1 //===- ARMFastISel.cpp - ARM FastISel implementation ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the ARM-specific support for the FastISel class. Some
10 // of the target-specific code is generated by tablegen in the file
11 // ARMGenFastISel.inc, which is #included here.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "ARM.h"
16 #include "ARMBaseInstrInfo.h"
17 #include "ARMBaseRegisterInfo.h"
18 #include "ARMCallingConv.h"
19 #include "ARMConstantPoolValue.h"
20 #include "ARMISelLowering.h"
21 #include "ARMMachineFunctionInfo.h"
22 #include "ARMSubtarget.h"
23 #include "MCTargetDesc/ARMAddressingModes.h"
24 #include "MCTargetDesc/ARMBaseInfo.h"
25 #include "Utils/ARMBaseInfo.h"
26 #include "llvm/ADT/APFloat.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/CodeGen/CallingConvLower.h"
31 #include "llvm/CodeGen/FastISel.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineFrameInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
44 #include "llvm/CodeGen/TargetInstrInfo.h"
45 #include "llvm/CodeGen/TargetLowering.h"
46 #include "llvm/CodeGen/TargetOpcodes.h"
47 #include "llvm/CodeGen/TargetRegisterInfo.h"
48 #include "llvm/CodeGen/ValueTypes.h"
49 #include "llvm/CodeGenTypes/MachineValueType.h"
50 #include "llvm/IR/Argument.h"
51 #include "llvm/IR/Attributes.h"
52 #include "llvm/IR/CallingConv.h"
53 #include "llvm/IR/Constant.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/DataLayout.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/GetElementPtrTypeIterator.h"
59 #include "llvm/IR/GlobalValue.h"
60 #include "llvm/IR/GlobalVariable.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/Type.h"
69 #include "llvm/IR/User.h"
70 #include "llvm/IR/Value.h"
71 #include "llvm/MC/MCInstrDesc.h"
72 #include "llvm/MC/MCRegisterInfo.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Target/TargetMachine.h"
78 #include "llvm/Target/TargetOptions.h"
79 #include <cassert>
80 #include <cstdint>
81 #include <utility>
82
83 using namespace llvm;
84
85 namespace {
86
87 // All possible address modes, plus some.
88 struct Address {
89 enum {
90 RegBase,
91 FrameIndexBase
92 } BaseType = RegBase;
93
94 union {
95 unsigned Reg;
96 int FI;
97 } Base;
98
99 int Offset = 0;
100
101 // Innocuous defaults for our address.
Address__anone34823300111::Address102 Address() {
103 Base.Reg = 0;
104 }
105 };
106
107 class ARMFastISel final : public FastISel {
108 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
109 /// make the right decision when generating code for different targets.
110 const ARMSubtarget *Subtarget;
111 Module &M;
112 const TargetMachine &TM;
113 const TargetInstrInfo &TII;
114 const TargetLowering &TLI;
115 ARMFunctionInfo *AFI;
116
117 // Convenience variables to avoid some queries.
118 bool isThumb2;
119 LLVMContext *Context;
120
121 public:
ARMFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)122 explicit ARMFastISel(FunctionLoweringInfo &funcInfo,
123 const TargetLibraryInfo *libInfo)
124 : FastISel(funcInfo, libInfo),
125 Subtarget(&funcInfo.MF->getSubtarget<ARMSubtarget>()),
126 M(const_cast<Module &>(*funcInfo.Fn->getParent())),
127 TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()),
128 TLI(*Subtarget->getTargetLowering()) {
129 AFI = funcInfo.MF->getInfo<ARMFunctionInfo>();
130 isThumb2 = AFI->isThumbFunction();
131 Context = &funcInfo.Fn->getContext();
132 }
133
134 private:
135 // Code from FastISel.cpp.
136
137 unsigned fastEmitInst_r(unsigned MachineInstOpcode,
138 const TargetRegisterClass *RC, unsigned Op0);
139 unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
140 const TargetRegisterClass *RC,
141 unsigned Op0, unsigned Op1);
142 unsigned fastEmitInst_ri(unsigned MachineInstOpcode,
143 const TargetRegisterClass *RC,
144 unsigned Op0, uint64_t Imm);
145 unsigned fastEmitInst_i(unsigned MachineInstOpcode,
146 const TargetRegisterClass *RC,
147 uint64_t Imm);
148
149 // Backend specific FastISel code.
150
151 bool fastSelectInstruction(const Instruction *I) override;
152 unsigned fastMaterializeConstant(const Constant *C) override;
153 unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
154 bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
155 const LoadInst *LI) override;
156 bool fastLowerArguments() override;
157
158 #include "ARMGenFastISel.inc"
159
160 // Instruction selection routines.
161
162 bool SelectLoad(const Instruction *I);
163 bool SelectStore(const Instruction *I);
164 bool SelectBranch(const Instruction *I);
165 bool SelectIndirectBr(const Instruction *I);
166 bool SelectCmp(const Instruction *I);
167 bool SelectFPExt(const Instruction *I);
168 bool SelectFPTrunc(const Instruction *I);
169 bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode);
170 bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode);
171 bool SelectIToFP(const Instruction *I, bool isSigned);
172 bool SelectFPToI(const Instruction *I, bool isSigned);
173 bool SelectDiv(const Instruction *I, bool isSigned);
174 bool SelectRem(const Instruction *I, bool isSigned);
175 bool SelectCall(const Instruction *I, const char *IntrMemName);
176 bool SelectIntrinsicCall(const IntrinsicInst &I);
177 bool SelectSelect(const Instruction *I);
178 bool SelectRet(const Instruction *I);
179 bool SelectTrunc(const Instruction *I);
180 bool SelectIntExt(const Instruction *I);
181 bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy);
182
183 // Utility routines.
184
185 bool isPositionIndependent() const;
186 bool isTypeLegal(Type *Ty, MVT &VT);
187 bool isLoadTypeLegal(Type *Ty, MVT &VT);
188 bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
189 bool isZExt);
190 bool ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
191 MaybeAlign Alignment = std::nullopt, bool isZExt = true,
192 bool allocReg = true);
193 bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
194 MaybeAlign Alignment = std::nullopt);
195 bool ARMComputeAddress(const Value *Obj, Address &Addr);
196 void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3);
197 bool ARMIsMemCpySmall(uint64_t Len);
198 bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
199 MaybeAlign Alignment);
200 unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
201 unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT);
202 unsigned ARMMaterializeInt(const Constant *C, MVT VT);
203 unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT);
204 unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg);
205 unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg);
206 unsigned ARMSelectCallOp(bool UseReg);
207 unsigned ARMLowerPICELF(const GlobalValue *GV, MVT VT);
208
getTargetLowering()209 const TargetLowering *getTargetLowering() { return &TLI; }
210
211 // Call handling routines.
212
213 CCAssignFn *CCAssignFnForCall(CallingConv::ID CC,
214 bool Return,
215 bool isVarArg);
216 bool ProcessCallArgs(SmallVectorImpl<Value*> &Args,
217 SmallVectorImpl<Register> &ArgRegs,
218 SmallVectorImpl<MVT> &ArgVTs,
219 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
220 SmallVectorImpl<Register> &RegArgs,
221 CallingConv::ID CC,
222 unsigned &NumBytes,
223 bool isVarArg);
224 unsigned getLibcallReg(const Twine &Name);
225 bool FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
226 const Instruction *I, CallingConv::ID CC,
227 unsigned &NumBytes, bool isVarArg);
228 bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call);
229
230 // OptionalDef handling routines.
231
232 bool isARMNEONPred(const MachineInstr *MI);
233 bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR);
234 const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB);
235 void AddLoadStoreOperands(MVT VT, Address &Addr,
236 const MachineInstrBuilder &MIB,
237 MachineMemOperand::Flags Flags, bool useAM3);
238 };
239
240 } // end anonymous namespace
241
242 // DefinesOptionalPredicate - This is different from DefinesPredicate in that
243 // we don't care about implicit defs here, just places we'll need to add a
244 // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR.
DefinesOptionalPredicate(MachineInstr * MI,bool * CPSR)245 bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) {
246 if (!MI->hasOptionalDef())
247 return false;
248
249 // Look to see if our OptionalDef is defining CPSR or CCR.
250 for (const MachineOperand &MO : MI->operands()) {
251 if (!MO.isReg() || !MO.isDef()) continue;
252 if (MO.getReg() == ARM::CPSR)
253 *CPSR = true;
254 }
255 return true;
256 }
257
isARMNEONPred(const MachineInstr * MI)258 bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) {
259 const MCInstrDesc &MCID = MI->getDesc();
260
261 // If we're a thumb2 or not NEON function we'll be handled via isPredicable.
