1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (C) 2012-2014 Matteo Landi 5 * Copyright (C) 2012-2016 Luigi Rizzo 6 * Copyright (C) 2012-2016 Giuseppe Lettieri 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 */ 30 31 #ifdef linux 32 #include "bsd_glue.h" 33 #endif /* linux */ 34 35 #ifdef __APPLE__ 36 #include "osx_glue.h" 37 #endif /* __APPLE__ */ 38 39 #ifdef __FreeBSD__ 40 #include <sys/types.h> 41 #include <sys/domainset.h> 42 #include <sys/malloc.h> 43 #include <sys/kernel.h> /* MALLOC_DEFINE */ 44 #include <sys/proc.h> 45 #include <vm/vm.h> /* vtophys */ 46 #include <vm/pmap.h> /* vtophys */ 47 #include <sys/socket.h> /* sockaddrs */ 48 #include <sys/selinfo.h> 49 #include <sys/sysctl.h> 50 #include <net/if.h> 51 #include <net/if_var.h> 52 #include <net/vnet.h> 53 #include <machine/bus.h> /* bus_dmamap_* */ 54 55 /* M_NETMAP only used in here */ 56 MALLOC_DECLARE(M_NETMAP); 57 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map"); 58 59 #endif /* __FreeBSD__ */ 60 61 #ifdef _WIN32 62 #include <win_glue.h> 63 #endif 64 65 #include <net/netmap.h> 66 #include <dev/netmap/netmap_kern.h> 67 #include <net/netmap_virt.h> 68 #include "netmap_mem2.h" 69 70 #ifdef _WIN32_USE_SMALL_GENERIC_DEVICES_MEMORY 71 #define NETMAP_BUF_MAX_NUM 8*4096 /* if too big takes too much time to allocate */ 72 #else 73 #define NETMAP_BUF_MAX_NUM 20*4096*2 /* large machine */ 74 #endif 75 76 #define NETMAP_POOL_MAX_NAMSZ 32 77 78 79 enum { 80 NETMAP_IF_POOL = 0, 81 NETMAP_RING_POOL, 82 NETMAP_BUF_POOL, 83 NETMAP_POOLS_NR 84 }; 85 86 87 struct netmap_obj_params { 88 u_int size; 89 u_int num; 90 91 u_int last_size; 92 u_int last_num; 93 }; 94 95 struct netmap_obj_pool { 96 char name[NETMAP_POOL_MAX_NAMSZ]; /* name of the allocator */ 97 98 /* ---------------------------------------------------*/ 99 /* these are only meaningful if the pool is finalized */ 100 /* (see 'finalized' field in netmap_mem_d) */ 101 size_t memtotal; /* actual total memory space */ 102 103 struct lut_entry *lut; /* virt,phys addresses, objtotal entries */ 104 uint32_t *bitmap; /* one bit per buffer, 1 means free */ 105 uint32_t *invalid_bitmap;/* one bit per buffer, 1 means invalid */ 106 uint32_t bitmap_slots; /* number of uint32 entries in bitmap */ 107 108 u_int objtotal; /* actual total number of objects. */ 109 u_int numclusters; /* actual number of clusters */ 110 u_int objfree; /* number of free objects. */ 111 112 int alloc_done; /* we have allocated the memory */ 113 /* ---------------------------------------------------*/ 114 115 /* limits */ 116 u_int objminsize; /* minimum object size */ 117 u_int objmaxsize; /* maximum object size */ 118 u_int nummin; /* minimum number of objects */ 119 u_int nummax; /* maximum number of objects */ 120 121 /* these are changed only by config */ 122 u_int _objtotal; /* total number of objects */ 123 u_int _objsize; /* object size */ 124 u_int _clustsize; /* cluster size */ 125 u_int _clustentries; /* objects per cluster */ 126 u_int _numclusters; /* number of clusters */ 127 128 /* requested values */ 129 u_int r_objtotal; 130 u_int r_objsize; 131 }; 132 133 #define NMA_LOCK_T NM_MTX_T 134 #define NMA_LOCK_INIT(n) NM_MTX_INIT((n)->nm_mtx) 135 #define NMA_LOCK_DESTROY(n) NM_MTX_DESTROY((n)->nm_mtx) 136 #define NMA_LOCK(n) NM_MTX_LOCK((n)->nm_mtx) 137 #define NMA_SPINLOCK(n) NM_MTX_SPINLOCK((n)->nm_mtx) 138 #define NMA_UNLOCK(n) NM_MTX_UNLOCK((n)->nm_mtx) 139 140 struct netmap_mem_ops { 141 int (*nmd_get_lut)(struct netmap_mem_d *, struct netmap_lut*); 142 int (*nmd_get_info)(struct netmap_mem_d *, uint64_t *size, 143 u_int *memflags, uint16_t *id); 144 145 vm_paddr_t (*nmd_ofstophys)(struct netmap_mem_d *, vm_ooffset_t); 146 int (*nmd_config)(struct netmap_mem_d *); 147 int (*nmd_finalize)(struct netmap_mem_d *, struct netmap_adapter *); 148 void (*nmd_deref)(struct netmap_mem_d *, struct netmap_adapter *); 149 ssize_t (*nmd_if_offset)(struct netmap_mem_d *, const void *vaddr); 150 void (*nmd_delete)(struct netmap_mem_d *); 151 152 struct netmap_if * (*nmd_if_new)(struct netmap_mem_d *, 153 struct netmap_adapter *, struct netmap_priv_d *); 154 void (*nmd_if_delete)(struct netmap_mem_d *, 155 struct netmap_adapter *, struct netmap_if *); 156 int (*nmd_rings_create)(struct netmap_mem_d *, 157 struct netmap_adapter *); 158 void (*nmd_rings_delete)(struct netmap_mem_d *, 159 struct netmap_adapter *); 160 }; 161 162 struct netmap_mem_d { 163 NMA_LOCK_T nm_mtx; /* protect the allocator */ 164 size_t nm_totalsize; /* shorthand */ 165 166 u_int flags; 167 #define NETMAP_MEM_FINALIZED 0x1 /* preallocation done */ 168 #define NETMAP_MEM_HIDDEN 0x8 /* being prepared */ 169 #define NETMAP_MEM_NOMAP 0x10 /* do not map/unmap pdevs */ 170 int lasterr; /* last error for curr config */ 171 int active; /* active users */ 172 int refcount; 173 /* the three allocators */ 174 struct netmap_obj_pool pools[NETMAP_POOLS_NR]; 175 176 nm_memid_t nm_id; /* allocator identifier */ 177 int nm_grp; /* iommu group id */ 178 int nm_numa_domain; /* local NUMA domain */ 179 180 /* list of all existing allocators, sorted by nm_id */ 181 struct netmap_mem_d *prev, *next; 182 183 const struct netmap_mem_ops *ops; 184 185 struct netmap_obj_params params[NETMAP_POOLS_NR]; 186 187 #define NM_MEM_NAMESZ 16 188 char name[NM_MEM_NAMESZ]; 189 }; 190 191 int 192 netmap_mem_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut) 193 { 194 int rv; 195 196 NMA_LOCK(nmd); 197 rv = nmd->ops->nmd_get_lut(nmd, lut); 198 NMA_UNLOCK(nmd); 199 200 return rv; 201 } 202 203 int 204 netmap_mem_get_info(struct netmap_mem_d *nmd, uint64_t *size, 205 u_int *memflags, nm_memid_t *memid) 206 { 207 int rv; 208 209 NMA_LOCK(nmd); 210 rv = nmd->ops->nmd_get_info(nmd, size, memflags, memid); 211 NMA_UNLOCK(nmd); 212 213 return rv; 214 } 215 216 vm_paddr_t 217 netmap_mem_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off) 218 { 219 vm_paddr_t pa; 220 221 #if defined(__FreeBSD__) 222 /* This function is called by netmap_dev_pager_fault(), which holds a 223 * non-sleepable lock since FreeBSD 12. Since we cannot sleep, we 224 * spin on the trylock. */ 225 NMA_SPINLOCK(nmd); 226 #else 227 NMA_LOCK(nmd); 228 #endif 229 pa = nmd->ops->nmd_ofstophys(nmd, off); 230 NMA_UNLOCK(nmd); 231 232 return pa; 233 } 234 235 static int 236 netmap_mem_config(struct netmap_mem_d *nmd) 237 { 238 if (nmd->active) { 239 /* already in use. Not fatal, but we 240 * cannot change the configuration 241 */ 242 return 0; 243 } 244 245 return nmd->ops->nmd_config(nmd); 246 } 247 248 ssize_t 249 netmap_mem_if_offset(struct netmap_mem_d *nmd, const void *off) 250 { 251 ssize_t rv; 252 253 NMA_LOCK(nmd); 254 rv = nmd->ops->nmd_if_offset(nmd, off); 255 NMA_UNLOCK(nmd); 256 257 return rv; 258 } 259 260 static void 261 netmap_mem_delete(struct netmap_mem_d *nmd) 262 { 263 nmd->ops->nmd_delete(nmd); 264 } 265 266 struct netmap_if * 267 netmap_mem_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv) 268 { 269 struct netmap_if *nifp; 270 struct netmap_mem_d *nmd = na->nm_mem; 271 272 NMA_LOCK(nmd); 273 nifp = nmd->ops->nmd_if_new(nmd, na, priv); 274 NMA_UNLOCK(nmd); 275 276 return nifp; 277 } 278 279 void 280 netmap_mem_if_delete(struct netmap_adapter *na, struct netmap_if *nif) 281 { 282 struct netmap_mem_d *nmd = na->nm_mem; 283 284 NMA_LOCK(nmd); 285 nmd->ops->nmd_if_delete(nmd, na, nif); 286 NMA_UNLOCK(nmd); 287 } 288 289 int 290 netmap_mem_rings_create(struct netmap_adapter *na) 291 { 292 int rv; 293 struct netmap_mem_d *nmd = na->nm_mem; 294 295 NMA_LOCK(nmd); 296 rv = nmd->ops->nmd_rings_create(nmd, na); 297 NMA_UNLOCK(nmd); 298 299 return rv; 300 } 301 302 void 303 netmap_mem_rings_delete(struct netmap_adapter *na) 304 { 305 struct netmap_mem_d *nmd = na->nm_mem; 306 307 NMA_LOCK(nmd); 308 nmd->ops->nmd_rings_delete(nmd, na); 309 NMA_UNLOCK(nmd); 310 } 311 312 static int netmap_mem_map(struct netmap_obj_pool *, struct netmap_adapter *); 313 static int netmap_mem_unmap(struct netmap_obj_pool *, struct netmap_adapter *); 314 static int nm_mem_check_group(struct netmap_mem_d *, void *); 315 static void nm_mem_release_id(struct netmap_mem_d *); 316 317 nm_memid_t 318 netmap_mem_get_id(struct netmap_mem_d *nmd) 319 { 320 return nmd->nm_id; 321 } 322 323 #ifdef NM_DEBUG_MEM_PUTGET 324 #define NM_DBG_REFC(nmd, func, line) \ 325 nm_prinf("%s:%d mem[%d:%d] -> %d", func, line, (nmd)->nm_id, (nmd)->nm_grp, (nmd)->refcount); 326 #else 327 #define NM_DBG_REFC(nmd, func, line) 328 #endif 329 330 /* circular list of all existing allocators */ 331 static struct netmap_mem_d *netmap_last_mem_d = &nm_mem; 332 static NM_MTX_T nm_mem_list_lock; 333 334 struct netmap_mem_d * 335 __netmap_mem_get(struct netmap_mem_d *nmd, const char *func, int line) 336 { 337 NM_MTX_LOCK(nm_mem_list_lock); 338 nmd->refcount++; 339 NM_DBG_REFC(nmd, func, line); 340 NM_MTX_UNLOCK(nm_mem_list_lock); 341 return nmd; 342 } 343 344 void 345 __netmap_mem_put(struct netmap_mem_d *nmd, const char *func, int line) 346 { 347 int last; 348 NM_MTX_LOCK(nm_mem_list_lock); 349 last = (--nmd->refcount == 0); 350 if (last) 351 nm_mem_release_id(nmd); 352 NM_DBG_REFC(nmd, func, line); 353 NM_MTX_UNLOCK(nm_mem_list_lock); 354 if (last) 355 netmap_mem_delete(nmd); 356 } 357 358 int 359 netmap_mem_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na) 360 { 361 int lasterr = 0; 362 if (nm_mem_check_group(nmd, na->pdev) < 0) { 363 return ENOMEM; 364 } 365 366 NMA_LOCK(nmd); 367 368 if (netmap_mem_config(nmd)) 369 goto out; 370 371 nmd->active++; 372 373 nmd->lasterr = nmd->ops->nmd_finalize(nmd, na); 374 375 if (!nmd->lasterr && !