xref: /freebsd/sys/dev/netmap/netmap_mem2.c (revision 1bae9dc584272dd75dc4e04cb5d73be0e9fb562a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (C) 2012-2014 Matteo Landi
5  * Copyright (C) 2012-2016 Luigi Rizzo
6  * Copyright (C) 2012-2016 Giuseppe Lettieri
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *   1. Redistributions of source code must retain the above copyright
13  *      notice, this list of conditions and the following disclaimer.
14  *   2. Redistributions in binary form must reproduce the above copyright
15  *      notice, this list of conditions and the following disclaimer in the
16  *      documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
22  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  */
30 
31 #ifdef linux
32 #include "bsd_glue.h"
33 #endif /* linux */
34 
35 #ifdef __APPLE__
36 #include "osx_glue.h"
37 #endif /* __APPLE__ */
38 
39 #ifdef __FreeBSD__
40 #include <sys/types.h>
41 #include <sys/domainset.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>		/* MALLOC_DEFINE */
44 #include <sys/proc.h>
45 #include <vm/vm.h>	/* vtophys */
46 #include <vm/pmap.h>	/* vtophys */
47 #include <sys/socket.h> /* sockaddrs */
48 #include <sys/selinfo.h>
49 #include <sys/sysctl.h>
50 #include <net/if.h>
51 #include <net/if_var.h>
52 #include <net/vnet.h>
53 #include <machine/bus.h>	/* bus_dmamap_* */
54 
55 /* M_NETMAP only used in here */
56 MALLOC_DECLARE(M_NETMAP);
57 MALLOC_DEFINE(M_NETMAP, "netmap", "Network memory map");
58 
59 #endif /* __FreeBSD__ */
60 
61 #ifdef _WIN32
62 #include <win_glue.h>
63 #endif
64 
65 #include <net/netmap.h>
66 #include <dev/netmap/netmap_kern.h>
67 #include <net/netmap_virt.h>
68 #include "netmap_mem2.h"
69 
70 #ifdef _WIN32_USE_SMALL_GENERIC_DEVICES_MEMORY
71 #define NETMAP_BUF_MAX_NUM  8*4096      /* if too big takes too much time to allocate */
72 #else
73 #define NETMAP_BUF_MAX_NUM 20*4096*2	/* large machine */
74 #endif
75 
76 #define NETMAP_POOL_MAX_NAMSZ	32
77 
78 
79 enum {
80 	NETMAP_IF_POOL   = 0,
81 	NETMAP_RING_POOL,
82 	NETMAP_BUF_POOL,
83 	NETMAP_POOLS_NR
84 };
85 
86 
87 struct netmap_obj_params {
88 	u_int size;
89 	u_int num;
90 
91 	u_int last_size;
92 	u_int last_num;
93 };
94 
95 struct netmap_obj_pool {
96 	char name[NETMAP_POOL_MAX_NAMSZ];	/* name of the allocator */
97 
98 	/* ---------------------------------------------------*/
99 	/* these are only meaningful if the pool is finalized */
100 	/* (see 'finalized' field in netmap_mem_d)            */
101 	size_t memtotal;	/* actual total memory space */
102 
103 	struct lut_entry *lut;  /* virt,phys addresses, objtotal entries */
104 	uint32_t *bitmap;       /* one bit per buffer, 1 means free */
105 	uint32_t *invalid_bitmap;/* one bit per buffer, 1 means invalid */
106 	uint32_t bitmap_slots;	/* number of uint32 entries in bitmap */
107 
108 	u_int objtotal;         /* actual total number of objects. */
109 	u_int numclusters;	/* actual number of clusters */
110 	u_int objfree;          /* number of free objects. */
111 
112 	int	alloc_done;	/* we have allocated the memory */
113 	/* ---------------------------------------------------*/
114 
115 	/* limits */
116 	u_int objminsize;	/* minimum object size */
117 	u_int objmaxsize;	/* maximum object size */
118 	u_int nummin;		/* minimum number of objects */
119 	u_int nummax;		/* maximum number of objects */
120 
121 	/* these are changed only by config */
122 	u_int _objtotal;	/* total number of objects */
123 	u_int _objsize;		/* object size */
124 	u_int _clustsize;       /* cluster size */
125 	u_int _clustentries;    /* objects per cluster */
126 	u_int _numclusters;	/* number of clusters */
127 
128 	/* requested values */
129 	u_int r_objtotal;
130 	u_int r_objsize;
131 };
132 
133 #define NMA_LOCK_T		NM_MTX_T
134 #define NMA_LOCK_INIT(n)	NM_MTX_INIT((n)->nm_mtx)
135 #define NMA_LOCK_DESTROY(n)	NM_MTX_DESTROY((n)->nm_mtx)
136 #define NMA_LOCK(n)		NM_MTX_LOCK((n)->nm_mtx)
137 #define NMA_SPINLOCK(n)         NM_MTX_SPINLOCK((n)->nm_mtx)
138 #define NMA_UNLOCK(n)		NM_MTX_UNLOCK((n)->nm_mtx)
139 
140 struct netmap_mem_ops {
141 	int (*nmd_get_lut)(struct netmap_mem_d *, struct netmap_lut*);
142 	int  (*nmd_get_info)(struct netmap_mem_d *, uint64_t *size,
143 			u_int *memflags, uint16_t *id);
144 
145 	vm_paddr_t (*nmd_ofstophys)(struct netmap_mem_d *, vm_ooffset_t);
146 	int (*nmd_config)(struct netmap_mem_d *);
147 	int (*nmd_finalize)(struct netmap_mem_d *, struct netmap_adapter *);
148 	void (*nmd_deref)(struct netmap_mem_d *, struct netmap_adapter *);
149 	ssize_t  (*nmd_if_offset)(struct netmap_mem_d *, const void *vaddr);
150 	void (*nmd_delete)(struct netmap_mem_d *);
151 
152 	struct netmap_if * (*nmd_if_new)(struct netmap_mem_d *,
153 			struct netmap_adapter *, struct netmap_priv_d *);
154 	void (*nmd_if_delete)(struct netmap_mem_d *,
155 			struct netmap_adapter *, struct netmap_if *);
156 	int  (*nmd_rings_create)(struct netmap_mem_d *,
157 			struct netmap_adapter *);
158 	void (*nmd_rings_delete)(struct netmap_mem_d *,
159 			struct netmap_adapter *);
160 };
161 
162 struct netmap_mem_d {
163 	NMA_LOCK_T nm_mtx;  /* protect the allocator */
164 	size_t nm_totalsize; /* shorthand */
165 
166 	u_int flags;
167 #define NETMAP_MEM_FINALIZED	0x1	/* preallocation done */
168 #define NETMAP_MEM_HIDDEN	0x8	/* being prepared */
169 #define NETMAP_MEM_NOMAP	0x10	/* do not map/unmap pdevs */
170 	int lasterr;		/* last error for curr config */
171 	int active;		/* active users */
172 	int refcount;
173 	/* the three allocators */
174 	struct netmap_obj_pool pools[NETMAP_POOLS_NR];
175 
176 	nm_memid_t nm_id;	/* allocator identifier */
177 	int nm_grp;		/* iommu group id */
178 	int nm_numa_domain;	/* local NUMA domain */
179 
180 	/* list of all existing allocators, sorted by nm_id */
181 	struct netmap_mem_d *prev, *next;
182 
183 	const struct netmap_mem_ops *ops;
184 
185 	struct netmap_obj_params params[NETMAP_POOLS_NR];
186 
187 #define NM_MEM_NAMESZ	16
188 	char name[NM_MEM_NAMESZ];
189 };
190 
191 int
netmap_mem_get_lut(struct netmap_mem_d * nmd,struct netmap_lut * lut)192 netmap_mem_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
193 {
194 	int rv;
195 
196 	NMA_LOCK(nmd);
197 	rv = nmd->ops->nmd_get_lut(nmd, lut);
198 	NMA_UNLOCK(nmd);
199 
200 	return rv;
201 }
202 
203 int
netmap_mem_get_info(struct netmap_mem_d * nmd,uint64_t * size,u_int * memflags,nm_memid_t * memid)204 netmap_mem_get_info(struct netmap_mem_d *nmd, uint64_t *size,
205 		u_int *memflags, nm_memid_t *memid)
206 {
207 	int rv;
208 
209 	NMA_LOCK(nmd);
210 	rv = nmd->ops->nmd_get_info(nmd, size, memflags, memid);
211 	NMA_UNLOCK(nmd);
212 
213 	return rv;
214 }
215 
216 vm_paddr_t
netmap_mem_ofstophys(struct netmap_mem_d * nmd,vm_ooffset_t off)217 netmap_mem_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
218 {
219 	vm_paddr_t pa;
220 
221 #if defined(__FreeBSD__)
222 	/* This function is called by netmap_dev_pager_fault(), which holds a
223 	 * non-sleepable lock since FreeBSD 12. Since we cannot sleep, we
224 	 * spin on the trylock. */
225 	NMA_SPINLOCK(nmd);
226 #else
227 	NMA_LOCK(nmd);
228 #endif
229 	pa = nmd->ops->nmd_ofstophys(nmd, off);
230 	NMA_UNLOCK(nmd);
231 
232 	return pa;
233 }
234 
235 static int
netmap_mem_config(struct netmap_mem_d * nmd)236 netmap_mem_config(struct netmap_mem_d *nmd)
237 {
238 	if (nmd->active) {
239 		/* already in use. Not fatal, but we
240 		 * cannot change the configuration
241 		 */
242 		return 0;
243 	}
244 
245 	return nmd->ops->nmd_config(nmd);
246 }
247 
248 ssize_t
netmap_mem_if_offset(struct netmap_mem_d * nmd,const void * off)249 netmap_mem_if_offset(struct netmap_mem_d *nmd, const void *off)
250 {
251 	ssize_t rv;
252 
253 	NMA_LOCK(nmd);
254 	rv = nmd->ops->nmd_if_offset(nmd, off);
255 	NMA_UNLOCK(nmd);
256 
257 	return rv;
258 }
259 
260 static void
netmap_mem_delete(struct netmap_mem_d * nmd)261 netmap_mem_delete(struct netmap_mem_d *nmd)
262 {
263 	nmd->ops->nmd_delete(nmd);
264 }
265 
266 struct netmap_if *
netmap_mem_if_new(struct netmap_adapter * na,struct netmap_priv_d * priv)267 netmap_mem_if_new(struct netmap_adapter *na, struct netmap_priv_d *priv)
268 {
269 	struct netmap_if *nifp;
270 	struct netmap_mem_d *nmd = na->nm_mem;
271 
272 	NMA_LOCK(nmd);
273 	nifp = nmd->ops->nmd_if_new(nmd, na, priv);
274 	NMA_UNLOCK(nmd);
275 
276 	return nifp;
277 }
278 
279 void
netmap_mem_if_delete(struct netmap_adapter * na,struct netmap_if * nif)280 netmap_mem_if_delete(struct netmap_adapter *na, struct netmap_if *nif)
281 {
282 	struct netmap_mem_d *nmd = na->nm_mem;
283 
284 	NMA_LOCK(nmd);
285 	nmd->ops->nmd_if_delete(nmd, na, nif);
286 	NMA_UNLOCK(nmd);
287 }
288 
289 int
netmap_mem_rings_create(struct netmap_adapter * na)290 netmap_mem_rings_create(struct netmap_adapter *na)
291 {
292 	int rv;
293 	struct netmap_mem_d *nmd = na->nm_mem;
294 
295 	NMA_LOCK(nmd);
296 	rv = nmd->ops->nmd_rings_create(nmd, na);
297 	NMA_UNLOCK(nmd);
298 
299 	return rv;
300 }
301 
302 void
netmap_mem_rings_delete(struct netmap_adapter * na)303 netmap_mem_rings_delete(struct netmap_adapter *na)
304 {
305 	struct netmap_mem_d *nmd = na->nm_mem;
306 
307 	NMA_LOCK(nmd);
308 	nmd->ops->nmd_rings_delete(nmd, na);
309 	NMA_UNLOCK(nmd);
310 }
311 
312 static int netmap_mem_map(struct netmap_obj_pool *, struct netmap_adapter *);
313 static int netmap_mem_unmap(struct netmap_obj_pool *, struct netmap_adapter *);
314 static int nm_mem_check_group(struct netmap_mem_d *, void *);
315 static void nm_mem_release_id(struct netmap_mem_d *);
316 
317 nm_memid_t
netmap_mem_get_id(struct netmap_mem_d * nmd)318 netmap_mem_get_id(struct netmap_mem_d *nmd)
319 {
320 	return nmd->nm_id;
321 }
322 
323 #ifdef NM_DEBUG_MEM_PUTGET
324 #define NM_DBG_REFC(nmd, func, line)	\
325 	nm_prinf("%s:%d mem[%d:%d] -> %d", func, line, (nmd)->nm_id, (nmd)->nm_grp, (nmd)->refcount);
326 #else
327 #define NM_DBG_REFC(nmd, func, line)
328 #endif
329 
330 /* circular list of all existing allocators */
331 static struct netmap_mem_d *netmap_last_mem_d = &nm_mem;
332 static NM_MTX_T nm_mem_list_lock;
333 
334 struct netmap_mem_d *
__netmap_mem_get(struct netmap_mem_d * nmd,const char * func,int line)335 __netmap_mem_get(struct netmap_mem_d *nmd, const char *func, int line)
336 {
337 	NM_MTX_LOCK(nm_mem_list_lock);
338 	nmd->refcount++;
339 	NM_DBG_REFC(nmd, func, line);
340 	NM_MTX_UNLOCK(nm_mem_list_lock);
341 	return nmd;
342 }
343 
344 void
__netmap_mem_put(struct netmap_mem_d * nmd,const char * func,int line)345 __netmap_mem_put(struct netmap_mem_d *nmd, const char *func, int line)
346 {
347 	int last;
348 	NM_MTX_LOCK(nm_mem_list_lock);
349 	last = (--nmd->refcount == 0);
350 	if (last)
351 		nm_mem_release_id(nmd);
352 	NM_DBG_REFC(nmd, func, line);
353 	NM_MTX_UNLOCK(nm_mem_list_lock);
354 	if (last)
355 		netmap_mem_delete(nmd);
356 }
357 
358 int
netmap_mem_finalize(struct netmap_mem_d * nmd,struct netmap_adapter * na)359 netmap_mem_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
360 {
361 	int lasterr = 0;
362 	if (nm_mem_check_group(nmd, na->pdev) < 0) {
363 		return ENOMEM;
364 	}
365 
366 	NMA_LOCK(nmd);
367 
368 	if (netmap_mem_config(nmd))
369 		goto out;
370 
371 	nmd->active++;
372 
373 	nmd->lasterr = nmd->ops->nmd_finalize(nmd, na);
374 
375 	if (!nmd->lasterr && !(nmd->flags & NETMAP_MEM_NOMAP)) {
376 		nmd->lasterr = netmap_mem_map(&nmd->pools[NETMAP_BUF_POOL], na);
377 	}
378 
379 out:
380 	lasterr = nmd->lasterr;
381 	NMA_UNLOCK(nmd);
382 
383 	if (lasterr)
384 		netmap_mem_deref(nmd, na);
385 
386 	return lasterr;
387 }
388 
389 static int
nm_isset(uint32_t * bitmap,u_int i)390 nm_isset(uint32_t *bitmap, u_int i)
391 {
392 	return bitmap[ (i>>5) ] & ( 1U << (i & 31U) );
393 }
394 
395 
396 static int
netmap_init_obj_allocator_bitmap(struct netmap_obj_pool * p)397 netmap_init_obj_allocator_bitmap(struct netmap_obj_pool *p)
398 {
399 	u_int n, j;
400 
401 	if (p->bitmap == NULL) {
402 		/* Allocate the bitmap */
403 		n = (p->objtotal + 31) / 32;
404 		p->bitmap = nm_os_malloc(sizeof(p->bitmap[0]) * n);
405 		if (p->bitmap == NULL) {
406 			nm_prerr("Unable to create bitmap (%d entries) for allocator '%s'", (int)n,
407 			    p->name);
408 			return ENOMEM;
409 		}
410 		p->bitmap_slots = n;
411 	} else {
412 		memset(p->bitmap, 0, p->bitmap_slots * sizeof(p->bitmap[0]));
413 	}
414 
415 	p->objfree = 0;
416 	/*
417 	 * Set all the bits in the bitmap that have
418 	 * corresponding buffers to 1 to indicate they are
419 	 * free.