262 if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON ||
263 AFI->isThumb2Function())
264 return MI->isPredicable();
265
266 for (const MCOperandInfo &opInfo : MCID.operands())
267 if (opInfo.isPredicate())
268 return true;
269
270 return false;
271 }
272
273 // If the machine is predicable go ahead and add the predicate operands, if
274 // it needs default CC operands add those.
275 // TODO: If we want to support thumb1 then we'll need to deal with optional
276 // CPSR defs that need to be added before the remaining operands. See s_cc_out
277 // for descriptions why.
278 const MachineInstrBuilder &
AddOptionalDefs(const MachineInstrBuilder & MIB)279 ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) {
280 MachineInstr *MI = &*MIB;
281
282 // Do we use a predicate? or...
283 // Are we NEON in ARM mode and have a predicate operand? If so, I know
284 // we're not predicable but add it anyways.
285 if (isARMNEONPred(MI))
286 MIB.add(predOps(ARMCC::AL));
287
288 // Do we optionally set a predicate? Preds is size > 0 iff the predicate
289 // defines CPSR. All other OptionalDefines in ARM are the CCR register.
290 bool CPSR = false;
291 if (DefinesOptionalPredicate(MI, &CPSR))
292 MIB.add(CPSR ? t1CondCodeOp() : condCodeOp());
293 return MIB;
294 }
295
fastEmitInst_r(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0)296 unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode,
297 const TargetRegisterClass *RC,
298 unsigned Op0) {
299 Register ResultReg = createResultReg(RC);
300 const MCInstrDesc &II = TII.get(MachineInstOpcode);
301
302 // Make sure the input operand is sufficiently constrained to be legal
303 // for this instruction.
304 Op0 = constrainOperandRegClass(II, Op0, 1);
305 if (II.getNumDefs() >= 1) {
306 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II,
307 ResultReg).addReg(Op0));
308 } else {
309 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
310 .addReg(Op0));
311 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
312 TII.get(TargetOpcode::COPY), ResultReg)
313 .addReg(II.implicit_defs()[0]));
314 }
315 return ResultReg;
316 }
317
fastEmitInst_rr(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,unsigned Op1)318 unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
319 const TargetRegisterClass *RC,
320 unsigned Op0, unsigned Op1) {
321 Register ResultReg = createResultReg(RC);
322 const MCInstrDesc &II = TII.get(MachineInstOpcode);
323
324 // Make sure the input operands are sufficiently constrained to be legal
325 // for this instruction.
326 Op0 = constrainOperandRegClass(II, Op0, 1);
327 Op1 = constrainOperandRegClass(II, Op1, 2);
328
329 if (II.getNumDefs() >= 1) {
330 AddOptionalDefs(
331 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
332 .addReg(Op0)
333 .addReg(Op1));
334 } else {
335 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
336 .addReg(Op0)
337 .addReg(Op1));
338 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
339 TII.get(TargetOpcode::COPY), ResultReg)
340 .addReg(II.implicit_defs()[0]));
341 }
342 return ResultReg;
343 }
344
fastEmitInst_ri(unsigned MachineInstOpcode,const TargetRegisterClass * RC,unsigned Op0,uint64_t Imm)345 unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode,
346 const TargetRegisterClass *RC,
347 unsigned Op0, uint64_t Imm) {
348 Register ResultReg = createResultReg(RC);
349 const MCInstrDesc &II = TII.get(MachineInstOpcode);
350
351 // Make sure the input operand is sufficiently constrained to be legal
352 // for this instruction.
353 Op0 = constrainOperandRegClass(II, Op0, 1);
354 if (II.getNumDefs() >= 1) {
355 AddOptionalDefs(
356 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II, ResultReg)
357 .addReg(Op0)
358 .addImm(Imm));
359 } else {
360 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
361 .addReg(Op0)
362 .addImm(Imm));
363 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
364 TII.get(TargetOpcode::COPY), ResultReg)
365 .addReg(II.implicit_defs()[0]));
366 }
367 return ResultReg;
368 }
369
fastEmitInst_i(unsigned MachineInstOpcode,const TargetRegisterClass * RC,uint64_t Imm)370 unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode,
371 const TargetRegisterClass *RC,
372 uint64_t Imm) {
373 Register ResultReg = createResultReg(RC);
374 const MCInstrDesc &II = TII.get(MachineInstOpcode);
375
376 if (II.getNumDefs() >= 1) {
377 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II,
378 ResultReg).addImm(Imm));
379 } else {
380 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
381 .addImm(Imm));
382 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
383 TII.get(TargetOpcode::COPY), ResultReg)
384 .addReg(II.implicit_defs()[0]));
385 }
386 return ResultReg;
387 }
388
389 // TODO: Don't worry about 64-bit now, but when this is fixed remove the
390 // checks from the various callers.
ARMMoveToFPReg(MVT VT,unsigned SrcReg)391 unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) {
392 if (VT == MVT::f64) return 0;
393
394 Register MoveReg = createResultReg(TLI.getRegClassFor(VT));
395 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
396 TII.get(ARM::VMOVSR), MoveReg)
397 .addReg(SrcReg));
398 return MoveReg;
399 }
400
ARMMoveToIntReg(MVT VT,unsigned SrcReg)401 unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) {
402 if (VT == MVT::i64) return 0;
403
404 Register MoveReg = createResultReg(TLI.getRegClassFor(VT));
405 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
406 TII.get(ARM::VMOVRS), MoveReg)
407 .addReg(SrcReg));
408 return MoveReg;
409 }
410
411 // For double width floating point we need to materialize two constants
412 // (the high and the low) into integer registers then use a move to get
413 // the combined constant into an FP reg.
ARMMaterializeFP(const ConstantFP * CFP,MVT VT)414 unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) {
415 const APFloat Val = CFP->getValueAPF();
416 bool is64bit = VT == MVT::f64;
417
418 // This checks to see if we can use VFP3 instructions to materialize
419 // a constant, otherwise we have to go through the constant pool.
420 if (TLI.isFPImmLegal(Val, VT)) {
421 int Imm;
422 unsigned Opc;
423 if (is64bit) {
424 Imm = ARM_AM::getFP64Imm(Val);
425 Opc = ARM::FCONSTD;
426 } else {
427 Imm = ARM_AM::getFP32Imm(Val);
428 Opc = ARM::FCONSTS;
429 }
430 Register DestReg = createResultReg(TLI.getRegClassFor(VT));
431 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
432 TII.get(Opc), DestReg).addImm(Imm));
433 return DestReg;
434 }
435
436 // Require VFP2 for loading fp constants.
437 if (!Subtarget->hasVFP2Base()) return false;
438
439 // MachineConstantPool wants an explicit alignment.
440 Align Alignment = DL.getPrefTypeAlign(CFP->getType());
441 unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Alignment);
442 Register DestReg = createResultReg(TLI.getRegClassFor(VT));
443 unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS;
444
445 // The extra reg is for addrmode5.
446 AddOptionalDefs(
447 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
448 .addConstantPoolIndex(Idx)
449 .addReg(0));
450 return DestReg;
451 }
452
ARMMaterializeInt(const Constant * C,MVT VT)453 unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) {
454 if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
455 return 0;
456
457 // If we can do this in a single instruction without a constant pool entry
458 // do so now.
459 const ConstantInt *CI = cast<ConstantInt>(C);
460 if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) {
461 unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16;
462 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
463 &ARM::GPRRegClass;
464 Register ImmReg = createResultReg(RC);
465 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
466 TII.get(Opc), ImmReg)
467 .addImm(CI->getZExtValue()));
468 return ImmReg;
469 }
470
471 // Use MVN to emit negative constants.
472 if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) {
473 unsigned Imm = (unsigned)~(CI->getSExtValue());
474 bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
475 (ARM_AM::getSOImmVal(Imm) != -1);
476 if (UseImm) {
477 unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi;
478 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass :
479 &ARM::GPRRegClass;
480 Register ImmReg = createResultReg(RC);
481 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
482 TII.get(Opc), ImmReg)
483 .addImm(Imm));
484 return ImmReg;
485 }
486 }
487
488 unsigned ResultReg = 0;
489 if (Subtarget->useMovt())
490 ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue());
491
492 if (ResultReg)
493 return ResultReg;
494
495 // Load from constant pool. For now 32-bit only.
496 if (VT != MVT::i32)
497 return 0;
498
499 // MachineConstantPool wants an explicit alignment.
500 Align Alignment = DL.getPrefTypeAlign(C->getType());
501 unsigned Idx = MCP.getConstantPoolIndex(C, Alignment);
502 ResultReg = createResultReg(TLI.getRegClassFor(VT));
503 if (isThumb2)
504 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
505 TII.get(ARM::t2LDRpci), ResultReg)
506 .addConstantPoolIndex(Idx));
507 else {
508 // The extra immediate is for addrmode2.