(nmd->flags & NETMAP_MEM_NOMAP)) { 376 nmd->lasterr = netmap_mem_map(&nmd->pools[NETMAP_BUF_POOL], na); 377 } 378 379 out: 380 lasterr = nmd->lasterr; 381 NMA_UNLOCK(nmd); 382 383 if (lasterr) 384 netmap_mem_deref(nmd, na); 385 386 return lasterr; 387 } 388 389 static int 390 nm_isset(uint32_t *bitmap, u_int i) 391 { 392 return bitmap[ (i>>5) ] & ( 1U << (i & 31U) ); 393 } 394 395 396 static int 397 netmap_init_obj_allocator_bitmap(struct netmap_obj_pool *p) 398 { 399 u_int n, j; 400 401 if (p->bitmap == NULL) { 402 /* Allocate the bitmap */ 403 n = (p->objtotal + 31) / 32; 404 p->bitmap = nm_os_malloc(sizeof(p->bitmap[0]) * n); 405 if (p->bitmap == NULL) { 406 nm_prerr("Unable to create bitmap (%d entries) for allocator '%s'", (int)n, 407 p->name); 408 return ENOMEM; 409 } 410 p->bitmap_slots = n; 411 } else { 412 memset(p->bitmap, 0, p->bitmap_slots * sizeof(p->bitmap[0])); 413 } 414 415 p->objfree = 0; 416 /* 417 * Set all the bits in the bitmap that have 418 * corresponding buffers to 1 to indicate they are 419 * free. 420 */ 421 for (j = 0; j < p->objtotal; j++) { 422 if (p->invalid_bitmap && nm_isset(p->invalid_bitmap, j)) { 423 if (netmap_debug & NM_DEBUG_MEM) 424 nm_prinf("skipping %s %d", p->name, j); 425 continue; 426 } 427 p->bitmap[ (j>>5) ] |= ( 1U << (j & 31U) ); 428 p->objfree++; 429 } 430 431 if (netmap_verbose) 432 nm_prinf("%s free %u", p->name, p->objfree); 433 if (p->objfree == 0) { 434 if (netmap_verbose) 435 nm_prerr("%s: no objects available", p->name); 436 return ENOMEM; 437 } 438 439 return 0; 440 } 441 442 static int 443 netmap_mem_init_bitmaps(struct netmap_mem_d *nmd) 444 { 445 int i, error = 0; 446 447 for (i = 0; i < NETMAP_POOLS_NR; i++) { 448 struct netmap_obj_pool *p = &nmd->pools[i]; 449 450 error = netmap_init_obj_allocator_bitmap(p); 451 if (error) 452 return error; 453 } 454 455 /* 456 * buffers 0 and 1 are reserved 457 */ 458 if (nmd->pools[NETMAP_BUF_POOL].objfree < 2) { 459 nm_prerr("%s: not enough buffers", nmd->pools[NETMAP_BUF_POOL].name); 460 return ENOMEM; 461 } 462 463 nmd->pools[NETMAP_BUF_POOL].objfree -= 2; 464 if (nmd->pools[NETMAP_BUF_POOL].bitmap) { 465 /* XXX This check is a workaround that prevents a 466 * NULL pointer crash which currently happens only 467 * with ptnetmap guests. 468 * Removed shared-info --> is the bug still there? */ 469 nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3U; 470 } 471 return 0; 472 } 473 474 int 475 netmap_mem_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na) 476 { 477 int last_user = 0; 478 NMA_LOCK(nmd); 479 if (na->active_fds <= 0 && !(nmd->flags & NETMAP_MEM_NOMAP)) 480 netmap_mem_unmap(&nmd->pools[NETMAP_BUF_POOL], na); 481 if (nmd->active == 1) { 482 last_user = 1; 483 /* 484 * Reset the allocator when it falls out of use so that any 485 * pool resources leaked by unclean application exits are 486 * reclaimed. 487 */ 488 netmap_mem_init_bitmaps(nmd); 489 } 490 nmd->ops->nmd_deref(nmd, na); 491 492 nmd->active--; 493 if (last_user) { 494 nmd->lasterr = 0; 495 } 496 497 NMA_UNLOCK(nmd); 498 return last_user; 499 } 500 501 502 /* accessor functions */ 503 static int 504 netmap_mem2_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut) 505 { 506 lut->lut = nmd->pools[NETMAP_BUF_POOL].lut; 507 #ifdef __FreeBSD__ 508 lut->plut = lut->lut; 509 #endif 510 lut->objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal; 511 lut->objsize = nmd->pools[NETMAP_BUF_POOL]._objsize; 512 513 return 0; 514 } 515 516 static struct netmap_obj_params netmap_min_priv_params[NETMAP_POOLS_NR] = { 517 [NETMAP_IF_POOL] = { 518 .size = 1024, 519 .num = 2, 520 }, 521 [NETMAP_RING_POOL] = { 522 .size = 5*PAGE_SIZE, 523 .num = 4, 524 }, 525 [NETMAP_BUF_POOL] = { 526 .size = 2048, 527 .num = 4098, 528 }, 529 }; 530 531 532 /* 533 * nm_mem is the memory allocator used for all physical interfaces 534 * running in netmap mode. 535 * Virtual (VALE) ports will have each its own allocator. 536 */ 537 extern const struct netmap_mem_ops netmap_mem_global_ops; /* forward */ 538 struct netmap_mem_d nm_mem = { /* Our memory allocator. */ 539 .pools = { 540 [NETMAP_IF_POOL] = { 541 .name = "netmap_if", 542 .objminsize = sizeof(struct netmap_if), 543 .objmaxsize = 4096, 544 .nummin = 10, /* don't be stingy */ 545 .nummax = 10000, /* XXX very large */ 546 }, 547 [NETMAP_RING_POOL] = { 548 .name = "netmap_ring", 549 .objminsize = sizeof(struct netmap_ring), 550 .objmaxsize = 32*PAGE_SIZE, 551 .nummin = 2, 552 .nummax = 1024, 553 }, 554 [NETMAP_BUF_POOL] = { 555 .name = "netmap_buf", 556 .objminsize = 64, 557 .objmaxsize = 65536, 558 .nummin = 4, 559 .nummax = 1000000, /* one million! */ 560 }, 561 }, 562 563 .params = { 564 [NETMAP_IF_POOL] = { 565 .size = 1024, 566 .num = 100, 567 }, 568 [NETMAP_RING_POOL] = { 569 .size = 9*PAGE_SIZE, 570 .num = 200, 571 }, 572 [NETMAP_BUF_POOL] = { 573 .size = 2048, 574 .num = NETMAP_BUF_MAX_NUM, 575 }, 576 }, 577 578 .nm_id = 1, 579 .nm_grp = -1, 580 .nm_numa_domain = -1, 581 582 .prev = &nm_mem, 583 .next = &nm_mem, 584 585 .ops = &netmap_mem_global_ops, 586 587 .name = "1" 588 }; 589 590 static struct netmap_mem_d nm_mem_blueprint; 591 592 /* blueprint for the private memory allocators */ 593 /* XXX clang is not happy about using name as a print format */ 594 static const struct netmap_mem_d nm_blueprint = { 595 .pools = { 596 [NETMAP_IF_POOL] = { 597 .name = "%s_if", 598 .objminsize = sizeof(struct netmap_if), 599 .objmaxsize = 4096, 600 .nummin = 1, 601 .nummax = 100, 602 }, 603 [NETMAP_RING_POOL] = { 604 .name = "%s_ring", 605 .objminsize = sizeof(struct netmap_ring), 606 .objmaxsize = 32*PAGE_SIZE, 607 .nummin = 2, 608 .nummax = 1024, 609 }, 610 [NETMAP_BUF_POOL] = { 611 .name = "%s_buf", 612 .objminsize = 64, 613 .objmaxsize = 65536, 614 .nummin = 4, 615 .nummax = 1000000, /* one million! */ 616 }, 617 }, 618 619 .nm_grp = -1, 620 .nm_numa_domain = -1, 621 622 .flags = NETMAP_MEM_PRIVATE, 623 624 .ops = &netmap_mem_global_ops, 625 }; 626 627 /* memory allocator related sysctls */ 628 629 #define STRINGIFY(x) #x 630 631 #define DECLARE_SYSCTLS(id, name) \ 632 SYSBEGIN(mem2_ ## name); \ 633 SYSCTL_INT(_dev_netmap, OID_AUTO, name##_size, \ 634 CTLFLAG_RWTUN, &nm_mem.params[id].size, 0, \ 635 "Requested size of netmap " STRINGIFY(name) "s"); \ 636 SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_size, \ 637 CTLFLAG_RD, &nm_mem.pools[id]._objsize, 0, \ 638 "Current size of netmap " STRINGIFY(name) "s"); \ 639 SYSCTL_INT(_dev_netmap, OID_AUTO, name##_num, \ 640 CTLFLAG_RWTUN, &nm_mem.params[id].num, 0, \ 641 "Requested number of netmap " STRINGIFY(name) "s"); \ 642 SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_num, \ 643 CTLFLAG_RD, &nm_mem.pools[id].objtotal, 0, \ 644 "Current number of netmap " STRINGIFY(name) "s"); \ 645 SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_size, \ 646 CTLFLAG_RWTUN, &netmap_min_priv_params[id].size, 0, \ 647 "Default size of private netmap " STRINGIFY(name) "s"); \ 648 SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_num, \ 649 CTLFLAG_RWTUN, &netmap_min_priv_params[id].num, 0, \ 650 "Default number of private netmap " STRINGIFY(name) "s"); \ 651 SYSEND 652 653 SYSCTL_DECL(_dev_netmap); 654 DECLARE_SYSCTLS(NETMAP_IF_POOL, if); 655 DECLARE_SYSCTLS(NETMAP_RING_POOL, ring); 656 DECLARE_SYSCTLS(NETMAP_BUF_POOL, buf); 657 658 int netmap_port_numa_affinity = 0; 659 SYSCTL_INT(_dev_netmap, OID_AUTO, port_numa_affinity, 660 CTLFLAG_RDTUN, &netmap_port_numa_affinity, 0, 661 "Use NUMA-local memory for memory pools when possible"); 662 663 /* call with nm_mem_list_lock held */ 664 static int 665 nm_mem_assign_id_locked(struct netmap_mem_d *nmd, int grp_id, int domain) 666 { 667 nm_memid_t id; 668 struct netmap_mem_d *scan = netmap_last_mem_d; 669 int error = ENOMEM; 670 671 do { 672 /* we rely on unsigned wrap around */ 673 id = scan->nm_id + 1; 674 if (id == 0) /* reserve 0 as error value */ 675 id = 1; 676 scan = scan->next; 677 if (id != scan->nm_id) { 678 nmd->nm_id = id; 679 nmd->nm_grp = grp_id; 680 nmd->nm_numa_domain = domain; 681 nmd->prev = scan->prev; 682 nmd->next = scan; 683 scan->prev->next = nmd; 684 scan->prev = nmd; 685 netmap_last_mem_d = nmd; 686 nmd->refcount = 1; 687 NM_DBG_REFC(nmd, __FUNCTION__, __LINE__); 688 error = 0; 689 break; 690 } 691 } while (scan != netmap_last_mem_d); 692 693 return error; 694 } 695 696 /* call with nm_mem_list_lock *not* held */ 697 static int 698 nm_mem_assign_id(struct netmap_mem_d *nmd, int grp_id) 699 { 700 int ret; 701 702 NM_MTX_LOCK(nm_mem_list_lock); 703 ret = nm_mem_assign_id_locked(nmd, grp_id, -1); 704 NM_MTX_UNLOCK(nm_mem_list_lock); 705 706 return ret; 707 } 708 709 /* call with nm_mem_list_lock held */ 710 static void 711 nm_mem_release_id(struct netmap_mem_d *nmd) 712 { 713 nmd->prev->next = nmd->next; 714 nmd->next->prev = nmd->prev; 715 716 if (netmap_last_mem_d == nmd) 717 netmap_last_mem_d = nmd->prev; 718 719 nmd->prev = nmd->next = NULL; 720 } 721 722 struct netmap_mem_d * 723 netmap_mem_find(nm_memid_t id) 724 { 725 struct netmap_mem_d *nmd; 726 727 NM_MTX_LOCK(nm_mem_list_lock); 728 nmd = netmap_last_mem_d; 729 do { 730 if (!(nmd->flags & NETMAP_MEM_HIDDEN) && nmd->nm_id == id) { 731 nmd->refcount++; 732 NM_DBG_REFC(nmd, __FUNCTION__, __LINE__); 733 NM_MTX_UNLOCK(nm_mem_list_lock); 734 return nmd; 735 } 736 nmd = nmd->next; 737 } while (nmd != netmap_last_mem_d); 738 NM_MTX_UNLOCK(nm_mem_list_lock); 739 return NULL; 740 } 741 742 static int 743 nm_mem_check_group(struct netmap_mem_d *nmd, void *dev) 744 { 745 int err = 0, id; 746 747 /* Skip not hw adapters. 748 * Vale port can use particular allocator through vale-ctl -m option 749 */ 750 if (!dev) 751 return 0; 752 id = nm_iommu_group_id(dev); 753 if (netmap_debug & NM_DEBUG_MEM) 754 nm_prinf("iommu_group %d", id); 755 756 NMA_LOCK(nmd); 757 758 if (nmd->nm_grp != id) { 759 if (netmap_verbose) 760 nm_prerr("iommu group mismatch: %d vs %d", 761 nmd->nm_grp, id); 762 nmd->lasterr = err = ENOMEM; 763 } 764 765 NMA_UNLOCK(nmd); 766 return err; 767 } 768 769 static struct lut_entry * 770 nm_alloc_lut(u_int nobj) 771 { 772 size_t n = sizeof(struct lut_entry) * nobj; 773 struct lut_entry *lut; 774 #ifdef linux 775 lut = vmalloc(n); 776 #else 777 lut = nm_os_malloc(n); 778 #endif 779 return lut; 780 } 781 782 static void 783 nm_free_lut(struct lut_entry *lut, u_int objtotal) 784 { 785 bzero(lut, sizeof(struct lut_entry) * objtotal); 786 #ifdef linux 787 vfree(lut); 788 #else 789 nm_os_free(lut); 790 #endif 791 } 792 793 #if defined(linux) || defined(_WIN32) 794 static struct plut_entry * 795 nm_alloc_plut(u_int nobj) 796 { 797 size_t n = sizeof(struct plut_entry) * nobj; 798 struct plut_entry *lut; 799 lut = vmalloc(n); 800 return lut; 801 } 802 803 static void 804 nm_free_plut(struct plut_entry * lut) 805 { 806 vfree(lut); 807 } 808 #endif /* linux or _WIN32 */ 809 810 811 /* 812 * First, find the allocator that contains the requested offset, 813 * then locate the cluster through a lookup table. 