* no alignment */
816 return 0;
817 }
818
819 /* create the krings array and initialize the fields common to all adapters.
820 * The array layout is this:
821 *
822 * +----------+
823 * na->tx_rings ----->| | \
824 * | | } na->num_tx_ring
825 * | | /
826 * +----------+
827 * | | host tx kring
828 * na->rx_rings ----> +----------+
829 * | | \
830 * | | } na->num_rx_rings
831 * | | /
832 * +----------+
833 * | | host rx kring
834 * +----------+
835 * na->tailroom ----->| | \
836 * | | } tailroom bytes
837 * | | /
838 * +----------+
839 *
840 * Note: for compatibility, host krings are created even when not needed.
841 * The tailroom space is currently used by vale ports for allocating leases.
842 */
843 /* call with NMG_LOCK held */
844 int
netmap_krings_create(struct netmap_adapter * na,u_int tailroom)845 netmap_krings_create(struct netmap_adapter *na, u_int tailroom)
846 {
847 u_int i, len, ndesc;
848 struct netmap_kring *kring;
849 u_int n[NR_TXRX];
850 enum txrx t;
851 int err = 0;
852
853 if (na->tx_rings != NULL) {
854 if (netmap_debug & NM_DEBUG_ON)
855 nm_prerr("warning: krings were already created");
856 return 0;
857 }
858
859 /* account for the (possibly fake) host rings */
860 n[NR_TX] = netmap_all_rings(na, NR_TX);
861 n[NR_RX] = netmap_all_rings(na, NR_RX);
862
863 len = (n[NR_TX] + n[NR_RX]) *
864 (sizeof(struct netmap_kring) + sizeof(struct netmap_kring *))
865 + tailroom;
866
867 na->tx_rings = nm_os_malloc((size_t)len);
868 if (na->tx_rings == NULL) {
869 nm_prerr("Cannot allocate krings");
870 return ENOMEM;
871 }
872 na->rx_rings = na->tx_rings + n[NR_TX];
873 na->tailroom = na->rx_rings + n[NR_RX];
874
875 /* link the krings in the krings array */
876 kring = (struct netmap_kring *)((char *)na->tailroom + tailroom);
877 for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) {
878 na->tx_rings[i] = kring;
879 kring++;
880 }
881
882 /*
883 * All fields in krings are 0 except the one initialized below.
884 * but better be explicit on important kring fields.
885 */
886 for_rx_tx(t) {
887 ndesc = nma_get_ndesc(na, t);
888 for (i = 0; i < n[t]; i++) {
889 kring = NMR(na, t)[i];
890 bzero(kring, sizeof(*kring));
891 kring->notify_na = na;
892 kring->ring_id = i;
893 kring->tx = t;
894 kring->nkr_num_slots = ndesc;
895 kring->nr_mode = NKR_NETMAP_OFF;
896 kring->nr_pending_mode = NKR_NETMAP_OFF;
897 if (i < nma_get_nrings(na, t)) {
898 kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync);
899 kring->nm_bufcfg = na->nm_bufcfg;
900 if (kring->nm_bufcfg == NULL)
901 kring->nm_bufcfg = netmap_default_bufcfg;
902 } else {
903 if (!(na->na_flags & NAF_HOST_RINGS))
904 kring->nr_kflags |= NKR_FAKERING;
905 kring->nm_sync = (t == NR_TX ?
906 netmap_txsync_to_host:
907 netmap_rxsync_from_host);
908 kring->nm_bufcfg = netmap_default_bufcfg;
909 }
910 kring->nm_notify = na->nm_notify;
911 kring->rhead = kring->rcur = kring->nr_hwcur = 0;
912 /*
913 * IMPORTANT: Always keep one slot empty.
914 */
915 kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0);
916 snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name,
917 nm_txrx2str(t), i);
918 nm_prdis("ktx %s h %d c %d t %d",
919 kring->name, kring->rhead, kring->rcur, kring->rtail);
920 err = nm_os_selinfo_init(&kring->si, kring->name);
921 if (err) {
922 netmap_krings_delete(na);
923 return err;
924 }
925 mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF);
926 kring->na = na; /* setting this field marks the mutex as initialized */
927 }
928 err = nm_os_selinfo_init(&na->si[t], na->name);
929 if (err) {
930 netmap_krings_delete(na);
931 return err;
932 }
933 }
934
935 return 0;
936 }
937
938
939 /* undo the actions performed by netmap_krings_create */
940 /* call with NMG_LOCK held */
941 void
netmap_krings_delete(struct netmap_adapter * na)942 netmap_krings_delete(struct netmap_adapter *na)
943 {
944 struct netmap_kring **kring = na->tx_rings;
945 enum txrx t;
946
947 if (na->tx_rings == NULL) {
948 if (netmap_debug & NM_DEBUG_ON)
949 nm_prerr("warning: krings were already deleted");
950 return;
951 }
952
953 for_rx_tx(t)
954 nm_os_selinfo_uninit(&na->si[t]);
955
956 /* we rely on the krings layout described above */
957 for ( ; kring != na->tailroom; kring++) {
958 if ((*kring)->na != NULL)
959 mtx_destroy(&(*kring)->q_lock);
960 nm_os_selinfo_uninit(&(*kring)->si);
961 }
962 nm_os_free(na->tx_rings);
963 na->tx_rings = na->rx_rings = na->tailroom = NULL;
964 }
965
966
967 /*
968 * Destructor for NIC ports. They also have an mbuf queue
969 * on the rings connected to the host so we need to purge
970 * them first.
971 */
972 /* call with NMG_LOCK held */
973 void
netmap_hw_krings_delete(struct netmap_adapter * na)974 netmap_hw_krings_delete(struct netmap_adapter *na)
975 {
976 u_int lim = netmap_real_rings(na, NR_RX), i;
977
978 for (i = nma_get_nrings(na, NR_RX); i < lim; i++) {
979 struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue;
980 nm_prdis("destroy sw mbq with len %d", mbq_len(q));
981 mbq_purge(q);
982 mbq_safe_fini(q);
983 }
984 netmap_krings_delete(na);
985 }
986
987 void
netmap_mem_restore(struct netmap_adapter * na)988 netmap_mem_restore(struct netmap_adapter *na)
989 {
990 if (na->nm_mem_prev) {
991 netmap_mem_put(na->nm_mem);
992 na->nm_mem = na->nm_mem_prev;
993 na->nm_mem_prev = NULL;
994 }
995 }
996
997 static void
netmap_mem_drop(struct netmap_adapter * na)998 netmap_mem_drop(struct netmap_adapter *na)
999 {
1000 netmap_mem_deref(na->nm_mem, na);
1001
1002 if (na->active_fds <= 0) {
1003 /* if the native allocator had been overridden on regif,
1004 * restore it now and drop the temporary one
1005 */
1006 netmap_mem_restore(na);
1007 }
1008 }
1009
1010 static void
netmap_update_hostrings_mode(struct netmap_adapter * na)1011 netmap_update_hostrings_mode(struct netmap_adapter *na)
1012 {
1013 enum txrx t;
1014 struct netmap_kring *kring;
1015 int i;
1016
1017 for_rx_tx(t) {
1018 for (i = nma_get_nrings(na, t);
1019 i < netmap_real_rings(na, t); i++) {
1020 kring = NMR(na, t)[i];
1021 kring->nr_mode = kring->nr_pending_mode;
1022 }
1023 }
1024 }
1025
1026 /*
1027 * Undo everything that was done in netmap_do_regif(). In particular,
1028 * call nm_register(ifp,0) to stop netmap mode on the interface and
1029 * revert to normal operation.
1030 */
1031 /* call with NMG_LOCK held */
1032 static void netmap_unset_ringid(struct netmap_priv_d *);
1033 static void netmap_krings_put(struct netmap_priv_d *);
1034 void
netmap_do_unregif(struct netmap_priv_d * priv)1035 netmap_do_unregif(struct netmap_priv_d *priv)
1036 {
1037 struct netmap_adapter *na = priv->np_na;
1038
1039 NMG_LOCK_ASSERT();
1040 na->active_fds--;
1041 /* unset nr_pending_mode and possibly release exclusive mode */
1042 netmap_krings_put(priv);
1043
1044 #ifdef WITH_MONITOR
1045 /* XXX check whether we have to do something with monitor
1046 * when rings change nr_mode. */
1047 if (na->active_fds <= 0) {
1048 /* walk through all the rings and tell any monitor
1049 * that the port is going to exit netmap mode
1050 */
1051 netmap_monitor_stop(na);
1052 }
1053 #endif
1054
1055 if (na->active_fds <= 0 || nm_kring_pending(priv)) {
1056 netmap_set_all_rings(na, NM_KR_LOCKED);
1057 na->nm_register(na, 0);
1058 netmap_set_all_rings(na, 0);
1059 }
1060
1061 /* delete rings and buffers that are no longer needed */
1062 netmap_mem_rings_delete(na);
1063
1064 if (na->active_fds <= 0) { /* last instance */
1065 /*
1066 * (TO CHECK) We enter here
1067 * when the last reference to this file descriptor goes
1068 * away. This means we cannot have any pending poll()
1069 * or interrupt routine operating on the structure.
1070 * XXX The file may be closed in a thread while
1071 * another thread is using it.
1072 * Linux keeps the file opened until the last reference
1073 * by any outstanding ioctl/poll or mmap is gone.
1074 * FreeBSD does not track mmap()s (but we do) and
1075 * wakes up any sleeping poll(). Need to check what
1076 * happens if the close() occurs while a concurrent
1077 * syscall is running.
1078 */
1079 if (netmap_debug & NM_DEBUG_ON)
1080 nm_prinf("deleting last instance for %s", na->name);
1081
1082 if (nm_netmap_on(na)) {
1083 nm_prerr("BUG: netmap on while going to delete the krings");
1084 }
1085
1086 na->nm_krings_delete(na);
1087
1088 /* restore the default number of host tx and rx rings */
1089 if (na->na_flags & NAF_HOST_RINGS) {
1090 na->num_host_tx_rings = 1;
1091 na->num_host_rx_rings = 1;
1092 } else {
1093 na->num_host_tx_rings = 0;
1094 na->num_host_rx_rings = 0;
1095 }
1096 }
1097
1098 /* possibly decrement counter of tx_si/rx_si users */
1099 netmap_unset_ringid(priv);
1100 /* delete the nifp */
1101 netmap_mem_if_delete(na, priv->np_nifp);
1102 /* drop the allocator */
1103 netmap_mem_drop(na);
1104 /* mark the priv as unregistered */
1105 priv->np_na = NULL;
1106 priv->np_nifp = NULL;
1107 }
1108
1109 struct netmap_priv_d*
netmap_priv_new(void)1110 netmap_priv_new(void)
1111 {
1112 struct netmap_priv_d *priv;
1113
1114 priv = nm_os_malloc(sizeof(struct netmap_priv_d));
1115 if (priv == NULL)
1116 return NULL;
1117 priv->np_refs = 1;
1118 nm_os_get_module();
1119 return priv;
1120 }
1121
1122 /*
1123 * Destructor of the netmap_priv_d, called when the fd is closed
1124 * Action: undo all the things done by NIOCREGIF,
1125 * On FreeBSD we need to track whether there are active mmap()s,
1126 * and we use np_active_mmaps for that. On linux, the field is always 0.
1127 * Return: 1 if we can free priv, 0 otherwise.
1128 *
1129 */
1130 /* call with NMG_LOCK held */
1131 void
netmap_priv_delete(struct netmap_priv_d * priv)1132 netmap_priv_delete(struct netmap_priv_d *priv)
1133 {
1134 struct netmap_adapter *na = priv->np_na;
1135
1136 /* number of active references to this fd */
1137 if (--priv->np_refs > 0) {
1138 return;
1139 }
1140 nm_os_put_module();
1141 if (na) {
1142 netmap_do_unregif(priv);
1143 }
1144 netmap_unget_na(na, priv->np_ifp);
1145 bzero(priv, sizeof(*priv)); /* for safety */
1146 nm_os_free(priv);
1147 }
1148
1149
1150 /* call with NMG_LOCK *not* held */
1151 void
netmap_dtor(void * data)1152 netmap_dtor(void *data)
1153 {
1154 struct netmap_priv_d *priv = data;
1155
1156 NMG_LOCK();
1157 netmap_priv_delete(priv);
1158 NMG_UNLOCK();
1159 }
1160
1161
1162 /*
1163 * Handlers for synchronization of the rings from/to the host stack.
1164 * These are associated to a network interface and are just another
1165 * ring pair managed by userspace.
1166 *
1167 * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD
1168 * flags):
1169 *
1170 * - Before releasing buffers on hw RX rings, the application can mark
1171 * them with the NS_FORWARD flag. During the next RXSYNC or poll(), they
1172 * will be forwarded to the host stack, similarly to what happened if
1173 * the application moved them to the host TX ring.
1174 *
1175 * - Before releasing buffers on the host RX ring, the application can
1176 * mark them with the NS_FORWARD flag. During the next RXSYNC or poll(),
1177 * they will be forwarded to the hw TX rings, saving the application
1178 * from doing the same task in user-space.
1179 *
1180 * Transparent forwarding can be enabled per-ring, by setting the NR_FORWARD
1181 * flag, or globally with the netmap_fwd sysctl.
1182 *
1183 * The transfer NIC --> host is relatively easy, just encapsulate
1184 * into mbufs and we are done. The host --> NIC side is slightly
1185 * harder because there might not be room in the tx ring so it
1186 * might take a while before releasing the buffer.
1187 */
1188
1189
1190 /*
1191 * Pass a whole queue of mbufs to the host stack as coming from 'dst'
1192 * We do not need to lock because the queue is private.
1193 * After this call the queue is empty.
1194 */
1195 static void
netmap_send_up(if_t dst,struct mbq * q)1196 netmap_send_up(if_t dst, struct mbq *q)
1197 {
1198 struct mbuf *m;
1199 struct mbuf *head = NULL, *prev = NULL;
1200 #ifdef __FreeBSD__
1201 struct epoch_tracker et;
1202
1203 NET_EPOCH_ENTER(et);
1204 #endif /* __FreeBSD__ */
1205 /* Send packets up, outside the lock; head/prev machinery
1206 * is only useful for Windows. */
1207 while ((m = mbq_dequeue(q)) != NULL) {
1208 if (netmap_debug & NM_DEBUG_HOST)
1209 nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m));
1210 prev = nm_os_send_up(dst, m, prev);
1211 if (head == NULL)
1212 head = prev;
1213 }
1214 if (head)
1215 nm_os_send_up(dst, NULL, head);
1216 #ifdef __FreeBSD__
1217 NET_EPOCH_EXIT(et);
1218 #endif /* __FreeBSD__ */
1219 mbq_fini(q);
1220 }
1221
1222
1223 /*
1224 * Scan the buffers from hwcur to ring->head, and put a copy of those
1225 * marked NS_FORWARD (or all of them if forced) into a queue of mbufs.
1226 * Drop remaining packets in the unlikely event
1227 * of an mbuf shortage.
1228 */
1229 static void
netmap_grab_packets(struct netmap_kring * kring,struct mbq * q,int force)1230 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
1231 {
1232 u_int const lim = kring->nkr_num_slots - 1;
1233 u_int const head = kring->rhead;
1234 u_int n;
1235 struct netmap_adapter *na = kring->na;
1236
1237 for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) {
1238 struct mbuf *m;
1239 struct netmap_slot *slot = &kring->ring->slot[n];
1240
1241 if ((slot->flags & NS_FORWARD) == 0 && !force)
1242 continue;
1243 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) {
1244 nm_prlim(5, "bad pkt at %d len %d", n, slot->len);
1245 continue;
1246 }
1247 slot->flags &= ~NS_FORWARD; // XXX needed ?
1248 /* XXX TODO: adapt to the case of a multisegment packet */
1249 m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL);
1250
1251 if (m == NULL)
1252 break;
1253 mbq_enqueue(q, m);
1254 }
1255 }
1256
1257 static inline int
_nm_may_forward(struct netmap_kring * kring)1258 _nm_may_forward(struct netmap_kring *kring)
1259 {
1260 return ((netmap_fwd || kring->ring->flags & NR_FORWARD) &&
1261 kring->na->na_flags & NAF_HOST_RINGS &&
1262 kring->tx == NR_RX);
1263 }
1264
1265 static inline int
nm_may_forward_up(struct netmap_kring * kring)1266 nm_may_forward_up(struct netmap_kring *kring)
1267 {
1268 return _nm_may_forward(kring) &&
1269 kring->ring_id != kring->na->num_rx_rings;
1270 }
1271
1272 static inline int
nm_may_forward_down(struct netmap_kring * kring,int sync_flags)1273 nm_may_forward_down(struct netmap_kring *kring, int sync_flags)
1274 {
1275 return _nm_may_forward(kring) &&
1276 (sync_flags & NAF_CAN_FORWARD_DOWN) &&
1277 kring->ring_id == kring->na->num_rx_rings;
1278 }
1279
1280 /*
1281 * Send to the NIC rings packets marked NS_FORWARD between
1282 * kring->nr_hwcur and kring->rhead.
1283 * Called under kring->rx_queue.lock on the sw rx ring.
1284 *
1285 * It can only be called if the user opened all the TX hw rings,
1286 * see NAF_CAN_FORWARD_DOWN flag.
1287 * We can touch the TX netmap rings (slots, head and cur) since
1288 * we are in poll/ioctl system call context, and the application
1289 * is not supposed to touch the ring (using a different thread)
1290 * during the execution of the system call.