509 ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0);
510 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
511 TII.get(ARM::LDRcp), ResultReg)
512 .addConstantPoolIndex(Idx)
513 .addImm(0));
514 }
515 return ResultReg;
516 }
517
isPositionIndependent() const518 bool ARMFastISel::isPositionIndependent() const {
519 return TLI.isPositionIndependent();
520 }
521
ARMMaterializeGV(const GlobalValue * GV,MVT VT)522 unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) {
523 // For now 32-bit only.
524 if (VT != MVT::i32 || GV->isThreadLocal()) return 0;
525
526 // ROPI/RWPI not currently supported.
527 if (Subtarget->isROPI() || Subtarget->isRWPI())
528 return 0;
529
530 bool IsIndirect = Subtarget->isGVIndirectSymbol(GV);
531 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
532 : &ARM::GPRRegClass;
533 Register DestReg = createResultReg(RC);
534
535 // FastISel TLS support on non-MachO is broken, punt to SelectionDAG.
536 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
537 bool IsThreadLocal = GVar && GVar->isThreadLocal();
538 if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0;
539
540 bool IsPositionIndependent = isPositionIndependent();
541 // Use movw+movt when possible, it avoids constant pool entries.
542 // Non-darwin targets only support static movt relocations in FastISel.
543 if (Subtarget->useMovt() &&
544 (Subtarget->isTargetMachO() || !IsPositionIndependent)) {
545 unsigned Opc;
546 unsigned char TF = 0;
547 if (Subtarget->isTargetMachO())
548 TF = ARMII::MO_NONLAZY;
549
550 if (IsPositionIndependent)
551 Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel;
552 else
553 Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm;
554 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
555 TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF));
556 } else {
557 // MachineConstantPool wants an explicit alignment.
558 Align Alignment = DL.getPrefTypeAlign(GV->getType());
559
560 if (Subtarget->isTargetELF() && IsPositionIndependent)
561 return ARMLowerPICELF(GV, VT);
562
563 // Grab index.
564 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
565 unsigned Id = AFI->createPICLabelUId();
566 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id,
567 ARMCP::CPValue,
568 PCAdj);
569 unsigned Idx = MCP.getConstantPoolIndex(CPV, Alignment);
570
571 // Load value.
572 MachineInstrBuilder MIB;
573 if (isThumb2) {
574 unsigned Opc = IsPositionIndependent ? ARM::t2LDRpci_pic : ARM::t2LDRpci;
575 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc),
576 DestReg).addConstantPoolIndex(Idx);
577 if (IsPositionIndependent)
578 MIB.addImm(Id);
579 AddOptionalDefs(MIB);
580 } else {
581 // The extra immediate is for addrmode2.
582 DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0);
583 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
584 TII.get(ARM::LDRcp), DestReg)
585 .addConstantPoolIndex(Idx)
586 .addImm(0);
587 AddOptionalDefs(MIB);
588
589 if (IsPositionIndependent) {
590 unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD;
591 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
592
593 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
594 MIMD, TII.get(Opc), NewDestReg)
595 .addReg(DestReg)
596 .addImm(Id);
597 AddOptionalDefs(MIB);
598 return NewDestReg;
599 }
600 }
601 }
602
603 if ((Subtarget->isTargetELF() && Subtarget->isGVInGOT(GV)) ||
604 (Subtarget->isTargetMachO() && IsIndirect)) {
605 MachineInstrBuilder MIB;
606 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
607 if (isThumb2)
608 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
609 TII.get(ARM::t2LDRi12), NewDestReg)
610 .addReg(DestReg)
611 .addImm(0);
612 else
613 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
614 TII.get(ARM::LDRi12), NewDestReg)
615 .addReg(DestReg)
616 .addImm(0);
617 DestReg = NewDestReg;
618 AddOptionalDefs(MIB);
619 }
620
621 return DestReg;
622 }
623
fastMaterializeConstant(const Constant * C)624 unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) {
625 EVT CEVT = TLI.getValueType(DL, C->getType(), true);
626
627 // Only handle simple types.
628 if (!CEVT.isSimple()) return 0;
629 MVT VT = CEVT.getSimpleVT();
630
631 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
632 return ARMMaterializeFP(CFP, VT);
633 else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
634 return ARMMaterializeGV(GV, VT);
635 else if (isa<ConstantInt>(C))
636 return ARMMaterializeInt(C, VT);
637
638 return 0;
639 }
640
641 // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF);
642
fastMaterializeAlloca(const AllocaInst * AI)643 unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
644 // Don't handle dynamic allocas.
645 if (!FuncInfo.StaticAllocaMap.count(AI)) return 0;
646
647 MVT VT;
648 if (!isLoadTypeLegal(AI->getType(), VT)) return 0;
649
650 DenseMap<const AllocaInst*, int>::iterator SI =
651 FuncInfo.StaticAllocaMap.find(AI);
652
653 // This will get lowered later into the correct offsets and registers
654 // via rewriteXFrameIndex.
655 if (SI != FuncInfo.StaticAllocaMap.end()) {
656 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
657 const TargetRegisterClass* RC = TLI.getRegClassFor(VT);
658 Register ResultReg = createResultReg(RC);
659 ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0);
660
661 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
662 TII.get(Opc), ResultReg)
663 .addFrameIndex(SI->second)
664 .addImm(0));
665 return ResultReg;
666 }
667
668 return 0;
669 }
670
isTypeLegal(Type * Ty,MVT & VT)671 bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) {
672 EVT evt = TLI.getValueType(DL, Ty, true);
673
674 // Only handle simple types.
675 if (evt == MVT::Other || !evt.isSimple()) return false;
676 VT = evt.getSimpleVT();
677
678 // Handle all legal types, i.e. a register that will directly hold this
679 // value.
680 return TLI.isTypeLegal(VT);
681 }
682
isLoadTypeLegal(Type * Ty,MVT & VT)683 bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
684 if (isTypeLegal(Ty, VT)) return true;
685
686 // If this is a type than can be sign or zero-extended to a basic operation
687 // go ahead and accept it now.
688 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
689 return true;
690
691 return false;
692 }
693
694 // Computes the address to get to an object.
ARMComputeAddress(const Value * Obj,Address & Addr)695 bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) {
696 // Some boilerplate from the X86 FastISel.
697 const User *U = nullptr;
698 unsigned Opcode = Instruction::UserOp1;
699 if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
700 // Don't walk into other basic blocks unless the object is an alloca from
701 // another block, otherwise it may not have a virtual register assigned.
702 if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
703 FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
704 Opcode = I->getOpcode();
705 U = I;
706 }
707 } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
708 Opcode = C->getOpcode();
709 U = C;
710 }
711
712 if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType()))
713 if (Ty->getAddressSpace() > 255)
714 // Fast instruction selection doesn't support the special
715 // address spaces.
716 return false;
717
718 switch (Opcode) {
719 default:
720 break;
721 case Instruction::BitCast:
722 // Look through bitcasts.
723 return ARMComputeAddress(U->getOperand(0), Addr);
724 case Instruction::IntToPtr:
725 // Look past no-op inttoptrs.
726 if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
727 TLI.getPointerTy(DL))
728 return ARMComputeAddress(U->getOperand(0), Addr);
729 break;
730 case Instruction::PtrToInt:
731 // Look past no-op ptrtoints.
732 if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
733 return ARMComputeAddress(U->getOperand(0), Addr);
734 break;
735 case Instruction::GetElementPtr: {
736 Address SavedAddr = Addr;
737 int TmpOffset = Addr.Offset;
738
739 // Iterate through the GEP folding the constants into offsets where
740 // we can.
741 gep_type_iterator GTI = gep_type_begin(U);
742 for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
743 i != e; ++i, ++GTI) {
744 const Value *Op = *i;
745 if (StructType *STy = GTI.getStructTypeOrNull()) {
746 const StructLayout *SL = DL.getStructLayout(STy);
747 unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
748 TmpOffset += SL->getElementOffset(Idx);
749 } else {
750 uint64_t S = GTI.getSequentialElementStride(DL);
751 while (true) {
752 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
753 // Constant-offset addressing.
754 TmpOffset += CI->getSExtValue() * S;
755 break;
756 }
757 if (canFoldAddIntoGEP(U, Op)) {
758 // A compatible add with a constant operand. Fold the constant.
759 ConstantInt *CI =
760 cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
761 TmpOffset += CI->getSExtValue() * S;
762 // Iterate on the other operand.
763 Op = cast<AddOperator>(Op)->getOperand(0);
764 continue;
765 }
766 // Unsupported
767 goto unsupported_gep;
768 }
769 }
770 }
771
772 // Try to grab the base operand now.
773 Addr.Offset = TmpOffset;
774 if (ARMComputeAddress(U->getOperand(0), Addr)) return true;
775
776 // We failed, restore everything and try the other options.