814 */ 815 static vm_paddr_t 816 netmap_mem2_ofstophys(struct netmap_mem_d* nmd, vm_ooffset_t offset) 817 { 818 int i; 819 vm_ooffset_t o = offset; 820 vm_paddr_t pa; 821 struct netmap_obj_pool *p; 822 823 p = nmd->pools; 824 825 for (i = 0; i < NETMAP_POOLS_NR; offset -= p[i].memtotal, i++) { 826 if (offset >= p[i].memtotal) 827 continue; 828 // now lookup the cluster's address 829 #ifndef _WIN32 830 pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr) + 831 offset % p[i]._objsize; 832 #else 833 pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr); 834 pa.QuadPart += offset % p[i]._objsize; 835 #endif 836 return pa; 837 } 838 /* this is only in case of errors */ 839 nm_prerr("invalid ofs 0x%x out of 0x%zx 0x%zx 0x%zx", (u_int)o, 840 p[NETMAP_IF_POOL].memtotal, 841 p[NETMAP_IF_POOL].memtotal 842 + p[NETMAP_RING_POOL].memtotal, 843 p[NETMAP_IF_POOL].memtotal 844 + p[NETMAP_RING_POOL].memtotal 845 + p[NETMAP_BUF_POOL].memtotal); 846 #ifndef _WIN32 847 return 0; /* bad address */ 848 #else 849 vm_paddr_t res; 850 res.QuadPart = 0; 851 return res; 852 #endif 853 } 854 855 #ifdef _WIN32 856 857 /* 858 * win32_build_virtual_memory_for_userspace 859 * 860 * This function get all the object making part of the pools and maps 861 * a contiguous virtual memory space for the userspace 862 * It works this way 863 * 1 - allocate a Memory Descriptor List wide as the sum 864 * of the memory needed for the pools 865 * 2 - cycle all the objects in every pool and for every object do 866 * 867 * 2a - cycle all the objects in every pool, get the list 868 * of the physical address descriptors 869 * 2b - calculate the offset in the array of pages descriptor in the 870 * main MDL 871 * 2c - copy the descriptors of the object in the main MDL 872 * 873 * 3 - return the resulting MDL that needs to be mapped in userland 874 * 875 * In this way we will have an MDL that describes all the memory for the 876 * objects in a single object 877 */ 878 879 PMDL 880 win32_build_user_vm_map(struct netmap_mem_d* nmd) 881 { 882 u_int memflags, ofs = 0; 883 PMDL mainMdl, tempMdl; 884 uint64_t memsize; 885 int i, j; 886 887 if (netmap_mem_get_info(nmd, &memsize, &memflags, NULL)) { 888 nm_prerr("memory not finalised yet"); 889 return NULL; 890 } 891 892 mainMdl = IoAllocateMdl(NULL, memsize, FALSE, FALSE, NULL); 893 if (mainMdl == NULL) { 894 nm_prerr("failed to allocate mdl"); 895 return NULL; 896 } 897 898 NMA_LOCK(nmd); 899 for (i = 0; i < NETMAP_POOLS_NR; i++) { 900 struct netmap_obj_pool *p = &nmd->pools[i]; 901 int clsz = p->_clustsize; 902 int clobjs = p->_clustentries; /* objects per cluster */ 903 int mdl_len = sizeof(PFN_NUMBER) * BYTES_TO_PAGES(clsz); 904 PPFN_NUMBER pSrc, pDst; 905 906 /* each pool has a different cluster size so we need to reallocate */ 907 tempMdl = IoAllocateMdl(p->lut[0].vaddr, clsz, FALSE, FALSE, NULL); 908 if (tempMdl == NULL) { 909 NMA_UNLOCK(nmd); 910 nm_prerr("fail to allocate tempMdl"); 911 IoFreeMdl(mainMdl); 912 return NULL; 913 } 914 pSrc = MmGetMdlPfnArray(tempMdl); 915 /* create one entry per cluster, the lut[] has one entry per object */ 916 for (j = 0; j < p->numclusters; j++, ofs += clsz) { 917 pDst = &MmGetMdlPfnArray(mainMdl)[BYTES_TO_PAGES(ofs)]; 918 MmInitializeMdl(tempMdl, p->lut[j*clobjs].vaddr, clsz); 919 MmBuildMdlForNonPagedPool(tempMdl); /* compute physical page addresses */ 920 RtlCopyMemory(pDst, pSrc, mdl_len); /* copy the page descriptors */ 921 mainMdl->MdlFlags = tempMdl->MdlFlags; /* XXX what is in here ? */ 922 } 923 IoFreeMdl(tempMdl); 924 } 925 NMA_UNLOCK(nmd); 926 return mainMdl; 927 } 928 929 #endif /* _WIN32 */ 930 931 /* 932 * helper function for OS-specific mmap routines (currently only windows). 933 * Given an nmd and a pool index, returns the cluster size and number of clusters. 934 * Returns 0 if memory is finalised and the pool is valid, otherwise 1. 935 * It should be called under NMA_LOCK(nmd) otherwise the underlying info can change. 936 */ 937 938 int 939 netmap_mem2_get_pool_info(struct netmap_mem_d* nmd, u_int pool, u_int *clustsize, u_int *numclusters) 940 { 941 if (!nmd || !clustsize || !numclusters || pool >= NETMAP_POOLS_NR) 942 return 1; /* invalid arguments */ 943 // NMA_LOCK_ASSERT(nmd); 944 if (!(nmd->flags & NETMAP_MEM_FINALIZED)) { 945 *clustsize = *numclusters = 0; 946 return 1; /* not ready yet */ 947 } 948 *clustsize = nmd->pools[pool]._clustsize; 949 *numclusters = nmd->pools[pool].numclusters; 950 return 0; /* success */ 951 } 952 953 static int 954 netmap_mem2_get_info(struct netmap_mem_d* nmd, uint64_t* size, 955 u_int *memflags, nm_memid_t *id) 956 { 957 int error = 0; 958 error = netmap_mem_config(nmd); 959 if (error) 960 goto out; 961 if (size) { 962 if (nmd->flags & NETMAP_MEM_FINALIZED) { 963 *size = nmd->nm_totalsize; 964 } else { 965 int i; 966 *size = 0; 967 for (i = 0; i < NETMAP_POOLS_NR; i++) { 968 struct netmap_obj_pool *p = nmd->pools + i; 969 *size += ((size_t)p->_numclusters * (size_t)p->_clustsize); 970 } 971 } 972 } 973 if (memflags) 974 *memflags = nmd->flags; 975 if (id) 976 *id = nmd->nm_id; 977 out: 978 return error; 979 } 980 981 /* 982 * we store objects by kernel address, need to find the offset 983 * within the pool to export the value to userspace. 984 * Algorithm: scan until we find the cluster, then add the 985 * actual offset in the cluster 986 */ 987 static ssize_t 988 netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr) 989 { 990 int i, k = p->_clustentries, n = p->objtotal; 991 ssize_t ofs = 0; 992 993 for (i = 0; i < n; i += k, ofs += p->_clustsize) { 994 const char *base = p->lut[i].vaddr; 995 ssize_t relofs = (const char *) vaddr - base; 996 997 if (relofs < 0 || relofs >= p->_clustsize) 998 continue; 999 1000 ofs = ofs + relofs; 1001 nm_prdis("%s: return offset %d (cluster %d) for pointer %p", 1002 p->name, ofs, i, vaddr); 1003 return ofs; 1004 } 1005 nm_prerr("address %p is not contained inside any cluster (%s)", 1006 vaddr, p->name); 1007 return 0; /* An error occurred */ 1008 } 1009 1010 /* Helper functions which convert virtual addresses to offsets */ 1011 #define netmap_if_offset(n, v) \ 1012 netmap_obj_offset(&(n)->pools[NETMAP_IF_POOL], (v)) 1013 1014 #define netmap_ring_offset(n, v) \ 1015 ((n)->pools[NETMAP_IF_POOL].memtotal + \ 1016 netmap_obj_offset(&(n)->pools[NETMAP_RING_POOL], (v))) 1017 1018 static ssize_t 1019 netmap_mem2_if_offset(struct netmap_mem_d *nmd, const void *addr) 1020 { 1021 return netmap_if_offset(nmd, addr); 1022 } 1023 1024 /* 1025 * report the index, and use start position as a hint, 1026 * otherwise buffer allocation becomes terribly expensive. 1027 */ 1028 static void * 1029 netmap_obj_malloc(struct netmap_obj_pool *p, u_int len, uint32_t *start, uint32_t *index) 1030 { 1031 uint32_t i = 0; /* index in the bitmap */ 1032 uint32_t mask, j = 0; /* slot counter */ 1033 void *vaddr = NULL; 1034 1035 if (len > p->_objsize) { 1036 nm_prerr("%s request size %d too large", p->name, len); 1037 return NULL; 1038 } 1039 1040 if (p->objfree == 0) { 1041 nm_prerr("no more %s objects", p->name); 1042 return NULL; 1043 } 1044 if (start) 1045 i = *start; 1046 1047 /* termination is guaranteed by p->free, but better check bounds on i */ 1048 while (vaddr == NULL && i < p->bitmap_slots) { 1049 uint32_t cur = p->bitmap[i]; 1050 if (cur == 0) { /* bitmask is fully used */ 1051 i++; 1052 continue; 1053 } 1054 /* locate a slot */ 1055 for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1) 1056 ; 1057 1058 p->bitmap[i] &= ~mask; /* mark object as in use */ 1059 p->objfree--; 1060 1061 vaddr = p->lut[i * 32 + j].vaddr; 1062 if (index) 1063 *index = i * 32 + j; 1064 } 1065 nm_prdis("%s allocator: allocated object @ [%d][%d]: vaddr %p",p->name, i, j, vaddr); 1066 1067 if (start) 1068 *start = i; 1069 return vaddr; 1070 } 1071 1072 1073 /* 1074 * free by index, not by address. 1075 * XXX should we also cleanup the content ? 1076 */ 1077 static int 1078 netmap_obj_free(struct netmap_obj_pool *p, uint32_t j) 1079 { 1080 uint32_t *ptr, mask; 1081 1082 if (j >= p->objtotal) { 1083 nm_prerr("invalid index %u, max %u", j, p->objtotal); 1084 return 1; 1085 } 1086 ptr = &p->bitmap[j / 32]; 1087 mask = (1 << (j % 32)); 1088 if (*ptr & mask) { 1089 nm_prerr("ouch, double free on buffer %d", j); 1090 return 1; 1091 } else { 1092 *ptr |= mask; 1093 p->objfree++; 1094 return 0; 1095 } 1096 } 1097 1098 /* 1099 * free by address. This is slow but is only used for a few 1100 * objects (rings, nifp) 1101 */ 1102 static void 1103 netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr) 1104 { 1105 u_int i, j, n = p->numclusters; 1106 1107 for (i = 0, j = 0; i < n; i++, j += p->_clustentries) { 1108 void *base = p->lut[i * p->_clustentries].vaddr; 1109 ssize_t relofs = (ssize_t) vaddr - (ssize_t) base; 1110 1111 /* Given address, is out of the scope of the current cluster.*/ 1112 if (base == NULL || vaddr < base || relofs >= p->_clustsize) 1113 continue; 1114 1115 j = j + relofs / p->_objsize; 1116 /* KASSERT(j != 0, ("Cannot free object 0")); */ 1117 netmap_obj_free(p, j); 1118 return; 1119 } 1120 nm_prerr("address %p is not contained inside any cluster (%s)", 1121 vaddr, p->name); 1122 } 1123 1124 unsigned 1125 netmap_mem_bufsize(struct netmap_mem_d *nmd) 1126 { 1127 return nmd->pools[NETMAP_BUF_POOL]._objsize; 1128 } 1129 1130 #define netmap_if_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_IF_POOL], len, NULL, NULL) 1131 #define netmap_if_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_IF_POOL], (v)) 1132 #define netmap_ring_malloc(n, len) netmap_obj_malloc(&(n)->pools[NETMAP_RING_POOL], len, NULL, NULL) 1133 #define netmap_ring_free(n, v) netmap_obj_free_va(&(n)->pools[NETMAP_RING_POOL], (v)) 1134 #define netmap_buf_malloc(n, _pos, _index) \ 1135 netmap_obj_malloc(&(n)->pools[NETMAP_BUF_POOL], netmap_mem_bufsize(n), _pos, _index) 1136 1137 1138 #if 0 /* currently unused */ 1139 /* Return the index associated to the given packet buffer */ 1140 #define netmap_buf_index(n, v) \ 1141 (netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)) / NETMAP_BDG_BUF_SIZE(n)) 1142 #endif 1143 1144 /* 1145 * allocate extra buffers in a linked list. 1146 * returns the actual number. 