1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 #include <sys/cdefs.h>
29 /*
30 * IEEE 802.11 support (FreeBSD-specific code)
31 */
32 #include "opt_wlan.h"
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/eventhandler.h>
37 #include <sys/kernel.h>
38 #include <sys/linker.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/module.h>
42 #include <sys/priv.h>
43 #include <sys/proc.h>
44 #include <sys/stdarg.h>
45 #include <sys/sysctl.h>
46 #include <sys/syslog.h>
47
48 #include <sys/socket.h>
49
50 #include <net/bpf.h>
51 #include <net/debugnet.h>
52 #include <net/if.h>
53 #include <net/if_var.h>
54 #include <net/if_dl.h>
55 #include <net/if_clone.h>
56 #include <net/if_media.h>
57 #include <net/if_private.h>
58 #include <net/if_types.h>
59 #include <net/ethernet.h>
60 #include <net/route.h>
61 #include <net/vnet.h>
62
63 #include <net80211/ieee80211_var.h>
64 #include <net80211/ieee80211_input.h>
65
66 DEBUGNET_DEFINE(ieee80211);
67 SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
68 "IEEE 80211 parameters");
69
70 #ifdef IEEE80211_DEBUG
71 static int ieee80211_debug = 0;
72 SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
73 0, "debugging printfs");
74 #endif
75
76 static const char wlanname[] = "wlan";
77 static struct if_clone *wlan_cloner;
78
79 /*
80 * priv(9) NET80211 checks.
81 * Return 0 if operation is allowed, E* (usually EPERM) otherwise.
82 */
83 int
ieee80211_priv_check_vap_getkey(u_long cmd __unused,struct ieee80211vap * vap __unused,struct ifnet * ifp __unused)84 ieee80211_priv_check_vap_getkey(u_long cmd __unused,
85 struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
86 {
87
88 return (priv_check(curthread, PRIV_NET80211_VAP_GETKEY));
89 }
90
91 int
ieee80211_priv_check_vap_manage(u_long cmd __unused,struct ieee80211vap * vap __unused,struct ifnet * ifp __unused)92 ieee80211_priv_check_vap_manage(u_long cmd __unused,
93 struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
94 {
95
96 return (priv_check(curthread, PRIV_NET80211_VAP_MANAGE));
97 }
98
99 int
ieee80211_priv_check_vap_setmac(u_long cmd __unused,struct ieee80211vap * vap __unused,struct ifnet * ifp __unused)100 ieee80211_priv_check_vap_setmac(u_long cmd __unused,
101 struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
102 {
103
104 return (priv_check(curthread, PRIV_NET80211_VAP_SETMAC));
105 }
106
107 int
ieee80211_priv_check_create_vap(u_long cmd __unused,struct ieee80211vap * vap __unused,struct ifnet * ifp __unused)108 ieee80211_priv_check_create_vap(u_long cmd __unused,
109 struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
110 {
111
112 return (priv_check(curthread, PRIV_NET80211_CREATE_VAP));
113 }
114
115 static int
wlan_clone_create(struct if_clone * ifc,char * name,size_t len,struct ifc_data * ifd,struct ifnet ** ifpp)116 wlan_clone_create(struct if_clone *ifc, char *name, size_t len,
117 struct ifc_data *ifd, struct ifnet **ifpp)
118 {
119 struct ieee80211_clone_params cp;
120 struct ieee80211vap *vap;
121 struct ieee80211com *ic;
122 int error;
123
124 error = ieee80211_priv_check_create_vap(0, NULL, NULL);
125 if (error)
126 return error;
127
128 error = ifc_copyin(ifd, &cp, sizeof(cp));
129 if (error)
130 return error;
131 ic = ieee80211_find_com(cp.icp_parent);
132 if (ic == NULL)
133 return ENXIO;
134 if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
135 ic_printf(ic, "%s: invalid opmode %d\n", __func__,
136 cp.icp_opmode);
137 return EINVAL;
138 }
139 if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
140 ic_printf(ic, "%s mode not supported\n",
141 ieee80211_opmode_name[cp.icp_opmode]);
142 return EOPNOTSUPP;
143 }
144 if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
145 #ifdef IEEE80211_SUPPORT_TDMA
146 (ic->ic_caps & IEEE80211_C_TDMA) == 0
147 #else
148 (1)
149 #endif
150 ) {
151 ic_printf(ic, "TDMA not supported\n");
152 return EOPNOTSUPP;
153 }
154 vap = ic->ic_vap_create(ic, wlanname, ifd->unit,
155 cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
156 cp.icp_flags & IEEE80211_CLONE_MACADDR ?
157 cp.icp_macaddr : ic->ic_macaddr);
158
159 if (vap == NULL)
160 return (EIO);
161
162 #ifdef DEBUGNET
163 if (ic->ic_debugnet_meth != NULL)
164 DEBUGNET_SET(vap->iv_ifp, ieee80211);
165 #endif
166 *ifpp = vap->iv_ifp;
167
168 return (0);
169 }
170
171 static int
wlan_clone_destroy(struct if_clone * ifc,struct ifnet * ifp,uint32_t flags)172 wlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags)
173 {
174 struct ieee80211vap *vap = ifp->if_softc;
175 struct ieee80211com *ic = vap->iv_ic;
176
177 ic->ic_vap_delete(vap);
178
179 return (0);
180 }
181
182 void
ieee80211_vap_destroy(struct ieee80211vap * vap)183 ieee80211_vap_destroy(struct ieee80211vap *vap)
184 {
185 CURVNET_SET(vap->iv_ifp->if_vnet);
186 if_clone_destroyif(wlan_cloner, vap->iv_ifp);
187 CURVNET_RESTORE();
188 }
189
190 int
ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)191 ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
192 {
193 int msecs = ticks_to_msecs(*(int *)arg1);
194 int error;
195
196 error = sysctl_handle_int(oidp, &msecs, 0, req);
197 if (error || !req->newptr)
198 return error;
199 *(int *)arg1 = msecs_to_ticks(msecs);
200 return 0;
201 }
202
203 static int
ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)204 ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
205 {
206 int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
207 int error;
208
209 error = sysctl_handle_int(oidp, &inact, 0, req);
210 if (error || !req->newptr)
211 return error;
212 *(int *)arg1 = inact / IEEE80211_INACT_WAIT;
213 return 0;
214 }
215
216 static int
ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)217 ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
218 {
219 struct ieee80211com *ic = arg1;
220
221 return SYSCTL_OUT_STR(req, ic->ic_name);
222 }
223
224 static int
ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)225 ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
226 {
227 struct ieee80211com *ic = arg1;
228 int t = 0, error;
229
230 error = sysctl_handle_int(oidp, &t, 0, req);
231 if (error || !req->newptr)
232 return error;
233 IEEE80211_LOCK(ic);
234 ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
235 IEEE80211_UNLOCK(ic);
236 return 0;
237 }
238
239 /*
240 * For now, just restart everything.
