xref: /freebsd/sys/dev/netmap/netmap.c (revision 1bae9dc584272dd75dc4e04cb5d73be0e9fb562a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2011-2014 Matteo Landi
5  * Copyright (C) 2011-2016 Luigi Rizzo
6  * Copyright (C) 2011-2016 Giuseppe Lettieri
7  * Copyright (C) 2011-2016 Vincenzo Maffione
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *   1. Redistributions of source code must retain the above copyright
14  *      notice, this list of conditions and the following disclaimer.
15  *   2. Redistributions in binary form must reproduce the above copyright
16  *      notice, this list of conditions and the following disclaimer in the
17  *      documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31 
32 
33 /*
34  *
35  * This module supports memory mapped access to network devices,
36  * see netmap(4).
37  *
38  * The module uses a large, memory pool allocated by the kernel
39  * and accessible as mmapped memory by multiple userspace threads/processes.
40  * The memory pool contains packet buffers and "netmap rings",
41  * i.e. user-accessible copies of the interface's queues.
42  *
43  * Access to the network card works like this:
44  * 1. a process/thread issues one or more open() on /dev/netmap, to create
45  *    select()able file descriptor on which events are reported.
46  * 2. on each descriptor, the process issues an ioctl() to identify
47  *    the interface that should report events to the file descriptor.
48  * 3. on each descriptor, the process issues an mmap() request to
49  *    map the shared memory region within the process' address space.
50  *    The list of interesting queues is indicated by a location in
51  *    the shared memory region.
52  * 4. using the functions in the netmap(4) userspace API, a process
53  *    can look up the occupation state of a queue, access memory buffers,
54  *    and retrieve received packets or enqueue packets to transmit.
55  * 5. using some ioctl()s the process can synchronize the userspace view
56  *    of the queue with the actual status in the kernel. This includes both
57  *    receiving the notification of new packets, and transmitting new
58  *    packets on the output interface.
59  * 6. select() or poll() can be used to wait for events on individual
60  *    transmit or receive queues (or all queues for a given interface).
61  *
62 
63 		SYNCHRONIZATION (USER)
64 
65 The netmap rings and data structures may be shared among multiple
66 user threads or even independent processes.
67 Any synchronization among those threads/processes is delegated
68 to the threads themselves. Only one thread at a time can be in
69 a system call on the same netmap ring. The OS does not enforce
70 this and only guarantees against system crashes in case of
71 invalid usage.
72 
73 		LOCKING (INTERNAL)
74 
75 Within the kernel, access to the netmap rings is protected as follows:
76 
77 - a spinlock on each ring, to handle producer/consumer races on
78   RX rings attached to the host stack (against multiple host
79   threads writing from the host stack to the same ring),
80   and on 'destination' rings attached to a VALE switch
81   (i.e. RX rings in VALE ports, and TX rings in NIC/host ports)
82   protecting multiple active senders for the same destination)
83 
84 - an atomic variable to guarantee that there is at most one
85   instance of *_*xsync() on the ring at any time.
86   For rings connected to user file
87   descriptors, an atomic_test_and_set() protects this, and the
88   lock on the ring is not actually used.
89   For NIC RX rings connected to a VALE switch, an atomic_test_and_set()
90   is also used to prevent multiple executions (the driver might indeed
91   already guarantee this).
92   For NIC TX rings connected to a VALE switch, the lock arbitrates
93   access to the queue (both when allocating buffers and when pushing
94   them out).
95 
96 - *xsync() should be protected against initializations of the card.
97   On FreeBSD most devices have the reset routine protected by
98   a RING lock (ixgbe, igb, em) or core lock (re). lem is missing
99   the RING protection on rx_reset(), this should be added.
100 
101   On linux there is an external lock on the tx path, which probably
102   also arbitrates access to the reset routine. XXX to be revised
103 
104 - a per-interface core_lock protecting access from the host stack
105   while interfaces may be detached from netmap mode.
106   XXX there should be no need for this lock if we detach the interfaces
107   only while they are down.
108 
109 
110 --- VALE SWITCH ---
111 
112 NMG_LOCK() serializes all modifications to switches and ports.
113 A switch cannot be deleted until all ports are gone.
114 
115 For each switch, an SX lock (RWlock on linux) protects
116 deletion of ports. When configuring or deleting a new port, the
117 lock is acquired in exclusive mode (after holding NMG_LOCK).
118 When forwarding, the lock is acquired in shared mode (without NMG_LOCK).
119 The lock is held throughout the entire forwarding cycle,
120 during which the thread may incur in a page fault.
121 Hence it is important that sleepable shared locks are used.
122 
123 On the rx ring, the per-port lock is grabbed initially to reserve
124 a number of slot in the ring, then the lock is released,
125 packets are copied from source to destination, and then
126 the lock is acquired again and the receive ring is updated.
127 (A similar thing is done on the tx ring for NIC and host stack
128 ports attached to the switch)
129 
130  */
131 
132 
133 /* --- internals ----
134  *
135  * Roadmap to the code that implements the above.
136  *
137  * > 1. a process/thread issues one or more open() on /dev/netmap, to create
138  * >    select()able file descriptor on which events are reported.
139  *
140  *  	Internally, we allocate a netmap_priv_d structure, that will be
141  *  	initialized on ioctl(NIOCREGIF). There is one netmap_priv_d
142  *  	structure for each open().
143  *
144  *      os-specific:
145  *  	    FreeBSD: see netmap_open() (netmap_freebsd.c)
146  *  	    linux:   see linux_netmap_open() (netmap_linux.c)
147  *
148  * > 2. on each descriptor, the process issues an ioctl() to identify
149  * >    the interface that should report events to the file descriptor.
150  *
151  * 	Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0.
152  * 	Most important things happen in netmap_get_na() and
153  * 	netmap_do_regif(), called from there. Additional details can be
154  * 	found in the comments above those functions.
155  *
156  * 	In all cases, this action creates/takes-a-reference-to a
157  * 	netmap_*_adapter describing the port, and allocates a netmap_if
158  * 	and all necessary netmap rings, filling them with netmap buffers.
159  *
160  *      In this phase, the sync callbacks for each ring are set (these are used
161  *      in steps 5 and 6 below).  The callbacks depend on the type of adapter.
162  *      The adapter creation/initialization code puts them in the
163  * 	netmap_adapter (fields na->nm_txsync and na->nm_rxsync).  Then, they
164  * 	are copied from there to the netmap_kring's during netmap_do_regif(), by
165  * 	the nm_krings_create() callback.  All the nm_krings_create callbacks
166  * 	actually call netmap_krings_create() to perform this and the other
167  * 	common stuff. netmap_krings_create() also takes care of the host rings,
168  * 	if needed, by setting their sync callbacks appropriately.
169  *
170  * 	Additional actions depend on the kind of netmap_adapter that has been
171  * 	registered:
172  *
173  * 	- netmap_hw_adapter:  	     [netmap.c]
174  * 	     This is a system netdev/ifp with native netmap support.
175  * 	     The ifp is detached from the host stack by redirecting:
176  * 	       - transmissions (from the network stack) to netmap_transmit()
177  * 	       - receive notifications to the nm_notify() callback for
178  * 	         this adapter. The callback is normally netmap_notify(), unless
179  * 	         the ifp is attached to a bridge using bwrap, in which case it
180  * 	         is netmap_bwrap_intr_notify().
181  *
182  * 	- netmap_generic_adapter:      [netmap_generic.c]
183  * 	      A system netdev/ifp without native netmap support.
184  *
185  * 	(the decision about native/non native support is taken in
186  * 	 netmap_get_hw_na(), called by netmap_get_na())
187  *
188  * 	- netmap_vp_adapter 		[netmap_vale.c]
189  * 	      Returned by netmap_get_bdg_na().
190  * 	      This is a persistent or ephemeral VALE port. Ephemeral ports
191  * 	      are created on the fly if they don't already exist, and are
192  * 	      always attached to a bridge.
193  * 	      Persistent VALE ports must must be created separately, and i
194  * 	      then attached like normal NICs. The NIOCREGIF we are examining
195  * 	      will find them only if they had previously been created and
196  * 	      attached (see VALE_CTL below).
197  *
198  * 	- netmap_pipe_adapter 	      [netmap_pipe.c]
199  * 	      Returned by netmap_get_pipe_na().
200  * 	      Both pipe ends are created, if they didn't already exist.
201  *
202  * 	- netmap_monitor_adapter      [netmap_monitor.c]
203  * 	      Returned by netmap_get_monitor_na().
204  * 	      If successful, the nm_sync callbacks of the monitored adapter
205  * 	      will be intercepted by the returned monitor.
206  *
207  * 	- netmap_bwrap_adapter	      [netmap_vale.c]
208  * 	      Cannot be obtained in this way, see VALE_CTL below
209  *
210  *
211  * 	os-specific:
212  * 	    linux: we first go through linux_netmap_ioctl() to
213  * 	           adapt the FreeBSD interface to the linux one.
214  *
215  *
216  * > 3. on each descriptor, the process issues an mmap() request to
217  * >    map the shared memory region within the process' address space.
218  * >    The list of interesting queues is indicated by a location in
219  * >    the shared memory region.
220  *
221  *      os-specific:
222  *  	    FreeBSD: netmap_mmap_single (netmap_freebsd.c).
223  *  	    linux:   linux_netmap_mmap (netmap_linux.c).
224  *
225  * > 4. using the functions in the netmap(4) userspace API, a process
226  * >    can look up the occupation state of a queue, access memory buffers,
227  * >    and retrieve received packets or enqueue packets to transmit.
228  *
229  * 	these actions do not involve the kernel.
230  *
231  * > 5. using some ioctl()s the process can synchronize the userspace view
232  * >    of the queue with the actual status in the kernel. This includes both
233  * >    receiving the notification of new packets, and transmitting new
234  * >    packets on the output interface.
235  *
236  * 	These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC
237  * 	cases. They invoke the nm_sync callbacks on the netmap_kring
238  * 	structures, as initialized in step 2 and maybe later modified
239  * 	by a monitor. Monitors, however, will always call the original
240  * 	callback before doing anything else.
241  *
242  *
243  * > 6. select() or poll() can be used to wait for events on individual
244  * >    transmit or receive queues (or all queues for a given interface).
245  *
246  * 	Implemented in netmap_poll(). This will call the same nm_sync()
247  * 	callbacks as in step 5 above.
248  *
249  * 	os-specific:
250  * 		linux: we first go through linux_netmap_poll() to adapt
251  * 		       the FreeBSD interface to the linux one.
252  *
253  *
254  *  ----  VALE_CTL -----
255  *
256  *  VALE switches are controlled by issuing a NIOCREGIF with a non-null
257  *  nr_cmd in the nmreq structure. These subcommands are handled by
258  *  netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created
259  *  and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF
260  *  subcommands, respectively.
261  *
262  *  Any network interface known to the system (including a persistent VALE
263  *  port) can be attached to a VALE switch by issuing the
264  *  NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports
265  *  look exactly like ephemeral VALE ports (as created in step 2 above).  The
266  *  attachment of other interfaces, instead, requires the creation of a
267  *  netmap_bwrap_adapter.  Moreover, the attached interface must be put in
268  *  netmap mode. This may require the creation of a netmap_generic_adapter if
269  *  we have no native support for the interface, or if generic adapters have
270  *  been forced by sysctl.
271  *
272  *  Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(),
273  *  called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach()
274  *  callback.  In the case of the bwrap, the callback creates the
275  *  netmap_bwrap_adapter.  The initialization of the bwrap is then
276  *  completed by calling netmap_do_regif() on it, in the nm_bdg_ctl()
277  *  callback (netmap_bwrap_bdg_ctl in netmap_vale.c).
278  *  A generic adapter for the wrapped ifp will be created if needed, when
279  *  netmap_get_bdg_na() calls netmap_get_hw_na().
280  *
281  *
282  *  ---- DATAPATHS -----
283  *
284  *              -= SYSTEM DEVICE WITH NATIVE SUPPORT =-
285  *
286  *    na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach()
287  *
288  *    - tx from netmap userspace:
289  *	 concurrently:
290  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
291  *                kring->nm_sync() == DEVICE_netmap_txsync()
292  *           2) device interrupt handler
293  *                na->nm_notify()  == netmap_notify()
294  *    - rx from netmap userspace:
295  *       concurrently:
296  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
297  *                kring->nm_sync() == DEVICE_netmap_rxsync()
298  *           2) device interrupt handler
299  *                na->nm_notify()  == netmap_notify()
300  *    - rx from host stack
301  *       concurrently:
302  *           1) host stack
303  *                netmap_transmit()
304  *                  na->nm_notify  == netmap_notify()
305  *           2) ioctl(NIOCRXSYNC)/netmap_poll() in process context
306  *                kring->nm_sync() == netmap_rxsync_from_host
307  *                  netmap_rxsync_from_host(na, NULL, NULL)
308  *    - tx to host stack
309  *           ioctl(NIOCTXSYNC)/netmap_poll() in process context
310  *             kring->nm_sync() == netmap_txsync_to_host
311  *               netmap_txsync_to_host(na)
312  *                 nm_os_send_up()
313  *                   FreeBSD: na->if_input() == ether_input()
314  *                   linux: netif_rx() with NM_MAGIC_PRIORITY_RX
315  *
316  *
317  *               -= SYSTEM DEVICE WITH GENERIC SUPPORT =-
318  *
319  *    na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach()
320  *
321  *    - tx from netmap userspace:
322  *       concurrently:
323  *           1) ioctl(NIOCTXSYNC)/netmap_poll() in process context
324  *               kring->nm_sync() == generic_netmap_txsync()
325  *                   nm_os_generic_xmit_frame()
326  *                       linux:   dev_queue_xmit() with NM_MAGIC_PRIORITY_TX
327  *                           ifp->ndo_start_xmit == generic_ndo_start_xmit()
328  *                               gna->save_start_xmit == orig. dev. start_xmit
329  *                       FreeBSD: na->if_transmit() == orig. dev if_transmit
330  *           2) generic_mbuf_destructor()
331  *                   na->nm_notify() == netmap_notify()
332  *    - rx from netmap userspace:
333  *           1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
334  *               kring->nm_sync() == generic_netmap_rxsync()
335  *                   mbq_safe_dequeue()
336  *           2) device driver
337  *               generic_rx_handler()
338  *                   mbq_safe_enqueue()
339  *                   na->nm_notify() == netmap_notify()
340  *    - rx from host stack
341  *        FreeBSD: same as native
342  *        Linux: same as native except:
343  *           1) host stack
344  *               dev_queue_xmit() without NM_MAGIC_PRIORITY_TX
345  *                   ifp->ndo_start_xmit == generic_ndo_start_xmit()
346  *                       netmap_transmit()
347  *                           na->nm_notify() == netmap_notify()
348  *    - tx to host stack (same as native):
349  *
350  *
351  *                           -= VALE =-
352  *
353  *   INCOMING:
354  *
355  *      - VALE ports:
356  *          ioctl(NIOCTXSYNC)/netmap_poll() in process context
357  *              kring->nm_sync() == netmap_vp_txsync()
358  *
359  *      - system device with native support:
360  *         from cable:
361  *             interrupt
362  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
363  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
364  *                     netmap_vp_txsync()
365  *                     kring->nm_sync() == DEVICE_netmap_rxsync()
366  *         from host stack:
367  *             netmap_transmit()
368  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
369  *                     kring->nm_sync() == netmap_rxsync_from_host()
370  *                     netmap_vp_txsync()
371  *
372  *      - system device with generic support:
373  *         from device driver:
374  *            generic_rx_handler()
375  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring)
376  *                     kring->nm_sync() == generic_netmap_rxsync()
377  *                     netmap_vp_txsync()
378  *                     kring->nm_sync() == generic_netmap_rxsync()
379  *         from host stack:
380  *            netmap_transmit()
381  *                na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring)
382  *                     kring->nm_sync() == netmap_rxsync_from_host()
383  *                     netmap_vp_txsync()
384  *
385  *   (all cases) --> nm_bdg_flush()
386  *                      dest_na->nm_notify() == (see below)
387  *
388  *   OUTGOING:
389  *
390  *      - VALE ports:
391  *         concurrently:
392  *             1) ioctl(NIOCRXSYNC)/netmap_poll() in process context
393  *                    kring->nm_sync() == netmap_vp_rxsync()
394  *             2) from nm_bdg_flush()
395  *                    na->nm_notify() == netmap_notify()
396  *
397  *      - system device with native support:
398  *          to cable:
399  *             na->nm_notify() == netmap_bwrap_notify()
400  *                 netmap_vp_rxsync()
401  *                 kring->nm_sync() == DEVICE_netmap_txsync()
402  *                 netmap_vp_rxsync()
403  *          to host stack:
404  *                 netmap_vp_rxsync()
405  *                 kring->nm_sync() == netmap_txsync_to_host
406  *                 netmap_vp_rxsync_locked()
407  *
408  *      - system device with generic adapter:
409  *          to device driver:
410  *             na->nm_notify() == netmap_bwrap_notify()
411  *                 netmap_vp_rxsync()
412  *                 kring->nm_sync() == generic_netmap_txsync()
413  *                 netmap_vp_rxsync()
414  *          to host stack:
415  *                 netmap_vp_rxsync()
416  *                 kring->nm_sync() == netmap_txsync_to_host
417  *                 netmap_vp_rxsync()
418  *
419  */
420 
421 /*
422  * OS-specific code that is used only within this file.
423  * Other OS-specific code that must be accessed by drivers
424  * is present in netmap_kern.h
425  */
426 
427 #if defined(__FreeBSD__)
428 #include <sys/cdefs.h> /* prerequisite */
429 #include <sys/types.h>
430 #include <sys/errno.h>
431 #include <sys/param.h>	/* defines used in kernel.h */
432 #include <sys/kernel.h>	/* types used in module initialization */
433 #include <sys/conf.h>	/* cdevsw struct, UID, GID */
434 #include <sys/filio.h>	/* FIONBIO */
435 #include <sys/sockio.h>
436 #include <sys/socketvar.h>	/* struct socket */
437 #include <sys/malloc.h>
438 #include <sys/poll.h>
439 #include <sys/proc.h>
440 #include <sys/rwlock.h>
441 #include <sys/socket.h> /* sockaddrs */
442 #include <sys/selinfo.h>
443 #include <sys/sysctl.h>
444 #include <sys/jail.h>
445 #include <sys/epoch.h>
446 #include <net/vnet.h>
447 #include <net/if.h>
448 #include <net/if_var.h>
449 #include <net/bpf.h>		/* BIOCIMMEDIATE */
450 #include <machine/bus.h>	/* bus_dmamap_* */
451 #include <sys/endian.h>
452 #include <sys/refcount.h>
453 #include <net/ethernet.h>	/* ETHER_BPF_MTAP */
454 
455 
456 #elif defined(linux)
457 
458 #include "bsd_glue.h"
459 
460 #elif defined(__APPLE__)
461 
462 #warning OSX support is only partial
463 #include "osx_glue.h"
464 
465 #elif defined (_WIN32)
466 
467 #include "win_glue.h"
468 
469 #else
470 
471 #error	Unsupported platform
472 
473 #endif /* unsupported */
474 
475 /*
476  * common headers
477  */
478 #include <net/netmap.h>
479 #include <dev/netmap/netmap_kern.h>
480 #include <dev/netmap/netmap_mem2.h>
481 
482 
483 /* user-controlled variables */
484 int netmap_verbose;
485 #ifdef CONFIG_NETMAP_DEBUG
486 int netmap_debug;
487 #endif /* CONFIG_NETMAP_DEBUG */
488 
489 static int netmap_no_timestamp; /* don't timestamp on rxsync */
490 int netmap_no_pendintr = 1;
491 int netmap_txsync_retry = 2;
492 static int netmap_fwd = 0;	/* force transparent forwarding */
493 
494 /*
495  * netmap_admode selects the netmap mode to use.
496  * Invalid values are reset to NETMAP_ADMODE_BEST
497  */
498 enum {	NETMAP_ADMODE_BEST = 0,	/* use native, fallback to generic */
499 	NETMAP_ADMODE_NATIVE,	/* either native or none */
500 	NETMAP_ADMODE_GENERIC,	/* force generic */
501 	NETMAP_ADMODE_LAST };
502 static int netmap_admode = NETMAP_ADMODE_BEST;
503 
504 /* netmap_generic_mit controls mitigation of RX notifications for
505  * the generic netmap adapter. The value is a time interval in
506  * nanoseconds. */
507 int netmap_generic_mit = 100*1000;
508 
509 /* We use by default netmap-aware qdiscs with generic netmap adapters,
510  * even if there can be a little performance hit with hardware NICs.
511  * However, using the qdisc is the safer approach, for two reasons:
512  * 1) it prevents non-fifo qdiscs to break the TX notification
513  *    scheme, which is based on mbuf destructors when txqdisc is
514  *    not used.
515  * 2) it makes it possible to transmit over software devices that
516  *    change skb->dev, like bridge, veth, ...
517  *
518  * Anyway users looking for the best performance should
519  * use native adapters.
520  */
521 #ifdef linux
522 int netmap_generic_txqdisc = 1;
523 #endif
524 
525 /* Default number of slots and queues for generic adapters. */
526 int netmap_generic_ringsize = 1024;
527 int netmap_generic_rings = 1;
528 
529 /* Non-zero to enable checksum offloading in NIC drivers */
530 int netmap_generic_hwcsum = 0;
531 
532 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */
533 int ptnet_vnet_hdr = 1;
534 
535 /*
536  * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated
537  * in some other operating systems
538  */
539 SYSBEGIN(main_init);
540 
541 SYSCTL_DECL(_dev_netmap);
542 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
543     "Netmap args");
544 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose,
545 		CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode");
546 #ifdef CONFIG_NETMAP_DEBUG
547 SYSCTL_INT(_dev_netmap, OID_AUTO, debug,
548 		CTLFLAG_RW, &netmap_debug, 0, "Debug messages");
549 #endif /* CONFIG_NETMAP_DEBUG */
550 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp,
551 		CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp");
552 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr,
553 		0, "Always look for new received packets.");
554 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW,
555 		&netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush.");
556 
557 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0,
558 		"Force NR_FORWARD mode");
559 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0,
560 		"Adapter mode. 0 selects the best option available,"
561 		"1 forces native adapter, 2 forces emulated adapter");
562 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum,
563 		0, "Hardware checksums. 0 to disable checksum generation by the NIC (default),"
564 		"1 to enable checksum generation by the NIC");
565 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit,
566 		0, "RX notification interval in nanoseconds");
567 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW,
568 		&netmap_generic_ringsize, 0,
569 		"Number of per-ring slots for emulated netmap mode");
570 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW,
571 		&netmap_generic_rings, 0,
572 		"Number of TX/RX queues for emulated netmap adapters");
573 #ifdef linux
574 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW,
575 		&netmap_generic_txqdisc, 0, "Use qdisc for generic adapters");
576 #endif
577 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr,
578 		0, "Allow ptnet devices to use virtio-net headers");
579 
580 SYSEND;
581 
582 NMG_LOCK_T	netmap_global_lock;
583 
584 /*
585  * mark the ring as stopped, and run through the locks
586  * to make sure other users get to see it.