1291 */
1292 static u_int
netmap_sw_to_nic(struct netmap_adapter * na)1293 netmap_sw_to_nic(struct netmap_adapter *na)
1294 {
1295 struct netmap_kring *kring = na->rx_rings[na->num_rx_rings];
1296 struct netmap_slot *rxslot = kring->ring->slot;
1297 u_int i, rxcur = kring->nr_hwcur;
1298 u_int const head = kring->rhead;
1299 u_int const src_lim = kring->nkr_num_slots - 1;
1300 u_int sent = 0;
1301
1302 /* scan rings to find space, then fill as much as possible */
1303 for (i = 0; i < na->num_tx_rings; i++) {
1304 struct netmap_kring *kdst = na->tx_rings[i];
1305 struct netmap_ring *rdst = kdst->ring;
1306 u_int const dst_lim = kdst->nkr_num_slots - 1;
1307
1308 /* XXX do we trust ring or kring->rcur,rtail ? */
1309 for (; rxcur != head && !nm_ring_empty(rdst);
1310 rxcur = nm_next(rxcur, src_lim) ) {
1311 struct netmap_slot *src, *dst, tmp;
1312 u_int dst_head = rdst->head;
1313
1314 src = &rxslot[rxcur];
1315 if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd)
1316 continue;
1317
1318 sent++;
1319
1320 dst = &rdst->slot[dst_head];
1321
1322 tmp = *src;
1323
1324 src->buf_idx = dst->buf_idx;
1325 src->flags = NS_BUF_CHANGED;
1326
1327 dst->buf_idx = tmp.buf_idx;
1328 dst->len = tmp.len;
1329 dst->flags = NS_BUF_CHANGED;
1330
1331 rdst->head = rdst->cur = nm_next(dst_head, dst_lim);
1332 }
1333 /* if (sent) XXX txsync ? it would be just an optimization */
1334 }
1335 return sent;
1336 }
1337
1338
1339 /*
1340 * netmap_txsync_to_host() passes packets up. We are called from a
1341 * system call in user process context, and the only contention
1342 * can be among multiple user threads erroneously calling
1343 * this routine concurrently.
1344 */
1345 static int
netmap_txsync_to_host(struct netmap_kring * kring,int flags)1346 netmap_txsync_to_host(struct netmap_kring *kring, int flags)
1347 {
1348 struct netmap_adapter *na = kring->na;
1349 u_int const lim = kring->nkr_num_slots - 1;
1350 u_int const head = kring->rhead;
1351 struct mbq q;
1352
1353 /* Take packets from hwcur to head and pass them up.
1354 * Force hwcur = head since netmap_grab_packets() stops at head
1355 */
1356 mbq_init(&q);
1357 netmap_grab_packets(kring, &q, 1 /* force */);
1358 nm_prdis("have %d pkts in queue", mbq_len(&q));
1359 kring->nr_hwcur = head;
1360 kring->nr_hwtail = head + lim;
1361 if (kring->nr_hwtail > lim)
1362 kring->nr_hwtail -= lim + 1;
1363
1364 netmap_send_up(na->ifp, &q);
1365 return 0;
1366 }
1367
1368
1369 /*
1370 * rxsync backend for packets coming from the host stack.
1371 * They have been put in kring->rx_queue by netmap_transmit().
1372 * We protect access to the kring using kring->rx_queue.lock
1373 *
1374 * also moves to the nic hw rings any packet the user has marked
1375 * for transparent-mode forwarding, then sets the NR_FORWARD
1376 * flag in the kring to let the caller push them out
1377 */
1378 static int
netmap_rxsync_from_host(struct netmap_kring * kring,int flags)1379 netmap_rxsync_from_host(struct netmap_kring *kring, int flags)
1380 {
1381 struct netmap_adapter *na = kring->na;
1382 struct netmap_ring *ring = kring->ring;
1383 u_int nm_i, n;
1384 u_int const lim = kring->nkr_num_slots - 1;
1385 u_int const head = kring->rhead;
1386 int ret = 0;
1387 struct mbq *q = &kring->rx_queue, fq;
1388
1389 mbq_init(&fq); /* fq holds packets to be freed */
1390
1391 mbq_lock(q);
1392
1393 /* First part: import newly received packets */
1394 n = mbq_len(q);
1395 if (n) { /* grab packets from the queue */
1396 struct mbuf *m;
1397 uint32_t stop_i;
1398
1399 nm_i = kring->nr_hwtail;
1400 stop_i = nm_prev(kring->nr_hwcur, lim);
1401 while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) {
1402 int len = MBUF_LEN(m);
1403 struct netmap_slot *slot = &ring->slot[nm_i];
1404
1405 m_copydata(m, 0, len, NMB(na, slot));
1406 nm_prdis("nm %d len %d", nm_i, len);
1407 if (netmap_debug & NM_DEBUG_HOST)
1408 nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL));
1409
1410 slot->len = len;
1411 slot->flags = 0;
1412 nm_i = nm_next(nm_i, lim);
1413 mbq_enqueue(&fq, m);
1414 }
1415 kring->nr_hwtail = nm_i;
1416 }
1417
1418 /*
1419 * Second part: skip past packets that userspace has released.
1420 */
1421 nm_i = kring->nr_hwcur;
1422 if (nm_i != head) { /* something was released */
1423 if (nm_may_forward_down(kring, flags)) {
1424 ret = netmap_sw_to_nic(na);
1425 if (ret > 0) {
1426 kring->nr_kflags |= NR_FORWARD;
1427 ret = 0;
1428 }
1429 }
1430 kring->nr_hwcur = head;
1431 }
1432
1433 mbq_unlock(q);
1434
1435 mbq_purge(&fq);
1436 mbq_fini(&fq);
1437
1438 return ret;
1439 }
1440
1441
1442 /* Get a netmap adapter for the port.
1443 *
1444 * If it is possible to satisfy the request, return 0
1445 * with *na containing the netmap adapter found.
1446 * Otherwise return an error code, with *na containing NULL.
1447 *
1448 * When the port is attached to a bridge, we always return
1449 * EBUSY.
1450 * Otherwise, if the port is already bound to a file descriptor,
1451 * then we unconditionally return the existing adapter into *na.
1452 * In all the other cases, we return (into *na) either native,
1453 * generic or NULL, according to the following table:
1454 *
1455 * native_support
1456 * active_fds dev.netmap.admode YES NO
1457 * -------------------------------------------------------
1458 * >0 * NA(ifp) NA(ifp)
1459 *
1460 * 0 NETMAP_ADMODE_BEST NATIVE GENERIC
1461 * 0 NETMAP_ADMODE_NATIVE NATIVE NULL
1462 * 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC
1463 *
1464 */
1465 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */
1466 int
netmap_get_hw_na(if_t ifp,struct netmap_mem_d * nmd,struct netmap_adapter ** na)1467 netmap_get_hw_na(if_t ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na)
1468 {
1469 /* generic support */
1470 int i = netmap_admode; /* Take a snapshot. */
1471 struct netmap_adapter *prev_na;
1472 int error = 0;
1473
1474 *na = NULL; /* default */
1475
1476 /* reset in case of invalid value */
1477 if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST)
1478 i = netmap_admode = NETMAP_ADMODE_BEST;
1479
1480 if (NM_NA_VALID(ifp)) {
1481 prev_na = NA(ifp);
1482 /* If an adapter already exists, return it if
1483 * there are active file descriptors or if
1484 * netmap is not forced to use generic
1485 * adapters.
1486 */
1487 if (NETMAP_OWNED_BY_ANY(prev_na)
1488 || i != NETMAP_ADMODE_GENERIC
1489 || prev_na->na_flags & NAF_FORCE_NATIVE
1490 #ifdef WITH_PIPES
1491 /* ugly, but we cannot allow an adapter switch
1492 * if some pipe is referring to this one
1493 */
1494 || prev_na->na_next_pipe > 0
1495 #endif
1496 ) {
1497 *na = prev_na;
1498 goto assign_mem;
1499 }
1500 }
1501
1502 /* If there isn't native support and netmap is not allowed
1503 * to use generic adapters, we cannot satisfy the request.
1504 */
1505 if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE)
1506 return EOPNOTSUPP;
1507
1508 /* Otherwise, create a generic adapter and return it,
1509 * saving the previously used netmap adapter, if any.
1510 *
1511 * Note that here 'prev_na', if not NULL, MUST be a
1512 * native adapter, and CANNOT be a generic one. This is
1513 * true because generic adapters are created on demand, and
1514 * destroyed when not used anymore. Therefore, if the adapter
1515 * currently attached to an interface 'ifp' is generic, it
1516 * must be that
1517 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))).
1518 * Consequently, if NA(ifp) is generic, we will enter one of
1519 * the branches above. This ensures that we never override
1520 * a generic adapter with another generic adapter.
1521 */
1522 error = generic_netmap_attach(ifp);
1523 if (error)
1524 return error;
1525
1526 *na = NA(ifp);
1527
1528 assign_mem:
1529 if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) &&
1530 (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) {
1531 (*na)->nm_mem_prev = (*na)->nm_mem;
1532 (*na)->nm_mem = netmap_mem_get(nmd);
1533 }
1534
1535 return 0;
1536 }
1537
1538 /*
1539 * MUST BE CALLED UNDER NMG_LOCK()
1540 *
1541 * Get a refcounted reference to a netmap adapter attached
1542 * to the interface specified by req.
1543 * This is always called in the execution of an ioctl().
1544 *
1545 * Return ENXIO if the interface specified by the request does
1546 * not exist, ENOTSUP if netmap is not supported by the interface,
1547 * EBUSY if the interface is already attached to a bridge,
1548 * EINVAL if parameters are invalid, ENOMEM if needed resources
1549 * could not be allocated.
1550 * If successful, hold a reference to the netmap adapter.
1551 *
1552 * If the interface specified by req is a system one, also keep
1553 * a reference to it and return a valid *ifp.
1554 */
1555 int
netmap_get_na(struct nmreq_header * hdr,struct netmap_adapter ** na,if_t * ifp,struct netmap_mem_d * nmd,int create)1556 netmap_get_na(struct nmreq_header *hdr,
1557 struct netmap_adapter **na, if_t *ifp,
1558 struct netmap_mem_d *nmd, int create)
1559 {
1560 struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body;
1561 int error = 0;
1562 struct netmap_adapter *ret = NULL;
1563 int nmd_ref = 0;
1564
1565 *na = NULL; /* default return value */
1566 *ifp = NULL;
1567
1568 if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) {
1569 return EINVAL;
1570 }
1571
1572 if (req->nr_mode == NR_REG_PIPE_MASTER ||
1573 req->nr_mode == NR_REG_PIPE_SLAVE) {
1574 /* Do not accept deprecated pipe modes. */
1575 nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax");
1576 return EINVAL;
1577 }
1578
1579 NMG_LOCK_ASSERT();
1580
1581 /* if the request contain a memid, try to find the
1582 * corresponding memory region
1583 */
1584 if (nmd == NULL && req->nr_mem_id) {
1585 nmd = netmap_mem_find(req->nr_mem_id);
1586 if (nmd == NULL)
1587 return EINVAL;
1588 /* keep the rereference */
1589 nmd_ref = 1;
1590 }
1591
1592 /* We cascade through all possible types of netmap adapter.
1593 * All netmap_get_*_na() functions return an error and an na,
1594 * with the following combinations:
1595 *
1596 * error na
1597 * 0 NULL type doesn't match
1598 * !0 NULL type matches, but na creation/lookup failed
1599 * 0 !NULL type matches and na created/found
1600 * !0 !NULL impossible
1601 */
1602 error = netmap_get_null_na(hdr, na, nmd, create);
1603 if (error || *na != NULL)
1604 goto out;
1605
1606 /* try to see if this is a monitor port */
1607 error = netmap_get_monitor_na(hdr, na, nmd, create);
1608 if (error || *na != NULL)
1609 goto out;
1610
1611 /* try to see if this is a pipe port */
1612 error = netmap_get_pipe_na(hdr, na, nmd, create);
1613 if (error || *na != NULL)
1614 goto out;
1615
1616 /* try to see if this is a vale port */
1617 error = netmap_get_vale_na(hdr, na, nmd, create);
1618 if (error)
1619 goto out;
1620
1621 if (*na != NULL) /* valid match in netmap_get_bdg_na() */
1622 goto out;
1623
1624 /*
1625 * This must be a hardware na, lookup the name in the system.
1626 * Note that by hardware we actually mean "it shows up in ifconfig".
1627 * This may still be a tap, a veth/epair, or even a
1628 * persistent VALE port.
1629 */
1630 *ifp = ifunit_ref(hdr->nr_name);
1631 if (*ifp == NULL) {
1632 error = ENXIO;
1633 goto out;
1634 }
1635
1636 error = netmap_get_hw_na(*ifp, nmd, &ret);
1637 if (error)
1638 goto out;
1639
1640 *na = ret;
1641 netmap_adapter_get(ret);
1642
1643 /*
1644 * if the adapter supports the host rings and it is not already open,
1645 * try to set the number of host rings as requested by the user
1646 */
1647 if (((*na)->na_flags & NAF_HOST_RINGS) && (*na)->active_fds == 0) {
1648 if (req->nr_host_tx_rings)
1649 (*na)->num_host_tx_rings = req->nr_host_tx_rings;
1650 if (req->nr_host_rx_rings)
1651 (*na)->num_host_rx_rings = req->nr_host_rx_rings;
1652 }
1653 nm_prdis("%s: host tx %d rx %u", (*na)->name, (*na)->num_host_tx_rings,
1654 (*na)->num_host_rx_rings);
1655
1656 out:
1657 if (error) {
1658 if (ret)
1659 netmap_adapter_put(ret);
1660 if (*ifp) {
1661 if_rele(*ifp);
1662 *ifp = NULL;
1663 }
1664 }
1665 if (nmd_ref)
1666 netmap_mem_put(nmd);
1667
1668 return error;
1669 }
1670
1671 /* undo netmap_get_na() */
1672 void
netmap_unget_na(struct netmap_adapter * na,if_t ifp)1673 netmap_unget_na(struct netmap_adapter *na, if_t ifp)
1674 {
1675 if (ifp)
1676 if_rele(ifp);
1677 if (na)
1678 netmap_adapter_put(na);
1679 }
1680
1681
1682 #define NM_FAIL_ON(t) do { \
1683 if (unlikely(t)) { \
1684 nm_prlim(5, "%s: fail '" #t "' " \
1685 "h %d c %d t %d " \
1686 "rh %d rc %d rt %d " \
1687 "hc %d ht %d", \
1688 kring->name, \
1689 head, cur, ring->tail, \
1690 kring->rhead, kring->rcur, kring->rtail, \
1691 kring->nr_hwcur, kring->nr_hwtail); \
1692 return kring->nkr_num_slots; \
1693 } \
1694 } while (0)
1695
1696 /*
1697 * validate parameters on entry for *_txsync()
1698 * Returns ring->cur if ok, or something >= kring->nkr_num_slots
1699 * in case of error.
1700 *
1701 * rhead, rcur and rtail=hwtail are stored from previous round.
1702 * hwcur is the next packet to send to the ring.
1703 *
1704 * We want
1705 * hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail
1706 *
1707 * hwcur, rhead, rtail and hwtail are reliable
1708 */
1709 u_int
nm_txsync_prologue(struct netmap_kring * kring,struct netmap_ring * ring)1710 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1711 {
1712 u_int head = NM_ACCESS_ONCE(ring->head);
1713 u_int cur = NM_ACCESS_ONCE(ring->cur);
1714 u_int n = kring->nkr_num_slots;
1715
1716 nm_prdis(5, "%s kcur %d ktail %d head %d cur %d tail %d",
1717 kring->name,
1718 kring->nr_hwcur, kring->nr_hwtail,
1719 ring->head, ring->cur, ring->tail);
1720 #if 1 /* kernel sanity checks; but we can trust the kring. */
1721 NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n ||
1722 kring->rtail >= n || kring->nr_hwtail >= n);
1723 #endif /* kernel sanity checks */
1724 /*
1725 * user sanity checks. We only use head,
1726 * A, B, ... are possible positions for head:
1727 *
1728 * 0 A rhead B rtail C n-1
1729 * 0 D rtail E rhead F n-1
1730 *
1731 * B, F, D are valid. A, C, E are wrong
1732 */
1733 if (kring->rtail >= kring->rhead) {
1734 /* want rhead <= head <= rtail */
1735 NM_FAIL_ON(head < kring->rhead || head > kring->rtail);
1736 /* and also head <= cur <= rtail */
1737 NM_FAIL_ON(cur < head || cur > kring->rtail);
1738 } else { /* here rtail < rhead */
1739 /* we need head outside rtail .. rhead */
1740 NM_FAIL_ON(head > kring->rtail && head < kring->rhead);
1741
1742 /* two cases now: head <= rtail or head >= rhead */
1743 if (head <= kring->rtail) {
1744 /* want head <= cur <= rtail */
1745 NM_FAIL_ON(cur < head || cur > kring->rtail);
1746 } else { /* head >= rhead */
1747 /* cur must be outside rtail..head */
1748 NM_FAIL_ON(cur > kring->rtail && cur < head);
1749 }
1750 }
1751 if (ring->tail != kring->rtail) {
1752 nm_prlim(5, "%s tail overwritten was %d need %d", kring->name,
1753 ring->tail, kring->rtail);
1754 ring->tail = kring->rtail;
1755 }
1756 kring->rhead = head;
1757 kring->rcur = cur;
1758 return head;
1759 }
1760
1761
1762 /*
1763 * validate parameters on entry for *_rxsync()
1764 * Returns ring->head if ok, kring->nkr_num_slots on error.