420 	 */
421 	for (j = 0; j < p->objtotal; j++) {
422 		if (p->invalid_bitmap && nm_isset(p->invalid_bitmap, j)) {
423 			if (netmap_debug & NM_DEBUG_MEM)
424 				nm_prinf("skipping %s %d", p->name, j);
425 			continue;
426 		}
427 		p->bitmap[ (j>>5) ] |=  ( 1U << (j & 31U) );
428 		p->objfree++;
429 	}
430 
431 	if (netmap_verbose)
432 		nm_prinf("%s free %u", p->name, p->objfree);
433 	if (p->objfree == 0) {
434 		if (netmap_verbose)
435 			nm_prerr("%s: no objects available", p->name);
436 		return ENOMEM;
437 	}
438 
439 	return 0;
440 }
441 
442 static int
netmap_mem_init_bitmaps(struct netmap_mem_d * nmd)443 netmap_mem_init_bitmaps(struct netmap_mem_d *nmd)
444 {
445 	int i, error = 0;
446 
447 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
448 		struct netmap_obj_pool *p = &nmd->pools[i];
449 
450 		error = netmap_init_obj_allocator_bitmap(p);
451 		if (error)
452 			return error;
453 	}
454 
455 	/*
456 	 * buffers 0 and 1 are reserved
457 	 */
458 	if (nmd->pools[NETMAP_BUF_POOL].objfree < 2) {
459 		nm_prerr("%s: not enough buffers", nmd->pools[NETMAP_BUF_POOL].name);
460 		return ENOMEM;
461 	}
462 
463 	nmd->pools[NETMAP_BUF_POOL].objfree -= 2;
464 	if (nmd->pools[NETMAP_BUF_POOL].bitmap) {
465 		/* XXX This check is a workaround that prevents a
466 		 * NULL pointer crash which currently happens only
467 		 * with ptnetmap guests.
468 		 * Removed shared-info --> is the bug still there? */
469 		nmd->pools[NETMAP_BUF_POOL].bitmap[0] = ~3U;
470 	}
471 	return 0;
472 }
473 
474 int
netmap_mem_deref(struct netmap_mem_d * nmd,struct netmap_adapter * na)475 netmap_mem_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
476 {
477 	int last_user = 0;
478 	NMA_LOCK(nmd);
479 	if (na->active_fds <= 0 && !(nmd->flags & NETMAP_MEM_NOMAP))
480 		netmap_mem_unmap(&nmd->pools[NETMAP_BUF_POOL], na);
481 	if (nmd->active == 1) {
482 		last_user = 1;
483 		/*
484 		 * Reset the allocator when it falls out of use so that any
485 		 * pool resources leaked by unclean application exits are
486 		 * reclaimed.
487 		 */
488 		netmap_mem_init_bitmaps(nmd);
489 	}
490 	nmd->ops->nmd_deref(nmd, na);
491 
492 	nmd->active--;
493 	if (last_user) {
494 		nmd->lasterr = 0;
495 	}
496 
497 	NMA_UNLOCK(nmd);
498 	return last_user;
499 }
500 
501 
502 /* accessor functions */
503 static int
netmap_mem2_get_lut(struct netmap_mem_d * nmd,struct netmap_lut * lut)504 netmap_mem2_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
505 {
506 	lut->lut = nmd->pools[NETMAP_BUF_POOL].lut;
507 #ifdef __FreeBSD__
508 	lut->plut = lut->lut;
509 #endif
510 	lut->objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
511 	lut->objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
512 
513 	return 0;
514 }
515 
516 static struct netmap_obj_params netmap_min_priv_params[NETMAP_POOLS_NR] = {
517 	[NETMAP_IF_POOL] = {
518 		.size = 1024,
519 		.num  = 2,
520 	},
521 	[NETMAP_RING_POOL] = {
522 		.size = 5*PAGE_SIZE,
523 		.num  = 4,
524 	},
525 	[NETMAP_BUF_POOL] = {
526 		.size = 2048,
527 		.num  = 4098,
528 	},
529 };
530 
531 
532 /*
533  * nm_mem is the memory allocator used for all physical interfaces
534  * running in netmap mode.
535  * Virtual (VALE) ports will have each its own allocator.
536  */
537 extern const struct netmap_mem_ops netmap_mem_global_ops; /* forward */
538 struct netmap_mem_d nm_mem = {	/* Our memory allocator. */
539 	.pools = {
540 		[NETMAP_IF_POOL] = {
541 			.name 	= "netmap_if",
542 			.objminsize = sizeof(struct netmap_if),
543 			.objmaxsize = 4096,
544 			.nummin     = 10,	/* don't be stingy */
545 			.nummax	    = 10000,	/* XXX very large */
546 		},
547 		[NETMAP_RING_POOL] = {
548 			.name 	= "netmap_ring",
549 			.objminsize = sizeof(struct netmap_ring),
550 			.objmaxsize = 32*PAGE_SIZE,
551 			.nummin     = 2,
552 			.nummax	    = 1024,
553 		},
554 		[NETMAP_BUF_POOL] = {
555 			.name	= "netmap_buf",
556 			.objminsize = 64,
557 			.objmaxsize = 65536,
558 			.nummin     = 4,
559 			.nummax	    = 1000000, /* one million! */
560 		},
561 	},
562 
563 	.params = {
564 		[NETMAP_IF_POOL] = {
565 			.size = 1024,
566 			.num  = 100,
567 		},
568 		[NETMAP_RING_POOL] = {
569 			.size = 9*PAGE_SIZE,
570 			.num  = 200,
571 		},
572 		[NETMAP_BUF_POOL] = {
573 			.size = 2048,
574 			.num  = NETMAP_BUF_MAX_NUM,
575 		},
576 	},
577 
578 	.nm_id = 1,
579 	.nm_grp = -1,
580 	.nm_numa_domain = -1,
581 
582 	.prev = &nm_mem,
583 	.next = &nm_mem,
584 
585 	.ops = &netmap_mem_global_ops,
586 
587 	.name = "1"
588 };
589 
590 static struct netmap_mem_d nm_mem_blueprint;
591 
592 /* blueprint for the private memory allocators */
593 /* XXX clang is not happy about using name as a print format */
594 static const struct netmap_mem_d nm_blueprint = {
595 	.pools = {
596 		[NETMAP_IF_POOL] = {
597 			.name 	= "%s_if",
598 			.objminsize = sizeof(struct netmap_if),
599 			.objmaxsize = 4096,
600 			.nummin     = 1,
601 			.nummax	    = 100,
602 		},
603 		[NETMAP_RING_POOL] = {
604 			.name 	= "%s_ring",
605 			.objminsize = sizeof(struct netmap_ring),
606 			.objmaxsize = 32*PAGE_SIZE,
607 			.nummin     = 2,
608 			.nummax	    = 1024,
609 		},
610 		[NETMAP_BUF_POOL] = {
611 			.name	= "%s_buf",
612 			.objminsize = 64,
613 			.objmaxsize = 65536,
614 			.nummin     = 4,
615 			.nummax	    = 1000000, /* one million! */
616 		},
617 	},
618 
619 	.nm_grp = -1,
620 	.nm_numa_domain = -1,
621 
622 	.flags = NETMAP_MEM_PRIVATE,
623 
624 	.ops = &netmap_mem_global_ops,
625 };
626 
627 /* memory allocator related sysctls */
628 
629 #define STRINGIFY(x) #x
630 
631 #define DECLARE_SYSCTLS(id, name) \
632 	SYSBEGIN(mem2_ ## name); \
633 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_size, \
634 	    CTLFLAG_RW, &nm_mem.params[id].size, 0, "Requested size of netmap " STRINGIFY(name) "s"); \
635 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_size, \
636 	    CTLFLAG_RD, &nm_mem.pools[id]._objsize, 0, "Current size of netmap " STRINGIFY(name) "s"); \
637 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_num, \
638 	    CTLFLAG_RW, &nm_mem.params[id].num, 0, "Requested number of netmap " STRINGIFY(name) "s"); \
639 	SYSCTL_INT(_dev_netmap, OID_AUTO, name##_curr_num, \
640 	    CTLFLAG_RD, &nm_mem.pools[id].objtotal, 0, "Current number of netmap " STRINGIFY(name) "s"); \
641 	SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_size, \
642 	    CTLFLAG_RW, &netmap_min_priv_params[id].size, 0, \
643 	    "Default size of private netmap " STRINGIFY(name) "s"); \
644 	SYSCTL_INT(_dev_netmap, OID_AUTO, priv_##name##_num, \
645 	    CTLFLAG_RW, &netmap_min_priv_params[id].num, 0, \
646 	    "Default number of private netmap " STRINGIFY(name) "s");	\
647 	SYSEND
648 
649 SYSCTL_DECL(_dev_netmap);
650 DECLARE_SYSCTLS(NETMAP_IF_POOL, if);
651 DECLARE_SYSCTLS(NETMAP_RING_POOL, ring);
652 DECLARE_SYSCTLS(NETMAP_BUF_POOL, buf);
653 
654 int netmap_port_numa_affinity = 0;
655 SYSCTL_INT(_dev_netmap, OID_AUTO, port_numa_affinity,
656     CTLFLAG_RDTUN, &netmap_port_numa_affinity, 0,
657     "Use NUMA-local memory for memory pools when possible");
658 
659 /* call with nm_mem_list_lock held */
660 static int
nm_mem_assign_id_locked(struct netmap_mem_d * nmd,int grp_id,int domain)661 nm_mem_assign_id_locked(struct netmap_mem_d *nmd, int grp_id, int domain)
662 {
663 	nm_memid_t id;
664 	struct netmap_mem_d *scan = netmap_last_mem_d;
665 	int error = ENOMEM;
666 
667 	do {
668 		/* we rely on unsigned wrap around */
669 		id = scan->nm_id + 1;
670 		if (id == 0) /* reserve 0 as error value */
671 			id = 1;
672 		scan = scan->next;
673 		if (id != scan->nm_id) {
674 			nmd->nm_id = id;
675 			nmd->nm_grp = grp_id;
676 			nmd->nm_numa_domain = domain;
677 			nmd->prev = scan->prev;
678 			nmd->next = scan;
679 			scan->prev->next = nmd;
680 			scan->prev = nmd;
681 			netmap_last_mem_d = nmd;
682 			nmd->refcount = 1;
683 			NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
684 			error = 0;
685 			break;
686 		}
687 	} while (scan != netmap_last_mem_d);
688 
689 	return error;
690 }
691 
692 /* call with nm_mem_list_lock *not* held */
693 static int
nm_mem_assign_id(struct netmap_mem_d * nmd,int grp_id)694 nm_mem_assign_id(struct netmap_mem_d *nmd, int grp_id)
695 {
696 	int ret;
697 
698 	NM_MTX_LOCK(nm_mem_list_lock);
699 	ret = nm_mem_assign_id_locked(nmd, grp_id, -1);
700 	NM_MTX_UNLOCK(nm_mem_list_lock);
701 
702 	return ret;
703 }
704 
705 /* call with nm_mem_list_lock held */
706 static void
nm_mem_release_id(struct netmap_mem_d * nmd)707 nm_mem_release_id(struct netmap_mem_d *nmd)
708 {
709 	nmd->prev->next = nmd->next;
710 	nmd->next->prev = nmd->prev;
711 
712 	if (netmap_last_mem_d == nmd)
713 		netmap_last_mem_d = nmd->prev;
714 
715 	nmd->prev = nmd->next = NULL;
716 }
717 
718 struct netmap_mem_d *
netmap_mem_find(nm_memid_t id)719 netmap_mem_find(nm_memid_t id)
720 {
721 	struct netmap_mem_d *nmd;
722 
723 	NM_MTX_LOCK(nm_mem_list_lock);
724 	nmd = netmap_last_mem_d;
725 	do {
726 		if (!(nmd->flags & NETMAP_MEM_HIDDEN) && nmd->nm_id == id) {
727 			nmd->refcount++;
728 			NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
729 			NM_MTX_UNLOCK(nm_mem_list_lock);
730 			return nmd;
731 		}
732 		nmd = nmd->next;
733 	} while (nmd != netmap_last_mem_d);
734 	NM_MTX_UNLOCK(nm_mem_list_lock);
735 	return NULL;
736 }
737 
738 static int
nm_mem_check_group(struct netmap_mem_d * nmd,void * dev)739 nm_mem_check_group(struct netmap_mem_d *nmd, void *dev)
740 {
741 	int err = 0, id;
742 
743 	/* Skip not hw adapters.
744 	 * Vale port can use particular allocator through vale-ctl -m option
745 	 */
746 	if (!dev)
747 		return 0;
748 	id = nm_iommu_group_id(dev);
749 	if (netmap_debug & NM_DEBUG_MEM)
750 		nm_prinf("iommu_group %d", id);
751 
752 	NMA_LOCK(nmd);
753 
754 	if (nmd->nm_grp != id) {
755 		if (netmap_verbose)
756 			nm_prerr("iommu group mismatch: %d vs %d",
757 					nmd->nm_grp, id);
758 		nmd->lasterr = err = ENOMEM;
759 	}
760 
761 	NMA_UNLOCK(nmd);
762 	return err;
763 }
764 
765 static struct lut_entry *
nm_alloc_lut(u_int nobj)766 nm_alloc_lut(u_int nobj)
767 {
768 	size_t n = sizeof(struct lut_entry) * nobj;
769 	struct lut_entry *lut;
770 #ifdef linux
771 	lut = vmalloc(n);
772 #else
773 	lut = nm_os_malloc(n);
774 #endif
775 	return lut;
776 }
777 
778 static void
nm_free_lut(struct lut_entry * lut,u_int objtotal)779 nm_free_lut(struct lut_entry *lut, u_int objtotal)
780 {
781 	bzero(lut, sizeof(struct lut_entry) * objtotal);
782 #ifdef linux
783 	vfree(lut);
784 #else
785 	nm_os_free(lut);
786 #endif
787 }
788 
789 #if defined(linux) || defined(_WIN32)
790 static struct plut_entry *
nm_alloc_plut(u_int nobj)791 nm_alloc_plut(u_int nobj)
792 {
793 	size_t n = sizeof(struct plut_entry) * nobj;
794 	struct plut_entry *lut;
795 	lut = vmalloc(n);
796 	return lut;
797 }
798 
799 static void
nm_free_plut(struct plut_entry * lut)800 nm_free_plut(struct plut_entry * lut)
801 {
802 	vfree(lut);
803 }
804 #endif /* linux or _WIN32 */
805 
806 
807 /*
808  * First, find the allocator that contains the requested offset,
809  * then locate the cluster through a lookup table.