777 Addr = SavedAddr;
778
779 unsupported_gep:
780 break;
781 }
782 case Instruction::Alloca: {
783 const AllocaInst *AI = cast<AllocaInst>(Obj);
784 DenseMap<const AllocaInst*, int>::iterator SI =
785 FuncInfo.StaticAllocaMap.find(AI);
786 if (SI != FuncInfo.StaticAllocaMap.end()) {
787 Addr.BaseType = Address::FrameIndexBase;
788 Addr.Base.FI = SI->second;
789 return true;
790 }
791 break;
792 }
793 }
794
795 // Try to get this in a register if nothing else has worked.
796 if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj);
797 return Addr.Base.Reg != 0;
798 }
799
ARMSimplifyAddress(Address & Addr,MVT VT,bool useAM3)800 void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) {
801 bool needsLowering = false;
802 switch (VT.SimpleTy) {
803 default: llvm_unreachable("Unhandled load/store type!");
804 case MVT::i1:
805 case MVT::i8:
806 case MVT::i16:
807 case MVT::i32:
808 if (!useAM3) {
809 // Integer loads/stores handle 12-bit offsets.
810 needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset);
811 // Handle negative offsets.
812 if (needsLowering && isThumb2)
813 needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 &&
814 Addr.Offset > -256);
815 } else {
816 // ARM halfword load/stores and signed byte loads use +/-imm8 offsets.
817 needsLowering = (Addr.Offset > 255 || Addr.Offset < -255);
818 }
819 break;
820 case MVT::f32:
821 case MVT::f64:
822 // Floating point operands handle 8-bit offsets.
823 needsLowering = ((Addr.Offset & 0xff) != Addr.Offset);
824 break;
825 }
826
827 // If this is a stack pointer and the offset needs to be simplified then
828 // put the alloca address into a register, set the base type back to
829 // register and continue. This should almost never happen.
830 if (needsLowering && Addr.BaseType == Address::FrameIndexBase) {
831 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
832 : &ARM::GPRRegClass;
833 Register ResultReg = createResultReg(RC);
834 unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri;
835 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
836 TII.get(Opc), ResultReg)
837 .addFrameIndex(Addr.Base.FI)
838 .addImm(0));
839 Addr.Base.Reg = ResultReg;
840 Addr.BaseType = Address::RegBase;
841 }
842
843 // Since the offset is too large for the load/store instruction
844 // get the reg+offset into a register.
845 if (needsLowering) {
846 Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg,
847 Addr.Offset, MVT::i32);
848 Addr.Offset = 0;
849 }
850 }
851
AddLoadStoreOperands(MVT VT,Address & Addr,const MachineInstrBuilder & MIB,MachineMemOperand::Flags Flags,bool useAM3)852 void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr,
853 const MachineInstrBuilder &MIB,
854 MachineMemOperand::Flags Flags,
855 bool useAM3) {
856 // addrmode5 output depends on the selection dag addressing dividing the
857 // offset by 4 that it then later multiplies. Do this here as well.
858 if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64)
859 Addr.Offset /= 4;
860
861 // Frame base works a bit differently. Handle it separately.
862 if (Addr.BaseType == Address::FrameIndexBase) {
863 int FI = Addr.Base.FI;
864 int Offset = Addr.Offset;
865 MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
866 MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags,
867 MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
868 // Now add the rest of the operands.
869 MIB.addFrameIndex(FI);
870
871 // ARM halfword load/stores and signed byte loads need an additional
872 // operand.
873 if (useAM3) {
874 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
875 MIB.addReg(0);
876 MIB.addImm(Imm);
877 } else {
878 MIB.addImm(Addr.Offset);
879 }
880 MIB.addMemOperand(MMO);
881 } else {
882 // Now add the rest of the operands.
883 MIB.addReg(Addr.Base.Reg);
884
885 // ARM halfword load/stores and signed byte loads need an additional
886 // operand.
887 if (useAM3) {
888 int Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset;
889 MIB.addReg(0);
890 MIB.addImm(Imm);
891 } else {
892 MIB.addImm(Addr.Offset);
893 }
894 }
895 AddOptionalDefs(MIB);
896 }
897
ARMEmitLoad(MVT VT,Register & ResultReg,Address & Addr,MaybeAlign Alignment,bool isZExt,bool allocReg)898 bool ARMFastISel::ARMEmitLoad(MVT VT, Register &ResultReg, Address &Addr,
899 MaybeAlign Alignment, bool isZExt,
900 bool allocReg) {
901 unsigned Opc;
902 bool useAM3 = false;
903 bool needVMOV = false;
904 const TargetRegisterClass *RC;
905 switch (VT.SimpleTy) {
906 // This is mostly going to be Neon/vector support.
907 default: return false;
908 case MVT::i1:
909 case MVT::i8:
910 if (isThumb2) {
911 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
912 Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8;
913 else
914 Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12;
915 } else {
916 if (isZExt) {
917 Opc = ARM::LDRBi12;
918 } else {
919 Opc = ARM::LDRSB;
920 useAM3 = true;
921 }
922 }
923 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
924 break;
925 case MVT::i16:
926 if (Alignment && *Alignment < Align(2) &&
927 !Subtarget->allowsUnalignedMem())
928 return false;
929
930 if (isThumb2) {
931 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
932 Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8;
933 else
934 Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12;
935 } else {
936 Opc = isZExt ? ARM::LDRH : ARM::LDRSH;
937 useAM3 = true;
938 }
939 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
940 break;
941 case MVT::i32:
942 if (Alignment && *Alignment < Align(4) &&
943 !Subtarget->allowsUnalignedMem())
944 return false;
945
946 if (isThumb2) {
947 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
948 Opc = ARM::t2LDRi8;
949 else
950 Opc = ARM::t2LDRi12;
951 } else {
952 Opc = ARM::LDRi12;
953 }
954 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
955 break;
956 case MVT::f32:
957 if (!Subtarget->hasVFP2Base()) return false;
958 // Unaligned loads need special handling. Floats require word-alignment.
959 if (Alignment && *Alignment < Align(4)) {
960 needVMOV = true;
961 VT = MVT::i32;
962 Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
963 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass;
964 } else {
965 Opc = ARM::VLDRS;
966 RC = TLI.getRegClassFor(VT);
967 }
968 break;
969 case MVT::f64:
970 // Can load and store double precision even without FeatureFP64
971 if (!Subtarget->hasVFP2Base()) return false;
972 // FIXME: Unaligned loads need special handling. Doublewords require
973 // word-alignment.
974 if (Alignment && *Alignment < Align(4))
975 return false;
976
977 Opc = ARM::VLDRD;
978 RC = TLI.getRegClassFor(VT);
979 break;
980 }
981 // Simplify this down to something we can handle.
982 ARMSimplifyAddress(Addr, VT, useAM3);
983
984 // Create the base instruction, then add the operands.
985 if (allocReg)
986 ResultReg = createResultReg(RC);
987 assert(ResultReg > 255 && "Expected an allocated virtual register.");
988 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
989 TII.get(Opc), ResultReg);
990 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3);
991
992 // If we had an unaligned load of a float we've converted it to an regular
993 // load. Now we must move from the GRP to the FP register.
994 if (needVMOV) {
995 Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32));
996 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
997 TII.get(ARM::VMOVSR), MoveReg)
998 .addReg(ResultReg));
999 ResultReg = MoveReg;
1000 }
1001 return true;
1002 }
1003
SelectLoad(const Instruction * I)1004 bool ARMFastISel::SelectLoad(const Instruction *I) {
1005 // Atomic loads need special handling.
1006 if (cast<LoadInst>(I)->isAtomic())
1007 return false;
1008
1009 const Value *SV = I->getOperand(0);
1010 if (TLI.supportSwiftError()) {
1011 // Swifterror values can come from either a function parameter with
1012 // swifterror attribute or an alloca with swifterror attribute.
1013 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
1014 if (Arg->hasSwiftErrorAttr())
1015 return false;
1016 }
1017
1018 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
1019 if (Alloca->isSwiftError())
1020 return false;
1021 }
1022 }
1023
1024 // Verify we have a legal type before going any further.
1025 MVT VT;
1026 if (!isLoadTypeLegal(I->getType(), VT))
1027 return false;
1028
1029 // See if we can handle this address.
1030 Address Addr;
1031 if (!ARMComputeAddress(I->getOperand(0), Addr)) return false;
1032
1033 Register ResultReg;
1034 if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlign()))
1035 return false;
1036 updateValueMap(I, ResultReg);
1037 return true;
1038 }
1039
ARMEmitStore(MVT VT,unsigned SrcReg,Address & Addr,MaybeAlign Alignment)1040 bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr,
1041 MaybeAlign Alignment) {
1042 unsigned StrOpc;
1043 bool useAM3 = false;
1044 switch (VT.SimpleTy) {
1045 // This is mostly going to be Neon/vector support.
