xref: /linux/arch/x86/kvm/vmx/nested.c (revision c924c5e9b8c65b3a479a90e5e37d74cc8cd9fe0a)
1  // SPDX-License-Identifier: GPL-2.0
2  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3  
4  #include <linux/objtool.h>
5  #include <linux/percpu.h>
6  
7  #include <asm/debugreg.h>
8  #include <asm/mmu_context.h>
9  
10  #include "x86.h"
11  #include "cpuid.h"
12  #include "hyperv.h"
13  #include "mmu.h"
14  #include "nested.h"
15  #include "pmu.h"
16  #include "posted_intr.h"
17  #include "sgx.h"
18  #include "trace.h"
19  #include "vmx.h"
20  #include "smm.h"
21  
22  static bool __read_mostly enable_shadow_vmcs = 1;
23  module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
24  
25  static bool __read_mostly nested_early_check = 0;
26  module_param(nested_early_check, bool, S_IRUGO);
27  
28  #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
29  
30  /*
31   * Hyper-V requires all of these, so mark them as supported even though
32   * they are just treated the same as all-context.
33   */
34  #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
35  	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
36  	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
37  	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
38  	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39  
40  #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41  
42  enum {
43  	VMX_VMREAD_BITMAP,
44  	VMX_VMWRITE_BITMAP,
45  	VMX_BITMAP_NR
46  };
47  static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48  
49  #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
50  #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
51  
52  struct shadow_vmcs_field {
53  	u16	encoding;
54  	u16	offset;
55  };
56  static struct shadow_vmcs_field shadow_read_only_fields[] = {
57  #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
58  #include "vmcs_shadow_fields.h"
59  };
60  static int max_shadow_read_only_fields =
61  	ARRAY_SIZE(shadow_read_only_fields);
62  
63  static struct shadow_vmcs_field shadow_read_write_fields[] = {
64  #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
65  #include "vmcs_shadow_fields.h"
66  };
67  static int max_shadow_read_write_fields =
68  	ARRAY_SIZE(shadow_read_write_fields);
69  
init_vmcs_shadow_fields(void)70  static void init_vmcs_shadow_fields(void)
71  {
72  	int i, j;
73  
74  	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75  	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76  
77  	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
78  		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79  		u16 field = entry.encoding;
80  
81  		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82  		    (i + 1 == max_shadow_read_only_fields ||
83  		     shadow_read_only_fields[i + 1].encoding != field + 1))
84  			pr_err("Missing field from shadow_read_only_field %x\n",
85  			       field + 1);
86  
87  		clear_bit(field, vmx_vmread_bitmap);
88  		if (field & 1)
89  #ifdef CONFIG_X86_64
90  			continue;
91  #else
92  			entry.offset += sizeof(u32);
93  #endif
94  		shadow_read_only_fields[j++] = entry;
95  	}
96  	max_shadow_read_only_fields = j;
97  
98  	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
99  		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100  		u16 field = entry.encoding;
101  
102  		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103  		    (i + 1 == max_shadow_read_write_fields ||
104  		     shadow_read_write_fields[i + 1].encoding != field + 1))
105  			pr_err("Missing field from shadow_read_write_field %x\n",
106  			       field + 1);
107  
108  		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109  			  field <= GUEST_TR_AR_BYTES,
110  			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
111  
112  		/*
113  		 * PML and the preemption timer can be emulated, but the
114  		 * processor cannot vmwrite to fields that don't exist
115  		 * on bare metal.
116  		 */
117  		switch (field) {
118  		case GUEST_PML_INDEX:
119  			if (!cpu_has_vmx_pml())
120  				continue;
121  			break;
122  		case VMX_PREEMPTION_TIMER_VALUE:
123  			if (!cpu_has_vmx_preemption_timer())
124  				continue;
125  			break;
126  		case GUEST_INTR_STATUS:
127  			if (!cpu_has_vmx_apicv())
128  				continue;
129  			break;
130  		default:
131  			break;
132  		}
133  
134  		clear_bit(field, vmx_vmwrite_bitmap);
135  		clear_bit(field, vmx_vmread_bitmap);
136  		if (field & 1)
137  #ifdef CONFIG_X86_64
138  			continue;
139  #else
140  			entry.offset += sizeof(u32);
141  #endif
142  		shadow_read_write_fields[j++] = entry;
143  	}
144  	max_shadow_read_write_fields = j;
145  }
146  
147  /*
148   * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149   * set the success or error code of an emulated VMX instruction (as specified
150   * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151   * instruction.
152   */
nested_vmx_succeed(struct kvm_vcpu * vcpu)153  static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154  {
155  	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156  			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157  			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158  	return kvm_skip_emulated_instruction(vcpu);
159  }
160  
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)161  static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162  {
163  	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164  			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165  			    X86_EFLAGS_SF | X86_EFLAGS_OF))
166  			| X86_EFLAGS_CF);
167  	return kvm_skip_emulated_instruction(vcpu);
168  }
169  
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)170  static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171  				u32 vm_instruction_error)
172  {
173  	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
174  			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
175  			    X86_EFLAGS_SF | X86_EFLAGS_OF))
176  			| X86_EFLAGS_ZF);
177  	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
178  	/*
179  	 * We don't need to force sync to shadow VMCS because
180  	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
181  	 * fields and thus must be synced.
182  	 */
183  	if (nested_vmx_is_evmptr12_set(to_vmx(vcpu)))
184  		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
185  
186  	return kvm_skip_emulated_instruction(vcpu);
187  }
188  
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)189  static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
190  {
191  	struct vcpu_vmx *vmx = to_vmx(vcpu);
192  
193  	/*
194  	 * failValid writes the error number to the current VMCS, which
195  	 * can't be done if there isn't a current VMCS.
196  	 */
197  	if (vmx->nested.current_vmptr == INVALID_GPA &&
198  	    !nested_vmx_is_evmptr12_valid(vmx))
199  		return nested_vmx_failInvalid(vcpu);
200  
201  	return nested_vmx_failValid(vcpu, vm_instruction_error);
202  }
203  
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)204  static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
205  {
206  	/* TODO: not to reset guest simply here. */
207  	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
208  	pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
209  }
210  
vmx_control_verify(u32 control,u32 low,u32 high)211  static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
212  {
213  	return fixed_bits_valid(control, low, high);
214  }
215  
vmx_control_msr(u32 low,u32 high)216  static inline u64 vmx_control_msr(u32 low, u32 high)
217  {
218  	return low | ((u64)high << 32);
219  }
220  
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)221  static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
222  {
223  	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
224  	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
225  	vmx->nested.need_vmcs12_to_shadow_sync = false;
226  }
227  
nested_release_evmcs(struct kvm_vcpu * vcpu)228  static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
229  {
230  #ifdef CONFIG_KVM_HYPERV
231  	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
232  	struct vcpu_vmx *vmx = to_vmx(vcpu);
233  
234  	kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map);
235  	vmx->nested.hv_evmcs = NULL;
236  	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
237  
238  	if (hv_vcpu) {
239  		hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
240  		hv_vcpu->nested.vm_id = 0;
241  		hv_vcpu->nested.vp_id = 0;
242  	}
243  #endif
244  }
245  
nested_evmcs_handle_vmclear(struct kvm_vcpu * vcpu,gpa_t vmptr)246  static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
247  {
248  #ifdef CONFIG_KVM_HYPERV
249  	struct vcpu_vmx *vmx = to_vmx(vcpu);
250  	/*
251  	 * When Enlightened VMEntry is enabled on the calling CPU we treat
252  	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
253  	 * way to distinguish it from VMCS12) and we must not corrupt it by
254  	 * writing to the non-existent 'launch_state' field. The area doesn't
255  	 * have to be the currently active EVMCS on the calling CPU and there's
256  	 * nothing KVM has to do to transition it from 'active' to 'non-active'
257  	 * state. It is possible that the area will stay mapped as
258  	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
259  	 */
260  	if (!guest_cpu_cap_has_evmcs(vcpu) ||
261  	    !evmptr_is_valid(nested_get_evmptr(vcpu)))
262  		return false;
263  
264  	if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
265  		nested_release_evmcs(vcpu);
266  
267  	return true;
268  #else
269  	return false;
270  #endif
271  }
272  
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)273  static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
274  				     struct loaded_vmcs *prev)
275  {
276  	struct vmcs_host_state *dest, *src;
277  
278  	if (unlikely(!vmx->guest_state_loaded))
279  		return;
280  
281  	src = &prev->host_state;
282  	dest = &vmx->loaded_vmcs->host_state;
283  
284  	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
285  	dest->ldt_sel = src->ldt_sel;
286  #ifdef CONFIG_X86_64
287  	dest->ds_sel = src->ds_sel;
288  	dest->es_sel = src->es_sel;
289  #endif
290  }
291  
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)292  static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
293  {
294  	struct vcpu_vmx *vmx = to_vmx(vcpu);
295  	struct loaded_vmcs *prev;
296  	int cpu;
297  
298  	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
299  		return;
300  
301  	cpu = get_cpu();
302  	prev = vmx->loaded_vmcs;
303  	vmx->loaded_vmcs = vmcs;
304  	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
305  	vmx_sync_vmcs_host_state(vmx, prev);
306  	put_cpu();
307  
308  	vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
309  
310  	/*
311  	 * All lazily updated registers will be reloaded from VMCS12 on both
312  	 * vmentry and vmexit.
313  	 */
314  	vcpu->arch.regs_dirty = 0;
315  }
316  
nested_put_vmcs12_pages(struct kvm_vcpu * vcpu)317  static void nested_put_vmcs12_pages(struct kvm_vcpu *vcpu)
318  {
319  	struct vcpu_vmx *vmx = to_vmx(vcpu);
320  
321  	kvm_vcpu_unmap(vcpu, &vmx->nested.apic_access_page_map);
322  	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map);
323  	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map);
324  	vmx->nested.pi_desc = NULL;
325  }
326  
327  /*
328   * Free whatever needs to be freed from vmx->nested when L1 goes down, or
329   * just stops using VMX.
330   */
free_nested(struct kvm_vcpu * vcpu)331  static void free_nested(struct kvm_vcpu *vcpu)
332  {
333  	struct vcpu_vmx *vmx = to_vmx(vcpu);
334  
335  	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
336  		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
337  
338  	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
339  		return;
340  
341  	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
342  
343  	vmx->nested.vmxon = false;
344  	vmx->nested.smm.vmxon = false;
345  	vmx->nested.vmxon_ptr = INVALID_GPA;
346  	free_vpid(vmx->nested.vpid02);
347  	vmx->nested.posted_intr_nv = -1;
348  	vmx->nested.current_vmptr = INVALID_GPA;
349  	if (enable_shadow_vmcs) {
350  		vmx_disable_shadow_vmcs(vmx);
351  		vmcs_clear(vmx->vmcs01.shadow_vmcs);
352  		free_vmcs(vmx->vmcs01.shadow_vmcs);
353  		vmx->vmcs01.shadow_vmcs = NULL;
354  	}
355  	kfree(vmx->nested.cached_vmcs12);
356  	vmx->nested.cached_vmcs12 = NULL;
357  	kfree(vmx->nested.cached_shadow_vmcs12);
358  	vmx->nested.cached_shadow_vmcs12 = NULL;
359  
360  	nested_put_vmcs12_pages(vcpu);
361  
362  	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
363  
364  	nested_release_evmcs(vcpu);
365  
366  	free_loaded_vmcs(&vmx->nested.vmcs02);
367  }
368  
369  /*
370   * Ensure that the current vmcs of the logical processor is the
371   * vmcs01 of the vcpu before calling free_nested().
372   */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)373  void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
374  {
375  	vcpu_load(vcpu);
376  	vmx_leave_nested(vcpu);
377  	vcpu_put(vcpu);
378  }
379  
380  #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
381  
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)382  static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
383  {
384  	return VALID_PAGE(root_hpa) &&
385  	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
386  }
387  
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)388  static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
389  				       gpa_t addr)
390  {
391  	unsigned long roots = 0;
392  	uint i;
393  	struct kvm_mmu_root_info *cached_root;
394  
395  	WARN_ON_ONCE(!mmu_is_nested(vcpu));
396  
397  	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
398  		cached_root = &vcpu->arch.mmu->prev_roots[i];
399  
400  		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
401  					    eptp))
402  			roots |= KVM_MMU_ROOT_PREVIOUS(i);
403  	}
404  	if (roots)
405  		kvm_mmu_invalidate_addr(vcpu, vcpu->arch.mmu, addr, roots);
406  }
407  
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)408  static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
409  		struct x86_exception *fault)
410  {
411  	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
412  	struct vcpu_vmx *vmx = to_vmx(vcpu);
413  	unsigned long exit_qualification;
414  	u32 vm_exit_reason;
415  
416  	if (vmx->nested.pml_full) {
417  		vm_exit_reason = EXIT_REASON_PML_FULL;
418  		vmx->nested.pml_full = false;
419  
420  		/*
421  		 * It should be impossible to trigger a nested PML Full VM-Exit
422  		 * for anything other than an EPT Violation from L2.  KVM *can*
423  		 * trigger nEPT page fault injection in response to an EPT
424  		 * Misconfig, e.g. if the MMIO SPTE was stale and L1's EPT
425  		 * tables also changed, but KVM should not treat EPT Misconfig
426  		 * VM-Exits as writes.
427  		 */
428  		WARN_ON_ONCE(vmx->exit_reason.basic != EXIT_REASON_EPT_VIOLATION);
429  
430  		/*
431  		 * PML Full and EPT Violation VM-Exits both use bit 12 to report
432  		 * "NMI unblocking due to IRET", i.e. the bit can be propagated
433  		 * as-is from the original EXIT_QUALIFICATION.
434  		 */
435  		exit_qualification = vmx_get_exit_qual(vcpu) & INTR_INFO_UNBLOCK_NMI;
436  	} else {
437  		if (fault->error_code & PFERR_RSVD_MASK) {
438  			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
439  			exit_qualification = 0;
440  		} else {
441  			exit_qualification = fault->exit_qualification;
442  			exit_qualification |= vmx_get_exit_qual(vcpu) &
443  					      (EPT_VIOLATION_GVA_IS_VALID |
444  					       EPT_VIOLATION_GVA_TRANSLATED);
445  			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
446  		}
447  
448  		/*
449  		 * Although the caller (kvm_inject_emulated_page_fault) would
450  		 * have already synced the faulting address in the shadow EPT
451  		 * tables for the current EPTP12, we also need to sync it for
452  		 * any other cached EPTP02s based on the same EP4TA, since the
453  		 * TLB associates mappings to the EP4TA rather than the full EPTP.
454  		 */
455  		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
456  					   fault->address);
457  	}
458  
459  	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
460  	vmcs12->guest_physical_address = fault->address;
461  }
462  
nested_ept_new_eptp(struct kvm_vcpu * vcpu)463  static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
464  {
465  	struct vcpu_vmx *vmx = to_vmx(vcpu);
466  	bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
467  	int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
468  
469  	kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
470  				nested_ept_ad_enabled(vcpu),
471  				nested_ept_get_eptp(vcpu));
472  }
473  
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)474  static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
475  {
476  	WARN_ON(mmu_is_nested(vcpu));
477  
478  	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
479  	nested_ept_new_eptp(vcpu);
480  	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
481  	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
482  	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
483  
484  	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
485  }
486  
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)487  static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
488  {
489  	vcpu->arch.mmu = &vcpu->arch.root_mmu;
490  	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
491  }
492  
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)493  static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
494  					    u16 error_code)
495  {
496  	bool inequality, bit;
497  
498  	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
499  	inequality =
500  		(error_code & vmcs12->page_fault_error_code_mask) !=
501  		 vmcs12->page_fault_error_code_match;
502  	return inequality ^ bit;
503  }
504  
nested_vmx_is_exception_vmexit(struct kvm_vcpu * vcpu,u8 vector,u32 error_code)505  static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
506  					   u32 error_code)
507  {
508  	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
509  
510  	/*
511  	 * Drop bits 31:16 of the error code when performing the #PF mask+match
512  	 * check.  All VMCS fields involved are 32 bits, but Intel CPUs never
513  	 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
514  	 * error code.  Including the to-be-dropped bits in the check might
515  	 * result in an "impossible" or missed exit from L1's perspective.
516  	 */
517  	if (vector == PF_VECTOR)
518  		return nested_vmx_is_page_fault_vmexit(vmcs12, (u16)error_code);
519  
520  	return (vmcs12->exception_bitmap & (1u << vector));
521  }
522  
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)523  static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
524  					       struct vmcs12 *vmcs12)
525  {
526  	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
527  		return 0;
528  
529  	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
530  	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
531  		return -EINVAL;
532  
533  	return 0;
534  }
535  
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)536  static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
537  						struct vmcs12 *vmcs12)
538  {
539  	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
540  		return 0;
541  
542  	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
543  		return -EINVAL;
544  
545  	return 0;
546  }
547  
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)548  static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
549  						struct vmcs12 *vmcs12)
550  {
551  	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
552  		return 0;
553  
554  	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
555  		return -EINVAL;
556  
557  	return 0;
558  }
559  
560  /*
561   * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
562   * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
563   * only the "disable intercept" case needs to be handled.
564   */
nested_vmx_disable_intercept_for_x2apic_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_l0,u32 msr,int type)565  static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
566  							unsigned long *msr_bitmap_l0,
567  							u32 msr, int type)
568  {
569  	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
570  		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
571  
572  	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
573  		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
574  }
575  
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)576  static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
577  {
578  	int msr;
579  
580  	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
581  		unsigned word = msr / BITS_PER_LONG;
582  
583  		msr_bitmap[word] = ~0;
584  		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
585  	}
586  }
587  
588  #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
589  static inline									\
590  void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
591  					 unsigned long *msr_bitmap_l1,		\
592  					 unsigned long *msr_bitmap_l0, u32 msr)	\
593  {										\
594  	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
595  	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
596  		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
597  	else									\
598  		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
599  }
600  BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)601  BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
602  
603  static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
604  						    unsigned long *msr_bitmap_l1,
605  						    unsigned long *msr_bitmap_l0,
606  						    u32 msr, int types)
607  {
608  	if (types & MSR_TYPE_R)
609  		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
610  						  msr_bitmap_l0, msr);
611  	if (types & MSR_TYPE_W)
612  		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
613  						   msr_bitmap_l0, msr);
614  }
615  
616  /*
617   * Merge L0's and L1's MSR bitmap, return false to indicate that
618   * we do not use the hardware.
619   */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)620  static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
621  						 struct vmcs12 *vmcs12)
622  {
623  	struct vcpu_vmx *vmx = to_vmx(vcpu);
624  	int msr;
625  	unsigned long *msr_bitmap_l1;
626  	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
627  	struct kvm_host_map map;
628  
629  	/* Nothing to do if the MSR bitmap is not in use.  */
630  	if (!cpu_has_vmx_msr_bitmap() ||
631  	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
632  		return false;
633  
634  	/*
635  	 * MSR bitmap update can be skipped when:
636  	 * - MSR bitmap for L1 hasn't changed.
637  	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
638  	 *   before.
639  	 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
640  	 *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
641  	 */
642  	if (!vmx->nested.force_msr_bitmap_recalc) {
643  		struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
644  
645  		if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
646  		    evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
647  			return true;
648  	}
649  
650  	if (kvm_vcpu_map_readonly(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), &map))
651  		return false;
652  
653  	msr_bitmap_l1 = (unsigned long *)map.hva;
654  
655  	/*
656  	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
657  	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
658  	 * the x2APIC MSR range and selectively toggle those relevant to L2.
659  	 */
660  	enable_x2apic_msr_intercepts(msr_bitmap_l0);
661  
662  	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
663  		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
664  			/*
665  			 * L0 need not intercept reads for MSRs between 0x800
666  			 * and 0x8ff, it just lets the processor take the value
667  			 * from the virtual-APIC page; take those 256 bits
668  			 * directly from the L1 bitmap.
669  			 */
670  			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
671  				unsigned word = msr / BITS_PER_LONG;
672  
673  				msr_bitmap_l0[word] = msr_bitmap_l1[word];
674  			}
675  		}
676  
677  		nested_vmx_disable_intercept_for_x2apic_msr(
678  			msr_bitmap_l1, msr_bitmap_l0,
679  			X2APIC_MSR(APIC_TASKPRI),
680  			MSR_TYPE_R | MSR_TYPE_W);
681  
682  		if (nested_cpu_has_vid(vmcs12)) {
683  			nested_vmx_disable_intercept_for_x2apic_msr(
684  				msr_bitmap_l1, msr_bitmap_l0,
685  				X2APIC_MSR(APIC_EOI),
686  				MSR_TYPE_W);
687  			nested_vmx_disable_intercept_for_x2apic_msr(
688  				msr_bitmap_l1, msr_bitmap_l0,
689  				X2APIC_MSR(APIC_SELF_IPI),
690  				MSR_TYPE_W);
691  		}
692  	}
693  
694  	/*
695  	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
696  	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
697  	 */
698  #ifdef CONFIG_X86_64
699  	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
700  					 MSR_FS_BASE, MSR_TYPE_RW);
701  
702  	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
703  					 MSR_GS_BASE, MSR_TYPE_RW);
704  
705  	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
706  					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
707  #endif
708  	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
709  					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
710  
711  	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
712  					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
713  
714  	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
715  					 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
716  
717  	kvm_vcpu_unmap(vcpu, &map);
718  
719  	vmx->nested.force_msr_bitmap_recalc = false;
720  
721  	return true;
722  }
723  
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)724  static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
725  				       struct vmcs12 *vmcs12)
726  {
727  	struct vcpu_vmx *vmx = to_vmx(vcpu);
728  	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
729  
730  	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
731  	    vmcs12->vmcs_link_pointer == INVALID_GPA)
732  		return;
733  
734  	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
735  	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
736  				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
737  		return;
738  
739  	kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
740  			      VMCS12_SIZE);
741  }
742  
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)743  static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
744  					      struct vmcs12 *vmcs12)
745  {
746  	struct vcpu_vmx *vmx = to_vmx(vcpu);
747  	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
748  
749  	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
750  	    vmcs12->vmcs_link_pointer == INVALID_GPA)
751  		return;
752  
753  	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
754  	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
755  				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
756  		return;
757  
758  	kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
759  			       VMCS12_SIZE);
760  }
761  
762  /*
763   * In nested virtualization, check if L1 has set
764   * VM_EXIT_ACK_INTR_ON_EXIT
765   */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)766  static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
767  {
768  	return get_vmcs12(vcpu)->vm_exit_controls &
769  		VM_EXIT_ACK_INTR_ON_EXIT;
770  }
771  
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)772  static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
773  					  struct vmcs12 *vmcs12)
774  {
775  	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
776  	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
777  		return -EINVAL;
778  	else
779  		return 0;
780  }
781  
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)782  static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
783  					   struct vmcs12 *vmcs12)
784  {
785  	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
786  	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
787  	    !nested_cpu_has_vid(vmcs12) &&
788  	    !nested_cpu_has_posted_intr(vmcs12))
789  		return 0;
790  
791  	/*
792  	 * If virtualize x2apic mode is enabled,
793  	 * virtualize apic access must be disabled.
794  	 */
795  	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
796  	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
797  		return -EINVAL;
798  
799  	/*
800  	 * If virtual interrupt delivery is enabled,
801  	 * we must exit on external interrupts.
802  	 */
803  	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
804  		return -EINVAL;
805  
806  	/*
807  	 * bits 15:8 should be zero in posted_intr_nv,
808  	 * the descriptor address has been already checked
809  	 * in nested_get_vmcs12_pages.
810  	 *
811  	 * bits 5:0 of posted_intr_desc_addr should be zero.
812  	 */
813  	if (nested_cpu_has_posted_intr(vmcs12) &&
814  	   (CC(!nested_cpu_has_vid(vmcs12)) ||
815  	    CC(!nested_exit_intr_ack_set(vcpu)) ||
816  	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
817  	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
818  		return -EINVAL;
819  
820  	/* tpr shadow is needed by all apicv features. */
821  	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
822  		return -EINVAL;
823  
824  	return 0;
825  }
826  
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)827  static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
828  				       u32 count, u64 addr)
829  {
830  	if (count == 0)
831  		return 0;
832  
833  	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
834  	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
835  		return -EINVAL;
836  
837  	return 0;
838  }
839  
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)840  static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
841  						     struct vmcs12 *vmcs12)
842  {
843  	if (CC(nested_vmx_check_msr_switch(vcpu,
844  					   vmcs12->vm_exit_msr_load_count,
845  					   vmcs12->vm_exit_msr_load_addr)) ||
846  	    CC(nested_vmx_check_msr_switch(vcpu,
847  					   vmcs12->vm_exit_msr_store_count,
848  					   vmcs12->vm_exit_msr_store_addr)))
849  		return -EINVAL;
850  
851  	return 0;
852  }
853  
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)854  static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
855                                                        struct vmcs12 *vmcs12)
856  {
857  	if (CC(nested_vmx_check_msr_switch(vcpu,
858  					   vmcs12->vm_entry_msr_load_count,
859  					   vmcs12->vm_entry_msr_load_addr)))
860                  return -EINVAL;
861  
862  	return 0;
863  }
864  
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)865  static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
866  					 struct vmcs12 *vmcs12)
867  {
868  	if (!nested_cpu_has_pml(vmcs12))
869  		return 0;
870  
871  	if (CC(!nested_cpu_has_ept(vmcs12)) ||
872  	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
873  		return -EINVAL;
874  
875  	return 0;
876  }
877  
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)878  static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
879  							struct vmcs12 *vmcs12)
880  {
881  	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
882  	       !nested_cpu_has_ept(vmcs12)))
883  		return -EINVAL;
884  	return 0;
885  }
886  
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)887  static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
888  							 struct vmcs12 *vmcs12)
889  {
890  	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
891  	       !nested_cpu_has_ept(vmcs12)))
892  		return -EINVAL;
893  	return 0;
894  }
895  
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)896  static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
897  						 struct vmcs12 *vmcs12)
898  {
899  	if (!nested_cpu_has_shadow_vmcs(vmcs12))
900  		return 0;
901  
902  	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
903  	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
904  		return -EINVAL;
905  
906  	return 0;
907  }
908  
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)909  static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
910  				       struct vmx_msr_entry *e)
911  {
912  	/* x2APIC MSR accesses are not allowed */
913  	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
914  		return -EINVAL;
915  	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
916  	    CC(e->index == MSR_IA32_UCODE_REV))
917  		return -EINVAL;
918  	if (CC(e->reserved != 0))
919  		return -EINVAL;
920  	return 0;
921  }
922  
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)923  static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
924  				     struct vmx_msr_entry *e)
925  {
926  	if (CC(e->index == MSR_FS_BASE) ||
927  	    CC(e->index == MSR_GS_BASE) ||
928  	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
929  	    nested_vmx_msr_check_common(vcpu, e))
930  		return -EINVAL;
931  	return 0;
932  }
933  
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)934  static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
935  				      struct vmx_msr_entry *e)
936  {
937  	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
938  	    nested_vmx_msr_check_common(vcpu, e))
939  		return -EINVAL;
940  	return 0;
941  }
942  
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)943  static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
944  {
945  	struct vcpu_vmx *vmx = to_vmx(vcpu);
946  	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
947  				       vmx->nested.msrs.misc_high);
948  
949  	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
950  }
951  
952  /*
953   * Load guest's/host's msr at nested entry/exit.
954   * return 0 for success, entry index for failure.
955   *
956   * One of the failure modes for MSR load/store is when a list exceeds the
957   * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
958   * as possible, process all valid entries before failing rather than precheck
959   * for a capacity violation.
