xref: /linux/net/core/net-sysfs.c (revision 1a9239bb4253f9076b5b4b2a1a4e8d7defd77a95)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * net-sysfs.c - network device class and attributes
4  *
5  * Copyright (c) 2003 Stephen Hemminger <shemminger@osdl.org>
6  */
7 
8 #include <linux/capability.h>
9 #include <linux/kernel.h>
10 #include <linux/netdevice.h>
11 #include <linux/if_arp.h>
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/isolation.h>
15 #include <linux/nsproxy.h>
16 #include <net/sock.h>
17 #include <net/net_namespace.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/vmalloc.h>
20 #include <linux/export.h>
21 #include <linux/jiffies.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/of.h>
24 #include <linux/of_net.h>
25 #include <linux/cpu.h>
26 #include <net/netdev_lock.h>
27 #include <net/netdev_rx_queue.h>
28 #include <net/rps.h>
29 
30 #include "dev.h"
31 #include "net-sysfs.h"
32 
33 #ifdef CONFIG_SYSFS
34 static const char fmt_hex[] = "%#x\n";
35 static const char fmt_dec[] = "%d\n";
36 static const char fmt_uint[] = "%u\n";
37 static const char fmt_ulong[] = "%lu\n";
38 static const char fmt_u64[] = "%llu\n";
39 
40 /* Caller holds RTNL, netdev->lock or RCU */
dev_isalive(const struct net_device * dev)41 static inline int dev_isalive(const struct net_device *dev)
42 {
43 	return READ_ONCE(dev->reg_state) <= NETREG_REGISTERED;
44 }
45 
46 /* There is a possible ABBA deadlock between rtnl_lock and kernfs_node->active,
47  * when unregistering a net device and accessing associated sysfs files. The
48  * potential deadlock is as follow:
49  *
50  *         CPU 0                                         CPU 1
51  *
52  *    rtnl_lock                                   vfs_read
53  *    unregister_netdevice_many                   kernfs_seq_start
54  *    device_del / kobject_put                      kernfs_get_active (kn->active++)
55  *    kernfs_drain                                sysfs_kf_seq_show
56  *    wait_event(                                 rtnl_lock
57  *       kn->active == KN_DEACTIVATED_BIAS)       -> waits on CPU 0 to release
58  *    -> waits on CPU 1 to decrease kn->active       the rtnl lock.
59  *
60  * The historical fix was to use rtnl_trylock with restart_syscall to bail out
61  * of sysfs operations when the lock couldn't be taken. This fixed the above
62  * issue as it allowed CPU 1 to bail out of the ABBA situation.
63  *
64  * But it came with performances issues, as syscalls are being restarted in
65  * loops when there was contention on the rtnl lock, with huge slow downs in
66  * specific scenarios (e.g. lots of virtual interfaces created and userspace
67  * daemons querying their attributes).
68  *
69  * The idea below is to bail out of the active kernfs_node protection
70  * (kn->active) while trying to take the rtnl lock.
71  *
72  * This replaces rtnl_lock() and still has to be used with rtnl_unlock(). The
73  * net device is guaranteed to be alive if this returns successfully.
74  */
sysfs_rtnl_lock(struct kobject * kobj,struct attribute * attr,struct net_device * ndev)75 static int sysfs_rtnl_lock(struct kobject *kobj, struct attribute *attr,
76 			   struct net_device *ndev)
77 {
78 	struct kernfs_node *kn;
79 	int ret = 0;
80 
81 	/* First, we hold a reference to the net device as the unregistration
82 	 * path might run in parallel. This will ensure the net device and the
83 	 * associated sysfs objects won't be freed while we try to take the rtnl
84 	 * lock.
85 	 */
86 	dev_hold(ndev);
87 	/* sysfs_break_active_protection was introduced to allow self-removal of
88 	 * devices and their associated sysfs files by bailing out of the
89 	 * sysfs/kernfs protection. We do this here to allow the unregistration
90 	 * path to complete in parallel. The following takes a reference on the
91 	 * kobject and the kernfs_node being accessed.
92 	 *
93 	 * This works because we hold a reference onto the net device and the
94 	 * unregistration path will wait for us eventually in netdev_run_todo
95 	 * (outside an rtnl lock section).
96 	 */
97 	kn = sysfs_break_active_protection(kobj, attr);
98 	/* We can now try to take the rtnl lock. This can't deadlock us as the
99 	 * unregistration path is able to drain sysfs files (kernfs_node) thanks
100 	 * to the above dance.
101 	 */
102 	if (rtnl_lock_interruptible()) {
103 		ret = -ERESTARTSYS;
104 		goto unbreak;
105 	}
106 	/* Check dismantle on the device hasn't started, otherwise deny the
107 	 * operation.
108 	 */
109 	if (!dev_isalive(ndev)) {
110 		rtnl_unlock();
111 		ret = -ENODEV;
112 		goto unbreak;
113 	}
114 	/* We are now sure the device dismantle hasn't started nor that it can
115 	 * start before we exit the locking section as we hold the rtnl lock.
116 	 * There's no need to keep unbreaking the sysfs protection nor to hold
117 	 * a net device reference from that point; that was only needed to take
118 	 * the rtnl lock.
119 	 */
120 unbreak:
121 	sysfs_unbreak_active_protection(kn);
122 	dev_put(ndev);
123 
124 	return ret;
125 }
126 
127 /* use same locking rules as GIF* ioctl's */
netdev_show(const struct device * dev,struct device_attribute * attr,char * buf,ssize_t (* format)(const struct net_device *,char *))128 static ssize_t netdev_show(const struct device *dev,
129 			   struct device_attribute *attr, char *buf,
130 			   ssize_t (*format)(const struct net_device *, char *))
131 {
132 	struct net_device *ndev = to_net_dev(dev);
133 	ssize_t ret = -EINVAL;
134 
135 	rcu_read_lock();
136 	if (dev_isalive(ndev))
137 		ret = (*format)(ndev, buf);
138 	rcu_read_unlock();
139 
140 	return ret;
141 }
142 
143 /* generate a show function for simple field */
144 #define NETDEVICE_SHOW(field, format_string)				\
145 static ssize_t format_##field(const struct net_device *dev, char *buf)	\
146 {									\
147 	return sysfs_emit(buf, format_string, READ_ONCE(dev->field));		\
148 }									\
149 static ssize_t field##_show(struct device *dev,				\
150 			    struct device_attribute *attr, char *buf)	\
151 {									\
152 	return netdev_show(dev, attr, buf, format_##field);		\
153 }									\
154 
155 #define NETDEVICE_SHOW_RO(field, format_string)				\
156 NETDEVICE_SHOW(field, format_string);					\
157 static DEVICE_ATTR_RO(field)
158 
159 #define NETDEVICE_SHOW_RW(field, format_string)				\
160 NETDEVICE_SHOW(field, format_string);					\
161 static DEVICE_ATTR_RW(field)
162 
163 /* use same locking and permission rules as SIF* ioctl's */
netdev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len,int (* set)(struct net_device *,unsigned long))164 static ssize_t netdev_store(struct device *dev, struct device_attribute *attr,
165 			    const char *buf, size_t len,
166 			    int (*set)(struct net_device *, unsigned long))
167 {
168 	struct net_device *netdev = to_net_dev(dev);
169 	struct net *net = dev_net(netdev);
170 	unsigned long new;
171 	int ret;
172 
173 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
174 		return -EPERM;
175 
176 	ret = kstrtoul(buf, 0, &new);
177 	if (ret)
178 		goto err;
179 
180 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
181 	if (ret)
182 		goto err;
183 
184 	ret = (*set)(netdev, new);
185 	if (ret == 0)
186 		ret = len;
187 
188 	rtnl_unlock();
189  err:
190 	return ret;
191 }
192 
193 /* Same as netdev_store() but takes netdev_lock() instead of rtnl_lock() */
194 static ssize_t
netdev_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len,int (* set)(struct net_device *,unsigned long))195 netdev_lock_store(struct device *dev, struct device_attribute *attr,
196 		  const char *buf, size_t len,
197 		  int (*set)(struct net_device *, unsigned long))
198 {
199 	struct net_device *netdev = to_net_dev(dev);
200 	struct net *net = dev_net(netdev);
201 	unsigned long new;
202 	int ret;
203 
204 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
205 		return -EPERM;
206 
207 	ret = kstrtoul(buf, 0, &new);
208 	if (ret)
209 		return ret;
210 
211 	netdev_lock(netdev);
212 
213 	if (dev_isalive(netdev)) {
214 		ret = (*set)(netdev, new);
215 		if (ret == 0)
216 			ret = len;
217 	}
218 	netdev_unlock(netdev);
219 
220 	return ret;
221 }
222 
223 NETDEVICE_SHOW_RO(dev_id, fmt_hex);
224 NETDEVICE_SHOW_RO(dev_port, fmt_dec);
225 NETDEVICE_SHOW_RO(addr_assign_type, fmt_dec);
226 NETDEVICE_SHOW_RO(addr_len, fmt_dec);
227 NETDEVICE_SHOW_RO(ifindex, fmt_dec);
228 NETDEVICE_SHOW_RO(type, fmt_dec);
229 NETDEVICE_SHOW_RO(link_mode, fmt_dec);
230 
iflink_show(struct device * dev,struct device_attribute * attr,char * buf)231 static ssize_t iflink_show(struct device *dev, struct device_attribute *attr,
232 			   char *buf)
233 {
234 	struct net_device *ndev = to_net_dev(dev);
235 
236 	return sysfs_emit(buf, fmt_dec, dev_get_iflink(ndev));
237 }
238 static DEVICE_ATTR_RO(iflink);
239 
format_name_assign_type(const struct net_device * dev,char * buf)240 static ssize_t format_name_assign_type(const struct net_device *dev, char *buf)
241 {
242 	return sysfs_emit(buf, fmt_dec, READ_ONCE(dev->name_assign_type));
243 }
244 
name_assign_type_show(struct device * dev,struct device_attribute * attr,char * buf)245 static ssize_t name_assign_type_show(struct device *dev,
246 				     struct device_attribute *attr,
247 				     char *buf)
248 {
249 	struct net_device *ndev = to_net_dev(dev);
250 	ssize_t ret = -EINVAL;
251 
252 	if (READ_ONCE(ndev->name_assign_type) != NET_NAME_UNKNOWN)
253 		ret = netdev_show(dev, attr, buf, format_name_assign_type);
254 
255 	return ret;
256 }
257 static DEVICE_ATTR_RO(name_assign_type);
258 
259 /* use same locking rules as GIFHWADDR ioctl's (dev_get_mac_address()) */
address_show(struct device * dev,struct device_attribute * attr,char * buf)260 static ssize_t address_show(struct device *dev, struct device_attribute *attr,
261 			    char *buf)
262 {
263 	struct net_device *ndev = to_net_dev(dev);
264 	ssize_t ret = -EINVAL;
265 
266 	down_read(&dev_addr_sem);
267 
268 	rcu_read_lock();
269 	if (dev_isalive(ndev))
270 		ret = sysfs_format_mac(buf, ndev->dev_addr, ndev->addr_len);
271 	rcu_read_unlock();
272 
273 	up_read(&dev_addr_sem);
274 	return ret;
275 }
276 static DEVICE_ATTR_RO(address);
277 
broadcast_show(struct device * dev,struct device_attribute * attr,char * buf)278 static ssize_t broadcast_show(struct device *dev,
279 			      struct device_attribute *attr, char *buf)
280 {
281 	struct net_device *ndev = to_net_dev(dev);
282 	int ret = -EINVAL;
283 
284 	rcu_read_lock();
285 	if (dev_isalive(ndev))
286 		ret = sysfs_format_mac(buf, ndev->broadcast, ndev->addr_len);
287 	rcu_read_unlock();
288 	return ret;
289 }
290 static DEVICE_ATTR_RO(broadcast);
291 
change_carrier(struct net_device * dev,unsigned long new_carrier)292 static int change_carrier(struct net_device *dev, unsigned long new_carrier)
293 {
294 	if (!netif_running(dev))
295 		return -EINVAL;
296 	return dev_change_carrier(dev, (bool)new_carrier);
297 }
298 
carrier_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)299 static ssize_t carrier_store(struct device *dev, struct device_attribute *attr,
300 			     const char *buf, size_t len)
301 {
302 	struct net_device *netdev = to_net_dev(dev);
303 
304 	/* The check is also done in change_carrier; this helps returning early
305 	 * without hitting the locking section in netdev_store.