241 *
242 * Later on, it'd be nice to have a separate VAP restart to
243 * full-device restart.
244 */
245 static int
ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)246 ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
247 {
248 struct ieee80211vap *vap = arg1;
249 int t = 0, error;
250
251 error = sysctl_handle_int(oidp, &t, 0, req);
252 if (error || !req->newptr)
253 return error;
254
255 ieee80211_restart_all(vap->iv_ic);
256 return 0;
257 }
258
259 void
ieee80211_sysctl_attach(struct ieee80211com * ic)260 ieee80211_sysctl_attach(struct ieee80211com *ic)
261 {
262 }
263
264 void
ieee80211_sysctl_detach(struct ieee80211com * ic)265 ieee80211_sysctl_detach(struct ieee80211com *ic)
266 {
267 }
268
269 void
ieee80211_sysctl_vattach(struct ieee80211vap * vap)270 ieee80211_sysctl_vattach(struct ieee80211vap *vap)
271 {
272 struct ifnet *ifp = vap->iv_ifp;
273 struct sysctl_ctx_list *ctx;
274 struct sysctl_oid *oid;
275 char num[14]; /* sufficient for 32 bits */
276
277 ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
278 M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
279 if (ctx == NULL) {
280 net80211_vap_printf(vap,
281 "%s: cannot allocate sysctl context!\n", __func__);
282 return;
283 }
284 sysctl_ctx_init(ctx);
285 snprintf(num, sizeof(num), "%u", ifp->if_dunit);
286 oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
287 OID_AUTO, num, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
288 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
289 "%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
290 vap->iv_ic, 0, ieee80211_sysctl_parent, "A", "parent device");
291 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
292 "driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
293 "driver capabilities");
294 #ifdef IEEE80211_DEBUG
295 vap->iv_debug = ieee80211_debug;
296 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
297 "debug", CTLFLAG_RW, &vap->iv_debug, 0,
298 "control debugging printfs");
299 #endif
300 SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
301 "bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
302 "consecutive beacon misses before scanning");
303 /* XXX inherit from tunables */
304 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
305 "inact_run", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
306 &vap->iv_inact_run, 0, ieee80211_sysctl_inact, "I",
307 "station inactivity timeout (sec)");
308 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
309 "inact_probe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
310 &vap->iv_inact_probe, 0, ieee80211_sysctl_inact, "I",
311 "station inactivity probe timeout (sec)");
312 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
313 "inact_auth", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
314 &vap->iv_inact_auth, 0, ieee80211_sysctl_inact, "I",
315 "station authentication timeout (sec)");
316 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
317 "inact_init", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
318 &vap->iv_inact_init, 0, ieee80211_sysctl_inact, "I",
319 "station initial state timeout (sec)");
320 if (vap->iv_htcaps & IEEE80211_HTC_HT) {
321 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
322 "ampdu_mintraffic_bk", CTLFLAG_RW,
323 &vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
324 "BK traffic tx aggr threshold (pps)");
325 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
326 "ampdu_mintraffic_be", CTLFLAG_RW,
327 &vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
328 "BE traffic tx aggr threshold (pps)");
329 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
330 "ampdu_mintraffic_vo", CTLFLAG_RW,
331 &vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
332 "VO traffic tx aggr threshold (pps)");
333 SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
334 "ampdu_mintraffic_vi", CTLFLAG_RW,
335 &vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
336 "VI traffic tx aggr threshold (pps)");
337 }
338
339 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
340 "force_restart", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
341 vap, 0, ieee80211_sysctl_vap_restart, "I", "force a VAP restart");
342
343 if (vap->iv_caps & IEEE80211_C_DFS) {
344 SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
345 "radar", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
346 vap->iv_ic, 0, ieee80211_sysctl_radar, "I",
347 "simulate radar event");
348 }
349 vap->iv_sysctl = ctx;
350 vap->iv_oid = oid;
351 }
352
353 void
ieee80211_sysctl_vdetach(struct ieee80211vap * vap)354 ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
355 {
356
357 if (vap->iv_sysctl != NULL) {
358 sysctl_ctx_free(vap->iv_sysctl);
359 IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
360 vap->iv_sysctl = NULL;
361 }
362 }
363
364 int
ieee80211_com_vincref(struct ieee80211vap * vap)365 ieee80211_com_vincref(struct ieee80211vap *vap)
366 {
367 uint32_t ostate;
368
369 ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
370
371 if (ostate & IEEE80211_COM_DETACHED) {
372 atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
373 return (ENETDOWN);
374 }
375
376 if (_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) ==
377 IEEE80211_COM_REF_MAX) {
378 atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
379 return (EOVERFLOW);
380 }
381
382 return (0);
383 }
384
385 void
ieee80211_com_vdecref(struct ieee80211vap * vap)386 ieee80211_com_vdecref(struct ieee80211vap *vap)
387 {
388 uint32_t ostate;
389
390 ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD);
391
392 KASSERT(_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) != 0,
393 ("com reference counter underflow"));
394
395 (void) ostate;
396 }
397
398 void
ieee80211_com_vdetach(struct ieee80211vap * vap)399 ieee80211_com_vdetach(struct ieee80211vap *vap)
400 {
401 int sleep_time;
402
403 sleep_time = msecs_to_ticks(250);
404 atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED);
405 while (_IEEE80211_MASKSHIFT(atomic_load_32(&vap->iv_com_state),
406 IEEE80211_COM_REF) != 0)
407 pause("comref", sleep_time);
408 }
409
410 int
ieee80211_node_dectestref(struct ieee80211_node * ni)411 ieee80211_node_dectestref(struct ieee80211_node *ni)
412 {
413 /* XXX need equivalent of atomic_dec_and_test */
414 atomic_subtract_int(&ni->ni_refcnt, 1);