960   */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)961  static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
962  {
963  	u32 i;
964  	struct vmx_msr_entry e;
965  	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
966  
967  	for (i = 0; i < count; i++) {
968  		if (unlikely(i >= max_msr_list_size))
969  			goto fail;
970  
971  		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
972  					&e, sizeof(e))) {
973  			pr_debug_ratelimited(
974  				"%s cannot read MSR entry (%u, 0x%08llx)\n",
975  				__func__, i, gpa + i * sizeof(e));
976  			goto fail;
977  		}
978  		if (nested_vmx_load_msr_check(vcpu, &e)) {
979  			pr_debug_ratelimited(
980  				"%s check failed (%u, 0x%x, 0x%x)\n",
981  				__func__, i, e.index, e.reserved);
982  			goto fail;
983  		}
984  		if (kvm_set_msr_with_filter(vcpu, e.index, e.value)) {
985  			pr_debug_ratelimited(
986  				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
987  				__func__, i, e.index, e.value);
988  			goto fail;
989  		}
990  	}
991  	return 0;
992  fail:
993  	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
994  	return i + 1;
995  }
996  
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)997  static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
998  					    u32 msr_index,
999  					    u64 *data)
1000  {
1001  	struct vcpu_vmx *vmx = to_vmx(vcpu);
1002  
1003  	/*
1004  	 * If the L0 hypervisor stored a more accurate value for the TSC that
1005  	 * does not include the time taken for emulation of the L2->L1
1006  	 * VM-exit in L0, use the more accurate value.
1007  	 */
1008  	if (msr_index == MSR_IA32_TSC) {
1009  		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
1010  						    MSR_IA32_TSC);
1011  
1012  		if (i >= 0) {
1013  			u64 val = vmx->msr_autostore.guest.val[i].value;
1014  
1015  			*data = kvm_read_l1_tsc(vcpu, val);
1016  			return true;
1017  		}
1018  	}
1019  
1020  	if (kvm_get_msr_with_filter(vcpu, msr_index, data)) {
1021  		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
1022  			msr_index);
1023  		return false;
1024  	}
1025  	return true;
1026  }
1027  
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)1028  static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1029  				     struct vmx_msr_entry *e)
1030  {
1031  	if (kvm_vcpu_read_guest(vcpu,
1032  				gpa + i * sizeof(*e),
1033  				e, 2 * sizeof(u32))) {
1034  		pr_debug_ratelimited(
1035  			"%s cannot read MSR entry (%u, 0x%08llx)\n",
1036  			__func__, i, gpa + i * sizeof(*e));
1037  		return false;
1038  	}
1039  	if (nested_vmx_store_msr_check(vcpu, e)) {
1040  		pr_debug_ratelimited(
1041  			"%s check failed (%u, 0x%x, 0x%x)\n",
1042  			__func__, i, e->index, e->reserved);
1043  		return false;
1044  	}
1045  	return true;
1046  }
1047  
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)1048  static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1049  {
1050  	u64 data;
1051  	u32 i;
1052  	struct vmx_msr_entry e;
1053  	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1054  
1055  	for (i = 0; i < count; i++) {
1056  		if (unlikely(i >= max_msr_list_size))
1057  			return -EINVAL;
1058  
1059  		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1060  			return -EINVAL;
1061  
1062  		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1063  			return -EINVAL;
1064  
1065  		if (kvm_vcpu_write_guest(vcpu,
1066  					 gpa + i * sizeof(e) +
1067  					     offsetof(struct vmx_msr_entry, value),
1068  					 &data, sizeof(data))) {
1069  			pr_debug_ratelimited(
1070  				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1071  				__func__, i, e.index, data);
1072  			return -EINVAL;
1073  		}
1074  	}
1075  	return 0;
1076  }
1077  
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1078  static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1079  {
1080  	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1081  	u32 count = vmcs12->vm_exit_msr_store_count;
1082  	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1083  	struct vmx_msr_entry e;
1084  	u32 i;
1085  
1086  	for (i = 0; i < count; i++) {
1087  		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1088  			return false;
1089  
1090  		if (e.index == msr_index)
1091  			return true;
1092  	}
1093  	return false;
1094  }
1095  
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1096  static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1097  					   u32 msr_index)
1098  {
1099  	struct vcpu_vmx *vmx = to_vmx(vcpu);
1100  	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1101  	bool in_vmcs12_store_list;
1102  	int msr_autostore_slot;
1103  	bool in_autostore_list;
1104  	int last;
1105  
1106  	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1107  	in_autostore_list = msr_autostore_slot >= 0;
1108  	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1109  
1110  	if (in_vmcs12_store_list && !in_autostore_list) {
1111  		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1112  			/*
1113  			 * Emulated VMEntry does not fail here.  Instead a less
1114  			 * accurate value will be returned by
1115  			 * nested_vmx_get_vmexit_msr_value() by reading KVM's
1116  			 * internal MSR state instead of reading the value from
1117  			 * the vmcs02 VMExit MSR-store area.
1118  			 */
1119  			pr_warn_ratelimited(
1120  				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1121  				msr_index);
1122  			return;
1123  		}
1124  		last = autostore->nr++;
1125  		autostore->val[last].index = msr_index;
1126  	} else if (!in_vmcs12_store_list && in_autostore_list) {
1127  		last = --autostore->nr;
1128  		autostore->val[msr_autostore_slot] = autostore->val[last];
1129  	}
1130  }
1131  
1132  /*
1133   * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1134   * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1135   * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1136   * @entry_failure_code.
1137   */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1138  static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1139  			       bool nested_ept, bool reload_pdptrs,
1140  			       enum vm_entry_failure_code *entry_failure_code)
1141  {
1142  	if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1143  		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1144  		return -EINVAL;
1145  	}
1146  
1147  	/*
1148  	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1149  	 * must not be dereferenced.
1150  	 */
1151  	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1152  	    CC(!load_pdptrs(vcpu, cr3))) {
1153  		*entry_failure_code = ENTRY_FAIL_PDPTE;
1154  		return -EINVAL;
1155  	}
1156  
1157  	vcpu->arch.cr3 = cr3;
1158  	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1159  
1160  	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1161  	kvm_init_mmu(vcpu);
1162  
1163  	if (!nested_ept)
1164  		kvm_mmu_new_pgd(vcpu, cr3);
1165  
1166  	return 0;
1167  }
1168  
1169  /*
1170   * Returns if KVM is able to config CPU to tag TLB entries
1171   * populated by L2 differently than TLB entries populated
1172   * by L1.
1173   *
1174   * If L0 uses EPT, L1 and L2 run with different EPTP because
1175   * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1176   * are tagged with different EPTP.
1177   *
1178   * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1179   * with different VPID (L1 entries are tagged with vmx->vpid
1180   * while L2 entries are tagged with vmx->nested.vpid02).
1181   */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1182  static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1183  {
1184  	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1185  
1186  	return enable_ept ||
1187  	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1188  }
1189  
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1190  static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1191  					    struct vmcs12 *vmcs12,
1192  					    bool is_vmenter)
1193  {
1194  	struct vcpu_vmx *vmx = to_vmx(vcpu);
1195  
1196  	/* Handle pending Hyper-V TLB flush requests */
1197  	kvm_hv_nested_transtion_tlb_flush(vcpu, enable_ept);
1198  
1199  	/*
1200  	 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
1201  	 * same VPID as the host, and so architecturally, linear and combined
1202  	 * mappings for VPID=0 must be flushed at VM-Enter and VM-Exit.  KVM
1203  	 * emulates L2 sharing L1's VPID=0 by using vpid01 while running L2,
1204  	 * and so KVM must also emulate TLB flush of VPID=0, i.e. vpid01.  This
1205  	 * is required if VPID is disabled in KVM, as a TLB flush (there are no
1206  	 * VPIDs) still occurs from L1's perspective, and KVM may need to
1207  	 * synchronize the MMU in response to the guest TLB flush.
1208  	 *
1209  	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1210  	 * EPT is a special snowflake, as guest-physical mappings aren't
1211  	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1212  	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1213  	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1214  	 * those mappings.
1215  	 */
1216  	if (!nested_cpu_has_vpid(vmcs12)) {
1217  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1218  		return;
1219  	}
1220  
1221  	/* L2 should never have a VPID if VPID is disabled. */
1222  	WARN_ON(!enable_vpid);
1223  
1224  	/*
1225  	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1226  	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1227  	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1228  	 * that the new vpid12 has never been used and thus represents a new
1229  	 * guest ASID that cannot have entries in the TLB.
1230  	 */
1231  	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1232  		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1233  		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1234  		return;
1235  	}
1236  
1237  	/*
1238  	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1239  	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1240  	 * KVM was unable to allocate a VPID for L2, flush the current context
1241  	 * as the effective ASID is common to both L1 and L2.
1242  	 */
1243  	if (!nested_has_guest_tlb_tag(vcpu))
1244  		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1245  }
1246  
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1247  static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1248  {
1249  	superset &= mask;
1250  	subset &= mask;
1251  
1252  	return (superset | subset) == superset;
1253  }
1254  
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1255  static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1256  {
1257  	const u64 feature_bits = VMX_BASIC_DUAL_MONITOR_TREATMENT |
1258  				 VMX_BASIC_INOUT |
1259  				 VMX_BASIC_TRUE_CTLS;
1260  
1261  	const u64 reserved_bits = GENMASK_ULL(63, 56) |
1262  				  GENMASK_ULL(47, 45) |
1263  				  BIT_ULL(31);
1264  
1265  	u64 vmx_basic = vmcs_config.nested.basic;
1266  
1267  	BUILD_BUG_ON(feature_bits & reserved_bits);
1268  
1269  	/*
1270  	 * Except for 32BIT_PHYS_ADDR_ONLY, which is an anti-feature bit (has
1271  	 * inverted polarity), the incoming value must not set feature bits or
1272  	 * reserved bits that aren't allowed/supported by KVM.  Fields, i.e.
1273  	 * multi-bit values, are explicitly checked below.
1274  	 */
1275  	if (!is_bitwise_subset(vmx_basic, data, feature_bits | reserved_bits))
1276  		return -EINVAL;
1277  
1278  	/*
1279  	 * KVM does not emulate a version of VMX that constrains physical
1280  	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1281  	 */
1282  	if (data & VMX_BASIC_32BIT_PHYS_ADDR_ONLY)
1283  		return -EINVAL;
1284  
1285  	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1286  	    vmx_basic_vmcs_revision_id(data))
1287  		return -EINVAL;
1288  
1289  	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1290  		return -EINVAL;
1291  
1292  	vmx->nested.msrs.basic = data;
1293  	return 0;
1294  }
1295  
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1296  static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1297  				u32 **low, u32 **high)
1298  {
1299  	switch (msr_index) {
1300  	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1301  		*low = &msrs->pinbased_ctls_low;
1302  		*high = &msrs->pinbased_ctls_high;
1303  		break;
1304  	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1305  		*low = &msrs->procbased_ctls_low;
1306  		*high = &msrs->procbased_ctls_high;
1307  		break;
1308  	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1309  		*low = &msrs->exit_ctls_low;
1310  		*high = &msrs->exit_ctls_high;
1311  		break;
1312  	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1313  		*low = &msrs->entry_ctls_low;
1314  		*high = &msrs->entry_ctls_high;
1315  		break;
1316  	case MSR_IA32_VMX_PROCBASED_CTLS2:
1317  		*low = &msrs->secondary_ctls_low;
1318  		*high = &msrs->secondary_ctls_high;
1319  		break;
1320  	default:
1321  		BUG();
1322  	}
1323  }
1324  
1325  static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1326  vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1327  {
1328  	u32 *lowp, *highp;
1329  	u64 supported;
1330  
1331  	vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1332  
1333  	supported = vmx_control_msr(*lowp, *highp);
1334  
1335  	/* Check must-be-1 bits are still 1. */
1336  	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1337  		return -EINVAL;
1338  
1339  	/* Check must-be-0 bits are still 0. */
1340  	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1341  		return -EINVAL;
1342  
1343  	vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1344  	*lowp = data;
1345  	*highp = data >> 32;
1346  	return 0;
1347  }
1348  
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1349  static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1350  {
1351  	const u64 feature_bits = VMX_MISC_SAVE_EFER_LMA |
1352  				 VMX_MISC_ACTIVITY_HLT |
1353  				 VMX_MISC_ACTIVITY_SHUTDOWN |
1354  				 VMX_MISC_ACTIVITY_WAIT_SIPI |
1355  				 VMX_MISC_INTEL_PT |
1356  				 VMX_MISC_RDMSR_IN_SMM |
1357  				 VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
1358  				 VMX_MISC_VMXOFF_BLOCK_SMI |
1359  				 VMX_MISC_ZERO_LEN_INS;
1360  
1361  	const u64 reserved_bits = BIT_ULL(31) | GENMASK_ULL(13, 9);
1362  
1363  	u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1364  				       vmcs_config.nested.misc_high);
1365  
1366  	BUILD_BUG_ON(feature_bits & reserved_bits);
1367  
1368  	/*
1369  	 * The incoming value must not set feature bits or reserved bits that
1370  	 * aren't allowed/supported by KVM.  Fields, i.e. multi-bit values, are
1371  	 * explicitly checked below.
1372  	 */
1373  	if (!is_bitwise_subset(vmx_misc, data, feature_bits | reserved_bits))
1374  		return -EINVAL;
1375  
1376  	if ((vmx->nested.msrs.pinbased_ctls_high &
1377  	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1378  	    vmx_misc_preemption_timer_rate(data) !=
1379  	    vmx_misc_preemption_timer_rate(vmx_misc))
1380  		return -EINVAL;
1381  
1382  	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1383  		return -EINVAL;
1384  
1385  	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1386  		return -EINVAL;
1387  
1388  	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1389  		return -EINVAL;
1390  
1391  	vmx->nested.msrs.misc_low = data;
1392  	vmx->nested.msrs.misc_high = data >> 32;
1393  
1394  	return 0;
1395  }
1396  
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1397  static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1398  {
1399  	u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1400  					       vmcs_config.nested.vpid_caps);
1401  
1402  	/* Every bit is either reserved or a feature bit. */
1403  	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1404  		return -EINVAL;
1405  
1406  	vmx->nested.msrs.ept_caps = data;
1407  	vmx->nested.msrs.vpid_caps = data >> 32;
1408  	return 0;
1409  }
1410  
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1411  static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1412  {
1413  	switch (msr_index) {
1414  	case MSR_IA32_VMX_CR0_FIXED0:
1415  		return &msrs->cr0_fixed0;
1416  	case MSR_IA32_VMX_CR4_FIXED0:
1417  		return &msrs->cr4_fixed0;
1418  	default:
1419  		BUG();
1420  	}
1421  }
1422  
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1423  static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1424  {
1425  	const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1426  
1427  	/*
1428  	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1429  	 * must be 1 in the restored value.
1430  	 */
1431  	if (!is_bitwise_subset(data, *msr, -1ULL))
1432  		return -EINVAL;
1433  
1434  	*vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1435  	return 0;
1436  }
1437  
1438  /*
1439   * Called when userspace is restoring VMX MSRs.
1440   *
1441   * Returns 0 on success, non-0 otherwise.
1442   */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1443  int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1444  {
1445  	struct vcpu_vmx *vmx = to_vmx(vcpu);
1446  
1447  	/*
1448  	 * Don't allow changes to the VMX capability MSRs while the vCPU
1449  	 * is in VMX operation.
1450  	 */
1451  	if (vmx->nested.vmxon)
1452  		return -EBUSY;
1453  
1454  	switch (msr_index) {
1455  	case MSR_IA32_VMX_BASIC:
1456  		return vmx_restore_vmx_basic(vmx, data);
1457  	case MSR_IA32_VMX_PINBASED_CTLS:
1458  	case MSR_IA32_VMX_PROCBASED_CTLS:
1459  	case MSR_IA32_VMX_EXIT_CTLS:
1460  	case MSR_IA32_VMX_ENTRY_CTLS:
1461  		/*
1462  		 * The "non-true" VMX capability MSRs are generated from the
1463  		 * "true" MSRs, so we do not support restoring them directly.
1464  		 *
1465  		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1466  		 * should restore the "true" MSRs with the must-be-1 bits
1467  		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1468  		 * DEFAULT SETTINGS".
1469  		 */
1470  		return -EINVAL;
1471  	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1472  	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1473  	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1474  	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1475  	case MSR_IA32_VMX_PROCBASED_CTLS2:
1476  		return vmx_restore_control_msr(vmx, msr_index, data);
1477  	case MSR_IA32_VMX_MISC:
1478  		return vmx_restore_vmx_misc(vmx, data);
1479  	case MSR_IA32_VMX_CR0_FIXED0:
1480  	case MSR_IA32_VMX_CR4_FIXED0:
1481  		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1482  	case MSR_IA32_VMX_CR0_FIXED1:
1483  	case MSR_IA32_VMX_CR4_FIXED1:
1484  		/*
1485  		 * These MSRs are generated based on the vCPU's CPUID, so we
1486  		 * do not support restoring them directly.
1487  		 */
1488  		return -EINVAL;
1489  	case MSR_IA32_VMX_EPT_VPID_CAP:
1490  		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1491  	case MSR_IA32_VMX_VMCS_ENUM:
1492  		vmx->nested.msrs.vmcs_enum = data;
1493  		return 0;
1494  	case MSR_IA32_VMX_VMFUNC:
1495  		if (data & ~vmcs_config.nested.vmfunc_controls)
1496  			return -EINVAL;
1497  		vmx->nested.msrs.vmfunc_controls = data;
1498  		return 0;
1499  	default:
1500  		/*
1501  		 * The rest of the VMX capability MSRs do not support restore.
1502  		 */
1503  		return -EINVAL;
1504  	}
1505  }
1506  
1507  /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1508  int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1509  {
1510  	switch (msr_index) {
1511  	case MSR_IA32_VMX_BASIC:
1512  		*pdata = msrs->basic;
1513  		break;
1514  	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1515  	case MSR_IA32_VMX_PINBASED_CTLS:
1516  		*pdata = vmx_control_msr(
1517  			msrs->pinbased_ctls_low,
1518  			msrs->pinbased_ctls_high);
1519  		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1520  			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1521  		break;
1522  	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1523  	case MSR_IA32_VMX_PROCBASED_CTLS:
1524  		*pdata = vmx_control_msr(
1525  			msrs->procbased_ctls_low,
1526  			msrs->procbased_ctls_high);
1527  		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1528  			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1529  		break;
1530  	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1531  	case MSR_IA32_VMX_EXIT_CTLS:
1532  		*pdata = vmx_control_msr(
1533  			msrs->exit_ctls_low,
1534  			msrs->exit_ctls_high);
1535  		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1536  			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1537  		break;
1538  	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1539  	case MSR_IA32_VMX_ENTRY_CTLS:
1540  		*pdata = vmx_control_msr(
1541  			msrs->entry_ctls_low,
1542  			msrs->entry_ctls_high);
1543  		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1544  			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1545  		break;
1546  	case MSR_IA32_VMX_MISC:
1547  		*pdata = vmx_control_msr(
1548  			msrs->misc_low,
1549  			msrs->misc_high);
1550  		break;
1551  	case MSR_IA32_VMX_CR0_FIXED0:
1552  		*pdata = msrs->cr0_fixed0;
1553  		break;
1554  	case MSR_IA32_VMX_CR0_FIXED1:
1555  		*pdata = msrs->cr0_fixed1;
1556  		break;
1557  	case MSR_IA32_VMX_CR4_FIXED0:
1558  		*pdata = msrs->cr4_fixed0;
1559  		break;
1560  	case MSR_IA32_VMX_CR4_FIXED1:
1561  		*pdata = msrs->cr4_fixed1;
1562  		break;
1563  	case MSR_IA32_VMX_VMCS_ENUM:
1564  		*pdata = msrs->vmcs_enum;
1565  		break;
1566  	case MSR_IA32_VMX_PROCBASED_CTLS2:
1567  		*pdata = vmx_control_msr(
1568  			msrs->secondary_ctls_low,
1569  			msrs->secondary_ctls_high);
1570  		break;
1571  	case MSR_IA32_VMX_EPT_VPID_CAP:
1572  		*pdata = msrs->ept_caps |
1573  			((u64)msrs->vpid_caps << 32);
1574  		break;
1575  	case MSR_IA32_VMX_VMFUNC:
1576  		*pdata = msrs->vmfunc_controls;
1577  		break;
1578  	default:
1579  		return 1;
1580  	}
1581  
1582  	return 0;
1583  }
1584  
1585  /*
1586   * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1587   * been modified by the L1 guest.  Note, "writable" in this context means
1588   * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1589   * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1590   * VM-exit information fields (which are actually writable if the vCPU is
1591   * configured to support "VMWRITE to any supported field in the VMCS").
1592   */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1593  static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1594  {
1595  	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1596  	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1597  	struct shadow_vmcs_field field;
1598  	unsigned long val;
1599  	int i;
1600  
1601  	if (WARN_ON(!shadow_vmcs))
1602  		return;
1603  
1604  	preempt_disable();
1605  
1606  	vmcs_load(shadow_vmcs);
1607  
1608  	for (i = 0; i < max_shadow_read_write_fields; i++) {
1609  		field = shadow_read_write_fields[i];
1610  		val = __vmcs_readl(field.encoding);
1611  		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1612  	}
1613  
1614  	vmcs_clear(shadow_vmcs);
1615  	vmcs_load(vmx->loaded_vmcs->vmcs);
1616  
1617  	preempt_enable();
1618  }
1619  
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1620  static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1621  {
1622  	const struct shadow_vmcs_field *fields[] = {
1623  		shadow_read_write_fields,
1624  		shadow_read_only_fields
1625  	};
1626  	const int max_fields[] = {
1627  		max_shadow_read_write_fields,
1628  		max_shadow_read_only_fields
1629  	};
1630  	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1631  	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1632  	struct shadow_vmcs_field field;
1633  	unsigned long val;
1634  	int i, q;
1635  
1636  	if (WARN_ON(!shadow_vmcs))
1637  		return;
1638  
1639  	vmcs_load(shadow_vmcs);
1640  
1641  	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1642  		for (i = 0; i < max_fields[q]; i++) {
1643  			field = fields[q][i];
1644  			val = vmcs12_read_any(vmcs12, field.encoding,
1645  					      field.offset);
1646  			__vmcs_writel(field.encoding, val);
1647  		}
1648  	}
1649  
1650  	vmcs_clear(shadow_vmcs);
1651  	vmcs_load(vmx->loaded_vmcs->vmcs);
1652  }
1653  
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1654  static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1655  {
1656  #ifdef CONFIG_KVM_HYPERV
1657  	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1658  	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1659  	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(&vmx->vcpu);
1660  
1661  	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1662  	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1663  	vmcs12->guest_rip = evmcs->guest_rip;
1664  
1665  	if (unlikely(!(hv_clean_fields &
1666  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1667  		hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1668  		hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1669  		hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1670  	}
1671  
1672  	if (unlikely(!(hv_clean_fields &
1673  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1674  		vmcs12->guest_rsp = evmcs->guest_rsp;
1675  		vmcs12->guest_rflags = evmcs->guest_rflags;
1676  		vmcs12->guest_interruptibility_info =
1677  			evmcs->guest_interruptibility_info;
1678  		/*
1679  		 * Not present in struct vmcs12:
1680  		 * vmcs12->guest_ssp = evmcs->guest_ssp;
1681  		 */
1682  	}
1683  
1684  	if (unlikely(!(hv_clean_fields &
1685  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1686  		vmcs12->cpu_based_vm_exec_control =
1687  			evmcs->cpu_based_vm_exec_control;
1688  	}
1689  
1690  	if (unlikely(!(hv_clean_fields &
1691  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1692  		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1693  	}
1694  
1695  	if (unlikely(!(hv_clean_fields &
1696  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1697  		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1698  	}
1699  
1700  	if (unlikely(!(hv_clean_fields &
1701  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1702  		vmcs12->vm_entry_intr_info_field =
1703  			evmcs->vm_entry_intr_info_field;
1704  		vmcs12->vm_entry_exception_error_code =
1705  			evmcs->vm_entry_exception_error_code;
1706  		vmcs12->vm_entry_instruction_len =
1707  			evmcs->vm_entry_instruction_len;
1708  	}
1709  
1710  	if (unlikely(!(hv_clean_fields &
1711  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1712  		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1713  		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1714  		vmcs12->host_cr0 = evmcs->host_cr0;
1715  		vmcs12->host_cr3 = evmcs->host_cr3;
1716  		vmcs12->host_cr4 = evmcs->host_cr4;
1717  		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1718  		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1719  		vmcs12->host_rip = evmcs->host_rip;
1720  		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1721  		vmcs12->host_es_selector = evmcs->host_es_selector;
1722  		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1723  		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1724  		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1725  		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1726  		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1727  		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1728  		vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1729  		/*
1730  		 * Not present in struct vmcs12:
1731  		 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1732  		 * vmcs12->host_ssp = evmcs->host_ssp;
1733  		 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1734  		 */
1735  	}
1736  
1737  	if (unlikely(!(hv_clean_fields &
1738  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1739  		vmcs12->pin_based_vm_exec_control =
1740  			evmcs->pin_based_vm_exec_control;
1741  		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1742  		vmcs12->secondary_vm_exec_control =
1743  			evmcs->secondary_vm_exec_control;
1744  	}
1745  
1746  	if (unlikely(!(hv_clean_fields &
1747  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1748  		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1749  		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1750  	}
1751  
1752  	if (unlikely(!(hv_clean_fields &
1753  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1754  		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1755  	}
1756  
1757  	if (unlikely(!(hv_clean_fields &
1758  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1759  		vmcs12->guest_es_base = evmcs->guest_es_base;
1760  		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1761  		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1762  		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1763  		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1764  		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1765  		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1766  		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1767  		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1768  		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1769  		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1770  		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1771  		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1772  		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1773  		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1774  		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1775  		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1776  		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1777  		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1778  		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1779  		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1780  		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1781  		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1782  		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1783  		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1784  		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1785  		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1786  		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1787  		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1788  		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1789  		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1790  		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1791  		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1792  		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1793  		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1794  		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1795  	}
1796  
1797  	if (unlikely(!(hv_clean_fields &
1798  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1799  		vmcs12->tsc_offset = evmcs->tsc_offset;
1800  		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1801  		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1802  		vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1803  		vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1804  	}
1805  
1806  	if (unlikely(!(hv_clean_fields &
1807  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1808  		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1809  		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1810  		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1811  		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1812  		vmcs12->guest_cr0 = evmcs->guest_cr0;
1813  		vmcs12->guest_cr3 = evmcs->guest_cr3;
1814  		vmcs12->guest_cr4 = evmcs->guest_cr4;
1815  		vmcs12->guest_dr7 = evmcs->guest_dr7;
1816  	}
1817  
1818  	if (unlikely(!(hv_clean_fields &
1819  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1820  		vmcs12->host_fs_base = evmcs->host_fs_base;
1821  		vmcs12->host_gs_base = evmcs->host_gs_base;
1822  		vmcs12->host_tr_base = evmcs->host_tr_base;
1823  		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1824  		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1825  		vmcs12->host_rsp = evmcs->host_rsp;
1826  	}
1827  
1828  	if (unlikely(!(hv_clean_fields &
1829  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1830  		vmcs12->ept_pointer = evmcs->ept_pointer;
1831  		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1832  	}
1833  
1834  	if (unlikely(!(hv_clean_fields &
1835  		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1836  		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1837  		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1838  		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1839  		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1840  		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1841  		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1842  		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1843  		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1844  		vmcs12->guest_pending_dbg_exceptions =
1845  			evmcs->guest_pending_dbg_exceptions;
1846  		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1847  		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1848  		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1849  		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1850  		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1851  		vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1852  		/*
1853  		 * Not present in struct vmcs12:
1854  		 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1855  		 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1856  		 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1857  		 */
1858  	}
1859  
1860  	/*
1861  	 * Not used?