1046 default: return false;
1047 case MVT::i1: {
1048 Register Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass
1049 : &ARM::GPRRegClass);
1050 unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri;
1051 SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1);
1052 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1053 TII.get(Opc), Res)
1054 .addReg(SrcReg).addImm(1));
1055 SrcReg = Res;
1056 [[fallthrough]];
1057 }
1058 case MVT::i8:
1059 if (isThumb2) {
1060 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1061 StrOpc = ARM::t2STRBi8;
1062 else
1063 StrOpc = ARM::t2STRBi12;
1064 } else {
1065 StrOpc = ARM::STRBi12;
1066 }
1067 break;
1068 case MVT::i16:
1069 if (Alignment && *Alignment < Align(2) &&
1070 !Subtarget->allowsUnalignedMem())
1071 return false;
1072
1073 if (isThumb2) {
1074 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1075 StrOpc = ARM::t2STRHi8;
1076 else
1077 StrOpc = ARM::t2STRHi12;
1078 } else {
1079 StrOpc = ARM::STRH;
1080 useAM3 = true;
1081 }
1082 break;
1083 case MVT::i32:
1084 if (Alignment && *Alignment < Align(4) &&
1085 !Subtarget->allowsUnalignedMem())
1086 return false;
1087
1088 if (isThumb2) {
1089 if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops())
1090 StrOpc = ARM::t2STRi8;
1091 else
1092 StrOpc = ARM::t2STRi12;
1093 } else {
1094 StrOpc = ARM::STRi12;
1095 }
1096 break;
1097 case MVT::f32:
1098 if (!Subtarget->hasVFP2Base()) return false;
1099 // Unaligned stores need special handling. Floats require word-alignment.
1100 if (Alignment && *Alignment < Align(4)) {
1101 Register MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32));
1102 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1103 TII.get(ARM::VMOVRS), MoveReg)
1104 .addReg(SrcReg));
1105 SrcReg = MoveReg;
1106 VT = MVT::i32;
1107 StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12;
1108 } else {
1109 StrOpc = ARM::VSTRS;
1110 }
1111 break;
1112 case MVT::f64:
1113 // Can load and store double precision even without FeatureFP64
1114 if (!Subtarget->hasVFP2Base()) return false;
1115 // FIXME: Unaligned stores need special handling. Doublewords require
1116 // word-alignment.
1117 if (Alignment && *Alignment < Align(4))
1118 return false;
1119
1120 StrOpc = ARM::VSTRD;
1121 break;
1122 }
1123 // Simplify this down to something we can handle.
1124 ARMSimplifyAddress(Addr, VT, useAM3);
1125
1126 // Create the base instruction, then add the operands.
1127 SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0);
1128 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1129 TII.get(StrOpc))
1130 .addReg(SrcReg);
1131 AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3);
1132 return true;
1133 }
1134
SelectStore(const Instruction * I)1135 bool ARMFastISel::SelectStore(const Instruction *I) {
1136 Value *Op0 = I->getOperand(0);
1137 unsigned SrcReg = 0;
1138
1139 // Atomic stores need special handling.
1140 if (cast<StoreInst>(I)->isAtomic())
1141 return false;
1142
1143 const Value *PtrV = I->getOperand(1);
1144 if (TLI.supportSwiftError()) {
1145 // Swifterror values can come from either a function parameter with
1146 // swifterror attribute or an alloca with swifterror attribute.
1147 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
1148 if (Arg->hasSwiftErrorAttr())
1149 return false;
1150 }
1151
1152 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
1153 if (Alloca->isSwiftError())
1154 return false;
1155 }
1156 }
1157
1158 // Verify we have a legal type before going any further.
1159 MVT VT;
1160 if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
1161 return false;
1162
1163 // Get the value to be stored into a register.
1164 SrcReg = getRegForValue(Op0);
1165 if (SrcReg == 0) return false;
1166
1167 // See if we can handle this address.
1168 Address Addr;
1169 if (!ARMComputeAddress(I->getOperand(1), Addr))
1170 return false;
1171
1172 if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlign()))
1173 return false;
1174 return true;
1175 }
1176
getComparePred(CmpInst::Predicate Pred)1177 static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) {
1178 switch (Pred) {
1179 // Needs two compares...
1180 case CmpInst::FCMP_ONE:
1181 case CmpInst::FCMP_UEQ:
1182 default:
1183 // AL is our "false" for now. The other two need more compares.
1184 return ARMCC::AL;
1185 case CmpInst::ICMP_EQ:
1186 case CmpInst::FCMP_OEQ:
1187 return ARMCC::EQ;
1188 case CmpInst::ICMP_SGT:
1189 case CmpInst::FCMP_OGT:
1190 return ARMCC::GT;
1191 case CmpInst::ICMP_SGE:
1192 case CmpInst::FCMP_OGE:
1193 return ARMCC::GE;
1194 case CmpInst::ICMP_UGT:
1195 case CmpInst::FCMP_UGT:
1196 return ARMCC::HI;
1197 case CmpInst::FCMP_OLT:
1198 return ARMCC::MI;
1199 case CmpInst::ICMP_ULE:
1200 case CmpInst::FCMP_OLE:
1201 return ARMCC::LS;
1202 case CmpInst::FCMP_ORD:
1203 return ARMCC::VC;
1204 case CmpInst::FCMP_UNO:
1205 return ARMCC::VS;
1206 case CmpInst::FCMP_UGE:
1207 return ARMCC::PL;
1208 case CmpInst::ICMP_SLT:
1209 case CmpInst::FCMP_ULT:
1210 return ARMCC::LT;
1211 case CmpInst::ICMP_SLE:
1212 case CmpInst::FCMP_ULE:
1213 return ARMCC::LE;
1214 case CmpInst::FCMP_UNE:
1215 case CmpInst::ICMP_NE:
1216 return ARMCC::NE;
1217 case CmpInst::ICMP_UGE:
1218 return ARMCC::HS;
1219 case CmpInst::ICMP_ULT:
1220 return ARMCC::LO;
1221 }
1222 }
1223
SelectBranch(const Instruction * I)1224 bool ARMFastISel::SelectBranch(const Instruction *I) {
1225 const BranchInst *BI = cast<BranchInst>(I);
1226 MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
1227 MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
1228
1229 // Simple branch support.
1230
1231 // If we can, avoid recomputing the compare - redoing it could lead to wonky
1232 // behavior.
1233 if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
1234 if (CI->hasOneUse() && (CI->getParent() == I->getParent())) {
1235 // Get the compare predicate.
1236 // Try to take advantage of fallthrough opportunities.
1237 CmpInst::Predicate Predicate = CI->getPredicate();
1238 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1239 std::swap(TBB, FBB);
1240 Predicate = CmpInst::getInversePredicate(Predicate);
1241 }
1242
1243 ARMCC::CondCodes ARMPred = getComparePred(Predicate);
1244
1245 // We may not handle every CC for now.
1246 if (ARMPred == ARMCC::AL) return false;
1247
1248 // Emit the compare.
1249 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1250 return false;
1251
1252 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1253 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc))
1254 .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR);
1255 finishCondBranch(BI->getParent(), TBB, FBB);
1256 return true;
1257 }
1258 } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
1259 MVT SourceVT;
1260 if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
1261 (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) {
1262 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1263 Register OpReg = getRegForValue(TI->getOperand(0));
1264 OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0);
1265 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1266 TII.get(TstOpc))
1267 .addReg(OpReg).addImm(1));
1268
1269 unsigned CCMode = ARMCC::NE;
1270 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1271 std::swap(TBB, FBB);
1272 CCMode = ARMCC::EQ;
1273 }
1274
1275 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1276 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc))
1277 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1278
1279 finishCondBranch(BI->getParent(), TBB, FBB);
1280 return true;
1281 }
1282 } else if (const ConstantInt *CI =
1283 dyn_cast<ConstantInt>(BI->getCondition())) {
1284 uint64_t Imm = CI->getZExtValue();
1285 MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB;
1286 fastEmitBranch(Target, MIMD.getDL());
1287 return true;
1288 }
1289
1290 Register CmpReg = getRegForValue(BI->getCondition());
1291 if (CmpReg == 0) return false;
1292
1293 // We've been divorced from our compare! Our block was split, and
1294 // now our compare lives in a predecessor block. We musn't
1295 // re-compare here, as the children of the compare aren't guaranteed
1296 // live across the block boundary (we *could* check for this).
1297 // Regardless, the compare has been done in the predecessor block,
1298 // and it left a value for us in a virtual register. Ergo, we test
1299 // the one-bit value left in the virtual register.