1147 */ 1148 uint32_t 1149 netmap_extra_alloc(struct netmap_adapter *na, uint32_t *head, uint32_t n) 1150 { 1151 struct netmap_mem_d *nmd = na->nm_mem; 1152 uint32_t i, pos = 0; /* opaque, scan position in the bitmap */ 1153 1154 NMA_LOCK(nmd); 1155 1156 *head = 0; /* default, 'null' index ie empty list */ 1157 for (i = 0 ; i < n; i++) { 1158 uint32_t cur = *head; /* save current head */ 1159 uint32_t *p = netmap_buf_malloc(nmd, &pos, head); 1160 if (p == NULL) { 1161 nm_prerr("no more buffers after %d of %d", i, n); 1162 *head = cur; /* restore */ 1163 break; 1164 } 1165 nm_prdis(5, "allocate buffer %d -> %d", *head, cur); 1166 *p = cur; /* link to previous head */ 1167 } 1168 1169 NMA_UNLOCK(nmd); 1170 1171 return i; 1172 } 1173 1174 static void 1175 netmap_extra_free(struct netmap_adapter *na, uint32_t head) 1176 { 1177 struct lut_entry *lut = na->na_lut.lut; 1178 struct netmap_mem_d *nmd = na->nm_mem; 1179 struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL]; 1180 uint32_t i, cur, *buf; 1181 1182 nm_prdis("freeing the extra list"); 1183 for (i = 0; head >=2 && head < p->objtotal; i++) { 1184 cur = head; 1185 buf = lut[head].vaddr; 1186 head = *buf; 1187 *buf = 0; 1188 if (netmap_obj_free(p, cur)) 1189 break; 1190 } 1191 if (head != 0) 1192 nm_prerr("breaking with head %d", head); 1193 if (netmap_debug & NM_DEBUG_MEM) 1194 nm_prinf("freed %d buffers", i); 1195 } 1196 1197 1198 /* Return nonzero on error */ 1199 static int 1200 netmap_new_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n) 1201 { 1202 struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL]; 1203 u_int i = 0; /* slot counter */ 1204 uint32_t pos = 0; /* slot in p->bitmap */ 1205 uint32_t index = 0; /* buffer index */ 1206 1207 for (i = 0; i < n; i++) { 1208 void *vaddr = netmap_buf_malloc(nmd, &pos, &index); 1209 if (vaddr == NULL) { 1210 nm_prerr("no more buffers after %d of %d", i, n); 1211 goto cleanup; 1212 } 1213 slot[i].buf_idx = index; 1214 slot[i].len = p->_objsize; 1215 slot[i].flags = 0; 1216 slot[i].ptr = 0; 1217 } 1218 1219 nm_prdis("%s: allocated %d buffers, %d available, first at %d", p->name, n, p->objfree, pos); 1220 return (0); 1221 1222 cleanup: 1223 while (i > 0) { 1224 i--; 1225 netmap_obj_free(p, slot[i].buf_idx); 1226 } 1227 bzero(slot, n * sizeof(slot[0])); 1228 return (ENOMEM); 1229 } 1230 1231 static void 1232 netmap_mem_set_ring(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n, uint32_t index) 1233 { 1234 struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL]; 1235 u_int i; 1236 1237 for (i = 0; i < n; i++) { 1238 slot[i].buf_idx = index; 1239 slot[i].len = p->_objsize; 1240 slot[i].flags = 0; 1241 } 1242 } 1243 1244 1245 static void 1246 netmap_free_buf(struct netmap_mem_d *nmd, uint32_t i) 1247 { 1248 struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL]; 1249 1250 if (i < 2 || i >= p->objtotal) { 1251 nm_prerr("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal); 1252 return; 1253 } 1254 netmap_obj_free(p, i); 1255 } 1256 1257 1258 static void 1259 netmap_free_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n) 1260 { 1261 u_int i; 1262 1263 for (i = 0; i < n; i++) { 1264 if (slot[i].buf_idx > 1) 1265 netmap_free_buf(nmd, slot[i].buf_idx); 1266 } 1267 nm_prdis("%s: released some buffers, available: %u", 1268 p->name, p->objfree); 1269 } 1270 1271 static void 1272 netmap_reset_obj_allocator(struct netmap_obj_pool *p) 1273 { 1274 1275 if (p == NULL) 1276 return; 1277 if (p->bitmap) 1278 nm_os_free(p->bitmap); 1279 p->bitmap = NULL; 1280 if (p->invalid_bitmap) 1281 nm_os_free(p->invalid_bitmap); 1282 p->invalid_bitmap = NULL; 1283 if (!p->alloc_done) { 1284 /* allocation was done by somebody else. 1285 * Let them clean up after themselves. 1286 */ 1287 return; 1288 } 1289 if (p->lut) { 1290 u_int i; 1291 1292 /* 1293 * Free each cluster allocated in 1294 * netmap_finalize_obj_allocator(). The cluster start 1295 * addresses are stored at multiples of p->_clusterentries 1296 * in the lut. 1297 */ 1298 for (i = 0; i < p->objtotal; i += p->_clustentries) { 1299 free(p->lut[i].vaddr, M_NETMAP); 1300 } 1301 nm_free_lut(p->lut, p->objtotal); 1302 } 1303 p->lut = NULL; 1304 p->objtotal = 0; 1305 p->memtotal = 0; 1306 p->numclusters = 0; 1307 p->objfree = 0; 1308 p->alloc_done = 0; 1309 } 1310 1311 /* 1312 * Free all resources related to an allocator. 1313 */ 1314 static void 1315 netmap_destroy_obj_allocator(struct netmap_obj_pool *p) 1316 { 1317 if (p == NULL) 1318 return; 1319 netmap_reset_obj_allocator(p); 1320 } 1321 1322 /* 1323 * We receive a request for objtotal objects, of size objsize each. 1324 * Internally we may round up both numbers, as we allocate objects 1325 * in small clusters multiple of the page size. 1326 * We need to keep track of objtotal and clustentries, 1327 * as they are needed when freeing memory. 1328 * 1329 * XXX note -- userspace needs the buffers to be contiguous, 1330 * so we cannot afford gaps at the end of a cluster. 1331 */ 1332 1333 1334 /* call with NMA_LOCK held */ 1335 static int 1336 netmap_config_obj_allocator(struct netmap_obj_pool *p, u_int objtotal, u_int objsize) 1337 { 1338 int i; 1339 u_int clustsize; /* the cluster size, multiple of page size */ 1340 u_int clustentries; /* how many objects per entry */ 1341 1342 /* we store the current request, so we can 1343 * detect configuration changes later */ 1344 p->r_objtotal = objtotal; 1345 p->r_objsize = objsize; 1346 1347 #define MAX_CLUSTSIZE (1<<22) // 4 MB 1348 #define LINE_ROUND NM_BUF_ALIGN // 64 1349 if (objsize >= MAX_CLUSTSIZE) { 1350 /* we could do it but there is no point */ 1351 nm_prerr("unsupported allocation for %d bytes", objsize); 1352 return EINVAL; 1353 } 1354 /* make sure objsize is a multiple of LINE_ROUND */ 1355 i = (objsize & (LINE_ROUND - 1)); 1356 if (i) { 1357 nm_prinf("aligning object by %d bytes", LINE_ROUND - i); 1358 objsize += LINE_ROUND - i; 1359 } 1360 if (objsize < p->objminsize || objsize > p->objmaxsize) { 1361 nm_prerr("requested objsize %d out of range [%d, %d]", 1362 objsize, p->objminsize, p->objmaxsize); 1363 return EINVAL; 1364 } 1365 if (objtotal < p->nummin || objtotal > p->nummax) { 1366 nm_prerr("requested objtotal %d out of range [%d, %d]", 1367 objtotal, p->nummin, p->nummax); 1368 return EINVAL; 1369 } 1370 /* 1371 * Compute number of objects using a brute-force approach: 1372 * given a max cluster size, 1373 * we try to fill it with objects keeping track of the 1374 * wasted space to the next page boundary. 1375 */ 1376 for (clustentries = 0, i = 1;; i++) { 1377 u_int delta, used = i * objsize; 1378 if (used > MAX_CLUSTSIZE) 1379 break; 1380 delta = used % PAGE_SIZE; 1381 if (delta == 0) { // exact solution 1382 clustentries = i; 1383 break; 1384 } 1385 } 1386 /* exact solution not found */ 1387 if (clustentries == 0) { 1388 nm_prerr("unsupported allocation for %d bytes", objsize); 1389 return EINVAL; 1390 } 1391 /* compute clustsize */ 1392 clustsize = clustentries * objsize; 1393 if (netmap_debug & NM_DEBUG_MEM) 1394 nm_prinf("objsize %d clustsize %d objects %d", 1395 objsize, clustsize, clustentries); 1396 1397 /* 1398 * The number of clusters is n = ceil(objtotal/clustentries) 1399 * objtotal' = n * clustentries 1400 */ 1401 p->_clustentries = clustentries; 1402 p->_clustsize = clustsize; 1403 p->_numclusters = (objtotal + clustentries - 1) / clustentries; 1404 1405 /* actual values (may be larger than requested) */ 1406 p->_objsize = objsize; 1407 p->_objtotal = p->_numclusters * clustentries; 1408 1409 return 0; 1410 } 1411 1412 /* call with NMA_LOCK held */ 1413 static int 1414 netmap_finalize_obj_allocator(struct netmap_mem_d *nmd, struct netmap_obj_pool *p) 1415 { 1416 int i; /* must be signed */ 1417 1418 if (p->lut) { 1419 /* if the lut is already there we assume that also all the 1420 * clusters have already been allocated, possibly by somebody 1421 * else (e.g., extmem). In the latter case, the alloc_done flag 1422 * will remain at zero, so that we will not attempt to 1423 * deallocate the clusters by ourselves in 1424 * netmap_reset_obj_allocator. 1425 */ 1426 return 0; 1427 } 1428 1429 /* optimistically assume we have enough memory */ 1430 p->numclusters = p->_numclusters; 1431 p->objtotal = p->_objtotal; 1432 p->alloc_done = 1; 1433 1434 p->lut = nm_alloc_lut(p->objtotal); 1435 if (p->lut == NULL) { 1436 nm_prerr("Unable to create lookup table for '%s'", p->name); 1437 goto clean; 1438 } 1439 1440 /* 1441 * Allocate clusters, init pointers 1442 */ 1443 1444 for (i = 0; i < (int)p->objtotal;) { 1445 int lim = i + p->_clustentries; 1446 char *clust; 1447 1448 /* 1449 * XXX Note, we only need contigmalloc() for buffers attached 1450 * to native interfaces. In all other cases (nifp, netmap rings 1451 * and even buffers for VALE ports or emulated interfaces) we 1452 * can live with standard malloc, because the hardware will not 1453 * access the pages directly. 1454 */ 1455 if (nmd->nm_numa_domain == -1) { 1456 clust = contigmalloc(p->_clustsize, M_NETMAP, 1457 M_NOWAIT | M_ZERO, (size_t)0, -1UL, PAGE_SIZE, 0); 1458 } else { 1459 struct domainset *ds; 1460 1461 ds = DOMAINSET_PREF(nmd->nm_numa_domain); 1462 clust = contigmalloc_domainset(p->_clustsize, M_NETMAP, 1463 ds, M_NOWAIT | M_ZERO, (size_t)0, -1UL, PAGE_SIZE, 0); 1464 } 1465 if (clust == NULL) { 1466 /* 1467 * If we get here, there is a severe memory shortage, 1468 * so halve the allocated memory to reclaim some. 1469 */ 1470 nm_prerr("Unable to create cluster at %d for '%s' allocator", 1471 i, p->name); 1472 if (i < 2) /* nothing to halve */ 1473 goto out; 1474 lim = i / 2; 1475 for (i--; i >= lim; i--) { 1476 if (i % p->_clustentries == 0 && p->lut[i].vaddr) 1477 free(p->lut[i].vaddr, M_NETMAP); 1478 p->lut[i].vaddr = NULL; 1479 } 1480 out: 1481 p->objtotal = i; 1482 /* we may have stopped in the middle of a cluster */ 1483 p->numclusters = (i + p->_clustentries - 1) / p->_clustentries; 1484 break; 1485 } 1486 /* 1487 * Set lut state for all buffers in the current cluster. 1488 * 1489 * [i, lim) is the set of buffer indexes that cover the 1490 * current cluster. 1491 * 1492 * 'clust' is really the address of the current buffer in 1493 * the current cluster as we index through it with a stride 1494 * of p->_objsize. 