1862  	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1863  	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1864  	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1865  	 * vmcs12->page_fault_error_code_mask =
1866  	 *		evmcs->page_fault_error_code_mask;
1867  	 * vmcs12->page_fault_error_code_match =
1868  	 *		evmcs->page_fault_error_code_match;
1869  	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1870  	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1871  	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1872  	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1873  	 */
1874  
1875  	/*
1876  	 * Read only fields:
1877  	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1878  	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1879  	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1880  	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1881  	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1882  	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1883  	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1884  	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1885  	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1886  	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1887  	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1888  	 *
1889  	 * Not present in struct vmcs12:
1890  	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1891  	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1892  	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1893  	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1894  	 */
1895  
1896  	return;
1897  #else /* CONFIG_KVM_HYPERV */
1898  	KVM_BUG_ON(1, vmx->vcpu.kvm);
1899  #endif /* CONFIG_KVM_HYPERV */
1900  }
1901  
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1902  static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1903  {
1904  #ifdef CONFIG_KVM_HYPERV
1905  	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1906  	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1907  
1908  	/*
1909  	 * Should not be changed by KVM:
1910  	 *
1911  	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1912  	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1913  	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1914  	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1915  	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1916  	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1917  	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1918  	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1919  	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1920  	 * evmcs->host_cr0 = vmcs12->host_cr0;
1921  	 * evmcs->host_cr3 = vmcs12->host_cr3;
1922  	 * evmcs->host_cr4 = vmcs12->host_cr4;
1923  	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1924  	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1925  	 * evmcs->host_rip = vmcs12->host_rip;
1926  	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1927  	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1928  	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1929  	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1930  	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1931  	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1932  	 * evmcs->host_rsp = vmcs12->host_rsp;
1933  	 * sync_vmcs02_to_vmcs12() doesn't read these:
1934  	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1935  	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1936  	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1937  	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1938  	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1939  	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1940  	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1941  	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1942  	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1943  	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1944  	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1945  	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1946  	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1947  	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1948  	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1949  	 * evmcs->page_fault_error_code_mask =
1950  	 *		vmcs12->page_fault_error_code_mask;
1951  	 * evmcs->page_fault_error_code_match =
1952  	 *		vmcs12->page_fault_error_code_match;
1953  	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1954  	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1955  	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1956  	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1957  	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1958  	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1959  	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1960  	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1961  	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1962  	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1963  	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1964  	 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1965  	 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1966  	 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1967  	 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1968  	 *
1969  	 * Not present in struct vmcs12:
1970  	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1971  	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1972  	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1973  	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1974  	 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1975  	 * evmcs->host_ssp = vmcs12->host_ssp;
1976  	 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1977  	 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1978  	 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1979  	 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1980  	 * evmcs->guest_ssp = vmcs12->guest_ssp;
1981  	 */
1982  
1983  	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1984  	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1985  	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1986  	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1987  	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1988  	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1989  	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1990  	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1991  
1992  	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1993  	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1994  	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1995  	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1996  	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1997  	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1998  	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1999  	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
2000  	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
2001  	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
2002  
2003  	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
2004  	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
2005  	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
2006  	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
2007  	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
2008  	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
2009  	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
2010  	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
2011  
2012  	evmcs->guest_es_base = vmcs12->guest_es_base;
2013  	evmcs->guest_cs_base = vmcs12->guest_cs_base;
2014  	evmcs->guest_ss_base = vmcs12->guest_ss_base;
2015  	evmcs->guest_ds_base = vmcs12->guest_ds_base;
2016  	evmcs->guest_fs_base = vmcs12->guest_fs_base;
2017  	evmcs->guest_gs_base = vmcs12->guest_gs_base;
2018  	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
2019  	evmcs->guest_tr_base = vmcs12->guest_tr_base;
2020  	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
2021  	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
2022  
2023  	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
2024  	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
2025  
2026  	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
2027  	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
2028  	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
2029  	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
2030  
2031  	evmcs->guest_pending_dbg_exceptions =
2032  		vmcs12->guest_pending_dbg_exceptions;
2033  	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
2034  	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
2035  
2036  	evmcs->guest_activity_state = vmcs12->guest_activity_state;
2037  	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
2038  
2039  	evmcs->guest_cr0 = vmcs12->guest_cr0;
2040  	evmcs->guest_cr3 = vmcs12->guest_cr3;
2041  	evmcs->guest_cr4 = vmcs12->guest_cr4;
2042  	evmcs->guest_dr7 = vmcs12->guest_dr7;
2043  
2044  	evmcs->guest_physical_address = vmcs12->guest_physical_address;
2045  
2046  	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
2047  	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
2048  	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
2049  	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2050  	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2051  	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2052  	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2053  	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2054  
2055  	evmcs->exit_qualification = vmcs12->exit_qualification;
2056  
2057  	evmcs->guest_linear_address = vmcs12->guest_linear_address;
2058  	evmcs->guest_rsp = vmcs12->guest_rsp;
2059  	evmcs->guest_rflags = vmcs12->guest_rflags;
2060  
2061  	evmcs->guest_interruptibility_info =
2062  		vmcs12->guest_interruptibility_info;
2063  	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2064  	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2065  	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2066  	evmcs->vm_entry_exception_error_code =
2067  		vmcs12->vm_entry_exception_error_code;
2068  	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2069  
2070  	evmcs->guest_rip = vmcs12->guest_rip;
2071  
2072  	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2073  
2074  	return;
2075  #else /* CONFIG_KVM_HYPERV */
2076  	KVM_BUG_ON(1, vmx->vcpu.kvm);
2077  #endif /* CONFIG_KVM_HYPERV */
2078  }
2079  
2080  /*
2081   * This is an equivalent of the nested hypervisor executing the vmptrld
2082   * instruction.
2083   */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)2084  static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2085  	struct kvm_vcpu *vcpu, bool from_launch)
2086  {
2087  #ifdef CONFIG_KVM_HYPERV
2088  	struct vcpu_vmx *vmx = to_vmx(vcpu);
2089  	bool evmcs_gpa_changed = false;
2090  	u64 evmcs_gpa;
2091  
2092  	if (likely(!guest_cpu_cap_has_evmcs(vcpu)))
2093  		return EVMPTRLD_DISABLED;
2094  
2095  	evmcs_gpa = nested_get_evmptr(vcpu);
2096  	if (!evmptr_is_valid(evmcs_gpa)) {
2097  		nested_release_evmcs(vcpu);
2098  		return EVMPTRLD_DISABLED;
2099  	}
2100  
2101  	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2102  		vmx->nested.current_vmptr = INVALID_GPA;
2103  
2104  		nested_release_evmcs(vcpu);
2105  
2106  		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
2107  				 &vmx->nested.hv_evmcs_map))
2108  			return EVMPTRLD_ERROR;
2109  
2110  		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2111  
2112  		/*
2113  		 * Currently, KVM only supports eVMCS version 1
2114  		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2115  		 * value to first u32 field of eVMCS which should specify eVMCS
2116  		 * VersionNumber.
2117  		 *
2118  		 * Guest should be aware of supported eVMCS versions by host by
2119  		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2120  		 * expected to set this CPUID leaf according to the value
2121  		 * returned in vmcs_version from nested_enable_evmcs().
2122  		 *
2123  		 * However, it turns out that Microsoft Hyper-V fails to comply
2124  		 * to their own invented interface: When Hyper-V use eVMCS, it
2125  		 * just sets first u32 field of eVMCS to revision_id specified
2126  		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2127  		 * which is one of the supported versions specified in
2128  		 * CPUID.0x4000000A.EAX[0:15].
2129  		 *
2130  		 * To overcome Hyper-V bug, we accept here either a supported
2131  		 * eVMCS version or VMCS12 revision_id as valid values for first
2132  		 * u32 field of eVMCS.
2133  		 */
2134  		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2135  		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2136  			nested_release_evmcs(vcpu);
2137  			return EVMPTRLD_VMFAIL;
2138  		}
2139  
2140  		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2141  
2142  		evmcs_gpa_changed = true;
2143  		/*
2144  		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2145  		 * reloaded from guest's memory (read only fields, fields not
2146  		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2147  		 * are no leftovers.
2148  		 */
2149  		if (from_launch) {
2150  			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2151  			memset(vmcs12, 0, sizeof(*vmcs12));
2152  			vmcs12->hdr.revision_id = VMCS12_REVISION;
2153  		}
2154  
2155  	}
2156  
2157  	/*
2158  	 * Clean fields data can't be used on VMLAUNCH and when we switch
2159  	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2160  	 */
2161  	if (from_launch || evmcs_gpa_changed) {
2162  		vmx->nested.hv_evmcs->hv_clean_fields &=
2163  			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2164  
2165  		vmx->nested.force_msr_bitmap_recalc = true;
2166  	}
2167  
2168  	return EVMPTRLD_SUCCEEDED;
2169  #else
2170  	return EVMPTRLD_DISABLED;
2171  #endif
2172  }
2173  
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2174  void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2175  {
2176  	struct vcpu_vmx *vmx = to_vmx(vcpu);
2177  
2178  	if (nested_vmx_is_evmptr12_valid(vmx))
2179  		copy_vmcs12_to_enlightened(vmx);
2180  	else
2181  		copy_vmcs12_to_shadow(vmx);
2182  
2183  	vmx->nested.need_vmcs12_to_shadow_sync = false;
2184  }
2185  
vmx_preemption_timer_fn(struct hrtimer * timer)2186  static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2187  {
2188  	struct vcpu_vmx *vmx =
2189  		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2190  
2191  	vmx->nested.preemption_timer_expired = true;
2192  	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2193  	kvm_vcpu_kick(&vmx->vcpu);
2194  
2195  	return HRTIMER_NORESTART;
2196  }
2197  
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2198  static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2199  {
2200  	struct vcpu_vmx *vmx = to_vmx(vcpu);
2201  	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2202  
2203  	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2204  			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2205  
2206  	if (!vmx->nested.has_preemption_timer_deadline) {
2207  		vmx->nested.preemption_timer_deadline =
2208  			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2209  		vmx->nested.has_preemption_timer_deadline = true;
2210  	}
2211  	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2212  }
2213  
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2214  static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2215  					u64 preemption_timeout)
2216  {
2217  	struct vcpu_vmx *vmx = to_vmx(vcpu);
2218  
2219  	/*
2220  	 * A timer value of zero is architecturally guaranteed to cause
2221  	 * a VMExit prior to executing any instructions in the guest.
2222  	 */
2223  	if (preemption_timeout == 0) {
2224  		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2225  		return;
2226  	}
2227  
2228  	if (vcpu->arch.virtual_tsc_khz == 0)
2229  		return;
2230  
2231  	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2232  	preemption_timeout *= 1000000;
2233  	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2234  	hrtimer_start(&vmx->nested.preemption_timer,
2235  		      ktime_add_ns(ktime_get(), preemption_timeout),
2236  		      HRTIMER_MODE_ABS_PINNED);
2237  }
2238  
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2239  static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2240  {
2241  	if (vmx->nested.nested_run_pending &&
2242  	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2243  		return vmcs12->guest_ia32_efer;
2244  	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2245  		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2246  	else
2247  		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2248  }
2249  
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2250  static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2251  {
2252  	struct kvm *kvm = vmx->vcpu.kvm;
2253  
2254  	/*
2255  	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2256  	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2257  	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2258  	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2259  	 */
2260  	if (vmx->nested.vmcs02_initialized)
2261  		return;
2262  	vmx->nested.vmcs02_initialized = true;
2263  
2264  	/*
2265  	 * We don't care what the EPTP value is we just need to guarantee
2266  	 * it's valid so we don't get a false positive when doing early
2267  	 * consistency checks.
2268  	 */
2269  	if (enable_ept && nested_early_check)
2270  		vmcs_write64(EPT_POINTER,
2271  			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2272  
2273  	if (vmx->ve_info)
2274  		vmcs_write64(VE_INFORMATION_ADDRESS, __pa(vmx->ve_info));
2275  
2276  	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2277  	if (cpu_has_vmx_vmfunc())
2278  		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2279  
2280  	if (cpu_has_vmx_posted_intr())
2281  		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2282  
2283  	if (cpu_has_vmx_msr_bitmap())
2284  		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2285  
2286  	/*
2287  	 * PML is emulated for L2, but never enabled in hardware as the MMU
2288  	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
2289  	 * deal with filtering out L2 GPAs from the buffer.
2290  	 */
2291  	if (enable_pml) {
2292  		vmcs_write64(PML_ADDRESS, 0);
2293  		vmcs_write16(GUEST_PML_INDEX, -1);
2294  	}
2295  
2296  	if (cpu_has_vmx_encls_vmexit())
2297  		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2298  
2299  	if (kvm_notify_vmexit_enabled(kvm))
2300  		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
2301  
2302  	/*
2303  	 * Set the MSR load/store lists to match L0's settings.  Only the
2304  	 * addresses are constant (for vmcs02), the counts can change based
2305  	 * on L2's behavior, e.g. switching to/from long mode.
2306  	 */
2307  	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2308  	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2309  	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2310  
2311  	vmx_set_constant_host_state(vmx);
2312  }
2313  
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2314  static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2315  				      struct vmcs12 *vmcs12)
2316  {
2317  	prepare_vmcs02_constant_state(vmx);
2318  
2319  	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2320  
2321  	/*
2322  	 * If VPID is disabled, then guest TLB accesses use VPID=0, i.e. the
2323  	 * same VPID as the host.  Emulate this behavior by using vpid01 for L2
2324  	 * if VPID is disabled in vmcs12.  Note, if VPID is disabled, VM-Enter
2325  	 * and VM-Exit are architecturally required to flush VPID=0, but *only*
2326  	 * VPID=0.  I.e. using vpid02 would be ok (so long as KVM emulates the
2327  	 * required flushes), but doing so would cause KVM to over-flush.  E.g.
2328  	 * if L1 runs L2 X with VPID12=1, then runs L2 Y with VPID12 disabled,
2329  	 * and then runs L2 X again, then KVM can and should retain TLB entries
2330  	 * for VPID12=1.
2331  	 */
2332  	if (enable_vpid) {
2333  		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2334  			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2335  		else
2336  			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2337  	}
2338  }
2339  
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2340  static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2341  				 struct vmcs12 *vmcs12)
2342  {
2343  	u32 exec_control;
2344  	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2345  
2346  	if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2347  		prepare_vmcs02_early_rare(vmx, vmcs12);
2348  
2349  	/*
2350  	 * PIN CONTROLS
2351  	 */
2352  	exec_control = __pin_controls_get(vmcs01);
2353  	exec_control |= (vmcs12->pin_based_vm_exec_control &
2354  			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2355  
2356  	/* Posted interrupts setting is only taken from vmcs12.  */
2357  	vmx->nested.pi_pending = false;
2358  	if (nested_cpu_has_posted_intr(vmcs12)) {
2359  		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2360  	} else {
2361  		vmx->nested.posted_intr_nv = -1;
2362  		exec_control &= ~PIN_BASED_POSTED_INTR;
2363  	}
2364  	pin_controls_set(vmx, exec_control);
2365  
2366  	/*
2367  	 * EXEC CONTROLS
2368  	 */
2369  	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2370  	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2371  	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2372  	exec_control &= ~CPU_BASED_TPR_SHADOW;
2373  	exec_control |= vmcs12->cpu_based_vm_exec_control;
2374  
2375  	vmx->nested.l1_tpr_threshold = -1;
2376  	if (exec_control & CPU_BASED_TPR_SHADOW)
2377  		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2378  #ifdef CONFIG_X86_64
2379  	else
2380  		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2381  				CPU_BASED_CR8_STORE_EXITING;
2382  #endif
2383  
2384  	/*
2385  	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2386  	 * for I/O port accesses.
2387  	 */
2388  	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2389  	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2390  
2391  	/*
2392  	 * This bit will be computed in nested_get_vmcs12_pages, because
2393  	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2394  	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2395  	 * only set/clear this bit.
2396  	 */
2397  	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2398  	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2399  
2400  	exec_controls_set(vmx, exec_control);
2401  
2402  	/*
2403  	 * SECONDARY EXEC CONTROLS
2404  	 */
2405  	if (cpu_has_secondary_exec_ctrls()) {
2406  		exec_control = __secondary_exec_controls_get(vmcs01);
2407  
2408  		/* Take the following fields only from vmcs12 */
2409  		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2410  				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2411  				  SECONDARY_EXEC_ENABLE_INVPCID |
2412  				  SECONDARY_EXEC_ENABLE_RDTSCP |
2413  				  SECONDARY_EXEC_ENABLE_XSAVES |
2414  				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2415  				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2416  				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2417  				  SECONDARY_EXEC_ENABLE_VMFUNC |
2418  				  SECONDARY_EXEC_DESC);
2419  
2420  		if (nested_cpu_has(vmcs12,
2421  				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2422  			exec_control |= vmcs12->secondary_vm_exec_control;
2423  
2424  		/* PML is emulated and never enabled in hardware for L2. */
2425  		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2426  
2427  		/* VMCS shadowing for L2 is emulated for now */
2428  		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2429  
2430  		/*
2431  		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2432  		 * will not have to rewrite the controls just for this bit.
2433  		 */
2434  		if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2435  			exec_control |= SECONDARY_EXEC_DESC;
2436  
2437  		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2438  			vmcs_write16(GUEST_INTR_STATUS,
2439  				vmcs12->guest_intr_status);
2440  
2441  		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2442  		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2443  
2444  		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2445  			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2446  
2447  		secondary_exec_controls_set(vmx, exec_control);
2448  	}
2449  
2450  	/*
2451  	 * ENTRY CONTROLS
2452  	 *
2453  	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2454  	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2455  	 * on the related bits (if supported by the CPU) in the hope that
2456  	 * we can avoid VMWrites during vmx_set_efer().
2457  	 *
2458  	 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2459  	 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2460  	 * do the same for L2.
2461  	 */
2462  	exec_control = __vm_entry_controls_get(vmcs01);
2463  	exec_control |= (vmcs12->vm_entry_controls &
2464  			 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2465  	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2466  	if (cpu_has_load_ia32_efer()) {
2467  		if (guest_efer & EFER_LMA)
2468  			exec_control |= VM_ENTRY_IA32E_MODE;
2469  		if (guest_efer != kvm_host.efer)
2470  			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2471  	}
2472  	vm_entry_controls_set(vmx, exec_control);
2473  
2474  	/*
2475  	 * EXIT CONTROLS
2476  	 *
2477  	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2478  	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2479  	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2480  	 */
2481  	exec_control = __vm_exit_controls_get(vmcs01);
2482  	if (cpu_has_load_ia32_efer() && guest_efer != kvm_host.efer)
2483  		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2484  	else
2485  		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2486  	vm_exit_controls_set(vmx, exec_control);
2487  
2488  	/*
2489  	 * Interrupt/Exception Fields
2490  	 */
2491  	if (vmx->nested.nested_run_pending) {
2492  		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2493  			     vmcs12->vm_entry_intr_info_field);
2494  		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2495  			     vmcs12->vm_entry_exception_error_code);
2496  		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2497  			     vmcs12->vm_entry_instruction_len);
2498  		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2499  			     vmcs12->guest_interruptibility_info);
2500  		vmx->loaded_vmcs->nmi_known_unmasked =
2501  			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2502  	} else {
2503  		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2504  	}
2505  }
2506  
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2507  static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2508  {
2509  	struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2510  
2511  	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2512  			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2513  
2514  		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2515  		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2516  		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2517  		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2518  		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2519  		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2520  		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2521  		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2522  		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2523  		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2524  		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2525  		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2526  		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2527  		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2528  		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2529  		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2530  		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2531  		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2532  		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2533  		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2534  		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2535  		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2536  		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2537  		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2538  		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2539  		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2540  		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2541  		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2542  		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2543  		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2544  		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2545  		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2546  		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2547  		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2548  		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2549  		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2550  
2551  		vmx_segment_cache_clear(vmx);
2552  	}
2553  
2554  	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2555  			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2556  		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2557  		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2558  			    vmcs12->guest_pending_dbg_exceptions);
2559  		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2560  		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2561  
2562  		/*
2563  		 * L1 may access the L2's PDPTR, so save them to construct
2564  		 * vmcs12
2565  		 */
2566  		if (enable_ept) {
2567  			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2568  			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2569  			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2570  			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2571  		}
2572  
2573  		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2574  		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2575  			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2576  	}
2577  
2578  	if (nested_cpu_has_xsaves(vmcs12))
2579  		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2580  
2581  	/*
2582  	 * Whether page-faults are trapped is determined by a combination of
2583  	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2584  	 * doesn't care about page faults then we should set all of these to
2585  	 * L1's desires. However, if L0 does care about (some) page faults, it
2586  	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2587  	 * simply ask to exit on each and every L2 page fault. This is done by
2588  	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2589  	 * Note that below we don't need special code to set EB.PF beyond the
2590  	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2591  	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2592  	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2593  	 */
2594  	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2595  		/*
2596  		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2597  		 * go ahead and use it?
2598  		 */
2599  		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2600  		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2601  	} else {
2602  		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2603  		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2604  	}
2605  
2606  	if (cpu_has_vmx_apicv()) {
2607  		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2608  		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2609  		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2610  		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2611  	}
2612  
2613  	/*
2614  	 * Make sure the msr_autostore list is up to date before we set the
2615  	 * count in the vmcs02.
2616  	 */
2617  	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2618  
2619  	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2620  	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2621  	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2622  
2623  	set_cr4_guest_host_mask(vmx);
2624  }
2625  
2626  /*
2627   * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2628   * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2629   * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2630   * guest in a way that will both be appropriate to L1's requests, and our
2631   * needs. In addition to modifying the active vmcs (which is vmcs02), this
2632   * function also has additional necessary side-effects, like setting various
2633   * vcpu->arch fields.
2634   * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2635   * is assigned to entry_failure_code on failure.
2636   */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2637  static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2638  			  bool from_vmentry,
2639  			  enum vm_entry_failure_code *entry_failure_code)
2640  {
2641  	struct vcpu_vmx *vmx = to_vmx(vcpu);
2642  	struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2643  	bool load_guest_pdptrs_vmcs12 = false;
2644  
2645  	if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2646  		prepare_vmcs02_rare(vmx, vmcs12);
2647  		vmx->nested.dirty_vmcs12 = false;
2648  
2649  		load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2650  			!(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2651  	}
2652  
2653  	if (vmx->nested.nested_run_pending &&
2654  	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2655  		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2656  		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2657  	} else {
2658  		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2659  		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.pre_vmenter_debugctl);
2660  	}
2661  	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2662  	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2663  		vmcs_write64(GUEST_BNDCFGS, vmx->nested.pre_vmenter_bndcfgs);
2664  	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2665  
2666  	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2667  	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2668  	 * trap. Note that CR0.TS also needs updating - we do this later.
2669  	 */
2670  	vmx_update_exception_bitmap(vcpu);
2671  	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2672  	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2673  
2674  	if (vmx->nested.nested_run_pending &&
2675  	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2676  		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2677  		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2678  	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2679  		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2680  	}
2681  
2682  	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2683  			vcpu->arch.l1_tsc_offset,
2684  			vmx_get_l2_tsc_offset(vcpu),
2685  			vmx_get_l2_tsc_multiplier(vcpu));
2686  
2687  	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2688  			vcpu->arch.l1_tsc_scaling_ratio,
2689  			vmx_get_l2_tsc_multiplier(vcpu));
2690  
2691  	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2692  	if (kvm_caps.has_tsc_control)
2693  		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2694  
2695  	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2696  
2697  	if (nested_cpu_has_ept(vmcs12))
2698  		nested_ept_init_mmu_context(vcpu);
2699  
2700  	/*
2701  	 * Override the CR0/CR4 read shadows after setting the effective guest
2702  	 * CR0/CR4.  The common helpers also set the shadows, but they don't
2703  	 * account for vmcs12's cr0/4_guest_host_mask.
2704  	 */
2705  	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2706  	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2707  
2708  	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2709  	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2710  
2711  	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2712  	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2713  	vmx_set_efer(vcpu, vcpu->arch.efer);
2714  
2715  	/*
2716  	 * Guest state is invalid and unrestricted guest is disabled,
2717  	 * which means L1 attempted VMEntry to L2 with invalid state.
2718  	 * Fail the VMEntry.
2719  	 *
2720  	 * However when force loading the guest state (SMM exit or
2721  	 * loading nested state after migration, it is possible to
2722  	 * have invalid guest state now, which will be later fixed by
2723  	 * restoring L2 register state
2724  	 */
2725  	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2726  		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2727  		return -EINVAL;
2728  	}
2729  
2730  	/* Shadow page tables on either EPT or shadow page tables. */
2731  	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2732  				from_vmentry, entry_failure_code))
2733  		return -EINVAL;
2734  
2735  	/*
2736  	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2737  	 * on nested VM-Exit, which can occur without actually running L2 and
2738  	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2739  	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2740  	 * transition to HLT instead of running L2.
2741  	 */
2742  	if (enable_ept)
2743  		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2744  
2745  	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2746  	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2747  	    is_pae_paging(vcpu)) {
2748  		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2749  		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2750  		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2751  		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2752  	}
2753  
2754  	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2755  	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2756  	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2757  				     vmcs12->guest_ia32_perf_global_ctrl))) {
2758  		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2759  		return -EINVAL;
2760  	}
2761  
2762  	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2763  	kvm_rip_write(vcpu, vmcs12->guest_rip);
2764  
2765  	/*
2766  	 * It was observed that genuine Hyper-V running in L1 doesn't reset
2767  	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2768  	 * bits when it changes a field in eVMCS. Mark all fields as clean
2769  	 * here.
2770  	 */
2771  	if (nested_vmx_is_evmptr12_valid(vmx))
2772  		evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2773  
2774  	return 0;
2775  }
2776  
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2777  static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2778  {
2779  	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2780  	       nested_cpu_has_virtual_nmis(vmcs12)))
2781  		return -EINVAL;
2782  
2783  	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2784  	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2785  		return -EINVAL;
2786  
2787  	return 0;
2788  }
2789  
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2790  static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2791  {
2792  	struct vcpu_vmx *vmx = to_vmx(vcpu);
2793  
2794  	/* Check for memory type validity */
2795  	switch (new_eptp & VMX_EPTP_MT_MASK) {
2796  	case VMX_EPTP_MT_UC:
2797  		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2798  			return false;
2799  		break;
2800  	case VMX_EPTP_MT_WB:
2801  		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2802  			return false;
2803  		break;
2804  	default:
2805  		return false;
2806  	}
2807  
2808  	/* Page-walk levels validity. */
2809  	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2810  	case VMX_EPTP_PWL_5:
2811  		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2812  			return false;
2813  		break;
2814  	case VMX_EPTP_PWL_4:
2815  		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2816  			return false;
2817  		break;
2818  	default:
2819  		return false;
2820  	}
2821  
2822  	/* Reserved bits should not be set */
2823  	if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2824  		return false;
2825  
2826  	/* AD, if set, should be supported */
2827  	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2828  		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2829  			return false;
2830  	}
2831  
2832  	return true;
2833  }
2834  
2835  /*
2836   * Checks related to VM-Execution Control Fields
2837   */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2838  static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2839                                                struct vmcs12 *vmcs12)
2840  {
2841  	struct vcpu_vmx *vmx = to_vmx(vcpu);
2842  
2843  	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2844  				   vmx->nested.msrs.pinbased_ctls_low,
2845  				   vmx->nested.msrs.pinbased_ctls_high)) ||
2846  	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2847  				   vmx->nested.msrs.procbased_ctls_low,
2848  				   vmx->nested.msrs.procbased_ctls_high)))
2849  		return -EINVAL;
2850  
2851  	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2852  	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2853  				   vmx->nested.msrs.secondary_ctls_low,
2854  				   vmx->nested.msrs.secondary_ctls_high)))
2855  		return -EINVAL;
2856  
2857  	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2858  	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2859  	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2860  	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2861  	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2862  	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2863  	    nested_vmx_check_nmi_controls(vmcs12) ||
2864  	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2865  	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2866  	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2867  	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2868  	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2869  		return -EINVAL;
2870  
2871  	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2872  	    nested_cpu_has_save_preemption_timer(vmcs12))
2873  		return -EINVAL;
2874  
2875  	if (nested_cpu_has_ept(vmcs12) &&
2876  	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2877  		return -EINVAL;
2878  
2879  	if (nested_cpu_has_vmfunc(vmcs12)) {
2880  		if (CC(vmcs12->vm_function_control &
2881  		       ~vmx->nested.msrs.vmfunc_controls))
2882  			return -EINVAL;
2883  
2884  		if (nested_cpu_has_eptp_switching(vmcs12)) {
2885  			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2886  			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2887  				return -EINVAL;
2888  		}
2889  	}
2890  
2891  	return 0;
2892  }
2893  
2894  /*
2895   * Checks related to VM-Exit Control Fields
2896   */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2897  static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2898                                           struct vmcs12 *vmcs12)
2899  {
2900  	struct vcpu_vmx *vmx = to_vmx(vcpu);
2901  
2902  	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2903  				    vmx->nested.msrs.exit_ctls_low,
2904  				    vmx->nested.msrs.exit_ctls_high)) ||
2905  	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2906  		return -EINVAL;
2907  
2908  	return 0;
2909  }
2910  
2911  /*
2912   * Checks related to VM-Entry Control Fields
2913   */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2914  static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2915  					  struct vmcs12 *vmcs12)
2916  {
2917  	struct vcpu_vmx *vmx = to_vmx(vcpu);
2918  
2919  	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2920  				    vmx->nested.msrs.entry_ctls_low,
2921  				    vmx->nested.msrs.entry_ctls_high)))
2922  		return -EINVAL;
2923  
2924  	/*
2925  	 * From the Intel SDM, volume 3:
2926  	 * Fields relevant to VM-entry event injection must be set properly.