306 	 */
307 	if (!netdev->netdev_ops->ndo_change_carrier)
308 		return -EOPNOTSUPP;
309 
310 	return netdev_store(dev, attr, buf, len, change_carrier);
311 }
312 
carrier_show(struct device * dev,struct device_attribute * attr,char * buf)313 static ssize_t carrier_show(struct device *dev,
314 			    struct device_attribute *attr, char *buf)
315 {
316 	struct net_device *netdev = to_net_dev(dev);
317 	int ret;
318 
319 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
320 	if (ret)
321 		return ret;
322 
323 	ret = -EINVAL;
324 	if (netif_running(netdev)) {
325 		/* Synchronize carrier state with link watch,
326 		 * see also rtnl_getlink().
327 		 */
328 		linkwatch_sync_dev(netdev);
329 
330 		ret = sysfs_emit(buf, fmt_dec, !!netif_carrier_ok(netdev));
331 	}
332 
333 	rtnl_unlock();
334 	return ret;
335 }
336 static DEVICE_ATTR_RW(carrier);
337 
speed_show(struct device * dev,struct device_attribute * attr,char * buf)338 static ssize_t speed_show(struct device *dev,
339 			  struct device_attribute *attr, char *buf)
340 {
341 	struct net_device *netdev = to_net_dev(dev);
342 	int ret = -EINVAL;
343 
344 	/* The check is also done in __ethtool_get_link_ksettings; this helps
345 	 * returning early without hitting the locking section below.
346 	 */
347 	if (!netdev->ethtool_ops->get_link_ksettings)
348 		return ret;
349 
350 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
351 	if (ret)
352 		return ret;
353 
354 	ret = -EINVAL;
355 	if (netif_running(netdev)) {
356 		struct ethtool_link_ksettings cmd;
357 
358 		if (!__ethtool_get_link_ksettings(netdev, &cmd))
359 			ret = sysfs_emit(buf, fmt_dec, cmd.base.speed);
360 	}
361 	rtnl_unlock();
362 	return ret;
363 }
364 static DEVICE_ATTR_RO(speed);
365 
duplex_show(struct device * dev,struct device_attribute * attr,char * buf)366 static ssize_t duplex_show(struct device *dev,
367 			   struct device_attribute *attr, char *buf)
368 {
369 	struct net_device *netdev = to_net_dev(dev);
370 	int ret = -EINVAL;
371 
372 	/* The check is also done in __ethtool_get_link_ksettings; this helps
373 	 * returning early without hitting the locking section below.
374 	 */
375 	if (!netdev->ethtool_ops->get_link_ksettings)
376 		return ret;
377 
378 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
379 	if (ret)
380 		return ret;
381 
382 	ret = -EINVAL;
383 	if (netif_running(netdev)) {
384 		struct ethtool_link_ksettings cmd;
385 
386 		if (!__ethtool_get_link_ksettings(netdev, &cmd)) {
387 			const char *duplex;
388 
389 			switch (cmd.base.duplex) {
390 			case DUPLEX_HALF:
391 				duplex = "half";
392 				break;
393 			case DUPLEX_FULL:
394 				duplex = "full";
395 				break;
396 			default:
397 				duplex = "unknown";
398 				break;
399 			}
400 			ret = sysfs_emit(buf, "%s\n", duplex);
401 		}
402 	}
403 	rtnl_unlock();
404 	return ret;
405 }
406 static DEVICE_ATTR_RO(duplex);
407 
testing_show(struct device * dev,struct device_attribute * attr,char * buf)408 static ssize_t testing_show(struct device *dev,
409 			    struct device_attribute *attr, char *buf)
410 {
411 	struct net_device *netdev = to_net_dev(dev);
412 
413 	if (netif_running(netdev))
414 		return sysfs_emit(buf, fmt_dec, !!netif_testing(netdev));
415 
416 	return -EINVAL;
417 }
418 static DEVICE_ATTR_RO(testing);
419 
dormant_show(struct device * dev,struct device_attribute * attr,char * buf)420 static ssize_t dormant_show(struct device *dev,
421 			    struct device_attribute *attr, char *buf)
422 {
423 	struct net_device *netdev = to_net_dev(dev);
424 
425 	if (netif_running(netdev))
426 		return sysfs_emit(buf, fmt_dec, !!netif_dormant(netdev));
427 
428 	return -EINVAL;
429 }
430 static DEVICE_ATTR_RO(dormant);
431 
432 static const char *const operstates[] = {
433 	"unknown",
434 	"notpresent", /* currently unused */
435 	"down",
436 	"lowerlayerdown",
437 	"testing",
438 	"dormant",
439 	"up"
440 };
441 
operstate_show(struct device * dev,struct device_attribute * attr,char * buf)442 static ssize_t operstate_show(struct device *dev,
443 			      struct device_attribute *attr, char *buf)
444 {
445 	const struct net_device *netdev = to_net_dev(dev);
446 	unsigned char operstate;
447 
448 	operstate = READ_ONCE(netdev->operstate);
449 	if (!netif_running(netdev))
450 		operstate = IF_OPER_DOWN;
451 
452 	if (operstate >= ARRAY_SIZE(operstates))
453 		return -EINVAL; /* should not happen */
454 
455 	return sysfs_emit(buf, "%s\n", operstates[operstate]);
456 }
457 static DEVICE_ATTR_RO(operstate);
458 
carrier_changes_show(struct device * dev,struct device_attribute * attr,char * buf)459 static ssize_t carrier_changes_show(struct device *dev,
460 				    struct device_attribute *attr,
461 				    char *buf)
462 {
463 	struct net_device *netdev = to_net_dev(dev);
464 
465 	return sysfs_emit(buf, fmt_dec,
466 			  atomic_read(&netdev->carrier_up_count) +
467 			  atomic_read(&netdev->carrier_down_count));
468 }
469 static DEVICE_ATTR_RO(carrier_changes);
470 
carrier_up_count_show(struct device * dev,struct device_attribute * attr,char * buf)471 static ssize_t carrier_up_count_show(struct device *dev,
472 				     struct device_attribute *attr,
473 				     char *buf)
474 {
475 	struct net_device *netdev = to_net_dev(dev);
476 
477 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_up_count));
478 }
479 static DEVICE_ATTR_RO(carrier_up_count);
480 
carrier_down_count_show(struct device * dev,struct device_attribute * attr,char * buf)481 static ssize_t carrier_down_count_show(struct device *dev,
482 				       struct device_attribute *attr,
483 				       char *buf)
484 {
485 	struct net_device *netdev = to_net_dev(dev);
486 
487 	return sysfs_emit(buf, fmt_dec, atomic_read(&netdev->carrier_down_count));
488 }
489 static DEVICE_ATTR_RO(carrier_down_count);
490 
491 /* read-write attributes */
492 
change_mtu(struct net_device * dev,unsigned long new_mtu)493 static int change_mtu(struct net_device *dev, unsigned long new_mtu)
494 {
495 	return dev_set_mtu(dev, (int)new_mtu);
496 }
497 
mtu_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)498 static ssize_t mtu_store(struct device *dev, struct device_attribute *attr,
499 			 const char *buf, size_t len)
500 {
501 	return netdev_store(dev, attr, buf, len, change_mtu);
502 }
503 NETDEVICE_SHOW_RW(mtu, fmt_dec);
504 
change_flags(struct net_device * dev,unsigned long new_flags)505 static int change_flags(struct net_device *dev, unsigned long new_flags)
506 {
507 	return dev_change_flags(dev, (unsigned int)new_flags, NULL);
508 }
509 
flags_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)510 static ssize_t flags_store(struct device *dev, struct device_attribute *attr,
511 			   const char *buf, size_t len)
512 {
513 	return netdev_store(dev, attr, buf, len, change_flags);
514 }
515 NETDEVICE_SHOW_RW(flags, fmt_hex);
516 
tx_queue_len_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)517 static ssize_t tx_queue_len_store(struct device *dev,
518 				  struct device_attribute *attr,
519 				  const char *buf, size_t len)
520 {
521 	if (!capable(CAP_NET_ADMIN))
522 		return -EPERM;
523 
524 	return netdev_store(dev, attr, buf, len, dev_change_tx_queue_len);
525 }
526 NETDEVICE_SHOW_RW(tx_queue_len, fmt_dec);
527 
change_gro_flush_timeout(struct net_device * dev,unsigned long val)528 static int change_gro_flush_timeout(struct net_device *dev, unsigned long val)
529 {
530 	netdev_set_gro_flush_timeout(dev, val);
531 	return 0;
532 }
533 
gro_flush_timeout_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)534 static ssize_t gro_flush_timeout_store(struct device *dev,
535 				       struct device_attribute *attr,
536 				       const char *buf, size_t len)
537 {
538 	if (!capable(CAP_NET_ADMIN))
539 		return -EPERM;
540 
541 	return netdev_lock_store(dev, attr, buf, len, change_gro_flush_timeout);
542 }
543 NETDEVICE_SHOW_RW(gro_flush_timeout, fmt_ulong);
544 
change_napi_defer_hard_irqs(struct net_device * dev,unsigned long val)545 static int change_napi_defer_hard_irqs(struct net_device *dev, unsigned long val)
546 {
547 	if (val > S32_MAX)
548 		return -ERANGE;
549 
550 	netdev_set_defer_hard_irqs(dev, (u32)val);
551 	return 0;
552 }
553 
napi_defer_hard_irqs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)554 static ssize_t napi_defer_hard_irqs_store(struct device *dev,
555 					  struct device_attribute *attr,
556 					  const char *buf, size_t len)
557 {
558 	if (!capable(CAP_NET_ADMIN))
559 		return -EPERM;
560 
561 	return netdev_lock_store(dev, attr, buf, len,
562 				 change_napi_defer_hard_irqs);
563 }
564 NETDEVICE_SHOW_RW(napi_defer_hard_irqs, fmt_uint);
565 
ifalias_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)566 static ssize_t ifalias_store(struct device *dev, struct device_attribute *attr,
567 			     const char *buf, size_t len)
568 {
569 	struct net_device *netdev = to_net_dev(dev);
570 	struct net *net = dev_net(netdev);
571 	size_t count = len;
572 	ssize_t ret;
573 
574 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
575 		return -EPERM;
576 
577 	/* ignore trailing newline */
578 	if (len >  0 && buf[len - 1] == '\n')
579 		--count;
580 
581 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
582 	if (ret)
583 		return ret;
584 
585 	ret = dev_set_alias(netdev, buf, count);
586 	if (ret < 0)
587 		goto err;
588 	ret = len;
589 	netdev_state_change(netdev);
590 err:
591 	rtnl_unlock();
592 
593 	return ret;
594 }
595 
ifalias_show(struct device * dev,struct device_attribute * attr,char * buf)596 static ssize_t ifalias_show(struct device *dev,
597 			    struct device_attribute *attr, char *buf)
598 {
599 	const struct net_device *netdev = to_net_dev(dev);
600 	char tmp[IFALIASZ];
601 	ssize_t ret;
602 
603 	ret = dev_get_alias(netdev, tmp, sizeof(tmp));
604 	if (ret > 0)
605 		ret = sysfs_emit(buf, "%s\n", tmp);
606 	return ret;
607 }
608 static DEVICE_ATTR_RW(ifalias);
609 
change_group(struct net_device * dev,unsigned long new_group)610 static int change_group(struct net_device *dev, unsigned long new_group)
611 {
612 	dev_set_group(dev, (int)new_group);
613 	return 0;
614 }
615 
group_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)616 static ssize_t group_store(struct device *dev, struct device_attribute *attr,
617 			   const char *buf, size_t len)
618 {
619 	return netdev_store(dev, attr, buf, len, change_group);
620 }
621 NETDEVICE_SHOW(group, fmt_dec);
622 static DEVICE_ATTR(netdev_group, 0644, group_show, group_store);
623 
change_proto_down(struct net_device * dev,unsigned long proto_down)624 static int change_proto_down(struct net_device *dev, unsigned long proto_down)
625 {
626 	return dev_change_proto_down(dev, (bool)proto_down);
627 }
628 
proto_down_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)629 static ssize_t proto_down_store(struct device *dev,
630 				struct device_attribute *attr,
631 				const char *buf, size_t len)
632 {
633 	return netdev_store(dev, attr, buf, len, change_proto_down);
634 }
635 NETDEVICE_SHOW_RW(proto_down, fmt_dec);
636 
phys_port_id_show(struct device * dev,struct device_attribute * attr,char * buf)637 static ssize_t phys_port_id_show(struct device *dev,
638 				 struct device_attribute *attr, char *buf)
639 {
640 	struct net_device *netdev = to_net_dev(dev);
641 	struct netdev_phys_item_id ppid;
642 	ssize_t ret;
643 
644 	/* The check is also done in dev_get_phys_port_id; this helps returning
645 	 * early without hitting the locking section below.