587  * stopped must be either NR_KR_STOPPED (for unbounded stop)
588  * of NR_KR_LOCKED (brief stop for mutual exclusion purposes)
589  */
590 static void
netmap_disable_ring(struct netmap_kring * kr,int stopped)591 netmap_disable_ring(struct netmap_kring *kr, int stopped)
592 {
593 	nm_kr_stop(kr, stopped);
594 	// XXX check if nm_kr_stop is sufficient
595 	mtx_lock(&kr->q_lock);
596 	mtx_unlock(&kr->q_lock);
597 	nm_kr_put(kr);
598 }
599 
600 /* stop or enable a single ring */
601 void
netmap_set_ring(struct netmap_adapter * na,u_int ring_id,enum txrx t,int stopped)602 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped)
603 {
604 	if (stopped)
605 		netmap_disable_ring(NMR(na, t)[ring_id], stopped);
606 	else
607 		NMR(na, t)[ring_id]->nkr_stopped = 0;
608 }
609 
610 
611 /* stop or enable all the rings of na */
612 void
netmap_set_all_rings(struct netmap_adapter * na,int stopped)613 netmap_set_all_rings(struct netmap_adapter *na, int stopped)
614 {
615 	int i;
616 	enum txrx t;
617 
618 	if (!nm_netmap_on(na))
619 		return;
620 
621 	if (netmap_verbose) {
622 		nm_prinf("%s: %sable all rings", na->name,
623 		    (stopped ? "dis" : "en"));
624 	}
625 	for_rx_tx(t) {
626 		for (i = 0; i < netmap_real_rings(na, t); i++) {
627 			netmap_set_ring(na, i, t, stopped);
628 		}
629 	}
630 }
631 
632 /*
633  * Convenience function used in drivers.  Waits for current txsync()s/rxsync()s
634  * to finish and prevents any new one from starting.  Call this before turning
635  * netmap mode off, or before removing the hardware rings (e.g., on module
636  * onload).
637  */
638 void
netmap_disable_all_rings(if_t ifp)639 netmap_disable_all_rings(if_t ifp)
640 {
641 	if (NM_NA_VALID(ifp)) {
642 		netmap_set_all_rings(NA(ifp), NM_KR_LOCKED);
643 	}
644 }
645 
646 /*
647  * Convenience function used in drivers.  Re-enables rxsync and txsync on the
648  * adapter's rings In linux drivers, this should be placed near each
649  * napi_enable().
650  */
651 void
netmap_enable_all_rings(if_t ifp)652 netmap_enable_all_rings(if_t ifp)
653 {
654 	if (NM_NA_VALID(ifp)) {
655 		netmap_set_all_rings(NA(ifp), 0 /* enabled */);
656 	}
657 }
658 
659 void
netmap_make_zombie(if_t ifp)660 netmap_make_zombie(if_t ifp)
661 {
662 	if (NM_NA_VALID(ifp)) {
663 		struct netmap_adapter *na = NA(ifp);
664 		netmap_set_all_rings(na, NM_KR_LOCKED);
665 		na->na_flags |= NAF_ZOMBIE;
666 		netmap_set_all_rings(na, 0);
667 	}
668 }
669 
670 void
netmap_undo_zombie(if_t ifp)671 netmap_undo_zombie(if_t ifp)
672 {
673 	if (NM_NA_VALID(ifp)) {
674 		struct netmap_adapter *na = NA(ifp);
675 		if (na->na_flags & NAF_ZOMBIE) {
676 			netmap_set_all_rings(na, NM_KR_LOCKED);
677 			na->na_flags &= ~NAF_ZOMBIE;
678 			netmap_set_all_rings(na, 0);
679 		}
680 	}
681 }
682 
683 /*
684  * generic bound_checking function
685  */
686 u_int
nm_bound_var(u_int * v,u_int dflt,u_int lo,u_int hi,const char * msg)687 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg)
688 {
689 	u_int oldv = *v;
690 	const char *op = NULL;
691 
692 	if (dflt < lo)
693 		dflt = lo;
694 	if (dflt > hi)
695 		dflt = hi;
696 	if (oldv < lo) {
697 		*v = dflt;
698 		op = "Bump";
699 	} else if (oldv > hi) {
700 		*v = hi;
701 		op = "Clamp";
702 	}
703 	if (op && msg)
704 		nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv);
705 	return *v;
706 }
707 
708 
709 /*
710  * packet-dump function, user-supplied or static buffer.
711  * The destination buffer must be at least 30+4*len
712  */
713 const char *
nm_dump_buf(char * p,int len,int lim,char * dst)714 nm_dump_buf(char *p, int len, int lim, char *dst)
715 {
716 	static char _dst[8192];
717 	int i, j, i0;
718 	static char hex[] ="0123456789abcdef";
719 	char *o;	/* output position */
720 
721 #define P_HI(x)	hex[((x) & 0xf0)>>4]
722 #define P_LO(x)	hex[((x) & 0xf)]
723 #define P_C(x)	((x) >= 0x20 && (x) <= 0x7e ? (x) : '.')
724 	if (!dst)
725 		dst = _dst;
726 	if (lim <= 0 || lim > len)
727 		lim = len;
728 	o = dst;
729 	sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim);
730 	o += strlen(o);
731 	/* hexdump routine */
732 	for (i = 0; i < lim; ) {
733 		sprintf(o, "%5d: ", i);
734 		o += strlen(o);
735 		memset(o, ' ', 48);
736 		i0 = i;
737 		for (j=0; j < 16 && i < lim; i++, j++) {
738 			o[j*3] = P_HI(p[i]);
739 			o[j*3+1] = P_LO(p[i]);
740 		}
741 		i = i0;
742 		for (j=0; j < 16 && i < lim; i++, j++)
743 			o[j + 48] = P_C(p[i]);
744 		o[j+48] = '\n';
745 		o += j+49;
746 	}
747 	*o = '\0';
748 #undef P_HI
749 #undef P_LO
750 #undef P_C
751 	return dst;
752 }
753 
754 
755 /*
756  * Fetch configuration from the device, to cope with dynamic
757  * reconfigurations after loading the module.
758  */
759 /* call with NMG_LOCK held */
760 int
netmap_update_config(struct netmap_adapter * na)761 netmap_update_config(struct netmap_adapter *na)
762 {
763 	struct nm_config_info info;
764 
765 	if (na->ifp && !nm_is_bwrap(na)) {
766 		strlcpy(na->name, if_name(na->ifp), sizeof(na->name));
767 	}
768 
769 	bzero(&info, sizeof(info));
770 	if (na->nm_config == NULL ||
771 	    na->nm_config(na, &info)) {
772 		/* take whatever we had at init time */
773 		info.num_tx_rings = na->num_tx_rings;
774 		info.num_tx_descs = na->num_tx_desc;
775 		info.num_rx_rings = na->num_rx_rings;
776 		info.num_rx_descs = na->num_rx_desc;
777 		info.rx_buf_maxsize = na->rx_buf_maxsize;
778 	}
779 
780 	if (na->num_tx_rings == info.num_tx_rings &&
781 	    na->num_tx_desc == info.num_tx_descs &&
782 	    na->num_rx_rings == info.num_rx_rings &&
783 	    na->num_rx_desc == info.num_rx_descs &&
784 	    na->rx_buf_maxsize == info.rx_buf_maxsize)
785 		return 0; /* nothing changed */
786 	if (na->active_fds == 0) {
787 		na->num_tx_rings = info.num_tx_rings;
788 		na->num_tx_desc = info.num_tx_descs;
789 		na->num_rx_rings = info.num_rx_rings;
790 		na->num_rx_desc = info.num_rx_descs;
791 		na->rx_buf_maxsize = info.rx_buf_maxsize;
792 		if (netmap_verbose)
793 			nm_prinf("configuration changed for %s: txring %d x %d, "
794 				"rxring %d x %d, rxbufsz %d",
795 				na->name, na->num_tx_rings, na->num_tx_desc,
796 				na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize);
797 		return 0;
798 	}
799 	nm_prerr("WARNING: configuration changed for %s while active: "
800 		"txring %d x %d, rxring %d x %d, rxbufsz %d",
801 		na->name, info.num_tx_rings, info.num_tx_descs,
802 		info.num_rx_rings, info.num_rx_descs,
803 		info.rx_buf_maxsize);
804 	return 1;
805 }
806 
807 /* nm_sync callbacks for the host rings */
808 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags);
809 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags);
810 
811 static int
netmap_default_bufcfg(struct netmap_kring * kring,uint64_t target)812 netmap_default_bufcfg(struct netmap_kring *kring, uint64_t target)
813 {
814 	kring->hwbuf_len = target;
815 	kring->buf_align = 0; /* no alignment */
816 	return 0;
817 }
818 
819 /* create the krings array and initialize the fields common to all adapters.
820  * The array layout is this:
821  *
822  *                    +----------+
823  * na->tx_rings ----->|          | \
824  *                    |          |  } na->num_tx_ring
825  *                    |          | /
826  *                    +----------+
827  *                    |          |    host tx kring
828  * na->rx_rings ----> +----------+
829  *                    |          | \
830  *                    |          |  } na->num_rx_rings
831  *                    |          | /
832  *                    +----------+
833  *                    |          |    host rx kring
834  *                    +----------+
835  * na->tailroom ----->|          | \
836  *                    |          |  } tailroom bytes
837  *                    |          | /
838  *                    +----------+
839  *
840  * Note: for compatibility, host krings are created even when not needed.
841  * The tailroom space is currently used by vale ports for allocating leases.
842  */
843 /* call with NMG_LOCK held */
844 int
netmap_krings_create(struct netmap_adapter * na,u_int tailroom)845 netmap_krings_create(struct netmap_adapter *na, u_int tailroom)
846 {
847 	u_int i, len, ndesc;
848 	struct netmap_kring *kring;
849 	u_int n[NR_TXRX];
850 	enum txrx t;
851 	int err = 0;
852 
853 	if (na->tx_rings != NULL) {
854 		if (netmap_debug & NM_DEBUG_ON)
855 			nm_prerr("warning: krings were already created");
856 		return 0;
857 	}
858 
859 	/* account for the (possibly fake) host rings */
860 	n[NR_TX] = netmap_all_rings(na, NR_TX);
861 	n[NR_RX] = netmap_all_rings(na, NR_RX);
862 
863 	len = (n[NR_TX] + n[NR_RX]) *
864 		(sizeof(struct netmap_kring) + sizeof(struct netmap_kring *))
865 		+ tailroom;
866 
867 	na->tx_rings = nm_os_malloc((size_t)len);
868 	if (na->tx_rings == NULL) {
869 		nm_prerr("Cannot allocate krings");
870 		return ENOMEM;
871 	}
872 	na->rx_rings = na->tx_rings + n[NR_TX];
873 	na->tailroom = na->rx_rings + n[NR_RX];
874 
875 	/* link the krings in the krings array */
876 	kring = (struct netmap_kring *)((char *)na->tailroom + tailroom);
877 	for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) {
878 		na->tx_rings[i] = kring;
879 		kring++;
880 	}
881 
882 	/*
883 	 * All fields in krings are 0 except the one initialized below.
884 	 * but better be explicit on important kring fields.
885 	 */
886 	for_rx_tx(t) {
887 		ndesc = nma_get_ndesc(na, t);
888 		for (i = 0; i < n[t]; i++) {
889 			kring = NMR(na, t)[i];
890 			bzero(kring, sizeof(*kring));
891 			kring->notify_na = na;
892 			kring->ring_id = i;
893 			kring->tx = t;
894 			kring->nkr_num_slots = ndesc;
895 			kring->nr_mode = NKR_NETMAP_OFF;
896 			kring->nr_pending_mode = NKR_NETMAP_OFF;
897 			if (i < nma_get_nrings(na, t)) {
898 				kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync);
899 				kring->nm_bufcfg = na->nm_bufcfg;
900 				if (kring->nm_bufcfg == NULL)
901 					kring->nm_bufcfg = netmap_default_bufcfg;
902 			} else {
903 				if (!(na->na_flags & NAF_HOST_RINGS))
904 					kring->nr_kflags |= NKR_FAKERING;
905 				kring->nm_sync = (t == NR_TX ?
906 						netmap_txsync_to_host:
907 						netmap_rxsync_from_host);
908 				kring->nm_bufcfg = netmap_default_bufcfg;
909 			}
910 			kring->nm_notify = na->nm_notify;
911 			kring->rhead = kring->rcur = kring->nr_hwcur = 0;
912 			/*
913 			 * IMPORTANT: Always keep one slot empty.
914 			 */
915 			kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0);
916 			snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name,
917 					nm_txrx2str(t), i);
918 			nm_prdis("ktx %s h %d c %d t %d",
919 				kring->name, kring->rhead, kring->rcur, kring->rtail);
920 			err = nm_os_selinfo_init(&kring->si, kring->name);
921 			if (err) {
922 				netmap_krings_delete(na);
923 				return err;
924 			}
925 			mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF);
926 			kring->na = na;	/* setting this field marks the mutex as initialized */
927 		}
928 		err = nm_os_selinfo_init(&na->si[t], na->name);
929 		if (err) {
930 			netmap_krings_delete(na);
931 			return err;
932 		}
933 	}
934 
935 	return 0;
936 }
937 
938 
939 /* undo the actions performed by netmap_krings_create */
940 /* call with NMG_LOCK held */
941 void
netmap_krings_delete(struct netmap_adapter * na)942 netmap_krings_delete(struct netmap_adapter *na)
943 {
944 	struct netmap_kring **kring = na->tx_rings;
945 	enum txrx t;
946 
947 	if (na->tx_rings == NULL) {
948 		if (netmap_debug & NM_DEBUG_ON)
949 			nm_prerr("warning: krings were already deleted");
950 		return;
951 	}
952 
953 	for_rx_tx(t)
954 		nm_os_selinfo_uninit(&na->si[t]);
955 
956 	/* we rely on the krings layout described above */
957 	for ( ; kring != na->tailroom; kring++) {
958 		if ((*kring)->na != NULL)
959 			mtx_destroy(&(*kring)->q_lock);
960 		nm_os_selinfo_uninit(&(*kring)->si);
961 	}
962 	nm_os_free(na->tx_rings);
963 	na->tx_rings = na->rx_rings = na->tailroom = NULL;
964 }
965 
966 
967 /*
968  * Destructor for NIC ports. They also have an mbuf queue
969  * on the rings connected to the host so we need to purge
970  * them first.
971  */
972 /* call with NMG_LOCK held */
973 void
netmap_hw_krings_delete(struct netmap_adapter * na)974 netmap_hw_krings_delete(struct netmap_adapter *na)
975 {
976 	u_int lim = netmap_real_rings(na, NR_RX), i;
977 
978 	for (i = nma_get_nrings(na, NR_RX); i < lim; i++) {
979 		struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue;
980 		nm_prdis("destroy sw mbq with len %d", mbq_len(q));
981 		mbq_purge(q);
982 		mbq_safe_fini(q);
983 	}
984 	netmap_krings_delete(na);
985 }
986 
987 void
netmap_mem_restore(struct netmap_adapter * na)988 netmap_mem_restore(struct netmap_adapter *na)
989 {
990 	if (na->nm_mem_prev) {
991 		netmap_mem_put(na->nm_mem);
992 		na->nm_mem = na->nm_mem_prev;
993 		na->nm_mem_prev = NULL;
994 	}
995 }
996 
997 static void
netmap_mem_drop(struct netmap_adapter * na)998 netmap_mem_drop(struct netmap_adapter *na)
999 {
1000 	netmap_mem_deref(na->nm_mem, na);
1001 
1002 	if (na->active_fds <= 0) {
1003 		/* if the native allocator had been overridden on regif,
1004 		 * restore it now and drop the temporary one
1005 		 */
1006 		netmap_mem_restore(na);
1007 	}
1008 }
1009 
1010 static void
netmap_update_hostrings_mode(struct netmap_adapter * na)1011 netmap_update_hostrings_mode(struct netmap_adapter *na)
1012 {
1013 	enum txrx t;
1014 	struct netmap_kring *kring;
1015 	int i;
1016 
1017 	for_rx_tx(t) {
1018 		for (i = nma_get_nrings(na, t);
1019 		     i < netmap_real_rings(na, t); i++) {
1020 			kring = NMR(na, t)[i];
1021 			kring->nr_mode = kring->nr_pending_mode;
1022 		}
1023 	}
1024 }
1025 
1026 /*
1027  * Undo everything that was done in netmap_do_regif(). In particular,
1028  * call nm_register(ifp,0) to stop netmap mode on the interface and
1029  * revert to normal operation.
1030  */
1031 /* call with NMG_LOCK held */
1032 static void netmap_unset_ringid(struct netmap_priv_d *);
1033 static void netmap_krings_put(struct netmap_priv_d *);
1034 void
netmap_do_unregif(struct netmap_priv_d * priv)1035 netmap_do_unregif(struct netmap_priv_d *priv)
1036 {
1037 	struct netmap_adapter *na = priv->np_na;
1038 
1039 	NMG_LOCK_ASSERT();
1040 	na->active_fds--;
1041 	/* unset nr_pending_mode and possibly release exclusive mode */
1042 	netmap_krings_put(priv);
1043 
1044 #ifdef	WITH_MONITOR
1045 	/* XXX check whether we have to do something with monitor
1046 	 * when rings change nr_mode. */
1047 	if (na->active_fds <= 0) {
1048 		/* walk through all the rings and tell any monitor
1049 		 * that the port is going to exit netmap mode
1050 		 */
1051 		netmap_monitor_stop(na);
1052 	}
1053 #endif
1054 
1055 	if (na->active_fds <= 0 || nm_kring_pending(priv)) {
1056 		netmap_set_all_rings(na, NM_KR_LOCKED);
1057 		na->nm_register(na, 0);
1058 		netmap_set_all_rings(na, 0);
1059 	}
1060 
1061 	/* delete rings and buffers that are no longer needed */
1062 	netmap_mem_rings_delete(na);
1063 
1064 	if (na->active_fds <= 0) {	/* last instance */
1065 		/*
1066 		 * (TO CHECK) We enter here
1067 		 * when the last reference to this file descriptor goes
1068 		 * away. This means we cannot have any pending poll()
1069 		 * or interrupt routine operating on the structure.
1070 		 * XXX The file may be closed in a thread while
1071 		 * another thread is using it.
1072 		 * Linux keeps the file opened until the last reference
1073 		 * by any outstanding ioctl/poll or mmap is gone.
1074 		 * FreeBSD does not track mmap()s (but we do) and
1075 		 * wakes up any sleeping poll(). Need to check what
1076 		 * happens if the close() occurs while a concurrent
1077 		 * syscall is running.
1078 		 */
1079 		if (netmap_debug & NM_DEBUG_ON)
1080 			nm_prinf("deleting last instance for %s", na->name);
1081 
1082 		if (nm_netmap_on(na)) {
1083 			nm_prerr("BUG: netmap on while going to delete the krings");
1084 		}
1085 
1086 		na->nm_krings_delete(na);
1087 
1088 		/* restore the default number of host tx and rx rings */
1089 		if (na->na_flags & NAF_HOST_RINGS) {
1090 			na->num_host_tx_rings = 1;
1091 			na->num_host_rx_rings = 1;
1092 		} else {
1093 			na->num_host_tx_rings = 0;
1094 			na->num_host_rx_rings = 0;
1095 		}
1096 	}
1097 
1098 	/* possibly decrement counter of tx_si/rx_si users */
1099 	netmap_unset_ringid(priv);
1100 	/* delete the nifp */
1101 	netmap_mem_if_delete(na, priv->np_nifp);
1102 	/* drop the allocator */
1103 	netmap_mem_drop(na);
1104 	/* mark the priv as unregistered */
1105 	priv->np_na = NULL;
1106 	priv->np_nifp = NULL;
1107 }
1108 
1109 struct netmap_priv_d*
netmap_priv_new(void)1110 netmap_priv_new(void)
1111 {
1112 	struct netmap_priv_d *priv;
1113 
1114 	priv = nm_os_malloc(sizeof(struct netmap_priv_d));
1115 	if (priv == NULL)
1116 		return NULL;
1117 	priv->np_refs = 1;
1118 	nm_os_get_module();
1119 	return priv;
1120 }
1121 
1122 /*
1123  * Destructor of the netmap_priv_d, called when the fd is closed
1124  * Action: undo all the things done by NIOCREGIF,
1125  * On FreeBSD we need to track whether there are active mmap()s,
1126  * and we use np_active_mmaps for that. On linux, the field is always 0.
1127  * Return: 1 if we can free priv, 0 otherwise.
1128  *
1129  */
1130 /* call with NMG_LOCK held */
1131 void
netmap_priv_delete(struct netmap_priv_d * priv)1132 netmap_priv_delete(struct netmap_priv_d *priv)
1133 {
1134 	struct netmap_adapter *na = priv->np_na;
1135 
1136 	/* number of active references to this fd */
1137 	if (--priv->np_refs > 0) {
1138 		return;
1139 	}
1140 	nm_os_put_module();
1141 	if (na) {
1142 		netmap_do_unregif(priv);
1143 	}
1144 	netmap_unget_na(na, priv->np_ifp);
1145 	bzero(priv, sizeof(*priv));	/* for safety */
1146 	nm_os_free(priv);
1147 }
1148 
1149 
1150 /* call with NMG_LOCK *not* held */
1151 void
netmap_dtor(void * data)1152 netmap_dtor(void *data)
1153 {
1154 	struct netmap_priv_d *priv = data;
1155 
1156 	NMG_LOCK();
1157 	netmap_priv_delete(priv);
1158 	NMG_UNLOCK();
1159 }
1160 
1161 
1162 /*
1163  * Handlers for synchronization of the rings from/to the host stack.
1164  * These are associated to a network interface and are just another
1165  * ring pair managed by userspace.
1166  *
1167  * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD
1168  * flags):
1169  *
1170  * - Before releasing buffers on hw RX rings, the application can mark
1171  *   them with the NS_FORWARD flag. During the next RXSYNC or poll(), they
1172  *   will be forwarded to the host stack, similarly to what happened if
1173  *   the application moved them to the host TX ring.