415 return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
416 }
417
418 void
ieee80211_drain_ifq(struct ifqueue * ifq)419 ieee80211_drain_ifq(struct ifqueue *ifq)
420 {
421 struct ieee80211_node *ni;
422 struct mbuf *m;
423
424 for (;;) {
425 IF_DEQUEUE(ifq, m);
426 if (m == NULL)
427 break;
428
429 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
430 KASSERT(ni != NULL, ("frame w/o node"));
431 ieee80211_free_node(ni);
432 m->m_pkthdr.rcvif = NULL;
433
434 m_freem(m);
435 }
436 }
437
438 void
ieee80211_flush_ifq(struct ifqueue * ifq,struct ieee80211vap * vap)439 ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
440 {
441 struct ieee80211_node *ni;
442 struct mbuf *m, **mprev;
443
444 IF_LOCK(ifq);
445 mprev = &ifq->ifq_head;
446 while ((m = *mprev) != NULL) {
447 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
448 if (ni != NULL && ni->ni_vap == vap) {
449 *mprev = m->m_nextpkt; /* remove from list */
450 ifq->ifq_len--;
451
452 m_freem(m);
453 ieee80211_free_node(ni); /* reclaim ref */
454 } else
455 mprev = &m->m_nextpkt;
456 }
457 /* recalculate tail ptr */
458 m = ifq->ifq_head;
459 for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
460 ;
461 ifq->ifq_tail = m;
462 IF_UNLOCK(ifq);
463 }
464
465 /*
466 * As above, for mbufs allocated with m_gethdr/MGETHDR
467 * or initialized by M_COPY_PKTHDR.
468 */
469 #define MC_ALIGN(m, len) \
470 do { \
471 (m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \
472 } while (/* CONSTCOND */ 0)
473
474 /*
475 * Allocate and setup a management frame of the specified
476 * size. We return the mbuf and a pointer to the start
477 * of the contiguous data area that's been reserved based
478 * on the packet length. The data area is forced to 32-bit
479 * alignment and the buffer length to a multiple of 4 bytes.
480 * This is done mainly so beacon frames (that require this)
481 * can use this interface too.
482 */
483 struct mbuf *
ieee80211_getmgtframe(uint8_t ** frm,int headroom,int pktlen)484 ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
485 {
486 struct mbuf *m;
487 u_int len;
488
489 /*
490 * NB: we know the mbuf routines will align the data area
491 * so we don't need to do anything special.
492 */
493 len = roundup2(headroom + pktlen, 4);
494 KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
495 if (len < MINCLSIZE) {
496 m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
497 /*
498 * Align the data in case additional headers are added.
499 * This should only happen when a WEP header is added
500 * which only happens for shared key authentication mgt
501 * frames which all fit in MHLEN.
502 */
503 if (m != NULL)
504 M_ALIGN(m, len);
505 } else {
506 m = m_getcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
507 if (m != NULL)
508 MC_ALIGN(m, len);
509 }
510 if (m != NULL) {
511 m->m_data += headroom;
512 *frm = m->m_data;
513 }
514 return m;
515 }
516
517 #ifndef __NO_STRICT_ALIGNMENT
518 /*
519 * Re-align the payload in the mbuf. This is mainly used (right now)
520 * to handle IP header alignment requirements on certain architectures.
521 */
522 struct mbuf *
ieee80211_realign(struct ieee80211vap * vap,struct mbuf * m,size_t align)523 ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
524 {
525 int pktlen, space;
526 struct mbuf *n;
527
528 pktlen = m->m_pkthdr.len;
529 space = pktlen + align;
530 if (space < MINCLSIZE)
531 n = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
532 else {
533 n = m_getjcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR,
534 space <= MCLBYTES ? MCLBYTES :
535 #if MJUMPAGESIZE != MCLBYTES
536 space <= MJUMPAGESIZE ? MJUMPAGESIZE :
537 #endif
538 space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES);
539 }
540 if (__predict_true(n != NULL)) {
541 m_move_pkthdr(n, m);
542 n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
543 m_copydata(m, 0, pktlen, mtod(n, caddr_t));
544 n->m_len = pktlen;
545 } else {
546 IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
547 mtod(m, const struct ieee80211_frame *), NULL,
548 "%s", "no mbuf to realign");
549 vap->iv_stats.is_rx_badalign++;
550 }
551 m_freem(m);
552 return n;
553 }
554 #endif /* !__NO_STRICT_ALIGNMENT */
555
556 int
ieee80211_add_callback(struct mbuf * m,void (* func)(struct ieee80211_node *,void *,int),void * arg)557 ieee80211_add_callback(struct mbuf *m,
558 void (*func)(struct ieee80211_node *, void *, int), void *arg)
559 {
560 struct m_tag *mtag;
561 struct ieee80211_cb *cb;
562
563 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
564 sizeof(struct ieee80211_cb), IEEE80211_M_NOWAIT);
565 if (mtag == NULL)
566 return 0;
567
568 cb = (struct ieee80211_cb *)(mtag+1);
569 cb->func = func;
570 cb->arg = arg;
571 m_tag_prepend(m, mtag);
572 m->m_flags |= M_TXCB;
573 return 1;
574 }
575
576 int
ieee80211_add_xmit_params(struct mbuf * m,const struct ieee80211_bpf_params * params)577 ieee80211_add_xmit_params(struct mbuf *m,
578 const struct ieee80211_bpf_params *params)
579 {
580 struct m_tag *mtag;
581 struct ieee80211_tx_params *tx;
582
583 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
584 sizeof(struct ieee80211_tx_params), IEEE80211_M_NOWAIT);
585 if (mtag == NULL)
586 return (0);
587
588 tx = (struct ieee80211_tx_params *)(mtag+1);
589 memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
590 m_tag_prepend(m, mtag);
591 return (1);
592 }
593
594 int
ieee80211_get_xmit_params(struct mbuf * m,struct ieee80211_bpf_params * params)595 ieee80211_get_xmit_params(struct mbuf *m,
596 struct ieee80211_bpf_params *params)
597 {
598 struct m_tag *mtag;
599 struct ieee80211_tx_params *tx;
600
601 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
602 NULL);
603 if (mtag == NULL)
604 return (-1);
605 tx = (struct ieee80211_tx_params *)(mtag + 1);
606 memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
607 return (0);
608 }
609
610 void
ieee80211_process_callback(struct ieee80211_node * ni,struct mbuf * m,int status)611 ieee80211_process_callback(struct ieee80211_node *ni,
612 struct mbuf *m, int status)
613 {
614 struct m_tag *mtag;
615
616 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
617 if (mtag != NULL) {
618 struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
619 cb->func(ni, cb->arg, status);
620 }
621 }
622
623 /*
624 * Add RX parameters to the given mbuf.