646 	 */
647 	if (!netdev->netdev_ops->ndo_get_phys_port_id)
648 		return -EOPNOTSUPP;
649 
650 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
651 	if (ret)
652 		return ret;
653 
654 	ret = dev_get_phys_port_id(netdev, &ppid);
655 	if (!ret)
656 		ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
657 
658 	rtnl_unlock();
659 
660 	return ret;
661 }
662 static DEVICE_ATTR_RO(phys_port_id);
663 
phys_port_name_show(struct device * dev,struct device_attribute * attr,char * buf)664 static ssize_t phys_port_name_show(struct device *dev,
665 				   struct device_attribute *attr, char *buf)
666 {
667 	struct net_device *netdev = to_net_dev(dev);
668 	char name[IFNAMSIZ];
669 	ssize_t ret;
670 
671 	/* The checks are also done in dev_get_phys_port_name; this helps
672 	 * returning early without hitting the locking section below.
673 	 */
674 	if (!netdev->netdev_ops->ndo_get_phys_port_name &&
675 	    !netdev->devlink_port)
676 		return -EOPNOTSUPP;
677 
678 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
679 	if (ret)
680 		return ret;
681 
682 	ret = dev_get_phys_port_name(netdev, name, sizeof(name));
683 	if (!ret)
684 		ret = sysfs_emit(buf, "%s\n", name);
685 
686 	rtnl_unlock();
687 
688 	return ret;
689 }
690 static DEVICE_ATTR_RO(phys_port_name);
691 
phys_switch_id_show(struct device * dev,struct device_attribute * attr,char * buf)692 static ssize_t phys_switch_id_show(struct device *dev,
693 				   struct device_attribute *attr, char *buf)
694 {
695 	struct net_device *netdev = to_net_dev(dev);
696 	struct netdev_phys_item_id ppid = { };
697 	ssize_t ret;
698 
699 	/* The checks are also done in dev_get_phys_port_name; this helps
700 	 * returning early without hitting the locking section below. This works
701 	 * because recurse is false when calling dev_get_port_parent_id.
702 	 */
703 	if (!netdev->netdev_ops->ndo_get_port_parent_id &&
704 	    !netdev->devlink_port)
705 		return -EOPNOTSUPP;
706 
707 	ret = sysfs_rtnl_lock(&dev->kobj, &attr->attr, netdev);
708 	if (ret)
709 		return ret;
710 
711 	ret = dev_get_port_parent_id(netdev, &ppid, false);
712 	if (!ret)
713 		ret = sysfs_emit(buf, "%*phN\n", ppid.id_len, ppid.id);
714 
715 	rtnl_unlock();
716 
717 	return ret;
718 }
719 static DEVICE_ATTR_RO(phys_switch_id);
720 
threaded_show(struct device * dev,struct device_attribute * attr,char * buf)721 static ssize_t threaded_show(struct device *dev,
722 			     struct device_attribute *attr, char *buf)
723 {
724 	struct net_device *netdev = to_net_dev(dev);
725 	ssize_t ret = -EINVAL;
726 
727 	rcu_read_lock();
728 
729 	if (dev_isalive(netdev))
730 		ret = sysfs_emit(buf, fmt_dec, READ_ONCE(netdev->threaded));
731 
732 	rcu_read_unlock();
733 
734 	return ret;
735 }
736 
modify_napi_threaded(struct net_device * dev,unsigned long val)737 static int modify_napi_threaded(struct net_device *dev, unsigned long val)
738 {
739 	int ret;
740 
741 	if (list_empty(&dev->napi_list))
742 		return -EOPNOTSUPP;
743 
744 	if (val != 0 && val != 1)
745 		return -EOPNOTSUPP;
746 
747 	ret = dev_set_threaded(dev, val);
748 
749 	return ret;
750 }
751 
threaded_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)752 static ssize_t threaded_store(struct device *dev,
753 			      struct device_attribute *attr,
754 			      const char *buf, size_t len)
755 {
756 	return netdev_lock_store(dev, attr, buf, len, modify_napi_threaded);
757 }
758 static DEVICE_ATTR_RW(threaded);
759 
760 static struct attribute *net_class_attrs[] __ro_after_init = {
761 	&dev_attr_netdev_group.attr,
762 	&dev_attr_type.attr,
763 	&dev_attr_dev_id.attr,
764 	&dev_attr_dev_port.attr,
765 	&dev_attr_iflink.attr,
766 	&dev_attr_ifindex.attr,
767 	&dev_attr_name_assign_type.attr,
768 	&dev_attr_addr_assign_type.attr,
769 	&dev_attr_addr_len.attr,
770 	&dev_attr_link_mode.attr,
771 	&dev_attr_address.attr,
772 	&dev_attr_broadcast.attr,
773 	&dev_attr_speed.attr,
774 	&dev_attr_duplex.attr,
775 	&dev_attr_dormant.attr,
776 	&dev_attr_testing.attr,
777 	&dev_attr_operstate.attr,
778 	&dev_attr_carrier_changes.attr,
779 	&dev_attr_ifalias.attr,
780 	&dev_attr_carrier.attr,
781 	&dev_attr_mtu.attr,
782 	&dev_attr_flags.attr,
783 	&dev_attr_tx_queue_len.attr,
784 	&dev_attr_gro_flush_timeout.attr,
785 	&dev_attr_napi_defer_hard_irqs.attr,
786 	&dev_attr_phys_port_id.attr,
787 	&dev_attr_phys_port_name.attr,
788 	&dev_attr_phys_switch_id.attr,
789 	&dev_attr_proto_down.attr,
790 	&dev_attr_carrier_up_count.attr,
791 	&dev_attr_carrier_down_count.attr,
792 	&dev_attr_threaded.attr,
793 	NULL,
794 };
795 ATTRIBUTE_GROUPS(net_class);
796 
797 /* Show a given an attribute in the statistics group */
netstat_show(const struct device * d,struct device_attribute * attr,char * buf,unsigned long offset)798 static ssize_t netstat_show(const struct device *d,
799 			    struct device_attribute *attr, char *buf,
800 			    unsigned long offset)
801 {
802 	struct net_device *dev = to_net_dev(d);
803 	ssize_t ret = -EINVAL;
804 
805 	WARN_ON(offset > sizeof(struct rtnl_link_stats64) ||
806 		offset % sizeof(u64) != 0);
807 
808 	rcu_read_lock();
809 	if (dev_isalive(dev)) {
810 		struct rtnl_link_stats64 temp;
811 		const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
812 
813 		ret = sysfs_emit(buf, fmt_u64, *(u64 *)(((u8 *)stats) + offset));
814 	}
815 	rcu_read_unlock();
816 	return ret;
817 }
818 
819 /* generate a read-only statistics attribute */
820 #define NETSTAT_ENTRY(name)						\
821 static ssize_t name##_show(struct device *d,				\
822 			   struct device_attribute *attr, char *buf)	\
823 {									\
824 	return netstat_show(d, attr, buf,				\
825 			    offsetof(struct rtnl_link_stats64, name));	\
826 }									\
827 static DEVICE_ATTR_RO(name)
828 
829 NETSTAT_ENTRY(rx_packets);
830 NETSTAT_ENTRY(tx_packets);
831 NETSTAT_ENTRY(rx_bytes);
832 NETSTAT_ENTRY(tx_bytes);
833 NETSTAT_ENTRY(rx_errors);
834 NETSTAT_ENTRY(tx_errors);
835 NETSTAT_ENTRY(rx_dropped);
836 NETSTAT_ENTRY(tx_dropped);
837 NETSTAT_ENTRY(multicast);
838 NETSTAT_ENTRY(collisions);
839 NETSTAT_ENTRY(rx_length_errors);
840 NETSTAT_ENTRY(rx_over_errors);
841 NETSTAT_ENTRY(rx_crc_errors);
842 NETSTAT_ENTRY(rx_frame_errors);
843 NETSTAT_ENTRY(rx_fifo_errors);
844 NETSTAT_ENTRY(rx_missed_errors);
845 NETSTAT_ENTRY(tx_aborted_errors);
846 NETSTAT_ENTRY(tx_carrier_errors);
847 NETSTAT_ENTRY(tx_fifo_errors);
848 NETSTAT_ENTRY(tx_heartbeat_errors);
849 NETSTAT_ENTRY(tx_window_errors);
850 NETSTAT_ENTRY(rx_compressed);
851 NETSTAT_ENTRY(tx_compressed);
852 NETSTAT_ENTRY(rx_nohandler);
853 
854 static struct attribute *netstat_attrs[] __ro_after_init = {
855 	&dev_attr_rx_packets.attr,
856 	&dev_attr_tx_packets.attr,
857 	&dev_attr_rx_bytes.attr,
858 	&dev_attr_tx_bytes.attr,
859 	&dev_attr_rx_errors.attr,
860 	&dev_attr_tx_errors.attr,
861 	&dev_attr_rx_dropped.attr,
862 	&dev_attr_tx_dropped.attr,
863 	&dev_attr_multicast.attr,
864 	&dev_attr_collisions.attr,
865 	&dev_attr_rx_length_errors.attr,
866 	&dev_attr_rx_over_errors.attr,
867 	&dev_attr_rx_crc_errors.attr,
868 	&dev_attr_rx_frame_errors.attr,
869 	&dev_attr_rx_fifo_errors.attr,
870 	&dev_attr_rx_missed_errors.attr,
871 	&dev_attr_tx_aborted_errors.attr,
872 	&dev_attr_tx_carrier_errors.attr,
873 	&dev_attr_tx_fifo_errors.attr,
874 	&dev_attr_tx_heartbeat_errors.attr,
875 	&dev_attr_tx_window_errors.attr,
876 	&dev_attr_rx_compressed.attr,
877 	&dev_attr_tx_compressed.attr,
878 	&dev_attr_rx_nohandler.attr,
879 	NULL
880 };
881 
882 static const struct attribute_group netstat_group = {
883 	.name  = "statistics",
884 	.attrs  = netstat_attrs,
885 };
886 
887 static struct attribute *wireless_attrs[] = {
888 	NULL
889 };
890 
891 static const struct attribute_group wireless_group = {
892 	.name = "wireless",
893 	.attrs = wireless_attrs,
894 };
895 
wireless_group_needed(struct net_device * ndev)896 static bool wireless_group_needed(struct net_device *ndev)
897 {
898 #if IS_ENABLED(CONFIG_CFG80211)
899 	if (ndev->ieee80211_ptr)
900 		return true;
901 #endif
902 #if IS_ENABLED(CONFIG_WIRELESS_EXT)
903 	if (ndev->wireless_handlers)
904 		return true;
905 #endif
906 	return false;
907 }
908 
909 #else /* CONFIG_SYSFS */
910 #define net_class_groups	NULL
911 #endif /* CONFIG_SYSFS */
912 
913 #ifdef CONFIG_SYSFS
914 #define to_rx_queue_attr(_attr) \
915 	container_of(_attr, struct rx_queue_attribute, attr)
916 
917 #define to_rx_queue(obj) container_of(obj, struct netdev_rx_queue, kobj)
918 
rx_queue_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)919 static ssize_t rx_queue_attr_show(struct kobject *kobj, struct attribute *attr,
920 				  char *buf)
921 {
922 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
923 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
924 
925 	if (!attribute->show)
926 		return -EIO;
927 
928 	return attribute->show(queue, buf);
929 }
930 
rx_queue_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)931 static ssize_t rx_queue_attr_store(struct kobject *kobj, struct attribute *attr,
932 				   const char *buf, size_t count)
933 {