1174  *
1175  * - Before releasing buffers on the host RX ring, the application can
1176  *   mark them with the NS_FORWARD flag. During the next RXSYNC or poll(),
1177  *   they will be forwarded to the hw TX rings, saving the application
1178  *   from doing the same task in user-space.
1179  *
1180  * Transparent forwarding can be enabled per-ring, by setting the NR_FORWARD
1181  * flag, or globally with the netmap_fwd sysctl.
1182  *
1183  * The transfer NIC --> host is relatively easy, just encapsulate
1184  * into mbufs and we are done. The host --> NIC side is slightly
1185  * harder because there might not be room in the tx ring so it
1186  * might take a while before releasing the buffer.
1187  */
1188 
1189 
1190 /*
1191  * Pass a whole queue of mbufs to the host stack as coming from 'dst'
1192  * We do not need to lock because the queue is private.
1193  * After this call the queue is empty.
1194  */
1195 static void
netmap_send_up(if_t dst,struct mbq * q)1196 netmap_send_up(if_t dst, struct mbq *q)
1197 {
1198 	struct mbuf *m;
1199 	struct mbuf *head = NULL, *prev = NULL;
1200 #ifdef __FreeBSD__
1201 	struct epoch_tracker et;
1202 
1203 	NET_EPOCH_ENTER(et);
1204 #endif /* __FreeBSD__ */
1205 	/* Send packets up, outside the lock; head/prev machinery
1206 	 * is only useful for Windows. */
1207 	while ((m = mbq_dequeue(q)) != NULL) {
1208 		if (netmap_debug & NM_DEBUG_HOST)
1209 			nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m));
1210 		prev = nm_os_send_up(dst, m, prev);
1211 		if (head == NULL)
1212 			head = prev;
1213 	}
1214 	if (head)
1215 		nm_os_send_up(dst, NULL, head);
1216 #ifdef __FreeBSD__
1217 	NET_EPOCH_EXIT(et);
1218 #endif /* __FreeBSD__ */
1219 	mbq_fini(q);
1220 }
1221 
1222 
1223 /*
1224  * Scan the buffers from hwcur to ring->head, and put a copy of those
1225  * marked NS_FORWARD (or all of them if forced) into a queue of mbufs.
1226  * Drop remaining packets in the unlikely event
1227  * of an mbuf shortage.
1228  */
1229 static void
netmap_grab_packets(struct netmap_kring * kring,struct mbq * q,int force)1230 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force)
1231 {
1232 	u_int const lim = kring->nkr_num_slots - 1;
1233 	u_int const head = kring->rhead;
1234 	u_int n;
1235 	struct netmap_adapter *na = kring->na;
1236 
1237 	for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) {
1238 		struct mbuf *m;
1239 		struct netmap_slot *slot = &kring->ring->slot[n];
1240 
1241 		if ((slot->flags & NS_FORWARD) == 0 && !force)
1242 			continue;
1243 		if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) {
1244 			nm_prlim(5, "bad pkt at %d len %d", n, slot->len);
1245 			continue;
1246 		}
1247 		slot->flags &= ~NS_FORWARD; // XXX needed ?
1248 		/* XXX TODO: adapt to the case of a multisegment packet */
1249 		m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL);
1250 
1251 		if (m == NULL)
1252 			break;
1253 		mbq_enqueue(q, m);
1254 	}
1255 }
1256 
1257 static inline int
_nm_may_forward(struct netmap_kring * kring)1258 _nm_may_forward(struct netmap_kring *kring)
1259 {
1260 	return	((netmap_fwd || kring->ring->flags & NR_FORWARD) &&
1261 		 kring->na->na_flags & NAF_HOST_RINGS &&
1262 		 kring->tx == NR_RX);
1263 }
1264 
1265 static inline int
nm_may_forward_up(struct netmap_kring * kring)1266 nm_may_forward_up(struct netmap_kring *kring)
1267 {
1268 	return	_nm_may_forward(kring) &&
1269 		 kring->ring_id != kring->na->num_rx_rings;
1270 }
1271 
1272 static inline int
nm_may_forward_down(struct netmap_kring * kring,int sync_flags)1273 nm_may_forward_down(struct netmap_kring *kring, int sync_flags)
1274 {
1275 	return	_nm_may_forward(kring) &&
1276 		 (sync_flags & NAF_CAN_FORWARD_DOWN) &&
1277 		 kring->ring_id == kring->na->num_rx_rings;
1278 }
1279 
1280 /*
1281  * Send to the NIC rings packets marked NS_FORWARD between
1282  * kring->nr_hwcur and kring->rhead.
1283  * Called under kring->rx_queue.lock on the sw rx ring.
1284  *
1285  * It can only be called if the user opened all the TX hw rings,
1286  * see NAF_CAN_FORWARD_DOWN flag.
1287  * We can touch the TX netmap rings (slots, head and cur) since
1288  * we are in poll/ioctl system call context, and the application
1289  * is not supposed to touch the ring (using a different thread)
1290  * during the execution of the system call.
1291  */
1292 static u_int
netmap_sw_to_nic(struct netmap_adapter * na)1293 netmap_sw_to_nic(struct netmap_adapter *na)
1294 {
1295 	struct netmap_kring *kring = na->rx_rings[na->num_rx_rings];
1296 	struct netmap_slot *rxslot = kring->ring->slot;
1297 	u_int i, rxcur = kring->nr_hwcur;
1298 	u_int const head = kring->rhead;
1299 	u_int const src_lim = kring->nkr_num_slots - 1;
1300 	u_int sent = 0;
1301 
1302 	/* scan rings to find space, then fill as much as possible */
1303 	for (i = 0; i < na->num_tx_rings; i++) {
1304 		struct netmap_kring *kdst = na->tx_rings[i];
1305 		struct netmap_ring *rdst = kdst->ring;
1306 		u_int const dst_lim = kdst->nkr_num_slots - 1;
1307 
1308 		/* XXX do we trust ring or kring->rcur,rtail ? */
1309 		for (; rxcur != head && !nm_ring_empty(rdst);
1310 		     rxcur = nm_next(rxcur, src_lim) ) {
1311 			struct netmap_slot *src, *dst, tmp;
1312 			u_int dst_head = rdst->head;
1313 
1314 			src = &rxslot[rxcur];
1315 			if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd)
1316 				continue;
1317 
1318 			sent++;
1319 
1320 			dst = &rdst->slot[dst_head];
1321 
1322 			tmp = *src;
1323 
1324 			src->buf_idx = dst->buf_idx;
1325 			src->flags = NS_BUF_CHANGED;
1326 
1327 			dst->buf_idx = tmp.buf_idx;
1328 			dst->len = tmp.len;
1329 			dst->flags = NS_BUF_CHANGED;
1330 
1331 			rdst->head = rdst->cur = nm_next(dst_head, dst_lim);
1332 		}
1333 		/* if (sent) XXX txsync ? it would be just an optimization */
1334 	}
1335 	return sent;
1336 }
1337 
1338 
1339 /*
1340  * netmap_txsync_to_host() passes packets up. We are called from a
1341  * system call in user process context, and the only contention
1342  * can be among multiple user threads erroneously calling
1343  * this routine concurrently.
1344  */
1345 static int
netmap_txsync_to_host(struct netmap_kring * kring,int flags)1346 netmap_txsync_to_host(struct netmap_kring *kring, int flags)
1347 {
1348 	struct netmap_adapter *na = kring->na;
1349 	u_int const lim = kring->nkr_num_slots - 1;
1350 	u_int const head = kring->rhead;
1351 	struct mbq q;
1352 
1353 	/* Take packets from hwcur to head and pass them up.
1354 	 * Force hwcur = head since netmap_grab_packets() stops at head
1355 	 */
1356 	mbq_init(&q);
1357 	netmap_grab_packets(kring, &q, 1 /* force */);
1358 	nm_prdis("have %d pkts in queue", mbq_len(&q));
1359 	kring->nr_hwcur = head;
1360 	kring->nr_hwtail = head + lim;
1361 	if (kring->nr_hwtail > lim)
1362 		kring->nr_hwtail -= lim + 1;
1363 
1364 	netmap_send_up(na->ifp, &q);
1365 	return 0;
1366 }
1367 
1368 
1369 /*
1370  * rxsync backend for packets coming from the host stack.
1371  * They have been put in kring->rx_queue by netmap_transmit().
1372  * We protect access to the kring using kring->rx_queue.lock
1373  *
1374  * also moves to the nic hw rings any packet the user has marked
1375  * for transparent-mode forwarding, then sets the NR_FORWARD
1376  * flag in the kring to let the caller push them out
1377  */
1378 static int
netmap_rxsync_from_host(struct netmap_kring * kring,int flags)1379 netmap_rxsync_from_host(struct netmap_kring *kring, int flags)
1380 {
1381 	struct netmap_adapter *na = kring->na;
1382 	struct netmap_ring *ring = kring->ring;
1383 	u_int nm_i, n;
1384 	u_int const lim = kring->nkr_num_slots - 1;
1385 	u_int const head = kring->rhead;
1386 	int ret = 0;
1387 	struct mbq *q = &kring->rx_queue, fq;
1388 
1389 	mbq_init(&fq); /* fq holds packets to be freed */
1390 
1391 	mbq_lock(q);
1392 
1393 	/* First part: import newly received packets */
1394 	n = mbq_len(q);
1395 	if (n) { /* grab packets from the queue */
1396 		struct mbuf *m;
1397 		uint32_t stop_i;
1398 
1399 		nm_i = kring->nr_hwtail;
1400 		stop_i = nm_prev(kring->nr_hwcur, lim);
1401 		while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) {
1402 			int len = MBUF_LEN(m);
1403 			struct netmap_slot *slot = &ring->slot[nm_i];
1404 
1405 			m_copydata(m, 0, len, NMB(na, slot));
1406 			nm_prdis("nm %d len %d", nm_i, len);
1407 			if (netmap_debug & NM_DEBUG_HOST)
1408 				nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL));
1409 
1410 			slot->len = len;
1411 			slot->flags = 0;
1412 			nm_i = nm_next(nm_i, lim);
1413 			mbq_enqueue(&fq, m);
1414 		}
1415 		kring->nr_hwtail = nm_i;
1416 	}
1417 
1418 	/*
1419 	 * Second part: skip past packets that userspace has released.
1420 	 */
1421 	nm_i = kring->nr_hwcur;
1422 	if (nm_i != head) { /* something was released */
1423 		if (nm_may_forward_down(kring, flags)) {
1424 			ret = netmap_sw_to_nic(na);
1425 			if (ret > 0) {
1426 				kring->nr_kflags |= NR_FORWARD;
1427 				ret = 0;
1428 			}
1429 		}
1430 		kring->nr_hwcur = head;
1431 	}
1432 
1433 	mbq_unlock(q);
1434 
1435 	mbq_purge(&fq);
1436 	mbq_fini(&fq);
1437 
1438 	return ret;
1439 }
1440 
1441 
1442 /* Get a netmap adapter for the port.
1443  *
1444  * If it is possible to satisfy the request, return 0
1445  * with *na containing the netmap adapter found.
1446  * Otherwise return an error code, with *na containing NULL.
1447  *
1448  * When the port is attached to a bridge, we always return
1449  * EBUSY.
1450  * Otherwise, if the port is already bound to a file descriptor,
1451  * then we unconditionally return the existing adapter into *na.
1452  * In all the other cases, we return (into *na) either native,
1453  * generic or NULL, according to the following table:
1454  *
1455  *					native_support
1456  * active_fds   dev.netmap.admode         YES     NO
1457  * -------------------------------------------------------
1458  *    >0              *                 NA(ifp) NA(ifp)
1459  *
1460  *     0        NETMAP_ADMODE_BEST      NATIVE  GENERIC
1461  *     0        NETMAP_ADMODE_NATIVE    NATIVE   NULL
1462  *     0        NETMAP_ADMODE_GENERIC   GENERIC GENERIC
1463  *
1464  */
1465 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */
1466 int
netmap_get_hw_na(if_t ifp,struct netmap_mem_d * nmd,struct netmap_adapter ** na)1467 netmap_get_hw_na(if_t ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na)
1468 {
1469 	/* generic support */
1470 	int i = netmap_admode;	/* Take a snapshot. */
1471 	struct netmap_adapter *prev_na;
1472 	int error = 0;
1473 
1474 	*na = NULL; /* default */
1475 
1476 	/* reset in case of invalid value */
1477 	if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST)
1478 		i = netmap_admode = NETMAP_ADMODE_BEST;
1479 
1480 	if (NM_NA_VALID(ifp)) {
1481 		prev_na = NA(ifp);
1482 		/* If an adapter already exists, return it if
1483 		 * there are active file descriptors or if
1484 		 * netmap is not forced to use generic
1485 		 * adapters.
1486 		 */
1487 		if (NETMAP_OWNED_BY_ANY(prev_na)
1488 			|| i != NETMAP_ADMODE_GENERIC
1489 			|| prev_na->na_flags & NAF_FORCE_NATIVE
1490 #ifdef WITH_PIPES
1491 			/* ugly, but we cannot allow an adapter switch
1492 			 * if some pipe is referring to this one
1493 			 */
1494 			|| prev_na->na_next_pipe > 0
1495 #endif
1496 		) {
1497 			*na = prev_na;
1498 			goto assign_mem;
1499 		}
1500 	}
1501 
1502 	/* If there isn't native support and netmap is not allowed
1503 	 * to use generic adapters, we cannot satisfy the request.
1504 	 */
1505 	if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE)
1506 		return EOPNOTSUPP;
1507 
1508 	/* Otherwise, create a generic adapter and return it,
1509 	 * saving the previously used netmap adapter, if any.
1510 	 *
1511 	 * Note that here 'prev_na', if not NULL, MUST be a
1512 	 * native adapter, and CANNOT be a generic one. This is
1513 	 * true because generic adapters are created on demand, and
1514 	 * destroyed when not used anymore. Therefore, if the adapter
1515 	 * currently attached to an interface 'ifp' is generic, it
1516 	 * must be that
1517 	 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))).
1518 	 * Consequently, if NA(ifp) is generic, we will enter one of
1519 	 * the branches above. This ensures that we never override
1520 	 * a generic adapter with another generic adapter.
1521 	 */
1522 	error = generic_netmap_attach(ifp);
1523 	if (error)
1524 		return error;
1525 
1526 	*na = NA(ifp);
1527 
1528 assign_mem:
1529 	if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) &&
1530 	    (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) {
1531 		(*na)->nm_mem_prev = (*na)->nm_mem;
1532 		(*na)->nm_mem = netmap_mem_get(nmd);
1533 	}
1534 
1535 	return 0;
1536 }
1537 
1538 /*
1539  * MUST BE CALLED UNDER NMG_LOCK()
1540  *
1541  * Get a refcounted reference to a netmap adapter attached
1542  * to the interface specified by req.
1543  * This is always called in the execution of an ioctl().
1544  *
1545  * Return ENXIO if the interface specified by the request does
1546  * not exist, ENOTSUP if netmap is not supported by the interface,
1547  * EBUSY if the interface is already attached to a bridge,
1548  * EINVAL if parameters are invalid, ENOMEM if needed resources
1549  * could not be allocated.
1550  * If successful, hold a reference to the netmap adapter.
1551  *
1552  * If the interface specified by req is a system one, also keep
1553  * a reference to it and return a valid *ifp.
1554  */
1555 int
netmap_get_na(struct nmreq_header * hdr,struct netmap_adapter ** na,if_t * ifp,struct netmap_mem_d * nmd,int create)1556 netmap_get_na(struct nmreq_header *hdr,
1557 	      struct netmap_adapter **na, if_t *ifp,
1558 	      struct netmap_mem_d *nmd, int create)
1559 {
1560 	struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body;
1561 	int error = 0;
1562 	struct netmap_adapter *ret = NULL;
1563 	int nmd_ref = 0;
1564 
1565 	*na = NULL;     /* default return value */
1566 	*ifp = NULL;
1567 
1568 	if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) {
1569 		return EINVAL;
1570 	}
1571 
1572 	if (req->nr_mode == NR_REG_PIPE_MASTER ||
1573 			req->nr_mode == NR_REG_PIPE_SLAVE) {
1574 		/* Do not accept deprecated pipe modes. */
1575 		nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax");
1576 		return EINVAL;
1577 	}
1578 
1579 	NMG_LOCK_ASSERT();
1580 
1581 	/* if the request contain a memid, try to find the
1582 	 * corresponding memory region
1583 	 */
1584 	if (nmd == NULL && req->nr_mem_id) {
1585 		nmd = netmap_mem_find(req->nr_mem_id);
1586 		if (nmd == NULL)
1587 			return EINVAL;
1588 		/* keep the rereference */
1589 		nmd_ref = 1;
1590 	}
1591 
1592 	/* We cascade through all possible types of netmap adapter.
1593 	 * All netmap_get_*_na() functions return an error and an na,
1594 	 * with the following combinations:
1595 	 *
1596 	 * error    na
1597 	 *   0	   NULL		type doesn't match
1598 	 *  !0	   NULL		type matches, but na creation/lookup failed
1599 	 *   0	  !NULL		type matches and na created/found
1600 	 *  !0    !NULL		impossible
1601 	 */
1602 	error = netmap_get_null_na(hdr, na, nmd, create);
1603 	if (error || *na != NULL)
1604 		goto out;
1605 
1606 	/* try to see if this is a monitor port */
1607 	error = netmap_get_monitor_na(hdr, na, nmd, create);
1608 	if (error || *na != NULL)
1609 		goto out;
1610 
1611 	/* try to see if this is a pipe port */
1612 	error = netmap_get_pipe_na(hdr, na, nmd, create);
1613 	if (error || *na != NULL)
1614 		goto out;
1615 
1616 	/* try to see if this is a vale port */
1617 	error = netmap_get_vale_na(hdr, na, nmd, create);
1618 	if (error)
1619 		goto out;
1620 
1621 	if (*na != NULL) /* valid match in netmap_get_bdg_na() */
1622 		goto out;
1623 
1624 	/*
1625 	 * This must be a hardware na, lookup the name in the system.
1626 	 * Note that by hardware we actually mean "it shows up in ifconfig".
1627 	 * This may still be a tap, a veth/epair, or even a
1628 	 * persistent VALE port.
1629 	 */
1630 	*ifp = ifunit_ref(hdr->nr_name);
1631 	if (*ifp == NULL) {
1632 		error = ENXIO;
1633 		goto out;
1634 	}
1635 
1636 	error = netmap_get_hw_na(*ifp, nmd, &ret);
1637 	if (error)
1638 		goto out;
1639 
1640 	*na = ret;
1641 	netmap_adapter_get(ret);
1642 
1643 	/*
1644 	 * if the adapter supports the host rings and it is not already open,
1645 	 * try to set the number of host rings as requested by the user
1646 	 */
1647 	if (((*na)->na_flags & NAF_HOST_RINGS) && (*na)->active_fds == 0) {
1648 		if (req->nr_host_tx_rings)
1649 			(*na)->num_host_tx_rings = req->nr_host_tx_rings;
1650 		if (req->nr_host_rx_rings)
1651 			(*na)->num_host_rx_rings = req->nr_host_rx_rings;
1652 	}
1653 	nm_prdis("%s: host tx %d rx %u", (*na)->name, (*na)->num_host_tx_rings,
1654 			(*na)->num_host_rx_rings);
1655 
1656 out:
1657 	if (error) {
1658 		if (ret)
1659 			netmap_adapter_put(ret);
1660 		if (*ifp) {
1661 			if_rele(*ifp);
1662 			*ifp = NULL;
1663 		}
1664 	}
1665 	if (nmd_ref)
1666 		netmap_mem_put(nmd);
1667 
1668 	return error;
1669 }
1670 
1671 /* undo netmap_get_na() */
1672 void
netmap_unget_na(struct netmap_adapter * na,if_t ifp)1673 netmap_unget_na(struct netmap_adapter *na, if_t ifp)
1674 {
1675 	if (ifp)
1676 		if_rele(ifp);
1677 	if (na)
1678 		netmap_adapter_put(na);
1679 }
1680 
1681 
1682 #define NM_FAIL_ON(t) do {						\
1683 	if (unlikely(t)) {						\
1684 		nm_prlim(5, "%s: fail '" #t "' "				\
1685 			"h %d c %d t %d "				\
1686 			"rh %d rc %d rt %d "				\
1687 			"hc %d ht %d",					\
1688 			kring->name,					\
1689 			head, cur, ring->tail,				\
1690 			kring->rhead, kring->rcur, kring->rtail,	\
1691 			kring->nr_hwcur, kring->nr_hwtail);		\
1692 		return kring->nkr_num_slots;				\
1693 	}								\
1694 } while (0)
1695 
1696 /*
1697  * validate parameters on entry for *_txsync()
1698  * Returns ring->cur if ok, or something >= kring->nkr_num_slots
1699  * in case of error.
1700  *
1701  * rhead, rcur and rtail=hwtail are stored from previous round.
1702  * hwcur is the next packet to send to the ring.
1703  *
1704  * We want
1705  *    hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail
1706  *
1707  * hwcur, rhead, rtail and hwtail are reliable
1708  */
1709 u_int
nm_txsync_prologue(struct netmap_kring * kring,struct netmap_ring * ring)1710 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1711 {
1712 	u_int head = NM_ACCESS_ONCE(ring->head);
1713 	u_int cur = NM_ACCESS_ONCE(ring->cur);
1714 	u_int n = kring->nkr_num_slots;
1715 
1716 	nm_prdis(5, "%s kcur %d ktail %d head %d cur %d tail %d",
1717 		kring->name,
1718 		kring->nr_hwcur, kring->nr_hwtail,
1719 		ring->head, ring->cur, ring->tail);
1720 #if 1 /* kernel sanity checks; but we can trust the kring. */
1721 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n ||
1722 	    kring->rtail >= n ||  kring->nr_hwtail >= n);
1723 #endif /* kernel sanity checks */
1724 	/*
1725 	 * user sanity checks. We only use head,
1726 	 * A, B, ... are possible positions for head:
1727 	 *
1728 	 *  0    A  rhead   B  rtail   C  n-1
1729 	 *  0    D  rtail   E  rhead   F  n-1
1730 	 *
1731 	 * B, F, D are valid. A, C, E are wrong
1732 	 */
1733 	if (kring->rtail >= kring->rhead) {
1734 		/* want rhead <= head <= rtail */
1735 		NM_FAIL_ON(head < kring->rhead || head > kring->rtail);
1736 		/* and also head <= cur <= rtail */
1737 		NM_FAIL_ON(cur < head || cur > kring->rtail);
1738 	} else { /* here rtail < rhead */
1739 		/* we need head outside rtail .. rhead */
1740 		NM_FAIL_ON(head > kring->rtail && head < kring->rhead);
1741 
1742 		/* two cases now: head <= rtail or head >= rhead  */
1743 		if (head <= kring->rtail) {
1744 			/* want head <= cur <= rtail */
1745 			NM_FAIL_ON(cur < head || cur > kring->rtail);
1746 		} else { /* head >= rhead */
1747 			/* cur must be outside rtail..head */
1748 			NM_FAIL_ON(cur > kring->rtail && cur < head);
1749 		}
1750 	}
1751 	if (ring->tail != kring->rtail) {
1752 		nm_prlim(5, "%s tail overwritten was %d need %d", kring->name,
1753 			ring->tail, kring->rtail);
1754 		ring->tail = kring->rtail;
1755 	}
1756 	kring->rhead = head;
1757 	kring->rcur = cur;
1758 	return head;
1759 }
1760 
1761 
1762 /*
1763  * validate parameters on entry for *_rxsync()
1764  * Returns ring->head if ok, kring->nkr_num_slots on error.