810  */
811 static vm_paddr_t
netmap_mem2_ofstophys(struct netmap_mem_d * nmd,vm_ooffset_t offset)812 netmap_mem2_ofstophys(struct netmap_mem_d* nmd, vm_ooffset_t offset)
813 {
814 	int i;
815 	vm_ooffset_t o = offset;
816 	vm_paddr_t pa;
817 	struct netmap_obj_pool *p;
818 
819 	p = nmd->pools;
820 
821 	for (i = 0; i < NETMAP_POOLS_NR; offset -= p[i].memtotal, i++) {
822 		if (offset >= p[i].memtotal)
823 			continue;
824 		// now lookup the cluster's address
825 #ifndef _WIN32
826 		pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr) +
827 			offset % p[i]._objsize;
828 #else
829 		pa = vtophys(p[i].lut[offset / p[i]._objsize].vaddr);
830 		pa.QuadPart += offset % p[i]._objsize;
831 #endif
832 		return pa;
833 	}
834 	/* this is only in case of errors */
835 	nm_prerr("invalid ofs 0x%x out of 0x%zx 0x%zx 0x%zx", (u_int)o,
836 		p[NETMAP_IF_POOL].memtotal,
837 		p[NETMAP_IF_POOL].memtotal
838 			+ p[NETMAP_RING_POOL].memtotal,
839 		p[NETMAP_IF_POOL].memtotal
840 			+ p[NETMAP_RING_POOL].memtotal
841 			+ p[NETMAP_BUF_POOL].memtotal);
842 #ifndef _WIN32
843 	return 0; /* bad address */
844 #else
845 	vm_paddr_t res;
846 	res.QuadPart = 0;
847 	return res;
848 #endif
849 }
850 
851 #ifdef _WIN32
852 
853 /*
854  * win32_build_virtual_memory_for_userspace
855  *
856  * This function get all the object making part of the pools and maps
857  * a contiguous virtual memory space for the userspace
858  * It works this way
859  * 1 - allocate a Memory Descriptor List wide as the sum
860  *		of the memory needed for the pools
861  * 2 - cycle all the objects in every pool and for every object do
862  *
863  *		2a - cycle all the objects in every pool, get the list
864  *				of the physical address descriptors
865  *		2b - calculate the offset in the array of pages descriptor in the
866  *				main MDL
867  *		2c - copy the descriptors of the object in the main MDL
868  *
869  * 3 - return the resulting MDL that needs to be mapped in userland
870  *
871  * In this way we will have an MDL that describes all the memory for the
872  * objects in a single object
873 */
874 
875 PMDL
win32_build_user_vm_map(struct netmap_mem_d * nmd)876 win32_build_user_vm_map(struct netmap_mem_d* nmd)
877 {
878 	u_int memflags, ofs = 0;
879 	PMDL mainMdl, tempMdl;
880 	uint64_t memsize;
881 	int i, j;
882 
883 	if (netmap_mem_get_info(nmd, &memsize, &memflags, NULL)) {
884 		nm_prerr("memory not finalised yet");
885 		return NULL;
886 	}
887 
888 	mainMdl = IoAllocateMdl(NULL, memsize, FALSE, FALSE, NULL);
889 	if (mainMdl == NULL) {
890 		nm_prerr("failed to allocate mdl");
891 		return NULL;
892 	}
893 
894 	NMA_LOCK(nmd);
895 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
896 		struct netmap_obj_pool *p = &nmd->pools[i];
897 		int clsz = p->_clustsize;
898 		int clobjs = p->_clustentries; /* objects per cluster */
899 		int mdl_len = sizeof(PFN_NUMBER) * BYTES_TO_PAGES(clsz);
900 		PPFN_NUMBER pSrc, pDst;
901 
902 		/* each pool has a different cluster size so we need to reallocate */
903 		tempMdl = IoAllocateMdl(p->lut[0].vaddr, clsz, FALSE, FALSE, NULL);
904 		if (tempMdl == NULL) {
905 			NMA_UNLOCK(nmd);
906 			nm_prerr("fail to allocate tempMdl");
907 			IoFreeMdl(mainMdl);
908 			return NULL;
909 		}
910 		pSrc = MmGetMdlPfnArray(tempMdl);
911 		/* create one entry per cluster, the lut[] has one entry per object */
912 		for (j = 0; j < p->numclusters; j++, ofs += clsz) {
913 			pDst = &MmGetMdlPfnArray(mainMdl)[BYTES_TO_PAGES(ofs)];
914 			MmInitializeMdl(tempMdl, p->lut[j*clobjs].vaddr, clsz);
915 			MmBuildMdlForNonPagedPool(tempMdl); /* compute physical page addresses */
916 			RtlCopyMemory(pDst, pSrc, mdl_len); /* copy the page descriptors */
917 			mainMdl->MdlFlags = tempMdl->MdlFlags; /* XXX what is in here ? */
918 		}
919 		IoFreeMdl(tempMdl);
920 	}
921 	NMA_UNLOCK(nmd);
922 	return mainMdl;
923 }
924 
925 #endif /* _WIN32 */
926 
927 /*
928  * helper function for OS-specific mmap routines (currently only windows).
929  * Given an nmd and a pool index, returns the cluster size and number of clusters.
930  * Returns 0 if memory is finalised and the pool is valid, otherwise 1.
931  * It should be called under NMA_LOCK(nmd) otherwise the underlying info can change.
932  */
933 
934 int
netmap_mem2_get_pool_info(struct netmap_mem_d * nmd,u_int pool,u_int * clustsize,u_int * numclusters)935 netmap_mem2_get_pool_info(struct netmap_mem_d* nmd, u_int pool, u_int *clustsize, u_int *numclusters)
936 {
937 	if (!nmd || !clustsize || !numclusters || pool >= NETMAP_POOLS_NR)
938 		return 1; /* invalid arguments */
939 	// NMA_LOCK_ASSERT(nmd);
940 	if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
941 		*clustsize = *numclusters = 0;
942 		return 1; /* not ready yet */
943 	}
944 	*clustsize = nmd->pools[pool]._clustsize;
945 	*numclusters = nmd->pools[pool].numclusters;
946 	return 0; /* success */
947 }
948 
949 static int
netmap_mem2_get_info(struct netmap_mem_d * nmd,uint64_t * size,u_int * memflags,nm_memid_t * id)950 netmap_mem2_get_info(struct netmap_mem_d* nmd, uint64_t* size,
951 			u_int *memflags, nm_memid_t *id)
952 {
953 	int error = 0;
954 	error = netmap_mem_config(nmd);
955 	if (error)
956 		goto out;
957 	if (size) {
958 		if (nmd->flags & NETMAP_MEM_FINALIZED) {
959 			*size = nmd->nm_totalsize;
960 		} else {
961 			int i;
962 			*size = 0;
963 			for (i = 0; i < NETMAP_POOLS_NR; i++) {
964 				struct netmap_obj_pool *p = nmd->pools + i;
965 				*size += ((size_t)p->_numclusters * (size_t)p->_clustsize);
966 			}
967 		}
968 	}
969 	if (memflags)
970 		*memflags = nmd->flags;
971 	if (id)
972 		*id = nmd->nm_id;
973 out:
974 	return error;
975 }
976 
977 /*
978  * we store objects by kernel address, need to find the offset
979  * within the pool to export the value to userspace.
980  * Algorithm: scan until we find the cluster, then add the
981  * actual offset in the cluster
982  */
983 static ssize_t
netmap_obj_offset(struct netmap_obj_pool * p,const void * vaddr)984 netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
985 {
986 	int i, k = p->_clustentries, n = p->objtotal;
987 	ssize_t ofs = 0;
988 
989 	for (i = 0; i < n; i += k, ofs += p->_clustsize) {
990 		const char *base = p->lut[i].vaddr;
991 		ssize_t relofs = (const char *) vaddr - base;
992 
993 		if (relofs < 0 || relofs >= p->_clustsize)
994 			continue;
995 
996 		ofs = ofs + relofs;
997 		nm_prdis("%s: return offset %d (cluster %d) for pointer %p",
998 		    p->name, ofs, i, vaddr);
999 		return ofs;
1000 	}
1001 	nm_prerr("address %p is not contained inside any cluster (%s)",
1002 	    vaddr, p->name);
1003 	return 0; /* An error occurred */
1004 }
1005 
1006 /* Helper functions which convert virtual addresses to offsets */
1007 #define netmap_if_offset(n, v)					\
1008 	netmap_obj_offset(&(n)->pools[NETMAP_IF_POOL], (v))
1009 
1010 #define netmap_ring_offset(n, v)				\
1011     ((n)->pools[NETMAP_IF_POOL].memtotal + 			\
1012 	netmap_obj_offset(&(n)->pools[NETMAP_RING_POOL], (v)))
1013 
1014 static ssize_t
netmap_mem2_if_offset(struct netmap_mem_d * nmd,const void * addr)1015 netmap_mem2_if_offset(struct netmap_mem_d *nmd, const void *addr)
1016 {
1017 	return netmap_if_offset(nmd, addr);
1018 }
1019 
1020 /*
1021  * report the index, and use start position as a hint,
1022  * otherwise buffer allocation becomes terribly expensive.
1023  */
1024 static void *
netmap_obj_malloc(struct netmap_obj_pool * p,u_int len,uint32_t * start,uint32_t * index)1025 netmap_obj_malloc(struct netmap_obj_pool *p, u_int len, uint32_t *start, uint32_t *index)
1026 {
1027 	uint32_t i = 0;			/* index in the bitmap */
1028 	uint32_t mask, j = 0;		/* slot counter */
1029 	void *vaddr = NULL;
1030 
1031 	if (len > p->_objsize) {
1032 		nm_prerr("%s request size %d too large", p->name, len);
1033 		return NULL;
1034 	}
1035 
1036 	if (p->objfree == 0) {
1037 		nm_prerr("no more %s objects", p->name);
1038 		return NULL;
1039 	}
1040 	if (start)
1041 		i = *start;
1042 
1043 	/* termination is guaranteed by p->free, but better check bounds on i */
1044 	while (vaddr == NULL && i < p->bitmap_slots)  {
1045 		uint32_t cur = p->bitmap[i];
1046 		if (cur == 0) { /* bitmask is fully used */
1047 			i++;
1048 			continue;
1049 		}
1050 		/* locate a slot */
1051 		for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
1052 			;
1053 
1054 		p->bitmap[i] &= ~mask; /* mark object as in use */
1055 		p->objfree--;
1056 
1057 		vaddr = p->lut[i * 32 + j].vaddr;
1058 		if (index)
1059 			*index = i * 32 + j;
1060 	}
1061 	nm_prdis("%s allocator: allocated object @ [%d][%d]: vaddr %p",p->name, i, j, vaddr);
1062 
1063 	if (start)
1064 		*start = i;
1065 	return vaddr;
1066 }
1067 
1068 
1069 /*
1070  * free by index, not by address.
1071  * XXX should we also cleanup the content ?
1072  */
1073 static int
netmap_obj_free(struct netmap_obj_pool * p,uint32_t j)1074 netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
1075 {
1076 	uint32_t *ptr, mask;
1077 
1078 	if (j >= p->objtotal) {
1079 		nm_prerr("invalid index %u, max %u", j, p->objtotal);
1080 		return 1;
1081 	}
1082 	ptr = &p->bitmap[j / 32];
1083 	mask = (1 << (j % 32));
1084 	if (*ptr & mask) {
1085 		nm_prerr("ouch, double free on buffer %d", j);
1086 		return 1;
1087 	} else {
1088 		*ptr |= mask;
1089 		p->objfree++;
1090 		return 0;
1091 	}
1092 }
1093 
1094 /*
1095  * free by address. This is slow but is only used for a few
1096  * objects (rings, nifp)
1097  */
1098 static void
netmap_obj_free_va(struct netmap_obj_pool * p,void * vaddr)1099 netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
1100 {
1101 	u_int i, j, n = p->numclusters;
1102 
1103 	for (i = 0, j = 0; i < n; i++, j += p->_clustentries) {
1104 		void *base = p->lut[i * p->_clustentries].vaddr;
1105 		ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
1106 
1107 		/* Given address, is out of the scope of the current cluster.*/
1108 		if (base == NULL || vaddr < base || relofs >= p->_clustsize)
1109 			continue;
1110 
1111 		j = j + relofs / p->_objsize;
1112 		/* KASSERT(j != 0, ("Cannot free object 0")); */
1113 		netmap_obj_free(p, j);
1114 		return;
1115 	}
1116 	nm_prerr("address %p is not contained inside any cluster (%s)",
1117 	    vaddr, p->name);
1118 }
1119 
1120 unsigned
netmap_mem_bufsize(struct netmap_mem_d * nmd)1121 netmap_mem_bufsize(struct netmap_mem_d *nmd)
1122 {
1123 	return nmd->pools[NETMAP_BUF_POOL]._objsize;
1124 }
1125 
1126 #define netmap_if_malloc(n, len)	netmap_obj_malloc(&(n)->pools[NETMAP_IF_POOL], len, NULL, NULL)
1127 #define netmap_if_free(n, v)		netmap_obj_free_va(&(n)->pools[NETMAP_IF_POOL], (v))
1128 #define netmap_ring_malloc(n, len)	netmap_obj_malloc(&(n)->pools[NETMAP_RING_POOL], len, NULL, NULL)
1129 #define netmap_ring_free(n, v)		netmap_obj_free_va(&(n)->pools[NETMAP_RING_POOL], (v))
1130 #define netmap_buf_malloc(n, _pos, _index)			\
1131 	netmap_obj_malloc(&(n)->pools[NETMAP_BUF_POOL], netmap_mem_bufsize(n), _pos, _index)
1132 
1133 
1134 #if 0 /* currently unused */
1135 /* Return the index associated to the given packet buffer */
1136 #define netmap_buf_index(n, v)						\
1137     (netmap_obj_offset(&(n)->pools[NETMAP_BUF_POOL], (v)) / NETMAP_BDG_BUF_SIZE(n))
1138 #endif
1139 
1140 /*
1141  * allocate extra buffers in a linked list.
1142  * returns the actual number.