625 *
626 * Returns 1 if OK, 0 on error.
627 */
628 int
ieee80211_add_rx_params(struct mbuf * m,const struct ieee80211_rx_stats * rxs)629 ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
630 {
631 struct m_tag *mtag;
632 struct ieee80211_rx_params *rx;
633
634 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
635 sizeof(struct ieee80211_rx_stats), IEEE80211_M_NOWAIT);
636 if (mtag == NULL)
637 return (0);
638
639 rx = (struct ieee80211_rx_params *)(mtag + 1);
640 memcpy(&rx->params, rxs, sizeof(*rxs));
641 m_tag_prepend(m, mtag);
642 return (1);
643 }
644
645 int
ieee80211_get_rx_params(struct mbuf * m,struct ieee80211_rx_stats * rxs)646 ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
647 {
648 struct m_tag *mtag;
649 struct ieee80211_rx_params *rx;
650
651 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
652 NULL);
653 if (mtag == NULL)
654 return (-1);
655 rx = (struct ieee80211_rx_params *)(mtag + 1);
656 memcpy(rxs, &rx->params, sizeof(*rxs));
657 return (0);
658 }
659
660 const struct ieee80211_rx_stats *
ieee80211_get_rx_params_ptr(struct mbuf * m)661 ieee80211_get_rx_params_ptr(struct mbuf *m)
662 {
663 struct m_tag *mtag;
664 struct ieee80211_rx_params *rx;
665
666 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
667 NULL);
668 if (mtag == NULL)
669 return (NULL);
670 rx = (struct ieee80211_rx_params *)(mtag + 1);
671 return (&rx->params);
672 }
673
674 /*
675 * Add TOA parameters to the given mbuf.
676 */
677 int
ieee80211_add_toa_params(struct mbuf * m,const struct ieee80211_toa_params * p)678 ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
679 {
680 struct m_tag *mtag;
681 struct ieee80211_toa_params *rp;
682
683 mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
684 sizeof(struct ieee80211_toa_params), IEEE80211_M_NOWAIT);
685 if (mtag == NULL)
686 return (0);
687
688 rp = (struct ieee80211_toa_params *)(mtag + 1);
689 memcpy(rp, p, sizeof(*rp));
690 m_tag_prepend(m, mtag);
691 return (1);
692 }
693
694 int
ieee80211_get_toa_params(struct mbuf * m,struct ieee80211_toa_params * p)695 ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
696 {
697 struct m_tag *mtag;
698 struct ieee80211_toa_params *rp;
699
700 mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
701 NULL);
702 if (mtag == NULL)
703 return (0);
704 rp = (struct ieee80211_toa_params *)(mtag + 1);
705 if (p != NULL)
706 memcpy(p, rp, sizeof(*p));
707 return (1);
708 }
709
710 /*
711 * @brief Transmit a frame to the parent interface.
712 *
713 * Transmit an 802.11 or 802.3 frame to the parent interface.
714 *
715 * This is called as part of 802.11 processing to enqueue a frame
716 * from net80211 into the device for transmit.
717 *
718 * If the interface is marked as 802.3 via IEEE80211_C_8023ENCAP
719 * (ie, doing offload), then an 802.3 frame will be sent and the
720 * driver will need to understand what to do.
721 *
722 * If the interface is marked as 802.11 (ie, no offload), then
723 * an encapsulated 802.11 frame will be queued. In the case
724 * of an 802.11 fragmented frame this will be a list of frames
725 * representing the fragments making up the 802.11 frame, linked
726 * via m_nextpkt.
727 *
728 * A fragmented frame list will consist of:
729 * + only the first frame with M_SEQNO_SET() assigned the sequence number;
730 * + only the first frame with the node reference and node in rcvif;
731 * + all frames will have the sequence + fragment number populated in
732 * the 802.11 header.
733 *
734 * The driver must ensure it doesn't try releasing a node reference
735 * for each fragment in the list.
736 *
737 * The provided mbuf/list is consumed both upon success and error.
738 *
739 * @param ic struct ieee80211com device to enqueue frame to
740 * @param m struct mbuf chain / packet list to enqueue
741 * @returns 0 if successful, errno if error.
742 */
743 int
ieee80211_parent_xmitpkt(struct ieee80211com * ic,struct mbuf * m)744 ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
745 {
746 int error;
747
748 /*
749 * Assert the IC TX lock is held - this enforces the
750 * processing -> queuing order is maintained
751 */
752 IEEE80211_TX_LOCK_ASSERT(ic);
753 error = ic->ic_transmit(ic, m);
754 if (error) {
755 struct ieee80211_node *ni;
756
757 ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
758
759 /* XXX number of fragments */
760 if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
761
762 /* Note: there's only one node reference for a fragment list */
763 ieee80211_free_node(ni);
764 ieee80211_free_mbuf(m);
765 }
766 return (error);
767 }
768
769 /*
770 * @brief Transmit an 802.3 frame to the VAP interface.