1300 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1301 CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0);
1302 AddOptionalDefs(
1303 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TstOpc))
1304 .addReg(CmpReg)
1305 .addImm(1));
1306
1307 unsigned CCMode = ARMCC::NE;
1308 if (FuncInfo.MBB->isLayoutSuccessor(TBB)) {
1309 std::swap(TBB, FBB);
1310 CCMode = ARMCC::EQ;
1311 }
1312
1313 unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc;
1314 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(BrOpc))
1315 .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR);
1316 finishCondBranch(BI->getParent(), TBB, FBB);
1317 return true;
1318 }
1319
SelectIndirectBr(const Instruction * I)1320 bool ARMFastISel::SelectIndirectBr(const Instruction *I) {
1321 Register AddrReg = getRegForValue(I->getOperand(0));
1322 if (AddrReg == 0) return false;
1323
1324 unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX;
1325 assert(isThumb2 || Subtarget->hasV4TOps());
1326
1327 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1328 TII.get(Opc)).addReg(AddrReg));
1329
1330 const IndirectBrInst *IB = cast<IndirectBrInst>(I);
1331 for (const BasicBlock *SuccBB : IB->successors())
1332 FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]);
1333
1334 return true;
1335 }
1336
ARMEmitCmp(const Value * Src1Value,const Value * Src2Value,bool isZExt)1337 bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value,
1338 bool isZExt) {
1339 Type *Ty = Src1Value->getType();
1340 EVT SrcEVT = TLI.getValueType(DL, Ty, true);
1341 if (!SrcEVT.isSimple()) return false;
1342 MVT SrcVT = SrcEVT.getSimpleVT();
1343
1344 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1345 return false;
1346
1347 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1348 return false;
1349
1350 // Check to see if the 2nd operand is a constant that we can encode directly
1351 // in the compare.
1352 int Imm = 0;
1353 bool UseImm = false;
1354 bool isNegativeImm = false;
1355 // FIXME: At -O0 we don't have anything that canonicalizes operand order.
1356 // Thus, Src1Value may be a ConstantInt, but we're missing it.
1357 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) {
1358 if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 ||
1359 SrcVT == MVT::i1) {
1360 const APInt &CIVal = ConstInt->getValue();
1361 Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue();
1362 // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather
1363 // then a cmn, because there is no way to represent 2147483648 as a
1364 // signed 32-bit int.
1365 if (Imm < 0 && Imm != (int)0x80000000) {
1366 isNegativeImm = true;
1367 Imm = -Imm;
1368 }
1369 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1370 (ARM_AM::getSOImmVal(Imm) != -1);
1371 }
1372 } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) {
1373 if (SrcVT == MVT::f32 || SrcVT == MVT::f64)
1374 if (ConstFP->isZero() && !ConstFP->isNegative())
1375 UseImm = true;
1376 }
1377
1378 unsigned CmpOpc;
1379 bool isICmp = true;
1380 bool needsExt = false;
1381 switch (SrcVT.SimpleTy) {
1382 default: return false;
1383 // TODO: Verify compares.
1384 case MVT::f32:
1385 isICmp = false;
1386 CmpOpc = UseImm ? ARM::VCMPZS : ARM::VCMPS;
1387 break;
1388 case MVT::f64:
1389 isICmp = false;
1390 CmpOpc = UseImm ? ARM::VCMPZD : ARM::VCMPD;
1391 break;
1392 case MVT::i1:
1393 case MVT::i8:
1394 case MVT::i16:
1395 needsExt = true;
1396 [[fallthrough]];
1397 case MVT::i32:
1398 if (isThumb2) {
1399 if (!UseImm)
1400 CmpOpc = ARM::t2CMPrr;
1401 else
1402 CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri;
1403 } else {
1404 if (!UseImm)
1405 CmpOpc = ARM::CMPrr;
1406 else
1407 CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri;
1408 }
1409 break;
1410 }
1411
1412 Register SrcReg1 = getRegForValue(Src1Value);
1413 if (SrcReg1 == 0) return false;
1414
1415 unsigned SrcReg2 = 0;
1416 if (!UseImm) {
1417 SrcReg2 = getRegForValue(Src2Value);
1418 if (SrcReg2 == 0) return false;
1419 }
1420
1421 // We have i1, i8, or i16, we need to either zero extend or sign extend.
1422 if (needsExt) {
1423 SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt);
1424 if (SrcReg1 == 0) return false;
1425 if (!UseImm) {
1426 SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt);
1427 if (SrcReg2 == 0) return false;
1428 }
1429 }
1430
1431 const MCInstrDesc &II = TII.get(CmpOpc);
1432 SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0);
1433 if (!UseImm) {
1434 SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1);
1435 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
1436 .addReg(SrcReg1).addReg(SrcReg2));
1437 } else {
1438 MachineInstrBuilder MIB;
1439 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, II)
1440 .addReg(SrcReg1);
1441
1442 // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0.
1443 if (isICmp)
1444 MIB.addImm(Imm);
1445 AddOptionalDefs(MIB);
1446 }
1447
1448 // For floating point we need to move the result to a comparison register
1449 // that we can then use for branches.
1450 if (Ty->isFloatTy() || Ty->isDoubleTy())
1451 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1452 TII.get(ARM::FMSTAT)));
1453 return true;
1454 }
1455
SelectCmp(const Instruction * I)1456 bool ARMFastISel::SelectCmp(const Instruction *I) {
1457 const CmpInst *CI = cast<CmpInst>(I);
1458
1459 // Get the compare predicate.
1460 ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate());
1461
1462 // We may not handle every CC for now.
1463 if (ARMPred == ARMCC::AL) return false;
1464
1465 // Emit the compare.
1466 if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned()))
1467 return false;
1468
1469 // Now set a register based on the comparison. Explicitly set the predicates
1470 // here.
1471 unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1472 const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass
1473 : &ARM::GPRRegClass;
1474 Register DestReg = createResultReg(RC);
1475 Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0);
1476 unsigned ZeroReg = fastMaterializeConstant(Zero);
1477 // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR.
1478 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc), DestReg)
1479 .addReg(ZeroReg).addImm(1)
1480 .addImm(ARMPred).addReg(ARM::CPSR);
1481
1482 updateValueMap(I, DestReg);
1483 return true;
1484 }
1485
SelectFPExt(const Instruction * I)1486 bool ARMFastISel::SelectFPExt(const Instruction *I) {
1487 // Make sure we have VFP and that we're extending float to double.
1488 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1489
1490 Value *V = I->getOperand(0);
1491 if (!I->getType()->isDoubleTy() ||
1492 !V->getType()->isFloatTy()) return false;
1493
1494 Register Op = getRegForValue(V);
1495 if (Op == 0) return false;
1496
1497 Register Result = createResultReg(&ARM::DPRRegClass);
1498 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1499 TII.get(ARM::VCVTDS), Result)
1500 .addReg(Op));
1501 updateValueMap(I, Result);
1502 return true;
1503 }
1504
SelectFPTrunc(const Instruction * I)1505 bool ARMFastISel::SelectFPTrunc(const Instruction *I) {
1506 // Make sure we have VFP and that we're truncating double to float.
1507 if (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()) return false;
1508
1509 Value *V = I->getOperand(0);
1510 if (!(I->getType()->isFloatTy() &&
1511 V->getType()->isDoubleTy())) return false;
1512
1513 Register Op = getRegForValue(V);
1514 if (Op == 0) return false;
1515
1516 Register Result = createResultReg(&ARM::SPRRegClass);
1517 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1518 TII.get(ARM::VCVTSD), Result)
1519 .addReg(Op));
1520 updateValueMap(I, Result);
1521 return true;
1522 }
1523
SelectIToFP(const Instruction * I,bool isSigned)1524 bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) {
1525 // Make sure we have VFP.
1526 if (!Subtarget->hasVFP2Base()) return false;
1527
1528 MVT DstVT;
1529 Type *Ty = I->getType();
1530 if (!isTypeLegal(Ty, DstVT))
1531 return false;
1532
1533 Value *Src = I->getOperand(0);
1534 EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true);
1535 if (!SrcEVT.isSimple())
1536 return false;
1537 MVT SrcVT = SrcEVT.getSimpleVT();
1538 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1539 return false;
1540
1541 Register SrcReg = getRegForValue(Src);
1542 if (SrcReg == 0) return false;
1543
1544 // Handle sign-extension.
1545 if (SrcVT == MVT::i16 || SrcVT == MVT::i8) {
1546 SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32,
1547 /*isZExt*/!isSigned);
1548 if (SrcReg == 0) return false;
1549 }
1550
1551 // The conversion routine works on fp-reg to fp-reg and the operand above
1552 // was an integer, move it to the fp registers if possible.