1495 */ 1496 for (; i < lim; i++, clust += p->_objsize) { 1497 p->lut[i].vaddr = clust; 1498 #if !defined(linux) && !defined(_WIN32) 1499 p->lut[i].paddr = vtophys(clust); 1500 #endif 1501 } 1502 } 1503 p->memtotal = (size_t)p->numclusters * (size_t)p->_clustsize; 1504 if (netmap_verbose) 1505 nm_prinf("Pre-allocated %d clusters (%d/%zuKB) for '%s'", 1506 p->numclusters, p->_clustsize >> 10, 1507 p->memtotal >> 10, p->name); 1508 1509 return 0; 1510 1511 clean: 1512 netmap_reset_obj_allocator(p); 1513 return ENOMEM; 1514 } 1515 1516 /* call with lock held */ 1517 static int 1518 netmap_mem_params_changed(struct netmap_obj_params* p) 1519 { 1520 int i, rv = 0; 1521 1522 for (i = 0; i < NETMAP_POOLS_NR; i++) { 1523 if (p[i].last_size != p[i].size || p[i].last_num != p[i].num) { 1524 p[i].last_size = p[i].size; 1525 p[i].last_num = p[i].num; 1526 rv = 1; 1527 } 1528 } 1529 return rv; 1530 } 1531 1532 static void 1533 netmap_mem_reset_all(struct netmap_mem_d *nmd) 1534 { 1535 int i; 1536 1537 if (netmap_debug & NM_DEBUG_MEM) 1538 nm_prinf("resetting %p", nmd); 1539 for (i = 0; i < NETMAP_POOLS_NR; i++) { 1540 netmap_reset_obj_allocator(&nmd->pools[i]); 1541 } 1542 nmd->flags &= ~NETMAP_MEM_FINALIZED; 1543 } 1544 1545 static int 1546 netmap_mem_unmap(struct netmap_obj_pool *p, struct netmap_adapter *na) 1547 { 1548 int i, lim = p->objtotal; 1549 struct netmap_lut *lut; 1550 if (na == NULL || na->pdev == NULL) 1551 return 0; 1552 1553 lut = &na->na_lut; 1554 1555 1556 1557 #if defined(__FreeBSD__) 1558 /* On FreeBSD mapping and unmapping is performed by the txsync 1559 * and rxsync routine, packet by packet. */ 1560 (void)i; 1561 (void)lim; 1562 (void)lut; 1563 #elif defined(_WIN32) 1564 (void)i; 1565 (void)lim; 1566 (void)lut; 1567 nm_prerr("unsupported on Windows"); 1568 #else /* linux */ 1569 nm_prdis("unmapping and freeing plut for %s", na->name); 1570 if (lut->plut == NULL || na->pdev == NULL) 1571 return 0; 1572 for (i = 0; i < lim; i += p->_clustentries) { 1573 if (lut->plut[i].paddr) 1574 netmap_unload_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr, p->_clustsize); 1575 } 1576 nm_free_plut(lut->plut); 1577 lut->plut = NULL; 1578 #endif /* linux */ 1579 1580 return 0; 1581 } 1582 1583 static int 1584 netmap_mem_map(struct netmap_obj_pool *p, struct netmap_adapter *na) 1585 { 1586 int error = 0; 1587 int i, lim = p->objtotal; 1588 struct netmap_lut *lut = &na->na_lut; 1589 1590 if (na->pdev == NULL) 1591 return 0; 1592 1593 #if defined(__FreeBSD__) 1594 /* On FreeBSD mapping and unmapping is performed by the txsync 1595 * and rxsync routine, packet by packet. */ 1596 (void)i; 1597 (void)lim; 1598 (void)lut; 1599 #elif defined(_WIN32) 1600 (void)i; 1601 (void)lim; 1602 (void)lut; 1603 nm_prerr("unsupported on Windows"); 1604 #else /* linux */ 1605 1606 if (lut->plut != NULL) { 1607 nm_prdis("plut already allocated for %s", na->name); 1608 return 0; 1609 } 1610 1611 nm_prdis("allocating physical lut for %s", na->name); 1612 lut->plut = nm_alloc_plut(lim); 1613 if (lut->plut == NULL) { 1614 nm_prerr("Failed to allocate physical lut for %s", na->name); 1615 return ENOMEM; 1616 } 1617 1618 for (i = 0; i < lim; i += p->_clustentries) { 1619 lut->plut[i].paddr = 0; 1620 } 1621 1622 for (i = 0; i < lim; i += p->_clustentries) { 1623 int j; 1624 1625 if (p->lut[i].vaddr == NULL) 1626 continue; 1627 1628 error = netmap_load_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr, 1629 p->lut[i].vaddr, p->_clustsize); 1630 if (error) { 1631 nm_prerr("Failed to map cluster #%d from the %s pool", i, p->name); 1632 break; 1633 } 1634 1635 for (j = 1; j < p->_clustentries; j++) { 1636 lut->plut[i + j].paddr = lut->plut[i + j - 1].paddr + p->_objsize; 1637 } 1638 } 1639 1640 if (error) 1641 netmap_mem_unmap(p, na); 1642 1643 #endif /* linux */ 1644 1645 return error; 1646 } 1647 1648 static int 1649 netmap_mem_finalize_all(struct netmap_mem_d *nmd) 1650 { 1651 int i; 1652 if (nmd->flags & NETMAP_MEM_FINALIZED) 1653 return 0; 1654 nmd->lasterr = 0; 1655 nmd->nm_totalsize = 0; 1656 for (i = 0; i < NETMAP_POOLS_NR; i++) { 1657 nmd->lasterr = netmap_finalize_obj_allocator(nmd, &nmd->pools[i]); 1658 if (nmd->lasterr) 1659 goto error; 1660 nmd->nm_totalsize += nmd->pools[i].memtotal; 1661 } 1662 nmd->nm_totalsize = (nmd->nm_totalsize + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 1663 nmd->lasterr = netmap_mem_init_bitmaps(nmd); 1664 if (nmd->lasterr) 1665 goto error; 1666 1667 nmd->flags |= NETMAP_MEM_FINALIZED; 1668 1669 if (netmap_verbose) 1670 nm_prinf("interfaces %zd KB, rings %zd KB, buffers %zd MB", 1671 nmd->pools[NETMAP_IF_POOL].memtotal >> 10, 1672 nmd->pools[NETMAP_RING_POOL].memtotal >> 10, 1673 nmd->pools[NETMAP_BUF_POOL].memtotal >> 20); 1674 1675 if (netmap_verbose) 1676 nm_prinf("Free buffers: %d", nmd->pools[NETMAP_BUF_POOL].objfree); 1677 1678 1679 return 0; 1680 error: 1681 netmap_mem_reset_all(nmd); 1682 return nmd->lasterr; 1683 } 1684 1685 /* 1686 * allocator for private memory 1687 */ 1688 static void * 1689 _netmap_mem_private_new(size_t size, struct netmap_obj_params *p, int grp_id, 1690 const struct netmap_mem_ops *ops, uint64_t memtotal, int *perr) 1691 { 1692 struct netmap_mem_d *d = NULL; 1693 int i, err = 0; 1694 int checksz = 0; 1695 1696 /* if memtotal is !=0 we check that the request fits the available 1697 * memory. Moreover, any surprlus memory is assigned to buffers. 1698 */ 1699 checksz = (memtotal > 0); 1700 1701 d = nm_os_malloc(size); 1702 if (d == NULL) { 1703 err = ENOMEM; 1704 goto error; 1705 } 1706 1707 *d = nm_blueprint; 1708 d->ops = ops; 1709 1710 err = nm_mem_assign_id(d, grp_id); 1711 if (err) 1712 goto error_free; 1713 snprintf(d->name, NM_MEM_NAMESZ, "%d", d->nm_id); 1714 1715 for (i = 0; i < NETMAP_POOLS_NR; i++) { 1716 snprintf(d->pools[i].name, NETMAP_POOL_MAX_NAMSZ, 1717 nm_blueprint.pools[i].name, 1718 d->name); 1719 if (checksz) { 1720 uint64_t poolsz = (uint64_t)p[i].num * p[i].size; 1721 if (memtotal < poolsz) { 1722 nm_prerr("%s: request too large", d->pools[i].name); 1723 err = ENOMEM; 1724 goto error_rel_id; 1725 } 1726 memtotal -= poolsz; 1727 } 1728 d->params[i].num = p[i].num; 1729 d->params[i].size = p[i].size; 1730 } 1731 if (checksz && memtotal > 0) { 1732 uint64_t sz = d->params[NETMAP_BUF_POOL].size; 1733 uint64_t n = (memtotal + sz - 1) / sz; 1734 1735 if (n) { 1736 if (netmap_verbose) { 1737 nm_prinf("%s: adding %llu more buffers", 1738 d->pools[NETMAP_BUF_POOL].name, 1739 (unsigned long long)n); 1740 } 1741 d->params[NETMAP_BUF_POOL].num += n; 1742 } 1743 } 1744 1745 NMA_LOCK_INIT(d); 1746 1747 err = netmap_mem_config(d); 1748 if (err) 1749 goto error_destroy_lock; 1750 1751 d->flags &= ~NETMAP_MEM_FINALIZED; 1752 1753 return d; 1754 1755 error_destroy_lock: 1756 NMA_LOCK_DESTROY(d); 1757 error_rel_id: 1758 nm_mem_release_id(d); 1759 error_free: 1760 nm_os_free(d); 1761 error: 1762 if (perr) 1763 *perr = err; 1764 return NULL; 1765 } 1766 1767 struct netmap_mem_d * 1768 netmap_mem_private_new(u_int txr, u_int txd, u_int rxr, u_int rxd, 1769 u_int extra_bufs, u_int npipes, int *perr) 1770 { 1771 struct netmap_mem_d *d = NULL; 1772 struct netmap_obj_params p[NETMAP_POOLS_NR]; 1773 int i; 1774 u_int v, maxd; 1775 /* account for the fake host rings */ 1776 txr++; 1777 rxr++; 1778 1779 /* copy the min values */ 1780 for (i = 0; i < NETMAP_POOLS_NR; i++) { 1781 p[i] = netmap_min_priv_params[i]; 1782 } 1783 1784 /* possibly increase them to fit user request */ 1785 v = sizeof(struct netmap_if) + sizeof(ssize_t) * (txr + rxr); 1786 if (p[NETMAP_IF_POOL].size < v) 1787 p[NETMAP_IF_POOL].size = v; 1788 v = 2 + 4 * npipes; 1789 if (p[NETMAP_IF_POOL].num < v) 1790 p[NETMAP_IF_POOL].num = v; 1791 maxd = (txd > rxd) ? txd : rxd; 1792 v = sizeof(struct netmap_ring) + sizeof(struct netmap_slot) * maxd; 1793 if (p[NETMAP_RING_POOL].size < v) 1794 p[NETMAP_RING_POOL].size = v; 1795 /* each pipe endpoint needs two tx rings (1 normal + 1 host, fake) 1796 * and two rx rings (again, 1 normal and 1 fake host) 1797 */ 1798 v = txr + rxr + 8 * npipes; 1799 if (p[NETMAP_RING_POOL].num < v) 1800 p[NETMAP_RING_POOL].num = v; 1801 /* for each pipe we only need the buffers for the 4 "real" rings. 1802 * On the other end, the pipe ring dimension may be different from 1803 * the parent port ring dimension. As a compromise, we allocate twice the 1804 * space actually needed if the pipe rings were the same size as the parent rings 1805 */ 1806 v = (4 * npipes + rxr) * rxd + (4 * npipes + txr) * txd + 2 + extra_bufs; 1807 /* the +2 is for the tx and rx fake buffers (indices 0 and 1) */ 1808 if (p[NETMAP_BUF_POOL].num < v) 1809 p[NETMAP_BUF_POOL].num = v; 1810 1811 if (netmap_verbose) 1812 nm_prinf("req if %d*%d ring %d*%d buf %d*%d", 1813 p[NETMAP_IF_POOL].num, 1814 p[NETMAP_IF_POOL].size, 1815 p[NETMAP_RING_POOL].num, 1816 p[NETMAP_RING_POOL].size, 1817 p[NETMAP_BUF_POOL].num, 1818 p[NETMAP_BUF_POOL].size); 1819 1820 d = _netmap_mem_private_new(sizeof(*d), p, -1, &netmap_mem_global_ops, 0, perr); 1821 1822 return d; 1823 } 1824 1825 /* Reference IOMMU and NUMA local allocator - find existing or create new, 1826 * for non-hw adapters, fall back to global allocator. 1827 */ 1828 struct netmap_mem_d * 1829 netmap_mem_get_allocator(struct netmap_adapter *na) 1830 { 1831 int i, domain, err, grp_id; 1832 struct netmap_mem_d *nmd; 1833 1834 if (na == NULL || na->pdev == NULL) 1835 return netmap_mem_get(&nm_mem); 1836 1837 domain = nm_numa_domain(na->pdev); 1838 grp_id = nm_iommu_group_id(na->pdev); 1839 1840 NM_MTX_LOCK(nm_mem_list_lock); 1841 nmd = netmap_last_mem_d; 1842 do { 1843 if (!