2927  	 * These fields are the VM-entry interruption-information field, the
2928  	 * VM-entry exception error code, and the VM-entry instruction length.
2929  	 */
2930  	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2931  		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2932  		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2933  		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2934  		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2935  		bool should_have_error_code;
2936  		bool urg = nested_cpu_has2(vmcs12,
2937  					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2938  		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2939  
2940  		/* VM-entry interruption-info field: interruption type */
2941  		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2942  		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2943  		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2944  			return -EINVAL;
2945  
2946  		/* VM-entry interruption-info field: vector */
2947  		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2948  		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2949  		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2950  			return -EINVAL;
2951  
2952  		/* VM-entry interruption-info field: deliver error code */
2953  		should_have_error_code =
2954  			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2955  			x86_exception_has_error_code(vector);
2956  		if (CC(has_error_code != should_have_error_code))
2957  			return -EINVAL;
2958  
2959  		/* VM-entry exception error code */
2960  		if (CC(has_error_code &&
2961  		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2962  			return -EINVAL;
2963  
2964  		/* VM-entry interruption-info field: reserved bits */
2965  		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2966  			return -EINVAL;
2967  
2968  		/* VM-entry instruction length */
2969  		switch (intr_type) {
2970  		case INTR_TYPE_SOFT_EXCEPTION:
2971  		case INTR_TYPE_SOFT_INTR:
2972  		case INTR_TYPE_PRIV_SW_EXCEPTION:
2973  			if (CC(vmcs12->vm_entry_instruction_len > X86_MAX_INSTRUCTION_LENGTH) ||
2974  			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2975  			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2976  				return -EINVAL;
2977  		}
2978  	}
2979  
2980  	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2981  		return -EINVAL;
2982  
2983  	return 0;
2984  }
2985  
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2986  static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2987  				     struct vmcs12 *vmcs12)
2988  {
2989  	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2990  	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2991  	    nested_check_vm_entry_controls(vcpu, vmcs12))
2992  		return -EINVAL;
2993  
2994  #ifdef CONFIG_KVM_HYPERV
2995  	if (guest_cpu_cap_has_evmcs(vcpu))
2996  		return nested_evmcs_check_controls(vmcs12);
2997  #endif
2998  
2999  	return 0;
3000  }
3001  
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3002  static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
3003  				       struct vmcs12 *vmcs12)
3004  {
3005  #ifdef CONFIG_X86_64
3006  	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
3007  		!!(vcpu->arch.efer & EFER_LMA)))
3008  		return -EINVAL;
3009  #endif
3010  	return 0;
3011  }
3012  
is_l1_noncanonical_address_on_vmexit(u64 la,struct vmcs12 * vmcs12)3013  static bool is_l1_noncanonical_address_on_vmexit(u64 la, struct vmcs12 *vmcs12)
3014  {
3015  	/*
3016  	 * Check that the given linear address is canonical after a VM exit
3017  	 * from L2, based on HOST_CR4.LA57 value that will be loaded for L1.
3018  	 */
3019  	u8 l1_address_bits_on_exit = (vmcs12->host_cr4 & X86_CR4_LA57) ? 57 : 48;
3020  
3021  	return !__is_canonical_address(la, l1_address_bits_on_exit);
3022  }
3023  
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3024  static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
3025  				       struct vmcs12 *vmcs12)
3026  {
3027  	bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
3028  
3029  	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
3030  	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
3031  	    CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
3032  		return -EINVAL;
3033  
3034  	if (CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
3035  	    CC(is_noncanonical_msr_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
3036  		return -EINVAL;
3037  
3038  	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
3039  	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
3040  		return -EINVAL;
3041  
3042  	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3043  	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3044  					   vmcs12->host_ia32_perf_global_ctrl)))
3045  		return -EINVAL;
3046  
3047  	if (ia32e) {
3048  		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
3049  			return -EINVAL;
3050  	} else {
3051  		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
3052  		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
3053  		    CC((vmcs12->host_rip) >> 32))
3054  			return -EINVAL;
3055  	}
3056  
3057  	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3058  	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3059  	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3060  	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3061  	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3062  	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3063  	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
3064  	    CC(vmcs12->host_cs_selector == 0) ||
3065  	    CC(vmcs12->host_tr_selector == 0) ||
3066  	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
3067  		return -EINVAL;
3068  
3069  	if (CC(is_noncanonical_base_address(vmcs12->host_fs_base, vcpu)) ||
3070  	    CC(is_noncanonical_base_address(vmcs12->host_gs_base, vcpu)) ||
3071  	    CC(is_noncanonical_base_address(vmcs12->host_gdtr_base, vcpu)) ||
3072  	    CC(is_noncanonical_base_address(vmcs12->host_idtr_base, vcpu)) ||
3073  	    CC(is_noncanonical_base_address(vmcs12->host_tr_base, vcpu)) ||
3074  	    CC(is_l1_noncanonical_address_on_vmexit(vmcs12->host_rip, vmcs12)))
3075  		return -EINVAL;
3076  
3077  	/*
3078  	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3079  	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
3080  	 * the values of the LMA and LME bits in the field must each be that of
3081  	 * the host address-space size VM-exit control.
3082  	 */
3083  	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3084  		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3085  		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3086  		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3087  			return -EINVAL;
3088  	}
3089  
3090  	return 0;
3091  }
3092  
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3093  static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3094  					  struct vmcs12 *vmcs12)
3095  {
3096  	struct vcpu_vmx *vmx = to_vmx(vcpu);
3097  	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3098  	struct vmcs_hdr hdr;
3099  
3100  	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3101  		return 0;
3102  
3103  	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3104  		return -EINVAL;
3105  
3106  	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3107  	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3108  					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3109                  return -EINVAL;
3110  
3111  	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3112  					    offsetof(struct vmcs12, hdr),
3113  					    sizeof(hdr))))
3114  		return -EINVAL;
3115  
3116  	if (CC(hdr.revision_id != VMCS12_REVISION) ||
3117  	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3118  		return -EINVAL;
3119  
3120  	return 0;
3121  }
3122  
3123  /*
3124   * Checks related to Guest Non-register State
3125   */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)3126  static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3127  {
3128  	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3129  	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3130  	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3131  		return -EINVAL;
3132  
3133  	return 0;
3134  }
3135  
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)3136  static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3137  					struct vmcs12 *vmcs12,
3138  					enum vm_entry_failure_code *entry_failure_code)
3139  {
3140  	bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3141  
3142  	*entry_failure_code = ENTRY_FAIL_DEFAULT;
3143  
3144  	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3145  	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3146  		return -EINVAL;
3147  
3148  	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3149  	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3150  		return -EINVAL;
3151  
3152  	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3153  	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3154  		return -EINVAL;
3155  
3156  	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3157  		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3158  		return -EINVAL;
3159  	}
3160  
3161  	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3162  	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3163  					   vmcs12->guest_ia32_perf_global_ctrl)))
3164  		return -EINVAL;
3165  
3166  	if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3167  		return -EINVAL;
3168  
3169  	if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3170  	    CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3171  		return -EINVAL;
3172  
3173  	/*
3174  	 * If the load IA32_EFER VM-entry control is 1, the following checks
3175  	 * are performed on the field for the IA32_EFER MSR:
3176  	 * - Bits reserved in the IA32_EFER MSR must be 0.
3177  	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3178  	 *   the IA-32e mode guest VM-exit control. It must also be identical
3179  	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3180  	 *   CR0.PG) is 1.
3181  	 */
3182  	if (to_vmx(vcpu)->nested.nested_run_pending &&
3183  	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3184  		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3185  		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3186  		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3187  		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3188  			return -EINVAL;
3189  	}
3190  
3191  	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3192  	    (CC(is_noncanonical_msr_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3193  	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3194  		return -EINVAL;
3195  
3196  	if (nested_check_guest_non_reg_state(vmcs12))
3197  		return -EINVAL;
3198  
3199  	return 0;
3200  }
3201  
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3202  static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3203  {
3204  	struct vcpu_vmx *vmx = to_vmx(vcpu);
3205  	unsigned long cr3, cr4;
3206  	bool vm_fail;
3207  
3208  	if (!nested_early_check)
3209  		return 0;
3210  
3211  	if (vmx->msr_autoload.host.nr)
3212  		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3213  	if (vmx->msr_autoload.guest.nr)
3214  		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3215  
3216  	preempt_disable();
3217  
3218  	vmx_prepare_switch_to_guest(vcpu);
3219  
3220  	/*
3221  	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3222  	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3223  	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3224  	 * there is no need to preserve other bits or save/restore the field.
3225  	 */
3226  	vmcs_writel(GUEST_RFLAGS, 0);
3227  
3228  	cr3 = __get_current_cr3_fast();
3229  	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3230  		vmcs_writel(HOST_CR3, cr3);
3231  		vmx->loaded_vmcs->host_state.cr3 = cr3;
3232  	}
3233  
3234  	cr4 = cr4_read_shadow();
3235  	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3236  		vmcs_writel(HOST_CR4, cr4);
3237  		vmx->loaded_vmcs->host_state.cr4 = cr4;
3238  	}
3239  
3240  	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3241  				 __vmx_vcpu_run_flags(vmx));
3242  
3243  	if (vmx->msr_autoload.host.nr)
3244  		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3245  	if (vmx->msr_autoload.guest.nr)
3246  		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3247  
3248  	if (vm_fail) {
3249  		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3250  
3251  		preempt_enable();
3252  
3253  		trace_kvm_nested_vmenter_failed(
3254  			"early hardware check VM-instruction error: ", error);
3255  		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3256  		return 1;
3257  	}
3258  
3259  	/*
3260  	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3261  	 */
3262  	if (hw_breakpoint_active())
3263  		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3264  	local_irq_enable();
3265  	preempt_enable();
3266  
3267  	/*
3268  	 * A non-failing VMEntry means we somehow entered guest mode with
3269  	 * an illegal RIP, and that's just the tip of the iceberg.  There
3270  	 * is no telling what memory has been modified or what state has
3271  	 * been exposed to unknown code.  Hitting this all but guarantees
3272  	 * a (very critical) hardware issue.
3273  	 */
3274  	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3275  		VMX_EXIT_REASONS_FAILED_VMENTRY));
3276  
3277  	return 0;
3278  }
3279  
3280  #ifdef CONFIG_KVM_HYPERV
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3281  static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3282  {
3283  	struct vcpu_vmx *vmx = to_vmx(vcpu);
3284  
3285  	/*
3286  	 * hv_evmcs may end up being not mapped after migration (when
3287  	 * L2 was running), map it here to make sure vmcs12 changes are
3288  	 * properly reflected.
3289  	 */
3290  	if (guest_cpu_cap_has_evmcs(vcpu) &&
3291  	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3292  		enum nested_evmptrld_status evmptrld_status =
3293  			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3294  
3295  		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3296  		    evmptrld_status == EVMPTRLD_ERROR)
3297  			return false;
3298  
3299  		/*
3300  		 * Post migration VMCS12 always provides the most actual
3301  		 * information, copy it to eVMCS upon entry.
3302  		 */
3303  		vmx->nested.need_vmcs12_to_shadow_sync = true;
3304  	}
3305  
3306  	return true;
3307  }
3308  #endif
3309  
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3310  static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3311  {
3312  	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3313  	struct vcpu_vmx *vmx = to_vmx(vcpu);
3314  	struct kvm_host_map *map;
3315  
3316  	if (!vcpu->arch.pdptrs_from_userspace &&
3317  	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3318  		/*
3319  		 * Reload the guest's PDPTRs since after a migration
3320  		 * the guest CR3 might be restored prior to setting the nested
3321  		 * state which can lead to a load of wrong PDPTRs.
3322  		 */
3323  		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3324  			return false;
3325  	}
3326  
3327  
3328  	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3329  		map = &vmx->nested.apic_access_page_map;
3330  
3331  		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->apic_access_addr), map)) {
3332  			vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(map->pfn));
3333  		} else {
3334  			pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3335  					     __func__);
3336  			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3337  			vcpu->run->internal.suberror =
3338  				KVM_INTERNAL_ERROR_EMULATION;
3339  			vcpu->run->internal.ndata = 0;
3340  			return false;
3341  		}
3342  	}
3343  
3344  	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3345  		map = &vmx->nested.virtual_apic_map;
3346  
3347  		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3348  			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3349  		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3350  		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3351  			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3352  			/*
3353  			 * The processor will never use the TPR shadow, simply
3354  			 * clear the bit from the execution control.  Such a
3355  			 * configuration is useless, but it happens in tests.
3356  			 * For any other configuration, failing the vm entry is
3357  			 * _not_ what the processor does but it's basically the
3358  			 * only possibility we have.
3359  			 */
3360  			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3361  		} else {
3362  			/*
3363  			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3364  			 * force VM-Entry to fail.
3365  			 */
3366  			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3367  		}
3368  	}
3369  
3370  	if (nested_cpu_has_posted_intr(vmcs12)) {
3371  		map = &vmx->nested.pi_desc_map;
3372  
3373  		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3374  			vmx->nested.pi_desc =
3375  				(struct pi_desc *)(((void *)map->hva) +
3376  				offset_in_page(vmcs12->posted_intr_desc_addr));
3377  			vmcs_write64(POSTED_INTR_DESC_ADDR,
3378  				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3379  		} else {
3380  			/*
3381  			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3382  			 * access the contents of the VMCS12 posted interrupt
3383  			 * descriptor. (Note that KVM may do this when it
3384  			 * should not, per the architectural specification.)
3385  			 */
3386  			vmx->nested.pi_desc = NULL;
3387  			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3388  		}
3389  	}
3390  	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3391  		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3392  	else
3393  		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3394  
3395  	return true;
3396  }
3397  
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3398  static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3399  {
3400  #ifdef CONFIG_KVM_HYPERV
3401  	/*
3402  	 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3403  	 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3404  	 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3405  	 * migration.
3406  	 */
3407  	if (!nested_get_evmcs_page(vcpu)) {
3408  		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3409  				     __func__);
3410  		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3411  		vcpu->run->internal.suberror =
3412  			KVM_INTERNAL_ERROR_EMULATION;
3413  		vcpu->run->internal.ndata = 0;
3414  
3415  		return false;
3416  	}
3417  #endif
3418  
3419  	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3420  		return false;
3421  
3422  	return true;
3423  }
3424  
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3425  static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3426  {
3427  	struct vmcs12 *vmcs12;
3428  	struct vcpu_vmx *vmx = to_vmx(vcpu);
3429  	gpa_t dst;
3430  
3431  	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3432  		return 0;
3433  
3434  	if (WARN_ON_ONCE(vmx->nested.pml_full))
3435  		return 1;
3436  
3437  	/*
3438  	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3439  	 * set is already checked as part of A/D emulation.
3440  	 */
3441  	vmcs12 = get_vmcs12(vcpu);
3442  	if (!nested_cpu_has_pml(vmcs12))
3443  		return 0;
3444  
3445  	if (vmcs12->guest_pml_index >= PML_LOG_NR_ENTRIES) {
3446  		vmx->nested.pml_full = true;
3447  		return 1;
3448  	}
3449  
3450  	gpa &= ~0xFFFull;
3451  	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3452  
3453  	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3454  				 offset_in_page(dst), sizeof(gpa)))
3455  		return 0;
3456  
3457  	vmcs12->guest_pml_index--;
3458  
3459  	return 0;
3460  }
3461  
3462  /*
3463   * Intel's VMX Instruction Reference specifies a common set of prerequisites
3464   * for running VMX instructions (except VMXON, whose prerequisites are
3465   * slightly different). It also specifies what exception to inject otherwise.
3466   * Note that many of these exceptions have priority over VM exits, so they
3467   * don't have to be checked again here.
3468   */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3469  static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3470  {
3471  	if (!to_vmx(vcpu)->nested.vmxon) {
3472  		kvm_queue_exception(vcpu, UD_VECTOR);
3473  		return 0;
3474  	}
3475  
3476  	if (vmx_get_cpl(vcpu)) {
3477  		kvm_inject_gp(vcpu, 0);
3478  		return 0;
3479  	}
3480  
3481  	return 1;
3482  }
3483  
3484  static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3485  				   struct vmcs12 *vmcs12);
3486  
3487  /*
3488   * If from_vmentry is false, this is being called from state restore (either RSM
3489   * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3490   *
3491   * Returns:
3492   *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3493   *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3494   *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3495   *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3496   */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3497  enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3498  							bool from_vmentry)
3499  {
3500  	struct vcpu_vmx *vmx = to_vmx(vcpu);
3501  	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3502  	enum vm_entry_failure_code entry_failure_code;
3503  	union vmx_exit_reason exit_reason = {
3504  		.basic = EXIT_REASON_INVALID_STATE,
3505  		.failed_vmentry = 1,
3506  	};
3507  	u32 failed_index;
3508  
3509  	trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3510  				 vmx->nested.current_vmptr,
3511  				 vmcs12->guest_rip,
3512  				 vmcs12->guest_intr_status,
3513  				 vmcs12->vm_entry_intr_info_field,
3514  				 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3515  				 vmcs12->ept_pointer,
3516  				 vmcs12->guest_cr3,
3517  				 KVM_ISA_VMX);
3518  
3519  	kvm_service_local_tlb_flush_requests(vcpu);
3520  
3521  	if (!vmx->nested.nested_run_pending ||
3522  	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3523  		vmx->nested.pre_vmenter_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3524  	if (kvm_mpx_supported() &&
3525  	    (!vmx->nested.nested_run_pending ||
3526  	     !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3527  		vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3528  
3529  	/*
3530  	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3531  	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3532  	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3533  	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3534  	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3535  	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3536  	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3537  	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3538  	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3539  	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3540  	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3541  	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3542  	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3543  	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3544  	 */
3545  	if (!enable_ept && !nested_early_check)
3546  		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3547  
3548  	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3549  
3550  	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3551  
3552  	if (from_vmentry) {
3553  		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3554  			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3555  			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3556  		}
3557  
3558  		if (nested_vmx_check_vmentry_hw(vcpu)) {
3559  			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3560  			return NVMX_VMENTRY_VMFAIL;
3561  		}
3562  
3563  		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3564  						 &entry_failure_code)) {
3565  			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3566  			vmcs12->exit_qualification = entry_failure_code;
3567  			goto vmentry_fail_vmexit;
3568  		}
3569  	}
3570  
3571  	enter_guest_mode(vcpu);
3572  
3573  	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3574  		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3575  		vmcs12->exit_qualification = entry_failure_code;
3576  		goto vmentry_fail_vmexit_guest_mode;
3577  	}
3578  
3579  	if (from_vmentry) {
3580  		failed_index = nested_vmx_load_msr(vcpu,
3581  						   vmcs12->vm_entry_msr_load_addr,
3582  						   vmcs12->vm_entry_msr_load_count);
3583  		if (failed_index) {
3584  			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3585  			vmcs12->exit_qualification = failed_index;
3586  			goto vmentry_fail_vmexit_guest_mode;
3587  		}
3588  	} else {
3589  		/*
3590  		 * The MMU is not initialized to point at the right entities yet and
3591  		 * "get pages" would need to read data from the guest (i.e. we will
3592  		 * need to perform gpa to hpa translation). Request a call
3593  		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3594  		 * have already been set at vmentry time and should not be reset.
3595  		 */
3596  		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3597  	}
3598  
3599  	/*
3600  	 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3601  	 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3602  	 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3603  	 * unconditionally.  Take care to pull data from vmcs01 as appropriate,
3604  	 * e.g. when checking for interrupt windows, as vmcs02 is now loaded.
3605  	 */
3606  	if ((__exec_controls_get(&vmx->vmcs01) & (CPU_BASED_INTR_WINDOW_EXITING |
3607  						  CPU_BASED_NMI_WINDOW_EXITING)) ||
3608  	    kvm_apic_has_pending_init_or_sipi(vcpu) ||
3609  	    kvm_apic_has_interrupt(vcpu))
3610  		kvm_make_request(KVM_REQ_EVENT, vcpu);
3611  
3612  	/*
3613  	 * Do not start the preemption timer hrtimer until after we know
3614  	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3615  	 * the timer.
3616  	 */
3617  	vmx->nested.preemption_timer_expired = false;
3618  	if (nested_cpu_has_preemption_timer(vmcs12)) {
3619  		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3620  		vmx_start_preemption_timer(vcpu, timer_value);
3621  	}
3622  
3623  	/*
3624  	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3625  	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3626  	 * returned as far as L1 is concerned. It will only return (and set
3627  	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3628  	 */
3629  	return NVMX_VMENTRY_SUCCESS;
3630  
3631  	/*
3632  	 * A failed consistency check that leads to a VMExit during L1's
3633  	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3634  	 * 26.7 "VM-entry failures during or after loading guest state".
3635  	 */
3636  vmentry_fail_vmexit_guest_mode:
3637  	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3638  		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3639  	leave_guest_mode(vcpu);
3640  
3641  vmentry_fail_vmexit:
3642  	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3643  
3644  	if (!from_vmentry)
3645  		return NVMX_VMENTRY_VMEXIT;
3646  
3647  	load_vmcs12_host_state(vcpu, vmcs12);
3648  	vmcs12->vm_exit_reason = exit_reason.full;
3649  	if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3650  		vmx->nested.need_vmcs12_to_shadow_sync = true;
3651  	return NVMX_VMENTRY_VMEXIT;
3652  }
3653  
3654  /*
3655   * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3656   * for running an L2 nested guest.
3657   */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3658  static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3659  {
3660  	struct vmcs12 *vmcs12;
3661  	enum nvmx_vmentry_status status;
3662  	struct vcpu_vmx *vmx = to_vmx(vcpu);
3663  	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3664  	enum nested_evmptrld_status evmptrld_status;
3665  
3666  	if (!nested_vmx_check_permission(vcpu))
3667  		return 1;
3668  
3669  	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3670  	if (evmptrld_status == EVMPTRLD_ERROR) {
3671  		kvm_queue_exception(vcpu, UD_VECTOR);
3672  		return 1;
3673  	}
3674  
3675  	kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
3676  
3677  	if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3678  		return nested_vmx_failInvalid(vcpu);
3679  
3680  	if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3681  	       vmx->nested.current_vmptr == INVALID_GPA))
3682  		return nested_vmx_failInvalid(vcpu);
3683  
3684  	vmcs12 = get_vmcs12(vcpu);
3685  
3686  	/*
3687  	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3688  	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3689  	 * rather than RFLAGS.ZF, and no error number is stored to the
3690  	 * VM-instruction error field.
3691  	 */
3692  	if (CC(vmcs12->hdr.shadow_vmcs))
3693  		return nested_vmx_failInvalid(vcpu);
3694  
3695  	if (nested_vmx_is_evmptr12_valid(vmx)) {
3696  		struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3697  
3698  		copy_enlightened_to_vmcs12(vmx, evmcs->hv_clean_fields);
3699  		/* Enlightened VMCS doesn't have launch state */
3700  		vmcs12->launch_state = !launch;
3701  	} else if (enable_shadow_vmcs) {
3702  		copy_shadow_to_vmcs12(vmx);
3703  	}
3704  
3705  	/*
3706  	 * The nested entry process starts with enforcing various prerequisites
3707  	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3708  	 * they fail: As the SDM explains, some conditions should cause the
3709  	 * instruction to fail, while others will cause the instruction to seem
3710  	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3711  	 * To speed up the normal (success) code path, we should avoid checking
3712  	 * for misconfigurations which will anyway be caught by the processor
3713  	 * when using the merged vmcs02.
3714  	 */
3715  	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3716  		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3717  
3718  	if (CC(vmcs12->launch_state == launch))
3719  		return nested_vmx_fail(vcpu,
3720  			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3721  			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3722  
3723  	if (nested_vmx_check_controls(vcpu, vmcs12))
3724  		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3725  
3726  	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3727  		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3728  
3729  	if (nested_vmx_check_host_state(vcpu, vmcs12))
3730  		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3731  
3732  	/*
3733  	 * We're finally done with prerequisite checking, and can start with
3734  	 * the nested entry.
3735  	 */
3736  	vmx->nested.nested_run_pending = 1;
3737  	vmx->nested.has_preemption_timer_deadline = false;
3738  	status = nested_vmx_enter_non_root_mode(vcpu, true);
3739  	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3740  		goto vmentry_failed;
3741  
3742  	/* Hide L1D cache contents from the nested guest.  */
3743  	vmx->vcpu.arch.l1tf_flush_l1d = true;
3744  
3745  	/*
3746  	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3747  	 * also be used as part of restoring nVMX state for
3748  	 * snapshot restore (migration).
3749  	 *
3750  	 * In this flow, it is assumed that vmcs12 cache was
3751  	 * transferred as part of captured nVMX state and should
3752  	 * therefore not be read from guest memory (which may not
3753  	 * exist on destination host yet).
3754  	 */
3755  	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3756  
3757  	switch (vmcs12->guest_activity_state) {
3758  	case GUEST_ACTIVITY_HLT:
3759  		/*
3760  		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3761  		 * awakened by event injection or by an NMI-window VM-exit or
3762  		 * by an interrupt-window VM-exit, halt the vcpu.
3763  		 */
3764  		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3765  		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3766  		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3767  		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3768  			vmx->nested.nested_run_pending = 0;
3769  			return kvm_emulate_halt_noskip(vcpu);
3770  		}
3771  		break;
3772  	case GUEST_ACTIVITY_WAIT_SIPI:
3773  		vmx->nested.nested_run_pending = 0;
3774  		kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED);
3775  		break;
3776  	default:
3777  		break;
3778  	}
3779  
3780  	return 1;
3781  
3782  vmentry_failed:
3783  	vmx->nested.nested_run_pending = 0;
3784  	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3785  		return 0;
3786  	if (status == NVMX_VMENTRY_VMEXIT)
3787  		return 1;
3788  	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3789  	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3790  }
3791  
3792  /*
3793   * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3794   * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3795   * This function returns the new value we should put in vmcs12.guest_cr0.
3796   * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3797   *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3798   *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3799   *     didn't trap the bit, because if L1 did, so would L0).
3800   *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3801   *     been modified by L2, and L1 knows it. So just leave the old value of
3802   *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3803   *     isn't relevant, because if L0 traps this bit it can set it to anything.
3804   *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3805   *     changed these bits, and therefore they need to be updated, but L0
3806   *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3807   *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3808   */
3809  static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3810  vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3811  {
3812  	return
3813  	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3814  	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3815  	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3816  			vcpu->arch.cr0_guest_owned_bits));
3817  }
3818  
3819  static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3820  vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3821  {
3822  	return
3823  	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3824  	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3825  	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3826  			vcpu->arch.cr4_guest_owned_bits));
3827  }
3828  
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3829  static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3830  				      struct vmcs12 *vmcs12,
3831  				      u32 vm_exit_reason, u32 exit_intr_info)
3832  {
3833  	u32 idt_vectoring;
3834  	unsigned int nr;
3835  
3836  	/*
3837  	 * Per the SDM, VM-Exits due to double and triple faults are never
3838  	 * considered to occur during event delivery, even if the double/triple
3839  	 * fault is the result of an escalating vectoring issue.
3840  	 *
3841  	 * Note, the SDM qualifies the double fault behavior with "The original
3842  	 * event results in a double-fault exception".  It's unclear why the
3843  	 * qualification exists since exits due to double fault can occur only
3844  	 * while vectoring a different exception (injected events are never
3845  	 * subject to interception), i.e. there's _always_ an original event.
3846  	 *
3847  	 * The SDM also uses NMI as a confusing example for the "original event
3848  	 * causes the VM exit directly" clause.  NMI isn't special in any way,
3849  	 * the same rule applies to all events that cause an exit directly.