771 *
772 * This is the entry point for the wifi stack to enqueue 802.3
773 * encapsulated frames for transmit to the given vap/ifnet instance.
774 * This is used in paths where 802.3 frames have been received
775 * or queued, and need to be pushed through the VAP encapsulation
776 * and transmit processing pipeline.
777 *
778 * The provided mbuf/list is consumed both upon success and error.
779 *
780 * @param vap struct ieee80211vap instance to transmit frame to
781 * @param m mbuf to transmit
782 * @returns 0 if OK, errno if error
783 */
784 int
ieee80211_vap_xmitpkt(struct ieee80211vap * vap,struct mbuf * m)785 ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
786 {
787 struct ifnet *ifp = vap->iv_ifp;
788
789 /*
790 * When transmitting via the VAP, we shouldn't hold
791 * any IC TX lock as the VAP TX path will acquire it.
792 */
793 IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
794
795 return (ifp->if_transmit(ifp, m));
796
797 }
798
799 #include <sys/libkern.h>
800
801 void
net80211_get_random_bytes(void * p,size_t n)802 net80211_get_random_bytes(void *p, size_t n)
803 {
804 uint8_t *dp = p;
805
806 while (n > 0) {
807 uint32_t v = arc4random();
808 size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
809 bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
810 dp += sizeof(uint32_t), n -= nb;
811 }
812 }
813
814 /*
815 * Helper function for events that pass just a single mac address.
816 */
817 static void
notify_macaddr(struct ifnet * ifp,int op,const uint8_t mac[IEEE80211_ADDR_LEN])818 notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
819 {
820 struct ieee80211_join_event iev;
821
822 CURVNET_SET(ifp->if_vnet);
823 memset(&iev, 0, sizeof(iev));
824 IEEE80211_ADDR_COPY(iev.iev_addr, mac);
825 rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
826 CURVNET_RESTORE();
827 }
828
829 void
ieee80211_notify_node_join(struct ieee80211_node * ni,int newassoc)830 ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
831 {
832 struct ieee80211vap *vap = ni->ni_vap;
833 struct ifnet *ifp = vap->iv_ifp;
834
835 CURVNET_SET_QUIET(ifp->if_vnet);
836 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
837 (ni == vap->iv_bss) ? "bss " : "");
838
839 if (ni == vap->iv_bss) {
840 notify_macaddr(ifp, newassoc ?
841 RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
842 if_link_state_change(ifp, LINK_STATE_UP);
843 } else {
844 notify_macaddr(ifp, newassoc ?
845 RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
846 }
847 CURVNET_RESTORE();
848 }
849
850 void
ieee80211_notify_node_leave(struct ieee80211_node * ni)851 ieee80211_notify_node_leave(struct ieee80211_node *ni)
852 {
853 struct ieee80211vap *vap = ni->ni_vap;
854 struct ifnet *ifp = vap->iv_ifp;
855
856 CURVNET_SET_QUIET(ifp->if_vnet);
857 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
858 (ni == vap->iv_bss) ? "bss " : "");
859
860 if (ni == vap->iv_bss) {
861 rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
862 if_link_state_change(ifp, LINK_STATE_DOWN);
863 } else {
864 /* fire off wireless event station leaving */
865 notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
866 }
867 CURVNET_RESTORE();
868 }
869
870 void
ieee80211_notify_scan_done(struct ieee80211vap * vap)871 ieee80211_notify_scan_done(struct ieee80211vap *vap)
872 {
873 struct ifnet *ifp = vap->iv_ifp;
874
875 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
876
877 /* dispatch wireless event indicating scan completed */
878 CURVNET_SET(ifp->if_vnet);
879 rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
880 CURVNET_RESTORE();
881 }
882
883 void
ieee80211_notify_replay_failure(struct ieee80211vap * vap,const struct ieee80211_frame * wh,const struct ieee80211_key * k,u_int64_t rsc,int tid)884 ieee80211_notify_replay_failure(struct ieee80211vap *vap,
885 const struct ieee80211_frame *wh, const struct ieee80211_key *k,
886 u_int64_t rsc, int tid)
887 {
888 struct ifnet *ifp = vap->iv_ifp;
889
890 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
891 "%s replay detected tid %d <rsc %ju (%jx), csc %ju (%jx), keyix %u rxkeyix %u>",
892 k->wk_cipher->ic_name, tid,
893 (intmax_t) rsc,
894 (intmax_t) rsc,
895 (intmax_t) k->wk_keyrsc[tid],
896 (intmax_t) k->wk_keyrsc[tid],
897 k->wk_keyix, k->wk_rxkeyix);
898
899 if (ifp != NULL) { /* NB: for cipher test modules */
900 struct ieee80211_replay_event iev;
901
902 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
903 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
904 iev.iev_cipher = k->wk_cipher->ic_cipher;
905 if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
906 iev.iev_keyix = k->wk_rxkeyix;
907 else
908 iev.iev_keyix = k->wk_keyix;
909 iev.iev_keyrsc = k->wk_keyrsc[tid];
910 iev.iev_rsc = rsc;
911 CURVNET_SET(ifp->if_vnet);
912 rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
913 CURVNET_RESTORE();
914 }
915 }
916
917 void
ieee80211_notify_michael_failure(struct ieee80211vap * vap,const struct ieee80211_frame * wh,ieee80211_keyix keyix)918 ieee80211_notify_michael_failure(struct ieee80211vap *vap,
919 const struct ieee80211_frame *wh, ieee80211_keyix keyix)
920 {
921 struct ifnet *ifp = vap->iv_ifp;
922
923 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
924 "michael MIC verification failed <keyix %u>", keyix);
925 vap->iv_stats.is_rx_tkipmic++;
926
927 if (ifp != NULL) { /* NB: for cipher test modules */
928 struct ieee80211_michael_event iev;
929
930 IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
931 IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
932 iev.iev_cipher = IEEE80211_CIPHER_TKIP;
933 iev.iev_keyix = keyix;
934 CURVNET_SET(ifp->if_vnet);