1143  */
1144 uint32_t
netmap_extra_alloc(struct netmap_adapter * na,uint32_t * head,uint32_t n)1145 netmap_extra_alloc(struct netmap_adapter *na, uint32_t *head, uint32_t n)
1146 {
1147 	struct netmap_mem_d *nmd = na->nm_mem;
1148 	uint32_t i, pos = 0; /* opaque, scan position in the bitmap */
1149 
1150 	NMA_LOCK(nmd);
1151 
1152 	*head = 0;	/* default, 'null' index ie empty list */
1153 	for (i = 0 ; i < n; i++) {
1154 		uint32_t cur = *head;	/* save current head */
1155 		uint32_t *p = netmap_buf_malloc(nmd, &pos, head);
1156 		if (p == NULL) {
1157 			nm_prerr("no more buffers after %d of %d", i, n);
1158 			*head = cur; /* restore */
1159 			break;
1160 		}
1161 		nm_prdis(5, "allocate buffer %d -> %d", *head, cur);
1162 		*p = cur; /* link to previous head */
1163 	}
1164 
1165 	NMA_UNLOCK(nmd);
1166 
1167 	return i;
1168 }
1169 
1170 static void
netmap_extra_free(struct netmap_adapter * na,uint32_t head)1171 netmap_extra_free(struct netmap_adapter *na, uint32_t head)
1172 {
1173 	struct lut_entry *lut = na->na_lut.lut;
1174 	struct netmap_mem_d *nmd = na->nm_mem;
1175 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1176 	uint32_t i, cur, *buf;
1177 
1178 	nm_prdis("freeing the extra list");
1179 	for (i = 0; head >=2 && head < p->objtotal; i++) {
1180 		cur = head;
1181 		buf = lut[head].vaddr;
1182 		head = *buf;
1183 		*buf = 0;
1184 		if (netmap_obj_free(p, cur))
1185 			break;
1186 	}
1187 	if (head != 0)
1188 		nm_prerr("breaking with head %d", head);
1189 	if (netmap_debug & NM_DEBUG_MEM)
1190 		nm_prinf("freed %d buffers", i);
1191 }
1192 
1193 
1194 /* Return nonzero on error */
1195 static int
netmap_new_bufs(struct netmap_mem_d * nmd,struct netmap_slot * slot,u_int n)1196 netmap_new_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
1197 {
1198 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1199 	u_int i = 0;	/* slot counter */
1200 	uint32_t pos = 0;	/* slot in p->bitmap */
1201 	uint32_t index = 0;	/* buffer index */
1202 
1203 	for (i = 0; i < n; i++) {
1204 		void *vaddr = netmap_buf_malloc(nmd, &pos, &index);
1205 		if (vaddr == NULL) {
1206 			nm_prerr("no more buffers after %d of %d", i, n);
1207 			goto cleanup;
1208 		}
1209 		slot[i].buf_idx = index;
1210 		slot[i].len = p->_objsize;
1211 		slot[i].flags = 0;
1212 		slot[i].ptr = 0;
1213 	}
1214 
1215 	nm_prdis("%s: allocated %d buffers, %d available, first at %d", p->name, n, p->objfree, pos);
1216 	return (0);
1217 
1218 cleanup:
1219 	while (i > 0) {
1220 		i--;
1221 		netmap_obj_free(p, slot[i].buf_idx);
1222 	}
1223 	bzero(slot, n * sizeof(slot[0]));
1224 	return (ENOMEM);
1225 }
1226 
1227 static void
netmap_mem_set_ring(struct netmap_mem_d * nmd,struct netmap_slot * slot,u_int n,uint32_t index)1228 netmap_mem_set_ring(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n, uint32_t index)
1229 {
1230 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1231 	u_int i;
1232 
1233 	for (i = 0; i < n; i++) {
1234 		slot[i].buf_idx = index;
1235 		slot[i].len = p->_objsize;
1236 		slot[i].flags = 0;
1237 	}
1238 }
1239 
1240 
1241 static void
netmap_free_buf(struct netmap_mem_d * nmd,uint32_t i)1242 netmap_free_buf(struct netmap_mem_d *nmd, uint32_t i)
1243 {
1244 	struct netmap_obj_pool *p = &nmd->pools[NETMAP_BUF_POOL];
1245 
1246 	if (i < 2 || i >= p->objtotal) {
1247 		nm_prerr("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
1248 		return;
1249 	}
1250 	netmap_obj_free(p, i);
1251 }
1252 
1253 
1254 static void
netmap_free_bufs(struct netmap_mem_d * nmd,struct netmap_slot * slot,u_int n)1255 netmap_free_bufs(struct netmap_mem_d *nmd, struct netmap_slot *slot, u_int n)
1256 {
1257 	u_int i;
1258 
1259 	for (i = 0; i < n; i++) {
1260 		if (slot[i].buf_idx > 1)
1261 			netmap_free_buf(nmd, slot[i].buf_idx);
1262 	}
1263 	nm_prdis("%s: released some buffers, available: %u",
1264 			p->name, p->objfree);
1265 }
1266 
1267 static void
netmap_reset_obj_allocator(struct netmap_obj_pool * p)1268 netmap_reset_obj_allocator(struct netmap_obj_pool *p)
1269 {
1270 
1271 	if (p == NULL)
1272 		return;
1273 	if (p->bitmap)
1274 		nm_os_free(p->bitmap);
1275 	p->bitmap = NULL;
1276 	if (p->invalid_bitmap)
1277 		nm_os_free(p->invalid_bitmap);
1278 	p->invalid_bitmap = NULL;
1279 	if (!p->alloc_done) {
1280 		/* allocation was done by somebody else.
1281 		 * Let them clean up after themselves.
1282 		 */
1283 		return;
1284 	}
1285 	if (p->lut) {
1286 		u_int i;
1287 
1288 		/*
1289 		 * Free each cluster allocated in
1290 		 * netmap_finalize_obj_allocator().  The cluster start
1291 		 * addresses are stored at multiples of p->_clusterentries
1292 		 * in the lut.
1293 		 */
1294 		for (i = 0; i < p->objtotal; i += p->_clustentries) {
1295 			free(p->lut[i].vaddr, M_NETMAP);
1296 		}
1297 		nm_free_lut(p->lut, p->objtotal);
1298 	}
1299 	p->lut = NULL;
1300 	p->objtotal = 0;
1301 	p->memtotal = 0;
1302 	p->numclusters = 0;
1303 	p->objfree = 0;
1304 	p->alloc_done = 0;
1305 }
1306 
1307 /*
1308  * Free all resources related to an allocator.
1309  */
1310 static void
netmap_destroy_obj_allocator(struct netmap_obj_pool * p)1311 netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
1312 {
1313 	if (p == NULL)
1314 		return;
1315 	netmap_reset_obj_allocator(p);
1316 }
1317 
1318 /*
1319  * We receive a request for objtotal objects, of size objsize each.
1320  * Internally we may round up both numbers, as we allocate objects
1321  * in small clusters multiple of the page size.
1322  * We need to keep track of objtotal and clustentries,
1323  * as they are needed when freeing memory.
1324  *
1325  * XXX note -- userspace needs the buffers to be contiguous,
1326  *	so we cannot afford gaps at the end of a cluster.
1327  */
1328 
1329 
1330 /* call with NMA_LOCK held */
1331 static int
netmap_config_obj_allocator(struct netmap_obj_pool * p,u_int objtotal,u_int objsize)1332 netmap_config_obj_allocator(struct netmap_obj_pool *p, u_int objtotal, u_int objsize)
1333 {
1334 	int i;
1335 	u_int clustsize;	/* the cluster size, multiple of page size */
1336 	u_int clustentries;	/* how many objects per entry */
1337 
1338 	/* we store the current request, so we can
1339 	 * detect configuration changes later */
1340 	p->r_objtotal = objtotal;
1341 	p->r_objsize = objsize;
1342 
1343 #define MAX_CLUSTSIZE	(1<<22)		// 4 MB
1344 #define LINE_ROUND	NM_BUF_ALIGN	// 64
1345 	if (objsize >= MAX_CLUSTSIZE) {
1346 		/* we could do it but there is no point */
1347 		nm_prerr("unsupported allocation for %d bytes", objsize);
1348 		return EINVAL;
1349 	}
1350 	/* make sure objsize is a multiple of LINE_ROUND */
1351 	i = (objsize & (LINE_ROUND - 1));
1352 	if (i) {
1353 		nm_prinf("aligning object by %d bytes", LINE_ROUND - i);
1354 		objsize += LINE_ROUND - i;
1355 	}
1356 	if (objsize < p->objminsize || objsize > p->objmaxsize) {
1357 		nm_prerr("requested objsize %d out of range [%d, %d]",
1358 			objsize, p->objminsize, p->objmaxsize);
1359 		return EINVAL;
1360 	}
1361 	if (objtotal < p->nummin || objtotal > p->nummax) {
1362 		nm_prerr("requested objtotal %d out of range [%d, %d]",
1363 			objtotal, p->nummin, p->nummax);
1364 		return EINVAL;
1365 	}
1366 	/*
1367 	 * Compute number of objects using a brute-force approach:
1368 	 * given a max cluster size,
1369 	 * we try to fill it with objects keeping track of the
1370 	 * wasted space to the next page boundary.
1371 	 */
1372 	for (clustentries = 0, i = 1;; i++) {
1373 		u_int delta, used = i * objsize;
1374 		if (used > MAX_CLUSTSIZE)
1375 			break;
1376 		delta = used % PAGE_SIZE;
1377 		if (delta == 0) { // exact solution
1378 			clustentries = i;
1379 			break;
1380 		}
1381 	}
1382 	/* exact solution not found */
1383 	if (clustentries == 0) {
1384 		nm_prerr("unsupported allocation for %d bytes", objsize);
1385 		return EINVAL;
1386 	}
1387 	/* compute clustsize */
1388 	clustsize = clustentries * objsize;
1389 	if (netmap_debug & NM_DEBUG_MEM)
1390 		nm_prinf("objsize %d clustsize %d objects %d",
1391 			objsize, clustsize, clustentries);
1392 
1393 	/*
1394 	 * The number of clusters is n = ceil(objtotal/clustentries)
1395 	 * objtotal' = n * clustentries
1396 	 */
1397 	p->_clustentries = clustentries;
1398 	p->_clustsize = clustsize;
1399 	p->_numclusters = (objtotal + clustentries - 1) / clustentries;
1400 
1401 	/* actual values (may be larger than requested) */
1402 	p->_objsize = objsize;
1403 	p->_objtotal = p->_numclusters * clustentries;
1404 
1405 	return 0;
1406 }
1407 
1408 /* call with NMA_LOCK held */
1409 static int
netmap_finalize_obj_allocator(struct netmap_mem_d * nmd,struct netmap_obj_pool * p)1410 netmap_finalize_obj_allocator(struct netmap_mem_d *nmd, struct netmap_obj_pool *p)
1411 {
1412 	int i; /* must be signed */
1413 
1414 	if (p->lut) {
1415 		/* if the lut is already there we assume that also all the
1416 		 * clusters have already been allocated, possibly by somebody
1417 		 * else (e.g., extmem). In the latter case, the alloc_done flag
1418 		 * will remain at zero, so that we will not attempt to
1419 		 * deallocate the clusters by ourselves in
1420 		 * netmap_reset_obj_allocator.
1421 		 */
1422 		return 0;
1423 	}
1424 
1425 	/* optimistically assume we have enough memory */
1426 	p->numclusters = p->_numclusters;
1427 	p->objtotal = p->_objtotal;
1428 	p->alloc_done = 1;
1429 
1430 	p->lut = nm_alloc_lut(p->objtotal);
1431 	if (p->lut == NULL) {
1432 		nm_prerr("Unable to create lookup table for '%s'", p->name);
1433 		goto clean;
1434 	}
1435 
1436 	/*
1437 	 * Allocate clusters, init pointers
1438 	 */
1439 
1440 	for (i = 0; i < (int)p->objtotal;) {
1441 		int lim = i + p->_clustentries;
1442 		char *clust;
1443 
1444 		/*
1445 		 * XXX Note, we only need contigmalloc() for buffers attached
1446 		 * to native interfaces. In all other cases (nifp, netmap rings
1447 		 * and even buffers for VALE ports or emulated interfaces) we
1448 		 * can live with standard malloc, because the hardware will not
1449 		 * access the pages directly.
1450 		 */
1451 		if (nmd->nm_numa_domain == -1) {
1452 			clust = contigmalloc(p->_clustsize, M_NETMAP,
1453 			    M_NOWAIT | M_ZERO, (size_t)0, -1UL, PAGE_SIZE, 0);
1454 		} else {
1455 			struct domainset *ds;
1456 
1457 			ds = DOMAINSET_PREF(nmd->nm_numa_domain);
1458 			clust = contigmalloc_domainset(p->_clustsize, M_NETMAP,
1459 			    ds, M_NOWAIT | M_ZERO, (size_t)0, -1UL, PAGE_SIZE, 0);
1460 		}
1461 		if (clust == NULL) {
1462 			/*
1463 			 * If we get here, there is a severe memory shortage,
1464 			 * so halve the allocated memory to reclaim some.
1465 			 */
1466 			nm_prerr("Unable to create cluster at %d for '%s' allocator",
1467 			    i, p->name);
1468 			if (i < 2) /* nothing to halve */
1469 				goto out;
1470 			lim = i / 2;
1471 			for (i--; i >= lim; i--) {
1472 				if (i % p->_clustentries == 0 && p->lut[i].vaddr)
1473 					free(p->lut[i].vaddr, M_NETMAP);
1474 				p->lut[i].vaddr = NULL;
1475 			}
1476 		out:
1477 			p->objtotal = i;
1478 			/* we may have stopped in the middle of a cluster */
1479 			p->numclusters = (i + p->_clustentries - 1) / p->_clustentries;
1480 			break;
1481 		}
1482 		/*
1483 		 * Set lut state for all buffers in the current cluster.
1484 		 *
1485 		 * [i, lim) is the set of buffer indexes that cover the
1486 		 * current cluster.
1487 		 *
1488 		 * 'clust' is really the address of the current buffer in
1489 		 * the current cluster as we index through it with a stride
1490 		 * of p->_objsize.