934 	const struct rx_queue_attribute *attribute = to_rx_queue_attr(attr);
935 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
936 
937 	if (!attribute->store)
938 		return -EIO;
939 
940 	return attribute->store(queue, buf, count);
941 }
942 
943 static const struct sysfs_ops rx_queue_sysfs_ops = {
944 	.show = rx_queue_attr_show,
945 	.store = rx_queue_attr_store,
946 };
947 
948 #ifdef CONFIG_RPS
show_rps_map(struct netdev_rx_queue * queue,char * buf)949 static ssize_t show_rps_map(struct netdev_rx_queue *queue, char *buf)
950 {
951 	struct rps_map *map;
952 	cpumask_var_t mask;
953 	int i, len;
954 
955 	if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
956 		return -ENOMEM;
957 
958 	rcu_read_lock();
959 	map = rcu_dereference(queue->rps_map);
960 	if (map)
961 		for (i = 0; i < map->len; i++)
962 			cpumask_set_cpu(map->cpus[i], mask);
963 
964 	len = sysfs_emit(buf, "%*pb\n", cpumask_pr_args(mask));
965 	rcu_read_unlock();
966 	free_cpumask_var(mask);
967 
968 	return len < PAGE_SIZE ? len : -EINVAL;
969 }
970 
netdev_rx_queue_set_rps_mask(struct netdev_rx_queue * queue,cpumask_var_t mask)971 static int netdev_rx_queue_set_rps_mask(struct netdev_rx_queue *queue,
972 					cpumask_var_t mask)
973 {
974 	static DEFINE_MUTEX(rps_map_mutex);
975 	struct rps_map *old_map, *map;
976 	int cpu, i;
977 
978 	map = kzalloc(max_t(unsigned int,
979 			    RPS_MAP_SIZE(cpumask_weight(mask)), L1_CACHE_BYTES),
980 		      GFP_KERNEL);
981 	if (!map)
982 		return -ENOMEM;
983 
984 	i = 0;
985 	for_each_cpu_and(cpu, mask, cpu_online_mask)
986 		map->cpus[i++] = cpu;
987 
988 	if (i) {
989 		map->len = i;
990 	} else {
991 		kfree(map);
992 		map = NULL;
993 	}
994 
995 	mutex_lock(&rps_map_mutex);
996 	old_map = rcu_dereference_protected(queue->rps_map,
997 					    mutex_is_locked(&rps_map_mutex));
998 	rcu_assign_pointer(queue->rps_map, map);
999 
1000 	if (map)
1001 		static_branch_inc(&rps_needed);
1002 	if (old_map)
1003 		static_branch_dec(&rps_needed);
1004 
1005 	mutex_unlock(&rps_map_mutex);
1006 
1007 	if (old_map)
1008 		kfree_rcu(old_map, rcu);
1009 	return 0;
1010 }
1011 
rps_cpumask_housekeeping(struct cpumask * mask)1012 int rps_cpumask_housekeeping(struct cpumask *mask)
1013 {
1014 	if (!cpumask_empty(mask)) {
1015 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_DOMAIN));
1016 		cpumask_and(mask, mask, housekeeping_cpumask(HK_TYPE_WQ));
1017 		if (cpumask_empty(mask))
1018 			return -EINVAL;
1019 	}
1020 	return 0;
1021 }
1022 
store_rps_map(struct netdev_rx_queue * queue,const char * buf,size_t len)1023 static ssize_t store_rps_map(struct netdev_rx_queue *queue,
1024 			     const char *buf, size_t len)
1025 {
1026 	cpumask_var_t mask;
1027 	int err;
1028 
1029 	if (!capable(CAP_NET_ADMIN))
1030 		return -EPERM;
1031 
1032 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1033 		return -ENOMEM;
1034 
1035 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1036 	if (err)
1037 		goto out;
1038 
1039 	err = rps_cpumask_housekeeping(mask);
1040 	if (err)
1041 		goto out;
1042 
1043 	err = netdev_rx_queue_set_rps_mask(queue, mask);
1044 
1045 out:
1046 	free_cpumask_var(mask);
1047 	return err ? : len;
1048 }
1049 
show_rps_dev_flow_table_cnt(struct netdev_rx_queue * queue,char * buf)1050 static ssize_t show_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
1051 					   char *buf)
1052 {
1053 	struct rps_dev_flow_table *flow_table;
1054 	unsigned long val = 0;
1055 
1056 	rcu_read_lock();
1057 	flow_table = rcu_dereference(queue->rps_flow_table);
1058 	if (flow_table)
1059 		val = 1UL << flow_table->log;
1060 	rcu_read_unlock();
1061 
1062 	return sysfs_emit(buf, "%lu\n", val);
1063 }
1064 
rps_dev_flow_table_release(struct rcu_head * rcu)1065 static void rps_dev_flow_table_release(struct rcu_head *rcu)
1066 {
1067 	struct rps_dev_flow_table *table = container_of(rcu,
1068 	    struct rps_dev_flow_table, rcu);
1069 	vfree(table);
1070 }
1071 
store_rps_dev_flow_table_cnt(struct netdev_rx_queue * queue,const char * buf,size_t len)1072 static ssize_t store_rps_dev_flow_table_cnt(struct netdev_rx_queue *queue,
1073 					    const char *buf, size_t len)
1074 {
1075 	unsigned long mask, count;
1076 	struct rps_dev_flow_table *table, *old_table;
1077 	static DEFINE_SPINLOCK(rps_dev_flow_lock);
1078 	int rc;
1079 
1080 	if (!capable(CAP_NET_ADMIN))
1081 		return -EPERM;
1082 
1083 	rc = kstrtoul(buf, 0, &count);
1084 	if (rc < 0)
1085 		return rc;
1086 
1087 	if (count) {
1088 		mask = count - 1;
1089 		/* mask = roundup_pow_of_two(count) - 1;
1090 		 * without overflows...
1091 		 */
1092 		while ((mask | (mask >> 1)) != mask)
1093 			mask |= (mask >> 1);
1094 		/* On 64 bit arches, must check mask fits in table->mask (u32),
1095 		 * and on 32bit arches, must check
1096 		 * RPS_DEV_FLOW_TABLE_SIZE(mask + 1) doesn't overflow.
1097 		 */
1098 #if BITS_PER_LONG > 32
1099 		if (mask > (unsigned long)(u32)mask)
1100 			return -EINVAL;
1101 #else
1102 		if (mask > (ULONG_MAX - RPS_DEV_FLOW_TABLE_SIZE(1))
1103 				/ sizeof(struct rps_dev_flow)) {
1104 			/* Enforce a limit to prevent overflow */
1105 			return -EINVAL;
1106 		}
1107 #endif
1108 		table = vmalloc(RPS_DEV_FLOW_TABLE_SIZE(mask + 1));
1109 		if (!table)
1110 			return -ENOMEM;
1111 
1112 		table->log = ilog2(mask) + 1;
1113 		for (count = 0; count <= mask; count++)
1114 			table->flows[count].cpu = RPS_NO_CPU;
1115 	} else {
1116 		table = NULL;
1117 	}
1118 
1119 	spin_lock(&rps_dev_flow_lock);
1120 	old_table = rcu_dereference_protected(queue->rps_flow_table,
1121 					      lockdep_is_held(&rps_dev_flow_lock));
1122 	rcu_assign_pointer(queue->rps_flow_table, table);
1123 	spin_unlock(&rps_dev_flow_lock);
1124 
1125 	if (old_table)
1126 		call_rcu(&old_table->rcu, rps_dev_flow_table_release);
1127 
1128 	return len;
1129 }
1130 
1131 static struct rx_queue_attribute rps_cpus_attribute __ro_after_init
1132 	= __ATTR(rps_cpus, 0644, show_rps_map, store_rps_map);
1133 
1134 static struct rx_queue_attribute rps_dev_flow_table_cnt_attribute __ro_after_init
1135 	= __ATTR(rps_flow_cnt, 0644,
1136 		 show_rps_dev_flow_table_cnt, store_rps_dev_flow_table_cnt);
1137 #endif /* CONFIG_RPS */
1138 
1139 static struct attribute *rx_queue_default_attrs[] __ro_after_init = {
1140 #ifdef CONFIG_RPS
1141 	&rps_cpus_attribute.attr,
1142 	&rps_dev_flow_table_cnt_attribute.attr,
1143 #endif
1144 	NULL
1145 };
1146 ATTRIBUTE_GROUPS(rx_queue_default);
1147 
rx_queue_release(struct kobject * kobj)1148 static void rx_queue_release(struct kobject *kobj)
1149 {
1150 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1151 #ifdef CONFIG_RPS
1152 	struct rps_map *map;
1153 	struct rps_dev_flow_table *flow_table;
1154 
1155 	map = rcu_dereference_protected(queue->rps_map, 1);
1156 	if (map) {
1157 		RCU_INIT_POINTER(queue->rps_map, NULL);
1158 		kfree_rcu(map, rcu);
1159 	}
1160 
1161 	flow_table = rcu_dereference_protected(queue->rps_flow_table, 1);
1162 	if (flow_table) {
1163 		RCU_INIT_POINTER(queue->rps_flow_table, NULL);
1164 		call_rcu(&flow_table->rcu, rps_dev_flow_table_release);
1165 	}
1166 #endif
1167 
1168 	memset(kobj, 0, sizeof(*kobj));
1169 	netdev_put(queue->dev, &queue->dev_tracker);
1170 }
1171 
rx_queue_namespace(const struct kobject * kobj)1172 static const void *rx_queue_namespace(const struct kobject *kobj)
1173 {
1174 	struct netdev_rx_queue *queue = to_rx_queue(kobj);
1175 	struct device *dev = &queue->dev->dev;
1176 	const void *ns = NULL;
1177 
1178 	if (dev->class && dev->class->namespace)
1179 		ns = dev->class->namespace(dev);
1180 
1181 	return ns;
1182 }
1183 
rx_queue_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)1184 static void rx_queue_get_ownership(const struct kobject *kobj,
1185 				   kuid_t *uid, kgid_t *gid)
1186 {
1187 	const struct net *net = rx_queue_namespace(kobj);
1188 
1189 	net_ns_get_ownership(net, uid, gid);
1190 }
1191 
1192 static const struct kobj_type rx_queue_ktype = {
1193 	.sysfs_ops = &rx_queue_sysfs_ops,
1194 	.release = rx_queue_release,
1195 	.namespace = rx_queue_namespace,
1196 	.get_ownership = rx_queue_get_ownership,
1197 };
1198 
rx_queue_default_mask(struct net_device * dev,struct netdev_rx_queue * queue)1199 static int rx_queue_default_mask(struct net_device *dev,
1200 				 struct netdev_rx_queue *queue)
1201 {
1202 #if IS_ENABLED(CONFIG_RPS) && IS_ENABLED(CONFIG_SYSCTL)
1203 	struct cpumask *rps_default_mask = READ_ONCE(dev_net(dev)->core.rps_default_mask);
1204 
1205 	if (rps_default_mask && !cpumask_empty(rps_default_mask))
1206 		return netdev_rx_queue_set_rps_mask(queue, rps_default_mask);
1207 #endif
1208 	return 0;
1209 }
1210 
rx_queue_add_kobject(struct net_device * dev,int index)1211 static int rx_queue_add_kobject(struct net_device *dev, int index)
1212 {
1213 	struct netdev_rx_queue *queue = dev->_rx + index;
1214 	struct kobject *kobj = &queue->kobj;
1215 	int error = 0;
1216 
1217 	/* Rx queues are cleared in rx_queue_release to allow later
1218 	 * re-registration. This is triggered when their kobj refcount is
1219 	 * dropped.