1765 *
1766 * For a valid configuration,
1767 * hwcur <= head <= cur <= tail <= hwtail
1768 *
1769 * We only consider head and cur.
1770 * hwcur and hwtail are reliable.
1771 *
1772 */
1773 u_int
nm_rxsync_prologue(struct netmap_kring * kring,struct netmap_ring * ring)1774 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1775 {
1776 uint32_t const n = kring->nkr_num_slots;
1777 uint32_t head, cur;
1778
1779 nm_prdis(5,"%s kc %d kt %d h %d c %d t %d",
1780 kring->name,
1781 kring->nr_hwcur, kring->nr_hwtail,
1782 ring->head, ring->cur, ring->tail);
1783 /*
1784 * Before storing the new values, we should check they do not
1785 * move backwards. However:
1786 * - head is not an issue because the previous value is hwcur;
1787 * - cur could in principle go back, however it does not matter
1788 * because we are processing a brand new rxsync()
1789 */
1790 cur = kring->rcur = NM_ACCESS_ONCE(ring->cur);
1791 head = kring->rhead = NM_ACCESS_ONCE(ring->head);
1792 #if 1 /* kernel sanity checks */
1793 NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n);
1794 #endif /* kernel sanity checks */
1795 /* user sanity checks */
1796 if (kring->nr_hwtail >= kring->nr_hwcur) {
1797 /* want hwcur <= rhead <= hwtail */
1798 NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail);
1799 /* and also rhead <= rcur <= hwtail */
1800 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1801 } else {
1802 /* we need rhead outside hwtail..hwcur */
1803 NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail);
1804 /* two cases now: head <= hwtail or head >= hwcur */
1805 if (head <= kring->nr_hwtail) {
1806 /* want head <= cur <= hwtail */
1807 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1808 } else {
1809 /* cur must be outside hwtail..head */
1810 NM_FAIL_ON(cur < head && cur > kring->nr_hwtail);
1811 }
1812 }
1813 if (ring->tail != kring->rtail) {
1814 nm_prlim(5, "%s tail overwritten was %d need %d",
1815 kring->name,
1816 ring->tail, kring->rtail);
1817 ring->tail = kring->rtail;
1818 }
1819 return head;
1820 }
1821
1822
1823 /*
1824 * Error routine called when txsync/rxsync detects an error.
1825 * Can't do much more than resetting head = cur = hwcur, tail = hwtail
1826 * Return 1 on reinit.
1827 *
1828 * This routine is only called by the upper half of the kernel.
1829 * It only reads hwcur (which is changed only by the upper half, too)
1830 * and hwtail (which may be changed by the lower half, but only on
1831 * a tx ring and only to increase it, so any error will be recovered
1832 * on the next call). For the above, we don't strictly need to call
1833 * it under lock.
1834 */
1835 int
netmap_ring_reinit(struct netmap_kring * kring)1836 netmap_ring_reinit(struct netmap_kring *kring)
1837 {
1838 struct netmap_ring *ring = kring->ring;
1839 u_int i, lim = kring->nkr_num_slots - 1;
1840 int errors = 0;
1841
1842 // XXX KASSERT nm_kr_tryget
1843 nm_prlim(10, "called for %s", kring->name);
1844 // XXX probably wrong to trust userspace
1845 kring->rhead = ring->head;
1846 kring->rcur = ring->cur;
1847 kring->rtail = ring->tail;
1848
1849 if (ring->cur > lim)
1850 errors++;
1851 if (ring->head > lim)
1852 errors++;
1853 if (ring->tail > lim)
1854 errors++;
1855 for (i = 0; i <= lim; i++) {
1856 u_int idx = ring->slot[i].buf_idx;
1857 u_int len = ring->slot[i].len;
1858 if (idx < 2 || idx >= kring->na->na_lut.objtotal) {
1859 nm_prlim(5, "bad index at slot %d idx %d len %d ", i, idx, len);
1860 ring->slot[i].buf_idx = 0;
1861 ring->slot[i].len = 0;
1862 } else if (len > NETMAP_BUF_SIZE(kring->na)) {
1863 ring->slot[i].len = 0;
1864 nm_prlim(5, "bad len at slot %d idx %d len %d", i, idx, len);
1865 }
1866 }
1867 if (errors) {
1868 nm_prlim(10, "total %d errors", errors);
1869 nm_prlim(10, "%s reinit, cur %d -> %d tail %d -> %d",
1870 kring->name,
1871 ring->cur, kring->nr_hwcur,
1872 ring->tail, kring->nr_hwtail);
1873 ring->head = kring->rhead = kring->nr_hwcur;
1874 ring->cur = kring->rcur = kring->nr_hwcur;
1875 ring->tail = kring->rtail = kring->nr_hwtail;
1876 }
1877 return (errors ? 1 : 0);
1878 }
1879
1880 /* interpret the ringid and flags fields of an nmreq, by translating them
1881 * into a pair of intervals of ring indices:
1882 *
1883 * [priv->np_txqfirst, priv->np_txqlast) and
1884 * [priv->np_rxqfirst, priv->np_rxqlast)
1885 *
1886 */
1887 int
netmap_interp_ringid(struct netmap_priv_d * priv,struct nmreq_header * hdr)1888 netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr)
1889 {
1890 struct netmap_adapter *na = priv->np_na;
1891 struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body;
1892 int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY };
1893 enum txrx t;
1894 u_int j;
1895 u_int nr_flags = reg->nr_flags, nr_mode = reg->nr_mode,
1896 nr_ringid = reg->nr_ringid;
1897
1898 for_rx_tx(t) {
1899 if (nr_flags & excluded_direction[t]) {
1900 priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1901 continue;
1902 }
1903 switch (nr_mode) {
1904 case NR_REG_ALL_NIC:
1905 case NR_REG_NULL:
1906 priv->np_qfirst[t] = 0;
1907 priv->np_qlast[t] = nma_get_nrings(na, t);
1908 nm_prdis("ALL/PIPE: %s %d %d", nm_txrx2str(t),
1909 priv->np_qfirst[t], priv->np_qlast[t]);
1910 break;
1911 case NR_REG_SW:
1912 case NR_REG_NIC_SW:
1913 if (!(na->na_flags & NAF_HOST_RINGS)) {
1914 nm_prerr("host rings not supported");
1915 return EINVAL;
1916 }
1917 priv->np_qfirst[t] = (nr_mode == NR_REG_SW ?
1918 nma_get_nrings(na, t) : 0);
1919 priv->np_qlast[t] = netmap_all_rings(na, t);
1920 nm_prdis("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW",
1921 nm_txrx2str(t),
1922 priv->np_qfirst[t], priv->np_qlast[t]);
1923 break;
1924 case NR_REG_ONE_NIC:
1925 if (nr_ringid >= na->num_tx_rings &&
1926 nr_ringid >= na->num_rx_rings) {
1927 nm_prerr("invalid ring id %d", nr_ringid);
1928 return EINVAL;
1929 }
1930 /* if not enough rings, use the first one */
1931 j = nr_ringid;
1932 if (j >= nma_get_nrings(na, t))
1933 j = 0;
1934 priv->np_qfirst[t] = j;
1935 priv->np_qlast[t] = j + 1;
1936 nm_prdis("ONE_NIC: %s %d %d", nm_txrx2str(t),
1937 priv->np_qfirst[t], priv->np_qlast[t]);
1938 break;
1939 case NR_REG_ONE_SW:
1940 if (!(na->na_flags & NAF_HOST_RINGS)) {
1941 nm_prerr("host rings not supported");
1942 return EINVAL;
1943 }
1944 if (nr_ringid >= na->num_host_tx_rings &&
1945 nr_ringid >= na->num_host_rx_rings) {
1946 nm_prerr("invalid ring id %d", nr_ringid);
1947 return EINVAL;
1948 }
1949 /* if not enough rings, use the first one */
1950 j = nr_ringid;
1951 if (j >= nma_get_host_nrings(na, t))
1952 j = 0;
1953 priv->np_qfirst[t] = nma_get_nrings(na, t) + j;
1954 priv->np_qlast[t] = nma_get_nrings(na, t) + j + 1;
1955 nm_prdis("ONE_SW: %s %d %d", nm_txrx2str(t),
1956 priv->np_qfirst[t], priv->np_qlast[t]);
1957 break;
1958 default:
1959 nm_prerr("invalid regif type %d", nr_mode);
1960 return EINVAL;
1961 }
1962 }
1963 priv->np_flags = nr_flags;
1964
1965 /* Allow transparent forwarding mode in the host --> nic
1966 * direction only if all the TX hw rings have been opened. */
1967 if (priv->np_qfirst[NR_TX] == 0 &&
1968 priv->np_qlast[NR_TX] >= na->num_tx_rings) {
1969 priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN;
1970 }
1971
1972 if (netmap_verbose) {
1973 nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d",
1974 na->name,
1975 priv->np_qfirst[NR_TX],
1976 priv->np_qlast[NR_TX],
1977 priv->np_qfirst[NR_RX],
1978 priv->np_qlast[NR_RX],
1979 nr_ringid);
1980 }
1981 return 0;
1982 }
1983
1984
1985 /*
1986 * Set the ring ID. For devices with a single queue, a request
1987 * for all rings is the same as a single ring.
1988 */
1989 static int
netmap_set_ringid(struct netmap_priv_d * priv,struct nmreq_header * hdr)1990 netmap_set_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr)
1991 {
1992 struct netmap_adapter *na = priv->np_na;
1993 struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body;
1994 int error;
1995 enum txrx t;
1996
1997 error = netmap_interp_ringid(priv, hdr);
1998 if (error) {
1999 return error;
2000 }
2001
2002 priv->np_txpoll = (reg->nr_flags & NR_NO_TX_POLL) ? 0 : 1;
2003
2004 /* optimization: count the users registered for more than
2005 * one ring, which are the ones sleeping on the global queue.
2006 * The default netmap_notify() callback will then
2007 * avoid signaling the global queue if nobody is using it
2008 */
2009 for_rx_tx(t) {
2010 if (nm_si_user(priv, t))
2011 na->si_users[t]++;
2012 }
2013 return 0;
2014 }
2015
2016 static void
netmap_unset_ringid(struct netmap_priv_d * priv)2017 netmap_unset_ringid(struct netmap_priv_d *priv)
2018 {
2019 struct netmap_adapter *na = priv->np_na;
2020 enum txrx t;
2021
2022 for_rx_tx(t) {
2023 if (nm_si_user(priv, t))
2024 na->si_users[t]--;
2025 priv->np_qfirst[t] = priv->np_qlast[t] = 0;
2026 }
2027 priv->np_flags = 0;
2028 priv->np_txpoll = 0;
2029 priv->np_kloop_state = 0;
2030 }
2031
2032 #define within_sel(p_, t_, i_) \
2033 ((i_) < (p_)->np_qlast[(t_)])
2034 #define nonempty_sel(p_, t_) \
2035 (within_sel((p_), (t_), (p_)->np_qfirst[(t_)]))
2036 #define foreach_selected_ring(p_, t_, i_, kring_) \
2037 for ((t_) = nonempty_sel((p_), NR_RX) ? NR_RX : NR_TX, \
2038 (i_) = (p_)->np_qfirst[(t_)]; \
2039 (t_ == NR_RX || \
2040 (t == NR_TX && within_sel((p_), (t_), (i_)))) && \
2041 ((kring_) = NMR((p_)->np_na, (t_))[(i_)]); \
2042 (i_) = within_sel((p_), (t_), (i_) + 1) ? (i_) + 1 : \
2043 (++(t_) < NR_TXRX ? (p_)->np_qfirst[(t_)] : (i_)))
2044
2045
2046 /* Set the nr_pending_mode for the requested rings.
2047 * If requested, also try to get exclusive access to the rings, provided
2048 * the rings we want to bind are not exclusively owned by a previous bind.
2049 */
2050 static int
netmap_krings_get(struct netmap_priv_d * priv)2051 netmap_krings_get(struct netmap_priv_d *priv)
2052 {
2053 struct netmap_adapter *na = priv->np_na;
2054 u_int i;
2055 struct netmap_kring *kring;
2056 int excl = (priv->np_flags & NR_EXCLUSIVE);
2057 enum txrx t;
2058
2059 if (netmap_debug & NM_DEBUG_ON)
2060 nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)",
2061 na->name,
2062 priv->np_qfirst[NR_TX],
2063 priv->np_qlast[NR_TX],
2064 priv->np_qfirst[NR_RX],
2065 priv->np_qlast[NR_RX]);
2066
2067 /* first round: check that all the requested rings
2068 * are neither already exclusively owned, nor we
2069 * want exclusive ownership when they are already in use
2070 */
2071 foreach_selected_ring(priv, t, i, kring) {
2072 if ((kring->nr_kflags & NKR_EXCLUSIVE) ||
2073 (kring->users && excl))
2074 {
2075 nm_prdis("ring %s busy", kring->name);
2076 return EBUSY;
2077 }
2078 }
2079
2080 /* second round: increment usage count (possibly marking them
2081 * as exclusive) and set the nr_pending_mode
2082 */
2083 foreach_selected_ring(priv, t, i, kring) {
2084 kring->users++;
2085 if (excl)
2086 kring->nr_kflags |= NKR_EXCLUSIVE;
2087 kring->nr_pending_mode = NKR_NETMAP_ON;
2088 }
2089
2090 return 0;
2091
2092 }
2093
2094 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode
2095 * if was asked on regif, and unset the nr_pending_mode if we are the
2096 * last users of the involved rings. */
2097 static void
netmap_krings_put(struct netmap_priv_d * priv)2098 netmap_krings_put(struct netmap_priv_d *priv)
2099 {
2100 u_int i;
2101 struct netmap_kring *kring;
2102 int excl = (priv->np_flags & NR_EXCLUSIVE);
2103 enum txrx t;
2104
2105 nm_prdis("%s: releasing tx [%d, %d) rx [%d, %d)",
2106 na->name,
2107 priv->np_qfirst[NR_TX],
2108 priv->np_qlast[NR_TX],
2109 priv->np_qfirst[NR_RX],
2110 priv->np_qlast[MR_RX]);
2111
2112 foreach_selected_ring(priv, t, i, kring) {
2113 if (excl)
2114 kring->nr_kflags &= ~NKR_EXCLUSIVE;
2115 kring->users--;
2116 if (kring->users == 0)
2117 kring->nr_pending_mode = NKR_NETMAP_OFF;
2118 }
2119 }
2120
2121 static int
nm_priv_rx_enabled(struct netmap_priv_d * priv)2122 nm_priv_rx_enabled(struct netmap_priv_d *priv)
2123 {
2124 return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]);
2125 }
2126
2127 /* Validate the CSB entries for both directions (atok and ktoa).
2128 * To be called under NMG_LOCK(). */
2129 static int
netmap_csb_validate(struct netmap_priv_d * priv,struct nmreq_opt_csb * csbo)2130 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo)
2131 {
2132 struct nm_csb_atok *csb_atok_base =
2133 (struct nm_csb_atok *)(uintptr_t)csbo->csb_atok;
2134 struct nm_csb_ktoa *csb_ktoa_base =
2135 (struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa;
2136 enum txrx t;
2137 int num_rings[NR_TXRX], tot_rings;
2138 size_t entry_size[2];
2139 void *csb_start[2];
2140 int i;
2141
2142 if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) {
2143 nm_prerr("Cannot update CSB while kloop is running");
2144 return EBUSY;
2145 }
2146
2147 tot_rings = 0;
2148 for_rx_tx(t) {
2149 num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t];
2150 tot_rings += num_rings[t];
2151 }
2152 if (tot_rings <= 0)
2153 return 0;
2154
2155 if (!(priv->np_flags & NR_EXCLUSIVE)) {
2156 nm_prerr("CSB mode requires NR_EXCLUSIVE");
2157 return EINVAL;
2158 }
2159
2160 entry_size[0] = sizeof(*csb_atok_base);
2161 entry_size[1] = sizeof(*csb_ktoa_base);
2162 csb_start[0] = (void *)csb_atok_base;
2163 csb_start[1] = (void *)csb_ktoa_base;
2164
2165 for (i = 0; i < 2; i++) {
2166 /* On Linux we could use access_ok() to simplify
2167 * the validation. However, the advantage of
2168 * this approach is that it works also on
2169 * FreeBSD. */
2170 size_t csb_size = tot_rings * entry_size[i];
2171 void *tmp;
2172 int err;
2173
2174 if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) {
2175 nm_prerr("Unaligned CSB address");
2176 return EINVAL;
2177 }
2178
2179 tmp = nm_os_malloc(csb_size);
2180 if (!tmp)
2181 return ENOMEM;
2182 if (i == 0) {
2183 /* Application --> kernel direction. */
2184 err = copyin(csb_start[i], tmp, csb_size);
2185 } else {
2186 /* Kernel --> application direction. */
2187 memset(tmp, 0, csb_size);
2188 err = copyout(tmp, csb_start[i], csb_size);
2189 }
2190 nm_os_free(tmp);
2191 if (err) {
2192 nm_prerr("Invalid CSB address");
2193 return err;
2194 }
2195 }
2196
2197 priv->np_csb_atok_base = csb_atok_base;
2198 priv->np_csb_ktoa_base = csb_ktoa_base;
2199
2200 /* Initialize the CSB. */
2201 for_rx_tx(t) {
2202 for (i = 0; i < num_rings[t]; i++) {
2203 struct netmap_kring *kring =
2204 NMR(priv->np_na, t)[i + priv->np_qfirst[t]];
2205 struct nm_csb_atok *csb_atok = csb_atok_base + i;
2206 struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i;
2207
2208 if (t == NR_RX) {
2209 csb_atok += num_rings[NR_TX];
2210 csb_ktoa += num_rings[NR_TX];
2211 }
2212
2213 CSB_WRITE(csb_atok, head, kring->rhead);
2214 CSB_WRITE(csb_atok, cur, kring->rcur);
2215 CSB_WRITE(csb_atok, appl_need_kick, 1);
2216 CSB_WRITE(csb_atok, sync_flags, 1);
2217 CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur);
2218 CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail);
2219 CSB_WRITE(csb_ktoa, kern_need_kick, 1);
2220
2221 nm_prinf("csb_init for kring %s: head %u, cur %u, "
2222 "hwcur %u, hwtail %u", kring->name,
2223 kring->rhead, kring->rcur, kring->nr_hwcur,
2224 kring->nr_hwtail);
2225 }
2226 }
2227
2228 return 0;
2229 }
2230
2231 /* Ensure that the netmap adapter can support the given MTU.