1491 		 */
1492 		for (; i < lim; i++, clust += p->_objsize) {
1493 			p->lut[i].vaddr = clust;
1494 #if !defined(linux) && !defined(_WIN32)
1495 			p->lut[i].paddr = vtophys(clust);
1496 #endif
1497 		}
1498 	}
1499 	p->memtotal = (size_t)p->numclusters * (size_t)p->_clustsize;
1500 	if (netmap_verbose)
1501 		nm_prinf("Pre-allocated %d clusters (%d/%zuKB) for '%s'",
1502 		    p->numclusters, p->_clustsize >> 10,
1503 		    p->memtotal >> 10, p->name);
1504 
1505 	return 0;
1506 
1507 clean:
1508 	netmap_reset_obj_allocator(p);
1509 	return ENOMEM;
1510 }
1511 
1512 /* call with lock held */
1513 static int
netmap_mem_params_changed(struct netmap_obj_params * p)1514 netmap_mem_params_changed(struct netmap_obj_params* p)
1515 {
1516 	int i, rv = 0;
1517 
1518 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1519 		if (p[i].last_size != p[i].size || p[i].last_num != p[i].num) {
1520 			p[i].last_size = p[i].size;
1521 			p[i].last_num = p[i].num;
1522 			rv = 1;
1523 		}
1524 	}
1525 	return rv;
1526 }
1527 
1528 static void
netmap_mem_reset_all(struct netmap_mem_d * nmd)1529 netmap_mem_reset_all(struct netmap_mem_d *nmd)
1530 {
1531 	int i;
1532 
1533 	if (netmap_debug & NM_DEBUG_MEM)
1534 		nm_prinf("resetting %p", nmd);
1535 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1536 		netmap_reset_obj_allocator(&nmd->pools[i]);
1537 	}
1538 	nmd->flags  &= ~NETMAP_MEM_FINALIZED;
1539 }
1540 
1541 static int
netmap_mem_unmap(struct netmap_obj_pool * p,struct netmap_adapter * na)1542 netmap_mem_unmap(struct netmap_obj_pool *p, struct netmap_adapter *na)
1543 {
1544 	int i, lim = p->objtotal;
1545 	struct netmap_lut *lut;
1546 	if (na == NULL || na->pdev == NULL)
1547 		return 0;
1548 
1549 	lut = &na->na_lut;
1550 
1551 
1552 
1553 #if defined(__FreeBSD__)
1554 	/* On FreeBSD mapping and unmapping is performed by the txsync
1555 	 * and rxsync routine, packet by packet. */
1556 	(void)i;
1557 	(void)lim;
1558 	(void)lut;
1559 #elif defined(_WIN32)
1560 	(void)i;
1561 	(void)lim;
1562 	(void)lut;
1563 	nm_prerr("unsupported on Windows");
1564 #else /* linux */
1565 	nm_prdis("unmapping and freeing plut for %s", na->name);
1566 	if (lut->plut == NULL || na->pdev == NULL)
1567 		return 0;
1568 	for (i = 0; i < lim; i += p->_clustentries) {
1569 		if (lut->plut[i].paddr)
1570 			netmap_unload_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr, p->_clustsize);
1571 	}
1572 	nm_free_plut(lut->plut);
1573 	lut->plut = NULL;
1574 #endif /* linux */
1575 
1576 	return 0;
1577 }
1578 
1579 static int
netmap_mem_map(struct netmap_obj_pool * p,struct netmap_adapter * na)1580 netmap_mem_map(struct netmap_obj_pool *p, struct netmap_adapter *na)
1581 {
1582 	int error = 0;
1583 	int i, lim = p->objtotal;
1584 	struct netmap_lut *lut = &na->na_lut;
1585 
1586 	if (na->pdev == NULL)
1587 		return 0;
1588 
1589 #if defined(__FreeBSD__)
1590 	/* On FreeBSD mapping and unmapping is performed by the txsync
1591 	 * and rxsync routine, packet by packet. */
1592 	(void)i;
1593 	(void)lim;
1594 	(void)lut;
1595 #elif defined(_WIN32)
1596 	(void)i;
1597 	(void)lim;
1598 	(void)lut;
1599 	nm_prerr("unsupported on Windows");
1600 #else /* linux */
1601 
1602 	if (lut->plut != NULL) {
1603 		nm_prdis("plut already allocated for %s", na->name);
1604 		return 0;
1605 	}
1606 
1607 	nm_prdis("allocating physical lut for %s", na->name);
1608 	lut->plut = nm_alloc_plut(lim);
1609 	if (lut->plut == NULL) {
1610 		nm_prerr("Failed to allocate physical lut for %s", na->name);
1611 		return ENOMEM;
1612 	}
1613 
1614 	for (i = 0; i < lim; i += p->_clustentries) {
1615 		lut->plut[i].paddr = 0;
1616 	}
1617 
1618 	for (i = 0; i < lim; i += p->_clustentries) {
1619 		int j;
1620 
1621 		if (p->lut[i].vaddr == NULL)
1622 			continue;
1623 
1624 		error = netmap_load_map(na, (bus_dma_tag_t) na->pdev, &lut->plut[i].paddr,
1625 				p->lut[i].vaddr, p->_clustsize);
1626 		if (error) {
1627 			nm_prerr("Failed to map cluster #%d from the %s pool", i, p->name);
1628 			break;
1629 		}
1630 
1631 		for (j = 1; j < p->_clustentries; j++) {
1632 			lut->plut[i + j].paddr = lut->plut[i + j - 1].paddr + p->_objsize;
1633 		}
1634 	}
1635 
1636 	if (error)
1637 		netmap_mem_unmap(p, na);
1638 
1639 #endif /* linux */
1640 
1641 	return error;
1642 }
1643 
1644 static int
netmap_mem_finalize_all(struct netmap_mem_d * nmd)1645 netmap_mem_finalize_all(struct netmap_mem_d *nmd)
1646 {
1647 	int i;
1648 	if (nmd->flags & NETMAP_MEM_FINALIZED)
1649 		return 0;
1650 	nmd->lasterr = 0;
1651 	nmd->nm_totalsize = 0;
1652 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1653 		nmd->lasterr = netmap_finalize_obj_allocator(nmd, &nmd->pools[i]);
1654 		if (nmd->lasterr)
1655 			goto error;
1656 		nmd->nm_totalsize += nmd->pools[i].memtotal;
1657 	}
1658 	nmd->nm_totalsize = (nmd->nm_totalsize + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
1659 	nmd->lasterr = netmap_mem_init_bitmaps(nmd);
1660 	if (nmd->lasterr)
1661 		goto error;
1662 
1663 	nmd->flags |= NETMAP_MEM_FINALIZED;
1664 
1665 	if (netmap_verbose)
1666 		nm_prinf("interfaces %zd KB, rings %zd KB, buffers %zd MB",
1667 		    nmd->pools[NETMAP_IF_POOL].memtotal >> 10,
1668 		    nmd->pools[NETMAP_RING_POOL].memtotal >> 10,
1669 		    nmd->pools[NETMAP_BUF_POOL].memtotal >> 20);
1670 
1671 	if (netmap_verbose)
1672 		nm_prinf("Free buffers: %d", nmd->pools[NETMAP_BUF_POOL].objfree);
1673 
1674 
1675 	return 0;
1676 error:
1677 	netmap_mem_reset_all(nmd);
1678 	return nmd->lasterr;
1679 }
1680 
1681 /*
1682  * allocator for private memory
1683  */
1684 static void *
_netmap_mem_private_new(size_t size,struct netmap_obj_params * p,int grp_id,const struct netmap_mem_ops * ops,uint64_t memtotal,int * perr)1685 _netmap_mem_private_new(size_t size, struct netmap_obj_params *p, int grp_id,
1686 		const struct netmap_mem_ops *ops, uint64_t memtotal, int *perr)
1687 {
1688 	struct netmap_mem_d *d = NULL;
1689 	int i, err = 0;
1690 	int checksz = 0;
1691 
1692 	/* if memtotal is !=0 we check that the request fits the available
1693 	 * memory. Moreover, any surprlus memory is assigned to buffers.
1694 	 */
1695 	checksz = (memtotal > 0);
1696 
1697 	d = nm_os_malloc(size);
1698 	if (d == NULL) {
1699 		err = ENOMEM;
1700 		goto error;
1701 	}
1702 
1703 	*d = nm_blueprint;
1704 	d->ops = ops;
1705 
1706 	err = nm_mem_assign_id(d, grp_id);
1707 	if (err)
1708 		goto error_free;
1709 	snprintf(d->name, NM_MEM_NAMESZ, "%d", d->nm_id);
1710 
1711 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1712 		snprintf(d->pools[i].name, NETMAP_POOL_MAX_NAMSZ,
1713 				nm_blueprint.pools[i].name,
1714 				d->name);
1715 		if (checksz) {
1716 			uint64_t poolsz = (uint64_t)p[i].num * p[i].size;
1717 			if (memtotal < poolsz) {
1718 				nm_prerr("%s: request too large", d->pools[i].name);
1719 				err = ENOMEM;
1720 				goto error_rel_id;
1721 			}
1722 			memtotal -= poolsz;
1723 		}
1724 		d->params[i].num = p[i].num;
1725 		d->params[i].size = p[i].size;
1726 	}
1727 	if (checksz && memtotal > 0) {
1728 		uint64_t sz = d->params[NETMAP_BUF_POOL].size;
1729 		uint64_t n = (memtotal + sz - 1) / sz;
1730 
1731 		if (n) {
1732 			if (netmap_verbose) {
1733 				nm_prinf("%s: adding %llu more buffers",
1734 				    d->pools[NETMAP_BUF_POOL].name,
1735 				    (unsigned long long)n);
1736 			}
1737 			d->params[NETMAP_BUF_POOL].num += n;
1738 		}
1739 	}
1740 
1741 	NMA_LOCK_INIT(d);
1742 
1743 	err = netmap_mem_config(d);
1744 	if (err)
1745 		goto error_destroy_lock;
1746 
1747 	d->flags &= ~NETMAP_MEM_FINALIZED;
1748 
1749 	return d;
1750 
1751 error_destroy_lock:
1752 	NMA_LOCK_DESTROY(d);
1753 error_rel_id:
1754 	nm_mem_release_id(d);
1755 error_free:
1756 	nm_os_free(d);
1757 error:
1758 	if (perr)
1759 		*perr = err;
1760 	return NULL;
1761 }
1762 
1763 struct netmap_mem_d *
netmap_mem_private_new(u_int txr,u_int txd,u_int rxr,u_int rxd,u_int extra_bufs,u_int npipes,int * perr)1764 netmap_mem_private_new(u_int txr, u_int txd, u_int rxr, u_int rxd,
1765 		u_int extra_bufs, u_int npipes, int *perr)
1766 {
1767 	struct netmap_mem_d *d = NULL;
1768 	struct netmap_obj_params p[NETMAP_POOLS_NR];
1769 	int i;
1770 	u_int v, maxd;
1771 	/* account for the fake host rings */
1772 	txr++;
1773 	rxr++;
1774 
1775 	/* copy the min values */
1776 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1777 		p[i] = netmap_min_priv_params[i];
1778 	}
1779 
1780 	/* possibly increase them to fit user request */
1781 	v = sizeof(struct netmap_if) + sizeof(ssize_t) * (txr + rxr);
1782 	if (p[NETMAP_IF_POOL].size < v)
1783 		p[NETMAP_IF_POOL].size = v;
1784 	v = 2 + 4 * npipes;
1785 	if (p[NETMAP_IF_POOL].num < v)
1786 		p[NETMAP_IF_POOL].num = v;
1787 	maxd = (txd > rxd) ? txd : rxd;
1788 	v = sizeof(struct netmap_ring) + sizeof(struct netmap_slot) * maxd;
1789 	if (p[NETMAP_RING_POOL].size < v)
1790 		p[NETMAP_RING_POOL].size = v;
1791 	/* each pipe endpoint needs two tx rings (1 normal + 1 host, fake)
1792 	 * and two rx rings (again, 1 normal and 1 fake host)
1793 	 */
1794 	v = txr + rxr + 8 * npipes;
1795 	if (p[NETMAP_RING_POOL].num < v)
1796 		p[NETMAP_RING_POOL].num = v;
1797 	/* for each pipe we only need the buffers for the 4 "real" rings.
1798 	 * On the other end, the pipe ring dimension may be different from
1799 	 * the parent port ring dimension. As a compromise, we allocate twice the
1800 	 * space actually needed if the pipe rings were the same size as the parent rings
1801 	 */
1802 	v = (4 * npipes + rxr) * rxd + (4 * npipes + txr) * txd + 2 + extra_bufs;
1803 		/* the +2 is for the tx and rx fake buffers (indices 0 and 1) */
1804 	if (p[NETMAP_BUF_POOL].num < v)
1805 		p[NETMAP_BUF_POOL].num = v;
1806 
1807 	if (netmap_verbose)
1808 		nm_prinf("req if %d*%d ring %d*%d buf %d*%d",
1809 			p[NETMAP_IF_POOL].num,
1810 			p[NETMAP_IF_POOL].size,
1811 			p[NETMAP_RING_POOL].num,
1812 			p[NETMAP_RING_POOL].size,
1813 			p[NETMAP_BUF_POOL].num,
1814 			p[NETMAP_BUF_POOL].size);
1815 
1816 	d = _netmap_mem_private_new(sizeof(*d), p, -1, &netmap_mem_global_ops, 0, perr);
1817 
1818 	return d;
1819 }
1820 
1821 /* Reference IOMMU and NUMA local allocator - find existing or create new,
1822  * for non-hw adapters, fall back to global allocator.
1823  */
1824 struct netmap_mem_d *
netmap_mem_get_allocator(struct netmap_adapter * na)1825 netmap_mem_get_allocator(struct netmap_adapter *na)
1826 {
1827 	int i, domain, err, grp_id;
1828 	struct netmap_mem_d *nmd;
1829 
1830 	if (na == NULL || na->pdev == NULL)
1831 		return netmap_mem_get(&nm_mem);
1832 
1833 	domain = nm_numa_domain(na->pdev);
1834 	grp_id = nm_iommu_group_id(na->pdev);
1835 
1836 	NM_MTX_LOCK(nm_mem_list_lock);
1837 	nmd = netmap_last_mem_d;
1838 	do {
1839 		if (!(nmd->flags & NETMAP_MEM_HIDDEN) &&
1840 		    nmd->nm_grp == grp_id && nmd->nm_numa_domain == domain) {
1841 			nmd->refcount++;
1842 			NM_DBG_REFC(nmd, __FUNCTION__, __LINE__);
1843 			NM_MTX_UNLOCK(nm_mem_list_lock);
1844 			return nmd;
1845 		}
1846 		nmd = nmd->next;
1847 	} while (nmd != netmap_last_mem_d);
1848 
1849 	nmd = nm_os_malloc(sizeof(*nmd));
1850 	if (nmd == NULL)
1851 		goto error;
1852 
1853 	*nmd = nm_mem_blueprint;
1854 
1855 	err = nm_mem_assign_id_locked(nmd, grp_id, domain);
1856 	if (err)
1857 		goto error_free;
1858 
1859 	snprintf(nmd->name, sizeof(nmd->name), "%d", nmd->nm_id);
1860 
1861 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1862 		snprintf(nmd->pools[i].name, NETMAP_POOL_MAX_NAMSZ, "%s-%s",
1863 			nm_mem_blueprint.pools[i].name, nmd->name);
1864 	}
1865 
1866 	NMA_LOCK_INIT(nmd);
1867 
1868 	NM_MTX_UNLOCK(nm_mem_list_lock);
1869 	return nmd;
1870 
1871 error_free:
1872 	nm_os_free(nmd);
1873 error:
1874 	NM_MTX_UNLOCK(nm_mem_list_lock);
1875 	return NULL;
1876 }
1877 
1878 /* call with lock held */
1879 static int
netmap_mem2_config(struct netmap_mem_d * nmd)1880 netmap_mem2_config(struct netmap_mem_d *nmd)
1881 {
1882 	int i;
1883 
1884 	if (!netmap_mem_params_changed(nmd->params))
1885 		goto out;
1886 
1887 	nm_prdis("reconfiguring");
1888 
1889 	if (nmd->flags & NETMAP_MEM_FINALIZED) {
1890 		/* reset previous allocation */
1891 		for (i = 0; i < NETMAP_POOLS_NR; i++) {
1892 			netmap_reset_obj_allocator(&nmd->pools[i]);
1893 		}
1894 		nmd->flags &= ~NETMAP_MEM_FINALIZED;
1895 	}
1896 
1897 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1898 		nmd->lasterr = netmap_config_obj_allocator(&nmd->pools[i],
1899 				nmd->params[i].num, nmd->params[i].size);
1900 		if (nmd->lasterr)
1901 			goto out;
1902 	}
1903 
1904 out:
1905 
1906 	return nmd->lasterr;
1907 }
1908 
1909 static int
netmap_mem2_finalize(struct netmap_mem_d * nmd,struct netmap_adapter * na)1910 netmap_mem2_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
1911 {
1912 	if (nmd->flags & NETMAP_MEM_FINALIZED)
1913 		goto out;
1914 
1915 	if (netmap_mem_finalize_all(nmd))
1916 		goto out;
1917 
1918 	nmd->lasterr = 0;
1919 
1920 out:
1921 	return nmd->lasterr;
1922 }
1923 
1924 static void
netmap_mem2_delete(struct netmap_mem_d * nmd)1925 netmap_mem2_delete(struct netmap_mem_d *nmd)
1926 {
1927 	int i;
1928 
1929 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
1930 	    netmap_destroy_obj_allocator(&nmd->pools[i]);
1931 	}
1932 
1933 	NMA_LOCK_DESTROY(nmd);
1934 	if (nmd != &nm_mem)
1935 		nm_os_free(nmd);
1936 }
1937 
1938 #ifdef WITH_EXTMEM
1939 /* doubly linekd list of all existing external allocators */
1940 static struct netmap_mem_ext *netmap_mem_ext_list = NULL;
1941 NM_MTX_T nm_mem_ext_list_lock;
1942 #endif /* WITH_EXTMEM */
1943 
1944 int
netmap_mem_init(void)1945 netmap_mem_init(void)
1946 {
1947 	nm_mem_blueprint = nm_mem;
1948 	NM_MTX_INIT(nm_mem_list_lock);
1949 	NMA_LOCK_INIT(&nm_mem);
1950 	netmap_mem_get(&nm_mem);
1951 #ifdef WITH_EXTMEM
1952 	NM_MTX_INIT(nm_mem_ext_list_lock);
1953 #endif /* WITH_EXTMEM */
1954 	return (0);
1955 }
1956 
1957 void
netmap_mem_fini(void)1958 netmap_mem_fini(void)
1959 {
1960 	netmap_mem_put(&nm_mem);
1961 }
1962 
1963 static int
netmap_mem_ring_needed(struct netmap_kring * kring)1964 netmap_mem_ring_needed(struct netmap_kring *kring)
1965 {
1966 	return kring->ring == NULL &&
1967 		(kring->users > 0 ||
1968 		 (kring->nr_kflags & NKR_NEEDRING));
1969 }
1970 
1971 static int
netmap_mem_ring_todelete(struct netmap_kring * kring)1972 netmap_mem_ring_todelete(struct netmap_kring *kring)
1973 {
1974 	return kring->ring != NULL &&
1975 		kring->users == 0 &&
1976 		!(kring->nr_kflags & NKR_NEEDRING);
1977 }
1978 
1979 
1980 /* call with NMA_LOCK held *
1981  *
1982  * Allocate netmap rings and buffers for this card
1983  * The rings are contiguous, but have variable size.