1765  *
1766  * For a valid configuration,
1767  * hwcur <= head <= cur <= tail <= hwtail
1768  *
1769  * We only consider head and cur.
1770  * hwcur and hwtail are reliable.
1771  *
1772  */
1773 u_int
nm_rxsync_prologue(struct netmap_kring * kring,struct netmap_ring * ring)1774 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring)
1775 {
1776 	uint32_t const n = kring->nkr_num_slots;
1777 	uint32_t head, cur;
1778 
1779 	nm_prdis(5,"%s kc %d kt %d h %d c %d t %d",
1780 		kring->name,
1781 		kring->nr_hwcur, kring->nr_hwtail,
1782 		ring->head, ring->cur, ring->tail);
1783 	/*
1784 	 * Before storing the new values, we should check they do not
1785 	 * move backwards. However:
1786 	 * - head is not an issue because the previous value is hwcur;
1787 	 * - cur could in principle go back, however it does not matter
1788 	 *   because we are processing a brand new rxsync()
1789 	 */
1790 	cur = kring->rcur = NM_ACCESS_ONCE(ring->cur);
1791 	head = kring->rhead = NM_ACCESS_ONCE(ring->head);
1792 #if 1 /* kernel sanity checks */
1793 	NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n);
1794 #endif /* kernel sanity checks */
1795 	/* user sanity checks */
1796 	if (kring->nr_hwtail >= kring->nr_hwcur) {
1797 		/* want hwcur <= rhead <= hwtail */
1798 		NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail);
1799 		/* and also rhead <= rcur <= hwtail */
1800 		NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1801 	} else {
1802 		/* we need rhead outside hwtail..hwcur */
1803 		NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail);
1804 		/* two cases now: head <= hwtail or head >= hwcur  */
1805 		if (head <= kring->nr_hwtail) {
1806 			/* want head <= cur <= hwtail */
1807 			NM_FAIL_ON(cur < head || cur > kring->nr_hwtail);
1808 		} else {
1809 			/* cur must be outside hwtail..head */
1810 			NM_FAIL_ON(cur < head && cur > kring->nr_hwtail);
1811 		}
1812 	}
1813 	if (ring->tail != kring->rtail) {
1814 		nm_prlim(5, "%s tail overwritten was %d need %d",
1815 			kring->name,
1816 			ring->tail, kring->rtail);
1817 		ring->tail = kring->rtail;
1818 	}
1819 	return head;
1820 }
1821 
1822 
1823 /*
1824  * Error routine called when txsync/rxsync detects an error.
1825  * Can't do much more than resetting head = cur = hwcur, tail = hwtail
1826  * Return 1 on reinit.
1827  *
1828  * This routine is only called by the upper half of the kernel.
1829  * It only reads hwcur (which is changed only by the upper half, too)
1830  * and hwtail (which may be changed by the lower half, but only on
1831  * a tx ring and only to increase it, so any error will be recovered
1832  * on the next call). For the above, we don't strictly need to call
1833  * it under lock.
1834  */
1835 int
netmap_ring_reinit(struct netmap_kring * kring)1836 netmap_ring_reinit(struct netmap_kring *kring)
1837 {
1838 	struct netmap_ring *ring = kring->ring;
1839 	u_int i, lim = kring->nkr_num_slots - 1;
1840 	int errors = 0;
1841 
1842 	// XXX KASSERT nm_kr_tryget
1843 	nm_prlim(10, "called for %s", kring->name);
1844 	// XXX probably wrong to trust userspace
1845 	kring->rhead = ring->head;
1846 	kring->rcur  = ring->cur;
1847 	kring->rtail = ring->tail;
1848 
1849 	if (ring->cur > lim)
1850 		errors++;
1851 	if (ring->head > lim)
1852 		errors++;
1853 	if (ring->tail > lim)
1854 		errors++;
1855 	for (i = 0; i <= lim; i++) {
1856 		u_int idx = ring->slot[i].buf_idx;
1857 		u_int len = ring->slot[i].len;
1858 		if (idx < 2 || idx >= kring->na->na_lut.objtotal) {
1859 			nm_prlim(5, "bad index at slot %d idx %d len %d ", i, idx, len);
1860 			ring->slot[i].buf_idx = 0;
1861 			ring->slot[i].len = 0;
1862 		} else if (len > NETMAP_BUF_SIZE(kring->na)) {
1863 			ring->slot[i].len = 0;
1864 			nm_prlim(5, "bad len at slot %d idx %d len %d", i, idx, len);
1865 		}
1866 	}
1867 	if (errors) {
1868 		nm_prlim(10, "total %d errors", errors);
1869 		nm_prlim(10, "%s reinit, cur %d -> %d tail %d -> %d",
1870 			kring->name,
1871 			ring->cur, kring->nr_hwcur,
1872 			ring->tail, kring->nr_hwtail);
1873 		ring->head = kring->rhead = kring->nr_hwcur;
1874 		ring->cur  = kring->rcur  = kring->nr_hwcur;
1875 		ring->tail = kring->rtail = kring->nr_hwtail;
1876 	}
1877 	return (errors ? 1 : 0);
1878 }
1879 
1880 /* interpret the ringid and flags fields of an nmreq, by translating them
1881  * into a pair of intervals of ring indices:
1882  *
1883  * [priv->np_txqfirst, priv->np_txqlast) and
1884  * [priv->np_rxqfirst, priv->np_rxqlast)
1885  *
1886  */
1887 int
netmap_interp_ringid(struct netmap_priv_d * priv,struct nmreq_header * hdr)1888 netmap_interp_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr)
1889 {
1890 	struct netmap_adapter *na = priv->np_na;
1891 	struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body;
1892 	int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY };
1893 	enum txrx t;
1894 	u_int j;
1895 	u_int nr_flags = reg->nr_flags, nr_mode = reg->nr_mode,
1896 	      nr_ringid = reg->nr_ringid;
1897 
1898 	for_rx_tx(t) {
1899 		if (nr_flags & excluded_direction[t]) {
1900 			priv->np_qfirst[t] = priv->np_qlast[t] = 0;
1901 			continue;
1902 		}
1903 		switch (nr_mode) {
1904 		case NR_REG_ALL_NIC:
1905 		case NR_REG_NULL:
1906 			priv->np_qfirst[t] = 0;
1907 			priv->np_qlast[t] = nma_get_nrings(na, t);
1908 			nm_prdis("ALL/PIPE: %s %d %d", nm_txrx2str(t),
1909 				priv->np_qfirst[t], priv->np_qlast[t]);
1910 			break;
1911 		case NR_REG_SW:
1912 		case NR_REG_NIC_SW:
1913 			if (!(na->na_flags & NAF_HOST_RINGS)) {
1914 				nm_prerr("host rings not supported");
1915 				return EINVAL;
1916 			}
1917 			priv->np_qfirst[t] = (nr_mode == NR_REG_SW ?
1918 				nma_get_nrings(na, t) : 0);
1919 			priv->np_qlast[t] = netmap_all_rings(na, t);
1920 			nm_prdis("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW",
1921 				nm_txrx2str(t),
1922 				priv->np_qfirst[t], priv->np_qlast[t]);
1923 			break;
1924 		case NR_REG_ONE_NIC:
1925 			if (nr_ringid >= na->num_tx_rings &&
1926 					nr_ringid >= na->num_rx_rings) {
1927 				nm_prerr("invalid ring id %d", nr_ringid);
1928 				return EINVAL;
1929 			}
1930 			/* if not enough rings, use the first one */
1931 			j = nr_ringid;
1932 			if (j >= nma_get_nrings(na, t))
1933 				j = 0;
1934 			priv->np_qfirst[t] = j;
1935 			priv->np_qlast[t] = j + 1;
1936 			nm_prdis("ONE_NIC: %s %d %d", nm_txrx2str(t),
1937 				priv->np_qfirst[t], priv->np_qlast[t]);
1938 			break;
1939 		case NR_REG_ONE_SW:
1940 			if (!(na->na_flags & NAF_HOST_RINGS)) {
1941 				nm_prerr("host rings not supported");
1942 				return EINVAL;
1943 			}
1944 			if (nr_ringid >= na->num_host_tx_rings &&
1945 					nr_ringid >= na->num_host_rx_rings) {
1946 				nm_prerr("invalid ring id %d", nr_ringid);
1947 				return EINVAL;
1948 			}
1949 			/* if not enough rings, use the first one */
1950 			j = nr_ringid;
1951 			if (j >= nma_get_host_nrings(na, t))
1952 				j = 0;
1953 			priv->np_qfirst[t] = nma_get_nrings(na, t) + j;
1954 			priv->np_qlast[t] = nma_get_nrings(na, t) + j + 1;
1955 			nm_prdis("ONE_SW: %s %d %d", nm_txrx2str(t),
1956 				priv->np_qfirst[t], priv->np_qlast[t]);
1957 			break;
1958 		default:
1959 			nm_prerr("invalid regif type %d", nr_mode);
1960 			return EINVAL;
1961 		}
1962 	}
1963 	priv->np_flags = nr_flags;
1964 
1965 	/* Allow transparent forwarding mode in the host --> nic
1966 	 * direction only if all the TX hw rings have been opened. */
1967 	if (priv->np_qfirst[NR_TX] == 0 &&
1968 			priv->np_qlast[NR_TX] >= na->num_tx_rings) {
1969 		priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN;
1970 	}
1971 
1972 	if (netmap_verbose) {
1973 		nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d",
1974 			na->name,
1975 			priv->np_qfirst[NR_TX],
1976 			priv->np_qlast[NR_TX],
1977 			priv->np_qfirst[NR_RX],
1978 			priv->np_qlast[NR_RX],
1979 			nr_ringid);
1980 	}
1981 	return 0;
1982 }
1983 
1984 
1985 /*
1986  * Set the ring ID. For devices with a single queue, a request
1987  * for all rings is the same as a single ring.
1988  */
1989 static int
netmap_set_ringid(struct netmap_priv_d * priv,struct nmreq_header * hdr)1990 netmap_set_ringid(struct netmap_priv_d *priv, struct nmreq_header *hdr)
1991 {
1992 	struct netmap_adapter *na = priv->np_na;
1993 	struct nmreq_register *reg = (struct nmreq_register *)hdr->nr_body;
1994 	int error;
1995 	enum txrx t;
1996 
1997 	error = netmap_interp_ringid(priv, hdr);
1998 	if (error) {
1999 		return error;
2000 	}
2001 
2002 	priv->np_txpoll = (reg->nr_flags & NR_NO_TX_POLL) ? 0 : 1;
2003 
2004 	/* optimization: count the users registered for more than
2005 	 * one ring, which are the ones sleeping on the global queue.
2006 	 * The default netmap_notify() callback will then
2007 	 * avoid signaling the global queue if nobody is using it
2008 	 */
2009 	for_rx_tx(t) {
2010 		if (nm_si_user(priv, t))
2011 			na->si_users[t]++;
2012 	}
2013 	return 0;
2014 }
2015 
2016 static void
netmap_unset_ringid(struct netmap_priv_d * priv)2017 netmap_unset_ringid(struct netmap_priv_d *priv)
2018 {
2019 	struct netmap_adapter *na = priv->np_na;
2020 	enum txrx t;
2021 
2022 	for_rx_tx(t) {
2023 		if (nm_si_user(priv, t))
2024 			na->si_users[t]--;
2025 		priv->np_qfirst[t] = priv->np_qlast[t] = 0;
2026 	}
2027 	priv->np_flags = 0;
2028 	priv->np_txpoll = 0;
2029 	priv->np_kloop_state = 0;
2030 }
2031 
2032 #define within_sel(p_, t_, i_)					  	  \
2033 	((i_) < (p_)->np_qlast[(t_)])
2034 #define nonempty_sel(p_, t_)						  \
2035 	(within_sel((p_), (t_), (p_)->np_qfirst[(t_)]))
2036 #define foreach_selected_ring(p_, t_, i_, kring_)			  \
2037 	for ((t_) = nonempty_sel((p_), NR_RX) ? NR_RX : NR_TX,		  \
2038 	     (i_) = (p_)->np_qfirst[(t_)];				  \
2039 	     (t_ == NR_RX ||						  \
2040 	      (t == NR_TX && within_sel((p_), (t_), (i_)))) &&     	  \
2041 	      ((kring_) = NMR((p_)->np_na, (t_))[(i_)]); 		  \
2042 	     (i_) = within_sel((p_), (t_), (i_) + 1) ? (i_) + 1 :         \
2043 		(++(t_) < NR_TXRX ? (p_)->np_qfirst[(t_)] : (i_)))
2044 
2045 
2046 /* Set the nr_pending_mode for the requested rings.
2047  * If requested, also try to get exclusive access to the rings, provided
2048  * the rings we want to bind are not exclusively owned by a previous bind.
2049  */
2050 static int
netmap_krings_get(struct netmap_priv_d * priv)2051 netmap_krings_get(struct netmap_priv_d *priv)
2052 {
2053 	struct netmap_adapter *na = priv->np_na;
2054 	u_int i;
2055 	struct netmap_kring *kring;
2056 	int excl = (priv->np_flags & NR_EXCLUSIVE);
2057 	enum txrx t;
2058 
2059 	if (netmap_debug & NM_DEBUG_ON)
2060 		nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)",
2061 			na->name,
2062 			priv->np_qfirst[NR_TX],
2063 			priv->np_qlast[NR_TX],
2064 			priv->np_qfirst[NR_RX],
2065 			priv->np_qlast[NR_RX]);
2066 
2067 	/* first round: check that all the requested rings
2068 	 * are neither already exclusively owned, nor we
2069 	 * want exclusive ownership when they are already in use
2070 	 */
2071 	foreach_selected_ring(priv, t, i, kring) {
2072 		if ((kring->nr_kflags & NKR_EXCLUSIVE) ||
2073 		    (kring->users && excl))
2074 		{
2075 			nm_prdis("ring %s busy", kring->name);
2076 			return EBUSY;
2077 		}
2078 	}
2079 
2080 	/* second round: increment usage count (possibly marking them
2081 	 * as exclusive) and set the nr_pending_mode
2082 	 */
2083 	foreach_selected_ring(priv, t, i, kring) {
2084 		kring->users++;
2085 		if (excl)
2086 			kring->nr_kflags |= NKR_EXCLUSIVE;
2087 		kring->nr_pending_mode = NKR_NETMAP_ON;
2088 	}
2089 
2090 	return 0;
2091 
2092 }
2093 
2094 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode
2095  * if was asked on regif, and unset the nr_pending_mode if we are the
2096  * last users of the involved rings. */
2097 static void
netmap_krings_put(struct netmap_priv_d * priv)2098 netmap_krings_put(struct netmap_priv_d *priv)
2099 {
2100 	u_int i;
2101 	struct netmap_kring *kring;
2102 	int excl = (priv->np_flags & NR_EXCLUSIVE);
2103 	enum txrx t;
2104 
2105 	nm_prdis("%s: releasing tx [%d, %d) rx [%d, %d)",
2106 			na->name,
2107 			priv->np_qfirst[NR_TX],
2108 			priv->np_qlast[NR_TX],
2109 			priv->np_qfirst[NR_RX],
2110 			priv->np_qlast[MR_RX]);
2111 
2112 	foreach_selected_ring(priv, t, i, kring) {
2113 		if (excl)
2114 			kring->nr_kflags &= ~NKR_EXCLUSIVE;
2115 		kring->users--;
2116 		if (kring->users == 0)
2117 			kring->nr_pending_mode = NKR_NETMAP_OFF;
2118 	}
2119 }
2120 
2121 static int
nm_priv_rx_enabled(struct netmap_priv_d * priv)2122 nm_priv_rx_enabled(struct netmap_priv_d *priv)
2123 {
2124 	return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]);
2125 }
2126 
2127 /* Validate the CSB entries for both directions (atok and ktoa).
2128  * To be called under NMG_LOCK(). */
2129 static int
netmap_csb_validate(struct netmap_priv_d * priv,struct nmreq_opt_csb * csbo)2130 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo)
2131 {
2132 	struct nm_csb_atok *csb_atok_base =
2133 		(struct nm_csb_atok *)(uintptr_t)csbo->csb_atok;
2134 	struct nm_csb_ktoa *csb_ktoa_base =
2135 		(struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa;
2136 	enum txrx t;
2137 	int num_rings[NR_TXRX], tot_rings;
2138 	size_t entry_size[2];
2139 	void *csb_start[2];
2140 	int i;
2141 
2142 	if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) {
2143 		nm_prerr("Cannot update CSB while kloop is running");
2144 		return EBUSY;
2145 	}
2146 
2147 	tot_rings = 0;
2148 	for_rx_tx(t) {
2149 		num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t];
2150 		tot_rings += num_rings[t];
2151 	}
2152 	if (tot_rings <= 0)
2153 		return 0;
2154 
2155 	if (!(priv->np_flags & NR_EXCLUSIVE)) {
2156 		nm_prerr("CSB mode requires NR_EXCLUSIVE");
2157 		return EINVAL;
2158 	}
2159 
2160 	entry_size[0] = sizeof(*csb_atok_base);
2161 	entry_size[1] = sizeof(*csb_ktoa_base);
2162 	csb_start[0] = (void *)csb_atok_base;
2163 	csb_start[1] = (void *)csb_ktoa_base;
2164 
2165 	for (i = 0; i < 2; i++) {
2166 		/* On Linux we could use access_ok() to simplify
2167 		 * the validation. However, the advantage of
2168 		 * this approach is that it works also on
2169 		 * FreeBSD. */
2170 		size_t csb_size = tot_rings * entry_size[i];
2171 		void *tmp;
2172 		int err;
2173 
2174 		if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) {
2175 			nm_prerr("Unaligned CSB address");
2176 			return EINVAL;
2177 		}
2178 
2179 		tmp = nm_os_malloc(csb_size);
2180 		if (!tmp)
2181 			return ENOMEM;
2182 		if (i == 0) {
2183 			/* Application --> kernel direction. */
2184 			err = copyin(csb_start[i], tmp, csb_size);
2185 		} else {
2186 			/* Kernel --> application direction. */
2187 			memset(tmp, 0, csb_size);
2188 			err = copyout(tmp, csb_start[i], csb_size);
2189 		}
2190 		nm_os_free(tmp);
2191 		if (err) {
2192 			nm_prerr("Invalid CSB address");
2193 			return err;
2194 		}
2195 	}
2196 
2197 	priv->np_csb_atok_base = csb_atok_base;
2198 	priv->np_csb_ktoa_base = csb_ktoa_base;
2199 
2200 	/* Initialize the CSB. */
2201 	for_rx_tx(t) {
2202 		for (i = 0; i < num_rings[t]; i++) {
2203 			struct netmap_kring *kring =
2204 				NMR(priv->np_na, t)[i + priv->np_qfirst[t]];
2205 			struct nm_csb_atok *csb_atok = csb_atok_base + i;
2206 			struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i;
2207 
2208 			if (t == NR_RX) {
2209 				csb_atok += num_rings[NR_TX];
2210 				csb_ktoa += num_rings[NR_TX];
2211 			}
2212 
2213 			CSB_WRITE(csb_atok, head, kring->rhead);
2214 			CSB_WRITE(csb_atok, cur, kring->rcur);
2215 			CSB_WRITE(csb_atok, appl_need_kick, 1);
2216 			CSB_WRITE(csb_atok, sync_flags, 1);
2217 			CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur);
2218 			CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail);
2219 			CSB_WRITE(csb_ktoa, kern_need_kick, 1);
2220 
2221 			nm_prinf("csb_init for kring %s: head %u, cur %u, "
2222 				"hwcur %u, hwtail %u", kring->name,
2223 				kring->rhead, kring->rcur, kring->nr_hwcur,
2224 				kring->nr_hwtail);
2225 		}
2226 	}
2227 
2228 	return 0;
2229 }
2230 
2231 /* Ensure that the netmap adapter can support the given MTU.
2232  * @return EINVAL if the na cannot be set to mtu, 0 otherwise.
2233  */
2234 int
netmap_buf_size_validate(const struct netmap_adapter * na,unsigned mtu)2235 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) {
2236 	unsigned nbs = NETMAP_BUF_SIZE(na);
2237 
2238 	if (mtu <= na->rx_buf_maxsize) {
2239 		/* The MTU fits a single NIC slot. We only
2240 		 * Need to check that netmap buffers are
2241 		 * large enough to hold an MTU. NS_MOREFRAG
2242 		 * cannot be used in this case. */
2243 		if (nbs < mtu) {
2244 			nm_prerr("error: netmap buf size (%u) "
2245 				 "< device MTU (%u)", nbs, mtu);
2246 			return EINVAL;
2247 		}
2248 	} else {
2249 		/* More NIC slots may be needed to receive
2250 		 * or transmit a single packet. Check that
2251 		 * the adapter supports NS_MOREFRAG and that
2252 		 * netmap buffers are large enough to hold
2253 		 * the maximum per-slot size. */
2254 		if (!(na->na_flags & NAF_MOREFRAG)) {
2255 			nm_prerr("error: large MTU (%d) needed "
2256 				 "but %s does not support "
2257 				 "NS_MOREFRAG", mtu,
2258 				 if_name(na->ifp));
2259 			return EINVAL;
2260 		} else if (nbs < na->rx_buf_maxsize) {
2261 			nm_prerr("error: using NS_MOREFRAG on "
2262 				 "%s requires netmap buf size "
2263 				 ">= %u", if_name(na->ifp),
2264 				 na->rx_buf_maxsize);
2265 			return EINVAL;
2266 		} else {
2267 			nm_prinf("info: netmap application on "
2268 				 "%s needs to support "
2269 				 "NS_MOREFRAG "
2270 				 "(MTU=%u,netmap_buf_size=%u)",
2271 				 if_name(na->ifp), mtu, nbs);
2272 		}
2273 	}
2274 	return 0;
2275 }
2276 
2277 /* Handle the offset option, if present in the hdr.