2232 * @return EINVAL if the na cannot be set to mtu, 0 otherwise.
2233 */
2234 int
netmap_buf_size_validate(const struct netmap_adapter * na,unsigned mtu)2235 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) {
2236 unsigned nbs = NETMAP_BUF_SIZE(na);
2237
2238 if (mtu <= na->rx_buf_maxsize) {
2239 /* The MTU fits a single NIC slot. We only
2240 * Need to check that netmap buffers are
2241 * large enough to hold an MTU. NS_MOREFRAG
2242 * cannot be used in this case. */
2243 if (nbs < mtu) {
2244 nm_prerr("error: netmap buf size (%u) "
2245 "< device MTU (%u)", nbs, mtu);
2246 return EINVAL;
2247 }
2248 } else {
2249 /* More NIC slots may be needed to receive
2250 * or transmit a single packet. Check that
2251 * the adapter supports NS_MOREFRAG and that
2252 * netmap buffers are large enough to hold
2253 * the maximum per-slot size. */
2254 if (!(na->na_flags & NAF_MOREFRAG)) {
2255 nm_prerr("error: large MTU (%d) needed "
2256 "but %s does not support "
2257 "NS_MOREFRAG", mtu,
2258 if_name(na->ifp));
2259 return EINVAL;
2260 } else if (nbs < na->rx_buf_maxsize) {
2261 nm_prerr("error: using NS_MOREFRAG on "
2262 "%s requires netmap buf size "
2263 ">= %u", if_name(na->ifp),
2264 na->rx_buf_maxsize);
2265 return EINVAL;
2266 } else {
2267 nm_prinf("info: netmap application on "
2268 "%s needs to support "
2269 "NS_MOREFRAG "
2270 "(MTU=%u,netmap_buf_size=%u)",
2271 if_name(na->ifp), mtu, nbs);
2272 }
2273 }
2274 return 0;
2275 }
2276
2277 /* Handle the offset option, if present in the hdr.
2278 * Returns 0 on success, or an error.
2279 */
2280 static int
netmap_offsets_init(struct netmap_priv_d * priv,struct nmreq_header * hdr)2281 netmap_offsets_init(struct netmap_priv_d *priv, struct nmreq_header *hdr)
2282 {
2283 struct nmreq_opt_offsets *opt;
2284 struct netmap_adapter *na = priv->np_na;
2285 struct netmap_kring *kring;
2286 uint64_t mask = 0, bits = 0, maxbits = sizeof(uint64_t) * 8,
2287 max_offset = 0, initial_offset = 0, min_gap = 0;
2288 u_int i;
2289 enum txrx t;
2290 int error = 0;
2291
2292 opt = (struct nmreq_opt_offsets *)
2293 nmreq_getoption(hdr, NETMAP_REQ_OPT_OFFSETS);
2294 if (opt == NULL)
2295 return 0;
2296
2297 if (!(na->na_flags & NAF_OFFSETS)) {
2298 if (netmap_verbose)
2299 nm_prerr("%s does not support offsets",
2300 na->name);
2301 error = EOPNOTSUPP;
2302 goto out;
2303 }
2304
2305 /* check sanity of the opt values */
2306 max_offset = opt->nro_max_offset;
2307 min_gap = opt->nro_min_gap;
2308 initial_offset = opt->nro_initial_offset;
2309 bits = opt->nro_offset_bits;
2310
2311 if (bits > maxbits) {
2312 if (netmap_verbose)
2313 nm_prerr("bits: %llu too large (max %llu)",
2314 (unsigned long long)bits,
2315 (unsigned long long)maxbits);
2316 error = EINVAL;
2317 goto out;
2318 }
2319 /* we take bits == 0 as a request to use the entire field */
2320 if (bits == 0 || bits == maxbits) {
2321 /* shifting a type by sizeof(type) is undefined */
2322 bits = maxbits;
2323 mask = 0xffffffffffffffff;
2324 } else {
2325 mask = (1ULL << bits) - 1;
2326 }
2327 if (max_offset > NETMAP_BUF_SIZE(na)) {
2328 if (netmap_verbose)
2329 nm_prerr("max offset %llu > buf size %u",
2330 (unsigned long long)max_offset, NETMAP_BUF_SIZE(na));
2331 error = EINVAL;
2332 goto out;
2333 }
2334 if ((max_offset & mask) != max_offset) {
2335 if (netmap_verbose)
2336 nm_prerr("max offset %llu to large for %llu bits",
2337 (unsigned long long)max_offset,
2338 (unsigned long long)bits);
2339 error = EINVAL;
2340 goto out;
2341 }
2342 if (initial_offset > max_offset) {
2343 if (netmap_verbose)
2344 nm_prerr("initial offset %llu > max offset %llu",
2345 (unsigned long long)initial_offset,
2346 (unsigned long long)max_offset);
2347 error = EINVAL;
2348 goto out;
2349 }
2350
2351 /* initialize the kring and ring fields. */
2352 foreach_selected_ring(priv, t, i, kring) {
2353 struct netmap_kring *kring = NMR(na, t)[i];
2354 struct netmap_ring *ring = kring->ring;
2355 u_int j;
2356
2357 /* it the ring is already in use we check that the
2358 * new request is compatible with the existing one
2359 */
2360 if (kring->offset_mask) {
2361 if ((kring->offset_mask & mask) != mask ||
2362 kring->offset_max < max_offset) {
2363 if (netmap_verbose)
2364 nm_prinf("%s: cannot increase"
2365 "offset mask and/or max"
2366 "(current: mask=%llx,max=%llu",
2367 kring->name,
2368 (unsigned long long)kring->offset_mask,
2369 (unsigned long long)kring->offset_max);
2370 error = EBUSY;
2371 goto out;
2372 }
2373 mask = kring->offset_mask;
2374 max_offset = kring->offset_max;
2375 } else {
2376 kring->offset_mask = mask;
2377 *(uint64_t *)(uintptr_t)&ring->offset_mask = mask;
2378 kring->offset_max = max_offset;
2379 kring->offset_gap = min_gap;
2380 }
2381
2382 /* if there is an initial offset, put it into
2383 * all the slots
2384 *
2385 * Note: we cannot change the offsets if the
2386 * ring is already in use.
2387 */
2388 if (!initial_offset || kring->users > 1)
2389 continue;
2390
2391 for (j = 0; j < kring->nkr_num_slots; j++) {
2392 struct netmap_slot *slot = ring->slot + j;
2393
2394 nm_write_offset(kring, slot, initial_offset);
2395 }
2396 }
2397
2398 out:
2399 opt->nro_opt.nro_status = error;
2400 if (!error) {
2401 opt->nro_max_offset = max_offset;
2402 }
2403 return error;
2404
2405 }
2406
2407
2408 /* set the hardware buffer length in each one of the newly opened rings
2409 * (hwbuf_len field in the kring struct). The purpose it to select
2410 * the maximum supported input buffer lenght that will not cause writes
2411 * outside of the available space, even when offsets are in use.
2412 */
2413 static int
netmap_compute_buf_len(struct netmap_priv_d * priv)2414 netmap_compute_buf_len(struct netmap_priv_d *priv)
2415 {
2416 enum txrx t;
2417 u_int i;
2418 struct netmap_kring *kring;
2419 int error = 0;
2420 unsigned mtu = 0;
2421 struct netmap_adapter *na = priv->np_na;
2422 uint64_t target;
2423
2424 foreach_selected_ring(priv, t, i, kring) {
2425 /* rings that are already active have their hwbuf_len
2426 * already set and we cannot change it.
2427 */
2428 if (kring->users > 1)
2429 continue;
2430
2431 /* For netmap buffers which are not shared among several ring
2432 * slots (the normal case), the available space is the buf size
2433 * minus the max offset declared by the user at open time. If
2434 * the user plans to have several slots pointing to different
2435 * offsets into the same large buffer, she must also declare a
2436 * "minimum gap" between two such consecutive offsets. In this
2437 * case the user-declared 'offset_gap' is taken as the
2438 * available space and offset_max is ignored.
2439 */
2440
2441 /* start with the normal case (unshared buffers) */
2442 target = NETMAP_BUF_SIZE(kring->na) -
2443 kring->offset_max;
2444 /* if offset_gap is zero, the user does not intend to use
2445 * shared buffers. In this case the minimum gap between
2446 * two consective offsets into the same buffer can be
2447 * assumed to be equal to the buffer size. In this way
2448 * offset_gap always contains the available space ignoring
2449 * offset_max. This may be used by drivers of NICs that
2450 * are guaranteed to never write more than MTU bytes, even
2451 * if the input buffer is larger: if the MTU is less
2452 * than the target they can set hwbuf_len to offset_gap.
2453 */
2454 if (!kring->offset_gap)
2455 kring->offset_gap =
2456 NETMAP_BUF_SIZE(kring->na);
2457
2458 if (kring->offset_gap < target)
2459 target = kring->offset_gap;
2460 error = kring->nm_bufcfg(kring, target);
2461 if (error)
2462 goto out;
2463
2464 *(uint64_t *)(uintptr_t)&kring->ring->buf_align = kring->buf_align;
2465
2466 if (mtu && t == NR_RX && kring->hwbuf_len < mtu) {
2467 if (!(na->na_flags & NAF_MOREFRAG)) {
2468 nm_prerr("error: large MTU (%d) needed "
2469 "but %s does not support "
2470 "NS_MOREFRAG", mtu,
2471 na->name);
2472 error = EINVAL;
2473 goto out;
2474 } else {
2475 nm_prinf("info: netmap application on "
2476 "%s needs to support "
2477 "NS_MOREFRAG "
2478 "(MTU=%u,buf_size=%llu)",
2479 kring->name, mtu,
2480 (unsigned long long)kring->hwbuf_len);
2481 }
2482 }
2483 }
2484 out:
2485 return error;
2486 }
2487
2488 /*
2489 * possibly move the interface to netmap-mode.
2490 * If success it returns a pointer to netmap_if, otherwise NULL.
2491 * This must be called with NMG_LOCK held.
2492 *
2493 * The following na callbacks are called in the process:
2494 *
2495 * na->nm_config() [by netmap_update_config]
2496 * (get current number and size of rings)
2497 *
2498 * We have a generic one for linux (netmap_linux_config).
2499 * The bwrap has to override this, since it has to forward
2500 * the request to the wrapped adapter (netmap_bwrap_config).
2501 *
2502 *
2503 * na->nm_krings_create()
2504 * (create and init the krings array)
2505 *
2506 * One of the following:
2507 *
2508 * * netmap_hw_krings_create, (hw ports)
2509 * creates the standard layout for the krings
2510 * and adds the mbq (used for the host rings).
2511 *
2512 * * netmap_vp_krings_create (VALE ports)
2513 * add leases and scratchpads
2514 *
2515 * * netmap_pipe_krings_create (pipes)
2516 * create the krings and rings of both ends and
2517 * cross-link them
2518 *
2519 * * netmap_monitor_krings_create (monitors)
2520 * avoid allocating the mbq
2521 *
2522 * * netmap_bwrap_krings_create (bwraps)
2523 * create both the brap krings array,
2524 * the krings array of the wrapped adapter, and
2525 * (if needed) the fake array for the host adapter
2526 *
2527 * na->nm_register(, 1)
2528 * (put the adapter in netmap mode)
2529 *
2530 * This may be one of the following:
2531 *
2532 * * netmap_hw_reg (hw ports)
2533 * checks that the ifp is still there, then calls
2534 * the hardware specific callback;
2535 *
2536 * * netmap_vp_reg (VALE ports)
2537 * If the port is connected to a bridge,
2538 * set the NAF_NETMAP_ON flag under the
2539 * bridge write lock.
2540 *
2541 * * netmap_pipe_reg (pipes)
2542 * inform the other pipe end that it is no
2543 * longer responsible for the lifetime of this
2544 * pipe end
2545 *
2546 * * netmap_monitor_reg (monitors)
2547 * intercept the sync callbacks of the monitored
2548 * rings
2549 *
2550 * * netmap_bwrap_reg (bwraps)
2551 * cross-link the bwrap and hwna rings,
2552 * forward the request to the hwna, override
2553 * the hwna notify callback (to get the frames
2554 * coming from outside go through the bridge).
2555 *
2556 *
2557 */
2558 int
netmap_do_regif(struct netmap_priv_d * priv,struct netmap_adapter * na,struct nmreq_header * hdr)2559 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
2560 struct nmreq_header *hdr)
2561 {
2562 struct netmap_if *nifp = NULL;
2563 int error;
2564
2565 NMG_LOCK_ASSERT();
2566 priv->np_na = na; /* store the reference */
2567 error = netmap_mem_finalize(na->nm_mem, na);
2568 if (error)
2569 goto err;
2570
2571 if (na->active_fds == 0) {
2572
2573 /* cache the allocator info in the na */
2574 error = netmap_mem_get_lut(na->nm_mem, &na->na_lut);
2575 if (error)
2576 goto err_drop_mem;
2577 nm_prdis("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal,
2578 na->na_lut.objsize);
2579
2580 /* ring configuration may have changed, fetch from the card */
2581 netmap_update_config(na);
2582 }
2583
2584 /* compute the range of tx and rx rings to monitor */
2585 error = netmap_set_ringid(priv, hdr);
2586 if (error)
2587 goto err_put_lut;
2588
2589 if (na->active_fds == 0) {
2590 /*
2591 * If this is the first registration of the adapter,
2592 * perform sanity checks and create the in-kernel view
2593 * of the netmap rings (the netmap krings).
2594 */
2595 if (na->ifp && nm_priv_rx_enabled(priv)) {
2596 /* This netmap adapter is attached to an ifnet. */
2597 unsigned mtu = nm_os_ifnet_mtu(na->ifp);
2598
2599 nm_prdis("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d",
2600 na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na));
2601
2602 if (na->rx_buf_maxsize == 0) {
2603 nm_prerr("%s: error: rx_buf_maxsize == 0", na->name);
2604 error = EIO;
2605 goto err_drop_mem;
2606 }
2607
2608 error = netmap_buf_size_validate(na, mtu);
2609 if (error)
2610 goto err_drop_mem;
2611 }
2612
2613 /*
2614 * Depending on the adapter, this may also create
2615 * the netmap rings themselves
2616 */
2617 error = na->nm_krings_create(na);
2618 if (error)
2619 goto err_put_lut;
2620
2621 }
2622
2623 /* now the krings must exist and we can check whether some
2624 * previous bind has exclusive ownership on them, and set
2625 * nr_pending_mode
2626 */
2627 error = netmap_krings_get(priv);
2628 if (error)
2629 goto err_del_krings;
2630
2631 /* create all needed missing netmap rings */
2632 error = netmap_mem_rings_create(na);
2633 if (error)
2634 goto err_rel_excl;
2635
2636 /* initialize offsets if requested */
2637 error = netmap_offsets_init(priv, hdr);
2638 if (error)
2639 goto err_rel_excl;
2640
2641 /* compute and validate the buf lengths */
2642 error = netmap_compute_buf_len(priv);
2643 if (error)
2644 goto err_rel_excl;
2645
2646 /* in all cases, create a new netmap if */
2647 nifp = netmap_mem_if_new(na, priv);
2648 if (nifp == NULL) {
2649 error = ENOMEM;
2650 goto err_rel_excl;
2651 }
2652
2653 if (nm_kring_pending(priv)) {
2654 /* Some kring is switching mode, tell the adapter to
2655 * react on this. */
2656 netmap_set_all_rings(na, NM_KR_LOCKED);
2657 error = na->nm_register(na, 1);
2658 netmap_set_all_rings(na, 0);
2659 if (error)
2660 goto err_del_if;
2661 }
2662
2663 /* Commit the reference. */
2664 na->active_fds++;
2665
2666 /*
2667 * advertise that the interface is ready by setting np_nifp.