3850  	 * NMI is an odd choice for the example because NMIs can only occur on
3851  	 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3852  	 */
3853  	if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3854  	    ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3855  	     is_double_fault(exit_intr_info))) {
3856  		vmcs12->idt_vectoring_info_field = 0;
3857  	} else if (vcpu->arch.exception.injected) {
3858  		nr = vcpu->arch.exception.vector;
3859  		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3860  
3861  		if (kvm_exception_is_soft(nr)) {
3862  			vmcs12->vm_exit_instruction_len =
3863  				vcpu->arch.event_exit_inst_len;
3864  			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3865  		} else
3866  			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3867  
3868  		if (vcpu->arch.exception.has_error_code) {
3869  			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3870  			vmcs12->idt_vectoring_error_code =
3871  				vcpu->arch.exception.error_code;
3872  		}
3873  
3874  		vmcs12->idt_vectoring_info_field = idt_vectoring;
3875  	} else if (vcpu->arch.nmi_injected) {
3876  		vmcs12->idt_vectoring_info_field =
3877  			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3878  	} else if (vcpu->arch.interrupt.injected) {
3879  		nr = vcpu->arch.interrupt.nr;
3880  		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3881  
3882  		if (vcpu->arch.interrupt.soft) {
3883  			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3884  			vmcs12->vm_entry_instruction_len =
3885  				vcpu->arch.event_exit_inst_len;
3886  		} else
3887  			idt_vectoring |= INTR_TYPE_EXT_INTR;
3888  
3889  		vmcs12->idt_vectoring_info_field = idt_vectoring;
3890  	} else {
3891  		vmcs12->idt_vectoring_info_field = 0;
3892  	}
3893  }
3894  
3895  
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3896  void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3897  {
3898  	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3899  	gfn_t gfn;
3900  
3901  	/*
3902  	 * Don't need to mark the APIC access page dirty; it is never
3903  	 * written to by the CPU during APIC virtualization.
3904  	 */
3905  
3906  	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3907  		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3908  		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3909  	}
3910  
3911  	if (nested_cpu_has_posted_intr(vmcs12)) {
3912  		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3913  		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3914  	}
3915  }
3916  
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3917  static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3918  {
3919  	struct vcpu_vmx *vmx = to_vmx(vcpu);
3920  	int max_irr;
3921  	void *vapic_page;
3922  	u16 status;
3923  
3924  	if (!vmx->nested.pi_pending)
3925  		return 0;
3926  
3927  	if (!vmx->nested.pi_desc)
3928  		goto mmio_needed;
3929  
3930  	vmx->nested.pi_pending = false;
3931  
3932  	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3933  		return 0;
3934  
3935  	max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
3936  	if (max_irr > 0) {
3937  		vapic_page = vmx->nested.virtual_apic_map.hva;
3938  		if (!vapic_page)
3939  			goto mmio_needed;
3940  
3941  		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3942  			vapic_page, &max_irr);
3943  		status = vmcs_read16(GUEST_INTR_STATUS);
3944  		if ((u8)max_irr > ((u8)status & 0xff)) {
3945  			status &= ~0xff;
3946  			status |= (u8)max_irr;
3947  			vmcs_write16(GUEST_INTR_STATUS, status);
3948  		}
3949  	}
3950  
3951  	nested_mark_vmcs12_pages_dirty(vcpu);
3952  	return 0;
3953  
3954  mmio_needed:
3955  	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3956  	return -ENXIO;
3957  }
3958  
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu)3959  static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3960  {
3961  	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3962  	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3963  	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3964  	unsigned long exit_qual;
3965  
3966  	if (ex->has_payload) {
3967  		exit_qual = ex->payload;
3968  	} else if (ex->vector == PF_VECTOR) {
3969  		exit_qual = vcpu->arch.cr2;
3970  	} else if (ex->vector == DB_VECTOR) {
3971  		exit_qual = vcpu->arch.dr6;
3972  		exit_qual &= ~DR6_BT;
3973  		exit_qual ^= DR6_ACTIVE_LOW;
3974  	} else {
3975  		exit_qual = 0;
3976  	}
3977  
3978  	/*
3979  	 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3980  	 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3981  	 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3982  	 */
3983  	if (ex->has_error_code && is_protmode(vcpu)) {
3984  		/*
3985  		 * Intel CPUs do not generate error codes with bits 31:16 set,
3986  		 * and more importantly VMX disallows setting bits 31:16 in the
3987  		 * injected error code for VM-Entry.  Drop the bits to mimic
3988  		 * hardware and avoid inducing failure on nested VM-Entry if L1
3989  		 * chooses to inject the exception back to L2.  AMD CPUs _do_
3990  		 * generate "full" 32-bit error codes, so KVM allows userspace
3991  		 * to inject exception error codes with bits 31:16 set.
3992  		 */
3993  		vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3994  		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3995  	}
3996  
3997  	if (kvm_exception_is_soft(ex->vector))
3998  		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3999  	else
4000  		intr_info |= INTR_TYPE_HARD_EXCEPTION;
4001  
4002  	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
4003  	    vmx_get_nmi_mask(vcpu))
4004  		intr_info |= INTR_INFO_UNBLOCK_NMI;
4005  
4006  	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
4007  }
4008  
4009  /*
4010   * Returns true if a debug trap is (likely) pending delivery.  Infer the class
4011   * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
4012   * Using the payload is flawed because code breakpoints (fault-like) and data
4013   * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
4014   * this will return false positives if a to-be-injected code breakpoint #DB is
4015   * pending (from KVM's perspective, but not "pending" across an instruction
4016   * boundary).  ICEBP, a.k.a. INT1, is also not reflected here even though it
4017   * too is trap-like.
4018   *
4019   * KVM "works" despite these flaws as ICEBP isn't currently supported by the
4020   * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
4021   * #DB has already happened), and MTF isn't marked pending on code breakpoints
4022   * from the emulator (because such #DBs are fault-like and thus don't trigger
4023   * actions that fire on instruction retire).
4024   */
vmx_get_pending_dbg_trap(struct kvm_queued_exception * ex)4025  static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
4026  {
4027  	if (!ex->pending || ex->vector != DB_VECTOR)
4028  		return 0;
4029  
4030  	/* General Detect #DBs are always fault-like. */
4031  	return ex->payload & ~DR6_BD;
4032  }
4033  
4034  /*
4035   * Returns true if there's a pending #DB exception that is lower priority than
4036   * a pending Monitor Trap Flag VM-Exit.  TSS T-flag #DBs are not emulated by
4037   * KVM, but could theoretically be injected by userspace.  Note, this code is
4038   * imperfect, see above.
4039   */
vmx_is_low_priority_db_trap(struct kvm_queued_exception * ex)4040  static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
4041  {
4042  	return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
4043  }
4044  
4045  /*
4046   * Certain VM-exits set the 'pending debug exceptions' field to indicate a
4047   * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
4048   * represents these debug traps with a payload that is said to be compatible
4049   * with the 'pending debug exceptions' field, write the payload to the VMCS
4050   * field if a VM-exit is delivered before the debug trap.
4051   */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)4052  static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
4053  {
4054  	unsigned long pending_dbg;
4055  
4056  	pending_dbg = vmx_get_pending_dbg_trap(&vcpu->arch.exception);
4057  	if (pending_dbg)
4058  		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, pending_dbg);
4059  }
4060  
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)4061  static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4062  {
4063  	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
4064  	       to_vmx(vcpu)->nested.preemption_timer_expired;
4065  }
4066  
vmx_has_nested_events(struct kvm_vcpu * vcpu,bool for_injection)4067  static bool vmx_has_nested_events(struct kvm_vcpu *vcpu, bool for_injection)
4068  {
4069  	struct vcpu_vmx *vmx = to_vmx(vcpu);
4070  	void *vapic = vmx->nested.virtual_apic_map.hva;
4071  	int max_irr, vppr;
4072  
4073  	if (nested_vmx_preemption_timer_pending(vcpu) ||
4074  	    vmx->nested.mtf_pending)
4075  		return true;
4076  
4077  	/*
4078  	 * Virtual Interrupt Delivery doesn't require manual injection.  Either
4079  	 * the interrupt is already in GUEST_RVI and will be recognized by CPU
4080  	 * at VM-Entry, or there is a KVM_REQ_EVENT pending and KVM will move
4081  	 * the interrupt from the PIR to RVI prior to entering the guest.
4082  	 */
4083  	if (for_injection)
4084  		return false;
4085  
4086  	if (!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4087  	    __vmx_interrupt_blocked(vcpu))
4088  		return false;
4089  
4090  	if (!vapic)
4091  		return false;
4092  
4093  	vppr = *((u32 *)(vapic + APIC_PROCPRI));
4094  
4095  	max_irr = vmx_get_rvi();
4096  	if ((max_irr & 0xf0) > (vppr & 0xf0))
4097  		return true;
4098  
4099  	if (vmx->nested.pi_pending && vmx->nested.pi_desc &&
4100  	    pi_test_on(vmx->nested.pi_desc)) {
4101  		max_irr = pi_find_highest_vector(vmx->nested.pi_desc);
4102  		if (max_irr > 0 && (max_irr & 0xf0) > (vppr & 0xf0))
4103  			return true;
4104  	}
4105  
4106  	return false;
4107  }
4108  
4109  /*
4110   * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4111   * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4112   * and less minor edits to splice in the priority of VMX Non-Root specific
4113   * events, e.g. MTF and NMI/INTR-window exiting.
4114   *
4115   * 1 Hardware Reset and Machine Checks
4116   *	- RESET
4117   *	- Machine Check
4118   *
4119   * 2 Trap on Task Switch
4120   *	- T flag in TSS is set (on task switch)
4121   *
4122   * 3 External Hardware Interventions
4123   *	- FLUSH
4124   *	- STOPCLK
4125   *	- SMI
4126   *	- INIT
4127   *
4128   * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4129   *
4130   * 4 Traps on Previous Instruction
4131   *	- Breakpoints
4132   *	- Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4133   *	  breakpoint, or #DB due to a split-lock access)
4134   *
4135   * 4.3	VMX-preemption timer expired VM-exit
4136   *
4137   * 4.6	NMI-window exiting VM-exit[2]
4138   *
4139   * 5 Nonmaskable Interrupts (NMI)
4140   *
4141   * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4142   *
4143   * 6 Maskable Hardware Interrupts
4144   *
4145   * 7 Code Breakpoint Fault
4146   *
4147   * 8 Faults from Fetching Next Instruction
4148   *	- Code-Segment Limit Violation
4149   *	- Code Page Fault
4150   *	- Control protection exception (missing ENDBRANCH at target of indirect
4151   *					call or jump)
4152   *
4153   * 9 Faults from Decoding Next Instruction
4154   *	- Instruction length > 15 bytes
4155   *	- Invalid Opcode
4156   *	- Coprocessor Not Available
4157   *
4158   *10 Faults on Executing Instruction
4159   *	- Overflow
4160   *	- Bound error
4161   *	- Invalid TSS
4162   *	- Segment Not Present
4163   *	- Stack fault
4164   *	- General Protection
4165   *	- Data Page Fault
4166   *	- Alignment Check
4167   *	- x86 FPU Floating-point exception
4168   *	- SIMD floating-point exception
4169   *	- Virtualization exception
4170   *	- Control protection exception
4171   *
4172   * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4173   *     INIT signals, and higher priority events take priority over MTF VM exits.
4174   *     MTF VM exits take priority over debug-trap exceptions and lower priority
4175   *     events.
4176   *
4177   * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4178   *     caused by the VMX-preemption timer.  VM exits caused by the VMX-preemption
4179   *     timer take priority over VM exits caused by the "NMI-window exiting"
4180   *     VM-execution control and lower priority events.
4181   *
4182   * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4183   *     caused by "NMI-window exiting".  VM exits caused by this control take
4184   *     priority over non-maskable interrupts (NMIs) and lower priority events.
4185   *
4186   * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4187   *     the 1-setting of the "interrupt-window exiting" VM-execution control.  Thus,
4188   *     non-maskable interrupts (NMIs) and higher priority events take priority over
4189   *     delivery of a virtual interrupt; delivery of a virtual interrupt takes
4190   *     priority over external interrupts and lower priority events.
4191   */
vmx_check_nested_events(struct kvm_vcpu * vcpu)4192  static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4193  {
4194  	struct kvm_lapic *apic = vcpu->arch.apic;
4195  	struct vcpu_vmx *vmx = to_vmx(vcpu);
4196  	/*
4197  	 * Only a pending nested run blocks a pending exception.  If there is a
4198  	 * previously injected event, the pending exception occurred while said
4199  	 * event was being delivered and thus needs to be handled.
4200  	 */
4201  	bool block_nested_exceptions = vmx->nested.nested_run_pending;
4202  	/*
4203  	 * Events that don't require injection, i.e. that are virtualized by
4204  	 * hardware, aren't blocked by a pending VM-Enter as KVM doesn't need
4205  	 * to regain control in order to deliver the event, and hardware will
4206  	 * handle event ordering, e.g. with respect to injected exceptions.
4207  	 *
4208  	 * But, new events (not exceptions) are only recognized at instruction
4209  	 * boundaries.  If an event needs reinjection, then KVM is handling a
4210  	 * VM-Exit that occurred _during_ instruction execution; new events,
4211  	 * irrespective of whether or not they're injected, are blocked until
4212  	 * the instruction completes.
4213  	 */
4214  	bool block_non_injected_events = kvm_event_needs_reinjection(vcpu);
4215  	/*
4216  	 * Inject events are blocked by nested VM-Enter, as KVM is responsible
4217  	 * for managing priority between concurrent events, i.e. KVM needs to
4218  	 * wait until after VM-Enter completes to deliver injected events.
4219  	 */
4220  	bool block_nested_events = block_nested_exceptions ||
4221  				   block_non_injected_events;
4222  
4223  	if (lapic_in_kernel(vcpu) &&
4224  		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4225  		if (block_nested_events)
4226  			return -EBUSY;
4227  		nested_vmx_update_pending_dbg(vcpu);
4228  		clear_bit(KVM_APIC_INIT, &apic->pending_events);
4229  		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4230  			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
4231  
4232  		/* MTF is discarded if the vCPU is in WFS. */
4233  		vmx->nested.mtf_pending = false;
4234  		return 0;
4235  	}
4236  
4237  	if (lapic_in_kernel(vcpu) &&
4238  	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4239  		if (block_nested_events)
4240  			return -EBUSY;
4241  
4242  		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
4243  		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4244  			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
4245  						apic->sipi_vector & 0xFFUL);
4246  			return 0;
4247  		}
4248  		/* Fallthrough, the SIPI is completely ignored. */
4249  	}
4250  
4251  	/*
4252  	 * Process exceptions that are higher priority than Monitor Trap Flag:
4253  	 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4254  	 * could theoretically come in from userspace), and ICEBP (INT1).
4255  	 *
4256  	 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4257  	 * for TSS T flag #DBs).  KVM also doesn't save/restore pending MTF
4258  	 * across SMI/RSM as it should; that needs to be addressed in order to
4259  	 * prioritize SMI over MTF and trap-like #DBs.
4260  	 */
4261  	if (vcpu->arch.exception_vmexit.pending &&
4262  	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception_vmexit)) {
4263  		if (block_nested_exceptions)
4264  			return -EBUSY;
4265  
4266  		nested_vmx_inject_exception_vmexit(vcpu);
4267  		return 0;
4268  	}
4269  
4270  	if (vcpu->arch.exception.pending &&
4271  	    !vmx_is_low_priority_db_trap(&vcpu->arch.exception)) {
4272  		if (block_nested_exceptions)
4273  			return -EBUSY;
4274  		goto no_vmexit;
4275  	}
4276  
4277  	if (vmx->nested.mtf_pending) {
4278  		if (block_nested_events)
4279  			return -EBUSY;
4280  		nested_vmx_update_pending_dbg(vcpu);
4281  		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
4282  		return 0;
4283  	}
4284  
4285  	if (vcpu->arch.exception_vmexit.pending) {
4286  		if (block_nested_exceptions)
4287  			return -EBUSY;
4288  
4289  		nested_vmx_inject_exception_vmexit(vcpu);
4290  		return 0;
4291  	}
4292  
4293  	if (vcpu->arch.exception.pending) {
4294  		if (block_nested_exceptions)
4295  			return -EBUSY;
4296  		goto no_vmexit;
4297  	}
4298  
4299  	if (nested_vmx_preemption_timer_pending(vcpu)) {
4300  		if (block_nested_events)
4301  			return -EBUSY;
4302  		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
4303  		return 0;
4304  	}
4305  
4306  	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4307  		if (block_nested_events)
4308  			return -EBUSY;
4309  		goto no_vmexit;
4310  	}
4311  
4312  	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4313  		if (block_nested_events)
4314  			return -EBUSY;
4315  		if (!nested_exit_on_nmi(vcpu))
4316  			goto no_vmexit;
4317  
4318  		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4319  				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
4320  				  INTR_INFO_VALID_MASK, 0);
4321  		/*
4322  		 * The NMI-triggered VM exit counts as injection:
4323  		 * clear this one and block further NMIs.
4324  		 */
4325  		vcpu->arch.nmi_pending = 0;
4326  		vmx_set_nmi_mask(vcpu, true);
4327  		return 0;
4328  	}
4329  
4330  	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4331  		int irq;
4332  
4333  		if (!nested_exit_on_intr(vcpu)) {
4334  			if (block_nested_events)
4335  				return -EBUSY;
4336  
4337  			goto no_vmexit;
4338  		}
4339  
4340  		if (!nested_exit_intr_ack_set(vcpu)) {
4341  			if (block_nested_events)
4342  				return -EBUSY;
4343  
4344  			nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
4345  			return 0;
4346  		}
4347  
4348  		irq = kvm_cpu_get_extint(vcpu);
4349  		if (irq != -1) {
4350  			if (block_nested_events)
4351  				return -EBUSY;
4352  
4353  			nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4354  					  INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4355  			return 0;
4356  		}
4357  
4358  		irq = kvm_apic_has_interrupt(vcpu);
4359  		if (WARN_ON_ONCE(irq < 0))
4360  			goto no_vmexit;
4361  
4362  		/*
4363  		 * If the IRQ is L2's PI notification vector, process posted
4364  		 * interrupts for L2 instead of injecting VM-Exit, as the
4365  		 * detection/morphing architecturally occurs when the IRQ is
4366  		 * delivered to the CPU.  Note, only interrupts that are routed
4367  		 * through the local APIC trigger posted interrupt processing,
4368  		 * and enabling posted interrupts requires ACK-on-exit.
4369  		 */
4370  		if (irq == vmx->nested.posted_intr_nv) {
4371  			/*
4372  			 * Nested posted interrupts are delivered via RVI, i.e.
4373  			 * aren't injected by KVM, and so can be queued even if
4374  			 * manual event injection is disallowed.
4375  			 */
4376  			if (block_non_injected_events)
4377  				return -EBUSY;
4378  
4379  			vmx->nested.pi_pending = true;
4380  			kvm_apic_clear_irr(vcpu, irq);
4381  			goto no_vmexit;
4382  		}
4383  
4384  		if (block_nested_events)
4385  			return -EBUSY;
4386  
4387  		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT,
4388  				  INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR | irq, 0);
4389  
4390  		/*
4391  		 * ACK the interrupt _after_ emulating VM-Exit, as the IRQ must
4392  		 * be marked as in-service in vmcs01.GUEST_INTERRUPT_STATUS.SVI
4393  		 * if APICv is active.
4394  		 */
4395  		kvm_apic_ack_interrupt(vcpu, irq);
4396  		return 0;
4397  	}
4398  
4399  no_vmexit:
4400  	return vmx_complete_nested_posted_interrupt(vcpu);
4401  }
4402  
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)4403  static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4404  {
4405  	ktime_t remaining =
4406  		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4407  	u64 value;
4408  
4409  	if (ktime_to_ns(remaining) <= 0)
4410  		return 0;
4411  
4412  	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4413  	do_div(value, 1000000);
4414  	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4415  }
4416  
is_vmcs12_ext_field(unsigned long field)4417  static bool is_vmcs12_ext_field(unsigned long field)
4418  {
4419  	switch (field) {
4420  	case GUEST_ES_SELECTOR:
4421  	case GUEST_CS_SELECTOR:
4422  	case GUEST_SS_SELECTOR:
4423  	case GUEST_DS_SELECTOR:
4424  	case GUEST_FS_SELECTOR:
4425  	case GUEST_GS_SELECTOR:
4426  	case GUEST_LDTR_SELECTOR:
4427  	case GUEST_TR_SELECTOR:
4428  	case GUEST_ES_LIMIT:
4429  	case GUEST_CS_LIMIT:
4430  	case GUEST_SS_LIMIT:
4431  	case GUEST_DS_LIMIT:
4432  	case GUEST_FS_LIMIT:
4433  	case GUEST_GS_LIMIT:
4434  	case GUEST_LDTR_LIMIT:
4435  	case GUEST_TR_LIMIT:
4436  	case GUEST_GDTR_LIMIT:
4437  	case GUEST_IDTR_LIMIT:
4438  	case GUEST_ES_AR_BYTES:
4439  	case GUEST_DS_AR_BYTES:
4440  	case GUEST_FS_AR_BYTES:
4441  	case GUEST_GS_AR_BYTES:
4442  	case GUEST_LDTR_AR_BYTES:
4443  	case GUEST_TR_AR_BYTES:
4444  	case GUEST_ES_BASE:
4445  	case GUEST_CS_BASE:
4446  	case GUEST_SS_BASE:
4447  	case GUEST_DS_BASE:
4448  	case GUEST_FS_BASE:
4449  	case GUEST_GS_BASE:
4450  	case GUEST_LDTR_BASE:
4451  	case GUEST_TR_BASE:
4452  	case GUEST_GDTR_BASE:
4453  	case GUEST_IDTR_BASE:
4454  	case GUEST_PENDING_DBG_EXCEPTIONS:
4455  	case GUEST_BNDCFGS:
4456  		return true;
4457  	default:
4458  		break;
4459  	}
4460  
4461  	return false;
4462  }
4463  
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4464  static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4465  				       struct vmcs12 *vmcs12)
4466  {
4467  	struct vcpu_vmx *vmx = to_vmx(vcpu);
4468  
4469  	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4470  	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4471  	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4472  	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4473  	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4474  	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4475  	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4476  	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4477  	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4478  	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4479  	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4480  	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4481  	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4482  	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4483  	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4484  	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4485  	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4486  	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4487  	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4488  	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4489  	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4490  	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4491  	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4492  	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4493  	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4494  	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4495  	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4496  	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4497  	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4498  	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4499  	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4500  	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4501  	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4502  	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4503  	vmcs12->guest_pending_dbg_exceptions =
4504  		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4505  
4506  	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4507  }
4508  
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4509  static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4510  				       struct vmcs12 *vmcs12)
4511  {
4512  	struct vcpu_vmx *vmx = to_vmx(vcpu);
4513  	int cpu;
4514  
4515  	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4516  		return;
4517  
4518  
4519  	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4520  
4521  	cpu = get_cpu();
4522  	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4523  	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4524  
4525  	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4526  
4527  	vmx->loaded_vmcs = &vmx->vmcs01;
4528  	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4529  	put_cpu();
4530  }
4531  
4532  /*
4533   * Update the guest state fields of vmcs12 to reflect changes that
4534   * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4535   * VM-entry controls is also updated, since this is really a guest
4536   * state bit.)
4537   */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4538  static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4539  {
4540  	struct vcpu_vmx *vmx = to_vmx(vcpu);
4541  
4542  	if (nested_vmx_is_evmptr12_valid(vmx))
4543  		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4544  
4545  	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4546  		!nested_vmx_is_evmptr12_valid(vmx);
4547  
4548  	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4549  	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4550  
4551  	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4552  	vmcs12->guest_rip = kvm_rip_read(vcpu);
4553  	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4554  
4555  	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4556  	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4557  
4558  	vmcs12->guest_interruptibility_info =
4559  		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4560  
4561  	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4562  		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4563  	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4564  		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4565  	else
4566  		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4567  
4568  	if (nested_cpu_has_preemption_timer(vmcs12) &&
4569  	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4570  	    !vmx->nested.nested_run_pending)
4571  		vmcs12->vmx_preemption_timer_value =
4572  			vmx_get_preemption_timer_value(vcpu);
4573  
4574  	/*
4575  	 * In some cases (usually, nested EPT), L2 is allowed to change its
4576  	 * own CR3 without exiting. If it has changed it, we must keep it.
4577  	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4578  	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4579  	 *
4580  	 * Additionally, restore L2's PDPTR to vmcs12.
4581  	 */
4582  	if (enable_ept) {
4583  		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4584  		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4585  			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4586  			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4587  			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4588  			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4589  		}
4590  	}
4591  
4592  	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4593  
4594  	if (nested_cpu_has_vid(vmcs12))
4595  		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4596  
4597  	vmcs12->vm_entry_controls =
4598  		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4599  		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4600  
4601  	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4602  		vmcs12->guest_dr7 = vcpu->arch.dr7;
4603  
4604  	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4605  		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4606  }
4607  
4608  /*
4609   * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4610   * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4611   * and this function updates it to reflect the changes to the guest state while
4612   * L2 was running (and perhaps made some exits which were handled directly by L0
4613   * without going back to L1), and to reflect the exit reason.
4614   * Note that we do not have to copy here all VMCS fields, just those that
4615   * could have changed by the L2 guest or the exit - i.e., the guest-state and
4616   * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4617   * which already writes to vmcs12 directly.
4618   */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification,u32 exit_insn_len)4619  static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4620  			   u32 vm_exit_reason, u32 exit_intr_info,
4621  			   unsigned long exit_qualification, u32 exit_insn_len)
4622  {
4623  	/* update exit information fields: */
4624  	vmcs12->vm_exit_reason = vm_exit_reason;
4625  	if (to_vmx(vcpu)->exit_reason.enclave_mode)
4626  		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4627  	vmcs12->exit_qualification = exit_qualification;
4628  
4629  	/*
4630  	 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4631  	 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4632  	 * exit info fields are unmodified.
4633  	 */
4634  	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4635  		vmcs12->launch_state = 1;
4636  
4637  		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4638  		 * instead of reading the real value. */
4639  		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4640  
4641  		/*
4642  		 * Transfer the event that L0 or L1 may wanted to inject into
4643  		 * L2 to IDT_VECTORING_INFO_FIELD.
4644  		 */
4645  		vmcs12_save_pending_event(vcpu, vmcs12,
4646  					  vm_exit_reason, exit_intr_info);
4647  
4648  		vmcs12->vm_exit_intr_info = exit_intr_info;
4649  		vmcs12->vm_exit_instruction_len = exit_insn_len;
4650  		vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4651  
4652  		/*
4653  		 * According to spec, there's no need to store the guest's
4654  		 * MSRs if the exit is due to a VM-entry failure that occurs
4655  		 * during or after loading the guest state. Since this exit
4656  		 * does not fall in that category, we need to save the MSRs.
4657  		 */
4658  		if (nested_vmx_store_msr(vcpu,
4659  					 vmcs12->vm_exit_msr_store_addr,
4660  					 vmcs12->vm_exit_msr_store_count))
4661  			nested_vmx_abort(vcpu,
4662  					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4663  	}
4664  }
4665  
4666  /*
4667   * A part of what we need to when the nested L2 guest exits and we want to
4668   * run its L1 parent, is to reset L1's guest state to the host state specified
4669   * in vmcs12.
4670   * This function is to be called not only on normal nested exit, but also on
4671   * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4672   * Failures During or After Loading Guest State").
4673   * This function should be called when the active VMCS is L1's (vmcs01).
4674   */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4675  static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4676  				   struct vmcs12 *vmcs12)
4677  {
4678  	enum vm_entry_failure_code ignored;
4679  	struct kvm_segment seg;
4680  
4681  	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4682  		vcpu->arch.efer = vmcs12->host_ia32_efer;
4683  	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4684  		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4685  	else
4686  		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4687  	vmx_set_efer(vcpu, vcpu->arch.efer);
4688  
4689  	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4690  	kvm_rip_write(vcpu, vmcs12->host_rip);
4691  	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4692  	vmx_set_interrupt_shadow(vcpu, 0);
4693  
4694  	/*
4695  	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4696  	 * actually changed, because vmx_set_cr0 refers to efer set above.
4697  	 *
4698  	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4699  	 * (KVM doesn't change it);
4700  	 */
4701  	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4702  	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4703  
4704  	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4705  	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4706  	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4707  
4708  	nested_ept_uninit_mmu_context(vcpu);
4709  
4710  	/*
4711  	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4712  	 * couldn't have changed.