1984  * The kring array must follow the layout described
1985  * in netmap_krings_create().
1986  */
1987 static int
netmap_mem2_rings_create(struct netmap_mem_d * nmd,struct netmap_adapter * na)1988 netmap_mem2_rings_create(struct netmap_mem_d *nmd, struct netmap_adapter *na)
1989 {
1990 	enum txrx t;
1991 
1992 	for_rx_tx(t) {
1993 		u_int i;
1994 
1995 		for (i = 0; i < netmap_all_rings(na, t); i++) {
1996 			struct netmap_kring *kring = NMR(na, t)[i];
1997 			struct netmap_ring *ring = kring->ring;
1998 			u_int len, ndesc;
1999 
2000 			if (!netmap_mem_ring_needed(kring)) {
2001 				/* unneeded, or already created by somebody else */
2002 				if (netmap_debug & NM_DEBUG_MEM)
2003 					nm_prinf("NOT creating ring %s (ring %p, users %d neekring %d)",
2004 						kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING);
2005 				continue;
2006 			}
2007 			if (netmap_debug & NM_DEBUG_MEM)
2008 				nm_prinf("creating %s", kring->name);
2009 			ndesc = kring->nkr_num_slots;
2010 			len = sizeof(struct netmap_ring) +
2011 				  ndesc * sizeof(struct netmap_slot);
2012 			ring = netmap_ring_malloc(nmd, len);
2013 			if (ring == NULL) {
2014 				nm_prerr("Cannot allocate %s_ring", nm_txrx2str(t));
2015 				goto cleanup;
2016 			}
2017 			nm_prdis("txring at %p", ring);
2018 			kring->ring = ring;
2019 			*(uint32_t *)(uintptr_t)&ring->num_slots = ndesc;
2020 			*(int64_t *)(uintptr_t)&ring->buf_ofs =
2021 			    (nmd->pools[NETMAP_IF_POOL].memtotal +
2022 				nmd->pools[NETMAP_RING_POOL].memtotal) -
2023 				netmap_ring_offset(nmd, ring);
2024 
2025 			/* copy values from kring */
2026 			ring->head = kring->rhead;
2027 			ring->cur = kring->rcur;
2028 			ring->tail = kring->rtail;
2029 			*(uint32_t *)(uintptr_t)&ring->nr_buf_size =
2030 				netmap_mem_bufsize(nmd);
2031 			nm_prdis("%s h %d c %d t %d", kring->name,
2032 				ring->head, ring->cur, ring->tail);
2033 			nm_prdis("initializing slots for %s_ring", nm_txrx2str(t));
2034 			if (!(kring->nr_kflags & NKR_FAKERING)) {
2035 				/* this is a real ring */
2036 				if (netmap_debug & NM_DEBUG_MEM)
2037 					nm_prinf("allocating buffers for %s", kring->name);
2038 				if (netmap_new_bufs(nmd, ring->slot, ndesc)) {
2039 					nm_prerr("Cannot allocate buffers for %s_ring", nm_txrx2str(t));
2040 					goto cleanup;
2041 				}
2042 			} else {
2043 				/* this is a fake ring, set all indices to 0 */
2044 				if (netmap_debug & NM_DEBUG_MEM)
2045 					nm_prinf("NOT allocating buffers for %s", kring->name);
2046 				netmap_mem_set_ring(nmd, ring->slot, ndesc, 0);
2047 			}
2048 		        /* ring info */
2049 		        *(uint16_t *)(uintptr_t)&ring->ringid = kring->ring_id;
2050 		        *(uint16_t *)(uintptr_t)&ring->dir = kring->tx;
2051 		}
2052 	}
2053 
2054 	return 0;
2055 
2056 cleanup:
2057 	/* we cannot actually cleanup here, since we don't own kring->users
2058 	 * and kring->nr_klags & NKR_NEEDRING. The caller must decrement
2059 	 * the first or zero-out the second, then call netmap_free_rings()
2060 	 * to do the cleanup
2061 	 */
2062 
2063 	return ENOMEM;
2064 }
2065 
2066 static void
netmap_mem2_rings_delete(struct netmap_mem_d * nmd,struct netmap_adapter * na)2067 netmap_mem2_rings_delete(struct netmap_mem_d *nmd, struct netmap_adapter *na)
2068 {
2069 	enum txrx t;
2070 
2071 	for_rx_tx(t) {
2072 		u_int i;
2073 		for (i = 0; i < netmap_all_rings(na, t); i++) {
2074 			struct netmap_kring *kring = NMR(na, t)[i];
2075 			struct netmap_ring *ring = kring->ring;
2076 
2077 			if (!netmap_mem_ring_todelete(kring)) {
2078 				if (netmap_debug & NM_DEBUG_MEM)
2079 					nm_prinf("NOT deleting ring %s (ring %p, users %d neekring %d)",
2080 						kring->name, ring, kring->users, kring->nr_kflags & NKR_NEEDRING);
2081 				continue;
2082 			}
2083 			if (netmap_debug & NM_DEBUG_MEM)
2084 				nm_prinf("deleting ring %s", kring->name);
2085 			if (!(kring->nr_kflags & NKR_FAKERING)) {
2086 				nm_prdis("freeing bufs for %s", kring->name);
2087 				netmap_free_bufs(nmd, ring->slot, kring->nkr_num_slots);
2088 			} else {
2089 				nm_prdis("NOT freeing bufs for %s", kring->name);
2090 			}
2091 			netmap_ring_free(nmd, ring);
2092 			kring->ring = NULL;
2093 		}
2094 	}
2095 }
2096 
2097 /* call with NMA_LOCK held */
2098 /*
2099  * Allocate the per-fd structure netmap_if.
2100  *
2101  * We assume that the configuration stored in na
2102  * (number of tx/rx rings and descs) does not change while
2103  * the interface is in netmap mode.
2104  */
2105 static struct netmap_if *
netmap_mem2_if_new(struct netmap_mem_d * nmd,struct netmap_adapter * na,struct netmap_priv_d * priv)2106 netmap_mem2_if_new(struct netmap_mem_d *nmd,
2107 		struct netmap_adapter *na, struct netmap_priv_d *priv)
2108 {
2109 	struct netmap_if *nifp;
2110 	ssize_t base; /* handy for relative offsets between rings and nifp */
2111 	u_int i, len, n[NR_TXRX], ntot;
2112 	enum txrx t;
2113 
2114 	ntot = 0;
2115 	for_rx_tx(t) {
2116 		/* account for the (eventually fake) host rings */
2117 		n[t] = netmap_all_rings(na, t);
2118 		ntot += n[t];
2119 	}
2120 	/*
2121 	 * the descriptor is followed inline by an array of offsets
2122 	 * to the tx and rx rings in the shared memory region.
2123 	 */
2124 
2125 	len = sizeof(struct netmap_if) + (ntot * sizeof(ssize_t));
2126 	nifp = netmap_if_malloc(nmd, len);
2127 	if (nifp == NULL) {
2128 		return NULL;
2129 	}
2130 
2131 	/* initialize base fields -- override const */
2132 	*(u_int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
2133 	*(u_int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
2134 	*(u_int *)(uintptr_t)&nifp->ni_host_tx_rings =
2135 		(na->num_host_tx_rings ? na->num_host_tx_rings : 1);
2136 	*(u_int *)(uintptr_t)&nifp->ni_host_rx_rings =
2137 		(na->num_host_rx_rings ? na->num_host_rx_rings : 1);
2138 	strlcpy(nifp->ni_name, na->name, sizeof(nifp->ni_name));
2139 
2140 	/*
2141 	 * fill the slots for the rx and tx rings. They contain the offset
2142 	 * between the ring and nifp, so the information is usable in
2143 	 * userspace to reach the ring from the nifp.
2144 	 */
2145 	base = netmap_if_offset(nmd, nifp);
2146 	for (i = 0; i < n[NR_TX]; i++) {
2147 		/* XXX instead of ofs == 0 maybe use the offset of an error
2148 		 * ring, like we do for buffers? */
2149 		ssize_t ofs = 0;
2150 
2151 		if (na->tx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_TX]
2152 				&& i < priv->np_qlast[NR_TX]) {
2153 			ofs = netmap_ring_offset(nmd,
2154 						 na->tx_rings[i]->ring) - base;
2155 		}
2156 		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] = ofs;
2157 	}
2158 	for (i = 0; i < n[NR_RX]; i++) {
2159 		/* XXX instead of ofs == 0 maybe use the offset of an error
2160 		 * ring, like we do for buffers? */
2161 		ssize_t ofs = 0;
2162 
2163 		if (na->rx_rings[i]->ring != NULL && i >= priv->np_qfirst[NR_RX]
2164 				&& i < priv->np_qlast[NR_RX]) {
2165 			ofs = netmap_ring_offset(nmd,
2166 						 na->rx_rings[i]->ring) - base;
2167 		}
2168 		*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+n[NR_TX]] = ofs;
2169 	}
2170 
2171 	return (nifp);
2172 }
2173 
2174 static void
netmap_mem2_if_delete(struct netmap_mem_d * nmd,struct netmap_adapter * na,struct netmap_if * nifp)2175 netmap_mem2_if_delete(struct netmap_mem_d *nmd,
2176 		struct netmap_adapter *na, struct netmap_if *nifp)
2177 {
2178 	if (nifp == NULL)
2179 		/* nothing to do */
2180 		return;
2181 	if (nifp->ni_bufs_head)
2182 		netmap_extra_free(na, nifp->ni_bufs_head);
2183 	netmap_if_free(nmd, nifp);
2184 }
2185 
2186 static void
netmap_mem2_deref(struct netmap_mem_d * nmd,struct netmap_adapter * na)2187 netmap_mem2_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
2188 {
2189 
2190 	if (netmap_debug & NM_DEBUG_MEM)
2191 		nm_prinf("active = %d", nmd->active);
2192 
2193 }
2194 
2195 const struct netmap_mem_ops netmap_mem_global_ops = {
2196 	.nmd_get_lut = netmap_mem2_get_lut,
2197 	.nmd_get_info = netmap_mem2_get_info,
2198 	.nmd_ofstophys = netmap_mem2_ofstophys,
2199 	.nmd_config = netmap_mem2_config,
2200 	.nmd_finalize = netmap_mem2_finalize,
2201 	.nmd_deref = netmap_mem2_deref,
2202 	.nmd_delete = netmap_mem2_delete,
2203 	.nmd_if_offset = netmap_mem2_if_offset,
2204 	.nmd_if_new = netmap_mem2_if_new,
2205 	.nmd_if_delete = netmap_mem2_if_delete,
2206 	.nmd_rings_create = netmap_mem2_rings_create,
2207 	.nmd_rings_delete = netmap_mem2_rings_delete
2208 };
2209 
2210 int
netmap_mem_pools_info_get(struct nmreq_pools_info * req,struct netmap_mem_d * nmd)2211 netmap_mem_pools_info_get(struct nmreq_pools_info *req,
2212 				struct netmap_mem_d *nmd)
2213 {
2214 	int ret;
2215 
2216 	ret = netmap_mem_get_info(nmd, &req->nr_memsize, NULL,
2217 					&req->nr_mem_id);
2218 	if (ret) {
2219 		return ret;
2220 	}
2221 
2222 	NMA_LOCK(nmd);
2223 	req->nr_if_pool_offset = 0;
2224 	req->nr_if_pool_objtotal = nmd->pools[NETMAP_IF_POOL].objtotal;
2225 	req->nr_if_pool_objsize = nmd->pools[NETMAP_IF_POOL]._objsize;
2226 
2227 	req->nr_ring_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal;
2228 	req->nr_ring_pool_objtotal = nmd->pools[NETMAP_RING_POOL].objtotal;
2229 	req->nr_ring_pool_objsize = nmd->pools[NETMAP_RING_POOL]._objsize;
2230 
2231 	req->nr_buf_pool_offset = nmd->pools[NETMAP_IF_POOL].memtotal +
2232 			     nmd->pools[NETMAP_RING_POOL].memtotal;
2233 	req->nr_buf_pool_objtotal = nmd->pools[NETMAP_BUF_POOL].objtotal;
2234 	req->nr_buf_pool_objsize = nmd->pools[NETMAP_BUF_POOL]._objsize;
2235 	NMA_UNLOCK(nmd);
2236 
2237 	return 0;
2238 }
2239 
2240 #ifdef WITH_EXTMEM
2241 struct netmap_mem_ext {
2242 	struct netmap_mem_d up;
2243 
2244 	struct nm_os_extmem *os;
2245 	struct netmap_mem_ext *next, *prev;
2246 };
2247 
2248 /* call with nm_mem_list_lock held */
2249 static void
netmap_mem_ext_register(struct netmap_mem_ext * e)2250 netmap_mem_ext_register(struct netmap_mem_ext *e)
2251 {
2252 	NM_MTX_LOCK(nm_mem_ext_list_lock);
2253 	if (netmap_mem_ext_list)
2254 		netmap_mem_ext_list->prev = e;
2255 	e->next = netmap_mem_ext_list;
2256 	netmap_mem_ext_list = e;
2257 	e->prev = NULL;
2258 	NM_MTX_UNLOCK(nm_mem_ext_list_lock);
2259 }
2260 
2261 /* call with nm_mem_list_lock held */
2262 static void
netmap_mem_ext_unregister(struct netmap_mem_ext * e)2263 netmap_mem_ext_unregister(struct netmap_mem_ext *e)
2264 {
2265 	if (e->prev)
2266 		e->prev->next = e->next;
2267 	else
2268 		netmap_mem_ext_list = e->next;
2269 	if (e->next)
2270 		e->next->prev = e->prev;
2271 	e->prev = e->next = NULL;
2272 }
2273 
2274 static struct netmap_mem_ext *
netmap_mem_ext_search(struct nm_os_extmem * os)2275 netmap_mem_ext_search(struct nm_os_extmem *os)
2276 {
2277 	struct netmap_mem_ext *e;
2278 
2279 	NM_MTX_LOCK(nm_mem_ext_list_lock);
2280 	for (e = netmap_mem_ext_list; e; e = e->next) {
2281 		if (nm_os_extmem_isequal(e->os, os)) {
2282 			netmap_mem_get(&e->up);
2283 			break;
2284 		}
2285 	}
2286 	NM_MTX_UNLOCK(nm_mem_ext_list_lock);
2287 	return e;
2288 }
2289 
2290 
2291 static void
netmap_mem_ext_delete(struct netmap_mem_d * d)2292 netmap_mem_ext_delete(struct netmap_mem_d *d)
2293 {
2294 	int i;
2295 	struct netmap_mem_ext *e =
2296 		(struct netmap_mem_ext *)d;
2297 
2298 	netmap_mem_ext_unregister(e);
2299 
2300 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
2301 		struct netmap_obj_pool *p = &d->pools[i];
2302 
2303 		if (p->lut) {
2304 			nm_free_lut(p->lut, p->objtotal);
2305 			p->lut = NULL;
2306 		}
2307 	}
2308 	if (e->os)
2309 		nm_os_extmem_delete(e->os);
2310 	netmap_mem2_delete(d);
2311 }
2312 
2313 static int
netmap_mem_ext_config(struct netmap_mem_d * nmd)2314 netmap_mem_ext_config(struct netmap_mem_d *nmd)
2315 {
2316 	return 0;
2317 }
2318 
2319 struct netmap_mem_ops netmap_mem_ext_ops = {
2320 	.nmd_get_lut = netmap_mem2_get_lut,
2321 	.nmd_get_info = netmap_mem2_get_info,
2322 	.nmd_ofstophys = netmap_mem2_ofstophys,
2323 	.nmd_config = netmap_mem_ext_config,
2324 	.nmd_finalize = netmap_mem2_finalize,