2668 * The barrier is needed because readers (poll, *SYNC and mmap)
2669 * check for priv->np_nifp != NULL without locking
2670 */
2671 mb(); /* make sure previous writes are visible to all CPUs */
2672 priv->np_nifp = nifp;
2673
2674 return 0;
2675
2676 err_del_if:
2677 netmap_mem_if_delete(na, nifp);
2678 err_rel_excl:
2679 netmap_krings_put(priv);
2680 netmap_mem_rings_delete(na);
2681 err_del_krings:
2682 if (na->active_fds == 0)
2683 na->nm_krings_delete(na);
2684 err_put_lut:
2685 if (na->active_fds == 0)
2686 memset(&na->na_lut, 0, sizeof(na->na_lut));
2687 err_drop_mem:
2688 netmap_mem_drop(na);
2689 err:
2690 priv->np_na = NULL;
2691 return error;
2692 }
2693
2694
2695 /*
2696 * update kring and ring at the end of rxsync/txsync.
2697 */
2698 static inline void
nm_sync_finalize(struct netmap_kring * kring)2699 nm_sync_finalize(struct netmap_kring *kring)
2700 {
2701 /*
2702 * Update ring tail to what the kernel knows
2703 * After txsync: head/rhead/hwcur might be behind cur/rcur
2704 * if no carrier.
2705 */
2706 kring->ring->tail = kring->rtail = kring->nr_hwtail;
2707
2708 nm_prdis(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
2709 kring->name, kring->nr_hwcur, kring->nr_hwtail,
2710 kring->rhead, kring->rcur, kring->rtail);
2711 }
2712
2713 /* set ring timestamp */
2714 static inline void
ring_timestamp_set(struct netmap_ring * ring)2715 ring_timestamp_set(struct netmap_ring *ring)
2716 {
2717 if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) {
2718 microtime(&ring->ts);
2719 }
2720 }
2721
2722 static int nmreq_copyin(struct nmreq_header *, int);
2723 static int nmreq_copyout(struct nmreq_header *, int);
2724 static int nmreq_checkoptions(struct nmreq_header *);
2725
2726 /*
2727 * ioctl(2) support for the "netmap" device.
2728 *
2729 * Following a list of accepted commands:
2730 * - NIOCCTRL device control API
2731 * - NIOCTXSYNC sync TX rings
2732 * - NIOCRXSYNC sync RX rings
2733 * - SIOCGIFADDR just for convenience
2734 * - NIOCGINFO deprecated (legacy API)
2735 * - NIOCREGIF deprecated (legacy API)
2736 *
2737 * Return 0 on success, errno otherwise.
2738 */
2739 int
netmap_ioctl(struct netmap_priv_d * priv,u_long cmd,caddr_t data,struct thread * td,int nr_body_is_user)2740 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
2741 struct thread *td, int nr_body_is_user)
2742 {
2743 struct mbq q; /* packets from RX hw queues to host stack */
2744 struct netmap_adapter *na = NULL;
2745 struct netmap_mem_d *nmd = NULL;
2746 if_t ifp = NULL;
2747 int error = 0;
2748 u_int i, qfirst, qlast;
2749 struct netmap_kring **krings;
2750 int sync_flags;
2751 enum txrx t;
2752
2753 switch (cmd) {
2754 case NIOCCTRL: {
2755 struct nmreq_header *hdr = (struct nmreq_header *)data;
2756
2757 if (hdr->nr_version < NETMAP_MIN_API ||
2758 hdr->nr_version > NETMAP_MAX_API) {
2759 nm_prerr("API mismatch: got %d need %d",
2760 hdr->nr_version, NETMAP_API);
2761 return EINVAL;
2762 }
2763
2764 /* Make a kernel-space copy of the user-space nr_body.
2765 * For convenience, the nr_body pointer and the pointers
2766 * in the options list will be replaced with their
2767 * kernel-space counterparts. The original pointers are
2768 * saved internally and later restored by nmreq_copyout
2769 */
2770 error = nmreq_copyin(hdr, nr_body_is_user);
2771 if (error) {
2772 return error;
2773 }
2774
2775 /* Sanitize hdr->nr_name. */
2776 hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0';
2777
2778 switch (hdr->nr_reqtype) {
2779 case NETMAP_REQ_REGISTER: {
2780 struct nmreq_register *req =
2781 (struct nmreq_register *)(uintptr_t)hdr->nr_body;
2782 struct netmap_if *nifp;
2783
2784 /* Protect access to priv from concurrent requests. */
2785 NMG_LOCK();
2786 do {
2787 struct nmreq_option *opt;
2788 u_int memflags;
2789
2790 if (priv->np_nifp != NULL) { /* thread already registered */
2791 error = EBUSY;
2792 break;
2793 }
2794
2795 #ifdef WITH_EXTMEM
2796 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_EXTMEM);
2797 if (opt != NULL) {
2798 struct nmreq_opt_extmem *e =
2799 (struct nmreq_opt_extmem *)opt;
2800
2801 nmd = netmap_mem_ext_create(e->nro_usrptr,
2802 &e->nro_info, &error);
2803 opt->nro_status = error;
2804 if (nmd == NULL)
2805 break;
2806 }
2807 #endif /* WITH_EXTMEM */
2808
2809 if (nmd == NULL && req->nr_mem_id) {
2810 /* find the allocator and get a reference */
2811 nmd = netmap_mem_find(req->nr_mem_id);
2812 if (nmd == NULL) {
2813 if (netmap_verbose) {
2814 nm_prerr("%s: failed to find mem_id %u",
2815 hdr->nr_name, req->nr_mem_id);
2816 }
2817 error = EINVAL;
2818 break;
2819 }
2820 }
2821 /* find the interface and a reference */
2822 error = netmap_get_na(hdr, &na, &ifp, nmd,
2823 1 /* create */); /* keep reference */
2824 if (error)
2825 break;
2826 if (NETMAP_OWNED_BY_KERN(na)) {
2827 error = EBUSY;
2828 break;
2829 }
2830
2831 if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) {
2832 nm_prerr("virt_hdr_len=%d, but application does "
2833 "not accept it", na->virt_hdr_len);
2834 error = EIO;
2835 break;
2836 }
2837
2838 error = netmap_do_regif(priv, na, hdr);
2839 if (error) { /* reg. failed, release priv and ref */
2840 break;
2841 }
2842
2843 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB);
2844 if (opt != NULL) {
2845 struct nmreq_opt_csb *csbo =
2846 (struct nmreq_opt_csb *)opt;
2847 error = netmap_csb_validate(priv, csbo);
2848 opt->nro_status = error;
2849 if (error) {
2850 netmap_do_unregif(priv);
2851 break;
2852 }
2853 }
2854
2855 nifp = priv->np_nifp;
2856
2857 /* return the offset of the netmap_if object */
2858 req->nr_rx_rings = na->num_rx_rings;
2859 req->nr_tx_rings = na->num_tx_rings;
2860 req->nr_rx_slots = na->num_rx_desc;
2861 req->nr_tx_slots = na->num_tx_desc;
2862 req->nr_host_tx_rings = na->num_host_tx_rings;
2863 req->nr_host_rx_rings = na->num_host_rx_rings;
2864 error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags,
2865 &req->nr_mem_id);
2866 if (error) {
2867 netmap_do_unregif(priv);
2868 break;
2869 }
2870 if (memflags & NETMAP_MEM_PRIVATE) {
2871 *(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM;
2872 }
2873 for_rx_tx(t) {
2874 priv->np_si[t] = nm_si_user(priv, t) ?
2875 &na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si;
2876 }
2877
2878 if (req->nr_extra_bufs) {
2879 if (netmap_verbose)
2880 nm_prinf("requested %d extra buffers",
2881 req->nr_extra_bufs);
2882 req->nr_extra_bufs = netmap_extra_alloc(na,
2883 &nifp->ni_bufs_head, req->nr_extra_bufs);
2884 if (netmap_verbose)
2885 nm_prinf("got %d extra buffers", req->nr_extra_bufs);
2886 } else {
2887 nifp->ni_bufs_head = 0;
2888 }
2889 req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp);
2890
2891 error = nmreq_checkoptions(hdr);
2892 if (error) {
2893 netmap_do_unregif(priv);
2894 break;
2895 }
2896
2897 /* store ifp reference so that priv destructor may release it */
2898 priv->np_ifp = ifp;
2899 } while (0);
2900 if (error) {
2901 netmap_unget_na(na, ifp);
2902 }
2903 /* release the reference from netmap_mem_find() or
2904 * netmap_mem_ext_create()
2905 */
2906 if (nmd)
2907 netmap_mem_put(nmd);
2908 NMG_UNLOCK();
2909 break;
2910 }
2911
2912 case NETMAP_REQ_PORT_INFO_GET: {
2913 struct nmreq_port_info_get *req =
2914 (struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body;
2915 int nmd_ref = 0;
2916
2917 NMG_LOCK();
2918 do {
2919 u_int memflags;
2920
2921 if (hdr->nr_name[0] != '\0') {
2922 /* Build a nmreq_register out of the nmreq_port_info_get,
2923 * so that we can call netmap_get_na(). */
2924 struct nmreq_register regreq;
2925 bzero(®req, sizeof(regreq));
2926 regreq.nr_mode = NR_REG_ALL_NIC;
2927 regreq.nr_tx_slots = req->nr_tx_slots;
2928 regreq.nr_rx_slots = req->nr_rx_slots;
2929 regreq.nr_tx_rings = req->nr_tx_rings;
2930 regreq.nr_rx_rings = req->nr_rx_rings;
2931 regreq.nr_host_tx_rings = req->nr_host_tx_rings;
2932 regreq.nr_host_rx_rings = req->nr_host_rx_rings;
2933 regreq.nr_mem_id = req->nr_mem_id;
2934
2935 /* get a refcount */
2936 hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2937 hdr->nr_body = (uintptr_t)®req;
2938 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2939 hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */
2940 hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2941 if (error) {
2942 na = NULL;
2943 ifp = NULL;
2944 break;
2945 }
2946 nmd = na->nm_mem; /* get memory allocator */
2947 } else {
2948 nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1);
2949 if (nmd == NULL) {
2950 if (netmap_verbose)
2951 nm_prerr("%s: failed to find mem_id %u",
2952 hdr->nr_name,
2953 req->nr_mem_id ? req->nr_mem_id : 1);
2954 error = EINVAL;
2955 break;
2956 }
2957 nmd_ref = 1;
2958 }
2959
2960 error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags,
2961 &req->nr_mem_id);
2962 if (error)
2963 break;
2964 if (na == NULL) /* only memory info */
2965 break;
2966 netmap_update_config(na);
2967 req->nr_rx_rings = na->num_rx_rings;
2968 req->nr_tx_rings = na->num_tx_rings;
2969 req->nr_rx_slots = na->num_rx_desc;
2970 req->nr_tx_slots = na->num_tx_desc;
2971 req->nr_host_tx_rings = na->num_host_tx_rings;
2972 req->nr_host_rx_rings = na->num_host_rx_rings;
2973 } while (0);
2974 netmap_unget_na(na, ifp);
2975 if (nmd_ref)
2976 netmap_mem_put(nmd);
2977 NMG_UNLOCK();
2978 break;
2979 }
2980 #ifdef WITH_VALE
2981 case NETMAP_REQ_VALE_ATTACH: {
2982 error = netmap_bdg_attach(hdr, NULL /* userspace request */);
2983 break;
2984 }
2985
2986 case NETMAP_REQ_VALE_DETACH: {
2987 error = netmap_bdg_detach(hdr, NULL /* userspace request */);
2988 break;
2989 }
2990
2991 case NETMAP_REQ_PORT_HDR_SET: {
2992 struct nmreq_port_hdr *req =
2993 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2994 /* Build a nmreq_register out of the nmreq_port_hdr,
2995 * so that we can call netmap_get_bdg_na(). */
2996 struct nmreq_register regreq;
2997 bzero(®req, sizeof(regreq));
2998 regreq.nr_mode = NR_REG_ALL_NIC;
2999
3000 /* For now we only support virtio-net headers, and only for
3001 * VALE ports, but this may change in future. Valid lengths
3002 * for the virtio-net header are 0 (no header), 10 and 12. */
3003 if (req->nr_hdr_len != 0 &&
3004 req->nr_hdr_len != sizeof(struct nm_vnet_hdr) &&
3005 req->nr_hdr_len != 12) {
3006 if (netmap_verbose)
3007 nm_prerr("invalid hdr_len %u", req->nr_hdr_len);
3008 error = EINVAL;
3009 break;
3010 }
3011 NMG_LOCK();
3012 hdr->nr_reqtype = NETMAP_REQ_REGISTER;
3013 hdr->nr_body = (uintptr_t)®req;
3014 error = netmap_get_vale_na(hdr, &na, NULL, 0);
3015 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET;
3016 hdr->nr_body = (uintptr_t)req;
3017 if (na && !error) {
3018 struct netmap_vp_adapter *vpna =
3019 (struct netmap_vp_adapter *)na;
3020 na->virt_hdr_len = req->nr_hdr_len;
3021 if (na->virt_hdr_len) {
3022 vpna->mfs = NETMAP_BUF_SIZE(na);
3023 }
3024 if (netmap_verbose)
3025 nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na);
3026 netmap_adapter_put(na);
3027 } else if (!na) {
3028 error = ENXIO;
3029 }
3030 NMG_UNLOCK();
3031 break;
3032 }
3033
3034 case NETMAP_REQ_PORT_HDR_GET: {
3035 /* Get vnet-header length for this netmap port */
3036 struct nmreq_port_hdr *req =
3037 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
3038 /* Build a nmreq_register out of the nmreq_port_hdr,
3039 * so that we can call netmap_get_bdg_na(). */
3040 struct nmreq_register regreq;
3041 if_t ifp;
3042
3043 bzero(®req, sizeof(regreq));
3044 regreq.nr_mode = NR_REG_ALL_NIC;
3045 NMG_LOCK();
3046 hdr->nr_reqtype = NETMAP_REQ_REGISTER;
3047 hdr->nr_body = (uintptr_t)®req;
3048 error = netmap_get_na(hdr, &na, &ifp, NULL, 0);
3049 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET;
3050 hdr->nr_body = (uintptr_t)req;
3051 if (na && !error) {
3052 req->nr_hdr_len = na->virt_hdr_len;
3053 }
3054 netmap_unget_na(na, ifp);
3055 NMG_UNLOCK();
3056 break;
3057 }
3058
3059 case NETMAP_REQ_VALE_LIST: {
3060 error = netmap_vale_list(hdr);
3061 break;
3062 }
3063
3064 case NETMAP_REQ_VALE_NEWIF: {
3065 error = nm_vi_create(hdr);
3066 break;
3067 }
3068
3069 case NETMAP_REQ_VALE_DELIF: {
3070 error = nm_vi_destroy(hdr->nr_name);
3071 break;
3072 }
3073 #endif /* WITH_VALE */
3074
3075 case NETMAP_REQ_VALE_POLLING_ENABLE:
3076 case NETMAP_REQ_VALE_POLLING_DISABLE: {
3077 error = nm_bdg_polling(hdr);
3078 break;
3079 }
3080 case NETMAP_REQ_POOLS_INFO_GET: {
3081 /* Get information from the memory allocator used for
3082 * hdr->nr_name. */
3083 struct nmreq_pools_info *req =
3084 (struct nmreq_pools_info *)(uintptr_t)hdr->nr_body;
3085 NMG_LOCK();
3086 do {
3087 /* Build a nmreq_register out of the nmreq_pools_info,
3088 * so that we can call netmap_get_na(). */
3089 struct nmreq_register regreq;
3090 bzero(®req, sizeof(regreq));
3091 regreq.nr_mem_id = req->nr_mem_id;
3092 regreq.nr_mode = NR_REG_ALL_NIC;
3093
3094 hdr->nr_reqtype = NETMAP_REQ_REGISTER;
3095 hdr->nr_body = (uintptr_t)®req;
3096 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
3097 hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */
3098 hdr->nr_body = (uintptr_t)req; /* reset nr_body */
3099 if (error) {
3100 na = NULL;
3101 ifp = NULL;
3102 break;
3103 }
3104 nmd = na->nm_mem; /* grab the memory allocator */
3105 if (nmd == NULL) {
3106 error = EINVAL;
3107 break;
3108 }
3109
3110 /* Finalize the memory allocator, get the pools
3111 * information and release the allocator. */
3112 error = netmap_mem_finalize(nmd, na);
3113 if (error) {
3114 break;
3115 }
3116 error = netmap_mem_pools_info_get(req, nmd);
3117 netmap_mem_drop(na);
3118 } while (0);
3119 netmap_unget_na(na, ifp);
3120 NMG_UNLOCK();
3121 break;
3122 }
3123
3124 case NETMAP_REQ_CSB_ENABLE: {
3125 struct nmreq_option *opt;
3126
3127 opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB);
3128 if (opt == NULL) {
3129 error = EINVAL;
3130 } else {
3131 struct nmreq_opt_csb *csbo =
3132 (struct nmreq_opt_csb *)opt;
3133 NMG_LOCK();
3134 error = netmap_csb_validate(priv, csbo);
3135 NMG_UNLOCK();
3136 opt->nro_status = error;
3137 }
3138 break;
3139 }
3140
3141 case NETMAP_REQ_SYNC_KLOOP_START: {
3142 error = netmap_sync_kloop(priv, hdr);
3143 break;
3144 }
3145
3146 case NETMAP_REQ_SYNC_KLOOP_STOP: {
3147 error = netmap_sync_kloop_stop(priv);
3148 break;
3149 }
3150
3151 default: {
3152 error = EINVAL;
3153 break;
3154 }
3155 }