(nmd->flags & NETMAP_MEM_HIDDEN) && 1844 nmd->nm_grp == grp_id && nmd->nm_numa_domain == domain) { 1845 nmd->refcount++; 1846 NM_DBG_REFC(nmd, __FUNCTION__, __LINE__); 1847 NM_MTX_UNLOCK(nm_mem_list_lock); 1848 return nmd; 1849 } 1850 nmd = nmd->next; 1851 } while (nmd != netmap_last_mem_d); 1852 1853 nmd = nm_os_malloc(sizeof(*nmd)); 1854 if (nmd == NULL) 1855 goto error; 1856 1857 *nmd = nm_mem_blueprint; 1858 1859 err = nm_mem_assign_id_locked(nmd, grp_id, domain); 1860 if (err) 1861 goto error_free; 1862 1863 snprintf(nmd->name, sizeof(nmd->name), "%d", nmd->nm_id); 1864 1865 for (i = 0; i < NETMAP_POOLS_NR; i++) { 1866 snprintf(nmd->pools[i].name, NETMAP_POOL_MAX_NAMSZ, "%s-%s", 1867 nm_mem_blueprint.pools[i].name, nmd->name); 1868 } 1869 1870 NMA_LOCK_INIT(nmd); 1871 1872 NM_MTX_UNLOCK(nm_mem_list_lock); 1873 return nmd; 1874 1875 error_free: 1876 nm_os_free(nmd); 1877 error: 1878 NM_MTX_UNLOCK(nm_mem_list_lock); 1879 return NULL; 1880 } 1881 1882 /* call with lock held */ 1883 static int 1884 netmap_mem2_config(struct netmap_mem_d *nmd) 1885 { 1886 int i; 1887 1888 if (!netmap_mem_params_changed(nmd->params)) 1889 goto out; 1890 1891 nm_prdis("reconfiguring"); 1892 1893 if (nmd->flags & NETMAP_MEM_FINALIZED) { 1894 /* reset previous allocation */ 1895 for (i = 0; i < NETMAP_POOLS_NR; i++) { 1896 netmap_reset_obj_allocator(&nmd->pools[i]); 1897 } 1898 nmd->flags &= ~NETMAP_MEM_FINALIZED; 1899 } 1900 1901 for (i = 0; i < NETMAP_POOLS_NR; i++) { 1902 nmd->lasterr = netmap_config_obj_allocator(&nmd->pools[i], 1903 nmd->params[i].num, nmd->params[i].size); 1904 if (nmd->lasterr) 1905 goto out; 1906 } 1907 1908 out: 1909 1910 return nmd->lasterr; 1911 } 1912 1913 static int 1914 netmap_mem2_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na) 1915 { 1916 if (nmd->flags & NETMAP_MEM_FINALIZED) 1917 goto out; 1918 1919 if (netmap_mem_finalize_all(nmd)) 1920 goto out; 1921 1922 nmd->lasterr = 0; 1923 1924 out: 1925 return nmd->lasterr; 1926 } 1927 1928 static void 1929 netmap_mem2_delete(struct netmap_mem_d *nmd) 1930 { 1931 int i; 1932 1933 for (i = 0; i < NETMAP_POOLS_NR; i++) { 1934 netmap_destroy_obj_allocator(&nmd->pools[i]); 1935 } 1936 1937 NMA_LOCK_DESTROY(nmd); 1938 if (nmd != &nm_mem) 1939 nm_os_free(nmd); 1940 } 1941 1942 #ifdef WITH_EXTMEM 1943 /* doubly linekd list of all existing external allocators */ 1944 static struct netmap_mem_ext *netmap_mem_ext_list = NULL; 1945 NM_MTX_T nm_mem_ext_list_lock; 1946 #endif /* WITH_EXTMEM */ 1947 1948 int 1949 netmap_mem_init(void) 1950 { 1951 nm_mem_blueprint = nm_mem; 1952 NM_MTX_INIT(nm_mem_list_lock); 1953 NMA_LOCK_INIT(&nm_mem); 1954 netmap_mem_get(&nm_mem); 1955 #ifdef WITH_EXTMEM 1956 NM_MTX_INIT(nm_mem_ext_list_lock); 1957 #endif /* WITH_EXTMEM */ 1958 return (0); 1959 } 1960 1961 void 1962 netmap_mem_fini(void) 1963 { 1964 netmap_mem_put(&nm_mem); 1965 } 1966 1967 static int 1968 netmap_mem_ring_needed(struct netmap_kring *kring) 1969 { 1970 return kring->ring == NULL && 1971 (kring->users > 0 || 1972 (kring->nr_kflags & NKR_NEEDRING)); 1973 } 1974 1975 static int 1976 netmap_mem_ring_todelete(struct netmap_kring *kring) 1977 { 1978 return kring->ring != NULL && 1979 kring->users == 0 && 1980 !(kring->nr_kflags & NKR_NEEDRING); 1981 } 1982 1983 1984 /* call with NMA_LOCK held * 1985 * 1986 * Allocate netmap rings and buffers for this card 1987 * The rings are contiguous, but have variable size. 1988 * The kring array must follow the layout described 1989 * in netmap_krings_create(). 1990 */ 1991 static int 1992 netmap_mem2_rings_create(struct netmap_mem_d *nmd, struct netmap_adapter *na) 1993 { 1994 enum txrx t; 1995 1996 for_rx_tx(t) { 1997 u_int i; 1998 1999 for (i = 0; i < netmap_all_rings(na, t); i++) { 2000 struct netmap_kring *kring = NMR(na, t)[i]; 2001 struct netmap_ring *ring = kring->ring; 2002 u_int len, ndesc; 2003 2004 if (!netmap_mem_ring_needed(kring)) { 2005 /* unneeded, or already created by somebody else */ 2006 if (netmap_debug & NM_DEBUG_MEM) 2007 nm_prinf("NOT creating ring %s (ring %p, users %d neekring %d)", 2008 kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING); 2009 continue; 2010 } 2011 if (netmap_debug & NM_DEBUG_MEM) 2012 nm_prinf("creating %s", kring->name); 2013 ndesc = kring->nkr_num_slots; 2014 len = sizeof(struct netmap_ring) + 2015 ndesc * sizeof(struct netmap_slot); 2016 ring = netmap_ring_malloc(nmd, len); 2017 if (ring == NULL) { 2018 nm_prerr("Cannot allocate %s_ring", nm_txrx2str(t)); 2019 goto cleanup; 2020 } 2021 nm_prdis("txring at %p", ring); 2022 kring->ring = ring; 2023 *(uint32_t *)(uintptr_t)&ring->num_slots = ndesc; 2024 *(int64_t *)(uintptr_t)&ring->buf_ofs = 2025 (nmd->pools[NETMAP_IF_POOL].memtotal + 2026 nmd->pools[NETMAP_RING_POOL].memtotal) - 2027 netmap_ring_offset(nmd, ring); 2028 2029 /* copy values from kring */ 2030 ring->head = kring->rhead; 2031 ring->cur = kring->rcur; 2032 ring->tail = kring->rtail; 2033 *(uint32_t *)(uintptr_t)&ring->nr_buf_size = 2034 netmap_mem_bufsize(nmd); 2035 nm_prdis("%s h %d c %d t %d", kring->name, 2036 ring->head, ring->cur, ring->tail); 2037 nm_prdis("initializing slots for %s_ring", nm_txrx2str(t)); 2038 if (!(kring->nr_kflags & NKR_FAKERING)) { 2039 /* this is a real ring */ 2040 if (netmap_debug & NM_DEBUG_MEM) 2041 nm_prinf("allocating buffers for %s", kring->name); 2042 if (netmap_new_bufs(nmd, ring->slot, ndesc)) { 2043 nm_prerr("Cannot allocate buffers for %s_ring", nm_txrx2str(t)); 2044 goto cleanup; 2045 } 2046 } else { 2047 /* this is a fake ring, set all indices to 0 */ 2048 if (netmap_debug & NM_DEBUG_MEM) 2049 nm_prinf("NOT allocating buffers for %s", kring->name); 2050 netmap_mem_set_ring(nmd, ring->slot, ndesc, 0); 2051 } 2052 /* ring info */ 2053 *(uint16_t *)(uintptr_t)&ring->ringid = kring->ring_id; 2054 *(uint16_t *)(uintptr_t)&ring->dir = kring->tx; 2055 } 2056 } 2057 2058 return 0; 2059 2060 cleanup: 2061 /* we cannot actually cleanup here, since we don't own kring->users 2062 * and kring->nr_klags & NKR_NEEDRING. The caller must decrement 2063 * the first or zero-out the second, then call netmap_free_rings() 2064 * to do the cleanup 2065 */ 2066 2067 return ENOMEM; 2068 } 2069 2070 static void 2071 netmap_mem2_rings_delete(struct netmap_mem_d *nmd, struct netmap_adapter *na) 2072 { 2073 enum txrx t; 2074 2075 for_rx_tx(t) { 2076 u_int i; 2077 for (i = 0; i < netmap_all_rings(na, t); i++) { 2078 struct netmap_kring *kring = NMR(na, t)[i]; 2079 struct netmap_ring *ring = kring->ring; 2080 2081 if (!netmap_mem_ring_todelete(kring)) { 2082 if (netmap_debug & NM_DEBUG_MEM) 2083 nm_prinf("NOT deleting ring %s (ring %p, users %d neekring %d)", 2084 kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING); 2085 continue; 2086 } 2087 if (netmap_debug & NM_DEBUG_MEM) 2088 nm_prinf("deleting ring %s", kring->name); 2089 if (!(kring->nr_kflags & NKR_FAKERING)) { 2090 nm_prdis("freeing bufs for %s", kring->name); 2091 netmap_free_bufs(nmd, ring->slot, kring->nkr_num_slots); 2092 } else { 2093 nm_prdis("NOT freeing bufs for %s", kring->name); 2094 } 2095 netmap_ring_free(nmd, ring); 2096 kring->ring = NULL; 2097 } 2098 } 2099 } 2100 2101 /* call with NMA_LOCK held */ 2102 /* 2103 * Allocate the per-fd structure netmap_if. 2104 * 2105 * We assume that the configuration stored in na 2106 * (number of tx/rx rings and descs) does not change while 2107 * the interface is in netmap mode. 2108 */ 2109 static struct netmap_if * 2110 netmap_mem2_if_new(struct netmap_mem_d *nmd, 2111 struct netmap_adapter *na, struct netmap_priv_d *priv) 2112 { 2113 struct netmap_if *nifp; 2114 ssize_t base; /* handy for relative offsets between rings and nifp */ 2115 u_int i, len, n[NR_TXRX], ntot; 2116 enum txrx t; 2117 2118 ntot = 0; 2119 for_rx_tx(t) { 2120 /* account for the (eventually fake) host rings */ 2121 n[t] = netmap_all_rings(na, t); 2122 ntot += n[t]; 2123 } 2124 /* 2125 * the descriptor is followed inline by an array of offsets 2126 * to the tx and rx rings in the shared memory region. 2127 */ 2128 2129 len = sizeof(struct netmap_if) + (ntot * sizeof(ssize_t)); 2130 nifp = netmap_if_malloc(nmd, len); 2131 if (nifp == NULL) { 2132 return NULL; 2133 } 2134 2135 /* initialize base fields -- override const */ 2136 *(u_int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings; 2137 *(u_int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings; 2138 *(u_int *)(uintptr_t)&nifp->ni_host_tx_rings = 2139 (na->num_host_tx_rings ? na->num_host_tx_rings : 1); 2140 *(u_int *)(uintptr_t)&nifp->ni_host_rx_rings = 2141 (na->num_host_rx_rings ? na->num_host_rx_rings : 1); 2142 strlcpy(nifp->ni_name, na->name, sizeof(nifp->ni_name)); 2143 2144 /* 2145 * fill the slots for the rx and tx rings. They contain the offset 2146 * between the ring and nifp, so the information is usable in 2147 * userspace to reach the ring from the nifp. 2148 */ 2149 base = netmap_if_offset(nmd, nifp); 2150 for (i = 0; i < n[NR_TX]; i++) { 2151 /* XXX instead of ofs == 0 maybe use the offset of an error 2152 * ring, like we do for buffers? */ 2153 ssize_t ofs = 0; 2154 2155 if (na->tx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_TX] 2156 && i < priv->np_qlast[NR_TX]) { 2157 ofs = netmap_ring_offset(nmd, 2158 na->tx_rings[i]->ring) - base; 2159 } 2160 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = ofs; 2161 } 2162 for (i = 0; i < n[NR_RX]; i++) { 2163 /* XXX instead of ofs == 0 maybe use the offset of an error 2164 * ring, like we do for buffers? */ 2165 ssize_t ofs = 0; 2166 2167 if (na->rx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_RX] 2168 && i < priv->np_qlast[NR_RX]) { 2169 ofs = netmap_ring_offset(nmd, 2170 na->rx_rings[i]->ring) - base; 2171 } 2172 *(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n[NR_TX]] = ofs; 2173 } 2174 2175 return (nifp); 2176 } 2177 2178 static void 2179 netmap_mem2_if_delete(struct netmap_mem_d *nmd, 2180 struct netmap_adapter *na, struct netmap_if *nifp) 2181 { 2182 if (nifp == NULL) 2183 /* nothing to do */ 2184 return; 2185 if (nifp->ni_bufs_head) 2186 netmap_extra_free(na, nifp->ni_bufs_head); 2187 netmap_if_free(nmd, nifp); 2188 } 2189 2190 static void 2191 netmap_mem2_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na) 2192 { 2193 2194 if (netmap_debug & NM_DEBUG_MEM) 2195 nm_prinf("active = %d", nmd->active); 2196 2197 } 2198 2199 const struct netmap_mem_ops netmap_mem_global_ops = { 2200 .nmd_get_lut = netmap_mem2_get_lut, 2201 .nmd_get_info = netmap_mem2_get_info, 2202 .nmd_ofstophys = netmap_mem2_ofstophys, 2203 .nmd_config = netmap_mem2_config, 2204 .nmd_finalize = netmap_mem2_finalize, 2205 .nmd_deref = netmap_mem2_deref, 2206 .nmd_delete = netmap_mem2_delete, 2207 .nmd_if_offset = netmap_mem2_if_offset, 2208 .nmd_if_new = netmap_mem2_if_new, 2209 .nmd_if_delete = netmap_mem2_if_delete, 2210 .nmd_rings_create = netmap_mem2_rings_create, 2211 .nmd_rings_delete = netmap_mem2_rings_delete 2212 }; 2213 2214 int 2215 netmap_mem_pools_info_get(struct nmreq_pools_info *req, 2216 struct netmap_mem_d *nmd) 2217 { 2218 int ret; 2219 2220 ret = netmap_mem_get_info(nmd, &req->nr_memsize, NULL, 2221 &req->nr_mem_id); 2222 if (ret) { 2223 return ret; 2224 } 2225 2226 NMA_LOCK(nmd); 2227 req->nr_if_pool_offset = 0; 2228 req->nr_if_pool_objtotal = nmd->pools[NETMAP_IF_POOL].objtotal; 2229 req->nr_if_pool_objsize = nmd->pools[NETMAP_IF_POOL]._objsize; 2230 2231 req->nr_ring_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal; 2232 req->nr_ring_pool_objtotal = nmd->pools[NETMAP_RING_POOL].objtotal; 2233 req->nr_ring_pool_objsize = nmd->pools[NETMAP_RING_POOL]._objsize; 2234 2235 req->nr_buf_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal + 2236 nmd->pools[NETMAP_RING_POOL].memtotal; 2237 req->nr_buf_pool_objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal; 