935 rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
936 CURVNET_RESTORE();
937 }
938 }
939
940 void
ieee80211_notify_wds_discover(struct ieee80211_node * ni)941 ieee80211_notify_wds_discover(struct ieee80211_node *ni)
942 {
943 struct ieee80211vap *vap = ni->ni_vap;
944 struct ifnet *ifp = vap->iv_ifp;
945
946 notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
947 }
948
949 void
ieee80211_notify_csa(struct ieee80211com * ic,const struct ieee80211_channel * c,int mode,int count)950 ieee80211_notify_csa(struct ieee80211com *ic,
951 const struct ieee80211_channel *c, int mode, int count)
952 {
953 struct ieee80211_csa_event iev;
954 struct ieee80211vap *vap;
955 struct ifnet *ifp;
956
957 memset(&iev, 0, sizeof(iev));
958 iev.iev_flags = c->ic_flags;
959 iev.iev_freq = c->ic_freq;
960 iev.iev_ieee = c->ic_ieee;
961 iev.iev_mode = mode;
962 iev.iev_count = count;
963 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
964 ifp = vap->iv_ifp;
965 CURVNET_SET(ifp->if_vnet);
966 rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
967 CURVNET_RESTORE();
968 }
969 }
970
971 void
ieee80211_notify_radar(struct ieee80211com * ic,const struct ieee80211_channel * c)972 ieee80211_notify_radar(struct ieee80211com *ic,
973 const struct ieee80211_channel *c)
974 {
975 struct ieee80211_radar_event iev;
976 struct ieee80211vap *vap;
977 struct ifnet *ifp;
978
979 memset(&iev, 0, sizeof(iev));
980 iev.iev_flags = c->ic_flags;
981 iev.iev_freq = c->ic_freq;
982 iev.iev_ieee = c->ic_ieee;
983 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
984 ifp = vap->iv_ifp;
985 CURVNET_SET(ifp->if_vnet);
986 rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
987 CURVNET_RESTORE();
988 }
989 }
990
991 void
ieee80211_notify_cac(struct ieee80211com * ic,const struct ieee80211_channel * c,enum ieee80211_notify_cac_event type)992 ieee80211_notify_cac(struct ieee80211com *ic,
993 const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
994 {
995 struct ieee80211_cac_event iev;
996 struct ieee80211vap *vap;
997 struct ifnet *ifp;
998
999 memset(&iev, 0, sizeof(iev));
1000 iev.iev_flags = c->ic_flags;
1001 iev.iev_freq = c->ic_freq;
1002 iev.iev_ieee = c->ic_ieee;
1003 iev.iev_type = type;
1004 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1005 ifp = vap->iv_ifp;
1006 CURVNET_SET(ifp->if_vnet);
1007 rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
1008 CURVNET_RESTORE();
1009 }
1010 }
1011
1012 void
ieee80211_notify_node_deauth(struct ieee80211_node * ni)1013 ieee80211_notify_node_deauth(struct ieee80211_node *ni)
1014 {
1015 struct ieee80211vap *vap = ni->ni_vap;
1016 struct ifnet *ifp = vap->iv_ifp;
1017
1018 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
1019
1020 notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
1021 }
1022
1023 void
ieee80211_notify_node_auth(struct ieee80211_node * ni)1024 ieee80211_notify_node_auth(struct ieee80211_node *ni)
1025 {
1026 struct ieee80211vap *vap = ni->ni_vap;
1027 struct ifnet *ifp = vap->iv_ifp;
1028
1029 IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
1030
1031 notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
1032 }
1033
1034 void
ieee80211_notify_country(struct ieee80211vap * vap,const uint8_t bssid[IEEE80211_ADDR_LEN],const uint8_t cc[2])1035 ieee80211_notify_country(struct ieee80211vap *vap,
1036 const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
1037 {
1038 struct ifnet *ifp = vap->iv_ifp;
1039 struct ieee80211_country_event iev;
1040
1041 memset(&iev, 0, sizeof(iev));
1042 IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
1043 iev.iev_cc[0] = cc[0];
1044 iev.iev_cc[1] = cc[1];
1045 CURVNET_SET(ifp->if_vnet);
1046 rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
1047 CURVNET_RESTORE();
1048 }
1049
1050 void
ieee80211_notify_radio(struct ieee80211com * ic,int state)1051 ieee80211_notify_radio(struct ieee80211com *ic, int state)
1052 {
1053 struct ieee80211_radio_event iev;
1054 struct ieee80211vap *vap;
1055 struct ifnet *ifp;
1056
1057 memset(&iev, 0, sizeof(iev));
1058 iev.iev_state = state;
1059 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1060 ifp = vap->iv_ifp;
1061 CURVNET_SET(ifp->if_vnet);
1062 rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
1063 CURVNET_RESTORE();
1064 }
1065 }
1066
1067 void
ieee80211_notify_ifnet_change(struct ieee80211vap * vap,int if_flags_mask)1068 ieee80211_notify_ifnet_change(struct ieee80211vap *vap, int if_flags_mask)
1069 {
1070 struct ifnet *ifp = vap->iv_ifp;
1071
1072 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s\n",
1073 "interface state change");
1074
1075 CURVNET_SET(ifp->if_vnet);
1076 rt_ifmsg(ifp, if_flags_mask);
1077 CURVNET_RESTORE();
1078 }
1079
1080 void
ieee80211_load_module(const char * modname)1081 ieee80211_load_module(const char *modname)
1082 {
1083
1084 #ifdef notyet
1085 (void)kern_kldload(curthread, modname, NULL);
1086 #else
1087 printf("%s: load the %s module by hand for now.\n", __func__, modname);
1088 #endif
1089 }
1090
1091 static eventhandler_tag wlan_bpfevent;
1092 static eventhandler_tag wlan_ifllevent;
1093
1094 static void
bpf_track(void * arg,struct ifnet * ifp,int dlt,int attach)1095 bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
1096 {
1097 /* NB: identify vap's by if_init */
1098 if (dlt == DLT_IEEE802_11_RADIO &&
1099 ifp->if_init == ieee80211_init) {
1100 struct ieee80211vap *vap = ifp->if_softc;
1101 /*
1102 * Track bpf radiotap listener state. We mark the vap
1103 * to indicate if any listener is present and the com
1104 * to indicate if any listener exists on any associated
1105 * vap. This flag is used by drivers to prepare radiotap
1106 * state only when needed.