1220 	 *
1221 	 * If a queue is removed while both a read (or write) operation and a
1222 	 * the re-addition of the same queue are pending (waiting on rntl_lock)
1223 	 * it might happen that the re-addition will execute before the read,
1224 	 * making the initial removal to never happen (queue's kobj refcount
1225 	 * won't drop enough because of the pending read). In such rare case,
1226 	 * return to allow the removal operation to complete.
1227 	 */
1228 	if (unlikely(kobj->state_initialized)) {
1229 		netdev_warn_once(dev, "Cannot re-add rx queues before their removal completed");
1230 		return -EAGAIN;
1231 	}
1232 
1233 	/* Kobject_put later will trigger rx_queue_release call which
1234 	 * decreases dev refcount: Take that reference here
1235 	 */
1236 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1237 
1238 	kobj->kset = dev->queues_kset;
1239 	error = kobject_init_and_add(kobj, &rx_queue_ktype, NULL,
1240 				     "rx-%u", index);
1241 	if (error)
1242 		goto err;
1243 
1244 	queue->groups = rx_queue_default_groups;
1245 	error = sysfs_create_groups(kobj, queue->groups);
1246 	if (error)
1247 		goto err;
1248 
1249 	if (dev->sysfs_rx_queue_group) {
1250 		error = sysfs_create_group(kobj, dev->sysfs_rx_queue_group);
1251 		if (error)
1252 			goto err_default_groups;
1253 	}
1254 
1255 	error = rx_queue_default_mask(dev, queue);
1256 	if (error)
1257 		goto err_default_groups;
1258 
1259 	kobject_uevent(kobj, KOBJ_ADD);
1260 
1261 	return error;
1262 
1263 err_default_groups:
1264 	sysfs_remove_groups(kobj, queue->groups);
1265 err:
1266 	kobject_put(kobj);
1267 	return error;
1268 }
1269 
rx_queue_change_owner(struct net_device * dev,int index,kuid_t kuid,kgid_t kgid)1270 static int rx_queue_change_owner(struct net_device *dev, int index, kuid_t kuid,
1271 				 kgid_t kgid)
1272 {
1273 	struct netdev_rx_queue *queue = dev->_rx + index;
1274 	struct kobject *kobj = &queue->kobj;
1275 	int error;
1276 
1277 	error = sysfs_change_owner(kobj, kuid, kgid);
1278 	if (error)
1279 		return error;
1280 
1281 	if (dev->sysfs_rx_queue_group)
1282 		error = sysfs_group_change_owner(
1283 			kobj, dev->sysfs_rx_queue_group, kuid, kgid);
1284 
1285 	return error;
1286 }
1287 #endif /* CONFIG_SYSFS */
1288 
1289 int
net_rx_queue_update_kobjects(struct net_device * dev,int old_num,int new_num)1290 net_rx_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
1291 {
1292 #ifdef CONFIG_SYSFS
1293 	int i;
1294 	int error = 0;
1295 
1296 #ifndef CONFIG_RPS
1297 	if (!dev->sysfs_rx_queue_group)
1298 		return 0;
1299 #endif
1300 	for (i = old_num; i < new_num; i++) {
1301 		error = rx_queue_add_kobject(dev, i);
1302 		if (error) {
1303 			new_num = old_num;
1304 			break;
1305 		}
1306 	}
1307 
1308 	while (--i >= new_num) {
1309 		struct netdev_rx_queue *queue = &dev->_rx[i];
1310 		struct kobject *kobj = &queue->kobj;
1311 
1312 		if (!refcount_read(&dev_net(dev)->ns.count))
1313 			kobj->uevent_suppress = 1;
1314 		if (dev->sysfs_rx_queue_group)
1315 			sysfs_remove_group(kobj, dev->sysfs_rx_queue_group);
1316 		sysfs_remove_groups(kobj, queue->groups);
1317 		kobject_put(kobj);
1318 	}
1319 
1320 	return error;
1321 #else
1322 	return 0;
1323 #endif
1324 }
1325 
net_rx_queue_change_owner(struct net_device * dev,int num,kuid_t kuid,kgid_t kgid)1326 static int net_rx_queue_change_owner(struct net_device *dev, int num,
1327 				     kuid_t kuid, kgid_t kgid)
1328 {
1329 #ifdef CONFIG_SYSFS
1330 	int error = 0;
1331 	int i;
1332 
1333 #ifndef CONFIG_RPS
1334 	if (!dev->sysfs_rx_queue_group)
1335 		return 0;
1336 #endif
1337 	for (i = 0; i < num; i++) {
1338 		error = rx_queue_change_owner(dev, i, kuid, kgid);
1339 		if (error)
1340 			break;
1341 	}
1342 
1343 	return error;
1344 #else
1345 	return 0;
1346 #endif
1347 }
1348 
1349 #ifdef CONFIG_SYSFS
1350 /*
1351  * netdev_queue sysfs structures and functions.
1352  */
1353 struct netdev_queue_attribute {
1354 	struct attribute attr;
1355 	ssize_t (*show)(struct kobject *kobj, struct attribute *attr,
1356 			struct netdev_queue *queue, char *buf);
1357 	ssize_t (*store)(struct kobject *kobj, struct attribute *attr,
1358 			 struct netdev_queue *queue, const char *buf,
1359 			 size_t len);
1360 };
1361 #define to_netdev_queue_attr(_attr) \
1362 	container_of(_attr, struct netdev_queue_attribute, attr)
1363 
1364 #define to_netdev_queue(obj) container_of(obj, struct netdev_queue, kobj)
1365 
netdev_queue_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1366 static ssize_t netdev_queue_attr_show(struct kobject *kobj,
1367 				      struct attribute *attr, char *buf)
1368 {
1369 	const struct netdev_queue_attribute *attribute
1370 		= to_netdev_queue_attr(attr);
1371 	struct netdev_queue *queue = to_netdev_queue(kobj);
1372 
1373 	if (!attribute->show)
1374 		return -EIO;
1375 
1376 	return attribute->show(kobj, attr, queue, buf);
1377 }
1378 
netdev_queue_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1379 static ssize_t netdev_queue_attr_store(struct kobject *kobj,
1380 				       struct attribute *attr,
1381 				       const char *buf, size_t count)
1382 {
1383 	const struct netdev_queue_attribute *attribute
1384 		= to_netdev_queue_attr(attr);
1385 	struct netdev_queue *queue = to_netdev_queue(kobj);
1386 
1387 	if (!attribute->store)
1388 		return -EIO;
1389 
1390 	return attribute->store(kobj, attr, queue, buf, count);
1391 }
1392 
1393 static const struct sysfs_ops netdev_queue_sysfs_ops = {
1394 	.show = netdev_queue_attr_show,
1395 	.store = netdev_queue_attr_store,
1396 };
1397 
tx_timeout_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1398 static ssize_t tx_timeout_show(struct kobject *kobj, struct attribute *attr,
1399 			       struct netdev_queue *queue, char *buf)
1400 {
1401 	unsigned long trans_timeout = atomic_long_read(&queue->trans_timeout);
1402 
1403 	return sysfs_emit(buf, fmt_ulong, trans_timeout);
1404 }
1405 
get_netdev_queue_index(struct netdev_queue * queue)1406 static unsigned int get_netdev_queue_index(struct netdev_queue *queue)
1407 {
1408 	struct net_device *dev = queue->dev;
1409 	unsigned int i;
1410 
1411 	i = queue - dev->_tx;
1412 	BUG_ON(i >= dev->num_tx_queues);
1413 
1414 	return i;
1415 }
1416 
traffic_class_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1417 static ssize_t traffic_class_show(struct kobject *kobj, struct attribute *attr,
1418 				  struct netdev_queue *queue, char *buf)
1419 {
1420 	struct net_device *dev = queue->dev;
1421 	int num_tc, tc, index, ret;
1422 
1423 	if (!netif_is_multiqueue(dev))
1424 		return -ENOENT;
1425 
1426 	ret = sysfs_rtnl_lock(kobj, attr, queue->dev);
1427 	if (ret)
1428 		return ret;
1429 
1430 	index = get_netdev_queue_index(queue);
1431 
1432 	/* If queue belongs to subordinate dev use its TC mapping */
1433 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1434 
1435 	num_tc = dev->num_tc;
1436 	tc = netdev_txq_to_tc(dev, index);
1437 
1438 	rtnl_unlock();
1439 
1440 	if (tc < 0)
1441 		return -EINVAL;
1442 
1443 	/* We can report the traffic class one of two ways:
1444 	 * Subordinate device traffic classes are reported with the traffic
1445 	 * class first, and then the subordinate class so for example TC0 on
1446 	 * subordinate device 2 will be reported as "0-2". If the queue
1447 	 * belongs to the root device it will be reported with just the
1448 	 * traffic class, so just "0" for TC 0 for example.
1449 	 */
1450 	return num_tc < 0 ? sysfs_emit(buf, "%d%d\n", tc, num_tc) :
1451 			    sysfs_emit(buf, "%d\n", tc);
1452 }
1453 
1454 #ifdef CONFIG_XPS
tx_maxrate_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1455 static ssize_t tx_maxrate_show(struct kobject *kobj, struct attribute *attr,
1456 			       struct netdev_queue *queue, char *buf)
1457 {
1458 	return sysfs_emit(buf, "%lu\n", queue->tx_maxrate);
1459 }
1460 
tx_maxrate_store(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1461 static ssize_t tx_maxrate_store(struct kobject *kobj, struct attribute *attr,
1462 				struct netdev_queue *queue, const char *buf,
1463 				size_t len)
1464 {
1465 	int err, index = get_netdev_queue_index(queue);
1466 	struct net_device *dev = queue->dev;
1467 	u32 rate = 0;
1468 
1469 	if (!capable(CAP_NET_ADMIN))
1470 		return -EPERM;
1471 
1472 	/* The check is also done later; this helps returning early without
1473 	 * hitting the locking section below.
1474 	 */
1475 	if (!dev->netdev_ops->ndo_set_tx_maxrate)
1476 		return -EOPNOTSUPP;
1477 
1478 	err = kstrtou32(buf, 10, &rate);
1479 	if (err < 0)
1480 		return err;
1481 
1482 	err = sysfs_rtnl_lock(kobj, attr, dev);
1483 	if (err)
1484 		return err;
1485 
1486 	err = -EOPNOTSUPP;
1487 	netdev_lock_ops(dev);
1488 	if (dev->netdev_ops->ndo_set_tx_maxrate)
1489 		err = dev->netdev_ops->ndo_set_tx_maxrate(dev, index, rate);
1490 	netdev_unlock_ops(dev);
1491 
1492 	if (!err) {
1493 		queue->tx_maxrate = rate;
1494 		rtnl_unlock();
1495 		return len;
1496 	}
1497 
1498 	rtnl_unlock();
1499 	return err;
1500 }
1501 
1502 static struct netdev_queue_attribute queue_tx_maxrate __ro_after_init
1503 	= __ATTR_RW(tx_maxrate);
1504 #endif
1505 
1506 static struct netdev_queue_attribute queue_trans_timeout __ro_after_init
1507 	= __ATTR_RO(tx_timeout);
1508 
1509 static struct netdev_queue_attribute queue_traffic_class __ro_after_init
1510 	= __ATTR_RO(traffic_class);
1511 
1512 #ifdef CONFIG_BQL
1513 /*
1514  * Byte queue limits sysfs structures and functions.