1553 unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg);
1554 if (FP == 0) return false;
1555
1556 unsigned Opc;
1557 if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS;
1558 else if (Ty->isDoubleTy() && Subtarget->hasFP64())
1559 Opc = isSigned ? ARM::VSITOD : ARM::VUITOD;
1560 else return false;
1561
1562 Register ResultReg = createResultReg(TLI.getRegClassFor(DstVT));
1563 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1564 TII.get(Opc), ResultReg).addReg(FP));
1565 updateValueMap(I, ResultReg);
1566 return true;
1567 }
1568
SelectFPToI(const Instruction * I,bool isSigned)1569 bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) {
1570 // Make sure we have VFP.
1571 if (!Subtarget->hasVFP2Base()) return false;
1572
1573 MVT DstVT;
1574 Type *RetTy = I->getType();
1575 if (!isTypeLegal(RetTy, DstVT))
1576 return false;
1577
1578 Register Op = getRegForValue(I->getOperand(0));
1579 if (Op == 0) return false;
1580
1581 unsigned Opc;
1582 Type *OpTy = I->getOperand(0)->getType();
1583 if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS;
1584 else if (OpTy->isDoubleTy() && Subtarget->hasFP64())
1585 Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD;
1586 else return false;
1587
1588 // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg.
1589 Register ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32));
1590 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1591 TII.get(Opc), ResultReg).addReg(Op));
1592
1593 // This result needs to be in an integer register, but the conversion only
1594 // takes place in fp-regs.
1595 unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg);
1596 if (IntReg == 0) return false;
1597
1598 updateValueMap(I, IntReg);
1599 return true;
1600 }
1601
SelectSelect(const Instruction * I)1602 bool ARMFastISel::SelectSelect(const Instruction *I) {
1603 MVT VT;
1604 if (!isTypeLegal(I->getType(), VT))
1605 return false;
1606
1607 // Things need to be register sized for register moves.
1608 if (VT != MVT::i32) return false;
1609
1610 Register CondReg = getRegForValue(I->getOperand(0));
1611 if (CondReg == 0) return false;
1612 Register Op1Reg = getRegForValue(I->getOperand(1));
1613 if (Op1Reg == 0) return false;
1614
1615 // Check to see if we can use an immediate in the conditional move.
1616 int Imm = 0;
1617 bool UseImm = false;
1618 bool isNegativeImm = false;
1619 if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) {
1620 assert(VT == MVT::i32 && "Expecting an i32.");
1621 Imm = (int)ConstInt->getValue().getZExtValue();
1622 if (Imm < 0) {
1623 isNegativeImm = true;
1624 Imm = ~Imm;
1625 }
1626 UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) :
1627 (ARM_AM::getSOImmVal(Imm) != -1);
1628 }
1629
1630 unsigned Op2Reg = 0;
1631 if (!UseImm) {
1632 Op2Reg = getRegForValue(I->getOperand(2));
1633 if (Op2Reg == 0) return false;
1634 }
1635
1636 unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri;
1637 CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0);
1638 AddOptionalDefs(
1639 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(TstOpc))
1640 .addReg(CondReg)
1641 .addImm(1));
1642
1643 unsigned MovCCOpc;
1644 const TargetRegisterClass *RC;
1645 if (!UseImm) {
1646 RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
1647 MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr;
1648 } else {
1649 RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass;
1650 if (!isNegativeImm)
1651 MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi;
1652 else
1653 MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi;
1654 }
1655 Register ResultReg = createResultReg(RC);
1656 if (!UseImm) {
1657 Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1);
1658 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2);
1659 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc),
1660 ResultReg)
1661 .addReg(Op2Reg)
1662 .addReg(Op1Reg)
1663 .addImm(ARMCC::NE)
1664 .addReg(ARM::CPSR);
1665 } else {
1666 Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1);
1667 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(MovCCOpc),
1668 ResultReg)
1669 .addReg(Op1Reg)
1670 .addImm(Imm)
1671 .addImm(ARMCC::EQ)
1672 .addReg(ARM::CPSR);
1673 }
1674 updateValueMap(I, ResultReg);
1675 return true;
1676 }
1677
SelectDiv(const Instruction * I,bool isSigned)1678 bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) {
1679 MVT VT;
1680 Type *Ty = I->getType();
1681 if (!isTypeLegal(Ty, VT))
1682 return false;
1683
1684 // If we have integer div support we should have selected this automagically.
1685 // In case we have a real miss go ahead and return false and we'll pick
1686 // it up later.
1687 if (Subtarget->hasDivideInThumbMode())
1688 return false;
1689
1690 // Otherwise emit a libcall.
1691 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1692 if (VT == MVT::i8)
1693 LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8;
1694 else if (VT == MVT::i16)
1695 LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16;
1696 else if (VT == MVT::i32)
1697 LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32;
1698 else if (VT == MVT::i64)
1699 LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64;
1700 else if (VT == MVT::i128)
1701 LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128;
1702 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!");
1703
1704 return ARMEmitLibcall(I, LC);
1705 }
1706
SelectRem(const Instruction * I,bool isSigned)1707 bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) {
1708 MVT VT;
1709 Type *Ty = I->getType();
1710 if (!isTypeLegal(Ty, VT))
1711 return false;
1712
1713 // Many ABIs do not provide a libcall for standalone remainder, so we need to
1714 // use divrem (see the RTABI 4.3.1). Since FastISel can't handle non-double
1715 // multi-reg returns, we'll have to bail out.
1716 if (!TLI.hasStandaloneRem(VT)) {
1717 return false;
1718 }
1719
1720 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
1721 if (VT == MVT::i8)
1722 LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8;
1723 else if (VT == MVT::i16)
1724 LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16;
1725 else if (VT == MVT::i32)
1726 LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32;
1727 else if (VT == MVT::i64)
1728 LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64;
1729 else if (VT == MVT::i128)
1730 LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128;
1731 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!");
1732
1733 return ARMEmitLibcall(I, LC);
1734 }
1735
SelectBinaryIntOp(const Instruction * I,unsigned ISDOpcode)1736 bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) {
1737 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1738
1739 // We can get here in the case when we have a binary operation on a non-legal
1740 // type and the target independent selector doesn't know how to handle it.
1741 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1742 return false;
1743
1744 unsigned Opc;
1745 switch (ISDOpcode) {
1746 default: return false;
1747 case ISD::ADD:
1748 Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr;
1749 break;
1750 case ISD::OR:
1751 Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr;
1752 break;
1753 case ISD::SUB:
1754 Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr;
1755 break;
1756 }
1757
1758 Register SrcReg1 = getRegForValue(I->getOperand(0));
1759 if (SrcReg1 == 0) return false;
1760
1761 // TODO: Often the 2nd operand is an immediate, which can be encoded directly
1762 // in the instruction, rather then materializing the value in a register.
1763 Register SrcReg2 = getRegForValue(I->getOperand(1));
1764 if (SrcReg2 == 0) return false;
1765
1766 Register ResultReg = createResultReg(&ARM::GPRnopcRegClass);
1767 SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1);
1768 SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2);
1769 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1770 TII.get(Opc), ResultReg)
1771 .addReg(SrcReg1).addReg(SrcReg2));
1772 updateValueMap(I, ResultReg);
1773 return true;
1774 }
1775
SelectBinaryFPOp(const Instruction * I,unsigned ISDOpcode)1776 bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) {
1777 EVT FPVT = TLI.getValueType(DL, I->getType(), true);
1778 if (!FPVT.isSimple()) return false;
1779 MVT VT = FPVT.getSimpleVT();
1780
1781 // FIXME: Support vector types where possible.
1782 if (VT.isVector())
1783 return false;
1784
1785 // We can get here in the case when we want to use NEON for our fp
1786 // operations, but can't figure out how to. Just use the vfp instructions
1787 // if we have them.
1788 // FIXME: It'd be nice to use NEON instructions.
1789 Type *Ty = I->getType();
1790 if (Ty->isFloatTy() && !Subtarget->hasVFP2Base())
1791 return false;
1792 if (Ty->isDoubleTy() && (!Subtarget->hasVFP2Base() || !Subtarget->hasFP64()))
1793 return false;
1794
1795 unsigned Opc;
1796 bool is64bit = VT == MVT::f64 || VT == MVT::i64;
1797 switch (ISDOpcode) {
1798 default: return false;
1799 case ISD::FADD:
1800 Opc = is64bit ? ARM::VADDD : ARM::VADDS;
1801 break;
1802 case ISD::FSUB:
1803 Opc = is64bit ? ARM::VSUBD : ARM::VSUBS;
1804 break;
1805 case ISD::FMUL:
1806 Opc = is64bit ? ARM::VMULD : ARM::VMULS;
1807 break;
1808 }
1809 Register Op1 = getRegForValue(I->getOperand(0));
1810 if (Op1 == 0) return false;
1811
1812 Register Op2 = getRegForValue(I->getOperand(1));
1813 if (Op2 == 0) return false;
1814
1815 Register ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy));
1816 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1817 TII.get(Opc), ResultReg)
1818 .addReg(Op1).addReg(Op2));
1819 updateValueMap(I, ResultReg);
1820 return true;
1821 }
1822
1823 // Call Handling Code
1824
1825 // This is largely taken directly from CCAssignFnForNode
1826 // TODO: We may not support all of this.