3156 /* Write back request body to userspace and reset the
3157 * user-space pointer. */
3158 error = nmreq_copyout(hdr, error);
3159 break;
3160 }
3161
3162 case NIOCTXSYNC:
3163 case NIOCRXSYNC: {
3164 if (unlikely(priv->np_nifp == NULL)) {
3165 error = ENXIO;
3166 break;
3167 }
3168 mb(); /* make sure following reads are not from cache */
3169
3170 if (unlikely(priv->np_csb_atok_base)) {
3171 nm_prerr("Invalid sync in CSB mode");
3172 error = EBUSY;
3173 break;
3174 }
3175
3176 na = priv->np_na; /* we have a reference */
3177
3178 mbq_init(&q);
3179 t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX);
3180 krings = NMR(na, t);
3181 qfirst = priv->np_qfirst[t];
3182 qlast = priv->np_qlast[t];
3183 sync_flags = priv->np_sync_flags;
3184
3185 for (i = qfirst; i < qlast; i++) {
3186 struct netmap_kring *kring = krings[i];
3187 struct netmap_ring *ring = kring->ring;
3188
3189 if (unlikely(nm_kr_tryget(kring, 1, &error))) {
3190 error = (error ? EIO : 0);
3191 continue;
3192 }
3193
3194 if (cmd == NIOCTXSYNC) {
3195 if (netmap_debug & NM_DEBUG_TXSYNC)
3196 nm_prinf("pre txsync ring %d cur %d hwcur %d",
3197 i, ring->cur,
3198 kring->nr_hwcur);
3199 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3200 netmap_ring_reinit(kring);
3201 } else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) {
3202 nm_sync_finalize(kring);
3203 }
3204 if (netmap_debug & NM_DEBUG_TXSYNC)
3205 nm_prinf("post txsync ring %d cur %d hwcur %d",
3206 i, ring->cur,
3207 kring->nr_hwcur);
3208 } else {
3209 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3210 netmap_ring_reinit(kring);
3211 }
3212 if (nm_may_forward_up(kring)) {
3213 /* transparent forwarding, see netmap_poll() */
3214 netmap_grab_packets(kring, &q, netmap_fwd);
3215 }
3216 if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) {
3217 nm_sync_finalize(kring);
3218 }
3219 ring_timestamp_set(ring);
3220 }
3221 nm_kr_put(kring);
3222 }
3223
3224 if (mbq_peek(&q)) {
3225 netmap_send_up(na->ifp, &q);
3226 }
3227
3228 break;
3229 }
3230
3231 default: {
3232 return netmap_ioctl_legacy(priv, cmd, data, td);
3233 break;
3234 }
3235 }
3236
3237 return (error);
3238 }
3239
3240 size_t
nmreq_size_by_type(uint16_t nr_reqtype)3241 nmreq_size_by_type(uint16_t nr_reqtype)
3242 {
3243 switch (nr_reqtype) {
3244 case NETMAP_REQ_REGISTER:
3245 return sizeof(struct nmreq_register);
3246 case NETMAP_REQ_PORT_INFO_GET:
3247 return sizeof(struct nmreq_port_info_get);
3248 case NETMAP_REQ_VALE_ATTACH:
3249 return sizeof(struct nmreq_vale_attach);
3250 case NETMAP_REQ_VALE_DETACH:
3251 return sizeof(struct nmreq_vale_detach);
3252 case NETMAP_REQ_VALE_LIST:
3253 return sizeof(struct nmreq_vale_list);
3254 case NETMAP_REQ_PORT_HDR_SET:
3255 case NETMAP_REQ_PORT_HDR_GET:
3256 return sizeof(struct nmreq_port_hdr);
3257 case NETMAP_REQ_VALE_NEWIF:
3258 return sizeof(struct nmreq_vale_newif);
3259 case NETMAP_REQ_VALE_DELIF:
3260 case NETMAP_REQ_SYNC_KLOOP_STOP:
3261 case NETMAP_REQ_CSB_ENABLE:
3262 return 0;
3263 case NETMAP_REQ_VALE_POLLING_ENABLE:
3264 case NETMAP_REQ_VALE_POLLING_DISABLE:
3265 return sizeof(struct nmreq_vale_polling);
3266 case NETMAP_REQ_POOLS_INFO_GET:
3267 return sizeof(struct nmreq_pools_info);
3268 case NETMAP_REQ_SYNC_KLOOP_START:
3269 return sizeof(struct nmreq_sync_kloop_start);
3270 }
3271 return 0;
3272 }
3273
3274 static size_t
nmreq_opt_size_by_type(uint32_t nro_reqtype,uint64_t nro_size)3275 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size)
3276 {
3277 size_t rv = sizeof(struct nmreq_option);
3278 #ifdef NETMAP_REQ_OPT_DEBUG
3279 if (nro_reqtype & NETMAP_REQ_OPT_DEBUG)
3280 return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG);
3281 #endif /* NETMAP_REQ_OPT_DEBUG */
3282 switch (nro_reqtype) {
3283 #ifdef WITH_EXTMEM
3284 case NETMAP_REQ_OPT_EXTMEM:
3285 rv = sizeof(struct nmreq_opt_extmem);
3286 break;
3287 #endif /* WITH_EXTMEM */
3288 case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS:
3289 if (nro_size >= rv)
3290 rv = nro_size;
3291 break;
3292 case NETMAP_REQ_OPT_CSB:
3293 rv = sizeof(struct nmreq_opt_csb);
3294 break;
3295 case NETMAP_REQ_OPT_SYNC_KLOOP_MODE:
3296 rv = sizeof(struct nmreq_opt_sync_kloop_mode);
3297 break;
3298 case NETMAP_REQ_OPT_OFFSETS:
3299 rv = sizeof(struct nmreq_opt_offsets);
3300 break;
3301 }
3302 /* subtract the common header */
3303 return rv - sizeof(struct nmreq_option);
3304 }
3305
3306 /*
3307 * nmreq_copyin: create an in-kernel version of the request.
3308 *
3309 * We build the following data structure:
3310 *
3311 * hdr -> +-------+ buf
3312 * | | +---------------+
3313 * +-------+ |usr body ptr |
3314 * |options|-. +---------------+
3315 * +-------+ | |usr options ptr|
3316 * |body |--------->+---------------+
3317 * +-------+ | | |
3318 * | | copy of body |
3319 * | | |
3320 * | +---------------+
3321 * | | NULL |
3322 * | +---------------+
3323 * | .---| |\
3324 * | | +---------------+ |
3325 * | .------| | |
3326 * | | | +---------------+ \ option table
3327 * | | | | ... | / indexed by option
3328 * | | | +---------------+ | type
3329 * | | | | | |
3330 * | | | +---------------+/
3331 * | | | |usr next ptr 1 |
3332 * `-|----->+---------------+
3333 * | | | copy of opt 1 |
3334 * | | | |
3335 * | | .-| nro_next |
3336 * | | | +---------------+
3337 * | | | |usr next ptr 2 |
3338 * | `-`>+---------------+
3339 * | | copy of opt 2 |
3340 * | | |
3341 * | .-| nro_next |
3342 * | | +---------------+
3343 * | | | |
3344 * ~ ~ ~ ... ~
3345 * | .-| |
3346 * `----->+---------------+
3347 * | |usr next ptr n |
3348 * `>+---------------+
3349 * | copy of opt n |
3350 * | |
3351 * | nro_next(NULL)|
3352 * +---------------+
3353 *
3354 * The options and body fields of the hdr structure are overwritten
3355 * with in-kernel valid pointers inside the buf. The original user
3356 * pointers are saved in the buf and restored on copyout.
3357 * The list of options is copied and the pointers adjusted. The
3358 * original pointers are saved before the option they belonged.
3359 *
3360 * The option table has an entry for every available option. Entries
3361 * for options that have not been passed contain NULL.
3362 *
3363 */
3364
3365 int
nmreq_copyin(struct nmreq_header * hdr,int nr_body_is_user)3366 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user)
3367 {
3368 size_t rqsz, optsz, bufsz;
3369 int error = 0;
3370 char *ker = NULL, *p;
3371 struct nmreq_option **next, *src, **opt_tab, *opt;
3372 uint64_t *ptrs;
3373
3374 if (hdr->nr_reserved) {
3375 if (netmap_verbose)
3376 nm_prerr("nr_reserved must be zero");
3377 return EINVAL;
3378 }
3379
3380 if (!nr_body_is_user)
3381 return 0;
3382
3383 hdr->nr_reserved = nr_body_is_user;
3384
3385 /* compute the total size of the buffer */
3386 rqsz = nmreq_size_by_type(hdr->nr_reqtype);
3387 if (rqsz > NETMAP_REQ_MAXSIZE) {
3388 error = EMSGSIZE;
3389 goto out_err;
3390 }
3391 if ((rqsz && hdr->nr_body == (uintptr_t)NULL) ||
3392 (!rqsz && hdr->nr_body != (uintptr_t)NULL)) {
3393 /* Request body expected, but not found; or
3394 * request body found but unexpected. */
3395 if (netmap_verbose)
3396 nm_prerr("nr_body expected but not found, or vice versa");
3397 error = EINVAL;
3398 goto out_err;
3399 }
3400
3401 /*
3402 * The buffer size must be large enough to store the request body,
3403 * all the possible options and the additional user pointers
3404 * (2+NETMAP_REQ_OPT_MAX). Note that the maximum size of body plus
3405 * options can not exceed NETMAP_REQ_MAXSIZE;
3406 */
3407 bufsz = (2 + NETMAP_REQ_OPT_MAX) * sizeof(void *) + NETMAP_REQ_MAXSIZE +
3408 NETMAP_REQ_OPT_MAX * sizeof(opt_tab);
3409
3410 ker = nm_os_malloc(bufsz);
3411 if (ker == NULL) {
3412 error = ENOMEM;
3413 goto out_err;
3414 }
3415 p = ker; /* write pointer into the buffer */
3416
3417 /* make a copy of the user pointers */
3418 ptrs = (uint64_t*)p;
3419 *ptrs++ = hdr->nr_body;
3420 *ptrs++ = hdr->nr_options;
3421 p = (char *)ptrs;
3422 /* overwrite the user pointer with the in-kernel one */
3423 hdr->nr_body = (uintptr_t)p;
3424 /* prepare the options-list pointers and temporarily terminate
3425 * the in-kernel list, in case we have to jump to out_restore
3426 */
3427 next = (struct nmreq_option **)&hdr->nr_options;
3428 src = *next;
3429 hdr->nr_options = 0;
3430
3431 /* copy the body */
3432 error = copyin(*(void **)ker, p, rqsz);
3433 if (error)
3434 goto out_restore;
3435 p += rqsz;
3436 /* start of the options table */
3437 opt_tab = (struct nmreq_option **)p;
3438 p += sizeof(opt_tab) * NETMAP_REQ_OPT_MAX;
3439
3440 /* copy the options */
3441 while (src) {
3442 struct nmreq_option *nsrc;
3443
3444 if (p - ker + sizeof(uint64_t*) + sizeof(*src) > bufsz) {
3445 error = EMSGSIZE;
3446 /* there might be a loop in the list: don't try to
3447 * copyout the options
3448 */
3449 hdr->nr_options = 0;
3450 goto out_restore;
3451 }
3452 /* copy the option header */
3453 ptrs = (uint64_t *)p;
3454 opt = (struct nmreq_option *)(ptrs + 1);
3455 error = copyin(src, opt, sizeof(*src));
3456 if (error)
3457 goto out_restore;
3458 rqsz += sizeof(*src);
3459 p = (char *)(opt + 1);
3460
3461 /* make a copy of the user next pointer */
3462 *ptrs = opt->nro_next;
3463 /* append the option to the in-kernel list */
3464 *next = opt;
3465 /* temporarily teminate the in-kernel list, in case we have to
3466 * jump to out_restore
3467 */
3468 nsrc = (struct nmreq_option *)opt->nro_next;
3469 opt->nro_next = 0;
3470
3471 opt->nro_status = 0;
3472
3473 /* check for invalid types */
3474 if (opt->nro_reqtype < 1) {
3475 if (netmap_verbose)
3476 nm_prinf("invalid option type: %u", opt->nro_reqtype);
3477 opt->nro_status = EINVAL;
3478 error = EINVAL;
3479 goto out_restore;
3480 }
3481
3482 if (opt->nro_reqtype >= NETMAP_REQ_OPT_MAX) {
3483 /* opt->nro_status will be set to EOPNOTSUPP */
3484 goto next;
3485 }
3486
3487 /* if the type is valid, index the option in the table
3488 * unless it is a duplicate.
3489 */
3490 if (opt_tab[opt->nro_reqtype] != NULL) {
3491 if (netmap_verbose)
3492 nm_prinf("duplicate option: %u", opt->nro_reqtype);
3493 opt->nro_status = EINVAL;
3494 opt_tab[opt->nro_reqtype]->nro_status = EINVAL;
3495 error = EINVAL;
3496 goto out_restore;
3497 }
3498 opt_tab[opt->nro_reqtype] = opt;
3499
3500 /* copy the option body */
3501 optsz = nmreq_opt_size_by_type(opt->nro_reqtype,
3502 opt->nro_size);
3503 /* check optsz and nro_size to avoid for possible integer overflows of rqsz */
3504 if ((optsz > NETMAP_REQ_MAXSIZE) || (opt->nro_size > NETMAP_REQ_MAXSIZE)
3505 || (rqsz + optsz > NETMAP_REQ_MAXSIZE)
3506 || (optsz > 0 && rqsz + optsz <= rqsz)) {
3507 error = EMSGSIZE;
3508 goto out_restore;
3509 }
3510 rqsz += optsz;
3511 if (optsz) {
3512 /* the option body follows the option header */
3513 error = copyin(src + 1, p, optsz);
3514 if (error)
3515 goto out_restore;
3516 p += optsz;
3517 }
3518
3519 next:
3520 /* move to next option */
3521 next = (struct nmreq_option **)&opt->nro_next;
3522 src = nsrc;
3523 }
3524
3525 /* initialize all the options as not supported. Recognized options
3526 * will update their field.
3527 */
3528 for (src = (struct nmreq_option *)hdr->nr_options; src;
3529 src = (struct nmreq_option *)src->nro_next) {
3530 src->nro_status = EOPNOTSUPP;
3531 }
3532 return 0;
3533
3534 out_restore:
3535 nmreq_copyout(hdr, error);
3536 out_err:
3537 return error;
3538 }
3539
3540 static int
nmreq_copyout(struct nmreq_header * hdr,int rerror)3541 nmreq_copyout(struct nmreq_header *hdr, int rerror)
3542 {
3543 struct nmreq_option *src, *dst;
3544 void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart;
3545 uint64_t *ptrs;
3546 size_t bodysz;
3547 int error;
3548
3549 if (!hdr->nr_reserved)
3550 return rerror;
3551
3552 /* restore the user pointers in the header */
3553 ptrs = (uint64_t *)ker - 2;
3554 bufstart = ptrs;
3555 hdr->nr_body = *ptrs++;
3556 src = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3557 hdr->nr_options = *ptrs;
3558
3559 if (!rerror) {
3560 /* copy the body */
3561 bodysz = nmreq_size_by_type(hdr->nr_reqtype);
3562 error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz);
3563 if (error) {
3564 rerror = error;
3565 goto out;
3566 }
3567 }
3568
3569 /* copy the options */
3570 dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3571 while (src) {
3572 size_t optsz;
3573 uint64_t next;
3574
3575 /* restore the user pointer */
3576 next = src->nro_next;
3577 ptrs = (uint64_t *)src - 1;
3578 src->nro_next = *ptrs;
3579
3580 /* always copy the option header */
3581 error = copyout(src, dst, sizeof(*src));
3582 if (error) {
3583 rerror = error;
3584 goto out;
3585 }
3586
3587 /* copy the option body only if there was no error */
3588 if (!rerror && !src->nro_status) {
3589 optsz = nmreq_opt_size_by_type(src->nro_reqtype,
3590 src->nro_size);
3591 if (optsz) {
3592 error = copyout(src + 1, dst + 1, optsz);
3593 if (error) {
3594 rerror = error;
3595 goto out;
3596 }
3597 }
3598 }
3599 src = (struct nmreq_option *)(uintptr_t)next;
3600 dst = (struct nmreq_option *)(uintptr_t)*ptrs;
3601 }
3602
3603
3604 out:
3605 hdr->nr_reserved = 0;
3606 nm_os_free(bufstart);
3607 return rerror;
3608 }
3609
3610 struct nmreq_option *
nmreq_getoption(struct nmreq_header * hdr,uint16_t reqtype)3611 nmreq_getoption(struct nmreq_header *hdr, uint16_t reqtype)
3612 {
3613 struct nmreq_option **opt_tab;
3614
3615 if (!hdr->nr_options)
3616 return NULL;
3617
3618 opt_tab = (struct nmreq_option **)((uintptr_t)hdr->nr_options) -
3619 (NETMAP_REQ_OPT_MAX + 1);
3620 return opt_tab[reqtype];
3621 }
3622
3623 static int
nmreq_checkoptions(struct nmreq_header * hdr)3624 nmreq_checkoptions(struct nmreq_header *hdr)
3625 {
3626 struct nmreq_option *opt;
3627 /* return error if there is still any option
3628 * marked as not supported
3629 */
3630
3631 for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt;
3632 opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
3633 if (opt->nro_status == EOPNOTSUPP)
3634 return EOPNOTSUPP;
3635
3636 return 0;
3637 }
3638
3639 /*
3640 * select(2) and poll(2) handlers for the "netmap" device.
3641 *
3642 * Can be called for one or more queues.
3643 * Return true the event mask corresponding to ready events.
3644 * If there are no ready events (and 'sr' is not NULL), do a
3645 * selrecord on either individual selinfo or on the global one.