2325 	.nmd_deref = netmap_mem2_deref,
2326 	.nmd_delete = netmap_mem_ext_delete,
2327 	.nmd_if_offset = netmap_mem2_if_offset,
2328 	.nmd_if_new = netmap_mem2_if_new,
2329 	.nmd_if_delete = netmap_mem2_if_delete,
2330 	.nmd_rings_create = netmap_mem2_rings_create,
2331 	.nmd_rings_delete = netmap_mem2_rings_delete
2332 };
2333 
2334 struct netmap_mem_d *
netmap_mem_ext_create(uint64_t usrptr,struct nmreq_pools_info * pi,int * perror)2335 netmap_mem_ext_create(uint64_t usrptr, struct nmreq_pools_info *pi, int *perror)
2336 {
2337 	int error = 0;
2338 	int i, j;
2339 	struct netmap_mem_ext *nme;
2340 	char *clust;
2341 	size_t off;
2342 	struct nm_os_extmem *os = NULL;
2343 	int nr_pages;
2344 
2345 	// XXX sanity checks
2346 	if (pi->nr_if_pool_objtotal == 0)
2347 		pi->nr_if_pool_objtotal = netmap_min_priv_params[NETMAP_IF_POOL].num;
2348 	if (pi->nr_if_pool_objsize == 0)
2349 		pi->nr_if_pool_objsize = netmap_min_priv_params[NETMAP_IF_POOL].size;
2350 	if (pi->nr_ring_pool_objtotal == 0)
2351 		pi->nr_ring_pool_objtotal = netmap_min_priv_params[NETMAP_RING_POOL].num;
2352 	if (pi->nr_ring_pool_objsize == 0)
2353 		pi->nr_ring_pool_objsize = netmap_min_priv_params[NETMAP_RING_POOL].size;
2354 	if (pi->nr_buf_pool_objtotal == 0)
2355 		pi->nr_buf_pool_objtotal = netmap_min_priv_params[NETMAP_BUF_POOL].num;
2356 	if (pi->nr_buf_pool_objsize == 0)
2357 		pi->nr_buf_pool_objsize = netmap_min_priv_params[NETMAP_BUF_POOL].size;
2358 	if (netmap_verbose & NM_DEBUG_MEM)
2359 		nm_prinf("if %d %d ring %d %d buf %d %d",
2360 			pi->nr_if_pool_objtotal, pi->nr_if_pool_objsize,
2361 			pi->nr_ring_pool_objtotal, pi->nr_ring_pool_objsize,
2362 			pi->nr_buf_pool_objtotal, pi->nr_buf_pool_objsize);
2363 
2364 	os = nm_os_extmem_create(usrptr, pi, &error);
2365 	if (os == NULL) {
2366 		nm_prerr("os extmem creation failed");
2367 		goto out;
2368 	}
2369 
2370 	nme = netmap_mem_ext_search(os);
2371 	if (nme) {
2372 		nm_os_extmem_delete(os);
2373 		return &nme->up;
2374 	}
2375 	if (netmap_verbose & NM_DEBUG_MEM)
2376 		nm_prinf("not found, creating new");
2377 
2378 	nme = _netmap_mem_private_new(sizeof(*nme),
2379 
2380 			(struct netmap_obj_params[]){
2381 				{ pi->nr_if_pool_objsize, pi->nr_if_pool_objtotal },
2382 				{ pi->nr_ring_pool_objsize, pi->nr_ring_pool_objtotal },
2383 				{ pi->nr_buf_pool_objsize, pi->nr_buf_pool_objtotal }},
2384 			-1,
2385 			&netmap_mem_ext_ops,
2386 			pi->nr_memsize,
2387 			&error);
2388 	if (nme == NULL)
2389 		goto out_unmap;
2390 
2391 	nr_pages = nm_os_extmem_nr_pages(os);
2392 
2393 	/* from now on pages will be released by nme destructor;
2394 	 * we let res = 0 to prevent release in out_unmap below
2395 	 */
2396 	nme->os = os;
2397 	os = NULL; /* pass ownership */
2398 
2399 	clust = nm_os_extmem_nextpage(nme->os);
2400 	off = 0;
2401 	for (i = 0; i < NETMAP_POOLS_NR; i++) {
2402 		struct netmap_obj_pool *p = &nme->up.pools[i];
2403 		struct netmap_obj_params *o = &nme->up.params[i];
2404 
2405 		p->_objsize = o->size;
2406 		p->_clustsize = o->size;
2407 		p->_clustentries = 1;
2408 
2409 		p->lut = nm_alloc_lut(o->num);
2410 		if (p->lut == NULL) {
2411 			error = ENOMEM;
2412 			goto out_delete;
2413 		}
2414 
2415 		p->bitmap_slots = (o->num + sizeof(uint32_t) - 1) / sizeof(uint32_t);
2416 		p->invalid_bitmap = nm_os_malloc(sizeof(uint32_t) * p->bitmap_slots);
2417 		if (p->invalid_bitmap == NULL) {
2418 			error = ENOMEM;
2419 			goto out_delete;
2420 		}
2421 
2422 		if (nr_pages == 0) {
2423 			p->objtotal = 0;
2424 			p->memtotal = 0;
2425 			p->objfree = 0;
2426 			continue;
2427 		}
2428 
2429 		for (j = 0; j < o->num && nr_pages > 0; j++) {
2430 			size_t noff;
2431 
2432 			p->lut[j].vaddr = clust + off;
2433 #if !defined(linux) && !defined(_WIN32)
2434 			p->lut[j].paddr = vtophys(p->lut[j].vaddr);
2435 #endif
2436 			nm_prdis("%s %d at %p", p->name, j, p->lut[j].vaddr);
2437 			noff = off + p->_objsize;
2438 			if (noff < PAGE_SIZE) {
2439 				off = noff;
2440 				continue;
2441 			}
2442 			nm_prdis("too big, recomputing offset...");
2443 			while (noff >= PAGE_SIZE) {
2444 				char *old_clust = clust;
2445 				noff -= PAGE_SIZE;
2446 				clust = nm_os_extmem_nextpage(nme->os);
2447 				nr_pages--;
2448 				nm_prdis("noff %zu page %p nr_pages %d", noff,
2449 						page_to_virt(*pages), nr_pages);
2450 				if (noff > 0 && !nm_isset(p->invalid_bitmap, j) &&
2451 					(nr_pages == 0 ||
2452 					 old_clust + PAGE_SIZE != clust))
2453 				{
2454 					/* out of space or non contiguous,
2455 					 * drop this object
2456 					 * */
2457 					p->invalid_bitmap[ (j>>5) ] |= 1U << (j & 31U);
2458 					nm_prdis("non contiguous at off %zu, drop", noff);
2459 				}
2460 				if (nr_pages == 0)
2461 					break;
2462 			}
2463 			off = noff;
2464 		}
2465 		p->objtotal = j;
2466 		p->numclusters = p->objtotal;
2467 		p->memtotal = j * (size_t)p->_objsize;
2468 		nm_prdis("%d memtotal %zu", j, p->memtotal);
2469 	}
2470 
2471 	netmap_mem_ext_register(nme);
2472 
2473 	return &nme->up;
2474 
2475 out_delete:
2476 	netmap_mem_put(&nme->up);
2477 out_unmap:
2478 	if (os)
2479 		nm_os_extmem_delete(os);
2480 out:
2481 	if (perror)
2482 		*perror = error;
2483 	return NULL;
2484 
2485 }
2486 #endif /* WITH_EXTMEM */
2487 
2488 
2489 #ifdef WITH_PTNETMAP
2490 struct mem_pt_if {
2491 	struct mem_pt_if *next;
2492 	if_t ifp;
2493 	unsigned int nifp_offset;
2494 };
2495 
2496 /* Netmap allocator for ptnetmap guests. */
2497 struct netmap_mem_ptg {
2498 	struct netmap_mem_d up;
2499 
2500 	vm_paddr_t nm_paddr;            /* physical address in the guest */
2501 	void *nm_addr;                  /* virtual address in the guest */
2502 	struct netmap_lut buf_lut;      /* lookup table for BUF pool in the guest */
2503 	nm_memid_t host_mem_id;         /* allocator identifier in the host */
2504 	struct ptnetmap_memdev *ptn_dev;/* ptnetmap memdev */
2505 	struct mem_pt_if *pt_ifs;	/* list of interfaces in passthrough */
2506 };
2507 
2508 /* Link a passthrough interface to a passthrough netmap allocator. */
2509 static int
netmap_mem_pt_guest_ifp_add(struct netmap_mem_d * nmd,if_t ifp,unsigned int nifp_offset)2510 netmap_mem_pt_guest_ifp_add(struct netmap_mem_d *nmd, if_t ifp,
2511 			    unsigned int nifp_offset)
2512 {
2513 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2514 	struct mem_pt_if *ptif = nm_os_malloc(sizeof(*ptif));
2515 
2516 	if (!ptif) {
2517 		return ENOMEM;
2518 	}
2519 
2520 	NMA_LOCK(nmd);
2521 
2522 	ptif->ifp = ifp;
2523 	ptif->nifp_offset = nifp_offset;
2524 
2525 	if (ptnmd->pt_ifs) {
2526 		ptif->next = ptnmd->pt_ifs;
2527 	}
2528 	ptnmd->pt_ifs = ptif;
2529 
2530 	NMA_UNLOCK(nmd);
2531 
2532 	nm_prinf("ifp=%s,nifp_offset=%u",
2533 		if_name(ptif->ifp), ptif->nifp_offset);
2534 
2535 	return 0;
2536 }
2537 
2538 /* Called with NMA_LOCK(nmd) held. */
2539 static struct mem_pt_if *
netmap_mem_pt_guest_ifp_lookup(struct netmap_mem_d * nmd,if_t ifp)2540 netmap_mem_pt_guest_ifp_lookup(struct netmap_mem_d *nmd, if_t ifp)
2541 {
2542 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2543 	struct mem_pt_if *curr;
2544 
2545 	for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
2546 		if (curr->ifp == ifp) {
2547 			return curr;
2548 		}
2549 	}
2550 
2551 	return NULL;
2552 }
2553 
2554 /* Unlink a passthrough interface from a passthrough netmap allocator. */
2555 int
netmap_mem_pt_guest_ifp_del(struct netmap_mem_d * nmd,if_t ifp)2556 netmap_mem_pt_guest_ifp_del(struct netmap_mem_d *nmd, if_t ifp)
2557 {
2558 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2559 	struct mem_pt_if *prev = NULL;
2560 	struct mem_pt_if *curr;
2561 	int ret = -1;
2562 
2563 	NMA_LOCK(nmd);
2564 
2565 	for (curr = ptnmd->pt_ifs; curr; curr = curr->next) {
2566 		if (curr->ifp == ifp) {
2567 			if (prev) {
2568 				prev->next = curr->next;
2569 			} else {
2570 				ptnmd->pt_ifs = curr->next;
2571 			}
2572 			nm_prinf("removed (ifp=%s,nifp_offset=%u)",
2573 			  if_name(curr->ifp), curr->nifp_offset);
2574 			nm_os_free(curr);
2575 			ret = 0;
2576 			break;
2577 		}
2578 		prev = curr;
2579 	}
2580 
2581 	NMA_UNLOCK(nmd);
2582 
2583 	return ret;
2584 }
2585 
2586 static int
netmap_mem_pt_guest_get_lut(struct netmap_mem_d * nmd,struct netmap_lut * lut)2587 netmap_mem_pt_guest_get_lut(struct netmap_mem_d *nmd, struct netmap_lut *lut)
2588 {
2589 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2590 
2591 	if (!(nmd->flags & NETMAP_MEM_FINALIZED)) {
2592 		return EINVAL;
2593 	}
2594 
2595 	*lut = ptnmd->buf_lut;
2596 	return 0;
2597 }
2598 
2599 static int
netmap_mem_pt_guest_get_info(struct netmap_mem_d * nmd,uint64_t * size,u_int * memflags,uint16_t * id)2600 netmap_mem_pt_guest_get_info(struct netmap_mem_d *nmd, uint64_t *size,
2601 			     u_int *memflags, uint16_t *id)
2602 {
2603 	int error = 0;
2604 
2605 	error = nmd->ops->nmd_config(nmd);
2606 	if (error)
2607 		goto out;
2608 
2609 	if (size)
2610 		*size = nmd->nm_totalsize;
2611 	if (memflags)
2612 		*memflags = nmd->flags;
2613 	if (id)
2614 		*id = nmd->nm_id;
2615 
2616 out:
2617 
2618 	return error;
2619 }
2620 
2621 static vm_paddr_t
netmap_mem_pt_guest_ofstophys(struct netmap_mem_d * nmd,vm_ooffset_t off)2622 netmap_mem_pt_guest_ofstophys(struct netmap_mem_d *nmd, vm_ooffset_t off)
2623 {
2624 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2625 	vm_paddr_t paddr;
2626 	/* if the offset is valid, just return csb->base_addr + off */
2627 	paddr = (vm_paddr_t)(ptnmd->nm_paddr + off);
2628 	nm_prdis("off %lx padr %lx", off, (unsigned long)paddr);
2629 	return paddr;
2630 }
2631 
2632 static int
netmap_mem_pt_guest_config(struct netmap_mem_d * nmd)2633 netmap_mem_pt_guest_config(struct netmap_mem_d *nmd)
2634 {
2635 	/* nothing to do, we are configured on creation
2636 	 * and configuration never changes thereafter
2637 	 */
2638 	return 0;
2639 }
2640 
2641 static int
netmap_mem_pt_guest_finalize(struct netmap_mem_d * nmd,struct netmap_adapter * na)2642 netmap_mem_pt_guest_finalize(struct netmap_mem_d *nmd, struct netmap_adapter *na)
2643 {
2644 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2645 	uint64_t mem_size;
2646 	uint32_t bufsize;
2647 	uint32_t nbuffers;
2648 	uint32_t poolofs;
2649 	vm_paddr_t paddr;
2650 	char *vaddr;
2651 	int i;
2652 	int error = 0;
2653 
2654 	if (nmd->flags & NETMAP_MEM_FINALIZED)
2655 		goto out;
2656 
2657 	if (ptnmd->ptn_dev == NULL) {
2658 		nm_prerr("ptnetmap memdev not attached");
2659 		error = ENOMEM;
2660 		goto out;
2661 	}
2662 	/* Map memory through ptnetmap-memdev BAR. */
2663 	error = nm_os_pt_memdev_iomap(ptnmd->ptn_dev, &ptnmd->nm_paddr,
2664 				      &ptnmd->nm_addr, &mem_size);
2665 	if (error)
2666 		goto out;
2667 
2668 	/* Initialize the lut using the information contained in the
2669 	 * ptnetmap memory device. */
2670 	bufsize = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2671 					 PTNET_MDEV_IO_BUF_POOL_OBJSZ);
2672 	nbuffers = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2673 					 PTNET_MDEV_IO_BUF_POOL_OBJNUM);
2674 
2675 	/* allocate the lut */
2676 	if (ptnmd->buf_lut.lut == NULL) {
2677 		nm_prinf("allocating lut");
2678 		ptnmd->buf_lut.lut = nm_alloc_lut(nbuffers);
2679 		if (ptnmd->buf_lut.lut == NULL) {
2680 			nm_prerr("lut allocation failed");
2681 			return ENOMEM;
2682 		}
2683 	}
2684 
2685 	/* we have physically contiguous memory mapped through PCI BAR */
2686 	poolofs = nm_os_pt_memdev_ioread(ptnmd->ptn_dev,
2687 					 PTNET_MDEV_IO_BUF_POOL_OFS);
2688 	vaddr = (char *)(ptnmd->nm_addr) + poolofs;
2689 	paddr = ptnmd->nm_paddr + poolofs;
2690 
2691 	for (i = 0; i < nbuffers; i++) {
2692 		ptnmd->buf_lut.lut[i].vaddr = vaddr;
2693 		vaddr += bufsize;
2694 		paddr += bufsize;
2695 	}
2696 
2697 	ptnmd->buf_lut.objtotal = nbuffers;
2698 	ptnmd->buf_lut.objsize = bufsize;
2699 	nmd->nm_totalsize = mem_size;
2700 
2701 	/* Initialize these fields as are needed by
2702 	 * netmap_mem_bufsize().