2278  * Returns 0 on success, or an error.
2279  */
2280 static int
netmap_offsets_init(struct netmap_priv_d * priv,struct nmreq_header * hdr)2281 netmap_offsets_init(struct netmap_priv_d *priv, struct nmreq_header *hdr)
2282 {
2283 	struct nmreq_opt_offsets *opt;
2284 	struct netmap_adapter *na = priv->np_na;
2285 	struct netmap_kring *kring;
2286 	uint64_t mask = 0, bits = 0, maxbits = sizeof(uint64_t) * 8,
2287 		 max_offset = 0, initial_offset = 0, min_gap = 0;
2288 	u_int i;
2289 	enum txrx t;
2290 	int error = 0;
2291 
2292 	opt = (struct nmreq_opt_offsets *)
2293 		nmreq_getoption(hdr, NETMAP_REQ_OPT_OFFSETS);
2294 	if (opt == NULL)
2295 		return 0;
2296 
2297 	if (!(na->na_flags & NAF_OFFSETS)) {
2298 		if (netmap_verbose)
2299 			nm_prerr("%s does not support offsets",
2300 				na->name);
2301 		error = EOPNOTSUPP;
2302 		goto out;
2303 	}
2304 
2305 	/* check sanity of the opt values */
2306 	max_offset = opt->nro_max_offset;
2307 	min_gap = opt->nro_min_gap;
2308 	initial_offset = opt->nro_initial_offset;
2309 	bits = opt->nro_offset_bits;
2310 
2311 	if (bits > maxbits) {
2312 		if (netmap_verbose)
2313 			nm_prerr("bits: %llu too large (max %llu)",
2314 				(unsigned long long)bits,
2315 				(unsigned long long)maxbits);
2316 		error = EINVAL;
2317 		goto out;
2318 	}
2319 	/* we take bits == 0 as a request to use the entire field */
2320 	if (bits == 0 || bits == maxbits) {
2321 		/* shifting a type by sizeof(type) is undefined */
2322 		bits = maxbits;
2323 		mask = 0xffffffffffffffff;
2324 	} else {
2325 		mask = (1ULL << bits) - 1;
2326 	}
2327 	if (max_offset > NETMAP_BUF_SIZE(na)) {
2328 		if (netmap_verbose)
2329 			nm_prerr("max offset %llu > buf size %u",
2330 				(unsigned long long)max_offset, NETMAP_BUF_SIZE(na));
2331 		error = EINVAL;
2332 		goto out;
2333 	}
2334 	if ((max_offset & mask) != max_offset) {
2335 		if (netmap_verbose)
2336 			nm_prerr("max offset %llu to large for %llu bits",
2337 				(unsigned long long)max_offset,
2338 				(unsigned long long)bits);
2339 		error = EINVAL;
2340 		goto out;
2341 	}
2342 	if (initial_offset > max_offset) {
2343 		if (netmap_verbose)
2344 			nm_prerr("initial offset %llu > max offset %llu",
2345 				(unsigned long long)initial_offset,
2346 				(unsigned long long)max_offset);
2347 		error = EINVAL;
2348 		goto out;
2349 	}
2350 
2351 	/* initialize the kring and ring fields. */
2352 	foreach_selected_ring(priv, t, i, kring) {
2353 		struct netmap_kring *kring = NMR(na, t)[i];
2354 		struct netmap_ring *ring = kring->ring;
2355 		u_int j;
2356 
2357 		/* it the ring is already in use we check that the
2358 		 * new request is compatible with the existing one
2359 		 */
2360 		if (kring->offset_mask) {
2361 			if ((kring->offset_mask & mask) != mask ||
2362 			     kring->offset_max < max_offset) {
2363 				if (netmap_verbose)
2364 					nm_prinf("%s: cannot increase"
2365 						 "offset mask and/or max"
2366 						 "(current: mask=%llx,max=%llu",
2367 							kring->name,
2368 							(unsigned long long)kring->offset_mask,
2369 							(unsigned long long)kring->offset_max);
2370 				error = EBUSY;
2371 				goto out;
2372 			}
2373 			mask = kring->offset_mask;
2374 			max_offset = kring->offset_max;
2375 		} else {
2376 			kring->offset_mask = mask;
2377 			*(uint64_t *)(uintptr_t)&ring->offset_mask = mask;
2378 			kring->offset_max = max_offset;
2379 			kring->offset_gap = min_gap;
2380 		}
2381 
2382 		/* if there is an initial offset, put it into
2383 		 * all the slots
2384 		 *
2385 		 * Note: we cannot change the offsets if the
2386 		 * ring is already in use.
2387 		 */
2388 		if (!initial_offset || kring->users > 1)
2389 			continue;
2390 
2391 		for (j = 0; j < kring->nkr_num_slots; j++) {
2392 			struct netmap_slot *slot = ring->slot + j;
2393 
2394 			nm_write_offset(kring, slot, initial_offset);
2395 		}
2396 	}
2397 
2398 out:
2399 	opt->nro_opt.nro_status = error;
2400 	if (!error) {
2401 		opt->nro_max_offset = max_offset;
2402 	}
2403 	return error;
2404 
2405 }
2406 
2407 
2408 /* set the hardware buffer length in each one of the newly opened rings
2409  * (hwbuf_len field in the kring struct). The purpose it to select
2410  * the maximum supported input buffer lenght that will not cause writes
2411  * outside of the available space, even when offsets are in use.
2412  */
2413 static int
netmap_compute_buf_len(struct netmap_priv_d * priv)2414 netmap_compute_buf_len(struct netmap_priv_d *priv)
2415 {
2416 	enum txrx t;
2417 	u_int i;
2418 	struct netmap_kring *kring;
2419 	int error = 0;
2420 	unsigned mtu = 0;
2421 	struct netmap_adapter *na = priv->np_na;
2422 	uint64_t target;
2423 
2424 	foreach_selected_ring(priv, t, i, kring) {
2425 		/* rings that are already active have their hwbuf_len
2426 		 * already set and we cannot change it.
2427 		 */
2428 		if (kring->users > 1)
2429 			continue;
2430 
2431 		/* For netmap buffers which are not shared among several ring
2432 		 * slots (the normal case), the available space is the buf size
2433 		 * minus the max offset declared by the user at open time.  If
2434 		 * the user plans to have several slots pointing to different
2435 		 * offsets into the same large buffer, she must also declare a
2436 		 * "minimum gap" between two such consecutive offsets. In this
2437 		 * case the user-declared 'offset_gap' is taken as the
2438 		 * available space and offset_max is ignored.
2439 		 */
2440 
2441 		/* start with the normal case (unshared buffers) */
2442 		target = NETMAP_BUF_SIZE(kring->na) -
2443 			kring->offset_max;
2444 		/* if offset_gap is zero, the user does not intend to use
2445 		 * shared buffers. In this case the minimum gap between
2446 		 * two consective offsets into the same buffer can be
2447 		 * assumed to be equal to the buffer size. In this way
2448 		 * offset_gap always contains the available space ignoring
2449 		 * offset_max. This may be used by drivers of NICs that
2450 		 * are guaranteed to never write more than MTU bytes, even
2451 		 * if the input buffer is larger: if the MTU is less
2452 		 * than the target they can set hwbuf_len to offset_gap.
2453 		 */
2454 		if (!kring->offset_gap)
2455 			kring->offset_gap =
2456 				NETMAP_BUF_SIZE(kring->na);
2457 
2458 		if (kring->offset_gap < target)
2459 			target = kring->offset_gap;
2460 		error = kring->nm_bufcfg(kring, target);
2461 		if (error)
2462 			goto out;
2463 
2464 		*(uint64_t *)(uintptr_t)&kring->ring->buf_align = kring->buf_align;
2465 
2466 		if (mtu && t == NR_RX && kring->hwbuf_len < mtu) {
2467 			if (!(na->na_flags & NAF_MOREFRAG)) {
2468 				nm_prerr("error: large MTU (%d) needed "
2469 					 "but %s does not support "
2470 					 "NS_MOREFRAG", mtu,
2471 					 na->name);
2472 				error = EINVAL;
2473 				goto out;
2474 			} else {
2475 				nm_prinf("info: netmap application on "
2476 					 "%s needs to support "
2477 					 "NS_MOREFRAG "
2478 					 "(MTU=%u,buf_size=%llu)",
2479 					 kring->name, mtu,
2480 					 (unsigned long long)kring->hwbuf_len);
2481 			}
2482 		}
2483 	}
2484 out:
2485 	return error;
2486 }
2487 
2488 /*
2489  * possibly move the interface to netmap-mode.
2490  * If success it returns a pointer to netmap_if, otherwise NULL.
2491  * This must be called with NMG_LOCK held.
2492  *
2493  * The following na callbacks are called in the process:
2494  *
2495  * na->nm_config()			[by netmap_update_config]
2496  * (get current number and size of rings)
2497  *
2498  *  	We have a generic one for linux (netmap_linux_config).
2499  *  	The bwrap has to override this, since it has to forward
2500  *  	the request to the wrapped adapter (netmap_bwrap_config).
2501  *
2502  *
2503  * na->nm_krings_create()
2504  * (create and init the krings array)
2505  *
2506  * 	One of the following:
2507  *
2508  *	* netmap_hw_krings_create, 			(hw ports)
2509  *		creates the standard layout for the krings
2510  * 		and adds the mbq (used for the host rings).
2511  *
2512  * 	* netmap_vp_krings_create			(VALE ports)
2513  * 		add leases and scratchpads
2514  *
2515  * 	* netmap_pipe_krings_create			(pipes)
2516  * 		create the krings and rings of both ends and
2517  * 		cross-link them
2518  *
2519  *      * netmap_monitor_krings_create 			(monitors)
2520  *      	avoid allocating the mbq
2521  *
2522  *      * netmap_bwrap_krings_create			(bwraps)
2523  *      	create both the brap krings array,
2524  *      	the krings array of the wrapped adapter, and
2525  *      	(if needed) the fake array for the host adapter
2526  *
2527  * na->nm_register(, 1)
2528  * (put the adapter in netmap mode)
2529  *
2530  * 	This may be one of the following:
2531  *
2532  * 	* netmap_hw_reg				        (hw ports)
2533  * 		checks that the ifp is still there, then calls
2534  * 		the hardware specific callback;
2535  *
2536  * 	* netmap_vp_reg					(VALE ports)
2537  *		If the port is connected to a bridge,
2538  *		set the NAF_NETMAP_ON flag under the
2539  *		bridge write lock.
2540  *
2541  *	* netmap_pipe_reg				(pipes)
2542  *		inform the other pipe end that it is no
2543  *		longer responsible for the lifetime of this
2544  *		pipe end
2545  *
2546  *	* netmap_monitor_reg				(monitors)
2547  *		intercept the sync callbacks of the monitored
2548  *		rings
2549  *
2550  *	* netmap_bwrap_reg				(bwraps)
2551  *		cross-link the bwrap and hwna rings,
2552  *		forward the request to the hwna, override
2553  *		the hwna notify callback (to get the frames
2554  *		coming from outside go through the bridge).
2555  *
2556  *
2557  */
2558 int
netmap_do_regif(struct netmap_priv_d * priv,struct netmap_adapter * na,struct nmreq_header * hdr)2559 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
2560 	struct nmreq_header *hdr)
2561 {
2562 	struct netmap_if *nifp = NULL;
2563 	int error;
2564 
2565 	NMG_LOCK_ASSERT();
2566 	priv->np_na = na;     /* store the reference */
2567 	error = netmap_mem_finalize(na->nm_mem, na);
2568 	if (error)
2569 		goto err;
2570 
2571 	if (na->active_fds == 0) {
2572 
2573 		/* cache the allocator info in the na */
2574 		error = netmap_mem_get_lut(na->nm_mem, &na->na_lut);
2575 		if (error)
2576 			goto err_drop_mem;
2577 		nm_prdis("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal,
2578 					    na->na_lut.objsize);
2579 
2580 		/* ring configuration may have changed, fetch from the card */
2581 		netmap_update_config(na);
2582 	}
2583 
2584 	/* compute the range of tx and rx rings to monitor */
2585 	error = netmap_set_ringid(priv, hdr);
2586 	if (error)
2587 		goto err_put_lut;
2588 
2589 	if (na->active_fds == 0) {
2590 		/*
2591 		 * If this is the first registration of the adapter,
2592 		 * perform sanity checks and create the in-kernel view
2593 		 * of the netmap rings (the netmap krings).
2594 		 */
2595 		if (na->ifp && nm_priv_rx_enabled(priv)) {
2596 			/* This netmap adapter is attached to an ifnet. */
2597 			unsigned mtu = nm_os_ifnet_mtu(na->ifp);
2598 
2599 			nm_prdis("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d",
2600 				na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na));
2601 
2602 			if (na->rx_buf_maxsize == 0) {
2603 				nm_prerr("%s: error: rx_buf_maxsize == 0", na->name);
2604 				error = EIO;
2605 				goto err_drop_mem;
2606 			}
2607 
2608 			error = netmap_buf_size_validate(na, mtu);
2609 			if (error)
2610 				goto err_drop_mem;
2611 		}
2612 
2613 		/*
2614 		 * Depending on the adapter, this may also create
2615 		 * the netmap rings themselves
2616 		 */
2617 		error = na->nm_krings_create(na);
2618 		if (error)
2619 			goto err_put_lut;
2620 
2621 	}
2622 
2623 	/* now the krings must exist and we can check whether some
2624 	 * previous bind has exclusive ownership on them, and set
2625 	 * nr_pending_mode
2626 	 */
2627 	error = netmap_krings_get(priv);
2628 	if (error)
2629 		goto err_del_krings;
2630 
2631 	/* create all needed missing netmap rings */
2632 	error = netmap_mem_rings_create(na);
2633 	if (error)
2634 		goto err_rel_excl;
2635 
2636 	/* initialize offsets if requested */
2637 	error = netmap_offsets_init(priv, hdr);
2638 	if (error)
2639 		goto err_rel_excl;
2640 
2641 	/* compute and validate the buf lengths */
2642 	error = netmap_compute_buf_len(priv);
2643 	if (error)
2644 		goto err_rel_excl;
2645 
2646 	/* in all cases, create a new netmap if */
2647 	nifp = netmap_mem_if_new(na, priv);
2648 	if (nifp == NULL) {
2649 		error = ENOMEM;
2650 		goto err_rel_excl;
2651 	}
2652 
2653 	if (nm_kring_pending(priv)) {
2654 		/* Some kring is switching mode, tell the adapter to
2655 		 * react on this. */
2656 		netmap_set_all_rings(na, NM_KR_LOCKED);
2657 		error = na->nm_register(na, 1);
2658 		netmap_set_all_rings(na, 0);
2659 		if (error)
2660 			goto err_del_if;
2661 	}
2662 
2663 	/* Commit the reference. */
2664 	na->active_fds++;
2665 
2666 	/*
2667 	 * advertise that the interface is ready by setting np_nifp.
2668 	 * The barrier is needed because readers (poll, *SYNC and mmap)
2669 	 * check for priv->np_nifp != NULL without locking
2670 	 */
2671 	mb(); /* make sure previous writes are visible to all CPUs */
2672 	priv->np_nifp = nifp;
2673 
2674 	return 0;
2675 
2676 err_del_if:
2677 	netmap_mem_if_delete(na, nifp);
2678 err_rel_excl:
2679 	netmap_krings_put(priv);
2680 	netmap_mem_rings_delete(na);
2681 err_del_krings:
2682 	if (na->active_fds == 0)
2683 		na->nm_krings_delete(na);
2684 err_put_lut:
2685 	if (na->active_fds == 0)
2686 		memset(&na->na_lut, 0, sizeof(na->na_lut));
2687 err_drop_mem:
2688 	netmap_mem_drop(na);
2689 err:
2690 	priv->np_na = NULL;
2691 	return error;
2692 }
2693 
2694 
2695 /*
2696  * update kring and ring at the end of rxsync/txsync.
2697  */
2698 static inline void
nm_sync_finalize(struct netmap_kring * kring)2699 nm_sync_finalize(struct netmap_kring *kring)
2700 {
2701 	/*
2702 	 * Update ring tail to what the kernel knows
2703 	 * After txsync: head/rhead/hwcur might be behind cur/rcur
2704 	 * if no carrier.
2705 	 */
2706 	kring->ring->tail = kring->rtail = kring->nr_hwtail;
2707 
2708 	nm_prdis(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d",
2709 		kring->name, kring->nr_hwcur, kring->nr_hwtail,
2710 		kring->rhead, kring->rcur, kring->rtail);
2711 }
2712 
2713 /* set ring timestamp */
2714 static inline void
ring_timestamp_set(struct netmap_ring * ring)2715 ring_timestamp_set(struct netmap_ring *ring)
2716 {
2717 	if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) {
2718 		microtime(&ring->ts);
2719 	}
2720 }
2721 
2722 static int nmreq_copyin(struct nmreq_header *, int);
2723 static int nmreq_copyout(struct nmreq_header *, int);
2724 static int nmreq_checkoptions(struct nmreq_header *);
2725 
2726 /*
2727  * ioctl(2) support for the "netmap" device.
2728  *
2729  * Following a list of accepted commands:
2730  * - NIOCCTRL		device control API
2731  * - NIOCTXSYNC		sync TX rings
2732  * - NIOCRXSYNC		sync RX rings
2733  * - SIOCGIFADDR	just for convenience
2734  * - NIOCGINFO		deprecated (legacy API)
2735  * - NIOCREGIF		deprecated (legacy API)
2736  *
2737  * Return 0 on success, errno otherwise.
2738  */
2739 int
netmap_ioctl(struct netmap_priv_d * priv,u_long cmd,caddr_t data,struct thread * td,int nr_body_is_user)2740 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data,
2741 		struct thread *td, int nr_body_is_user)
2742 {
2743 	struct mbq q;	/* packets from RX hw queues to host stack */
2744 	struct netmap_adapter *na = NULL;
2745 	struct netmap_mem_d *nmd = NULL;
2746 	if_t ifp = NULL;
2747 	int error = 0;
2748 	u_int i, qfirst, qlast;
2749 	struct netmap_kring **krings;
2750 	int sync_flags;
2751 	enum txrx t;
2752 
2753 	switch (cmd) {
2754 	case NIOCCTRL: {
2755 		struct nmreq_header *hdr = (struct nmreq_header *)data;
2756 
2757 		if (hdr->nr_version < NETMAP_MIN_API ||
2758 		    hdr->nr_version > NETMAP_MAX_API) {
2759 			nm_prerr("API mismatch: got %d need %d",
2760 				hdr->nr_version, NETMAP_API);
2761 			return EINVAL;
2762 		}
2763 
2764 		/* Make a kernel-space copy of the user-space nr_body.
2765 		 * For convenience, the nr_body pointer and the pointers
2766 		 * in the options list will be replaced with their
2767 		 * kernel-space counterparts. The original pointers are
2768 		 * saved internally and later restored by nmreq_copyout
2769 		 */
2770 		error = nmreq_copyin(hdr, nr_body_is_user);
2771 		if (error) {
2772 			return error;
2773 		}
2774 
2775 		/* Sanitize hdr->nr_name. */
2776 		hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0';
2777 
2778 		switch (hdr->nr_reqtype) {
2779 		case NETMAP_REQ_REGISTER: {
2780 			struct nmreq_register *req =
2781 				(struct nmreq_register *)(uintptr_t)hdr->nr_body;
2782 			struct netmap_if *nifp;
2783 
2784 			/* Protect access to priv from concurrent requests. */
2785 			NMG_LOCK();
2786 			do {
2787 				struct nmreq_option *opt;
2788 				u_int memflags;
2789 
2790 				if (priv->np_nifp != NULL) {	/* thread already registered */
2791 					error = EBUSY;
2792 					break;
2793 				}
2794 
2795 #ifdef WITH_EXTMEM
2796 				opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_EXTMEM);
2797 				if (opt != NULL) {
2798 					struct nmreq_opt_extmem *e =
2799 						(struct nmreq_opt_extmem *)opt;
2800 
2801 					nmd = netmap_mem_ext_create(e->nro_usrptr,
2802 							&e->nro_info, &error);
2803 					opt->nro_status = error;
2804 					if (nmd == NULL)
2805 						break;
2806 				}
2807 #endif /* WITH_EXTMEM */
2808 
2809 				if (nmd == NULL && req->nr_mem_id) {
2810 					/* find the allocator and get a reference */
2811 					nmd = netmap_mem_find(req->nr_mem_id);
2812 					if (nmd == NULL) {
2813 						if (netmap_verbose) {
2814 							nm_prerr("%s: failed to find mem_id %u",
2815 									hdr->nr_name, req->nr_mem_id);
2816 						}
2817 						error = EINVAL;
2818 						break;
2819 					}
2820 				}
2821 				/* find the interface and a reference */
2822 				error = netmap_get_na(hdr, &na, &ifp, nmd,
2823 						      1 /* create */); /* keep reference */
2824 				if (error)
2825 					break;
2826 				if (NETMAP_OWNED_BY_KERN(na)) {
2827 					error = EBUSY;
2828 					break;
2829 				}
2830 
2831 				if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) {
2832 					nm_prerr("virt_hdr_len=%d, but application does "
2833 						"not accept it", na->virt_hdr_len);
2834 					error = EIO;
2835 					break;
2836 				}
2837 
2838 				error = netmap_do_regif(priv, na, hdr);
2839 				if (error) {    /* reg. failed, release priv and ref */
2840 					break;
2841 				}
2842 
2843 				opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB);
2844 				if (opt != NULL) {
2845 					struct nmreq_opt_csb *csbo =
2846 						(struct nmreq_opt_csb *)opt;
2847 					error = netmap_csb_validate(priv, csbo);
2848 					opt->nro_status = error;
2849 					if (error) {
2850 						netmap_do_unregif(priv);
2851 						break;
2852 					}
2853 				}
2854 
2855 				nifp = priv->np_nifp;
2856 
2857 				/* return the offset of the netmap_if object */
2858 				req->nr_rx_rings = na->num_rx_rings;
2859 				req->nr_tx_rings = na->num_tx_rings;
2860 				req->nr_rx_slots = na->num_rx_desc;
2861 				req->nr_tx_slots = na->num_tx_desc;
2862 				req->nr_host_tx_rings = na->num_host_tx_rings;
2863 				req->nr_host_rx_rings = na->num_host_rx_rings;
2864 				error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags,
2865 					&req->nr_mem_id);
2866 				if (error) {
2867 					netmap_do_unregif(priv);
2868 					break;
2869 				}
2870 				if (memflags & NETMAP_MEM_PRIVATE) {
2871 					*(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM;
2872 				}
2873 				for_rx_tx(t) {
2874 					priv->np_si[t] = nm_si_user(priv, t) ?