1515  */
bql_show(char * buf,unsigned int value)1516 static ssize_t bql_show(char *buf, unsigned int value)
1517 {
1518 	return sysfs_emit(buf, "%u\n", value);
1519 }
1520 
bql_set(const char * buf,const size_t count,unsigned int * pvalue)1521 static ssize_t bql_set(const char *buf, const size_t count,
1522 		       unsigned int *pvalue)
1523 {
1524 	unsigned int value;
1525 	int err;
1526 
1527 	if (!strcmp(buf, "max") || !strcmp(buf, "max\n")) {
1528 		value = DQL_MAX_LIMIT;
1529 	} else {
1530 		err = kstrtouint(buf, 10, &value);
1531 		if (err < 0)
1532 			return err;
1533 		if (value > DQL_MAX_LIMIT)
1534 			return -EINVAL;
1535 	}
1536 
1537 	*pvalue = value;
1538 
1539 	return count;
1540 }
1541 
bql_show_hold_time(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1542 static ssize_t bql_show_hold_time(struct kobject *kobj, struct attribute *attr,
1543 				  struct netdev_queue *queue, char *buf)
1544 {
1545 	struct dql *dql = &queue->dql;
1546 
1547 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->slack_hold_time));
1548 }
1549 
bql_set_hold_time(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1550 static ssize_t bql_set_hold_time(struct kobject *kobj, struct attribute *attr,
1551 				 struct netdev_queue *queue, const char *buf,
1552 				 size_t len)
1553 {
1554 	struct dql *dql = &queue->dql;
1555 	unsigned int value;
1556 	int err;
1557 
1558 	err = kstrtouint(buf, 10, &value);
1559 	if (err < 0)
1560 		return err;
1561 
1562 	dql->slack_hold_time = msecs_to_jiffies(value);
1563 
1564 	return len;
1565 }
1566 
1567 static struct netdev_queue_attribute bql_hold_time_attribute __ro_after_init
1568 	= __ATTR(hold_time, 0644,
1569 		 bql_show_hold_time, bql_set_hold_time);
1570 
bql_show_stall_thrs(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1571 static ssize_t bql_show_stall_thrs(struct kobject *kobj, struct attribute *attr,
1572 				   struct netdev_queue *queue, char *buf)
1573 {
1574 	struct dql *dql = &queue->dql;
1575 
1576 	return sysfs_emit(buf, "%u\n", jiffies_to_msecs(dql->stall_thrs));
1577 }
1578 
bql_set_stall_thrs(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1579 static ssize_t bql_set_stall_thrs(struct kobject *kobj, struct attribute *attr,
1580 				  struct netdev_queue *queue, const char *buf,
1581 				  size_t len)
1582 {
1583 	struct dql *dql = &queue->dql;
1584 	unsigned int value;
1585 	int err;
1586 
1587 	err = kstrtouint(buf, 10, &value);
1588 	if (err < 0)
1589 		return err;
1590 
1591 	value = msecs_to_jiffies(value);
1592 	if (value && (value < 4 || value > 4 / 2 * BITS_PER_LONG))
1593 		return -ERANGE;
1594 
1595 	if (!dql->stall_thrs && value)
1596 		dql->last_reap = jiffies;
1597 	/* Force last_reap to be live */
1598 	smp_wmb();
1599 	dql->stall_thrs = value;
1600 
1601 	return len;
1602 }
1603 
1604 static struct netdev_queue_attribute bql_stall_thrs_attribute __ro_after_init =
1605 	__ATTR(stall_thrs, 0644, bql_show_stall_thrs, bql_set_stall_thrs);
1606 
bql_show_stall_max(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1607 static ssize_t bql_show_stall_max(struct kobject *kobj, struct attribute *attr,
1608 				  struct netdev_queue *queue, char *buf)
1609 {
1610 	return sysfs_emit(buf, "%u\n", READ_ONCE(queue->dql.stall_max));
1611 }
1612 
bql_set_stall_max(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1613 static ssize_t bql_set_stall_max(struct kobject *kobj, struct attribute *attr,
1614 				 struct netdev_queue *queue, const char *buf,
1615 				 size_t len)
1616 {
1617 	WRITE_ONCE(queue->dql.stall_max, 0);
1618 	return len;
1619 }
1620 
1621 static struct netdev_queue_attribute bql_stall_max_attribute __ro_after_init =
1622 	__ATTR(stall_max, 0644, bql_show_stall_max, bql_set_stall_max);
1623 
bql_show_stall_cnt(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1624 static ssize_t bql_show_stall_cnt(struct kobject *kobj, struct attribute *attr,
1625 				  struct netdev_queue *queue, char *buf)
1626 {
1627 	struct dql *dql = &queue->dql;
1628 
1629 	return sysfs_emit(buf, "%lu\n", dql->stall_cnt);
1630 }
1631 
1632 static struct netdev_queue_attribute bql_stall_cnt_attribute __ro_after_init =
1633 	__ATTR(stall_cnt, 0444, bql_show_stall_cnt, NULL);
1634 
bql_show_inflight(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1635 static ssize_t bql_show_inflight(struct kobject *kobj, struct attribute *attr,
1636 				 struct netdev_queue *queue, char *buf)
1637 {
1638 	struct dql *dql = &queue->dql;
1639 
1640 	return sysfs_emit(buf, "%u\n", dql->num_queued - dql->num_completed);
1641 }
1642 
1643 static struct netdev_queue_attribute bql_inflight_attribute __ro_after_init =
1644 	__ATTR(inflight, 0444, bql_show_inflight, NULL);
1645 
1646 #define BQL_ATTR(NAME, FIELD)						\
1647 static ssize_t bql_show_ ## NAME(struct kobject *kobj,			\
1648 				 struct attribute *attr,		\
1649 				 struct netdev_queue *queue, char *buf)	\
1650 {									\
1651 	return bql_show(buf, queue->dql.FIELD);				\
1652 }									\
1653 									\
1654 static ssize_t bql_set_ ## NAME(struct kobject *kobj,			\
1655 				struct attribute *attr,			\
1656 				struct netdev_queue *queue,		\
1657 				const char *buf, size_t len)		\
1658 {									\
1659 	return bql_set(buf, len, &queue->dql.FIELD);			\
1660 }									\
1661 									\
1662 static struct netdev_queue_attribute bql_ ## NAME ## _attribute __ro_after_init \
1663 	= __ATTR(NAME, 0644,				\
1664 		 bql_show_ ## NAME, bql_set_ ## NAME)
1665 
1666 BQL_ATTR(limit, limit);
1667 BQL_ATTR(limit_max, max_limit);
1668 BQL_ATTR(limit_min, min_limit);
1669 
1670 static struct attribute *dql_attrs[] __ro_after_init = {
1671 	&bql_limit_attribute.attr,
1672 	&bql_limit_max_attribute.attr,
1673 	&bql_limit_min_attribute.attr,
1674 	&bql_hold_time_attribute.attr,
1675 	&bql_inflight_attribute.attr,
1676 	&bql_stall_thrs_attribute.attr,
1677 	&bql_stall_cnt_attribute.attr,
1678 	&bql_stall_max_attribute.attr,
1679 	NULL
1680 };
1681 
1682 static const struct attribute_group dql_group = {
1683 	.name  = "byte_queue_limits",
1684 	.attrs  = dql_attrs,
1685 };
1686 #else
1687 /* Fake declaration, all the code using it should be dead */
1688 static const struct attribute_group dql_group = {};
1689 #endif /* CONFIG_BQL */
1690 
1691 #ifdef CONFIG_XPS
xps_queue_show(struct net_device * dev,unsigned int index,int tc,char * buf,enum xps_map_type type)1692 static ssize_t xps_queue_show(struct net_device *dev, unsigned int index,
1693 			      int tc, char *buf, enum xps_map_type type)
1694 {
1695 	struct xps_dev_maps *dev_maps;
1696 	unsigned long *mask;
1697 	unsigned int nr_ids;
1698 	int j, len;
1699 
1700 	rcu_read_lock();
1701 	dev_maps = rcu_dereference(dev->xps_maps[type]);
1702 
1703 	/* Default to nr_cpu_ids/dev->num_rx_queues and do not just return 0
1704 	 * when dev_maps hasn't been allocated yet, to be backward compatible.
1705 	 */
1706 	nr_ids = dev_maps ? dev_maps->nr_ids :
1707 		 (type == XPS_CPUS ? nr_cpu_ids : dev->num_rx_queues);
1708 
1709 	mask = bitmap_zalloc(nr_ids, GFP_NOWAIT);
1710 	if (!mask) {
1711 		rcu_read_unlock();
1712 		return -ENOMEM;
1713 	}
1714 
1715 	if (!dev_maps || tc >= dev_maps->num_tc)
1716 		goto out_no_maps;
1717 
1718 	for (j = 0; j < nr_ids; j++) {
1719 		int i, tci = j * dev_maps->num_tc + tc;
1720 		struct xps_map *map;
1721 
1722 		map = rcu_dereference(dev_maps->attr_map[tci]);
1723 		if (!map)
1724 			continue;
1725 
1726 		for (i = map->len; i--;) {
1727 			if (map->queues[i] == index) {
1728 				__set_bit(j, mask);
1729 				break;
1730 			}
1731 		}
1732 	}
1733 out_no_maps:
1734 	rcu_read_unlock();
1735 
1736 	len = bitmap_print_to_pagebuf(false, buf, mask, nr_ids);
1737 	bitmap_free(mask);
1738 
1739 	return len < PAGE_SIZE ? len : -EINVAL;
1740 }
1741 
xps_cpus_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1742 static ssize_t xps_cpus_show(struct kobject *kobj, struct attribute *attr,
1743 			     struct netdev_queue *queue, char *buf)
1744 {
1745 	struct net_device *dev = queue->dev;
1746 	unsigned int index;
1747 	int len, tc, ret;
1748 
1749 	if (!netif_is_multiqueue(dev))
1750 		return -ENOENT;
1751 
1752 	index = get_netdev_queue_index(queue);
1753 
1754 	ret = sysfs_rtnl_lock(kobj, attr, queue->dev);
1755 	if (ret)
1756 		return ret;
1757 
1758 	/* If queue belongs to subordinate dev use its map */
1759 	dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
1760 
1761 	tc = netdev_txq_to_tc(dev, index);
1762 	if (tc < 0) {
1763 		rtnl_unlock();
1764 		return -EINVAL;
1765 	}
1766 
1767 	/* Increase the net device refcnt to make sure it won't be freed while
1768 	 * xps_queue_show is running.