2238 req->nr_buf_pool_objsize = nmd->pools[NETMAP_BUF_POOL]._objsize; 2239 NMA_UNLOCK(nmd); 2240 2241 return 0; 2242 } 2243 2244 #ifdef WITH_EXTMEM 2245 struct netmap_mem_ext { 2246 struct netmap_mem_d up; 2247 2248 struct nm_os_extmem *os; 2249 struct netmap_mem_ext *next, *prev; 2250 }; 2251 2252 /* call with nm_mem_list_lock held */ 2253 static void 2254 netmap_mem_ext_register(struct netmap_mem_ext *e) 2255 { 2256 NM_MTX_LOCK(nm_mem_ext_list_lock); 2257 if (netmap_mem_ext_list) 2258 netmap_mem_ext_list->prev = e; 2259 e->next = netmap_mem_ext_list; 2260 netmap_mem_ext_list = e; 2261 e->prev = NULL; 2262 NM_MTX_UNLOCK(nm_mem_ext_list_lock); 2263 } 2264 2265 /* call with nm_mem_list_lock held */ 2266 static void 2267 netmap_mem_ext_unregister(struct netmap_mem_ext *e) 2268 { 2269 if (e->prev) 2270 e->prev->next = e->next; 2271 else 2272 netmap_mem_ext_list = e->next; 2273 if (e->next) 2274 e->next->prev = e->prev; 2275 e->prev = e->next = NULL; 2276 } 2277 2278 static struct netmap_mem_ext * 2279 netmap_mem_ext_search(struct nm_os_extmem *os) 2280 { 2281 struct netmap_mem_ext *e; 2282 2283 NM_MTX_LOCK(nm_mem_ext_list_lock); 2284 for (e = netmap_mem_ext_list; e; e = e->next) { 2285 if (nm_os_extmem_isequal(e->os, os)) { 2286 netmap_mem_get(&e->up); 2287 break; 2288 } 2289 } 2290 NM_MTX_UNLOCK(nm_mem_ext_list_lock); 2291 return e; 2292 } 2293 2294 2295 static void 2296 netmap_mem_ext_delete(struct netmap_mem_d *d) 2297 { 2298 int i; 2299 struct netmap_mem_ext *e = 2300 (struct netmap_mem_ext *)d; 2301 2302 netmap_mem_ext_unregister(e); 2303 2304 for (i = 0; i < NETMAP_POOLS_NR; i++) { 2305 struct netmap_obj_pool *p = &d->pools[i]; 2306 2307 if (p->lut) { 2308 nm_free_lut(p->lut, p->objtotal); 2309 p->lut = NULL; 2310 } 2311 } 2312 if (e->os) 2313 nm_os_extmem_delete(e->os); 2314 netmap_mem2_delete(d); 2315 } 2316 2317 static int 2318 netmap_mem_ext_config(struct netmap_mem_d *nmd) 2319 { 2320 return 0; 2321 } 2322 2323 struct netmap_mem_ops netmap_mem_ext_ops = { 2324 .nmd_get_lut = netmap_mem2_get_lut, 2325 .nmd_get_info = netmap_mem2_get_info, 2326 .nmd_ofstophys = netmap_mem2_ofstophys, 2327 .nmd_config = netmap_mem_ext_config, 2328 .nmd_finalize = netmap_mem2_finalize, 2329 .nmd_deref = netmap_mem2_deref, 2330 .nmd_delete = netmap_mem_ext_delete, 2331 .nmd_if_offset = netmap_mem2_if_offset, 2332 .nmd_if_new = netmap_mem2_if_new, 2333 .nmd_if_delete = netmap_mem2_if_delete, 2334 .nmd_rings_create = netmap_mem2_rings_create, 2335 .nmd_rings_delete = netmap_mem2_rings_delete 2336 }; 2337 2338 struct netmap_mem_d * 2339 netmap_mem_ext_create(uint64_t usrptr, struct nmreq_pools_info *pi, int *perror) 2340 { 2341 int error = 0; 2342 int i, j; 2343 struct netmap_mem_ext *nme; 2344 char *clust; 2345 size_t off; 2346 struct nm_os_extmem *os = NULL; 2347 int nr_pages; 2348 2349 // XXX sanity checks 2350 if (pi->nr_if_pool_objtotal == 0) 2351 pi->nr_if_pool_objtotal = netmap_min_priv_params[NETMAP_IF_POOL].num; 2352 if (pi->nr_if_pool_objsize == 0) 2353 pi->nr_if_pool_objsize = netmap_min_priv_params[NETMAP_IF_POOL].size; 2354 if (pi->nr_ring_pool_objtotal == 0) 2355 pi->nr_ring_pool_objtotal = netmap_min_priv_params[NETMAP_RING_POOL].num; 2356 if (pi->nr_ring_pool_objsize == 0) 2357 pi->nr_ring_pool_objsize = netmap_min_priv_params[NETMAP_RING_POOL].size; 2358 if (pi->nr_buf_pool_objtotal == 0) 2359 pi->nr_buf_pool_objtotal = netmap_min_priv_params[NETMAP_BUF_POOL].num; 2360 if (pi->nr_buf_pool_objsize == 0) 2361 pi->nr_buf_pool_objsize = netmap_min_priv_params[NETMAP_BUF_POOL].size; 2362 if (netmap_verbose & NM_DEBUG_MEM) 2363 nm_prinf("if %d %d ring %d %d buf %d %d", 2364 pi->nr_if_pool_objtotal, pi->nr_if_pool_objsize, 2365 pi->nr_ring_pool_objtotal, pi->nr_ring_pool_objsize, 2366 pi->nr_buf_pool_objtotal, pi->nr_buf_pool_objsize); 2367 2368 os = nm_os_extmem_create(usrptr, pi, &error); 2369 if (os == NULL) { 2370 nm_prerr("os extmem creation failed"); 2371 goto out; 2372 } 2373 2374 nme = netmap_mem_ext_search(os); 2375 if (nme) { 2376 nm_os_extmem_delete(os); 2377 return &nme->up; 2378 } 2379 if (netmap_verbose & NM_DEBUG_MEM) 2380 nm_prinf("not found, creating new"); 2381 2382 nme = _netmap_mem_private_new(sizeof(*nme), 2383 2384 (struct netmap_obj_params[]){ 2385 { pi->nr_if_pool_objsize, pi->nr_if_pool_objtotal }, 2386 { pi->nr_ring_pool_objsize, pi->nr_ring_pool_objtotal }, 2387 { pi->nr_buf_pool_objsize, pi->nr_buf_pool_objtotal }}, 2388 -1, 2389 &netmap_mem_ext_ops, 2390 pi->nr_memsize, 2391 &error); 2392 if (nme == NULL) 2393 goto out_unmap; 2394 2395 nr_pages = nm_os_extmem_nr_pages(os); 2396 2397 /* from now on pages will be released by nme destructor; 2398 * we let res = 0 to prevent release in out_unmap below 2399 */ 2400 nme->os = os; 2401 os = NULL; /* pass ownership */ 2402 2403 clust = nm_os_extmem_nextpage(nme->os); 2404 off = 0; 2405 for (i = 0; i < NETMAP_POOLS_NR; i++) { 2406 struct netmap_obj_pool *p = &nme->up.pools[i]; 2407 struct netmap_obj_params *o = &nme->up.params[i]; 2408 2409 p->_objsize = o->size; 2410 p->_clustsize = o->size; 2411 p->_clustentries = 1; 2412 2413 p->lut = nm_alloc_lut(o->num); 2414 if (p->lut == NULL) { 2415 error = ENOMEM; 2416 goto out_delete; 2417 } 2418 2419 p->bitmap_slots = (o->num + sizeof(uint32_t) - 1) / sizeof(uint32_t); 2420 p->invalid_bitmap = nm_os_malloc(sizeof(uint32_t) * p->bitmap_slots); 2421 if (p->invalid_bitmap == NULL) { 2422 error = ENOMEM; 2423 goto out_delete; 2424 } 2425 2426 if (nr_pages == 0) { 2427 p->objtotal = 0; 2428 p->memtotal = 0; 2429 p->objfree = 0; 2430 continue; 2431 } 2432 2433 for (j = 0; j < o->num && nr_pages > 0; j++) { 2434 size_t noff; 2435 2436 p->lut[j].vaddr = clust + off; 2437 #if !defined(linux) && !defined(_WIN32) 2438 p->lut[j].paddr = vtophys(p->lut[j].vaddr); 2439 #endif 2440 nm_prdis("%s %d at %p", p->name, j, p->lut[j].vaddr); 2441 noff = off + p->_objsize; 2442 if (noff < PAGE_SIZE) { 2443 off = noff; 2444 continue; 2445 } 2446 nm_prdis("too big, recomputing offset..."); 2447 while (noff >= PAGE_SIZE) { 2448 char *old_clust = clust; 2449 noff -= PAGE_SIZE; 2450 clust = nm_os_extmem_nextpage(nme->os); 2451 nr_pages--; 2452 nm_prdis("noff %zu page %p nr_pages %d", noff, 2453 page_to_virt(*pages), nr_pages); 2454 if (noff > 0 && !nm_isset(p->invalid_bitmap, j) && 2455 (nr_pages == 0 || 2456 old_clust + PAGE_SIZE != clust)) 2457 { 2458 /* out of space or non contiguous, 2459 * drop this object 2460 * */ 2461 p->invalid_bitmap[ (j>>5) ] |= 1U << (j & 31U); 2462 nm_prdis("non contiguous at off %zu, drop", noff); 2463 } 2464 if (nr_pages == 0) 2465 break; 2466 } 2467 off = noff; 2468 } 2469 p->objtotal = j; 2470 p->numclusters = p->objtotal; 2471 p->memtotal = j * (size_t)p->_objsize; 2472 nm_prdis("%d memtotal %zu", j, p->memtotal); 2473 } 2474 2475 netmap_mem_ext_register(nme); 2476 2477 return &nme->up; 2478 2479 out_delete: 2480 netmap_mem_put(&nme->up); 2481 out_unmap: 2482 if (os) 2483 nm_os_extmem_delete(os); 2484 out: 2485 if (perror) 2486 *perror = error; 2487 return NULL; 2488 2489 } 2490 #endif /* WITH_EXTMEM */ 2491 2492 2493 #ifdef WITH_PTNETMAP 2494 struct mem_pt_if { 2495 struct mem_pt_if *next; 2496 if_t ifp; 2497 unsigned int nifp_offset; 2498 }; 2499 2500 /* Netmap allocator for ptnetmap guests. */ 2501 struct netmap_mem_ptg { 2502 struct netmap_mem_d up; 2503 2504 vm_paddr_t nm_paddr; /* physical address in the guest */ 2505 void *nm_addr; /* virtual address in the guest */ 2506 struct netmap_lut buf_lut; /* lookup table for BUF pool in the guest */ 2507 nm_memid_t host_mem_id; /* allocator identifier in the host */ 2508 struct ptnetmap_memdev *ptn_dev;/* ptnetmap memdev */ 2509 struct mem_pt_if *pt_ifs; /* list of interfaces in passthrough */ 2510 }; 2511 2512 /* Link a passthrough interface to a passthrough netmap allocator. */ 2513 static int 2514 netmap_mem_pt_guest_ifp_add(struct netmap_mem_d *nmd, if_t ifp, 2515 unsigned int nifp_offset) 2516 { 2517 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd; 2518 struct mem_pt_if *ptif = nm_os_malloc(sizeof(*ptif)); 2519 2520 if (!ptif) { 2521 return ENOMEM; 2522 } 2523 2524 NMA_LOCK(nmd); 2525 2526 ptif->ifp = ifp; 2527 ptif->nifp_offset = nifp_offset; 2528 2529 if (ptnmd->pt_ifs) { 2530 ptif->next = ptnmd->pt_ifs; 2531 } 2532 ptnmd->pt_ifs = ptif; 2533 2534 NMA_UNLOCK(nmd); 2535 2536 nm_prinf("ifp=%s,nifp_offset=%u", 2537 if_name(ptif->ifp), ptif->nifp_offset); 2538 2539 return 0; 2540 } 2541 2542 /* Called with NMA_LOCK(nmd) held. */ 2543 static struct mem_pt_if * 2544 netmap_mem_pt_guest_ifp_lookup(struct netmap_mem_d *nmd, if_t ifp) 2545 { 2546 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd; 2547 struct mem_pt_if *curr; 2548 2549 for (curr = ptnmd->pt_ifs; curr; curr = curr->next) { 2550 if (curr->ifp == ifp) { 2551 return curr; 2552 } 2553 } 2554 2555 return NULL; 2556 } 2557 2558 /* Unlink a passthrough interface from a passthrough netmap allocator. */ 2559 int 2560 netmap_mem_pt_guest_ifp_del(struct netmap_mem_d *nmd, if_t ifp) 2561 { 2562 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd; 2563 struct mem_pt_if *prev = NULL; 2564 struct mem_pt_if *curr; 2565 int ret = -1; 2566 2567 NMA_LOCK(nmd); 2568 2569 for (curr = ptnmd->pt_ifs; curr; curr = curr->next) { 2570 if (curr->ifp == ifp) { 2571 if (prev) { 2572 prev->next = curr->next; 2573 } else { 2574 ptnmd->pt_ifs = curr->next; 2575 } 2576 nm_prinf("removed (ifp=%s,nifp_offset=%u)", 2577 if_name(curr->ifp), curr->nifp_offset); 2578 nm_os_free(curr); 2579 ret = 0; 2580 break; 2581 } 2582 prev = curr; 2583 } 2584 2585 NMA_UNLOCK(nmd); 2586 2587 return ret; 2588 } 2589 2590 static int 2591 netmap_mem_pt_guest_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut) 2592 { 2593 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd; 2594 2595 if (!