2875 						&na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si;
2876 				}
2877 
2878 				if (req->nr_extra_bufs) {
2879 					if (netmap_verbose)
2880 						nm_prinf("requested %d extra buffers",
2881 							req->nr_extra_bufs);
2882 					req->nr_extra_bufs = netmap_extra_alloc(na,
2883 						&nifp->ni_bufs_head, req->nr_extra_bufs);
2884 					if (netmap_verbose)
2885 						nm_prinf("got %d extra buffers", req->nr_extra_bufs);
2886 				} else {
2887 					nifp->ni_bufs_head = 0;
2888 				}
2889 				req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp);
2890 
2891 				error = nmreq_checkoptions(hdr);
2892 				if (error) {
2893 					netmap_do_unregif(priv);
2894 					break;
2895 				}
2896 
2897 				/* store ifp reference so that priv destructor may release it */
2898 				priv->np_ifp = ifp;
2899 			} while (0);
2900 			if (error) {
2901 				netmap_unget_na(na, ifp);
2902 			}
2903 			/* release the reference from netmap_mem_find() or
2904 			 * netmap_mem_ext_create()
2905 			 */
2906 			if (nmd)
2907 				netmap_mem_put(nmd);
2908 			NMG_UNLOCK();
2909 			break;
2910 		}
2911 
2912 		case NETMAP_REQ_PORT_INFO_GET: {
2913 			struct nmreq_port_info_get *req =
2914 				(struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body;
2915 			int nmd_ref = 0;
2916 
2917 			NMG_LOCK();
2918 			do {
2919 				u_int memflags;
2920 
2921 				if (hdr->nr_name[0] != '\0') {
2922 					/* Build a nmreq_register out of the nmreq_port_info_get,
2923 					 * so that we can call netmap_get_na(). */
2924 					struct nmreq_register regreq;
2925 					bzero(&regreq, sizeof(regreq));
2926 					regreq.nr_mode = NR_REG_ALL_NIC;
2927 					regreq.nr_tx_slots = req->nr_tx_slots;
2928 					regreq.nr_rx_slots = req->nr_rx_slots;
2929 					regreq.nr_tx_rings = req->nr_tx_rings;
2930 					regreq.nr_rx_rings = req->nr_rx_rings;
2931 					regreq.nr_host_tx_rings = req->nr_host_tx_rings;
2932 					regreq.nr_host_rx_rings = req->nr_host_rx_rings;
2933 					regreq.nr_mem_id = req->nr_mem_id;
2934 
2935 					/* get a refcount */
2936 					hdr->nr_reqtype = NETMAP_REQ_REGISTER;
2937 					hdr->nr_body = (uintptr_t)&regreq;
2938 					error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
2939 					hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */
2940 					hdr->nr_body = (uintptr_t)req; /* reset nr_body */
2941 					if (error) {
2942 						na = NULL;
2943 						ifp = NULL;
2944 						break;
2945 					}
2946 					nmd = na->nm_mem; /* get memory allocator */
2947 				} else {
2948 					nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1);
2949 					if (nmd == NULL) {
2950 						if (netmap_verbose)
2951 							nm_prerr("%s: failed to find mem_id %u",
2952 									hdr->nr_name,
2953 									req->nr_mem_id ? req->nr_mem_id : 1);
2954 						error = EINVAL;
2955 						break;
2956 					}
2957 					nmd_ref = 1;
2958 				}
2959 
2960 				error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags,
2961 					&req->nr_mem_id);
2962 				if (error)
2963 					break;
2964 				if (na == NULL) /* only memory info */
2965 					break;
2966 				netmap_update_config(na);
2967 				req->nr_rx_rings = na->num_rx_rings;
2968 				req->nr_tx_rings = na->num_tx_rings;
2969 				req->nr_rx_slots = na->num_rx_desc;
2970 				req->nr_tx_slots = na->num_tx_desc;
2971 				req->nr_host_tx_rings = na->num_host_tx_rings;
2972 				req->nr_host_rx_rings = na->num_host_rx_rings;
2973 			} while (0);
2974 			netmap_unget_na(na, ifp);
2975 			if (nmd_ref)
2976 				netmap_mem_put(nmd);
2977 			NMG_UNLOCK();
2978 			break;
2979 		}
2980 #ifdef WITH_VALE
2981 		case NETMAP_REQ_VALE_ATTACH: {
2982 			error = netmap_bdg_attach(hdr, NULL /* userspace request */);
2983 			break;
2984 		}
2985 
2986 		case NETMAP_REQ_VALE_DETACH: {
2987 			error = netmap_bdg_detach(hdr, NULL /* userspace request */);
2988 			break;
2989 		}
2990 
2991 		case NETMAP_REQ_PORT_HDR_SET: {
2992 			struct nmreq_port_hdr *req =
2993 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
2994 			/* Build a nmreq_register out of the nmreq_port_hdr,
2995 			 * so that we can call netmap_get_bdg_na(). */
2996 			struct nmreq_register regreq;
2997 			bzero(&regreq, sizeof(regreq));
2998 			regreq.nr_mode = NR_REG_ALL_NIC;
2999 
3000 			/* For now we only support virtio-net headers, and only for
3001 			 * VALE ports, but this may change in future. Valid lengths
3002 			 * for the virtio-net header are 0 (no header), 10 and 12. */
3003 			if (req->nr_hdr_len != 0 &&
3004 				req->nr_hdr_len != sizeof(struct nm_vnet_hdr) &&
3005 					req->nr_hdr_len != 12) {
3006 				if (netmap_verbose)
3007 					nm_prerr("invalid hdr_len %u", req->nr_hdr_len);
3008 				error = EINVAL;
3009 				break;
3010 			}
3011 			NMG_LOCK();
3012 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
3013 			hdr->nr_body = (uintptr_t)&regreq;
3014 			error = netmap_get_vale_na(hdr, &na, NULL, 0);
3015 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET;
3016 			hdr->nr_body = (uintptr_t)req;
3017 			if (na && !error) {
3018 				struct netmap_vp_adapter *vpna =
3019 					(struct netmap_vp_adapter *)na;
3020 				na->virt_hdr_len = req->nr_hdr_len;
3021 				if (na->virt_hdr_len) {
3022 					vpna->mfs = NETMAP_BUF_SIZE(na);
3023 				}
3024 				if (netmap_verbose)
3025 					nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na);
3026 				netmap_adapter_put(na);
3027 			} else if (!na) {
3028 				error = ENXIO;
3029 			}
3030 			NMG_UNLOCK();
3031 			break;
3032 		}
3033 
3034 		case NETMAP_REQ_PORT_HDR_GET: {
3035 			/* Get vnet-header length for this netmap port */
3036 			struct nmreq_port_hdr *req =
3037 				(struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body;
3038 			/* Build a nmreq_register out of the nmreq_port_hdr,
3039 			 * so that we can call netmap_get_bdg_na(). */
3040 			struct nmreq_register regreq;
3041 			if_t ifp;
3042 
3043 			bzero(&regreq, sizeof(regreq));
3044 			regreq.nr_mode = NR_REG_ALL_NIC;
3045 			NMG_LOCK();
3046 			hdr->nr_reqtype = NETMAP_REQ_REGISTER;
3047 			hdr->nr_body = (uintptr_t)&regreq;
3048 			error = netmap_get_na(hdr, &na, &ifp, NULL, 0);
3049 			hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET;
3050 			hdr->nr_body = (uintptr_t)req;
3051 			if (na && !error) {
3052 				req->nr_hdr_len = na->virt_hdr_len;
3053 			}
3054 			netmap_unget_na(na, ifp);
3055 			NMG_UNLOCK();
3056 			break;
3057 		}
3058 
3059 		case NETMAP_REQ_VALE_LIST: {
3060 			error = netmap_vale_list(hdr);
3061 			break;
3062 		}
3063 
3064 		case NETMAP_REQ_VALE_NEWIF: {
3065 			error = nm_vi_create(hdr);
3066 			break;
3067 		}
3068 
3069 		case NETMAP_REQ_VALE_DELIF: {
3070 			error = nm_vi_destroy(hdr->nr_name);
3071 			break;
3072 		}
3073 #endif  /* WITH_VALE */
3074 
3075 		case NETMAP_REQ_VALE_POLLING_ENABLE:
3076 		case NETMAP_REQ_VALE_POLLING_DISABLE: {
3077 			error = nm_bdg_polling(hdr);
3078 			break;
3079 		}
3080 		case NETMAP_REQ_POOLS_INFO_GET: {
3081 			/* Get information from the memory allocator used for
3082 			 * hdr->nr_name. */
3083 			struct nmreq_pools_info *req =
3084 				(struct nmreq_pools_info *)(uintptr_t)hdr->nr_body;
3085 			NMG_LOCK();
3086 			do {
3087 				/* Build a nmreq_register out of the nmreq_pools_info,
3088 				 * so that we can call netmap_get_na(). */
3089 				struct nmreq_register regreq;
3090 				bzero(&regreq, sizeof(regreq));
3091 				regreq.nr_mem_id = req->nr_mem_id;
3092 				regreq.nr_mode = NR_REG_ALL_NIC;
3093 
3094 				hdr->nr_reqtype = NETMAP_REQ_REGISTER;
3095 				hdr->nr_body = (uintptr_t)&regreq;
3096 				error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */);
3097 				hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */
3098 				hdr->nr_body = (uintptr_t)req; /* reset nr_body */
3099 				if (error) {
3100 					na = NULL;
3101 					ifp = NULL;
3102 					break;
3103 				}
3104 				nmd = na->nm_mem; /* grab the memory allocator */
3105 				if (nmd == NULL) {
3106 					error = EINVAL;
3107 					break;
3108 				}
3109 
3110 				/* Finalize the memory allocator, get the pools
3111 				 * information and release the allocator. */
3112 				error = netmap_mem_finalize(nmd, na);
3113 				if (error) {
3114 					break;
3115 				}
3116 				error = netmap_mem_pools_info_get(req, nmd);
3117 				netmap_mem_drop(na);
3118 			} while (0);
3119 			netmap_unget_na(na, ifp);
3120 			NMG_UNLOCK();
3121 			break;
3122 		}
3123 
3124 		case NETMAP_REQ_CSB_ENABLE: {
3125 			struct nmreq_option *opt;
3126 
3127 			opt = nmreq_getoption(hdr, NETMAP_REQ_OPT_CSB);
3128 			if (opt == NULL) {
3129 				error = EINVAL;
3130 			} else {
3131 				struct nmreq_opt_csb *csbo =
3132 					(struct nmreq_opt_csb *)opt;
3133 				NMG_LOCK();
3134 				error = netmap_csb_validate(priv, csbo);
3135 				NMG_UNLOCK();
3136 				opt->nro_status = error;
3137 			}
3138 			break;
3139 		}
3140 
3141 		case NETMAP_REQ_SYNC_KLOOP_START: {
3142 			error = netmap_sync_kloop(priv, hdr);
3143 			break;
3144 		}
3145 
3146 		case NETMAP_REQ_SYNC_KLOOP_STOP: {
3147 			error = netmap_sync_kloop_stop(priv);
3148 			break;
3149 		}
3150 
3151 		default: {
3152 			error = EINVAL;
3153 			break;
3154 		}
3155 		}
3156 		/* Write back request body to userspace and reset the
3157 		 * user-space pointer. */
3158 		error = nmreq_copyout(hdr, error);
3159 		break;
3160 	}
3161 
3162 	case NIOCTXSYNC:
3163 	case NIOCRXSYNC: {
3164 		if (unlikely(priv->np_nifp == NULL)) {
3165 			error = ENXIO;
3166 			break;
3167 		}
3168 		mb(); /* make sure following reads are not from cache */
3169 
3170 		if (unlikely(priv->np_csb_atok_base)) {
3171 			nm_prerr("Invalid sync in CSB mode");
3172 			error = EBUSY;
3173 			break;
3174 		}
3175 
3176 		na = priv->np_na;      /* we have a reference */
3177 
3178 		mbq_init(&q);
3179 		t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX);
3180 		krings = NMR(na, t);
3181 		qfirst = priv->np_qfirst[t];
3182 		qlast = priv->np_qlast[t];
3183 		sync_flags = priv->np_sync_flags;
3184 
3185 		for (i = qfirst; i < qlast; i++) {
3186 			struct netmap_kring *kring = krings[i];
3187 			struct netmap_ring *ring = kring->ring;
3188 
3189 			if (unlikely(nm_kr_tryget(kring, 1, &error))) {
3190 				error = (error ? EIO : 0);
3191 				continue;
3192 			}
3193 
3194 			if (cmd == NIOCTXSYNC) {
3195 				if (netmap_debug & NM_DEBUG_TXSYNC)
3196 					nm_prinf("pre txsync ring %d cur %d hwcur %d",
3197 					    i, ring->cur,
3198 					    kring->nr_hwcur);
3199 				if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3200 					netmap_ring_reinit(kring);
3201 				} else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) {
3202 					nm_sync_finalize(kring);
3203 				}
3204 				if (netmap_debug & NM_DEBUG_TXSYNC)
3205 					nm_prinf("post txsync ring %d cur %d hwcur %d",
3206 					    i, ring->cur,
3207 					    kring->nr_hwcur);
3208 			} else {
3209 				if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3210 					netmap_ring_reinit(kring);
3211 				}
3212 				if (nm_may_forward_up(kring)) {
3213 					/* transparent forwarding, see netmap_poll() */
3214 					netmap_grab_packets(kring, &q, netmap_fwd);
3215 				}
3216 				if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) {
3217 					nm_sync_finalize(kring);
3218 				}
3219 				ring_timestamp_set(ring);
3220 			}
3221 			nm_kr_put(kring);
3222 		}
3223 
3224 		if (mbq_peek(&q)) {
3225 			netmap_send_up(na->ifp, &q);
3226 		}
3227 
3228 		break;
3229 	}
3230 
3231 	default: {
3232 		return netmap_ioctl_legacy(priv, cmd, data, td);
3233 		break;
3234 	}
3235 	}
3236 
3237 	return (error);
3238 }
3239 
3240 size_t
nmreq_size_by_type(uint16_t nr_reqtype)3241 nmreq_size_by_type(uint16_t nr_reqtype)
3242 {
3243 	switch (nr_reqtype) {
3244 	case NETMAP_REQ_REGISTER:
3245 		return sizeof(struct nmreq_register);
3246 	case NETMAP_REQ_PORT_INFO_GET:
3247 		return sizeof(struct nmreq_port_info_get);
3248 	case NETMAP_REQ_VALE_ATTACH:
3249 		return sizeof(struct nmreq_vale_attach);
3250 	case NETMAP_REQ_VALE_DETACH:
3251 		return sizeof(struct nmreq_vale_detach);
3252 	case NETMAP_REQ_VALE_LIST:
3253 		return sizeof(struct nmreq_vale_list);
3254 	case NETMAP_REQ_PORT_HDR_SET:
3255 	case NETMAP_REQ_PORT_HDR_GET:
3256 		return sizeof(struct nmreq_port_hdr);
3257 	case NETMAP_REQ_VALE_NEWIF:
3258 		return sizeof(struct nmreq_vale_newif);
3259 	case NETMAP_REQ_VALE_DELIF:
3260 	case NETMAP_REQ_SYNC_KLOOP_STOP:
3261 	case NETMAP_REQ_CSB_ENABLE:
3262 		return 0;
3263 	case NETMAP_REQ_VALE_POLLING_ENABLE:
3264 	case NETMAP_REQ_VALE_POLLING_DISABLE:
3265 		return sizeof(struct nmreq_vale_polling);
3266 	case NETMAP_REQ_POOLS_INFO_GET:
3267 		return sizeof(struct nmreq_pools_info);
3268 	case NETMAP_REQ_SYNC_KLOOP_START:
3269 		return sizeof(struct nmreq_sync_kloop_start);
3270 	}
3271 	return 0;
3272 }
3273 
3274 static size_t
nmreq_opt_size_by_type(uint32_t nro_reqtype,uint64_t nro_size)3275 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size)
3276 {
3277 	size_t rv = sizeof(struct nmreq_option);
3278 #ifdef NETMAP_REQ_OPT_DEBUG
3279 	if (nro_reqtype & NETMAP_REQ_OPT_DEBUG)
3280 		return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG);
3281 #endif /* NETMAP_REQ_OPT_DEBUG */
3282 	switch (nro_reqtype) {
3283 #ifdef WITH_EXTMEM
3284 	case NETMAP_REQ_OPT_EXTMEM:
3285 		rv = sizeof(struct nmreq_opt_extmem);
3286 		break;
3287 #endif /* WITH_EXTMEM */
3288 	case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS:
3289 		if (nro_size >= rv)
3290 			rv = nro_size;
3291 		break;
3292 	case NETMAP_REQ_OPT_CSB:
3293 		rv = sizeof(struct nmreq_opt_csb);
3294 		break;
3295 	case NETMAP_REQ_OPT_SYNC_KLOOP_MODE:
3296 		rv = sizeof(struct nmreq_opt_sync_kloop_mode);
3297 		break;
3298 	case NETMAP_REQ_OPT_OFFSETS:
3299 		rv = sizeof(struct nmreq_opt_offsets);
3300 		break;
3301 	}
3302 	/* subtract the common header */
3303 	return rv - sizeof(struct nmreq_option);
3304 }
3305 
3306 /*
3307  * nmreq_copyin: create an in-kernel version of the request.
3308  *
3309  * We build the following data structure:
3310  *
3311  * hdr -> +-------+                buf
3312  *        |       |          +---------------+
3313  *        +-------+          |usr body ptr   |
3314  *        |options|-.        +---------------+
3315  *        +-------+ |        |usr options ptr|
3316  *        |body   |--------->+---------------+
3317  *        +-------+ |        |               |
3318  *                  |        |  copy of body |
3319  *                  |        |               |
3320  *                  |        +---------------+
3321  *                  |        |    NULL       |
3322  *                  |        +---------------+
3323  *                  |    .---|               |\
3324  *                  |    |   +---------------+ |
3325  *                  | .------|               | |
3326  *                  | |  |   +---------------+  \ option table
3327  *                  | |  |   |      ...      |  / indexed by option
3328  *                  | |  |   +---------------+ |  type
3329  *                  | |  |   |               | |
3330  *                  | |  |   +---------------+/
3331  *                  | |  |   |usr next ptr 1 |
3332  *                  `-|----->+---------------+
3333  *                    |  |   | copy of opt 1 |
3334  *                    |  |   |               |
3335  *                    |  | .-| nro_next      |
3336  *                    |  | | +---------------+
3337  *                    |  | | |usr next ptr 2 |
3338  *                    |  `-`>+---------------+
3339  *                    |      | copy of opt 2 |
3340  *                    |      |               |
3341  *                    |    .-| nro_next      |
3342  *                    |    | +---------------+
3343  *                    |    | |               |
3344  *                    ~    ~ ~      ...      ~
3345  *                    |    .-|               |
3346  *                    `----->+---------------+
3347  *                         | |usr next ptr n |
3348  *                         `>+---------------+
3349  *                           | copy of opt n |
3350  *                           |               |
3351  *                           | nro_next(NULL)|
3352  *                           +---------------+
3353  *
3354  * The options and body fields of the hdr structure are overwritten
3355  * with in-kernel valid pointers inside the buf. The original user
3356  * pointers are saved in the buf and restored on copyout.
3357  * The list of options is copied and the pointers adjusted. The
3358  * original pointers are saved before the option they belonged.
3359  *
3360  * The option table has an entry for every available option.  Entries
3361  * for options that have not been passed contain NULL.
3362  *
3363  */
3364 
3365 int
nmreq_copyin(struct nmreq_header * hdr,int nr_body_is_user)3366 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user)
3367 {
3368 	size_t rqsz, optsz, bufsz;
3369 	int error = 0;
3370 	char *ker = NULL, *p;
3371 	struct nmreq_option **next, *src, **opt_tab, *opt;
3372 	uint64_t *ptrs;
3373 
3374 	if (hdr->nr_reserved) {
3375 		if (netmap_verbose)
3376 			nm_prerr("nr_reserved must be zero");
3377 		return EINVAL;
3378 	}
3379 
3380 	if (!nr_body_is_user)
3381 		return 0;
3382 
3383 	hdr->nr_reserved = nr_body_is_user;
3384 
3385 	/* compute the total size of the buffer */
3386 	rqsz = nmreq_size_by_type(hdr->nr_reqtype);
3387 	if (rqsz > NETMAP_REQ_MAXSIZE) {
3388 		error = EMSGSIZE;
3389 		goto out_err;
3390 	}
3391 	if ((rqsz && hdr->nr_body == (uintptr_t)NULL) ||
3392 		(!rqsz && hdr->nr_body != (uintptr_t)NULL)) {
3393 		/* Request body expected, but not found; or
3394 		 * request body found but unexpected. */
3395 		if (netmap_verbose)
3396 			nm_prerr("nr_body expected but not found, or vice versa");
3397 		error = EINVAL;
3398 		goto out_err;
3399 	}
3400 
3401 	/*
3402 	 * The buffer size must be large enough to store the request body,
3403 	 * all the possible options and the additional user pointers
3404 	 * (2+NETMAP_REQ_OPT_MAX). Note that the maximum size of body plus
3405 	 * options can not exceed NETMAP_REQ_MAXSIZE;
3406 	 */
3407 	bufsz = (2 + NETMAP_REQ_OPT_MAX) * sizeof(void *) + NETMAP_REQ_MAXSIZE +
3408 		NETMAP_REQ_OPT_MAX * sizeof(opt_tab);
3409 
3410 	ker = nm_os_malloc(bufsz);
3411 	if (ker == NULL) {
3412 		error = ENOMEM;
3413 		goto out_err;
3414 	}
3415 	p = ker;	/* write pointer into the buffer */
3416 
3417 	/* make a copy of the user pointers */
3418 	ptrs = (uint64_t*)p;
3419 	*ptrs++ = hdr->nr_body;
3420 	*ptrs++ = hdr->nr_options;
3421 	p = (char *)ptrs;
3422 	/* overwrite the user pointer with the in-kernel one */
3423 	hdr->nr_body = (uintptr_t)p;
3424 	/* prepare the options-list pointers and temporarily terminate
3425 	 * the in-kernel list, in case we have to jump to out_restore
3426 	 */
3427 	next = (struct nmreq_option **)&hdr->nr_options;
3428 	src = *next;
3429 	hdr->nr_options = 0;
3430 
3431 	/* copy the body */
3432 	error = copyin(*(void **)ker, p, rqsz);
3433 	if (error)
3434 		goto out_restore;
3435 	p += rqsz;
3436 	/* start of the options table */
3437 	opt_tab = (struct nmreq_option **)p;
3438 	p += sizeof(opt_tab) * NETMAP_REQ_OPT_MAX;
3439 
3440 	/* copy the options */
3441 	while (src) {
3442 		struct nmreq_option *nsrc;
3443 
3444 		if (p - ker + sizeof(uint64_t*) + sizeof(*src) > bufsz) {
3445 			error = EMSGSIZE;
3446 			/* there might be a loop in the list: don't try to
3447 			 * copyout the options
3448 			 */
3449 			hdr->nr_options = 0;
3450 			goto out_restore;
3451 		}
3452 		/* copy the option header */
3453 		ptrs = (uint64_t *)p;
3454 		opt = (struct nmreq_option *)(ptrs + 1);
3455 		error = copyin(src, opt, sizeof(*src));
3456 		if (error)
3457 			goto out_restore;
3458 		rqsz += sizeof(*src);
3459 		p = (char *)(opt + 1);
3460 
3461 		/* make a copy of the user next pointer */
3462 		*ptrs = opt->nro_next;
3463 		/* append the option to the in-kernel list */
3464 		*next = opt;
3465 		/* temporarily teminate the in-kernel list, in case we have to
3466 		 * jump to out_restore
3467 		 */
3468 		nsrc = (struct nmreq_option *)opt->nro_next;
3469 		opt->nro_next = 0;
3470 
3471 		opt->nro_status = 0;
3472 
3473 		/* check for invalid types */
3474 		if (opt->nro_reqtype < 1) {
3475 			if (netmap_verbose)
3476 				nm_prinf("invalid option type: %u", opt->nro_reqtype);
3477 			opt->nro_status = EINVAL;
3478 			error = EINVAL;
3479 			goto out_restore;
3480 		}
3481 
3482 		if (opt->nro_reqtype >= NETMAP_REQ_OPT_MAX) {
3483 			/* opt->nro_status will be set to EOPNOTSUPP */
3484 			goto next;
3485 		}
3486 
3487 		/* if the type is valid, index the option in the table
3488 		 * unless it is a duplicate.