1769 	 */
1770 	dev_hold(dev);
1771 	rtnl_unlock();
1772 
1773 	len = xps_queue_show(dev, index, tc, buf, XPS_CPUS);
1774 
1775 	dev_put(dev);
1776 	return len;
1777 }
1778 
xps_cpus_store(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1779 static ssize_t xps_cpus_store(struct kobject *kobj, struct attribute *attr,
1780 			      struct netdev_queue *queue, const char *buf,
1781 			      size_t len)
1782 {
1783 	struct net_device *dev = queue->dev;
1784 	unsigned int index;
1785 	cpumask_var_t mask;
1786 	int err;
1787 
1788 	if (!netif_is_multiqueue(dev))
1789 		return -ENOENT;
1790 
1791 	if (!capable(CAP_NET_ADMIN))
1792 		return -EPERM;
1793 
1794 	if (!alloc_cpumask_var(&mask, GFP_KERNEL))
1795 		return -ENOMEM;
1796 
1797 	index = get_netdev_queue_index(queue);
1798 
1799 	err = bitmap_parse(buf, len, cpumask_bits(mask), nr_cpumask_bits);
1800 	if (err) {
1801 		free_cpumask_var(mask);
1802 		return err;
1803 	}
1804 
1805 	err = sysfs_rtnl_lock(kobj, attr, dev);
1806 	if (err) {
1807 		free_cpumask_var(mask);
1808 		return err;
1809 	}
1810 
1811 	err = netif_set_xps_queue(dev, mask, index);
1812 	rtnl_unlock();
1813 
1814 	free_cpumask_var(mask);
1815 
1816 	return err ? : len;
1817 }
1818 
1819 static struct netdev_queue_attribute xps_cpus_attribute __ro_after_init
1820 	= __ATTR_RW(xps_cpus);
1821 
xps_rxqs_show(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,char * buf)1822 static ssize_t xps_rxqs_show(struct kobject *kobj, struct attribute *attr,
1823 			     struct netdev_queue *queue, char *buf)
1824 {
1825 	struct net_device *dev = queue->dev;
1826 	unsigned int index;
1827 	int tc, ret;
1828 
1829 	index = get_netdev_queue_index(queue);
1830 
1831 	ret = sysfs_rtnl_lock(kobj, attr, dev);
1832 	if (ret)
1833 		return ret;
1834 
1835 	tc = netdev_txq_to_tc(dev, index);
1836 
1837 	/* Increase the net device refcnt to make sure it won't be freed while
1838 	 * xps_queue_show is running.
1839 	 */
1840 	dev_hold(dev);
1841 	rtnl_unlock();
1842 
1843 	ret = tc >= 0 ? xps_queue_show(dev, index, tc, buf, XPS_RXQS) : -EINVAL;
1844 	dev_put(dev);
1845 	return ret;
1846 }
1847 
xps_rxqs_store(struct kobject * kobj,struct attribute * attr,struct netdev_queue * queue,const char * buf,size_t len)1848 static ssize_t xps_rxqs_store(struct kobject *kobj, struct attribute *attr,
1849 			      struct netdev_queue *queue, const char *buf,
1850 			      size_t len)
1851 {
1852 	struct net_device *dev = queue->dev;
1853 	struct net *net = dev_net(dev);
1854 	unsigned long *mask;
1855 	unsigned int index;
1856 	int err;
1857 
1858 	if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1859 		return -EPERM;
1860 
1861 	mask = bitmap_zalloc(dev->num_rx_queues, GFP_KERNEL);
1862 	if (!mask)
1863 		return -ENOMEM;
1864 
1865 	index = get_netdev_queue_index(queue);
1866 
1867 	err = bitmap_parse(buf, len, mask, dev->num_rx_queues);
1868 	if (err) {
1869 		bitmap_free(mask);
1870 		return err;
1871 	}
1872 
1873 	err = sysfs_rtnl_lock(kobj, attr, dev);
1874 	if (err) {
1875 		bitmap_free(mask);
1876 		return err;
1877 	}
1878 
1879 	cpus_read_lock();
1880 	err = __netif_set_xps_queue(dev, mask, index, XPS_RXQS);
1881 	cpus_read_unlock();
1882 
1883 	rtnl_unlock();
1884 
1885 	bitmap_free(mask);
1886 	return err ? : len;
1887 }
1888 
1889 static struct netdev_queue_attribute xps_rxqs_attribute __ro_after_init
1890 	= __ATTR_RW(xps_rxqs);
1891 #endif /* CONFIG_XPS */
1892 
1893 static struct attribute *netdev_queue_default_attrs[] __ro_after_init = {
1894 	&queue_trans_timeout.attr,
1895 	&queue_traffic_class.attr,
1896 #ifdef CONFIG_XPS
1897 	&xps_cpus_attribute.attr,
1898 	&xps_rxqs_attribute.attr,
1899 	&queue_tx_maxrate.attr,
1900 #endif
1901 	NULL
1902 };
1903 ATTRIBUTE_GROUPS(netdev_queue_default);
1904 
netdev_queue_release(struct kobject * kobj)1905 static void netdev_queue_release(struct kobject *kobj)
1906 {
1907 	struct netdev_queue *queue = to_netdev_queue(kobj);
1908 
1909 	memset(kobj, 0, sizeof(*kobj));
1910 	netdev_put(queue->dev, &queue->dev_tracker);
1911 }
1912 
netdev_queue_namespace(const struct kobject * kobj)1913 static const void *netdev_queue_namespace(const struct kobject *kobj)
1914 {
1915 	struct netdev_queue *queue = to_netdev_queue(kobj);
1916 	struct device *dev = &queue->dev->dev;
1917 	const void *ns = NULL;
1918 
1919 	if (dev->class && dev->class->namespace)
1920 		ns = dev->class->namespace(dev);
1921 
1922 	return ns;
1923 }
1924 
netdev_queue_get_ownership(const struct kobject * kobj,kuid_t * uid,kgid_t * gid)1925 static void netdev_queue_get_ownership(const struct kobject *kobj,
1926 				       kuid_t *uid, kgid_t *gid)
1927 {
1928 	const struct net *net = netdev_queue_namespace(kobj);
1929 
1930 	net_ns_get_ownership(net, uid, gid);
1931 }
1932 
1933 static const struct kobj_type netdev_queue_ktype = {
1934 	.sysfs_ops = &netdev_queue_sysfs_ops,
1935 	.release = netdev_queue_release,
1936 	.namespace = netdev_queue_namespace,
1937 	.get_ownership = netdev_queue_get_ownership,
1938 };
1939 
netdev_uses_bql(const struct net_device * dev)1940 static bool netdev_uses_bql(const struct net_device *dev)
1941 {
1942 	if (dev->lltx || (dev->priv_flags & IFF_NO_QUEUE))
1943 		return false;
1944 
1945 	return IS_ENABLED(CONFIG_BQL);
1946 }
1947 
netdev_queue_add_kobject(struct net_device * dev,int index)1948 static int netdev_queue_add_kobject(struct net_device *dev, int index)
1949 {
1950 	struct netdev_queue *queue = dev->_tx + index;
1951 	struct kobject *kobj = &queue->kobj;
1952 	int error = 0;
1953 
1954 	/* Tx queues are cleared in netdev_queue_release to allow later
1955 	 * re-registration. This is triggered when their kobj refcount is
1956 	 * dropped.
1957 	 *
1958 	 * If a queue is removed while both a read (or write) operation and a
1959 	 * the re-addition of the same queue are pending (waiting on rntl_lock)
1960 	 * it might happen that the re-addition will execute before the read,
1961 	 * making the initial removal to never happen (queue's kobj refcount
1962 	 * won't drop enough because of the pending read). In such rare case,
1963 	 * return to allow the removal operation to complete.
1964 	 */
1965 	if (unlikely(kobj->state_initialized)) {
1966 		netdev_warn_once(dev, "Cannot re-add tx queues before their removal completed");
1967 		return -EAGAIN;
1968 	}
1969 
1970 	/* Kobject_put later will trigger netdev_queue_release call
1971 	 * which decreases dev refcount: Take that reference here
1972 	 */
1973 	netdev_hold(queue->dev, &queue->dev_tracker, GFP_KERNEL);
1974 
1975 	kobj->kset = dev->queues_kset;
1976 	error = kobject_init_and_add(kobj, &netdev_queue_ktype, NULL,
1977 				     "tx-%u", index);
1978 	if (error)
1979 		goto err;
1980 
1981 	queue->groups = netdev_queue_default_groups;
1982 	error = sysfs_create_groups(kobj, queue->groups);
1983 	if (error)
1984 		goto err;
1985 
1986 	if (netdev_uses_bql(dev)) {
1987 		error = sysfs_create_group(kobj, &dql_group);
1988 		if (error)
1989 			goto err_default_groups;
1990 	}
1991 
1992 	kobject_uevent(kobj, KOBJ_ADD);
1993 	return 0;
1994 
1995 err_default_groups:
1996 	sysfs_remove_groups(kobj, queue->groups);
1997 err:
1998 	kobject_put(kobj);
1999 	return error;
2000 }
2001 
tx_queue_change_owner(struct net_device * ndev,int index,kuid_t kuid,kgid_t kgid)2002 static int tx_queue_change_owner(struct net_device *ndev, int index,
2003 				 kuid_t kuid, kgid_t kgid)
2004 {
2005 	struct netdev_queue *queue = ndev->_tx + index;
2006 	struct kobject *kobj = &queue->kobj;
2007 	int error;
2008 
2009 	error = sysfs_change_owner(kobj, kuid, kgid);
2010 	if (error)
2011 		return error;
2012 
2013 	if (netdev_uses_bql(ndev))
2014 		error = sysfs_group_change_owner(kobj, &dql_group, kuid, kgid);
2015 
2016 	return error;
2017 }
2018 #endif /* CONFIG_SYSFS */
2019 
2020 int
netdev_queue_update_kobjects(struct net_device * dev,int old_num,int new_num)2021 netdev_queue_update_kobjects(struct net_device *dev, int old_num, int new_num)
2022 {
2023 #ifdef CONFIG_SYSFS
2024 	int i;
2025 	int error = 0;
2026 
2027 	/* Tx queue kobjects are allowed to be updated when a device is being
2028 	 * unregistered, but solely to remove queues from qdiscs. Any path
2029 	 * adding queues should be fixed.