4713  	 */
4714  	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4715  		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4716  
4717  	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4718  
4719  	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4720  	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4721  	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4722  	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4723  	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4724  	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4725  	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4726  
4727  	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4728  	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4729  		vmcs_write64(GUEST_BNDCFGS, 0);
4730  
4731  	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4732  		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4733  		vcpu->arch.pat = vmcs12->host_ia32_pat;
4734  	}
4735  	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4736  	    kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4737  		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4738  					 vmcs12->host_ia32_perf_global_ctrl));
4739  
4740  	/* Set L1 segment info according to Intel SDM
4741  	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4742  	seg = (struct kvm_segment) {
4743  		.base = 0,
4744  		.limit = 0xFFFFFFFF,
4745  		.selector = vmcs12->host_cs_selector,
4746  		.type = 11,
4747  		.present = 1,
4748  		.s = 1,
4749  		.g = 1
4750  	};
4751  	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4752  		seg.l = 1;
4753  	else
4754  		seg.db = 1;
4755  	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4756  	seg = (struct kvm_segment) {
4757  		.base = 0,
4758  		.limit = 0xFFFFFFFF,
4759  		.type = 3,
4760  		.present = 1,
4761  		.s = 1,
4762  		.db = 1,
4763  		.g = 1
4764  	};
4765  	seg.selector = vmcs12->host_ds_selector;
4766  	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4767  	seg.selector = vmcs12->host_es_selector;
4768  	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4769  	seg.selector = vmcs12->host_ss_selector;
4770  	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4771  	seg.selector = vmcs12->host_fs_selector;
4772  	seg.base = vmcs12->host_fs_base;
4773  	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4774  	seg.selector = vmcs12->host_gs_selector;
4775  	seg.base = vmcs12->host_gs_base;
4776  	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4777  	seg = (struct kvm_segment) {
4778  		.base = vmcs12->host_tr_base,
4779  		.limit = 0x67,
4780  		.selector = vmcs12->host_tr_selector,
4781  		.type = 11,
4782  		.present = 1
4783  	};
4784  	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4785  
4786  	memset(&seg, 0, sizeof(seg));
4787  	seg.unusable = 1;
4788  	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4789  
4790  	kvm_set_dr(vcpu, 7, 0x400);
4791  	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4792  
4793  	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4794  				vmcs12->vm_exit_msr_load_count))
4795  		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4796  
4797  	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4798  }
4799  
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4800  static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4801  {
4802  	struct vmx_uret_msr *efer_msr;
4803  	unsigned int i;
4804  
4805  	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4806  		return vmcs_read64(GUEST_IA32_EFER);
4807  
4808  	if (cpu_has_load_ia32_efer())
4809  		return kvm_host.efer;
4810  
4811  	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4812  		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4813  			return vmx->msr_autoload.guest.val[i].value;
4814  	}
4815  
4816  	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4817  	if (efer_msr)
4818  		return efer_msr->data;
4819  
4820  	return kvm_host.efer;
4821  }
4822  
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4823  static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4824  {
4825  	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4826  	struct vcpu_vmx *vmx = to_vmx(vcpu);
4827  	struct vmx_msr_entry g, h;
4828  	gpa_t gpa;
4829  	u32 i, j;
4830  
4831  	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4832  
4833  	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4834  		/*
4835  		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4836  		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4837  		 * and vcpu->arch.dr7 is not squirreled away before the
4838  		 * nested VMENTER (not worth adding a variable in nested_vmx).
4839  		 */
4840  		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4841  			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4842  		else
4843  			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4844  	}
4845  
4846  	/*
4847  	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4848  	 * handle a variety of side effects to KVM's software model.
4849  	 */
4850  	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4851  
4852  	vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4853  	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4854  
4855  	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4856  	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4857  
4858  	nested_ept_uninit_mmu_context(vcpu);
4859  	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4860  	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4861  
4862  	/*
4863  	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4864  	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4865  	 * VMFail, like everything else we just need to ensure our
4866  	 * software model is up-to-date.
4867  	 */
4868  	if (enable_ept && is_pae_paging(vcpu))
4869  		ept_save_pdptrs(vcpu);
4870  
4871  	kvm_mmu_reset_context(vcpu);
4872  
4873  	/*
4874  	 * This nasty bit of open coding is a compromise between blindly
4875  	 * loading L1's MSRs using the exit load lists (incorrect emulation
4876  	 * of VMFail), leaving the nested VM's MSRs in the software model
4877  	 * (incorrect behavior) and snapshotting the modified MSRs (too
4878  	 * expensive since the lists are unbound by hardware).  For each
4879  	 * MSR that was (prematurely) loaded from the nested VMEntry load
4880  	 * list, reload it from the exit load list if it exists and differs
4881  	 * from the guest value.  The intent is to stuff host state as
4882  	 * silently as possible, not to fully process the exit load list.
4883  	 */
4884  	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4885  		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4886  		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4887  			pr_debug_ratelimited(
4888  				"%s read MSR index failed (%u, 0x%08llx)\n",
4889  				__func__, i, gpa);
4890  			goto vmabort;
4891  		}
4892  
4893  		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4894  			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4895  			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4896  				pr_debug_ratelimited(
4897  					"%s read MSR failed (%u, 0x%08llx)\n",
4898  					__func__, j, gpa);
4899  				goto vmabort;
4900  			}
4901  			if (h.index != g.index)
4902  				continue;
4903  			if (h.value == g.value)
4904  				break;
4905  
4906  			if (nested_vmx_load_msr_check(vcpu, &h)) {
4907  				pr_debug_ratelimited(
4908  					"%s check failed (%u, 0x%x, 0x%x)\n",
4909  					__func__, j, h.index, h.reserved);
4910  				goto vmabort;
4911  			}
4912  
4913  			if (kvm_set_msr_with_filter(vcpu, h.index, h.value)) {
4914  				pr_debug_ratelimited(
4915  					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4916  					__func__, j, h.index, h.value);
4917  				goto vmabort;
4918  			}
4919  		}
4920  	}
4921  
4922  	return;
4923  
4924  vmabort:
4925  	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4926  }
4927  
4928  /*
4929   * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4930   * and modify vmcs12 to make it see what it would expect to see there if
4931   * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4932   */
__nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification,u32 exit_insn_len)4933  void __nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4934  			 u32 exit_intr_info, unsigned long exit_qualification,
4935  			 u32 exit_insn_len)
4936  {
4937  	struct vcpu_vmx *vmx = to_vmx(vcpu);
4938  	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4939  
4940  	/* Pending MTF traps are discarded on VM-Exit. */
4941  	vmx->nested.mtf_pending = false;
4942  
4943  	/* trying to cancel vmlaunch/vmresume is a bug */
4944  	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4945  
4946  #ifdef CONFIG_KVM_HYPERV
4947  	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4948  		/*
4949  		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4950  		 * Enlightened VMCS after migration and we still need to
4951  		 * do that when something is forcing L2->L1 exit prior to
4952  		 * the first L2 run.
4953  		 */
4954  		(void)nested_get_evmcs_page(vcpu);
4955  	}
4956  #endif
4957  
4958  	/* Service pending TLB flush requests for L2 before switching to L1. */
4959  	kvm_service_local_tlb_flush_requests(vcpu);
4960  
4961  	/*
4962  	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4963  	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4964  	 * up-to-date before switching to L1.
4965  	 */
4966  	if (enable_ept && is_pae_paging(vcpu))
4967  		vmx_ept_load_pdptrs(vcpu);
4968  
4969  	leave_guest_mode(vcpu);
4970  
4971  	if (nested_cpu_has_preemption_timer(vmcs12))
4972  		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4973  
4974  	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4975  		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4976  		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4977  			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4978  	}
4979  
4980  	if (likely(!vmx->fail)) {
4981  		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4982  
4983  		if (vm_exit_reason != -1)
4984  			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4985  				       exit_intr_info, exit_qualification,
4986  				       exit_insn_len);
4987  
4988  		/*
4989  		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4990  		 * also be used to capture vmcs12 cache as part of
4991  		 * capturing nVMX state for snapshot (migration).
4992  		 *
4993  		 * Otherwise, this flush will dirty guest memory at a
4994  		 * point it is already assumed by user-space to be
4995  		 * immutable.
4996  		 */
4997  		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4998  	} else {
4999  		/*
5000  		 * The only expected VM-instruction error is "VM entry with
5001  		 * invalid control field(s)." Anything else indicates a
5002  		 * problem with L0.  And we should never get here with a
5003  		 * VMFail of any type if early consistency checks are enabled.
5004  		 */
5005  		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
5006  			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5007  		WARN_ON_ONCE(nested_early_check);
5008  	}
5009  
5010  	/*
5011  	 * Drop events/exceptions that were queued for re-injection to L2
5012  	 * (picked up via vmx_complete_interrupts()), as well as exceptions
5013  	 * that were pending for L2.  Note, this must NOT be hoisted above
5014  	 * prepare_vmcs12(), events/exceptions queued for re-injection need to
5015  	 * be captured in vmcs12 (see vmcs12_save_pending_event()).
5016  	 */
5017  	vcpu->arch.nmi_injected = false;
5018  	kvm_clear_exception_queue(vcpu);
5019  	kvm_clear_interrupt_queue(vcpu);
5020  
5021  	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
5022  
5023  	/*
5024  	 * If IBRS is advertised to the vCPU, KVM must flush the indirect
5025  	 * branch predictors when transitioning from L2 to L1, as L1 expects
5026  	 * hardware (KVM in this case) to provide separate predictor modes.
5027  	 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
5028  	 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
5029  	 * separate modes for L2 vs L1.
5030  	 */
5031  	if (guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL))
5032  		indirect_branch_prediction_barrier();
5033  
5034  	/* Update any VMCS fields that might have changed while L2 ran */
5035  	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
5036  	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
5037  	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
5038  	if (kvm_caps.has_tsc_control)
5039  		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
5040  
5041  	if (vmx->nested.l1_tpr_threshold != -1)
5042  		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
5043  
5044  	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
5045  		vmx->nested.change_vmcs01_virtual_apic_mode = false;
5046  		vmx_set_virtual_apic_mode(vcpu);
5047  	}
5048  
5049  	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
5050  		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
5051  		vmx_update_cpu_dirty_logging(vcpu);
5052  	}
5053  
5054  	nested_put_vmcs12_pages(vcpu);
5055  
5056  	if (vmx->nested.reload_vmcs01_apic_access_page) {
5057  		vmx->nested.reload_vmcs01_apic_access_page = false;
5058  		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5059  	}
5060  
5061  	if (vmx->nested.update_vmcs01_apicv_status) {
5062  		vmx->nested.update_vmcs01_apicv_status = false;
5063  		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
5064  	}
5065  
5066  	if (vmx->nested.update_vmcs01_hwapic_isr) {
5067  		vmx->nested.update_vmcs01_hwapic_isr = false;
5068  		kvm_apic_update_hwapic_isr(vcpu);
5069  	}
5070  
5071  	if ((vm_exit_reason != -1) &&
5072  	    (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
5073  		vmx->nested.need_vmcs12_to_shadow_sync = true;
5074  
5075  	/* in case we halted in L2 */
5076  	kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE);
5077  
5078  	if (likely(!vmx->fail)) {
5079  		if (vm_exit_reason != -1)
5080  			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
5081  						       vmcs12->exit_qualification,
5082  						       vmcs12->idt_vectoring_info_field,
5083  						       vmcs12->vm_exit_intr_info,
5084  						       vmcs12->vm_exit_intr_error_code,
5085  						       KVM_ISA_VMX);
5086  
5087  		load_vmcs12_host_state(vcpu, vmcs12);
5088  
5089  		/*
5090  		 * Process events if an injectable IRQ or NMI is pending, even
5091  		 * if the event is blocked (RFLAGS.IF is cleared on VM-Exit).
5092  		 * If an event became pending while L2 was active, KVM needs to
5093  		 * either inject the event or request an IRQ/NMI window.  SMIs
5094  		 * don't need to be processed as SMM is mutually exclusive with
5095  		 * non-root mode.  INIT/SIPI don't need to be checked as INIT
5096  		 * is blocked post-VMXON, and SIPIs are ignored.
5097  		 */
5098  		if (kvm_cpu_has_injectable_intr(vcpu) || vcpu->arch.nmi_pending)
5099  			kvm_make_request(KVM_REQ_EVENT, vcpu);
5100  		return;
5101  	}
5102  
5103  	/*
5104  	 * After an early L2 VM-entry failure, we're now back
5105  	 * in L1 which thinks it just finished a VMLAUNCH or
5106  	 * VMRESUME instruction, so we need to set the failure
5107  	 * flag and the VM-instruction error field of the VMCS
5108  	 * accordingly, and skip the emulated instruction.
5109  	 */
5110  	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5111  
5112  	/*
5113  	 * Restore L1's host state to KVM's software model.  We're here
5114  	 * because a consistency check was caught by hardware, which
5115  	 * means some amount of guest state has been propagated to KVM's
5116  	 * model and needs to be unwound to the host's state.
5117  	 */
5118  	nested_vmx_restore_host_state(vcpu);
5119  
5120  	vmx->fail = 0;
5121  }
5122  
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)5123  static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
5124  {
5125  	kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5126  	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
5127  }
5128  
5129  /*
5130   * Decode the memory-address operand of a vmx instruction, as recorded on an
5131   * exit caused by such an instruction (run by a guest hypervisor).
5132   * On success, returns 0. When the operand is invalid, returns 1 and throws
5133   * #UD, #GP, or #SS.
5134   */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)5135  int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
5136  			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
5137  {
5138  	gva_t off;
5139  	bool exn;
5140  	struct kvm_segment s;
5141  
5142  	/*
5143  	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5144  	 * Execution", on an exit, vmx_instruction_info holds most of the
5145  	 * addressing components of the operand. Only the displacement part
5146  	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5147  	 * For how an actual address is calculated from all these components,
5148  	 * refer to Vol. 1, "Operand Addressing".
5149  	 */
5150  	int  scaling = vmx_instruction_info & 3;
5151  	int  addr_size = (vmx_instruction_info >> 7) & 7;
5152  	bool is_reg = vmx_instruction_info & (1u << 10);
5153  	int  seg_reg = (vmx_instruction_info >> 15) & 7;
5154  	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5155  	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5156  	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5157  	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5158  
5159  	if (is_reg) {
5160  		kvm_queue_exception(vcpu, UD_VECTOR);
5161  		return 1;
5162  	}
5163  
5164  	/* Addr = segment_base + offset */
5165  	/* offset = base + [index * scale] + displacement */
5166  	off = exit_qualification; /* holds the displacement */
5167  	if (addr_size == 1)
5168  		off = (gva_t)sign_extend64(off, 31);
5169  	else if (addr_size == 0)
5170  		off = (gva_t)sign_extend64(off, 15);
5171  	if (base_is_valid)
5172  		off += kvm_register_read(vcpu, base_reg);
5173  	if (index_is_valid)
5174  		off += kvm_register_read(vcpu, index_reg) << scaling;
5175  	vmx_get_segment(vcpu, &s, seg_reg);
5176  
5177  	/*
5178  	 * The effective address, i.e. @off, of a memory operand is truncated
5179  	 * based on the address size of the instruction.  Note that this is
5180  	 * the *effective address*, i.e. the address prior to accounting for
5181  	 * the segment's base.
5182  	 */
5183  	if (addr_size == 1) /* 32 bit */
5184  		off &= 0xffffffff;
5185  	else if (addr_size == 0) /* 16 bit */
5186  		off &= 0xffff;
5187  
5188  	/* Checks for #GP/#SS exceptions. */
5189  	exn = false;
5190  	if (is_long_mode(vcpu)) {
5191  		/*
5192  		 * The virtual/linear address is never truncated in 64-bit
5193  		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5194  		 * address when using FS/GS with a non-zero base.
5195  		 */
5196  		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5197  			*ret = s.base + off;
5198  		else
5199  			*ret = off;
5200  
5201  		*ret = vmx_get_untagged_addr(vcpu, *ret, 0);
5202  		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
5203  		 * non-canonical form. This is the only check on the memory
5204  		 * destination for long mode!
5205  		 */
5206  		exn = is_noncanonical_address(*ret, vcpu, 0);
5207  	} else {
5208  		/*
5209  		 * When not in long mode, the virtual/linear address is
5210  		 * unconditionally truncated to 32 bits regardless of the
5211  		 * address size.
5212  		 */
5213  		*ret = (s.base + off) & 0xffffffff;
5214  
5215  		/* Protected mode: apply checks for segment validity in the
5216  		 * following order:
5217  		 * - segment type check (#GP(0) may be thrown)
5218  		 * - usability check (#GP(0)/#SS(0))
5219  		 * - limit check (#GP(0)/#SS(0))
5220  		 */
5221  		if (wr)
5222  			/* #GP(0) if the destination operand is located in a
5223  			 * read-only data segment or any code segment.
5224  			 */
5225  			exn = ((s.type & 0xa) == 0 || (s.type & 8));
5226  		else
5227  			/* #GP(0) if the source operand is located in an
5228  			 * execute-only code segment
5229  			 */
5230  			exn = ((s.type & 0xa) == 8);
5231  		if (exn) {
5232  			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
5233  			return 1;
5234  		}
5235  		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5236  		 */
5237  		exn = (s.unusable != 0);
5238  
5239  		/*
5240  		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5241  		 * outside the segment limit.  All CPUs that support VMX ignore
5242  		 * limit checks for flat segments, i.e. segments with base==0,
5243  		 * limit==0xffffffff and of type expand-up data or code.
5244  		 */
5245  		if (!(s.base == 0 && s.limit == 0xffffffff &&
5246  		     ((s.type & 8) || !(s.type & 4))))
5247  			exn = exn || ((u64)off + len - 1 > s.limit);
5248  	}
5249  	if (exn) {
5250  		kvm_queue_exception_e(vcpu,
5251  				      seg_reg == VCPU_SREG_SS ?
5252  						SS_VECTOR : GP_VECTOR,
5253  				      0);
5254  		return 1;
5255  	}
5256  
5257  	return 0;
5258  }
5259  
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)5260  static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5261  				int *ret)
5262  {
5263  	gva_t gva;
5264  	struct x86_exception e;
5265  	int r;
5266  
5267  	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5268  				vmcs_read32(VMX_INSTRUCTION_INFO), false,
5269  				sizeof(*vmpointer), &gva)) {
5270  		*ret = 1;
5271  		return -EINVAL;
5272  	}
5273  
5274  	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
5275  	if (r != X86EMUL_CONTINUE) {
5276  		*ret = kvm_handle_memory_failure(vcpu, r, &e);
5277  		return -EINVAL;
5278  	}
5279  
5280  	return 0;
5281  }
5282  
5283  /*
5284   * Allocate a shadow VMCS and associate it with the currently loaded
5285   * VMCS, unless such a shadow VMCS already exists. The newly allocated
5286   * VMCS is also VMCLEARed, so that it is ready for use.
5287   */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)5288  static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5289  {
5290  	struct vcpu_vmx *vmx = to_vmx(vcpu);
5291  	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5292  
5293  	/*
5294  	 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5295  	 * when L1 executes VMXOFF or the vCPU is forced out of nested
5296  	 * operation.  VMXON faults if the CPU is already post-VMXON, so it
5297  	 * should be impossible to already have an allocated shadow VMCS.  KVM
5298  	 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5299  	 * always be the loaded VMCS.
5300  	 */
5301  	if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5302  		return loaded_vmcs->shadow_vmcs;
5303  
5304  	loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
5305  	if (loaded_vmcs->shadow_vmcs)
5306  		vmcs_clear(loaded_vmcs->shadow_vmcs);
5307  
5308  	return loaded_vmcs->shadow_vmcs;
5309  }
5310  
enter_vmx_operation(struct kvm_vcpu * vcpu)5311  static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5312  {
5313  	struct vcpu_vmx *vmx = to_vmx(vcpu);
5314  	int r;
5315  
5316  	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
5317  	if (r < 0)
5318  		goto out_vmcs02;
5319  
5320  	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5321  	if (!vmx->nested.cached_vmcs12)
5322  		goto out_cached_vmcs12;
5323  
5324  	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5325  	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5326  	if (!vmx->nested.cached_shadow_vmcs12)
5327  		goto out_cached_shadow_vmcs12;
5328  
5329  	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5330  		goto out_shadow_vmcs;
5331  
5332  	hrtimer_setup(&vmx->nested.preemption_timer, vmx_preemption_timer_fn, CLOCK_MONOTONIC,
5333  		      HRTIMER_MODE_ABS_PINNED);
5334  
5335  	vmx->nested.vpid02 = allocate_vpid();
5336  
5337  	vmx->nested.vmcs02_initialized = false;
5338  	vmx->nested.vmxon = true;
5339  
5340  	if (vmx_pt_mode_is_host_guest()) {
5341  		vmx->pt_desc.guest.ctl = 0;
5342  		pt_update_intercept_for_msr(vcpu);
5343  	}
5344  
5345  	return 0;
5346  
5347  out_shadow_vmcs:
5348  	kfree(vmx->nested.cached_shadow_vmcs12);
5349  
5350  out_cached_shadow_vmcs12:
5351  	kfree(vmx->nested.cached_vmcs12);
5352  
5353  out_cached_vmcs12:
5354  	free_loaded_vmcs(&vmx->nested.vmcs02);
5355  
5356  out_vmcs02:
5357  	return -ENOMEM;
5358  }
5359  
5360  /* Emulate the VMXON instruction. */
handle_vmxon(struct kvm_vcpu * vcpu)5361  static int handle_vmxon(struct kvm_vcpu *vcpu)
5362  {
5363  	int ret;
5364  	gpa_t vmptr;
5365  	uint32_t revision;
5366  	struct vcpu_vmx *vmx = to_vmx(vcpu);
5367  	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5368  		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5369  
5370  	/*
5371  	 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5372  	 * the guest and so cannot rely on hardware to perform the check,
5373  	 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5374  	 * for VMXON).
5375  	 *
5376  	 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5377  	 * and !COMPATIBILITY modes.  For an unrestricted guest, KVM doesn't
5378  	 * force any of the relevant guest state.  For a restricted guest, KVM
5379  	 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5380  	 * Real Mode, and so there's no need to check CR0.PE manually.
5381  	 */
5382  	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5383  		kvm_queue_exception(vcpu, UD_VECTOR);
5384  		return 1;
5385  	}
5386  
5387  	/*
5388  	 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5389  	 * and has higher priority than the VM-Fail due to being post-VMXON,
5390  	 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0.  In VMX non-root,
5391  	 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5392  	 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5393  	 * VMX non-root.
5394  	 *
5395  	 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5396  	 * #UD checks (see above), is functionally ok because KVM doesn't allow
5397  	 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5398  	 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5399  	 * missed by hardware due to shadowing CR0 and/or CR4.
5400  	 */
5401  	if (vmx_get_cpl(vcpu)) {
5402  		kvm_inject_gp(vcpu, 0);
5403  		return 1;
5404  	}
5405  
5406  	if (vmx->nested.vmxon)
5407  		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5408  
5409  	/*
5410  	 * Invalid CR0/CR4 generates #GP.  These checks are performed if and
5411  	 * only if the vCPU isn't already in VMX operation, i.e. effectively
5412  	 * have lower priority than the VM-Fail above.
5413  	 */
5414  	if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
5415  	    !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
5416  		kvm_inject_gp(vcpu, 0);
5417  		return 1;
5418  	}
5419  
5420  	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5421  			!= VMXON_NEEDED_FEATURES) {
5422  		kvm_inject_gp(vcpu, 0);
5423  		return 1;
5424  	}
5425  
5426  	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5427  		return ret;
5428  
5429  	/*
5430  	 * SDM 3: 24.11.5
5431  	 * The first 4 bytes of VMXON region contain the supported
5432  	 * VMCS revision identifier
5433  	 *
5434  	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5435  	 * which replaces physical address width with 32
5436  	 */
5437  	if (!page_address_valid(vcpu, vmptr))
5438  		return nested_vmx_failInvalid(vcpu);
5439  
5440  	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5441  	    revision != VMCS12_REVISION)
5442  		return nested_vmx_failInvalid(vcpu);
5443  
5444  	vmx->nested.vmxon_ptr = vmptr;
5445  	ret = enter_vmx_operation(vcpu);
5446  	if (ret)
5447  		return ret;
5448  
5449  	return nested_vmx_succeed(vcpu);
5450  }
5451  
nested_release_vmcs12(struct kvm_vcpu * vcpu)5452  static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5453  {
5454  	struct vcpu_vmx *vmx = to_vmx(vcpu);
5455  
5456  	if (vmx->nested.current_vmptr == INVALID_GPA)
5457  		return;
5458  
5459  	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5460  
5461  	if (enable_shadow_vmcs) {
5462  		/* copy to memory all shadowed fields in case
5463  		   they were modified */
5464  		copy_shadow_to_vmcs12(vmx);
5465  		vmx_disable_shadow_vmcs(vmx);
5466  	}
5467  	vmx->nested.posted_intr_nv = -1;
5468  
5469  	/* Flush VMCS12 to guest memory */
5470  	kvm_vcpu_write_guest_page(vcpu,
5471  				  vmx->nested.current_vmptr >> PAGE_SHIFT,
5472  				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5473  
5474  	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5475  
5476  	vmx->nested.current_vmptr = INVALID_GPA;
5477  }
5478  
5479  /* Emulate the VMXOFF instruction */
handle_vmxoff(struct kvm_vcpu * vcpu)5480  static int handle_vmxoff(struct kvm_vcpu *vcpu)
5481  {
5482  	if (!nested_vmx_check_permission(vcpu))
5483  		return 1;
5484  
5485  	free_nested(vcpu);
5486  
5487  	if (kvm_apic_has_pending_init_or_sipi(vcpu))
5488  		kvm_make_request(KVM_REQ_EVENT, vcpu);
5489  
5490  	return nested_vmx_succeed(vcpu);
5491  }
5492  
5493  /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5494  static int handle_vmclear(struct kvm_vcpu *vcpu)
5495  {
5496  	struct vcpu_vmx *vmx = to_vmx(vcpu);
5497  	u32 zero = 0;
5498  	gpa_t vmptr;
5499  	int r;
5500  
5501  	if (!nested_vmx_check_permission(vcpu))
5502  		return 1;
5503  
5504  	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5505  		return r;
5506  
5507  	if (!page_address_valid(vcpu, vmptr))
5508  		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5509  
5510  	if (vmptr == vmx->nested.vmxon_ptr)
5511  		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5512  
5513  	if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5514  		if (vmptr == vmx->nested.current_vmptr)
5515  			nested_release_vmcs12(vcpu);
5516  
5517  		/*
5518  		 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5519  		 * for VMCLEAR includes a "ensure that data for VMCS referenced
5520  		 * by the operand is in memory" clause that guards writes to
5521  		 * memory, i.e. doing nothing for I/O is architecturally valid.
5522  		 *
5523  		 * FIXME: Suppress failures if and only if no memslot is found,
5524  		 * i.e. exit to userspace if __copy_to_user() fails.
5525  		 */
5526  		(void)kvm_vcpu_write_guest(vcpu,
5527  					   vmptr + offsetof(struct vmcs12,
5528  							    launch_state),
5529  					   &zero, sizeof(zero));
5530  	}
5531  
5532  	return nested_vmx_succeed(vcpu);
5533  }
5534  
5535  /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5536  static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5537  {
5538  	return nested_vmx_run(vcpu, true);
5539  }
5540  
5541  /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5542  static int handle_vmresume(struct kvm_vcpu *vcpu)
5543  {
5544  
5545  	return nested_vmx_run(vcpu, false);
5546  }
5547  
handle_vmread(struct kvm_vcpu * vcpu)5548  static int handle_vmread(struct kvm_vcpu *vcpu)
5549  {
5550  	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5551  						    : get_vmcs12(vcpu);
5552  	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5553  	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5554  	struct vcpu_vmx *vmx = to_vmx(vcpu);
5555  	struct x86_exception e;
5556  	unsigned long field;
5557  	u64 value;
5558  	gva_t gva = 0;
5559  	short offset;
5560  	int len, r;
5561  
5562  	if (!nested_vmx_check_permission(vcpu))
5563  		return 1;
5564  
5565  	/* Decode instruction info and find the field to read */
5566  	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5567  
5568  	if (!nested_vmx_is_evmptr12_valid(vmx)) {
5569  		/*
5570  		 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5571  		 * any VMREAD sets the ALU flags for VMfailInvalid.