1107 */
1108 if (attach) {
1109 ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
1110 if (vap->iv_opmode == IEEE80211_M_MONITOR)
1111 atomic_add_int(&vap->iv_ic->ic_montaps, 1);
1112 } else if (!bpf_peers_present(vap->iv_rawbpf)) {
1113 ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
1114 if (vap->iv_opmode == IEEE80211_M_MONITOR)
1115 atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1116 }
1117 }
1118 }
1119
1120 /*
1121 * Change MAC address on the vap (if was not started).
1122 */
1123 static void
wlan_iflladdr(void * arg __unused,struct ifnet * ifp)1124 wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
1125 {
1126 /* NB: identify vap's by if_init */
1127 if (ifp->if_init == ieee80211_init &&
1128 (ifp->if_flags & IFF_UP) == 0) {
1129 struct ieee80211vap *vap = ifp->if_softc;
1130
1131 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1132 }
1133 }
1134
1135 /*
1136 * Fetch the VAP name.
1137 *
1138 * This returns a const char pointer suitable for debugging,
1139 * but don't expect it to stick around for much longer.
1140 */
1141 const char *
ieee80211_get_vap_ifname(struct ieee80211vap * vap)1142 ieee80211_get_vap_ifname(struct ieee80211vap *vap)
1143 {
1144 if (vap->iv_ifp == NULL)
1145 return "(none)";
1146 return (if_name(vap->iv_ifp));
1147 }
1148
1149 #ifdef DEBUGNET
1150 static void
ieee80211_debugnet_init(struct ifnet * ifp,int * nrxr,int * ncl,int * clsize)1151 ieee80211_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize)
1152 {
1153 struct ieee80211vap *vap;
1154 struct ieee80211com *ic;
1155
1156 vap = if_getsoftc(ifp);
1157 ic = vap->iv_ic;
1158
1159 IEEE80211_LOCK(ic);
1160 ic->ic_debugnet_meth->dn8_init(ic, nrxr, ncl, clsize);
1161 IEEE80211_UNLOCK(ic);
1162 }
1163
1164 static void
ieee80211_debugnet_event(struct ifnet * ifp,enum debugnet_ev ev)1165 ieee80211_debugnet_event(struct ifnet *ifp, enum debugnet_ev ev)
1166 {
1167 struct ieee80211vap *vap;
1168 struct ieee80211com *ic;
1169
1170 vap = if_getsoftc(ifp);
1171 ic = vap->iv_ic;
1172
1173 IEEE80211_LOCK(ic);
1174 ic->ic_debugnet_meth->dn8_event(ic, ev);
1175 IEEE80211_UNLOCK(ic);
1176 }
1177
1178 static int
ieee80211_debugnet_transmit(struct ifnet * ifp,struct mbuf * m)1179 ieee80211_debugnet_transmit(struct ifnet *ifp, struct mbuf *m)
1180 {
1181 return (ieee80211_vap_transmit(ifp, m));
1182 }
1183
1184 static int
ieee80211_debugnet_poll(struct ifnet * ifp,int count)1185 ieee80211_debugnet_poll(struct ifnet *ifp, int count)
1186 {
1187 struct ieee80211vap *vap;
1188 struct ieee80211com *ic;
1189
1190 vap = if_getsoftc(ifp);
1191 ic = vap->iv_ic;
1192
1193 return (ic->ic_debugnet_meth->dn8_poll(ic, count));
1194 }
1195 #endif
1196
1197 /**
1198 * @brief Check if the MAC address was changed by the upper layer.
1199 *
1200 * This is specifically to handle cases like the MAC address
1201 * being changed via an ioctl (eg SIOCSIFLLADDR).
1202 *
1203 * @param vap VAP to sync MAC address for
1204 */
1205 void
ieee80211_vap_sync_mac_address(struct ieee80211vap * vap)1206 ieee80211_vap_sync_mac_address(struct ieee80211vap *vap)
1207 {
1208 struct epoch_tracker et;
1209 const struct ifnet *ifp = vap->iv_ifp;
1210
1211 /*
1212 * Check if the MAC address was changed
1213 * via SIOCSIFLLADDR ioctl.
1214 *
1215 * NB: device may be detached during initialization;
1216 * use if_ioctl for existence check.
1217 */
1218 NET_EPOCH_ENTER(et);
1219 if (ifp->if_ioctl == ieee80211_ioctl &&
1220 (ifp->if_flags & IFF_UP) == 0 &&
1221 !IEEE80211_ADDR_EQ(vap->iv_myaddr, IF_LLADDR(ifp)))
1222 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1223 NET_EPOCH_EXIT(et);
1224 }
1225
1226 /**
1227 * @brief Initial MAC address setup for a VAP.
1228 *
1229 * @param vap VAP to sync MAC address for
1230 */
1231 void
ieee80211_vap_copy_mac_address(struct ieee80211vap * vap)1232 ieee80211_vap_copy_mac_address(struct ieee80211vap *vap)
1233 {
1234 struct epoch_tracker et;
1235
1236 NET_EPOCH_ENTER(et);
1237 IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(vap->iv_ifp));
1238 NET_EPOCH_EXIT(et);
1239 }
1240
1241 /**
1242 * @brief Deliver data into the upper ifp of the VAP interface
1243 *
1244 * This delivers an 802.3 frame from net80211 up to the operating
1245 * system network interface layer.
1246 *
1247 * @param vap the current VAP
1248 * @param m the 802.3 frame to pass up to the VAP interface
1249 *
1250 * Note: this API consumes the mbuf.
1251 */
1252 void
ieee80211_vap_deliver_data(struct ieee80211vap * vap,struct mbuf * m)1253 ieee80211_vap_deliver_data(struct ieee80211vap *vap, struct mbuf *m)
1254 {
1255 struct epoch_tracker et;
1256
1257 NET_EPOCH_ENTER(et);
1258 if_input(vap->iv_ifp, m);
1259 NET_EPOCH_EXIT(et);
1260 }
1261
1262 /**
1263 * @brief Return whether the VAP is configured with monitor mode
1264 *
1265 * This checks the operating system layer for whether monitor mode
1266 * is enabled.