2030 	 */
2031 	WARN(dev->reg_state == NETREG_UNREGISTERING && new_num > old_num,
2032 	     "New queues can't be registered after device unregistration.");
2033 
2034 	for (i = old_num; i < new_num; i++) {
2035 		error = netdev_queue_add_kobject(dev, i);
2036 		if (error) {
2037 			new_num = old_num;
2038 			break;
2039 		}
2040 	}
2041 
2042 	while (--i >= new_num) {
2043 		struct netdev_queue *queue = dev->_tx + i;
2044 
2045 		if (!refcount_read(&dev_net(dev)->ns.count))
2046 			queue->kobj.uevent_suppress = 1;
2047 
2048 		if (netdev_uses_bql(dev))
2049 			sysfs_remove_group(&queue->kobj, &dql_group);
2050 
2051 		sysfs_remove_groups(&queue->kobj, queue->groups);
2052 		kobject_put(&queue->kobj);
2053 	}
2054 
2055 	return error;
2056 #else
2057 	return 0;
2058 #endif /* CONFIG_SYSFS */
2059 }
2060 
net_tx_queue_change_owner(struct net_device * dev,int num,kuid_t kuid,kgid_t kgid)2061 static int net_tx_queue_change_owner(struct net_device *dev, int num,
2062 				     kuid_t kuid, kgid_t kgid)
2063 {
2064 #ifdef CONFIG_SYSFS
2065 	int error = 0;
2066 	int i;
2067 
2068 	for (i = 0; i < num; i++) {
2069 		error = tx_queue_change_owner(dev, i, kuid, kgid);
2070 		if (error)
2071 			break;
2072 	}
2073 
2074 	return error;
2075 #else
2076 	return 0;
2077 #endif /* CONFIG_SYSFS */
2078 }
2079 
register_queue_kobjects(struct net_device * dev)2080 static int register_queue_kobjects(struct net_device *dev)
2081 {
2082 	int error = 0, txq = 0, rxq = 0, real_rx = 0, real_tx = 0;
2083 
2084 #ifdef CONFIG_SYSFS
2085 	dev->queues_kset = kset_create_and_add("queues",
2086 					       NULL, &dev->dev.kobj);
2087 	if (!dev->queues_kset)
2088 		return -ENOMEM;
2089 	real_rx = dev->real_num_rx_queues;
2090 #endif
2091 	real_tx = dev->real_num_tx_queues;
2092 
2093 	error = net_rx_queue_update_kobjects(dev, 0, real_rx);
2094 	if (error)
2095 		goto error;
2096 	rxq = real_rx;
2097 
2098 	error = netdev_queue_update_kobjects(dev, 0, real_tx);
2099 	if (error)
2100 		goto error;
2101 	txq = real_tx;
2102 
2103 	return 0;
2104 
2105 error:
2106 	netdev_queue_update_kobjects(dev, txq, 0);
2107 	net_rx_queue_update_kobjects(dev, rxq, 0);
2108 #ifdef CONFIG_SYSFS
2109 	kset_unregister(dev->queues_kset);
2110 #endif
2111 	return error;
2112 }
2113 
queue_change_owner(struct net_device * ndev,kuid_t kuid,kgid_t kgid)2114 static int queue_change_owner(struct net_device *ndev, kuid_t kuid, kgid_t kgid)
2115 {
2116 	int error = 0, real_rx = 0, real_tx = 0;
2117 
2118 #ifdef CONFIG_SYSFS
2119 	if (ndev->queues_kset) {
2120 		error = sysfs_change_owner(&ndev->queues_kset->kobj, kuid, kgid);
2121 		if (error)
2122 			return error;
2123 	}
2124 	real_rx = ndev->real_num_rx_queues;
2125 #endif
2126 	real_tx = ndev->real_num_tx_queues;
2127 
2128 	error = net_rx_queue_change_owner(ndev, real_rx, kuid, kgid);
2129 	if (error)
2130 		return error;
2131 
2132 	error = net_tx_queue_change_owner(ndev, real_tx, kuid, kgid);
2133 	if (error)
2134 		return error;
2135 
2136 	return 0;
2137 }
2138 
remove_queue_kobjects(struct net_device * dev)2139 static void remove_queue_kobjects(struct net_device *dev)
2140 {
2141 	int real_rx = 0, real_tx = 0;
2142 
2143 #ifdef CONFIG_SYSFS
2144 	real_rx = dev->real_num_rx_queues;
2145 #endif
2146 	real_tx = dev->real_num_tx_queues;
2147 
2148 	net_rx_queue_update_kobjects(dev, real_rx, 0);
2149 	netdev_queue_update_kobjects(dev, real_tx, 0);
2150 
2151 	netdev_lock_ops(dev);
2152 	dev->real_num_rx_queues = 0;
2153 	dev->real_num_tx_queues = 0;
2154 	netdev_unlock_ops(dev);
2155 #ifdef CONFIG_SYSFS
2156 	kset_unregister(dev->queues_kset);
2157 #endif
2158 }
2159 
net_current_may_mount(void)2160 static bool net_current_may_mount(void)
2161 {
2162 	struct net *net = current->nsproxy->net_ns;
2163 
2164 	return ns_capable(net->user_ns, CAP_SYS_ADMIN);
2165 }
2166 
net_grab_current_ns(void)2167 static void *net_grab_current_ns(void)
2168 {
2169 	struct net *ns = current->nsproxy->net_ns;
2170 #ifdef CONFIG_NET_NS
2171 	if (ns)
2172 		refcount_inc(&ns->passive);
2173 #endif
2174 	return ns;
2175 }
2176 
net_initial_ns(void)2177 static const void *net_initial_ns(void)
2178 {
2179 	return &init_net;
2180 }
2181 
net_netlink_ns(struct sock * sk)2182 static const void *net_netlink_ns(struct sock *sk)
2183 {
2184 	return sock_net(sk);
2185 }
2186 
2187 const struct kobj_ns_type_operations net_ns_type_operations = {
2188 	.type = KOBJ_NS_TYPE_NET,
2189 	.current_may_mount = net_current_may_mount,
2190 	.grab_current_ns = net_grab_current_ns,
2191 	.netlink_ns = net_netlink_ns,
2192 	.initial_ns = net_initial_ns,
2193 	.drop_ns = net_drop_ns,
2194 };
2195 EXPORT_SYMBOL_GPL(net_ns_type_operations);
2196 
netdev_uevent(const struct device * d,struct kobj_uevent_env * env)2197 static int netdev_uevent(const struct device *d, struct kobj_uevent_env *env)
2198 {
2199 	const struct net_device *dev = to_net_dev(d);
2200 	int retval;
2201 
2202 	/* pass interface to uevent. */
2203 	retval = add_uevent_var(env, "INTERFACE=%s", dev->name);
2204 	if (retval)
2205 		goto exit;
2206 
2207 	/* pass ifindex to uevent.
2208 	 * ifindex is useful as it won't change (interface name may change)
2209 	 * and is what RtNetlink uses natively.
2210 	 */
2211 	retval = add_uevent_var(env, "IFINDEX=%d", dev->ifindex);
2212 
2213 exit:
2214 	return retval;
2215 }
2216 
2217 /*
2218  *	netdev_release -- destroy and free a dead device.
2219  *	Called when last reference to device kobject is gone.
2220  */
netdev_release(struct device * d)2221 static void netdev_release(struct device *d)
2222 {
2223 	struct net_device *dev = to_net_dev(d);
2224 
2225 	BUG_ON(dev->reg_state != NETREG_RELEASED);
2226 
2227 	/* no need to wait for rcu grace period:
2228 	 * device is dead and about to be freed.
2229 	 */
2230 	kfree(rcu_access_pointer(dev->ifalias));
2231 	kvfree(dev);
2232 }
2233 
net_namespace(const struct device * d)2234 static const void *net_namespace(const struct device *d)
2235 {
2236 	const struct net_device *dev = to_net_dev(d);
2237 
2238 	return dev_net(dev);
2239 }
2240 
net_get_ownership(const struct device * d,kuid_t * uid,kgid_t * gid)2241 static void net_get_ownership(const struct device *d, kuid_t *uid, kgid_t *gid)
2242 {
2243 	const struct net_device *dev = to_net_dev(d);
2244 	const struct net *net = dev_net(dev);
2245 
2246 	net_ns_get_ownership(net, uid, gid);
2247 }
2248 
2249 static const struct class net_class = {
2250 	.name = "net",
2251 	.dev_release = netdev_release,
2252 	.dev_groups = net_class_groups,
2253 	.dev_uevent = netdev_uevent,
2254 	.ns_type = &net_ns_type_operations,
2255 	.namespace = net_namespace,
2256 	.get_ownership = net_get_ownership,
2257 };
2258 
2259 #ifdef CONFIG_OF
of_dev_node_match(struct device * dev,const void * data)2260 static int of_dev_node_match(struct device *dev, const void *data)
2261 {
2262 	for (; dev; dev = dev->parent) {
2263 		if (dev->of_node == data)
2264 			return 1;
2265 	}
2266 
2267 	return 0;
2268 }
2269 
2270 /*
2271  * of_find_net_device_by_node - lookup the net device for the device node
2272  * @np: OF device node
2273  *
2274  * Looks up the net_device structure corresponding with the device node.
2275  * If successful, returns a pointer to the net_device with the embedded
2276  * struct device refcount incremented by one, or NULL on failure. The
2277  * refcount must be dropped when done with the net_device.
2278  */
of_find_net_device_by_node(struct device_node * np)2279 struct net_device *of_find_net_device_by_node(struct device_node *np)
2280 {
2281 	struct device *dev;
2282 
2283 	dev = class_find_device(&net_class, NULL, np, of_dev_node_match);
2284 	if (!dev)
2285 		return NULL;
2286 
2287 	return to_net_dev(dev);
2288 }
2289 EXPORT_SYMBOL(of_find_net_device_by_node);
2290 #endif
2291 
2292 /* Delete sysfs entries but hold kobject reference until after all
2293  * netdev references are gone.
2294  */
netdev_unregister_kobject(struct net_device * ndev)2295 void netdev_unregister_kobject(struct net_device *ndev)
2296 {
2297 	struct device *dev = &ndev->dev;
2298 
2299 	if (!refcount_read(&dev_net(ndev)->ns.count))
2300 		dev_set_uevent_suppress(dev, 1);
2301 
2302 	kobject_get(&dev->kobj);
2303 
2304 	remove_queue_kobjects(ndev);
2305 
2306 	pm_runtime_set_memalloc_noio(dev, false);
2307 
2308 	device_del(dev);
2309 }
2310 
2311 /* Create sysfs entries for network device. */
netdev_register_kobject(struct net_device * ndev)2312 int netdev_register_kobject(struct net_device *ndev)
2313 {
2314 	struct device *dev = &ndev->dev;
2315 	const struct attribute_group **groups = ndev->sysfs_groups;
2316 	int error = 0;
2317 
2318 	device_initialize(dev);
2319 	dev->class = &net_class;
2320 	dev->platform_data = ndev;
2321 	dev->groups = groups;
2322 
2323 	dev_set_name(dev, "%s", ndev->name);
2324 
2325 #ifdef CONFIG_SYSFS
2326 	/* Allow for a device specific group */
2327 	if (*groups)
2328 		groups++;
2329 
2330 	*groups++ = &netstat_group;
2331 
2332 	if (wireless_group_needed(ndev))
2333 		*groups++ = &wireless_group;
2334 #endif /* CONFIG_SYSFS */
2335 
2336 	error = device_add(dev);
2337 	if (error)
2338 		return error;
2339 
2340 	error = register_queue_kobjects(ndev);
2341 	if (error) {
2342 		device_del(dev);
2343 		return error;
2344 	}
2345 
2346 	pm_runtime_set_memalloc_noio(dev, true);
2347 
2348 	return error;
2349 }
2350 
2351 /* Change owner for sysfs entries when moving network devices across network
2352  * namespaces owned by different user namespaces.
2353  */
netdev_change_owner(struct net_device * ndev,const struct net * net_old,const struct net * net_new)2354 int netdev_change_owner(struct net_device *ndev, const struct net *net_old,
2355 			const struct net *net_new)
2356 {
2357 	kuid_t old_uid = GLOBAL_ROOT_UID, new_uid = GLOBAL_ROOT_UID;
2358 	kgid_t old_gid = GLOBAL_ROOT_GID, new_gid = GLOBAL_ROOT_GID;
2359 	struct device *dev = &ndev->dev;
2360 	int error;
2361 
2362 	net_ns_get_ownership(net_old, &old_uid, &old_gid);
2363 	net_ns_get_ownership(net_new, &new_uid, &new_gid);
2364 
2365 	/* The network namespace was changed but the owning user namespace is
2366 	 * identical so there's no need to change the owner of sysfs entries.
2367 	 */
2368 	if (uid_eq(old_uid, new_uid) && gid_eq(old_gid, new_gid))
2369 		return 0;
2370 
2371 	error = device_change_owner(dev, new_uid, new_gid);
2372 	if (error)
2373 		return error;
2374 
2375 	error = queue_change_owner(ndev, new_uid, new_gid);
2376 	if (error)
2377 		return error;
2378 
2379 	return 0;
2380 }
2381 
netdev_class_create_file_ns(const struct class_attribute * class_attr,const void * ns)2382 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
2383 				const void *ns)
2384 {
2385 	return class_create_file_ns(&net_class, class_attr, ns);
2386 }
2387 EXPORT_SYMBOL(netdev_class_create_file_ns);
2388 
netdev_class_remove_file_ns(const struct class_attribute * class_attr,const void * ns)2389 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
2390 				 const void *ns)
2391 {
2392 	class_remove_file_ns(&net_class, class_attr, ns);
2393 }
2394 EXPORT_SYMBOL(netdev_class_remove_file_ns);
2395 
netdev_kobject_init(void)2396 int __init netdev_kobject_init(void)
2397 {
2398 	kobj_ns_type_register(&net_ns_type_operations);
2399 	return class_register(&net_class);
2400 }
2401