5572  		 */
5573  		if (vmx->nested.current_vmptr == INVALID_GPA ||
5574  		    (is_guest_mode(vcpu) &&
5575  		     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5576  			return nested_vmx_failInvalid(vcpu);
5577  
5578  		offset = get_vmcs12_field_offset(field);
5579  		if (offset < 0)
5580  			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5581  
5582  		if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5583  			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5584  
5585  		/* Read the field, zero-extended to a u64 value */
5586  		value = vmcs12_read_any(vmcs12, field, offset);
5587  	} else {
5588  		/*
5589  		 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5590  		 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5591  		 * unsupported. Unfortunately, certain versions of Windows 11
5592  		 * don't comply with this requirement which is not enforced in
5593  		 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5594  		 * workaround, as misbehaving guests will panic on VM-Fail.
5595  		 * Note, enlightened VMCS is incompatible with shadow VMCS so
5596  		 * all VMREADs from L2 should go to L1.
5597  		 */
5598  		if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5599  			return nested_vmx_failInvalid(vcpu);
5600  
5601  		offset = evmcs_field_offset(field, NULL);
5602  		if (offset < 0)
5603  			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5604  
5605  		/* Read the field, zero-extended to a u64 value */
5606  		value = evmcs_read_any(nested_vmx_evmcs(vmx), field, offset);
5607  	}
5608  
5609  	/*
5610  	 * Now copy part of this value to register or memory, as requested.
5611  	 * Note that the number of bits actually copied is 32 or 64 depending
5612  	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5613  	 */
5614  	if (instr_info & BIT(10)) {
5615  		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5616  	} else {
5617  		len = is_64_bit_mode(vcpu) ? 8 : 4;
5618  		if (get_vmx_mem_address(vcpu, exit_qualification,
5619  					instr_info, true, len, &gva))
5620  			return 1;
5621  		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5622  		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5623  		if (r != X86EMUL_CONTINUE)
5624  			return kvm_handle_memory_failure(vcpu, r, &e);
5625  	}
5626  
5627  	return nested_vmx_succeed(vcpu);
5628  }
5629  
is_shadow_field_rw(unsigned long field)5630  static bool is_shadow_field_rw(unsigned long field)
5631  {
5632  	switch (field) {
5633  #define SHADOW_FIELD_RW(x, y) case x:
5634  #include "vmcs_shadow_fields.h"
5635  		return true;
5636  	default:
5637  		break;
5638  	}
5639  	return false;
5640  }
5641  
is_shadow_field_ro(unsigned long field)5642  static bool is_shadow_field_ro(unsigned long field)
5643  {
5644  	switch (field) {
5645  #define SHADOW_FIELD_RO(x, y) case x:
5646  #include "vmcs_shadow_fields.h"
5647  		return true;
5648  	default:
5649  		break;
5650  	}
5651  	return false;
5652  }
5653  
handle_vmwrite(struct kvm_vcpu * vcpu)5654  static int handle_vmwrite(struct kvm_vcpu *vcpu)
5655  {
5656  	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5657  						    : get_vmcs12(vcpu);
5658  	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5659  	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5660  	struct vcpu_vmx *vmx = to_vmx(vcpu);
5661  	struct x86_exception e;
5662  	unsigned long field;
5663  	short offset;
5664  	gva_t gva;
5665  	int len, r;
5666  
5667  	/*
5668  	 * The value to write might be 32 or 64 bits, depending on L1's long
5669  	 * mode, and eventually we need to write that into a field of several
5670  	 * possible lengths. The code below first zero-extends the value to 64
5671  	 * bit (value), and then copies only the appropriate number of
5672  	 * bits into the vmcs12 field.
5673  	 */
5674  	u64 value = 0;
5675  
5676  	if (!nested_vmx_check_permission(vcpu))
5677  		return 1;
5678  
5679  	/*
5680  	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5681  	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5682  	 */
5683  	if (vmx->nested.current_vmptr == INVALID_GPA ||
5684  	    (is_guest_mode(vcpu) &&
5685  	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5686  		return nested_vmx_failInvalid(vcpu);
5687  
5688  	if (instr_info & BIT(10))
5689  		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5690  	else {
5691  		len = is_64_bit_mode(vcpu) ? 8 : 4;
5692  		if (get_vmx_mem_address(vcpu, exit_qualification,
5693  					instr_info, false, len, &gva))
5694  			return 1;
5695  		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5696  		if (r != X86EMUL_CONTINUE)
5697  			return kvm_handle_memory_failure(vcpu, r, &e);
5698  	}
5699  
5700  	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5701  
5702  	offset = get_vmcs12_field_offset(field);
5703  	if (offset < 0)
5704  		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5705  
5706  	/*
5707  	 * If the vCPU supports "VMWRITE to any supported field in the
5708  	 * VMCS," then the "read-only" fields are actually read/write.
5709  	 */
5710  	if (vmcs_field_readonly(field) &&
5711  	    !nested_cpu_has_vmwrite_any_field(vcpu))
5712  		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5713  
5714  	/*
5715  	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5716  	 * vmcs12, else we may crush a field or consume a stale value.
5717  	 */
5718  	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5719  		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5720  
5721  	/*
5722  	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5723  	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5724  	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5725  	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5726  	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5727  	 * the stripped down value, L2 sees the full value as stored by KVM).
5728  	 */
5729  	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5730  		value &= 0x1f0ff;
5731  
5732  	vmcs12_write_any(vmcs12, field, offset, value);
5733  
5734  	/*
5735  	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5736  	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5737  	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5738  	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5739  	 */
5740  	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5741  		/*
5742  		 * L1 can read these fields without exiting, ensure the
5743  		 * shadow VMCS is up-to-date.
5744  		 */
5745  		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5746  			preempt_disable();
5747  			vmcs_load(vmx->vmcs01.shadow_vmcs);
5748  
5749  			__vmcs_writel(field, value);
5750  
5751  			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5752  			vmcs_load(vmx->loaded_vmcs->vmcs);
5753  			preempt_enable();
5754  		}
5755  		vmx->nested.dirty_vmcs12 = true;
5756  	}
5757  
5758  	return nested_vmx_succeed(vcpu);
5759  }
5760  
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5761  static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5762  {
5763  	vmx->nested.current_vmptr = vmptr;
5764  	if (enable_shadow_vmcs) {
5765  		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5766  		vmcs_write64(VMCS_LINK_POINTER,
5767  			     __pa(vmx->vmcs01.shadow_vmcs));
5768  		vmx->nested.need_vmcs12_to_shadow_sync = true;
5769  	}
5770  	vmx->nested.dirty_vmcs12 = true;
5771  	vmx->nested.force_msr_bitmap_recalc = true;
5772  }
5773  
5774  /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5775  static int handle_vmptrld(struct kvm_vcpu *vcpu)
5776  {
5777  	struct vcpu_vmx *vmx = to_vmx(vcpu);
5778  	gpa_t vmptr;
5779  	int r;
5780  
5781  	if (!nested_vmx_check_permission(vcpu))
5782  		return 1;
5783  
5784  	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5785  		return r;
5786  
5787  	if (!page_address_valid(vcpu, vmptr))
5788  		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5789  
5790  	if (vmptr == vmx->nested.vmxon_ptr)
5791  		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5792  
5793  	/* Forbid normal VMPTRLD if Enlightened version was used */
5794  	if (nested_vmx_is_evmptr12_valid(vmx))
5795  		return 1;
5796  
5797  	if (vmx->nested.current_vmptr != vmptr) {
5798  		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5799  		struct vmcs_hdr hdr;
5800  
5801  		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5802  			/*
5803  			 * Reads from an unbacked page return all 1s,
5804  			 * which means that the 32 bits located at the
5805  			 * given physical address won't match the required
5806  			 * VMCS12_REVISION identifier.
5807  			 */
5808  			return nested_vmx_fail(vcpu,
5809  				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5810  		}
5811  
5812  		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5813  						 offsetof(struct vmcs12, hdr),
5814  						 sizeof(hdr))) {
5815  			return nested_vmx_fail(vcpu,
5816  				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5817  		}
5818  
5819  		if (hdr.revision_id != VMCS12_REVISION ||
5820  		    (hdr.shadow_vmcs &&
5821  		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5822  			return nested_vmx_fail(vcpu,
5823  				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5824  		}
5825  
5826  		nested_release_vmcs12(vcpu);
5827  
5828  		/*
5829  		 * Load VMCS12 from guest memory since it is not already
5830  		 * cached.
5831  		 */
5832  		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5833  					  VMCS12_SIZE)) {
5834  			return nested_vmx_fail(vcpu,
5835  				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5836  		}
5837  
5838  		set_current_vmptr(vmx, vmptr);
5839  	}
5840  
5841  	return nested_vmx_succeed(vcpu);
5842  }
5843  
5844  /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5845  static int handle_vmptrst(struct kvm_vcpu *vcpu)
5846  {
5847  	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5848  	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5849  	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5850  	struct x86_exception e;
5851  	gva_t gva;
5852  	int r;
5853  
5854  	if (!nested_vmx_check_permission(vcpu))
5855  		return 1;
5856  
5857  	if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
5858  		return 1;
5859  
5860  	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5861  				true, sizeof(gpa_t), &gva))
5862  		return 1;
5863  	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5864  	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5865  					sizeof(gpa_t), &e);
5866  	if (r != X86EMUL_CONTINUE)
5867  		return kvm_handle_memory_failure(vcpu, r, &e);
5868  
5869  	return nested_vmx_succeed(vcpu);
5870  }
5871  
5872  /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5873  static int handle_invept(struct kvm_vcpu *vcpu)
5874  {
5875  	struct vcpu_vmx *vmx = to_vmx(vcpu);
5876  	u32 vmx_instruction_info, types;
5877  	unsigned long type, roots_to_free;
5878  	struct kvm_mmu *mmu;
5879  	gva_t gva;
5880  	struct x86_exception e;
5881  	struct {
5882  		u64 eptp, gpa;
5883  	} operand;
5884  	int i, r, gpr_index;
5885  
5886  	if (!(vmx->nested.msrs.secondary_ctls_high &
5887  	      SECONDARY_EXEC_ENABLE_EPT) ||
5888  	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5889  		kvm_queue_exception(vcpu, UD_VECTOR);
5890  		return 1;
5891  	}
5892  
5893  	if (!nested_vmx_check_permission(vcpu))
5894  		return 1;
5895  
5896  	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5897  	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5898  	type = kvm_register_read(vcpu, gpr_index);
5899  
5900  	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5901  
5902  	if (type >= 32 || !(types & (1 << type)))
5903  		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5904  
5905  	/* According to the Intel VMX instruction reference, the memory
5906  	 * operand is read even if it isn't needed (e.g., for type==global)
5907  	 */
5908  	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5909  			vmx_instruction_info, false, sizeof(operand), &gva))
5910  		return 1;
5911  	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5912  	if (r != X86EMUL_CONTINUE)
5913  		return kvm_handle_memory_failure(vcpu, r, &e);
5914  
5915  	/*
5916  	 * Nested EPT roots are always held through guest_mmu,
5917  	 * not root_mmu.
5918  	 */
5919  	mmu = &vcpu->arch.guest_mmu;
5920  
5921  	switch (type) {
5922  	case VMX_EPT_EXTENT_CONTEXT:
5923  		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5924  			return nested_vmx_fail(vcpu,
5925  				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5926  
5927  		roots_to_free = 0;
5928  		if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5929  					    operand.eptp))
5930  			roots_to_free |= KVM_MMU_ROOT_CURRENT;
5931  
5932  		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5933  			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5934  						    mmu->prev_roots[i].pgd,
5935  						    operand.eptp))
5936  				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5937  		}
5938  		break;
5939  	case VMX_EPT_EXTENT_GLOBAL:
5940  		roots_to_free = KVM_MMU_ROOTS_ALL;
5941  		break;
5942  	default:
5943  		BUG();
5944  		break;
5945  	}
5946  
5947  	if (roots_to_free)
5948  		kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5949  
5950  	return nested_vmx_succeed(vcpu);
5951  }
5952  
handle_invvpid(struct kvm_vcpu * vcpu)5953  static int handle_invvpid(struct kvm_vcpu *vcpu)
5954  {
5955  	struct vcpu_vmx *vmx = to_vmx(vcpu);
5956  	u32 vmx_instruction_info;
5957  	unsigned long type, types;
5958  	gva_t gva;
5959  	struct x86_exception e;
5960  	struct {
5961  		u64 vpid;
5962  		u64 gla;
5963  	} operand;
5964  	u16 vpid02;
5965  	int r, gpr_index;
5966  
5967  	if (!(vmx->nested.msrs.secondary_ctls_high &
5968  	      SECONDARY_EXEC_ENABLE_VPID) ||
5969  			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5970  		kvm_queue_exception(vcpu, UD_VECTOR);
5971  		return 1;
5972  	}
5973  
5974  	if (!nested_vmx_check_permission(vcpu))
5975  		return 1;
5976  
5977  	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5978  	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5979  	type = kvm_register_read(vcpu, gpr_index);
5980  
5981  	types = (vmx->nested.msrs.vpid_caps &
5982  			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5983  
5984  	if (type >= 32 || !(types & (1 << type)))
5985  		return nested_vmx_fail(vcpu,
5986  			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5987  
5988  	/* according to the intel vmx instruction reference, the memory
5989  	 * operand is read even if it isn't needed (e.g., for type==global)
5990  	 */
5991  	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5992  			vmx_instruction_info, false, sizeof(operand), &gva))
5993  		return 1;
5994  	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5995  	if (r != X86EMUL_CONTINUE)
5996  		return kvm_handle_memory_failure(vcpu, r, &e);
5997  
5998  	if (operand.vpid >> 16)
5999  		return nested_vmx_fail(vcpu,
6000  			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6001  
6002  	/*
6003  	 * Always flush the effective vpid02, i.e. never flush the current VPID
6004  	 * and never explicitly flush vpid01.  INVVPID targets a VPID, not a
6005  	 * VMCS, and so whether or not the current vmcs12 has VPID enabled is
6006  	 * irrelevant (and there may not be a loaded vmcs12).
6007  	 */
6008  	vpid02 = nested_get_vpid02(vcpu);
6009  	switch (type) {
6010  	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
6011  		/*
6012  		 * LAM doesn't apply to addresses that are inputs to TLB
6013  		 * invalidation.
6014  		 */
6015  		if (!operand.vpid ||
6016  		    is_noncanonical_invlpg_address(operand.gla, vcpu))
6017  			return nested_vmx_fail(vcpu,
6018  				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6019  		vpid_sync_vcpu_addr(vpid02, operand.gla);
6020  		break;
6021  	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
6022  	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
6023  		if (!operand.vpid)
6024  			return nested_vmx_fail(vcpu,
6025  				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6026  		vpid_sync_context(vpid02);
6027  		break;
6028  	case VMX_VPID_EXTENT_ALL_CONTEXT:
6029  		vpid_sync_context(vpid02);
6030  		break;
6031  	default:
6032  		WARN_ON_ONCE(1);
6033  		return kvm_skip_emulated_instruction(vcpu);
6034  	}
6035  
6036  	/*
6037  	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
6038  	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
6039  	 * roots as VPIDs are not tracked in the MMU role.
6040  	 *
6041  	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
6042  	 * an MMU when EPT is disabled.
6043  	 *
6044  	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
6045  	 */
6046  	if (!enable_ept)
6047  		kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
6048  
6049  	return nested_vmx_succeed(vcpu);
6050  }
6051  
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6052  static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
6053  				     struct vmcs12 *vmcs12)
6054  {
6055  	u32 index = kvm_rcx_read(vcpu);
6056  	u64 new_eptp;
6057  
6058  	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
6059  		return 1;
6060  	if (index >= VMFUNC_EPTP_ENTRIES)
6061  		return 1;
6062  
6063  	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
6064  				     &new_eptp, index * 8, 8))
6065  		return 1;
6066  
6067  	/*
6068  	 * If the (L2) guest does a vmfunc to the currently
6069  	 * active ept pointer, we don't have to do anything else
6070  	 */
6071  	if (vmcs12->ept_pointer != new_eptp) {
6072  		if (!nested_vmx_check_eptp(vcpu, new_eptp))
6073  			return 1;
6074  
6075  		vmcs12->ept_pointer = new_eptp;
6076  		nested_ept_new_eptp(vcpu);
6077  
6078  		if (!nested_cpu_has_vpid(vmcs12))
6079  			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
6080  	}
6081  
6082  	return 0;
6083  }
6084  
handle_vmfunc(struct kvm_vcpu * vcpu)6085  static int handle_vmfunc(struct kvm_vcpu *vcpu)
6086  {
6087  	struct vcpu_vmx *vmx = to_vmx(vcpu);
6088  	struct vmcs12 *vmcs12;
6089  	u32 function = kvm_rax_read(vcpu);
6090  
6091  	/*
6092  	 * VMFUNC should never execute cleanly while L1 is active; KVM supports
6093  	 * VMFUNC for nested VMs, but not for L1.
6094  	 */
6095  	if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
6096  		kvm_queue_exception(vcpu, UD_VECTOR);
6097  		return 1;
6098  	}
6099  
6100  	vmcs12 = get_vmcs12(vcpu);
6101  
6102  	/*
6103  	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
6104  	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
6105  	 */
6106  	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
6107  		kvm_queue_exception(vcpu, UD_VECTOR);
6108  		return 1;
6109  	}
6110  
6111  	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
6112  		goto fail;
6113  
6114  	switch (function) {
6115  	case 0:
6116  		if (nested_vmx_eptp_switching(vcpu, vmcs12))
6117  			goto fail;
6118  		break;
6119  	default:
6120  		goto fail;
6121  	}
6122  	return kvm_skip_emulated_instruction(vcpu);
6123  
6124  fail:
6125  	/*
6126  	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
6127  	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
6128  	 * EXIT_REASON_VMFUNC as the exit reason.
6129  	 */
6130  	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
6131  			  vmx_get_intr_info(vcpu),
6132  			  vmx_get_exit_qual(vcpu));
6133  	return 1;
6134  }
6135  
6136  /*
6137   * Return true if an IO instruction with the specified port and size should cause
6138   * a VM-exit into L1.
6139   */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)6140  bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
6141  				 int size)
6142  {
6143  	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6144  	gpa_t bitmap, last_bitmap;
6145  	u8 b;
6146  
6147  	last_bitmap = INVALID_GPA;
6148  	b = -1;
6149  
6150  	while (size > 0) {
6151  		if (port < 0x8000)
6152  			bitmap = vmcs12->io_bitmap_a;
6153  		else if (port < 0x10000)
6154  			bitmap = vmcs12->io_bitmap_b;
6155  		else
6156  			return true;
6157  		bitmap += (port & 0x7fff) / 8;
6158  
6159  		if (last_bitmap != bitmap)
6160  			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
6161  				return true;
6162  		if (b & (1 << (port & 7)))
6163  			return true;
6164  
6165  		port++;
6166  		size--;
6167  		last_bitmap = bitmap;
6168  	}
6169  
6170  	return false;
6171  }
6172  
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6173  static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6174  				       struct vmcs12 *vmcs12)
6175  {
6176  	unsigned long exit_qualification;
6177  	unsigned short port;
6178  	int size;
6179  
6180  	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6181  		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6182  
6183  	exit_qualification = vmx_get_exit_qual(vcpu);
6184  
6185  	port = exit_qualification >> 16;
6186  	size = (exit_qualification & 7) + 1;
6187  
6188  	return nested_vmx_check_io_bitmaps(vcpu, port, size);
6189  }
6190  
6191  /*
6192   * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6193   * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6194   * disinterest in the current event (read or write a specific MSR) by using an
6195   * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6196   */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)6197  static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6198  					struct vmcs12 *vmcs12,
6199  					union vmx_exit_reason exit_reason)
6200  {
6201  	u32 msr_index = kvm_rcx_read(vcpu);
6202  	gpa_t bitmap;
6203  
6204  	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6205  		return true;
6206  
6207  	/*
6208  	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6209  	 * for the four combinations of read/write and low/high MSR numbers.
6210  	 * First we need to figure out which of the four to use:
6211  	 */
6212  	bitmap = vmcs12->msr_bitmap;
6213  	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6214  		bitmap += 2048;
6215  	if (msr_index >= 0xc0000000) {
6216  		msr_index -= 0xc0000000;
6217  		bitmap += 1024;
6218  	}
6219  
6220  	/* Then read the msr_index'th bit from this bitmap: */
6221  	if (msr_index < 1024*8) {
6222  		unsigned char b;
6223  		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
6224  			return true;
6225  		return 1 & (b >> (msr_index & 7));
6226  	} else
6227  		return true; /* let L1 handle the wrong parameter */
6228  }
6229  
6230  /*
6231   * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6232   * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6233   * intercept (via guest_host_mask etc.) the current event.
6234   */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6235  static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6236  	struct vmcs12 *vmcs12)
6237  {
6238  	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6239  	int cr = exit_qualification & 15;
6240  	int reg;
6241  	unsigned long val;
6242  
6243  	switch ((exit_qualification >> 4) & 3) {
6244  	case 0: /* mov to cr */
6245  		reg = (exit_qualification >> 8) & 15;
6246  		val = kvm_register_read(vcpu, reg);
6247  		switch (cr) {
6248  		case 0:
6249  			if (vmcs12->cr0_guest_host_mask &
6250  			    (val ^ vmcs12->cr0_read_shadow))
6251  				return true;
6252  			break;
6253  		case 3:
6254  			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6255  				return true;
6256  			break;
6257  		case 4:
6258  			if (vmcs12->cr4_guest_host_mask &
6259  			    (vmcs12->cr4_read_shadow ^ val))
6260  				return true;
6261  			break;
6262  		case 8:
6263  			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6264  				return true;
6265  			break;
6266  		}
6267  		break;
6268  	case 2: /* clts */
6269  		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6270  		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
6271  			return true;
6272  		break;
6273  	case 1: /* mov from cr */
6274  		switch (cr) {
6275  		case 3:
6276  			if (vmcs12->cpu_based_vm_exec_control &
6277  			    CPU_BASED_CR3_STORE_EXITING)
6278  				return true;
6279  			break;
6280  		case 8:
6281  			if (vmcs12->cpu_based_vm_exec_control &
6282  			    CPU_BASED_CR8_STORE_EXITING)
6283  				return true;
6284  			break;
6285  		}
6286  		break;
6287  	case 3: /* lmsw */
6288  		/*
6289  		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6290  		 * cr0. Other attempted changes are ignored, with no exit.
6291  		 */
6292  		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6293  		if (vmcs12->cr0_guest_host_mask & 0xe &
6294  		    (val ^ vmcs12->cr0_read_shadow))
6295  			return true;
6296  		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6297  		    !(vmcs12->cr0_read_shadow & 0x1) &&
6298  		    (val & 0x1))
6299  			return true;
6300  		break;
6301  	}
6302  	return false;
6303  }
6304  
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)6305  static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6306  					  struct vmcs12 *vmcs12)
6307  {
6308  	u32 encls_leaf;
6309  
6310  	if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SGX) ||
6311  	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6312  		return false;
6313  
6314  	encls_leaf = kvm_rax_read(vcpu);
6315  	if (encls_leaf > 62)
6316  		encls_leaf = 63;
6317  	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6318  }
6319  
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)6320  static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6321  	struct vmcs12 *vmcs12, gpa_t bitmap)
6322  {
6323  	u32 vmx_instruction_info;
6324  	unsigned long field;
6325  	u8 b;
6326  
6327  	if (!nested_cpu_has_shadow_vmcs(vmcs12))
6328  		return true;
6329  
6330  	/* Decode instruction info and find the field to access */
6331  	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6332  	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6333  
6334  	/* Out-of-range fields always cause a VM exit from L2 to L1 */
6335  	if (field >> 15)
6336  		return true;
6337  
6338  	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
6339  		return true;
6340  
6341  	return 1 & (b >> (field & 7));
6342  }
6343  
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)6344  static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6345  {
6346  	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6347  
6348  	if (nested_cpu_has_mtf(vmcs12))
6349  		return true;
6350  
6351  	/*
6352  	 * An MTF VM-exit may be injected into the guest by setting the
6353  	 * interruption-type to 7 (other event) and the vector field to 0. Such
6354  	 * is the case regardless of the 'monitor trap flag' VM-execution
6355  	 * control.
6356  	 */
6357  	return entry_intr_info == (INTR_INFO_VALID_MASK
6358  				   | INTR_TYPE_OTHER_EVENT);
6359  }
6360  
6361  /*
6362   * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6363   * L1 wants the exit.  Only call this when in is_guest_mode (L2).
6364   */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6365  static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6366  				     union vmx_exit_reason exit_reason)
6367  {
6368  	u32 intr_info;
6369  
6370  	switch ((u16)exit_reason.basic) {
6371  	case EXIT_REASON_EXCEPTION_NMI:
6372  		intr_info = vmx_get_intr_info(vcpu);
6373  		if (is_nmi(intr_info))
6374  			return true;
6375  		else if (is_page_fault(intr_info))
6376  			return vcpu->arch.apf.host_apf_flags ||
6377  			       vmx_need_pf_intercept(vcpu);
6378  		else if (is_debug(intr_info) &&
6379  			 vcpu->guest_debug &
6380  			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6381  			return true;
6382  		else if (is_breakpoint(intr_info) &&
6383  			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6384  			return true;
6385  		else if (is_alignment_check(intr_info) &&
6386  			 !vmx_guest_inject_ac(vcpu))
6387  			return true;
6388  		else if (is_ve_fault(intr_info))
6389  			return true;
6390  		return false;
6391  	case EXIT_REASON_EXTERNAL_INTERRUPT:
6392  		return true;
6393  	case EXIT_REASON_MCE_DURING_VMENTRY:
6394  		return true;
6395  	case EXIT_REASON_EPT_VIOLATION:
6396  		/*
6397  		 * L0 always deals with the EPT violation. If nested EPT is
6398  		 * used, and the nested mmu code discovers that the address is
6399  		 * missing in the guest EPT table (EPT12), the EPT violation
6400  		 * will be injected with nested_ept_inject_page_fault()
6401  		 */
6402  		return true;
6403  	case EXIT_REASON_EPT_MISCONFIG:
6404  		/*
6405  		 * L2 never uses directly L1's EPT, but rather L0's own EPT
6406  		 * table (shadow on EPT) or a merged EPT table that L0 built
6407  		 * (EPT on EPT). So any problems with the structure of the
6408  		 * table is L0's fault.
6409  		 */
6410  		return true;
6411  	case EXIT_REASON_PREEMPTION_TIMER:
6412  		return true;
6413  	case EXIT_REASON_PML_FULL:
6414  		/*
6415  		 * PML is emulated for an L1 VMM and should never be enabled in
6416  		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6417  		 */
6418  		return true;
6419  	case EXIT_REASON_VMFUNC:
6420  		/* VM functions are emulated through L2->L0 vmexits. */
6421  		return true;
6422  	case EXIT_REASON_BUS_LOCK:
6423  		/*
6424  		 * At present, bus lock VM exit is never exposed to L1.
6425  		 * Handle L2's bus locks in L0 directly.
6426  		 */
6427  		return true;
6428  #ifdef CONFIG_KVM_HYPERV
6429  	case EXIT_REASON_VMCALL:
6430  		/* Hyper-V L2 TLB flush hypercall is handled by L0 */
6431  		return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6432  			nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6433  			kvm_hv_is_tlb_flush_hcall(vcpu);
6434  #endif
6435  	default:
6436  		break;
6437  	}
6438  	return false;
6439  }
6440  
6441  /*
6442   * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
6443   * is_guest_mode (L2).