3489 		 */
3490 		if (opt_tab[opt->nro_reqtype] != NULL) {
3491 			if (netmap_verbose)
3492 				nm_prinf("duplicate option: %u", opt->nro_reqtype);
3493 			opt->nro_status = EINVAL;
3494 			opt_tab[opt->nro_reqtype]->nro_status = EINVAL;
3495 			error = EINVAL;
3496 			goto out_restore;
3497 		}
3498 		opt_tab[opt->nro_reqtype] = opt;
3499 
3500 		/* copy the option body */
3501 		optsz = nmreq_opt_size_by_type(opt->nro_reqtype,
3502 						opt->nro_size);
3503 		/* check optsz and nro_size to avoid for possible integer overflows of rqsz */
3504 		if ((optsz > NETMAP_REQ_MAXSIZE) || (opt->nro_size > NETMAP_REQ_MAXSIZE)
3505 				|| (rqsz + optsz > NETMAP_REQ_MAXSIZE)
3506 				|| (optsz > 0 && rqsz + optsz <= rqsz)) {
3507 			error = EMSGSIZE;
3508 			goto out_restore;
3509 		}
3510 		rqsz += optsz;
3511 		if (optsz) {
3512 			/* the option body follows the option header */
3513 			error = copyin(src + 1, p, optsz);
3514 			if (error)
3515 				goto out_restore;
3516 			p += optsz;
3517 		}
3518 
3519 	next:
3520 		/* move to next option */
3521 		next = (struct nmreq_option **)&opt->nro_next;
3522 		src = nsrc;
3523 	}
3524 
3525 	/* initialize all the options as not supported.  Recognized options
3526 	 * will update their field.
3527 	 */
3528 	for (src = (struct nmreq_option *)hdr->nr_options; src;
3529 			src = (struct nmreq_option *)src->nro_next) {
3530 		src->nro_status = EOPNOTSUPP;
3531 	}
3532 	return 0;
3533 
3534 out_restore:
3535 	nmreq_copyout(hdr, error);
3536 out_err:
3537 	return error;
3538 }
3539 
3540 static int
nmreq_copyout(struct nmreq_header * hdr,int rerror)3541 nmreq_copyout(struct nmreq_header *hdr, int rerror)
3542 {
3543 	struct nmreq_option *src, *dst;
3544 	void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart;
3545 	uint64_t *ptrs;
3546 	size_t bodysz;
3547 	int error;
3548 
3549 	if (!hdr->nr_reserved)
3550 		return rerror;
3551 
3552 	/* restore the user pointers in the header */
3553 	ptrs = (uint64_t *)ker - 2;
3554 	bufstart = ptrs;
3555 	hdr->nr_body = *ptrs++;
3556 	src = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3557 	hdr->nr_options = *ptrs;
3558 
3559 	if (!rerror) {
3560 		/* copy the body */
3561 		bodysz = nmreq_size_by_type(hdr->nr_reqtype);
3562 		error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz);
3563 		if (error) {
3564 			rerror = error;
3565 			goto out;
3566 		}
3567 	}
3568 
3569 	/* copy the options */
3570 	dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options;
3571 	while (src) {
3572 		size_t optsz;
3573 		uint64_t next;
3574 
3575 		/* restore the user pointer */
3576 		next = src->nro_next;
3577 		ptrs = (uint64_t *)src - 1;
3578 		src->nro_next = *ptrs;
3579 
3580 		/* always copy the option header */
3581 		error = copyout(src, dst, sizeof(*src));
3582 		if (error) {
3583 			rerror = error;
3584 			goto out;
3585 		}
3586 
3587 		/* copy the option body only if there was no error */
3588 		if (!rerror && !src->nro_status) {
3589 			optsz = nmreq_opt_size_by_type(src->nro_reqtype,
3590 							src->nro_size);
3591 			if (optsz) {
3592 				error = copyout(src + 1, dst + 1, optsz);
3593 				if (error) {
3594 					rerror = error;
3595 					goto out;
3596 				}
3597 			}
3598 		}
3599 		src = (struct nmreq_option *)(uintptr_t)next;
3600 		dst = (struct nmreq_option *)(uintptr_t)*ptrs;
3601 	}
3602 
3603 
3604 out:
3605 	hdr->nr_reserved = 0;
3606 	nm_os_free(bufstart);
3607 	return rerror;
3608 }
3609 
3610 struct nmreq_option *
nmreq_getoption(struct nmreq_header * hdr,uint16_t reqtype)3611 nmreq_getoption(struct nmreq_header *hdr, uint16_t reqtype)
3612 {
3613 	struct nmreq_option **opt_tab;
3614 
3615 	if (!hdr->nr_options)
3616 		return NULL;
3617 
3618 	opt_tab = (struct nmreq_option **)((uintptr_t)hdr->nr_options) -
3619 	    (NETMAP_REQ_OPT_MAX + 1);
3620 	return opt_tab[reqtype];
3621 }
3622 
3623 static int
nmreq_checkoptions(struct nmreq_header * hdr)3624 nmreq_checkoptions(struct nmreq_header *hdr)
3625 {
3626 	struct nmreq_option *opt;
3627 	/* return error if there is still any option
3628 	 * marked as not supported
3629 	 */
3630 
3631 	for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt;
3632 	     opt = (struct nmreq_option *)(uintptr_t)opt->nro_next)
3633 		if (opt->nro_status == EOPNOTSUPP)
3634 			return EOPNOTSUPP;
3635 
3636 	return 0;
3637 }
3638 
3639 /*
3640  * select(2) and poll(2) handlers for the "netmap" device.
3641  *
3642  * Can be called for one or more queues.
3643  * Return true the event mask corresponding to ready events.
3644  * If there are no ready events (and 'sr' is not NULL), do a
3645  * selrecord on either individual selinfo or on the global one.
3646  * Device-dependent parts (locking and sync of tx/rx rings)
3647  * are done through callbacks.
3648  *
3649  * On linux, arguments are really pwait, the poll table, and 'td' is struct file *
3650  * The first one is remapped to pwait as selrecord() uses the name as an
3651  * hidden argument.
3652  */
3653 int
netmap_poll(struct netmap_priv_d * priv,int events,NM_SELRECORD_T * sr)3654 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr)
3655 {
3656 	struct netmap_adapter *na;
3657 	struct netmap_kring *kring;
3658 	struct netmap_ring *ring;
3659 	u_int i, want[NR_TXRX], revents = 0;
3660 	NM_SELINFO_T *si[NR_TXRX];
3661 #define want_tx want[NR_TX]
3662 #define want_rx want[NR_RX]
3663 	struct mbq q;	/* packets from RX hw queues to host stack */
3664 
3665 	/*
3666 	 * In order to avoid nested locks, we need to "double check"
3667 	 * txsync and rxsync if we decide to do a selrecord().
3668 	 * retry_tx (and retry_rx, later) prevent looping forever.
3669 	 */
3670 	int retry_tx = 1, retry_rx = 1;
3671 
3672 	/* Transparent mode: send_down is 1 if we have found some
3673 	 * packets to forward (host RX ring --> NIC) during the rx
3674 	 * scan and we have not sent them down to the NIC yet.
3675 	 * Transparent mode requires to bind all rings to a single
3676 	 * file descriptor.
3677 	 */
3678 	int send_down = 0;
3679 	int sync_flags = priv->np_sync_flags;
3680 
3681 	mbq_init(&q);
3682 
3683 	if (unlikely(priv->np_nifp == NULL)) {
3684 		return POLLERR;
3685 	}
3686 	mb(); /* make sure following reads are not from cache */
3687 
3688 	na = priv->np_na;
3689 
3690 	if (unlikely(!nm_netmap_on(na)))
3691 		return POLLERR;
3692 
3693 	if (unlikely(priv->np_csb_atok_base)) {
3694 		nm_prerr("Invalid poll in CSB mode");
3695 		return POLLERR;
3696 	}
3697 
3698 	if (netmap_debug & NM_DEBUG_ON)
3699 		nm_prinf("device %s events 0x%x", na->name, events);
3700 	want_tx = events & (POLLOUT | POLLWRNORM);
3701 	want_rx = events & (POLLIN | POLLRDNORM);
3702 
3703 	/*
3704 	 * If the card has more than one queue AND the file descriptor is
3705 	 * bound to all of them, we sleep on the "global" selinfo, otherwise
3706 	 * we sleep on individual selinfo (FreeBSD only allows two selinfo's
3707 	 * per file descriptor).
3708 	 * The interrupt routine in the driver wake one or the other
3709 	 * (or both) depending on which clients are active.
3710 	 *
3711 	 * rxsync() is only called if we run out of buffers on a POLLIN.
3712 	 * txsync() is called if we run out of buffers on POLLOUT, or
3713 	 * there are pending packets to send. The latter can be disabled
3714 	 * passing NETMAP_NO_TX_POLL in the NIOCREG call.
3715 	 */
3716 	si[NR_RX] = priv->np_si[NR_RX];
3717 	si[NR_TX] = priv->np_si[NR_TX];
3718 
3719 #ifdef __FreeBSD__
3720 	/*
3721 	 * We start with a lock free round which is cheap if we have
3722 	 * slots available. If this fails, then lock and call the sync
3723 	 * routines. We can't do this on Linux, as the contract says
3724 	 * that we must call nm_os_selrecord() unconditionally.
3725 	 */
3726 	if (want_tx) {
3727 		const enum txrx t = NR_TX;
3728 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3729 			kring = NMR(na, t)[i];
3730 			if (kring->ring->cur != kring->ring->tail) {
3731 				/* Some unseen TX space is available, so what
3732 				 * we don't need to run txsync. */
3733 				revents |= want[t];
3734 				want[t] = 0;
3735 				break;
3736 			}
3737 		}
3738 	}
3739 	if (want_rx) {
3740 		const enum txrx t = NR_RX;
3741 		int rxsync_needed = 0;
3742 
3743 		for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) {
3744 			kring = NMR(na, t)[i];
3745 			if (kring->ring->cur == kring->ring->tail
3746 				|| kring->rhead != kring->ring->head) {
3747 				/* There are no unseen packets on this ring,
3748 				 * or there are some buffers to be returned
3749 				 * to the netmap port. We therefore go ahead
3750 				 * and run rxsync. */
3751 				rxsync_needed = 1;
3752 				break;
3753 			}
3754 		}
3755 		if (!rxsync_needed) {
3756 			revents |= want_rx;
3757 			want_rx = 0;
3758 		}
3759 	}
3760 #endif
3761 
3762 #ifdef linux
3763 	/* The selrecord must be unconditional on linux. */
3764 	nm_os_selrecord(sr, si[NR_RX]);
3765 	nm_os_selrecord(sr, si[NR_TX]);
3766 #endif /* linux */
3767 
3768 	/*
3769 	 * If we want to push packets out (priv->np_txpoll) or
3770 	 * want_tx is still set, we must issue txsync calls
3771 	 * (on all rings, to avoid that the tx rings stall).
3772 	 * Fortunately, normal tx mode has np_txpoll set.
3773 	 */
3774 	if (priv->np_txpoll || want_tx) {
3775 		/*
3776 		 * The first round checks if anyone is ready, if not
3777 		 * do a selrecord and another round to handle races.
3778 		 * want_tx goes to 0 if any space is found, and is
3779 		 * used to skip rings with no pending transmissions.
3780 		 */
3781 flush_tx:
3782 		for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) {
3783 			int found = 0;
3784 
3785 			kring = na->tx_rings[i];
3786 			ring = kring->ring;
3787 
3788 			/*
3789 			 * Don't try to txsync this TX ring if we already found some
3790 			 * space in some of the TX rings (want_tx == 0) and there are no
3791 			 * TX slots in this ring that need to be flushed to the NIC
3792 			 * (head == hwcur).
3793 			 */
3794 			if (!send_down && !want_tx && ring->head == kring->nr_hwcur)
3795 				continue;
3796 
3797 			if (nm_kr_tryget(kring, 1, &revents))
3798 				continue;
3799 
3800 			if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3801 				netmap_ring_reinit(kring);
3802 				revents |= POLLERR;
3803 			} else {
3804 				if (kring->nm_sync(kring, sync_flags))
3805 					revents |= POLLERR;
3806 				else
3807 					nm_sync_finalize(kring);
3808 			}
3809 
3810 			/*
3811 			 * If we found new slots, notify potential
3812 			 * listeners on the same ring.
3813 			 * Since we just did a txsync, look at the copies
3814 			 * of cur,tail in the kring.
3815 			 */
3816 			found = kring->rcur != kring->rtail;
3817 			nm_kr_put(kring);
3818 			if (found) { /* notify other listeners */
3819 				revents |= want_tx;
3820 				want_tx = 0;
3821 #ifndef linux
3822 				kring->nm_notify(kring, 0);
3823 #endif /* linux */
3824 			}
3825 		}
3826 		/* if there were any packet to forward we must have handled them by now */
3827 		send_down = 0;
3828 		if (want_tx && retry_tx && sr) {
3829 #ifndef linux
3830 			nm_os_selrecord(sr, si[NR_TX]);
3831 #endif /* !linux */
3832 			retry_tx = 0;
3833 			goto flush_tx;
3834 		}
3835 	}
3836 
3837 	/*
3838 	 * If want_rx is still set scan receive rings.
3839 	 * Do it on all rings because otherwise we starve.
3840 	 */
3841 	if (want_rx) {
3842 		/* two rounds here for race avoidance */
3843 do_retry_rx:
3844 		for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) {
3845 			int found = 0;
3846 
3847 			kring = na->rx_rings[i];
3848 			ring = kring->ring;
3849 
3850 			if (unlikely(nm_kr_tryget(kring, 1, &revents)))
3851 				continue;
3852 
3853 			if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) {
3854 				netmap_ring_reinit(kring);
3855 				revents |= POLLERR;
3856 			}
3857 			/* now we can use kring->rcur, rtail */
3858 
3859 			/*
3860 			 * transparent mode support: collect packets from
3861 			 * hw rxring(s) that have been released by the user
3862 			 */
3863 			if (nm_may_forward_up(kring)) {
3864 				netmap_grab_packets(kring, &q, netmap_fwd);
3865 			}
3866 
3867 			/* Clear the NR_FORWARD flag anyway, it may be set by
3868 			 * the nm_sync() below only on for the host RX ring (see
3869 			 * netmap_rxsync_from_host()). */
3870 			kring->nr_kflags &= ~NR_FORWARD;
3871 			if (kring->nm_sync(kring, sync_flags))
3872 				revents |= POLLERR;
3873 			else
3874 				nm_sync_finalize(kring);
3875 			send_down |= (kring->nr_kflags & NR_FORWARD);
3876 			ring_timestamp_set(ring);
3877 			found = kring->rcur != kring->rtail;
3878 			nm_kr_put(kring);
3879 			if (found) {
3880 				revents |= want_rx;
3881 				retry_rx = 0;
3882 #ifndef linux
3883 				kring->nm_notify(kring, 0);
3884 #endif /* linux */
3885 			}
3886 		}
3887 
3888 #ifndef linux
3889 		if (retry_rx && sr) {
3890 			nm_os_selrecord(sr, si[NR_RX]);
3891 		}
3892 #endif /* !linux */
3893 		if (send_down || retry_rx) {
3894 			retry_rx = 0;
3895 			if (send_down)
3896 				goto flush_tx; /* and retry_rx */
3897 			else
3898 				goto do_retry_rx;
3899 		}
3900 	}
3901 
3902 	/*
3903 	 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and
3904 	 * ring->head) marked with NS_FORWARD on hw rx rings are passed up
3905 	 * to the host stack.
3906 	 */
3907 
3908 	if (mbq_peek(&q)) {
3909 		netmap_send_up(na->ifp, &q);
3910 	}
3911 
3912 	return (revents);
3913 #undef want_tx
3914 #undef want_rx
3915 }
3916 
3917 int
nma_intr_enable(struct netmap_adapter * na,int onoff)3918 nma_intr_enable(struct netmap_adapter *na, int onoff)
3919 {
3920 	bool changed = false;
3921 	enum txrx t;
3922 	int i;
3923 
3924 	for_rx_tx(t) {
3925 		for (i = 0; i < nma_get_nrings(na, t); i++) {
3926 			struct netmap_kring *kring = NMR(na, t)[i];
3927 			int on = !(kring->nr_kflags & NKR_NOINTR);
3928 
3929 			if (!!onoff != !!on) {
3930 				changed = true;
3931 			}
3932 			if (onoff) {
3933 				kring->nr_kflags &= ~NKR_NOINTR;
3934 			} else {
3935 				kring->nr_kflags |= NKR_NOINTR;
3936 			}
3937 		}
3938 	}
3939 
3940 	if (!changed) {
3941 		return 0; /* nothing to do */
3942 	}
3943 
3944 	if (!na->nm_intr) {
3945 		nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable",
3946 		  na->name);
3947 		return -1;
3948 	}
3949 
3950 	na->nm_intr(na, onoff);
3951 
3952 	return 0;
3953 }
3954 
3955 
3956 /*-------------------- driver support routines -------------------*/
3957 
3958 /* default notify callback */
3959 static int
netmap_notify(struct netmap_kring * kring,int flags)3960 netmap_notify(struct netmap_kring *kring, int flags)
3961 {
3962 	struct netmap_adapter *na = kring->notify_na;
3963 	enum txrx t = kring->tx;
3964 
3965 	nm_os_selwakeup(&kring->si);
3966 	/* optimization: avoid a wake up on the global
3967 	 * queue if nobody has registered for more
3968 	 * than one ring
3969 	 */
3970 	if (na->si_users[t] > 0)
3971 		nm_os_selwakeup(&na->si[t]);
3972 
3973 	return NM_IRQ_COMPLETED;
3974 }
3975 
3976 /* called by all routines that create netmap_adapters.
3977  * provide some defaults and get a reference to the
3978  * memory allocator
3979  */
3980 int
netmap_attach_common(struct netmap_adapter * na)3981 netmap_attach_common(struct netmap_adapter *na)
3982 {
3983 	if (!na->rx_buf_maxsize) {
3984 		/* Set a conservative default (larger is safer). */
3985 		na->rx_buf_maxsize = PAGE_SIZE;
3986 	}
3987 
3988 #ifdef __FreeBSD__
3989 	if (na->na_flags & NAF_HOST_RINGS && na->ifp) {
3990 		na->if_input = if_getinputfn(na->ifp); /* for netmap_send_up */
3991 	}
3992 	na->pdev = na; /* make sure netmap_mem_map() is called */
3993 #endif /* __FreeBSD__ */
3994 	if (na->na_flags & NAF_HOST_RINGS) {
3995 		if (na->num_host_rx_rings == 0)
3996 			na->num_host_rx_rings = 1;
3997 		if (na->num_host_tx_rings == 0)
3998 			na->num_host_tx_rings = 1;
3999 	}
4000 	if (na->nm_krings_create == NULL) {
4001 		/* we assume that we have been called by a driver,
4002 		 * since other port types all provide their own
4003 		 * nm_krings_create
4004 		 */
4005 		na->nm_krings_create = netmap_hw_krings_create;
4006 		na->nm_krings_delete = netmap_hw_krings_delete;
4007 	}
4008 	if (na->nm_notify == NULL)
4009 		na->nm_notify = netmap_notify;
4010 	na->active_fds = 0;
4011 
4012 	if (na->nm_mem == NULL) {
4013 		/* select an allocator based on IOMMU and NUMA affinity */
4014 		na->nm_mem = netmap_mem_get_allocator(na);
4015 	}
4016 	if (na->nm_bdg_attach == NULL)
4017 		/* no special nm_bdg_attach callback. On VALE
4018 		 * attach, we need to interpose a bwrap
4019 		 */
4020 		na->nm_bdg_attach = netmap_default_bdg_attach;
4021 
4022 	return 0;
4023 }
4024 
4025 /* Wrapper for the register callback provided netmap-enabled
4026  * hardware drivers.
4027  * nm_iszombie(na) means that the driver module has been
4028  * unloaded, so we cannot call into it.
4029  * nm_os_ifnet_lock() must guarantee mutual exclusion with
4030  * module unloading.