(nmd->flags & NETMAP_MEM_FINALIZED)) { 2596 return EINVAL; 2597 } 2598 2599 *lut = ptnmd->buf_lut; 2600 return 0; 2601 } 2602 2603 static int 2604 netmap_mem_pt_guest_get_info(struct netmap_mem_d *nmd, uint64_t *size, 2605 u_int *memflags, uint16_t *id) 2606 { 2607 int error = 0; 2608 2609 error = nmd->ops->nmd_config(nmd); 2610 if (error) 2611 goto out; 2612 2613 if (size) 2614 *size = nmd->nm_totalsize; 2615 if (memflags) 2616 *memflags = nmd->flags; 2617 if (id) 2618 *id = nmd->nm_id; 2619 2620 out: 2621 2622 return error; 2623 } 2624 2625 static vm_paddr_t 2626 netmap_mem_pt_guest_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off) 2627 { 2628 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd; 2629 vm_paddr_t paddr; 2630 /* if the offset is valid, just return csb->base_addr + off */ 2631 paddr = (vm_paddr_t)(ptnmd->nm_paddr + off); 2632 nm_prdis("off %lx padr %lx", off, (unsigned long)paddr); 2633 return paddr; 2634 } 2635 2636 static int 2637 netmap_mem_pt_guest_config(struct netmap_mem_d *nmd) 2638 { 2639 /* nothing to do, we are configured on creation 2640 * and configuration never changes thereafter 2641 */ 2642 return 0; 2643 } 2644 2645 static int 2646 netmap_mem_pt_guest_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na) 2647 { 2648 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd; 2649 uint64_t mem_size; 2650 uint32_t bufsize; 2651 uint32_t nbuffers; 2652 uint32_t poolofs; 2653 vm_paddr_t paddr; 2654 char *vaddr; 2655 int i; 2656 int error = 0; 2657 2658 if (nmd->flags & NETMAP_MEM_FINALIZED) 2659 goto out; 2660 2661 if (ptnmd->ptn_dev == NULL) { 2662 nm_prerr("ptnetmap memdev not attached"); 2663 error = ENOMEM; 2664 goto out; 2665 } 2666 /* Map memory through ptnetmap-memdev BAR. */ 2667 error = nm_os_pt_memdev_iomap(ptnmd->ptn_dev, &ptnmd->nm_paddr, 2668 &ptnmd->nm_addr, &mem_size); 2669 if (error) 2670 goto out; 2671 2672 /* Initialize the lut using the information contained in the 2673 * ptnetmap memory device. */ 2674 bufsize = nm_os_pt_memdev_ioread(ptnmd->ptn_dev, 2675 PTNET_MDEV_IO_BUF_POOL_OBJSZ); 2676 nbuffers = nm_os_pt_memdev_ioread(ptnmd->ptn_dev, 2677 PTNET_MDEV_IO_BUF_POOL_OBJNUM); 2678 2679 /* allocate the lut */ 2680 if (ptnmd->buf_lut.lut == NULL) { 2681 nm_prinf("allocating lut"); 2682 ptnmd->buf_lut.lut = nm_alloc_lut(nbuffers); 2683 if (ptnmd->buf_lut.lut == NULL) { 2684 nm_prerr("lut allocation failed"); 2685 return ENOMEM; 2686 } 2687 } 2688 2689 /* we have physically contiguous memory mapped through PCI BAR */ 2690 poolofs = nm_os_pt_memdev_ioread(ptnmd->ptn_dev, 2691 PTNET_MDEV_IO_BUF_POOL_OFS); 2692 vaddr = (char *)(ptnmd->nm_addr) + poolofs; 2693 paddr = ptnmd->nm_paddr + poolofs; 2694 2695 for (i = 0; i < nbuffers; i++) { 2696 ptnmd->buf_lut.lut[i].vaddr = vaddr; 2697 vaddr += bufsize; 2698 paddr += bufsize; 2699 } 2700 2701 ptnmd->buf_lut.objtotal = nbuffers; 2702 ptnmd->buf_lut.objsize = bufsize; 2703 nmd->nm_totalsize = mem_size; 2704 2705 /* Initialize these fields as are needed by 2706 * netmap_mem_bufsize(). 2707 * XXX please improve this, why do we need this 2708 * replication? maybe we nmd->pools[] should no be 2709 * there for the guest allocator? */ 2710 nmd->pools[NETMAP_BUF_POOL]._objsize = bufsize; 2711 nmd->pools[NETMAP_BUF_POOL]._objtotal = nbuffers; 2712 2713 nmd->flags |= NETMAP_MEM_FINALIZED; 2714 out: 2715 return error; 2716 } 2717 2718 static void 2719 netmap_mem_pt_guest_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na) 2720 { 2721 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd; 2722 2723 if (nmd->active == 1 && 2724 (nmd->flags & NETMAP_MEM_FINALIZED)) { 2725 nmd->flags &= ~NETMAP_MEM_FINALIZED; 2726 /* unmap ptnetmap-memdev memory */ 2727 if (ptnmd->ptn_dev) { 2728 nm_os_pt_memdev_iounmap(ptnmd->ptn_dev); 2729 } 2730 ptnmd->nm_addr = NULL; 2731 ptnmd->nm_paddr = 0; 2732 } 2733 } 2734 2735 static ssize_t 2736 netmap_mem_pt_guest_if_offset(struct netmap_mem_d *nmd, const void *vaddr) 2737 { 2738 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd; 2739 2740 return (const char *)(vaddr) - (char *)(ptnmd->nm_addr); 2741 } 2742 2743 static void 2744 netmap_mem_pt_guest_delete(struct netmap_mem_d *nmd) 2745 { 2746 if (nmd == NULL) 2747 return; 2748 if (netmap_verbose) 2749 nm_prinf("deleting %p", nmd); 2750 if (nmd->active > 0) 2751 nm_prerr("bug: deleting mem allocator with active=%d!", nmd->active); 2752 if (netmap_verbose) 2753 nm_prinf("done deleting %p", nmd); 2754 NMA_LOCK_DESTROY(nmd); 2755 nm_os_free(nmd); 2756 } 2757 2758 static struct netmap_if * 2759 netmap_mem_pt_guest_if_new(struct netmap_mem_d *nmd, 2760 struct netmap_adapter *na, struct netmap_priv_d *priv) 2761 { 2762 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd; 2763 struct mem_pt_if *ptif; 2764 struct netmap_if *nifp = NULL; 2765 2766 ptif = netmap_mem_pt_guest_ifp_lookup(nmd, na->ifp); 2767 if (ptif == NULL) { 2768 nm_prerr("interface %s is not in passthrough", na->name); 2769 goto out; 2770 } 2771 2772 nifp = (struct netmap_if *)((char *)(ptnmd->nm_addr) + 2773 ptif->nifp_offset); 2774 out: 2775 return nifp; 2776 } 2777 2778 static void 2779 netmap_mem_pt_guest_if_delete(struct netmap_mem_d * nmd, 2780 struct netmap_adapter *na, struct netmap_if *nifp) 2781 { 2782 struct mem_pt_if *ptif; 2783 2784 ptif = netmap_mem_pt_guest_ifp_lookup(nmd, na->ifp); 2785 if (ptif == NULL) { 2786 nm_prerr("interface %s is not in passthrough", na->name); 2787 } 2788 } 2789 2790 static int 2791 netmap_mem_pt_guest_rings_create(struct netmap_mem_d *nmd, 2792 struct netmap_adapter *na) 2793 { 2794 struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd; 2795 struct mem_pt_if *ptif; 2796 struct netmap_if *nifp; 2797 int i, error = -1; 2798 2799 ptif = netmap_mem_pt_guest_ifp_lookup(nmd, na->ifp); 2800 if (ptif == NULL) { 2801 nm_prerr("interface %s is not in passthrough", na->name); 2802 goto out; 2803 } 2804 2805 2806 /* point each kring to the corresponding backend ring */ 2807 nifp = (struct netmap_if *)((char *)ptnmd->nm_addr + ptif->nifp_offset); 2808 for (i = 0; i < netmap_all_rings(na, NR_TX); i++) { 2809 struct netmap_kring *kring = na->tx_rings[i]; 2810 if (kring->ring) 2811 continue; 2812 kring->ring = (struct netmap_ring *) 2813 ((char *)nifp + nifp->ring_ofs[i]); 2814 } 2815 for (i = 0; i < netmap_all_rings(na, NR_RX); i++) { 2816 struct netmap_kring *kring = na->rx_rings[i]; 2817 if (kring->ring) 2818 continue; 2819 kring->ring = (struct netmap_ring *) 2820 ((char *)nifp + 2821 nifp->ring_ofs[netmap_all_rings(na, NR_TX) + i]); 2822 } 2823 2824 error = 0; 2825 out: 2826 return error; 2827 } 2828 2829 static void 2830 netmap_mem_pt_guest_rings_delete(struct netmap_mem_d *nmd, struct netmap_adapter *na) 2831 { 2832 #if 0 2833 enum txrx t; 2834 2835 for_rx_tx(t) { 2836 u_int i; 2837 for (i = 0; i < nma_get_nrings(na, t) + 1; i++) { 2838 struct netmap_kring *kring = &NMR(na, t)[i]; 2839 2840 kring->ring = NULL; 2841 } 2842 } 2843 #endif 2844 (void)nmd; 2845 (void)na; 2846 } 2847 2848 static struct netmap_mem_ops netmap_mem_pt_guest_ops = { 2849 .nmd_get_lut = netmap_mem_pt_guest_get_lut, 2850 .nmd_get_info = netmap_mem_pt_guest_get_info, 2851 .nmd_ofstophys = netmap_mem_pt_guest_ofstophys, 2852 .nmd_config = netmap_mem_pt_guest_config, 2853 .nmd_finalize = netmap_mem_pt_guest_finalize, 2854 .nmd_deref = netmap_mem_pt_guest_deref, 2855 .nmd_if_offset = netmap_mem_pt_guest_if_offset, 2856 .nmd_delete = netmap_mem_pt_guest_delete, 2857 .nmd_if_new = netmap_mem_pt_guest_if_new, 2858 .nmd_if_delete = netmap_mem_pt_guest_if_delete, 2859 .nmd_rings_create = netmap_mem_pt_guest_rings_create, 2860 .nmd_rings_delete = netmap_mem_pt_guest_rings_delete 2861 }; 2862 2863 /* Called with nm_mem_list_lock held. */ 2864 static struct netmap_mem_d * 2865 netmap_mem_pt_guest_find_memid(nm_memid_t mem_id) 2866 { 2867 struct netmap_mem_d *mem = NULL; 2868 struct netmap_mem_d *scan = netmap_last_mem_d; 2869 2870 do { 2871 /* find ptnetmap allocator through host ID */ 2872 if (scan->ops->nmd_deref == netmap_mem_pt_guest_deref && 2873 ((struct netmap_mem_ptg *)(scan))->host_mem_id == mem_id) { 2874 mem = scan; 2875 mem->refcount++; 2876 NM_DBG_REFC(mem, __FUNCTION__, __LINE__); 2877 break; 2878 } 2879 scan = scan->next; 2880 } while (scan != netmap_last_mem_d); 2881 2882 return mem; 2883 } 2884 2885 /* Called with nm_mem_list_lock held. */ 2886 static struct netmap_mem_d * 2887 netmap_mem_pt_guest_create(nm_memid_t mem_id) 2888 { 2889 struct netmap_mem_ptg *ptnmd; 2890 int err = 0; 2891 2892 ptnmd = nm_os_malloc(sizeof(struct netmap_mem_ptg)); 2893 if (ptnmd == NULL) { 2894 err = ENOMEM; 2895 goto error; 2896 } 2897 2898 ptnmd->up.ops = &netmap_mem_pt_guest_ops; 2899 ptnmd->host_mem_id = mem_id; 2900 ptnmd->pt_ifs = NULL; 2901 2902 /* Assign new id in the guest (We have the lock) */ 2903 err = nm_mem_assign_id_locked(&ptnmd->up, -1, -1); 2904 if (err) 2905 goto error; 2906 2907 ptnmd->up.flags &= ~NETMAP_MEM_FINALIZED; 2908 ptnmd->up.flags |= NETMAP_MEM_IO; 2909 2910 NMA_LOCK_INIT(&ptnmd->up); 2911 2912 snprintf(ptnmd->up.name, NM_MEM_NAMESZ, "%d", ptnmd->up.nm_id); 2913 2914 2915 return &ptnmd->up; 2916 error: 2917 netmap_mem_pt_guest_delete(&ptnmd->up); 2918 return NULL; 2919 } 2920 2921 /* 2922 * find host id in guest allocators and create guest allocator 2923 * if it is not there 2924 */ 2925 static struct netmap_mem_d * 2926 netmap_mem_pt_guest_get(nm_memid_t mem_id) 2927 { 2928 struct netmap_mem_d *nmd; 2929 2930 NM_MTX_LOCK(nm_mem_list_lock); 2931 nmd = netmap_mem_pt_guest_find_memid(mem_id); 2932 if (nmd == NULL) { 2933 nmd = netmap_mem_pt_guest_create(mem_id); 2934 } 2935 NM_MTX_UNLOCK(nm_mem_list_lock); 2936 2937 return nmd; 2938 } 2939 2940 /* 2941 * The guest allocator can be created by ptnetmap_memdev (during the device 2942 * attach) or by ptnetmap device (ptnet), during the netmap_attach. 2943 * 2944 * The order is not important (we have different order in LINUX and FreeBSD). 2945 * The first one, creates the device, and the second one simply attaches it. 2946 */ 2947 2948 /* Called when ptnetmap_memdev is attaching, to attach a new allocator in 2949 * the guest */ 2950 struct netmap_mem_d * 2951 netmap_mem_pt_guest_attach(struct ptnetmap_memdev *ptn_dev, nm_memid_t mem_id) 2952 { 2953 struct netmap_mem_d *nmd; 2954 struct netmap_mem_ptg *ptnmd; 2955 2956 nmd = netmap_mem_pt_guest_get(mem_id); 2957 2958 /* assign this device to the guest allocator */ 2959 if (nmd) { 2960 ptnmd = (struct netmap_mem_ptg *)nmd; 2961 ptnmd->ptn_dev = ptn_dev; 2962 } 2963 2964 return nmd; 2965 } 2966 2967 /* Called when ptnet device is attaching */ 2968 struct netmap_mem_d * 2969 netmap_mem_pt_guest_new(if_t ifp, 2970 unsigned int nifp_offset, 2971 unsigned int memid) 2972 { 2973 struct netmap_mem_d *nmd; 2974 2975 if (ifp == NULL) { 2976 return NULL; 2977 } 2978 2979 nmd = netmap_mem_pt_guest_get((nm_memid_t)memid); 2980 2981 if (nmd) { 2982 netmap_mem_pt_guest_ifp_add(nmd, ifp, nifp_offset); 2983 } 2984 2985 return nmd; 2986 } 2987 2988 #endif /* WITH_PTNETMAP */ 2989