6444   */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6445  static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6446  				     union vmx_exit_reason exit_reason)
6447  {
6448  	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6449  	u32 intr_info;
6450  
6451  	switch ((u16)exit_reason.basic) {
6452  	case EXIT_REASON_EXCEPTION_NMI:
6453  		intr_info = vmx_get_intr_info(vcpu);
6454  		if (is_nmi(intr_info))
6455  			return true;
6456  		else if (is_page_fault(intr_info))
6457  			return true;
6458  		return vmcs12->exception_bitmap &
6459  				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
6460  	case EXIT_REASON_EXTERNAL_INTERRUPT:
6461  		return nested_exit_on_intr(vcpu);
6462  	case EXIT_REASON_TRIPLE_FAULT:
6463  		return true;
6464  	case EXIT_REASON_INTERRUPT_WINDOW:
6465  		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6466  	case EXIT_REASON_NMI_WINDOW:
6467  		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6468  	case EXIT_REASON_TASK_SWITCH:
6469  		return true;
6470  	case EXIT_REASON_CPUID:
6471  		return true;
6472  	case EXIT_REASON_HLT:
6473  		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6474  	case EXIT_REASON_INVD:
6475  		return true;
6476  	case EXIT_REASON_INVLPG:
6477  		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6478  	case EXIT_REASON_RDPMC:
6479  		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6480  	case EXIT_REASON_RDRAND:
6481  		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6482  	case EXIT_REASON_RDSEED:
6483  		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6484  	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6485  		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6486  	case EXIT_REASON_VMREAD:
6487  		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6488  			vmcs12->vmread_bitmap);
6489  	case EXIT_REASON_VMWRITE:
6490  		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6491  			vmcs12->vmwrite_bitmap);
6492  	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6493  	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6494  	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6495  	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6496  	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6497  		/*
6498  		 * VMX instructions trap unconditionally. This allows L1 to
6499  		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6500  		 */
6501  		return true;
6502  	case EXIT_REASON_CR_ACCESS:
6503  		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6504  	case EXIT_REASON_DR_ACCESS:
6505  		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6506  	case EXIT_REASON_IO_INSTRUCTION:
6507  		return nested_vmx_exit_handled_io(vcpu, vmcs12);
6508  	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6509  		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6510  	case EXIT_REASON_MSR_READ:
6511  	case EXIT_REASON_MSR_WRITE:
6512  		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6513  	case EXIT_REASON_INVALID_STATE:
6514  		return true;
6515  	case EXIT_REASON_MWAIT_INSTRUCTION:
6516  		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6517  	case EXIT_REASON_MONITOR_TRAP_FLAG:
6518  		return nested_vmx_exit_handled_mtf(vmcs12);
6519  	case EXIT_REASON_MONITOR_INSTRUCTION:
6520  		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6521  	case EXIT_REASON_PAUSE_INSTRUCTION:
6522  		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6523  			nested_cpu_has2(vmcs12,
6524  				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6525  	case EXIT_REASON_MCE_DURING_VMENTRY:
6526  		return true;
6527  	case EXIT_REASON_TPR_BELOW_THRESHOLD:
6528  		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6529  	case EXIT_REASON_APIC_ACCESS:
6530  	case EXIT_REASON_APIC_WRITE:
6531  	case EXIT_REASON_EOI_INDUCED:
6532  		/*
6533  		 * The controls for "virtualize APIC accesses," "APIC-
6534  		 * register virtualization," and "virtual-interrupt
6535  		 * delivery" only come from vmcs12.
6536  		 */
6537  		return true;
6538  	case EXIT_REASON_INVPCID:
6539  		return
6540  			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6541  			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6542  	case EXIT_REASON_WBINVD:
6543  		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6544  	case EXIT_REASON_XSETBV:
6545  		return true;
6546  	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6547  		/*
6548  		 * This should never happen, since it is not possible to
6549  		 * set XSS to a non-zero value---neither in L1 nor in L2.
6550  		 * If if it were, XSS would have to be checked against
6551  		 * the XSS exit bitmap in vmcs12.
6552  		 */
6553  		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6554  	case EXIT_REASON_UMWAIT:
6555  	case EXIT_REASON_TPAUSE:
6556  		return nested_cpu_has2(vmcs12,
6557  			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6558  	case EXIT_REASON_ENCLS:
6559  		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6560  	case EXIT_REASON_NOTIFY:
6561  		/* Notify VM exit is not exposed to L1 */
6562  		return false;
6563  	default:
6564  		return true;
6565  	}
6566  }
6567  
6568  /*
6569   * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6570   * reflected into L1.
6571   */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6572  bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6573  {
6574  	struct vcpu_vmx *vmx = to_vmx(vcpu);
6575  	union vmx_exit_reason exit_reason = vmx->exit_reason;
6576  	unsigned long exit_qual;
6577  	u32 exit_intr_info;
6578  
6579  	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6580  
6581  	/*
6582  	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6583  	 * has already loaded L2's state.
6584  	 */
6585  	if (unlikely(vmx->fail)) {
6586  		trace_kvm_nested_vmenter_failed(
6587  			"hardware VM-instruction error: ",
6588  			vmcs_read32(VM_INSTRUCTION_ERROR));
6589  		exit_intr_info = 0;
6590  		exit_qual = 0;
6591  		goto reflect_vmexit;
6592  	}
6593  
6594  	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6595  
6596  	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6597  	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6598  		return false;
6599  
6600  	/* If L1 doesn't want the exit, handle it in L0. */
6601  	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6602  		return false;
6603  
6604  	/*
6605  	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6606  	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6607  	 * need to be synthesized by querying the in-kernel LAPIC, but external
6608  	 * interrupts are never reflected to L1 so it's a non-issue.
6609  	 */
6610  	exit_intr_info = vmx_get_intr_info(vcpu);
6611  	if (is_exception_with_error_code(exit_intr_info)) {
6612  		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6613  
6614  		vmcs12->vm_exit_intr_error_code =
6615  			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6616  	}
6617  	exit_qual = vmx_get_exit_qual(vcpu);
6618  
6619  reflect_vmexit:
6620  	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6621  	return true;
6622  }
6623  
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6624  static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6625  				struct kvm_nested_state __user *user_kvm_nested_state,
6626  				u32 user_data_size)
6627  {
6628  	struct vcpu_vmx *vmx;
6629  	struct vmcs12 *vmcs12;
6630  	struct kvm_nested_state kvm_state = {
6631  		.flags = 0,
6632  		.format = KVM_STATE_NESTED_FORMAT_VMX,
6633  		.size = sizeof(kvm_state),
6634  		.hdr.vmx.flags = 0,
6635  		.hdr.vmx.vmxon_pa = INVALID_GPA,
6636  		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6637  		.hdr.vmx.preemption_timer_deadline = 0,
6638  	};
6639  	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6640  		&user_kvm_nested_state->data.vmx[0];
6641  
6642  	if (!vcpu)
6643  		return kvm_state.size + sizeof(*user_vmx_nested_state);
6644  
6645  	vmx = to_vmx(vcpu);
6646  	vmcs12 = get_vmcs12(vcpu);
6647  
6648  	if (guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) &&
6649  	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6650  		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6651  		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6652  
6653  		if (vmx_has_valid_vmcs12(vcpu)) {
6654  			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6655  
6656  			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6657  			if (nested_vmx_is_evmptr12_set(vmx))
6658  				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6659  
6660  			if (is_guest_mode(vcpu) &&
6661  			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6662  			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6663  				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6664  		}
6665  
6666  		if (vmx->nested.smm.vmxon)
6667  			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6668  
6669  		if (vmx->nested.smm.guest_mode)
6670  			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6671  
6672  		if (is_guest_mode(vcpu)) {
6673  			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6674  
6675  			if (vmx->nested.nested_run_pending)
6676  				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6677  
6678  			if (vmx->nested.mtf_pending)
6679  				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6680  
6681  			if (nested_cpu_has_preemption_timer(vmcs12) &&
6682  			    vmx->nested.has_preemption_timer_deadline) {
6683  				kvm_state.hdr.vmx.flags |=
6684  					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6685  				kvm_state.hdr.vmx.preemption_timer_deadline =
6686  					vmx->nested.preemption_timer_deadline;
6687  			}
6688  		}
6689  	}
6690  
6691  	if (user_data_size < kvm_state.size)
6692  		goto out;
6693  
6694  	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6695  		return -EFAULT;
6696  
6697  	if (!vmx_has_valid_vmcs12(vcpu))
6698  		goto out;
6699  
6700  	/*
6701  	 * When running L2, the authoritative vmcs12 state is in the
6702  	 * vmcs02. When running L1, the authoritative vmcs12 state is
6703  	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6704  	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6705  	 * vmcs12 state is in the vmcs12 already.
6706  	 */
6707  	if (is_guest_mode(vcpu)) {
6708  		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6709  		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6710  	} else  {
6711  		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6712  		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6713  			if (nested_vmx_is_evmptr12_valid(vmx))
6714  				/*
6715  				 * L1 hypervisor is not obliged to keep eVMCS
6716  				 * clean fields data always up-to-date while
6717  				 * not in guest mode, 'hv_clean_fields' is only
6718  				 * supposed to be actual upon vmentry so we need
6719  				 * to ignore it here and do full copy.
6720  				 */
6721  				copy_enlightened_to_vmcs12(vmx, 0);
6722  			else if (enable_shadow_vmcs)
6723  				copy_shadow_to_vmcs12(vmx);
6724  		}
6725  	}
6726  
6727  	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6728  	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6729  
6730  	/*
6731  	 * Copy over the full allocated size of vmcs12 rather than just the size
6732  	 * of the struct.
6733  	 */
6734  	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6735  		return -EFAULT;
6736  
6737  	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6738  	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6739  		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6740  				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6741  			return -EFAULT;
6742  	}
6743  out:
6744  	return kvm_state.size;
6745  }
6746  
vmx_leave_nested(struct kvm_vcpu * vcpu)6747  void vmx_leave_nested(struct kvm_vcpu *vcpu)
6748  {
6749  	if (is_guest_mode(vcpu)) {
6750  		to_vmx(vcpu)->nested.nested_run_pending = 0;
6751  		nested_vmx_vmexit(vcpu, -1, 0, 0);
6752  	}
6753  	free_nested(vcpu);
6754  }
6755  
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6756  static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6757  				struct kvm_nested_state __user *user_kvm_nested_state,
6758  				struct kvm_nested_state *kvm_state)
6759  {
6760  	struct vcpu_vmx *vmx = to_vmx(vcpu);
6761  	struct vmcs12 *vmcs12;
6762  	enum vm_entry_failure_code ignored;
6763  	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6764  		&user_kvm_nested_state->data.vmx[0];
6765  	int ret;
6766  
6767  	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6768  		return -EINVAL;
6769  
6770  	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6771  		if (kvm_state->hdr.vmx.smm.flags)
6772  			return -EINVAL;
6773  
6774  		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6775  			return -EINVAL;
6776  
6777  		/*
6778  		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6779  		 * enable eVMCS capability on vCPU. However, since then
6780  		 * code was changed such that flag signals vmcs12 should
6781  		 * be copied into eVMCS in guest memory.
6782  		 *
6783  		 * To preserve backwards compatibility, allow user
6784  		 * to set this flag even when there is no VMXON region.
6785  		 */
6786  		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6787  			return -EINVAL;
6788  	} else {
6789  		if (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX))
6790  			return -EINVAL;
6791  
6792  		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6793  			return -EINVAL;
6794  	}
6795  
6796  	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6797  	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6798  		return -EINVAL;
6799  
6800  	if (kvm_state->hdr.vmx.smm.flags &
6801  	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6802  		return -EINVAL;
6803  
6804  	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6805  		return -EINVAL;
6806  
6807  	/*
6808  	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6809  	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6810  	 * must be zero.
6811  	 */
6812  	if (is_smm(vcpu) ?
6813  		(kvm_state->flags &
6814  		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6815  		: kvm_state->hdr.vmx.smm.flags)
6816  		return -EINVAL;
6817  
6818  	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6819  	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6820  		return -EINVAL;
6821  
6822  	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6823  	    (!guest_cpu_cap_has(vcpu, X86_FEATURE_VMX) ||
6824  	     !vmx->nested.enlightened_vmcs_enabled))
6825  			return -EINVAL;
6826  
6827  	vmx_leave_nested(vcpu);
6828  
6829  	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6830  		return 0;
6831  
6832  	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6833  	ret = enter_vmx_operation(vcpu);
6834  	if (ret)
6835  		return ret;
6836  
6837  	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6838  	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6839  		/* See vmx_has_valid_vmcs12.  */
6840  		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6841  		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6842  		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6843  			return -EINVAL;
6844  		else
6845  			return 0;
6846  	}
6847  
6848  	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6849  		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6850  		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6851  			return -EINVAL;
6852  
6853  		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6854  #ifdef CONFIG_KVM_HYPERV
6855  	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6856  		/*
6857  		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6858  		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6859  		 * restored yet. EVMCS will be mapped from
6860  		 * nested_get_vmcs12_pages().
6861  		 */
6862  		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6863  		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6864  #endif
6865  	} else {
6866  		return -EINVAL;
6867  	}
6868  
6869  	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6870  		vmx->nested.smm.vmxon = true;
6871  		vmx->nested.vmxon = false;
6872  
6873  		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6874  			vmx->nested.smm.guest_mode = true;
6875  	}
6876  
6877  	vmcs12 = get_vmcs12(vcpu);
6878  	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6879  		return -EFAULT;
6880  
6881  	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6882  		return -EINVAL;
6883  
6884  	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6885  		return 0;
6886  
6887  	vmx->nested.nested_run_pending =
6888  		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6889  
6890  	vmx->nested.mtf_pending =
6891  		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6892  
6893  	ret = -EINVAL;
6894  	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6895  	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6896  		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6897  
6898  		if (kvm_state->size <
6899  		    sizeof(*kvm_state) +
6900  		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6901  			goto error_guest_mode;
6902  
6903  		if (copy_from_user(shadow_vmcs12,
6904  				   user_vmx_nested_state->shadow_vmcs12,
6905  				   sizeof(*shadow_vmcs12))) {
6906  			ret = -EFAULT;
6907  			goto error_guest_mode;
6908  		}
6909  
6910  		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6911  		    !shadow_vmcs12->hdr.shadow_vmcs)
6912  			goto error_guest_mode;
6913  	}
6914  
6915  	vmx->nested.has_preemption_timer_deadline = false;
6916  	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6917  		vmx->nested.has_preemption_timer_deadline = true;
6918  		vmx->nested.preemption_timer_deadline =
6919  			kvm_state->hdr.vmx.preemption_timer_deadline;
6920  	}
6921  
6922  	if (nested_vmx_check_controls(vcpu, vmcs12) ||
6923  	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6924  	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6925  		goto error_guest_mode;
6926  
6927  	vmx->nested.dirty_vmcs12 = true;
6928  	vmx->nested.force_msr_bitmap_recalc = true;
6929  	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6930  	if (ret)
6931  		goto error_guest_mode;
6932  
6933  	if (vmx->nested.mtf_pending)
6934  		kvm_make_request(KVM_REQ_EVENT, vcpu);
6935  
6936  	return 0;
6937  
6938  error_guest_mode:
6939  	vmx->nested.nested_run_pending = 0;
6940  	return ret;
6941  }
6942  
nested_vmx_set_vmcs_shadowing_bitmap(void)6943  void nested_vmx_set_vmcs_shadowing_bitmap(void)
6944  {
6945  	if (enable_shadow_vmcs) {
6946  		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6947  		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6948  	}
6949  }
6950  
6951  /*
6952   * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6953   * that madness to get the encoding for comparison.
6954   */
6955  #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6956  
nested_vmx_calc_vmcs_enum_msr(void)6957  static u64 nested_vmx_calc_vmcs_enum_msr(void)
6958  {
6959  	/*
6960  	 * Note these are the so called "index" of the VMCS field encoding, not
6961  	 * the index into vmcs12.
6962  	 */
6963  	unsigned int max_idx, idx;
6964  	int i;
6965  
6966  	/*
6967  	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6968  	 * vmcs12, regardless of whether or not the associated feature is
6969  	 * exposed to L1.  Simply find the field with the highest index.
6970  	 */
6971  	max_idx = 0;
6972  	for (i = 0; i < nr_vmcs12_fields; i++) {
6973  		/* The vmcs12 table is very, very sparsely populated. */
6974  		if (!vmcs12_field_offsets[i])
6975  			continue;
6976  
6977  		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6978  		if (idx > max_idx)
6979  			max_idx = idx;
6980  	}
6981  
6982  	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6983  }
6984  
nested_vmx_setup_pinbased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)6985  static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6986  					   struct nested_vmx_msrs *msrs)
6987  {
6988  	msrs->pinbased_ctls_low =
6989  		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6990  
6991  	msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6992  	msrs->pinbased_ctls_high &=
6993  		PIN_BASED_EXT_INTR_MASK |
6994  		PIN_BASED_NMI_EXITING |
6995  		PIN_BASED_VIRTUAL_NMIS |
6996  		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6997  	msrs->pinbased_ctls_high |=
6998  		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6999  		PIN_BASED_VMX_PREEMPTION_TIMER;
7000  }
7001  
nested_vmx_setup_exit_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7002  static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
7003  				       struct nested_vmx_msrs *msrs)
7004  {
7005  	msrs->exit_ctls_low =
7006  		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
7007  
7008  	msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
7009  	msrs->exit_ctls_high &=
7010  #ifdef CONFIG_X86_64
7011  		VM_EXIT_HOST_ADDR_SPACE_SIZE |
7012  #endif
7013  		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
7014  		VM_EXIT_CLEAR_BNDCFGS;
7015  	msrs->exit_ctls_high |=
7016  		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
7017  		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
7018  		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
7019  		VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
7020  
7021  	/* We support free control of debug control saving. */
7022  	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
7023  }
7024  
nested_vmx_setup_entry_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7025  static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
7026  					struct nested_vmx_msrs *msrs)
7027  {
7028  	msrs->entry_ctls_low =
7029  		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
7030  
7031  	msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
7032  	msrs->entry_ctls_high &=
7033  #ifdef CONFIG_X86_64
7034  		VM_ENTRY_IA32E_MODE |
7035  #endif
7036  		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
7037  	msrs->entry_ctls_high |=
7038  		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
7039  		 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
7040  
7041  	/* We support free control of debug control loading. */
7042  	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
7043  }
7044  
nested_vmx_setup_cpubased_ctls(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7045  static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
7046  					   struct nested_vmx_msrs *msrs)
7047  {
7048  	msrs->procbased_ctls_low =
7049  		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
7050  
7051  	msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
7052  	msrs->procbased_ctls_high &=
7053  		CPU_BASED_INTR_WINDOW_EXITING |
7054  		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
7055  		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
7056  		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
7057  		CPU_BASED_CR3_STORE_EXITING |
7058  #ifdef CONFIG_X86_64
7059  		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
7060  #endif
7061  		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
7062  		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
7063  		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
7064  		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
7065  		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
7066  	/*
7067  	 * We can allow some features even when not supported by the
7068  	 * hardware. For example, L1 can specify an MSR bitmap - and we
7069  	 * can use it to avoid exits to L1 - even when L0 runs L2
7070  	 * without MSR bitmaps.
7071  	 */
7072  	msrs->procbased_ctls_high |=
7073  		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
7074  		CPU_BASED_USE_MSR_BITMAPS;
7075  
7076  	/* We support free control of CR3 access interception. */
7077  	msrs->procbased_ctls_low &=
7078  		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
7079  }
7080  
nested_vmx_setup_secondary_ctls(u32 ept_caps,struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7081  static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
7082  					    struct vmcs_config *vmcs_conf,
7083  					    struct nested_vmx_msrs *msrs)
7084  {
7085  	msrs->secondary_ctls_low = 0;
7086  
7087  	msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
7088  	msrs->secondary_ctls_high &=
7089  		SECONDARY_EXEC_DESC |
7090  		SECONDARY_EXEC_ENABLE_RDTSCP |
7091  		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7092  		SECONDARY_EXEC_WBINVD_EXITING |
7093  		SECONDARY_EXEC_APIC_REGISTER_VIRT |
7094  		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
7095  		SECONDARY_EXEC_RDRAND_EXITING |
7096  		SECONDARY_EXEC_ENABLE_INVPCID |
7097  		SECONDARY_EXEC_ENABLE_VMFUNC |
7098  		SECONDARY_EXEC_RDSEED_EXITING |
7099  		SECONDARY_EXEC_ENABLE_XSAVES |
7100  		SECONDARY_EXEC_TSC_SCALING |
7101  		SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
7102  
7103  	/*
7104  	 * We can emulate "VMCS shadowing," even if the hardware
7105  	 * doesn't support it.
7106  	 */
7107  	msrs->secondary_ctls_high |=
7108  		SECONDARY_EXEC_SHADOW_VMCS;
7109  
7110  	if (enable_ept) {
7111  		/* nested EPT: emulate EPT also to L1 */
7112  		msrs->secondary_ctls_high |=
7113  			SECONDARY_EXEC_ENABLE_EPT;
7114  		msrs->ept_caps =
7115  			VMX_EPT_PAGE_WALK_4_BIT |
7116  			VMX_EPT_PAGE_WALK_5_BIT |
7117  			VMX_EPTP_WB_BIT |
7118  			VMX_EPT_INVEPT_BIT |
7119  			VMX_EPT_EXECUTE_ONLY_BIT;
7120  
7121  		msrs->ept_caps &= ept_caps;
7122  		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7123  			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
7124  			VMX_EPT_1GB_PAGE_BIT;
7125  		if (enable_ept_ad_bits) {
7126  			msrs->secondary_ctls_high |=
7127  				SECONDARY_EXEC_ENABLE_PML;
7128  			msrs->ept_caps |= VMX_EPT_AD_BIT;
7129  		}
7130  
7131  		/*
7132  		 * Advertise EPTP switching irrespective of hardware support,
7133  		 * KVM emulates it in software so long as VMFUNC is supported.
7134  		 */
7135  		if (cpu_has_vmx_vmfunc())
7136  			msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
7137  	}
7138  
7139  	/*
7140  	 * Old versions of KVM use the single-context version without
7141  	 * checking for support, so declare that it is supported even
7142  	 * though it is treated as global context.  The alternative is
7143  	 * not failing the single-context invvpid, and it is worse.
7144  	 */
7145  	if (enable_vpid) {
7146  		msrs->secondary_ctls_high |=
7147  			SECONDARY_EXEC_ENABLE_VPID;
7148  		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
7149  			VMX_VPID_EXTENT_SUPPORTED_MASK;
7150  	}
7151  
7152  	if (enable_unrestricted_guest)
7153  		msrs->secondary_ctls_high |=
7154  			SECONDARY_EXEC_UNRESTRICTED_GUEST;
7155  
7156  	if (flexpriority_enabled)
7157  		msrs->secondary_ctls_high |=
7158  			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7159  
7160  	if (enable_sgx)
7161  		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
7162  }
7163  
nested_vmx_setup_misc_data(struct vmcs_config * vmcs_conf,struct nested_vmx_msrs * msrs)7164  static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
7165  				       struct nested_vmx_msrs *msrs)
7166  {
7167  	msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
7168  	msrs->misc_low |=
7169  		VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
7170  		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
7171  		VMX_MISC_ACTIVITY_HLT |
7172  		VMX_MISC_ACTIVITY_WAIT_SIPI;
7173  	msrs->misc_high = 0;
7174  }
7175  
nested_vmx_setup_basic(struct nested_vmx_msrs * msrs)7176  static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
7177  {
7178  	/*
7179  	 * This MSR reports some information about VMX support. We
7180  	 * should return information about the VMX we emulate for the
7181  	 * guest, and the VMCS structure we give it - not about the
7182  	 * VMX support of the underlying hardware.
7183  	 */
7184  	msrs->basic = vmx_basic_encode_vmcs_info(VMCS12_REVISION, VMCS12_SIZE,
7185  						 X86_MEMTYPE_WB);
7186  
7187  	msrs->basic |= VMX_BASIC_TRUE_CTLS;
7188  	if (cpu_has_vmx_basic_inout())
7189  		msrs->basic |= VMX_BASIC_INOUT;
7190  }
7191  
nested_vmx_setup_cr_fixed(struct nested_vmx_msrs * msrs)7192  static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7193  {
7194  	/*
7195  	 * These MSRs specify bits which the guest must keep fixed on
7196  	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7197  	 * We picked the standard core2 setting.
7198  	 */
7199  #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7200  #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
7201  	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7202  	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7203  
7204  	/* These MSRs specify bits which the guest must keep fixed off. */
7205  	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7206  	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7207  
7208  	if (vmx_umip_emulated())
7209  		msrs->cr4_fixed1 |= X86_CR4_UMIP;
7210  }
7211  
7212  /*
7213   * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7214   * returned for the various VMX controls MSRs when nested VMX is enabled.
7215   * The same values should also be used to verify that vmcs12 control fields are
7216   * valid during nested entry from L1 to L2.
7217   * Each of these control msrs has a low and high 32-bit half: A low bit is on
7218   * if the corresponding bit in the (32-bit) control field *must* be on, and a
7219   * bit in the high half is on if the corresponding bit in the control field
7220   * may be on. See also vmx_control_verify().
7221   */
nested_vmx_setup_ctls_msrs(struct vmcs_config * vmcs_conf,u32 ept_caps)7222  void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7223  {
7224  	struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7225  
7226  	/*
7227  	 * Note that as a general rule, the high half of the MSRs (bits in
7228  	 * the control fields which may be 1) should be initialized by the
7229  	 * intersection of the underlying hardware's MSR (i.e., features which
7230  	 * can be supported) and the list of features we want to expose -
7231  	 * because they are known to be properly supported in our code.
7232  	 * Also, usually, the low half of the MSRs (bits which must be 1) can
7233  	 * be set to 0, meaning that L1 may turn off any of these bits. The
7234  	 * reason is that if one of these bits is necessary, it will appear
7235  	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7236  	 * fields of vmcs01 and vmcs02, will turn these bits off - and
7237  	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7238  	 * These rules have exceptions below.
7239  	 */
7240  	nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7241  
7242  	nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7243  
7244  	nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7245  
7246  	nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7247  
7248  	nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7249  
7250  	nested_vmx_setup_misc_data(vmcs_conf, msrs);
7251  
7252  	nested_vmx_setup_basic(msrs);
7253  
7254  	nested_vmx_setup_cr_fixed(msrs);
7255  
7256  	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7257  }
7258  
nested_vmx_hardware_unsetup(void)7259  void nested_vmx_hardware_unsetup(void)
7260  {
7261  	int i;
7262  
7263  	if (enable_shadow_vmcs) {
7264  		for (i = 0; i < VMX_BITMAP_NR; i++)
7265  			free_page((unsigned long)vmx_bitmap[i]);
7266  	}
7267  }
7268  
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))7269  __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7270  {
7271  	int i;
7272  
7273  	if (!cpu_has_vmx_shadow_vmcs())
7274  		enable_shadow_vmcs = 0;
7275  	if (enable_shadow_vmcs) {
7276  		for (i = 0; i < VMX_BITMAP_NR; i++) {
7277  			/*
7278  			 * The vmx_bitmap is not tied to a VM and so should
7279  			 * not be charged to a memcg.
7280  			 */
7281  			vmx_bitmap[i] = (unsigned long *)
7282  				__get_free_page(GFP_KERNEL);
7283  			if (!vmx_bitmap[i]) {
7284  				nested_vmx_hardware_unsetup();
7285  				return -ENOMEM;
7286  			}
7287  		}
7288  
7289  		init_vmcs_shadow_fields();
7290  	}
7291  
7292  	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
7293  	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
7294  	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
7295  	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
7296  	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
7297  	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
7298  	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
7299  	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmxoff;
7300  	exit_handlers[EXIT_REASON_VMON]		= handle_vmxon;
7301  	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
7302  	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
7303  	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
7304  
7305  	return 0;
7306  }
7307  
7308  struct kvm_x86_nested_ops vmx_nested_ops = {
7309  	.leave_nested = vmx_leave_nested,
7310  	.is_exception_vmexit = nested_vmx_is_exception_vmexit,
7311  	.check_events = vmx_check_nested_events,
7312  	.has_events = vmx_has_nested_events,
7313  	.triple_fault = nested_vmx_triple_fault,
7314  	.get_state = vmx_get_nested_state,
7315  	.set_state = vmx_set_nested_state,
7316  	.get_nested_state_pages = vmx_get_nested_state_pages,
7317  	.write_log_dirty = nested_vmx_write_pml_buffer,
7318  #ifdef CONFIG_KVM_HYPERV
7319  	.enable_evmcs = nested_enable_evmcs,
7320  	.get_evmcs_version = nested_get_evmcs_version,
7321  	.hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7322  #endif
7323  };
7324