2703 	 * XXX please improve this, why do we need this
2704 	 * replication? maybe we nmd->pools[] should no be
2705 	 * there for the guest allocator? */
2706 	nmd->pools[NETMAP_BUF_POOL]._objsize = bufsize;
2707 	nmd->pools[NETMAP_BUF_POOL]._objtotal = nbuffers;
2708 
2709 	nmd->flags |= NETMAP_MEM_FINALIZED;
2710 out:
2711 	return error;
2712 }
2713 
2714 static void
netmap_mem_pt_guest_deref(struct netmap_mem_d * nmd,struct netmap_adapter * na)2715 netmap_mem_pt_guest_deref(struct netmap_mem_d *nmd, struct netmap_adapter *na)
2716 {
2717 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2718 
2719 	if (nmd->active == 1 &&
2720 		(nmd->flags & NETMAP_MEM_FINALIZED)) {
2721 	    nmd->flags  &= ~NETMAP_MEM_FINALIZED;
2722 	    /* unmap ptnetmap-memdev memory */
2723 	    if (ptnmd->ptn_dev) {
2724 		nm_os_pt_memdev_iounmap(ptnmd->ptn_dev);
2725 	    }
2726 	    ptnmd->nm_addr = NULL;
2727 	    ptnmd->nm_paddr = 0;
2728 	}
2729 }
2730 
2731 static ssize_t
netmap_mem_pt_guest_if_offset(struct netmap_mem_d * nmd,const void * vaddr)2732 netmap_mem_pt_guest_if_offset(struct netmap_mem_d *nmd, const void *vaddr)
2733 {
2734 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2735 
2736 	return (const char *)(vaddr) - (char *)(ptnmd->nm_addr);
2737 }
2738 
2739 static void
netmap_mem_pt_guest_delete(struct netmap_mem_d * nmd)2740 netmap_mem_pt_guest_delete(struct netmap_mem_d *nmd)
2741 {
2742 	if (nmd == NULL)
2743 		return;
2744 	if (netmap_verbose)
2745 		nm_prinf("deleting %p", nmd);
2746 	if (nmd->active > 0)
2747 		nm_prerr("bug: deleting mem allocator with active=%d!", nmd->active);
2748 	if (netmap_verbose)
2749 		nm_prinf("done deleting %p", nmd);
2750 	NMA_LOCK_DESTROY(nmd);
2751 	nm_os_free(nmd);
2752 }
2753 
2754 static struct netmap_if *
netmap_mem_pt_guest_if_new(struct netmap_mem_d * nmd,struct netmap_adapter * na,struct netmap_priv_d * priv)2755 netmap_mem_pt_guest_if_new(struct netmap_mem_d *nmd,
2756 		struct netmap_adapter *na, struct netmap_priv_d *priv)
2757 {
2758 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2759 	struct mem_pt_if *ptif;
2760 	struct netmap_if *nifp = NULL;
2761 
2762 	ptif = netmap_mem_pt_guest_ifp_lookup(nmd, na->ifp);
2763 	if (ptif == NULL) {
2764 		nm_prerr("interface %s is not in passthrough", na->name);
2765 		goto out;
2766 	}
2767 
2768 	nifp = (struct netmap_if *)((char *)(ptnmd->nm_addr) +
2769 				    ptif->nifp_offset);
2770 out:
2771 	return nifp;
2772 }
2773 
2774 static void
netmap_mem_pt_guest_if_delete(struct netmap_mem_d * nmd,struct netmap_adapter * na,struct netmap_if * nifp)2775 netmap_mem_pt_guest_if_delete(struct netmap_mem_d * nmd,
2776 		struct netmap_adapter *na, struct netmap_if *nifp)
2777 {
2778 	struct mem_pt_if *ptif;
2779 
2780 	ptif = netmap_mem_pt_guest_ifp_lookup(nmd, na->ifp);
2781 	if (ptif == NULL) {
2782 		nm_prerr("interface %s is not in passthrough", na->name);
2783 	}
2784 }
2785 
2786 static int
netmap_mem_pt_guest_rings_create(struct netmap_mem_d * nmd,struct netmap_adapter * na)2787 netmap_mem_pt_guest_rings_create(struct netmap_mem_d *nmd,
2788 		struct netmap_adapter *na)
2789 {
2790 	struct netmap_mem_ptg *ptnmd = (struct netmap_mem_ptg *)nmd;
2791 	struct mem_pt_if *ptif;
2792 	struct netmap_if *nifp;
2793 	int i, error = -1;
2794 
2795 	ptif = netmap_mem_pt_guest_ifp_lookup(nmd, na->ifp);
2796 	if (ptif == NULL) {
2797 		nm_prerr("interface %s is not in passthrough", na->name);
2798 		goto out;
2799 	}
2800 
2801 
2802 	/* point each kring to the corresponding backend ring */
2803 	nifp = (struct netmap_if *)((char *)ptnmd->nm_addr + ptif->nifp_offset);
2804 	for (i = 0; i < netmap_all_rings(na, NR_TX); i++) {
2805 		struct netmap_kring *kring = na->tx_rings[i];
2806 		if (kring->ring)
2807 			continue;
2808 		kring->ring = (struct netmap_ring *)
2809 			((char *)nifp + nifp->ring_ofs[i]);
2810 	}
2811 	for (i = 0; i < netmap_all_rings(na, NR_RX); i++) {
2812 		struct netmap_kring *kring = na->rx_rings[i];
2813 		if (kring->ring)
2814 			continue;
2815 		kring->ring = (struct netmap_ring *)
2816 			((char *)nifp +
2817 			 nifp->ring_ofs[netmap_all_rings(na, NR_TX) + i]);
2818 	}
2819 
2820 	error = 0;
2821 out:
2822 	return error;
2823 }
2824 
2825 static void
netmap_mem_pt_guest_rings_delete(struct netmap_mem_d * nmd,struct netmap_adapter * na)2826 netmap_mem_pt_guest_rings_delete(struct netmap_mem_d *nmd, struct netmap_adapter *na)
2827 {
2828 #if 0
2829 	enum txrx t;
2830 
2831 	for_rx_tx(t) {
2832 		u_int i;
2833 		for (i = 0; i < nma_get_nrings(na, t) + 1; i++) {
2834 			struct netmap_kring *kring = &NMR(na, t)[i];
2835 
2836 			kring->ring = NULL;
2837 		}
2838 	}
2839 #endif
2840 	(void)nmd;
2841 	(void)na;
2842 }
2843 
2844 static struct netmap_mem_ops netmap_mem_pt_guest_ops = {
2845 	.nmd_get_lut = netmap_mem_pt_guest_get_lut,
2846 	.nmd_get_info = netmap_mem_pt_guest_get_info,
2847 	.nmd_ofstophys = netmap_mem_pt_guest_ofstophys,
2848 	.nmd_config = netmap_mem_pt_guest_config,
2849 	.nmd_finalize = netmap_mem_pt_guest_finalize,
2850 	.nmd_deref = netmap_mem_pt_guest_deref,
2851 	.nmd_if_offset = netmap_mem_pt_guest_if_offset,
2852 	.nmd_delete = netmap_mem_pt_guest_delete,
2853 	.nmd_if_new = netmap_mem_pt_guest_if_new,
2854 	.nmd_if_delete = netmap_mem_pt_guest_if_delete,
2855 	.nmd_rings_create = netmap_mem_pt_guest_rings_create,
2856 	.nmd_rings_delete = netmap_mem_pt_guest_rings_delete
2857 };
2858 
2859 /* Called with nm_mem_list_lock held. */
2860 static struct netmap_mem_d *
netmap_mem_pt_guest_find_memid(nm_memid_t mem_id)2861 netmap_mem_pt_guest_find_memid(nm_memid_t mem_id)
2862 {
2863 	struct netmap_mem_d *mem = NULL;
2864 	struct netmap_mem_d *scan = netmap_last_mem_d;
2865 
2866 	do {
2867 		/* find ptnetmap allocator through host ID */
2868 		if (scan->ops->nmd_deref == netmap_mem_pt_guest_deref &&
2869 			((struct netmap_mem_ptg *)(scan))->host_mem_id == mem_id) {
2870 			mem = scan;
2871 			mem->refcount++;
2872 			NM_DBG_REFC(mem, __FUNCTION__, __LINE__);
2873 			break;
2874 		}
2875 		scan = scan->next;
2876 	} while (scan != netmap_last_mem_d);
2877 
2878 	return mem;
2879 }
2880 
2881 /* Called with nm_mem_list_lock held. */
2882 static struct netmap_mem_d *
netmap_mem_pt_guest_create(nm_memid_t mem_id)2883 netmap_mem_pt_guest_create(nm_memid_t mem_id)
2884 {
2885 	struct netmap_mem_ptg *ptnmd;
2886 	int err = 0;
2887 
2888 	ptnmd = nm_os_malloc(sizeof(struct netmap_mem_ptg));
2889 	if (ptnmd == NULL) {
2890 		err = ENOMEM;
2891 		goto error;
2892 	}
2893 
2894 	ptnmd->up.ops = &netmap_mem_pt_guest_ops;
2895 	ptnmd->host_mem_id = mem_id;
2896 	ptnmd->pt_ifs = NULL;
2897 
2898 	/* Assign new id in the guest (We have the lock) */
2899 	err = nm_mem_assign_id_locked(&ptnmd->up, -1, -1);
2900 	if (err)
2901 		goto error;
2902 
2903 	ptnmd->up.flags &= ~NETMAP_MEM_FINALIZED;
2904 	ptnmd->up.flags |= NETMAP_MEM_IO;
2905 
2906 	NMA_LOCK_INIT(&ptnmd->up);
2907 
2908 	snprintf(ptnmd->up.name, NM_MEM_NAMESZ, "%d", ptnmd->up.nm_id);
2909 
2910 
2911 	return &ptnmd->up;
2912 error:
2913 	netmap_mem_pt_guest_delete(&ptnmd->up);
2914 	return NULL;
2915 }
2916 
2917 /*
2918  * find host id in guest allocators and create guest allocator
2919  * if it is not there
2920  */
2921 static struct netmap_mem_d *
netmap_mem_pt_guest_get(nm_memid_t mem_id)2922 netmap_mem_pt_guest_get(nm_memid_t mem_id)
2923 {
2924 	struct netmap_mem_d *nmd;
2925 
2926 	NM_MTX_LOCK(nm_mem_list_lock);
2927 	nmd = netmap_mem_pt_guest_find_memid(mem_id);
2928 	if (nmd == NULL) {
2929 		nmd = netmap_mem_pt_guest_create(mem_id);
2930 	}
2931 	NM_MTX_UNLOCK(nm_mem_list_lock);
2932 
2933 	return nmd;
2934 }
2935 
2936 /*
2937  * The guest allocator can be created by ptnetmap_memdev (during the device
2938  * attach) or by ptnetmap device (ptnet), during the netmap_attach.
2939  *
2940  * The order is not important (we have different order in LINUX and FreeBSD).
2941  * The first one, creates the device, and the second one simply attaches it.
2942  */
2943 
2944 /* Called when ptnetmap_memdev is attaching, to attach a new allocator in
2945  * the guest */
2946 struct netmap_mem_d *
netmap_mem_pt_guest_attach(struct ptnetmap_memdev * ptn_dev,nm_memid_t mem_id)2947 netmap_mem_pt_guest_attach(struct ptnetmap_memdev *ptn_dev, nm_memid_t mem_id)
2948 {
2949 	struct netmap_mem_d *nmd;
2950 	struct netmap_mem_ptg *ptnmd;
2951 
2952 	nmd = netmap_mem_pt_guest_get(mem_id);
2953 
2954 	/* assign this device to the guest allocator */
2955 	if (nmd) {
2956 		ptnmd = (struct netmap_mem_ptg *)nmd;
2957 		ptnmd->ptn_dev = ptn_dev;
2958 	}
2959 
2960 	return nmd;
2961 }
2962 
2963 /* Called when ptnet device is attaching */
2964 struct netmap_mem_d *
netmap_mem_pt_guest_new(if_t ifp,unsigned int nifp_offset,unsigned int memid)2965 netmap_mem_pt_guest_new(if_t ifp,
2966 			unsigned int nifp_offset,
2967 			unsigned int memid)
2968 {
2969 	struct netmap_mem_d *nmd;
2970 
2971 	if (ifp == NULL) {
2972 		return NULL;
2973 	}
2974 
2975 	nmd = netmap_mem_pt_guest_get((nm_memid_t)memid);
2976 
2977 	if (nmd) {
2978 		netmap_mem_pt_guest_ifp_add(nmd, ifp, nifp_offset);
2979 	}
2980 
2981 	return nmd;
2982 }
2983 
2984 #endif /* WITH_PTNETMAP */
2985