4031  */
4032 static int
netmap_hw_reg(struct netmap_adapter * na,int onoff)4033 netmap_hw_reg(struct netmap_adapter *na, int onoff)
4034 {
4035 	struct netmap_hw_adapter *hwna =
4036 		(struct netmap_hw_adapter*)na;
4037 	int error = 0;
4038 
4039 	nm_os_ifnet_lock();
4040 
4041 	if (nm_iszombie(na)) {
4042 		if (onoff) {
4043 			error = ENXIO;
4044 		} else if (na != NULL) {
4045 			na->na_flags &= ~NAF_NETMAP_ON;
4046 		}
4047 		goto out;
4048 	}
4049 
4050 	error = hwna->nm_hw_register(na, onoff);
4051 
4052 out:
4053 	nm_os_ifnet_unlock();
4054 
4055 	return error;
4056 }
4057 
4058 static void
netmap_hw_dtor(struct netmap_adapter * na)4059 netmap_hw_dtor(struct netmap_adapter *na)
4060 {
4061 	if (na->ifp == NULL)
4062 		return;
4063 
4064 	NM_DETACH_NA(na->ifp);
4065 }
4066 
4067 
4068 /*
4069  * Allocate a netmap_adapter object, and initialize it from the
4070  * 'arg' passed by the driver on attach.
4071  * We allocate a block of memory of 'size' bytes, which has room
4072  * for struct netmap_adapter plus additional room private to
4073  * the caller.
4074  * Return 0 on success, ENOMEM otherwise.
4075  */
4076 int
netmap_attach_ext(struct netmap_adapter * arg,size_t size,int override_reg)4077 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg)
4078 {
4079 	struct netmap_hw_adapter *hwna = NULL;
4080 	if_t ifp = NULL;
4081 
4082 	if (size < sizeof(struct netmap_hw_adapter)) {
4083 		if (netmap_debug & NM_DEBUG_ON)
4084 			nm_prerr("Invalid netmap adapter size %d", (int)size);
4085 		return EINVAL;
4086 	}
4087 
4088 	if (arg == NULL || arg->ifp == NULL) {
4089 		if (netmap_debug & NM_DEBUG_ON)
4090 			nm_prerr("either arg or arg->ifp is NULL");
4091 		return EINVAL;
4092 	}
4093 
4094 	if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) {
4095 		if (netmap_debug & NM_DEBUG_ON)
4096 			nm_prerr("%s: invalid rings tx %d rx %d",
4097 				arg->name, arg->num_tx_rings, arg->num_rx_rings);
4098 		return EINVAL;
4099 	}
4100 
4101 	ifp = arg->ifp;
4102 	if (NM_NA_CLASH(ifp)) {
4103 		/* If NA(ifp) is not null but there is no valid netmap
4104 		 * adapter it means that someone else is using the same
4105 		 * pointer (e.g. ax25_ptr on linux). This happens for
4106 		 * instance when also PF_RING is in use. */
4107 		nm_prerr("Error: netmap adapter hook is busy");
4108 		return EBUSY;
4109 	}
4110 
4111 	hwna = nm_os_malloc(size);
4112 	if (hwna == NULL)
4113 		goto fail;
4114 	hwna->up = *arg;
4115 	hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE;
4116 	strlcpy(hwna->up.name, if_name(ifp), sizeof(hwna->up.name));
4117 	if (override_reg) {
4118 		hwna->nm_hw_register = hwna->up.nm_register;
4119 		hwna->up.nm_register = netmap_hw_reg;
4120 	}
4121 	if (netmap_attach_common(&hwna->up)) {
4122 		nm_os_free(hwna);
4123 		goto fail;
4124 	}
4125 	netmap_adapter_get(&hwna->up);
4126 
4127 	NM_ATTACH_NA(ifp, &hwna->up);
4128 
4129 	nm_os_onattach(ifp);
4130 
4131 	if (arg->nm_dtor == NULL) {
4132 		hwna->up.nm_dtor = netmap_hw_dtor;
4133 	}
4134 
4135 	if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n",
4136 	    hwna->up.num_tx_rings, hwna->up.num_tx_desc,
4137 	    hwna->up.num_rx_rings, hwna->up.num_rx_desc);
4138 	return 0;
4139 
4140 fail:
4141 	nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna);
4142 	return (hwna ? EINVAL : ENOMEM);
4143 }
4144 
4145 
4146 int
netmap_attach(struct netmap_adapter * arg)4147 netmap_attach(struct netmap_adapter *arg)
4148 {
4149 	return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter),
4150 			1 /* override nm_reg */);
4151 }
4152 
4153 
4154 void
NM_DBG(netmap_adapter_get)4155 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na)
4156 {
4157 	if (!na) {
4158 		return;
4159 	}
4160 
4161 	refcount_acquire(&na->na_refcount);
4162 }
4163 
4164 
4165 /* returns 1 iff the netmap_adapter is destroyed */
4166 int
NM_DBG(netmap_adapter_put)4167 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na)
4168 {
4169 	if (!na)
4170 		return 1;
4171 
4172 	if (!refcount_release(&na->na_refcount))
4173 		return 0;
4174 
4175 	if (na->nm_dtor)
4176 		na->nm_dtor(na);
4177 
4178 	if (na->tx_rings) { /* XXX should not happen */
4179 		if (netmap_debug & NM_DEBUG_ON)
4180 			nm_prerr("freeing leftover tx_rings");
4181 		na->nm_krings_delete(na);
4182 	}
4183 	netmap_pipe_dealloc(na);
4184 	if (na->nm_mem)
4185 		netmap_mem_put(na->nm_mem);
4186 	bzero(na, sizeof(*na));
4187 	nm_os_free(na);
4188 
4189 	return 1;
4190 }
4191 
4192 /* nm_krings_create callback for all hardware native adapters */
4193 int
netmap_hw_krings_create(struct netmap_adapter * na)4194 netmap_hw_krings_create(struct netmap_adapter *na)
4195 {
4196 	int ret = netmap_krings_create(na, 0);
4197 	if (ret == 0) {
4198 		/* initialize the mbq for the sw rx ring */
4199 		u_int lim = netmap_real_rings(na, NR_RX), i;
4200 		for (i = na->num_rx_rings; i < lim; i++) {
4201 			mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue);
4202 		}
4203 		nm_prdis("initialized sw rx queue %d", na->num_rx_rings);
4204 	}
4205 	return ret;
4206 }
4207 
4208 
4209 
4210 /*
4211  * Called on module unload by the netmap-enabled drivers
4212  */
4213 void
netmap_detach(if_t ifp)4214 netmap_detach(if_t ifp)
4215 {
4216 	struct netmap_adapter *na;
4217 
4218 	NMG_LOCK();
4219 
4220 	if (!NM_NA_VALID(ifp)) {
4221 		NMG_UNLOCK();
4222 		return;
4223 	}
4224 
4225 	na = NA(ifp);
4226 	netmap_set_all_rings(na, NM_KR_LOCKED);
4227 	/*
4228 	 * if the netmap adapter is not native, somebody
4229 	 * changed it, so we can not release it here.
4230 	 * The NAF_ZOMBIE flag will notify the new owner that
4231 	 * the driver is gone.
4232 	 */
4233 	if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) {
4234 		na->na_flags |= NAF_ZOMBIE;
4235 	}
4236 	/* give active users a chance to notice that NAF_ZOMBIE has been
4237 	 * turned on, so that they can stop and return an error to userspace.
4238 	 * Note that this becomes a NOP if there are no active users and,
4239 	 * therefore, the put() above has deleted the na, since now NA(ifp) is
4240 	 * NULL.
4241 	 */
4242 	netmap_enable_all_rings(ifp);
4243 	NMG_UNLOCK();
4244 }
4245 
4246 
4247 /*
4248  * Intercept packets from the network stack and pass them
4249  * to netmap as incoming packets on the 'software' ring.
4250  *
4251  * We only store packets in a bounded mbq and then copy them
4252  * in the relevant rxsync routine.
4253  *
4254  * We rely on the OS to make sure that the ifp and na do not go
4255  * away (typically the caller checks for IFF_DRV_RUNNING or the like).
4256  * In nm_register() or whenever there is a reinitialization,
4257  * we make sure to make the mode change visible here.
4258  */
4259 int
netmap_transmit(if_t ifp,struct mbuf * m)4260 netmap_transmit(if_t ifp, struct mbuf *m)
4261 {
4262 	struct netmap_adapter *na = NA(ifp);
4263 	struct netmap_kring *kring, *tx_kring;
4264 	u_int len = MBUF_LEN(m);
4265 	u_int error = ENOBUFS;
4266 	unsigned int txr;
4267 	struct mbq *q;
4268 	int busy;
4269 	u_int i;
4270 
4271 	i = MBUF_TXQ(m);
4272 	if (i >= na->num_host_rx_rings) {
4273 		i = i % na->num_host_rx_rings;
4274 	}
4275 	kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i];
4276 
4277 	// XXX [Linux] we do not need this lock
4278 	// if we follow the down/configure/up protocol -gl
4279 	// mtx_lock(&na->core_lock);
4280 
4281 	if (!nm_netmap_on(na)) {
4282 		nm_prerr("%s not in netmap mode anymore", na->name);
4283 		error = ENXIO;
4284 		goto done;
4285 	}
4286 
4287 	txr = MBUF_TXQ(m);
4288 	if (txr >= na->num_tx_rings) {
4289 		txr %= na->num_tx_rings;
4290 	}
4291 	tx_kring = NMR(na, NR_TX)[txr];
4292 
4293 	if (tx_kring->nr_mode == NKR_NETMAP_OFF) {
4294 		return MBUF_TRANSMIT(na, ifp, m);
4295 	}
4296 
4297 	q = &kring->rx_queue;
4298 
4299 	// XXX reconsider long packets if we handle fragments
4300 	if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */
4301 		nm_prerr("%s from_host, drop packet size %d > %d", na->name,
4302 			len, NETMAP_BUF_SIZE(na));
4303 		goto done;
4304 	}
4305 
4306 	if (!netmap_generic_hwcsum) {
4307 		if (nm_os_mbuf_has_csum_offld(m)) {
4308 			nm_prlim(1, "%s drop mbuf that needs checksum offload", na->name);
4309 			goto done;
4310 		}
4311 	}
4312 
4313 	if (nm_os_mbuf_has_seg_offld(m)) {
4314 		nm_prlim(1, "%s drop mbuf that needs generic segmentation offload", na->name);
4315 		goto done;
4316 	}
4317 
4318 #ifdef __FreeBSD__
4319 	ETHER_BPF_MTAP(ifp, m);
4320 #endif /* __FreeBSD__ */
4321 
4322 	/* protect against netmap_rxsync_from_host(), netmap_sw_to_nic()
4323 	 * and maybe other instances of netmap_transmit (the latter
4324 	 * not possible on Linux).
4325 	 * We enqueue the mbuf only if we are sure there is going to be
4326 	 * enough room in the host RX ring, otherwise we drop it.
4327 	 */
4328 	mbq_lock(q);
4329 
4330 	busy = kring->nr_hwtail - kring->nr_hwcur;
4331 	if (busy < 0)
4332 		busy += kring->nkr_num_slots;
4333 	if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) {
4334 		nm_prlim(2, "%s full hwcur %d hwtail %d qlen %d", na->name,
4335 			kring->nr_hwcur, kring->nr_hwtail, mbq_len(q));
4336 	} else {
4337 		mbq_enqueue(q, m);
4338 		nm_prdis(2, "%s %d bufs in queue", na->name, mbq_len(q));
4339 		/* notify outside the lock */
4340 		m = NULL;
4341 		error = 0;
4342 	}
4343 	mbq_unlock(q);
4344 
4345 done:
4346 	if (m) {
4347 		if_inc_counter(ifp, IFCOUNTER_OQDROPS, 1);
4348 		m_freem(m);
4349 	}
4350 	/* unconditionally wake up listeners */
4351 	kring->nm_notify(kring, 0);
4352 	/* this is normally netmap_notify(), but for nics
4353 	 * connected to a bridge it is netmap_bwrap_intr_notify(),
4354 	 * that possibly forwards the frames through the switch
4355 	 */
4356 
4357 	return (error);
4358 }
4359 
4360 
4361 /*
4362  * Reset function to be called by the driver routines when reinitializing
4363  * a hardware ring. The driver is in charge of locking to protect the kring
4364  * while this operation is being performed. This is normally achieved by
4365  * calling netmap_disable_all_rings() before triggering a reset.
4366  * If the kring is not in netmap mode, return NULL to inform the caller
4367  * that this is the case.
4368  * If the kring is in netmap mode, set hwofs so that the netmap indices
4369  * seen by userspace (head/cut/tail) do not change, although the internal
4370  * NIC indices have been reset to 0.
4371  * In any case, adjust kring->nr_mode.
4372  */
4373 struct netmap_slot *
netmap_reset(struct netmap_adapter * na,enum txrx tx,u_int n,u_int new_cur)4374 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n,
4375 	u_int new_cur)
4376 {
4377 	struct netmap_kring *kring;
4378 	u_int new_hwtail, new_hwofs;
4379 
4380 	if (!nm_native_on(na)) {
4381 		nm_prdis("interface not in native netmap mode");
4382 		return NULL;	/* nothing to reinitialize */
4383 	}
4384 
4385 	if (tx == NR_TX) {
4386 		if (n >= na->num_tx_rings)
4387 			return NULL;
4388 		kring = na->tx_rings[n];
4389 		/*
4390 		 * Set hwofs to rhead, so that slots[rhead] is mapped to
4391 		 * the NIC internal slot 0, and thus the netmap buffer
4392 		 * at rhead is the next to be transmitted. Transmissions
4393 		 * that were pending before the reset are considered as
4394 		 * sent, so that we can have hwcur = rhead. All the slots
4395 		 * are now owned by the user, so we can also reinit hwtail.
4396 		 */
4397 		new_hwofs = kring->rhead;
4398 		new_hwtail = nm_prev(kring->rhead, kring->nkr_num_slots - 1);
4399 	} else {
4400 		if (n >= na->num_rx_rings)
4401 			return NULL;
4402 		kring = na->rx_rings[n];
4403 		/*
4404 		 * Set hwofs to hwtail, so that slots[hwtail] is mapped to
4405 		 * the NIC internal slot 0, and thus the netmap buffer
4406 		 * at hwtail is the next to be given to the NIC.
4407 		 * Unread slots (the ones in [rhead,hwtail[) are owned by
4408 		 * the user, and thus the caller cannot give them
4409 		 * to the NIC right now.
4410 		 */
4411 		new_hwofs = kring->nr_hwtail;
4412 		new_hwtail = kring->nr_hwtail;
4413 	}
4414 	if (kring->nr_pending_mode == NKR_NETMAP_OFF) {
4415 		kring->nr_mode = NKR_NETMAP_OFF;
4416 		return NULL;
4417 	}
4418 	if (netmap_verbose) {
4419 	    nm_prinf("%s, hc %u->%u, ht %u->%u, ho %u->%u", kring->name,
4420 	        kring->nr_hwcur, kring->rhead,
4421 	        kring->nr_hwtail, new_hwtail,
4422 		kring->nkr_hwofs, new_hwofs);
4423 	}
4424 	kring->nr_hwcur = kring->rhead;
4425 	kring->nr_hwtail = new_hwtail;
4426 	kring->nkr_hwofs = new_hwofs;
4427 
4428 	/*
4429 	 * Wakeup on the individual and global selwait
4430 	 * We do the wakeup here, but the ring is not yet reconfigured.
4431 	 * However, we are under lock so there are no races.
4432 	 */
4433 	kring->nr_mode = NKR_NETMAP_ON;
4434 	kring->nm_notify(kring, 0);
4435 	return kring->ring->slot;
4436 }
4437 
4438 
4439 /*
4440  * Dispatch rx/tx interrupts to the netmap rings.
4441  *
4442  * "work_done" is non-null on the RX path, NULL for the TX path.
4443  * We rely on the OS to make sure that there is only one active
4444  * instance per queue, and that there is appropriate locking.
4445  *
4446  * The 'notify' routine depends on what the ring is attached to.
4447  * - for a netmap file descriptor, do a selwakeup on the individual
4448  *   waitqueue, plus one on the global one if needed
4449  *   (see netmap_notify)
4450  * - for a nic connected to a switch, call the proper forwarding routine
4451  *   (see netmap_bwrap_intr_notify)
4452  */
4453 int
netmap_common_irq(struct netmap_adapter * na,u_int q,u_int * work_done)4454 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done)
4455 {
4456 	struct netmap_kring *kring;
4457 	enum txrx t = (work_done ? NR_RX : NR_TX);
4458 
4459 	q &= NETMAP_RING_MASK;
4460 
4461 	if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) {
4462 	        nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q);
4463 	}
4464 
4465 	if (q >= nma_get_nrings(na, t))
4466 		return NM_IRQ_PASS; // not a physical queue
4467 
4468 	kring = NMR(na, t)[q];
4469 
4470 	if (kring->nr_mode == NKR_NETMAP_OFF) {
4471 		return NM_IRQ_PASS;
4472 	}
4473 
4474 	if (t == NR_RX) {
4475 		kring->nr_kflags |= NKR_PENDINTR;	// XXX atomic ?
4476 		*work_done = 1; /* do not fire napi again */
4477 	}
4478 
4479 	return kring->nm_notify(kring, 0);
4480 }
4481 
4482 
4483 /*
4484  * Default functions to handle rx/tx interrupts from a physical device.
4485  * "work_done" is non-null on the RX path, NULL for the TX path.
4486  *
4487  * If the card is not in netmap mode, simply return NM_IRQ_PASS,
4488  * so that the caller proceeds with regular processing.
4489  * Otherwise call netmap_common_irq().
4490  *
4491  * If the card is connected to a netmap file descriptor,
4492  * do a selwakeup on the individual queue, plus one on the global one
4493  * if needed (multiqueue card _and_ there are multiqueue listeners),
4494  * and return NR_IRQ_COMPLETED.
4495  *
4496  * Finally, if called on rx from an interface connected to a switch,
4497  * calls the proper forwarding routine.
4498  */
4499 int
netmap_rx_irq(if_t ifp,u_int q,u_int * work_done)4500 netmap_rx_irq(if_t ifp, u_int q, u_int *work_done)
4501 {
4502 	struct netmap_adapter *na = NA(ifp);
4503 
4504 	/*
4505 	 * XXX emulated netmap mode sets NAF_SKIP_INTR so
4506 	 * we still use the regular driver even though the previous
4507 	 * check fails. It is unclear whether we should use
4508 	 * nm_native_on() here.
4509 	 */
4510 	if (!nm_netmap_on(na))
4511 		return NM_IRQ_PASS;
4512 
4513 	if (na->na_flags & NAF_SKIP_INTR) {
4514 		nm_prdis("use regular interrupt");
4515 		return NM_IRQ_PASS;
4516 	}
4517 
4518 	return netmap_common_irq(na, q, work_done);
4519 }
4520 
4521 /* set/clear native flags and if_transmit/netdev_ops */
4522 void
nm_set_native_flags(struct netmap_adapter * na)4523 nm_set_native_flags(struct netmap_adapter *na)
4524 {
4525 	if_t ifp = na->ifp;
4526 
4527 	/* We do the setup for intercepting packets only if we are the
4528 	 * first user of this adapter. */
4529 	if (na->active_fds > 0) {
4530 		return;
4531 	}
4532 
4533 	na->na_flags |= NAF_NETMAP_ON;
4534 	nm_os_onenter(ifp);
4535 	netmap_update_hostrings_mode(na);
4536 }
4537 
4538 void
nm_clear_native_flags(struct netmap_adapter * na)4539 nm_clear_native_flags(struct netmap_adapter *na)
4540 {
4541 	if_t ifp = na->ifp;
4542 
4543 	/* We undo the setup for intercepting packets only if we are the
4544 	 * last user of this adapter. */
4545 	if (na->active_fds > 0) {
4546 		return;
4547 	}
4548 
4549 	netmap_update_hostrings_mode(na);
4550 	nm_os_onexit(ifp);
4551 
4552 	na->na_flags &= ~NAF_NETMAP_ON;
4553 }
4554 
4555 void
netmap_krings_mode_commit(struct netmap_adapter * na,int onoff)4556 netmap_krings_mode_commit(struct netmap_adapter *na, int onoff)
4557 {
4558 	enum txrx t;
4559 
4560 	for_rx_tx(t) {
4561 		int i;
4562 
4563 		for (i = 0; i < netmap_real_rings(na, t); i++) {
4564 			struct netmap_kring *kring = NMR(na, t)[i];
4565 
4566 			if (onoff && nm_kring_pending_on(kring))
4567 				kring->nr_mode = NKR_NETMAP_ON;
4568 			else if (!onoff && nm_kring_pending_off(kring))
4569 				kring->nr_mode = NKR_NETMAP_OFF;
4570 		}
4571 	}
4572 }
4573 
4574 /*
4575  * Module loader and unloader
4576  *
4577  * netmap_init() creates the /dev/netmap device and initializes
4578  * all global variables. Returns 0 on success, errno on failure
4579  * (but there is no chance)
4580  *
4581  * netmap_fini() destroys everything.
4582  */
4583 
4584 static struct cdev *netmap_dev; /* /dev/netmap character device. */
4585 extern struct cdevsw netmap_cdevsw;
4586 
4587 
4588 void
netmap_fini(void)4589 netmap_fini(void)
4590 {
4591 	if (netmap_dev)
4592 		destroy_dev(netmap_dev);
4593 	/* we assume that there are no longer netmap users */
4594 	nm_os_ifnet_fini();
4595 	netmap_uninit_bridges();
4596 	netmap_mem_fini();
4597 	NMG_LOCK_DESTROY();
4598 	nm_prinf("netmap: unloaded module.");
4599 }
4600 
4601 
4602 int
netmap_init(void)4603 netmap_init(void)
4604 {
4605 	int error;
4606 
4607 	NMG_LOCK_INIT();
4608 
4609 	error = netmap_mem_init();
4610 	if (error != 0)
4611 		goto fail;
4612 	/*
4613 	 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls
4614 	 * when the module is compiled in.
4615 	 * XXX could use make_dev_credv() to get error number
4616 	 */
4617 	netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD,
4618 		&netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600,
4619 			      "netmap");
4620 	if (!netmap_dev)
4621 		goto fail;
4622 
4623 	error = netmap_init_bridges();
4624 	if (error)
4625 		goto fail;
4626 
4627 #ifdef __FreeBSD__
4628 	nm_os_vi_init_index();
4629 #endif
4630 
4631 	error = nm_os_ifnet_init();
4632 	if (error)
4633 		goto fail;
4634 
4635 #if !defined(__FreeBSD__) || defined(KLD_MODULE)
4636 	nm_prinf("netmap: loaded module");
4637 #endif
4638 	return (0);
4639 fail:
4640 	netmap_fini();
4641 	return (EINVAL); /* may be incorrect */
4642 }
4643