1267 *
1268 * @param vap the current VAP
1269 * @retval true if the underlying interface is in MONITOR mode, false otherwise
1270 */
1271 bool
ieee80211_vap_ifp_check_is_monitor(struct ieee80211vap * vap)1272 ieee80211_vap_ifp_check_is_monitor(struct ieee80211vap *vap)
1273 {
1274 return ((if_getflags(vap->iv_ifp) & IFF_MONITOR) != 0);
1275 }
1276
1277 /**
1278 * @brief Return whether the VAP is configured in simplex mode.
1279 *
1280 * This checks the operating system layer for whether simplex mode
1281 * is enabled.
1282 *
1283 * @param vap the current VAP
1284 * @retval true if the underlying interface is in SIMPLEX mode, false otherwise
1285 */
1286 bool
ieee80211_vap_ifp_check_is_simplex(struct ieee80211vap * vap)1287 ieee80211_vap_ifp_check_is_simplex(struct ieee80211vap *vap)
1288 {
1289 return ((if_getflags(vap->iv_ifp) & IFF_SIMPLEX) != 0);
1290 }
1291
1292 /**
1293 * @brief Return if the VAP underlying network interface is running
1294 *
1295 * @param vap the current VAP
1296 * @retval true if the underlying interface is running; false otherwise
1297 */
1298 bool
ieee80211_vap_ifp_check_is_running(struct ieee80211vap * vap)1299 ieee80211_vap_ifp_check_is_running(struct ieee80211vap *vap)
1300 {
1301 return ((if_getdrvflags(vap->iv_ifp) & IFF_DRV_RUNNING) != 0);
1302 }
1303
1304 /**
1305 * @brief Change the VAP underlying network interface state
1306 *
1307 * @param vap the current VAP
1308 * @param state true to mark the interface as RUNNING, false to clear
1309 */
1310 void
ieee80211_vap_ifp_set_running_state(struct ieee80211vap * vap,bool state)1311 ieee80211_vap_ifp_set_running_state(struct ieee80211vap *vap, bool state)
1312 {
1313 if (state)
1314 if_setdrvflagbits(vap->iv_ifp, IFF_DRV_RUNNING, 0);
1315 else
1316 if_setdrvflagbits(vap->iv_ifp, 0, IFF_DRV_RUNNING);
1317 }
1318
1319 /**
1320 * @brief Return the broadcast MAC address.
1321 *
1322 * @param vap The current VAP
1323 * @retval a uint8_t array representing the ethernet broadcast address
1324 */
1325 const uint8_t *
ieee80211_vap_get_broadcast_address(struct ieee80211vap * vap)1326 ieee80211_vap_get_broadcast_address(struct ieee80211vap *vap)
1327 {
1328 return (if_getbroadcastaddr(vap->iv_ifp));
1329 }
1330
1331 /**
1332 * @brief net80211 printf() (not vap/ic related)
1333 */
1334 void
net80211_printf(const char * fmt,...)1335 net80211_printf(const char *fmt, ...)
1336 {
1337 va_list ap;
1338
1339 va_start(ap, fmt);
1340 vprintf(fmt, ap);
1341 va_end(ap);
1342 }
1343
1344 /**
1345 * @brief VAP specific printf()
1346 */
1347 void
net80211_vap_printf(const struct ieee80211vap * vap,const char * fmt,...)1348 net80211_vap_printf(const struct ieee80211vap *vap, const char *fmt, ...)
1349 {
1350 char if_fmt[256];
1351 va_list ap;
1352
1353 va_start(ap, fmt);
1354 snprintf(if_fmt, sizeof(if_fmt), "%s: %s", if_name(vap->iv_ifp), fmt);
1355 vlog(LOG_INFO, if_fmt, ap);
1356 va_end(ap);
1357 }
1358
1359 /**
1360 * @brief ic specific printf()
1361 */
1362 void
net80211_ic_printf(const struct ieee80211com * ic,const char * fmt,...)1363 net80211_ic_printf(const struct ieee80211com *ic, const char *fmt, ...)
1364 {
1365 va_list ap;
1366
1367 /*
1368 * TODO: do the vap_printf stuff above, use vlog(LOG_INFO, ...)
1369 */
1370 printf("%s: ", ic->ic_name);
1371 va_start(ap, fmt);
1372 vprintf(fmt, ap);
1373 va_end(ap);
1374 }
1375
1376 /*
1377 * Module glue.
1378 *
1379 * NB: the module name is "wlan" for compatibility with NetBSD.
1380 */
1381 static int
wlan_modevent(module_t mod,int type,void * unused)1382 wlan_modevent(module_t mod, int type, void *unused)
1383 {
1384 switch (type) {
1385 case MOD_LOAD:
1386 if (bootverbose)
1387 printf("wlan: <802.11 Link Layer>\n");
1388 wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1389 bpf_track, 0, EVENTHANDLER_PRI_ANY);
1390 wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1391 wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
1392 struct if_clone_addreq req = {
1393 .create_f = wlan_clone_create,
1394 .destroy_f = wlan_clone_destroy,
1395 .flags = IFC_F_AUTOUNIT,
1396 };
1397 wlan_cloner = ifc_attach_cloner(wlanname, &req);
1398 return 0;
1399 case MOD_UNLOAD:
1400 ifc_detach_cloner(wlan_cloner);
1401 EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1402 EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1403 return 0;
1404 }
1405 return EINVAL;
1406 }
1407
1408 static moduledata_t wlan_mod = {
1409 wlanname,
1410 wlan_modevent,
1411 0
1412 };
1413 DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1414 MODULE_VERSION(wlan, 1);
1415 MODULE_DEPEND(wlan, ether, 1, 1, 1);
1416 #ifdef IEEE80211_ALQ
1417 MODULE_DEPEND(wlan, alq, 1, 1, 1);
1418 #endif /* IEEE80211_ALQ */
1419