3646 * Device-dependent parts (locking and sync of tx/rx rings)
3647 * are done through callbacks.
3648 *
3649 * On linux, arguments are really pwait, the poll table, and 'td' is struct file *
3650 * The first one is remapped to pwait as selrecord() uses the name as an
3651 * hidden argument.
3652 */
3653 int
netmap_poll(struct netmap_priv_d * priv,int events,NM_SELRECORD_T * sr)3654 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr)
3655 {
3656 struct netmap_adapter *na;
3657 struct netmap_kring *kring;
3658 struct netmap_ring *ring;
3659 u_int i, want[NR_TXRX], revents = 0;
3660 NM_SELINFO_T *si[NR_TXRX];
3661 #define want_tx want[NR_TX]
3662 #define want_rx want[NR_RX]
3663 struct mbq q; /* packets from RX hw queues to host stack */
3664
3665 /*
3666 * In order to avoid nested locks, we need to "double check"
3667 * txsync and rxsync if we decide to do a selrecord().
3668 * retry_tx (and retry_rx, later) prevent looping forever.
3669 */
3670 int retry_tx = 1, retry_rx = 1;
3671
3672 /* Transparent mode: send_down is 1 if we have found some
3673 * packets to forward (host RX ring --> NIC) during the rx
3674 * scan and we have not sent them down to the NIC yet.
3675 * Transparent mode requires to bind all rings to a single
3676 * file descriptor.
3677 */
3678 int send_down = 0;
3679 int sync_flags = priv->np_sync_flags;
3680
3681 mbq_init(&q);
3682
3683 if (unlikely(priv->np_nifp == NULL)) {
3684 return POLLERR;
3685 }
3686 mb(); /* make sure following reads are not from cache */
3687
3688 na = priv->np_na;
3689
3690 if (unlikely(!nm_netmap_on(na)))
3691 return POLLERR;
3692
3693 if (unlikely(priv->np_csb_atok_base)) {
3694 nm_prerr("Invalid poll in CSB mode");
3695 return POLLERR;
3696 }
3697
3698 if (netmap_debug & NM_DEBUG_ON)
3699 nm_prinf("device %s events 0x%x", na->name, events);
3700 want_tx = events & (POLLOUT | POLLWRNORM);
3701 want_rx = events & (POLLIN | POLLRDNORM);
3702
3703 /*
3704 * If the card has more than one queue AND the file descriptor is
3705 * bound to all of them, we sleep on the "global" selinfo, otherwise
3706 * we sleep on individual selinfo (FreeBSD only allows two selinfo's
3707 * per file descriptor).
3708 * The interrupt routine in the driver wake one or the other
3709 * (or both) depending on which clients are active.
3710 *
3711 * rxsync() is only called if we run out of buffers on a POLLIN.
3712 * txsync() is called if we run out of buffers on POLLOUT, or
3713 * there are pending packets to send. The latter can be disabled
3714 * passing NETMAP_NO_TX_POLL in the NIOCREG call.
3715 */
3716 si[NR_RX] = priv->np_si[NR_RX];
3717 si[NR_TX] = priv->np_si[NR_TX];
3718
3719 #ifdef __FreeBSD__
3720 /*
3721 * We start with a lock free round which is cheap if we have
3722 * slots available. If this fails, then lock and call the sync
3723 * routines. We can't do this on Linux, as the contract says
3724 * that we must call nm_os_selrecord() unconditionally.
3725 */
3726 if (want_tx) {
3727 const enum txrx t = NR_TX;
3728 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3729 kring = NMR(na, t)[i];
3730 if (kring->ring->cur != kring->ring->tail) {
3731 /* Some unseen TX space is available, so what
3732 * we don't need to run txsync. */
3733 revents |= want[t];
3734 want[t] = 0;
3735 break;
3736 }
3737 }
3738 }
3739 if (want_rx) {
3740 const enum txrx t = NR_RX;
3741 int rxsync_needed = 0;
3742
3743 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3744 kring = NMR(na, t)[i];
3745 if (kring->ring->cur == kring->ring->tail
3746 || kring->rhead != kring->ring->head) {
3747 /* There are no unseen packets on this ring,
3748 * or there are some buffers to be returned
3749 * to the netmap port. We therefore go ahead
3750 * and run rxsync. */
3751 rxsync_needed = 1;
3752 break;
3753 }
3754 }
3755 if (!rxsync_needed) {
3756 revents |= want_rx;
3757 want_rx = 0;
3758 }
3759 }
3760 #endif
3761
3762 #ifdef linux
3763 /* The selrecord must be unconditional on linux. */
3764 nm_os_selrecord(sr, si[NR_RX]);
3765 nm_os_selrecord(sr, si[NR_TX]);
3766 #endif /* linux */
3767
3768 /*
3769 * If we want to push packets out (priv->np_txpoll) or
3770 * want_tx is still set, we must issue txsync calls
3771 * (on all rings, to avoid that the tx rings stall).
3772 * Fortunately, normal tx mode has np_txpoll set.
3773 */
3774 if (priv->np_txpoll || want_tx) {
3775 /*
3776 * The first round checks if anyone is ready, if not
3777 * do a selrecord and another round to handle races.
3778 * want_tx goes to 0 if any space is found, and is
3779 * used to skip rings with no pending transmissions.
3780 */
3781 flush_tx:
3782 for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) {
3783 int found = 0;
3784
3785 kring = na->tx_rings[i];
3786 ring = kring->ring;
3787
3788 /*
3789 * Don't try to txsync this TX ring if we already found some
3790 * space in some of the TX rings (want_tx == 0) and there are no
3791 * TX slots in this ring that need to be flushed to the NIC
3792 * (head == hwcur).
3793 */
3794 if (!send_down && !want_tx && ring->head == kring->nr_hwcur)
3795 continue;
3796
3797 if (nm_kr_tryget(kring, 1, &revents))
3798 continue;
3799
3800 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3801 netmap_ring_reinit(kring);
3802 revents |= POLLERR;
3803 } else {
3804 if (kring->nm_sync(kring, sync_flags))
3805 revents |= POLLERR;
3806 else
3807 nm_sync_finalize(kring);
3808 }
3809
3810 /*
3811 * If we found new slots, notify potential
3812 * listeners on the same ring.
3813 * Since we just did a txsync, look at the copies
3814 * of cur,tail in the kring.
3815 */
3816 found = kring->rcur != kring->rtail;
3817 nm_kr_put(kring);
3818 if (found) { /* notify other listeners */
3819 revents |= want_tx;
3820 want_tx = 0;
3821 #ifndef linux
3822 kring->nm_notify(kring, 0);
3823 #endif /* linux */
3824 }
3825 }
3826 /* if there were any packet to forward we must have handled them by now */
3827 send_down = 0;
3828 if (want_tx && retry_tx && sr) {
3829 #ifndef linux
3830 nm_os_selrecord(sr, si[NR_TX]);
3831 #endif /* !linux */
3832 retry_tx = 0;
3833 goto flush_tx;
3834 }
3835 }
3836
3837 /*
3838 * If want_rx is still set scan receive rings.
3839 * Do it on all rings because otherwise we starve.
3840 */
3841 if (want_rx) {
3842 /* two rounds here for race avoidance */
3843 do_retry_rx:
3844 for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) {
3845 int found = 0;
3846
3847 kring = na->rx_rings[i];
3848 ring = kring->ring;
3849
3850 if (unlikely(nm_kr_tryget(kring, 1, &revents)))
3851 continue;
3852
3853 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3854 netmap_ring_reinit(kring);
3855 revents |= POLLERR;
3856 }
3857 /* now we can use kring->rcur, rtail */
3858
3859 /*
3860 * transparent mode support: collect packets from
3861 * hw rxring(s) that have been released by the user
3862 */
3863 if (nm_may_forward_up(kring)) {
3864 netmap_grab_packets(kring, &q, netmap_fwd);
3865 }
3866
3867 /* Clear the NR_FORWARD flag anyway, it may be set by
3868 * the nm_sync() below only on for the host RX ring (see
3869 * netmap_rxsync_from_host()). */
3870 kring->nr_kflags &= ~NR_FORWARD;
3871 if (kring->nm_sync(kring, sync_flags))
3872 revents |= POLLERR;
3873 else
3874 nm_sync_finalize(kring);
3875 send_down |= (kring->nr_kflags & NR_FORWARD);
3876 ring_timestamp_set(ring);
3877 found = kring->rcur != kring->rtail;
3878 nm_kr_put(kring);
3879 if (found) {
3880 revents |= want_rx;
3881 retry_rx = 0;
3882 #ifndef linux
3883 kring->nm_notify(kring, 0);
3884 #endif /* linux */
3885 }
3886 }
3887
3888 #ifndef linux
3889 if (retry_rx && sr) {
3890 nm_os_selrecord(sr, si[NR_RX]);
3891 }
3892 #endif /* !linux */
3893 if (send_down || retry_rx) {
3894 retry_rx = 0;
3895 if (send_down)
3896 goto flush_tx; /* and retry_rx */
3897 else
3898 goto do_retry_rx;
3899 }
3900 }
3901
3902 /*
3903 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and
3904 * ring->head) marked with NS_FORWARD on hw rx rings are passed up
3905 * to the host stack.
3906 */
3907
3908 if (mbq_peek(&q)) {
3909 netmap_send_up(na->ifp, &q);
3910 }
3911
3912 return (revents);
3913 #undef want_tx
3914 #undef want_rx
3915 }
3916
3917 int
nma_intr_enable(struct netmap_adapter * na,int onoff)3918 nma_intr_enable(struct netmap_adapter *na, int onoff)
3919 {
3920 bool changed = false;
3921 enum txrx t;
3922 int i;
3923
3924 for_rx_tx(t) {
3925 for (i = 0; i < nma_get_nrings(na, t); i++) {
3926 struct netmap_kring *kring = NMR(na, t)[i];
3927 int on = !(kring->nr_kflags & NKR_NOINTR);
3928
3929 if (!!onoff != !!on) {
3930 changed = true;
3931 }
3932 if (onoff) {
3933 kring->nr_kflags &= ~NKR_NOINTR;
3934 } else {
3935 kring->nr_kflags |= NKR_NOINTR;
3936 }
3937 }
3938 }
3939
3940 if (!changed) {
3941 return 0; /* nothing to do */
3942 }
3943
3944 if (!na->nm_intr) {
3945 nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable",
3946 na->name);
3947 return -1;
3948 }
3949
3950 na->nm_intr(na, onoff);
3951
3952 return 0;
3953 }
3954
3955
3956 /*-------------------- driver support routines -------------------*/
3957
3958 /* default notify callback */
3959 static int
netmap_notify(struct netmap_kring * kring,int flags)3960 netmap_notify(struct netmap_kring *kring, int flags)
3961 {
3962 struct netmap_adapter *na = kring->notify_na;
3963 enum txrx t = kring->tx;
3964
3965 nm_os_selwakeup(&kring->si);
3966 /* optimization: avoid a wake up on the global
3967 * queue if nobody has registered for more
3968 * than one ring
3969 */
3970 if (na->si_users[t] > 0)
3971 nm_os_selwakeup(&na->si[t]);
3972
3973 return NM_IRQ_COMPLETED;
3974 }
3975
3976 /* called by all routines that create netmap_adapters.
3977 * provide some defaults and get a reference to the
3978 * memory allocator
3979 */
3980 int
netmap_attach_common(struct netmap_adapter * na)3981 netmap_attach_common(struct netmap_adapter *na)
3982 {
3983 if (!na->rx_buf_maxsize) {
3984 /* Set a conservative default (larger is safer). */
3985 na->rx_buf_maxsize = PAGE_SIZE;
3986 }
3987
3988 #ifdef __FreeBSD__
3989 if (na->na_flags & NAF_HOST_RINGS && na->ifp) {
3990 na->if_input = if_getinputfn(na->ifp); /* for netmap_send_up */
3991 }
3992 na->pdev = na; /* make sure netmap_mem_map() is called */
3993 #endif /* __FreeBSD__ */
3994 if (na->na_flags & NAF_HOST_RINGS) {
3995 if (na->num_host_rx_rings == 0)
3996 na->num_host_rx_rings = 1;
3997 if (na->num_host_tx_rings == 0)
3998 na->num_host_tx_rings = 1;
3999 }
4000 if (na->nm_krings_create == NULL) {
4001 /* we assume that we have been called by a driver,
4002 * since other port types all provide their own
4003 * nm_krings_create
4004 */
4005 na->nm_krings_create = netmap_hw_krings_create;
4006 na->nm_krings_delete = netmap_hw_krings_delete;
4007 }
4008 if (na->nm_notify == NULL)
4009 na->nm_notify = netmap_notify;
4010 na->active_fds = 0;
4011
4012 if (na->nm_mem == NULL) {
4013 /* select an allocator based on IOMMU and NUMA affinity */
4014 na->nm_mem = netmap_mem_get_allocator(na);
4015 }
4016 if (na->nm_bdg_attach == NULL)
4017 /* no special nm_bdg_attach callback. On VALE
4018 * attach, we need to interpose a bwrap
4019 */
4020 na->nm_bdg_attach = netmap_default_bdg_attach;
4021
4022 return 0;
4023 }
4024
4025 /* Wrapper for the register callback provided netmap-enabled
4026 * hardware drivers.
4027 * nm_iszombie(na) means that the driver module has been
4028 * unloaded, so we cannot call into it.
4029 * nm_os_ifnet_lock() must guarantee mutual exclusion with
4030 * module unloading.
4031 */
4032 static int
netmap_hw_reg(struct netmap_adapter * na,int onoff)4033 netmap_hw_reg(struct netmap_adapter *na, int onoff)
4034 {
4035 struct netmap_hw_adapter *hwna =
4036 (struct netmap_hw_adapter*)na;
4037 int error = 0;
4038
4039 nm_os_ifnet_lock();
4040
4041 if (nm_iszombie(na)) {
4042 if (onoff) {
4043 error = ENXIO;
4044 } else if (na != NULL) {
4045 na->na_flags &= ~NAF_NETMAP_ON;
4046 }
4047 goto out;
4048 }
4049
4050 error = hwna->nm_hw_register(na, onoff);
4051
4052 out:
4053 nm_os_ifnet_unlock();
4054
4055 return error;
4056 }
4057
4058 static void
netmap_hw_dtor(struct netmap_adapter * na)4059 netmap_hw_dtor(struct netmap_adapter *na)
4060 {
4061 if (na->ifp == NULL)
4062 return;
4063
4064 NM_DETACH_NA(na->ifp);
4065 }
4066
4067
4068 /*
4069 * Allocate a netmap_adapter object, and initialize it from the
4070 * 'arg' passed by the driver on attach.
4071 * We allocate a block of memory of 'size' bytes, which has room
4072 * for struct netmap_adapter plus additional room private to
4073 * the caller.
4074 * Return 0 on success, ENOMEM otherwise.
4075 */
4076 int
netmap_attach_ext(struct netmap_adapter * arg,size_t size,int override_reg)4077 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg)
4078 {
4079 struct netmap_hw_adapter *hwna = NULL;
4080 if_t ifp = NULL;
4081
4082 if (size < sizeof(struct netmap_hw_adapter)) {
4083 if (netmap_debug & NM_DEBUG_ON)
4084 nm_prerr("Invalid netmap adapter size %d", (int)size);
4085 return EINVAL;
4086 }
4087
4088 if (arg == NULL || arg->ifp == NULL) {
4089 if (netmap_debug & NM_DEBUG_ON)
4090 nm_prerr("either arg or arg->ifp is NULL");
4091 return EINVAL;
4092 }
4093
4094 if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) {
4095 if (netmap_debug & NM_DEBUG_ON)
4096 nm_prerr("%s: invalid rings tx %d rx %d",
4097 arg->name, arg->num_tx_rings, arg->num_rx_rings);
4098 return EINVAL;
4099 }
4100
4101 ifp = arg->ifp;
4102 if (NM_NA_CLASH(ifp)) {
4103 /* If NA(ifp) is not null but there is no valid netmap
4104 * adapter it means that someone else is using the same
4105 * pointer (e.g. ax25_ptr on linux). This happens for
4106 * instance when also PF_RING is in use. */
4107 nm_prerr("Error: netmap adapter hook is busy");
4108 return EBUSY;
4109 }
4110
4111 hwna = nm_os_malloc(size);
4112 if (hwna == NULL)
4113 goto fail;
4114 hwna->up = *arg;
4115 hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE;
4116 strlcpy(hwna->up.name, if_name(ifp), sizeof(hwna->up.name));
4117 if (override_reg) {
4118 hwna->nm_hw_register = hwna->up.nm_register;
4119 hwna->up.nm_register = netmap_hw_reg;
4120 }
4121 if (netmap_attach_common(&hwna->up)) {
4122 nm_os_free(hwna);
4123 goto fail;
4124 }
4125 netmap_adapter_get(&hwna->up);
4126
4127 NM_ATTACH_NA(ifp, &hwna->up);
4128
4129 nm_os_onattach(ifp);
4130
4131 if (arg->nm_dtor == NULL) {
4132 hwna->up.nm_dtor = netmap_hw_dtor;
4133 }
4134
4135 if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n",
4136 hwna->up.num_tx_rings, hwna->up.num_tx_desc,
4137 hwna->up.num_rx_rings, hwna->up.num_rx_desc);
4138 return 0;
4139
4140 fail:
4141 nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna);
4142 return (hwna ? EINVAL : ENOMEM);
4143 }
4144
4145
4146 int
netmap_attach(struct netmap_adapter * arg)4147 netmap_attach(struct netmap_adapter *arg)
4148 {
4149 return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter),
4150 1 /* override nm_reg */);
4151 }
4152
4153
4154 void
NM_DBG(netmap_adapter_get)4155 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na)
4156 {
4157 if (!na) {
4158 return;
4159 }
4160
4161 refcount_acquire(&na->na_refcount);
4162 }
4163
4164
4165 /* returns 1 iff the netmap_adapter is destroyed */
4166 int
NM_DBG(netmap_adapter_put)4167 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na)
4168 {
4169 if (!na)
4170 return 1;
4171
4172 if (!refcount_release(&na->na_refcount))
4173 return 0;
4174
4175 if (na->nm_dtor)
4176 na->nm_dtor(na);
4177
4178 if (na->tx_rings) { /* XXX should not happen */
4179 if (netmap_debug & NM_DEBUG_ON)
4180 nm_prerr("freeing leftover tx_rings");
4181 na->nm_krings_delete(na);
4182 }
4183 netmap_pipe_dealloc(na);
4184 if (na->nm_mem)
4185 netmap_mem_put(na->nm_mem);
4186 bzero(na, sizeof(*na));
4187 nm_os_free(na);
4188
4189 return 1;
4190 }
4191
4192 /* nm_krings_create callback for all hardware native adapters */
4193 int
netmap_hw_krings_create(struct netmap_adapter * na)4194 netmap_hw_krings_create(struct netmap_adapter *na)
4195 {
4196 int ret = netmap_krings_create(na, 0);
4197 if (ret == 0) {
4198 /* initialize the mbq for the sw rx ring */
4199 u_int lim = netmap_real_rings(na, NR_RX), i;
4200 for (i = na->num_rx_rings; i < lim; i++) {
4201 mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue);
4202 }
4203 nm_prdis("initialized sw rx queue %d", na->num_rx_rings);
4204 }
4205 return ret;
4206 }
4207
4208
4209
4210 /*
4211 * Called on module unload by the netmap-enabled drivers
4212 */
4213 void
netmap_detach(if_t ifp)4214 netmap_detach(if_t ifp)
4215 {
4216 struct netmap_adapter *na;
4217
4218 NMG_LOCK();
4219
4220 if (!NM_NA_VALID(ifp)) {
4221 NMG_UNLOCK();
4222 return;
4223 }
4224
4225 na = NA(ifp);
4226 netmap_set_all_rings(na, NM_KR_LOCKED);
4227 /*
4228 * if the netmap adapter is not native, somebody
4229 * changed it, so we can not release it here.
4230 * The NAF_ZOMBIE flag will notify the new owner that
4231 * the driver is gone.
4232 */
4233 if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) {
4234 na->na_flags |= NAF_ZOMBIE;
4235 }
4236 /* give active users a chance to notice that NAF_ZOMBIE has been
4237 * turned on, so that they can stop and return an error to userspace.
4238 * Note that this becomes a NOP if there are no active users and,
4239 * therefore, the put() above has deleted the na, since now NA(ifp) is
4240 * NULL.
4241 */
4242 netmap_enable_all_rings(ifp);
4243 NMG_UNLOCK();
4244 }
4245
4246
4247 /*
4248 * Intercept packets from the network stack and pass them
4249 * to netmap as incoming packets on the 'software' ring.
4250 *
4251 * We only store packets in a bounded mbq and then copy them
4252 * in the relevant rxsync routine.
4253 *
4254 * We rely on the OS to make sure that the ifp and na do not go
4255 * away (typically the caller checks for IFF_DRV_RUNNING or the like).
4256 * In nm_register() or whenever there is a reinitialization,
4257 * we make sure to make the mode change visible here.
4258 */
4259 int
netmap_transmit(if_t ifp,struct mbuf * m)4260 netmap_transmit(if_t ifp, struct mbuf *m)
4261 {
4262 struct netmap_adapter *na = NA(ifp);
4263 struct netmap_kring *kring, *tx_kring;
4264 u_int len = MBUF_LEN(m);
4265 u_int error = ENOBUFS;
4266 unsigned int txr;
4267 struct mbq *q;
4268 int busy;
4269 u_int i;
4270
4271 i = MBUF_TXQ(m);
4272 if (i >= na->num_host_rx_rings) {
4273 i = i % na->num_host_rx_rings;
4274 }
4275 kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i];
4276
4277 // XXX [Linux] we do not need this lock
4278 // if we follow the down/configure/up protocol -gl
4279 // mtx_lock(&na->core_lock);
4280
4281 if (!nm_netmap_on(na)) {
4282 nm_prerr("%s not in netmap mode anymore", na->name);
4283 error = ENXIO;
4284 goto done;
4285 }
4286
4287 txr = MBUF_TXQ(m);
4288 if (txr >= na->num_tx_rings) {
4289 txr %= na->num_tx_rings;
4290 }
4291 tx_kring = NMR(na, NR_TX)[txr];
4292
4293 if (tx_kring->nr_mode == NKR_NETMAP_OFF) {
4294 return MBUF_TRANSMIT(na, ifp, m);
4295 }
4296
4297 q = &kring->rx_queue;
4298
4299 // XXX reconsider long packets if we handle fragments
4300 if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */
4301 nm_prerr("%s from_host, drop packet size %d > %d", na->name,
4302 len, NETMAP_BUF_SIZE(na));
4303 goto done;
4304 }
4305
4306 if (!netmap_generic_hwcsum) {
4307 if (nm_os_mbuf_has_csum_offld(m)) {
4308 nm_prlim(1, "%s drop mbuf that needs checksum offload", na->name);
4309 goto done;
4310 }
4311 }
4312
4313 if (nm_os_mbuf_has_seg_offld(m)) {
4314 nm_prlim(1, "%s drop mbuf that needs generic segmentation offload", na->name);
4315 goto done;
4316 }
4317
4318 #ifdef __FreeBSD__
4319 ETHER_BPF_MTAP(ifp, m);
4320 #endif /* __FreeBSD__ */
4321
4322 /* protect against netmap_rxsync_from_host(), netmap_sw_to_nic()
4323 * and maybe other instances of netmap_transmit (the latter
4324 * not possible on Linux).
4325 * We enqueue the mbuf only if we are sure there is going to be
4326 * enough room in the host RX ring, otherwise we drop it.
4327 */
4328 mbq_lock(q);
4329
4330 busy = kring->nr_hwtail - kring->nr_hwcur;
4331 if (busy < 0)
4332 busy += kring->nkr_num_slots;
4333 if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) {
4334 nm_prlim(2, "%s full hwcur %d hwtail %d qlen %d", na->name,
4335 kring->nr_hwcur, kring->nr_hwtail, mbq_len(q));
4336 } else {
4337 mbq_enqueue(q, m);
4338 nm_prdis(2, "%s %d bufs in queue", na->name, mbq_len(q));
4339 /* notify outside the lock */
4340 m = NULL;
4341 error = 0;
4342 }
4343 mbq_unlock(q);
4344
4345 done:
4346 if (m) {
4347 if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
4348 m_freem(m);
4349 }
4350 /* unconditionally wake up listeners */
4351 kring->nm_notify(kring, 0);
4352 /* this is normally netmap_notify(), but for nics
4353 * connected to a bridge it is netmap_bwrap_intr_notify(),
4354 * that possibly forwards the frames through the switch
4355 */
4356
4357 return (error);
4358 }
4359
4360
4361 /*
4362 * Reset function to be called by the driver routines when reinitializing
4363 * a hardware ring. The driver is in charge of locking to protect the kring
4364 * while this operation is being performed. This is normally achieved by
4365 * calling netmap_disable_all_rings() before triggering a reset.
4366 * If the kring is not in netmap mode, return NULL to inform the caller
4367 * that this is the case.
4368 * If the kring is in netmap mode, set hwofs so that the netmap indices
4369 * seen by userspace (head/cut/tail) do not change, although the internal
4370 * NIC indices have been reset to 0.
4371 * In any case, adjust kring->nr_mode.
4372 */
4373 struct netmap_slot *
netmap_reset(struct netmap_adapter * na,enum txrx tx,u_int n,u_int new_cur)4374 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n,
4375 u_int new_cur)
4376 {
4377 struct netmap_kring *kring;
4378 u_int new_hwtail, new_hwofs;
4379
4380 if (!nm_native_on(na)) {
4381 nm_prdis("interface not in native netmap mode");
4382 return NULL; /* nothing to reinitialize */
4383 }
4384
4385 if (tx == NR_TX) {
4386 if (n >= na->num_tx_rings)
4387 return NULL;
4388 kring = na->tx_rings[n];
4389 /*
4390 * Set hwofs to rhead, so that slots[rhead] is mapped to
4391 * the NIC internal slot 0, and thus the netmap buffer
4392 * at rhead is the next to be transmitted. Transmissions
4393 * that were pending before the reset are considered as
4394 * sent, so that we can have hwcur = rhead. All the slots
4395 * are now owned by the user, so we can also reinit hwtail.
4396 */
4397 new_hwofs = kring->rhead;
4398 new_hwtail = nm_prev(kring->rhead, kring->nkr_num_slots - 1);
4399 } else {
4400 if (n >= na->num_rx_rings)
4401 return NULL;
4402 kring = na->rx_rings[n];
4403 /*
4404 * Set hwofs to hwtail, so that slots[hwtail] is mapped to
4405 * the NIC internal slot 0, and thus the netmap buffer
4406 * at hwtail is the next to be given to the NIC.
4407 * Unread slots (the ones in [rhead,hwtail[) are owned by
4408 * the user, and thus the caller cannot give them
4409 * to the NIC right now.
4410 */
4411 new_hwofs = kring->nr_hwtail;
4412 new_hwtail = kring->nr_hwtail;
4413 }
4414 if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
4415 kring->nr_mode = NKR_NETMAP_OFF;
4416 return NULL;
4417 }
4418 if (netmap_verbose) {
4419 nm_prinf("%s, hc %u->%u, ht %u->%u, ho %u->%u", kring->name,
4420 kring->nr_hwcur, kring->rhead,
4421 kring->nr_hwtail, new_hwtail,
4422 kring->nkr_hwofs, new_hwofs);
4423 }
4424 kring->nr_hwcur = kring->rhead;
4425 kring->nr_hwtail = new_hwtail;
4426 kring->nkr_hwofs = new_hwofs;
4427
4428 /*
4429 * Wakeup on the individual and global selwait
4430 * We do the wakeup here, but the ring is not yet reconfigured.
4431 * However, we are under lock so there are no races.
4432 */
4433 kring->nr_mode = NKR_NETMAP_ON;
4434 kring->nm_notify(kring, 0);
4435 return kring->ring->slot;
4436 }
4437
4438
4439 /*
4440 * Dispatch rx/tx interrupts to the netmap rings.
4441 *
4442 * "work_done" is non-null on the RX path, NULL for the TX path.
4443 * We rely on the OS to make sure that there is only one active
4444 * instance per queue, and that there is appropriate locking.
4445 *
4446 * The 'notify' routine depends on what the ring is attached to.
4447 * - for a netmap file descriptor, do a selwakeup on the individual
4448 * waitqueue, plus one on the global one if needed
4449 * (see netmap_notify)
4450 * - for a nic connected to a switch, call the proper forwarding routine
4451 * (see netmap_bwrap_intr_notify)
4452 */
4453 int
netmap_common_irq(struct netmap_adapter * na,u_int q,u_int * work_done)4454 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
4455 {
4456 struct netmap_kring *kring;
4457 enum txrx t = (work_done ? NR_RX : NR_TX);
4458
4459 q &= NETMAP_RING_MASK;
4460
4461 if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) {
4462 nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
4463 }
4464
4465 if (q >= nma_get_nrings(na, t))
4466 return NM_IRQ_PASS; // not a physical queue
4467
4468 kring = NMR(na, t)[q];
4469
4470 if (kring->nr_mode == NKR_NETMAP_OFF) {
4471 return NM_IRQ_PASS;
4472 }
4473
4474 if (t == NR_RX) {
4475 kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ?
4476 *work_done = 1; /* do not fire napi again */
4477 }
4478
4479 return kring->nm_notify(kring, 0);
4480 }
4481
4482
4483 /*
4484 * Default functions to handle rx/tx interrupts from a physical device.
4485 * "work_done" is non-null on the RX path, NULL for the TX path.
4486 *
4487 * If the card is not in netmap mode, simply return NM_IRQ_PASS,
4488 * so that the caller proceeds with regular processing.
4489 * Otherwise call netmap_common_irq().
4490 *
4491 * If the card is connected to a netmap file descriptor,
4492 * do a selwakeup on the individual queue, plus one on the global one
4493 * if needed (multiqueue card _and_ there are multiqueue listeners),
4494 * and return NR_IRQ_COMPLETED.
4495 *
4496 * Finally, if called on rx from an interface connected to a switch,
4497 * calls the proper forwarding routine.
4498 */
4499 int
netmap_rx_irq(if_t ifp,u_int q,u_int * work_done)4500 netmap_rx_irq(if_t ifp, u_int q, u_int *work_done)
4501 {
4502 struct netmap_adapter *na = NA(ifp);
4503
4504 /*
4505 * XXX emulated netmap mode sets NAF_SKIP_INTR so
4506 * we still use the regular driver even though the previous
4507 * check fails. It is unclear whether we should use
4508 * nm_native_on() here.
4509 */
4510 if (!nm_netmap_on(na))
4511 return NM_IRQ_PASS;
4512
4513 if (na->na_flags & NAF_SKIP_INTR) {
4514 nm_prdis("use regular interrupt");
4515 return NM_IRQ_PASS;
4516 }
4517
4518 return netmap_common_irq(na, q, work_done);
4519 }
4520
4521 /* set/clear native flags and if_transmit/netdev_ops */
4522 void
nm_set_native_flags(struct netmap_adapter * na)4523 nm_set_native_flags(struct netmap_adapter *na)
4524 {
4525 if_t ifp = na->ifp;
4526
4527 /* We do the setup for intercepting packets only if we are the
4528 * first user of this adapter. */
4529 if (na->active_fds > 0) {
4530 return;
4531 }
4532
4533 na->na_flags |= NAF_NETMAP_ON;
4534 nm_os_onenter(ifp);
4535 netmap_update_hostrings_mode(na);
4536 }
4537
4538 void
nm_clear_native_flags(struct netmap_adapter * na)4539 nm_clear_native_flags(struct netmap_adapter *na)
4540 {
4541 if_t ifp = na->ifp;
4542
4543 /* We undo the setup for intercepting packets only if we are the
4544 * last user of this adapter. */
4545 if (na->active_fds > 0) {
4546 return;
4547 }
4548
4549 netmap_update_hostrings_mode(na);
4550 nm_os_onexit(ifp);
4551
4552 na->na_flags &= ~NAF_NETMAP_ON;
4553 }
4554
4555 void
netmap_krings_mode_commit(struct netmap_adapter * na,int onoff)4556 netmap_krings_mode_commit(struct netmap_adapter *na, int onoff)
4557 {
4558 enum txrx t;
4559
4560 for_rx_tx(t) {
4561 int i;
4562
4563 for (i = 0; i < netmap_real_rings(na, t); i++) {
4564 struct netmap_kring *kring = NMR(na, t)[i];
4565
4566 if (onoff && nm_kring_pending_on(kring))
4567 kring->nr_mode = NKR_NETMAP_ON;
4568 else if (!onoff && nm_kring_pending_off(kring))
4569 kring->nr_mode = NKR_NETMAP_OFF;
4570 }
4571 }
4572 }
4573
4574 /*
4575 * Module loader and unloader
4576 *
4577 * netmap_init() creates the /dev/netmap device and initializes
4578 * all global variables. Returns 0 on success, errno on failure
4579 * (but there is no chance)
4580 *
4581 * netmap_fini() destroys everything.
4582 */
4583
4584 static struct cdev *netmap_dev; /* /dev/netmap character device. */
4585 extern struct cdevsw netmap_cdevsw;
4586
4587
4588 void
netmap_fini(void)4589 netmap_fini(void)
4590 {
4591 if (netmap_dev)
4592 destroy_dev(netmap_dev);
4593 /* we assume that there are no longer netmap users */
4594 nm_os_ifnet_fini();
4595 netmap_uninit_bridges();
4596 netmap_mem_fini();
4597 NMG_LOCK_DESTROY();
4598 nm_prinf("netmap: unloaded module.");
4599 }
4600
4601
4602 int
netmap_init(void)4603 netmap_init(void)
4604 {
4605 int error;
4606
4607 NMG_LOCK_INIT();
4608
4609 error = netmap_mem_init();
4610 if (error != 0)
4611 goto fail;
4612 /*
4613 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls
4614 * when the module is compiled in.
4615 * XXX could use make_dev_credv() to get error number
4616 */
4617 netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD,
4618 &netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600,
4619 "netmap");
4620 if (!netmap_dev)
4621 goto fail;
4622
4623 error = netmap_init_bridges();
4624 if (error)
4625 goto fail;
4626
4627 #ifdef __FreeBSD__
4628 nm_os_vi_init_index();
4629 #endif
4630
4631 error = nm_os_ifnet_init();
4632 if (error)
4633 goto fail;
4634
4635 #if !defined(__FreeBSD__) || defined(KLD_MODULE)
4636 nm_prinf("netmap: loaded module");
4637 #endif
4638 return (0);
4639 fail:
4640 netmap_fini();
4641 return (EINVAL); /* may be incorrect */
4642 }
4643