CCAssignFnForCall(CallingConv::ID CC,bool Return,bool isVarArg)1827 CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC,
1828 bool Return,
1829 bool isVarArg) {
1830 switch (CC) {
1831 default:
1832 report_fatal_error("Unsupported calling convention");
1833 case CallingConv::Fast:
1834 if (Subtarget->hasVFP2Base() && !isVarArg) {
1835 if (!Subtarget->isAAPCS_ABI())
1836 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1837 // For AAPCS ABI targets, just use VFP variant of the calling convention.
1838 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1839 }
1840 [[fallthrough]];
1841 case CallingConv::C:
1842 case CallingConv::CXX_FAST_TLS:
1843 // Use target triple & subtarget features to do actual dispatch.
1844 if (Subtarget->isAAPCS_ABI()) {
1845 if (Subtarget->hasFPRegs() &&
1846 TM.Options.FloatABIType == FloatABI::Hard && !isVarArg)
1847 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1848 else
1849 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1850 } else {
1851 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1852 }
1853 case CallingConv::ARM_AAPCS_VFP:
1854 case CallingConv::Swift:
1855 case CallingConv::SwiftTail:
1856 if (!isVarArg)
1857 return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP);
1858 // Fall through to soft float variant, variadic functions don't
1859 // use hard floating point ABI.
1860 [[fallthrough]];
1861 case CallingConv::ARM_AAPCS:
1862 return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS);
1863 case CallingConv::ARM_APCS:
1864 return (Return ? RetCC_ARM_APCS: CC_ARM_APCS);
1865 case CallingConv::GHC:
1866 if (Return)
1867 report_fatal_error("Can't return in GHC call convention");
1868 else
1869 return CC_ARM_APCS_GHC;
1870 case CallingConv::CFGuard_Check:
1871 return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
1872 }
1873 }
1874
ProcessCallArgs(SmallVectorImpl<Value * > & Args,SmallVectorImpl<Register> & ArgRegs,SmallVectorImpl<MVT> & ArgVTs,SmallVectorImpl<ISD::ArgFlagsTy> & ArgFlags,SmallVectorImpl<Register> & RegArgs,CallingConv::ID CC,unsigned & NumBytes,bool isVarArg)1875 bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args,
1876 SmallVectorImpl<Register> &ArgRegs,
1877 SmallVectorImpl<MVT> &ArgVTs,
1878 SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags,
1879 SmallVectorImpl<Register> &RegArgs,
1880 CallingConv::ID CC,
1881 unsigned &NumBytes,
1882 bool isVarArg) {
1883 SmallVector<CCValAssign, 16> ArgLocs;
1884 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context);
1885 CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags,
1886 CCAssignFnForCall(CC, false, isVarArg));
1887
1888 // Check that we can handle all of the arguments. If we can't, then bail out
1889 // now before we add code to the MBB.
1890 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1891 CCValAssign &VA = ArgLocs[i];
1892 MVT ArgVT = ArgVTs[VA.getValNo()];
1893
1894 // We don't handle NEON/vector parameters yet.
1895 if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64)
1896 return false;
1897
1898 // Now copy/store arg to correct locations.
1899 if (VA.isRegLoc() && !VA.needsCustom()) {
1900 continue;
1901 } else if (VA.needsCustom()) {
1902 // TODO: We need custom lowering for vector (v2f64) args.
1903 if (VA.getLocVT() != MVT::f64 ||
1904 // TODO: Only handle register args for now.
1905 !VA.isRegLoc() || !ArgLocs[++i].isRegLoc())
1906 return false;
1907 } else {
1908 switch (ArgVT.SimpleTy) {
1909 default:
1910 return false;
1911 case MVT::i1:
1912 case MVT::i8:
1913 case MVT::i16:
1914 case MVT::i32:
1915 break;
1916 case MVT::f32:
1917 if (!Subtarget->hasVFP2Base())
1918 return false;
1919 break;
1920 case MVT::f64:
1921 if (!Subtarget->hasVFP2Base())
1922 return false;
1923 break;
1924 }
1925 }
1926 }
1927
1928 // At the point, we are able to handle the call's arguments in fast isel.
1929
1930 // Get a count of how many bytes are to be pushed on the stack.
1931 NumBytes = CCInfo.getStackSize();
1932
1933 // Issue CALLSEQ_START
1934 unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
1935 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1936 TII.get(AdjStackDown))
1937 .addImm(NumBytes).addImm(0));
1938
1939 // Process the args.
1940 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1941 CCValAssign &VA = ArgLocs[i];
1942 const Value *ArgVal = Args[VA.getValNo()];
1943 Register Arg = ArgRegs[VA.getValNo()];
1944 MVT ArgVT = ArgVTs[VA.getValNo()];
1945
1946 assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) &&
1947 "We don't handle NEON/vector parameters yet.");
1948
1949 // Handle arg promotion, etc.
1950 switch (VA.getLocInfo()) {
1951 case CCValAssign::Full: break;
1952 case CCValAssign::SExt: {
1953 MVT DestVT = VA.getLocVT();
1954 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false);
1955 assert(Arg != 0 && "Failed to emit a sext");
1956 ArgVT = DestVT;
1957 break;
1958 }
1959 case CCValAssign::AExt:
1960 // Intentional fall-through. Handle AExt and ZExt.
1961 case CCValAssign::ZExt: {
1962 MVT DestVT = VA.getLocVT();
1963 Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true);
1964 assert(Arg != 0 && "Failed to emit a zext");
1965 ArgVT = DestVT;
1966 break;
1967 }
1968 case CCValAssign::BCvt: {
1969 unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg);
1970 assert(BC != 0 && "Failed to emit a bitcast!");
1971 Arg = BC;
1972 ArgVT = VA.getLocVT();
1973 break;
1974 }
1975 default: llvm_unreachable("Unknown arg promotion!");
1976 }
1977
1978 // Now copy/store arg to correct locations.
1979 if (VA.isRegLoc() && !VA.needsCustom()) {
1980 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1981 TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg);
1982 RegArgs.push_back(VA.getLocReg());
1983 } else if (VA.needsCustom()) {
1984 // TODO: We need custom lowering for vector (v2f64) args.
1985 assert(VA.getLocVT() == MVT::f64 &&
1986 "Custom lowering for v2f64 args not available");
1987
1988 // FIXME: ArgLocs[++i] may extend beyond ArgLocs.size()
1989 CCValAssign &NextVA = ArgLocs[++i];
1990
1991 assert(VA.isRegLoc() && NextVA.isRegLoc() &&
1992 "We only handle register args!");
1993
1994 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
1995 TII.get(ARM::VMOVRRD), VA.getLocReg())
1996 .addReg(NextVA.getLocReg(), RegState::Define)
1997 .addReg(Arg));
1998 RegArgs.push_back(VA.getLocReg());
1999 RegArgs.push_back(NextVA.getLocReg());
2000 } else {
2001 assert(VA.isMemLoc());
2002 // Need to store on the stack.
2003
2004 // Don't emit stores for undef values.
2005 if (isa<UndefValue>(ArgVal))
2006 continue;
2007
2008 Address Addr;
2009 Addr.BaseType = Address::RegBase;
2010 Addr.Base.Reg = ARM::SP;
2011 Addr.Offset = VA.getLocMemOffset();
2012
2013 bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet;
2014 assert(EmitRet && "Could not emit a store for argument!");
2015 }
2016 }
2017
2018 return true;
2019 }
2020
FinishCall(MVT RetVT,SmallVectorImpl<Register> & UsedRegs,const Instruction * I,CallingConv::ID CC,unsigned & NumBytes,bool isVarArg)2021 bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<Register> &UsedRegs,
2022 const Instruction *I, CallingConv::ID CC,
2023 unsigned &NumBytes, bool isVarArg) {
2024 // Issue CALLSEQ_END
2025 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
2026 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2027 TII.get(AdjStackUp))
2028 .addImm(NumBytes).addImm(-1ULL));
2029
2030 // Now the return value.
2031 if (RetVT != MVT::isVoid) {
2032 SmallVector<CCValAssign, 16> RVLocs;
2033 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2034 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2035
2036 // Copy all of the result registers out of their specified physreg.
2037 if (RVLocs.size() == 2 && RetVT == MVT::f64) {
2038 // For this move we copy into two registers and then move into the
2039 // double fp reg we want.
2040 MVT DestVT = RVLocs[0].getValVT();
2041 const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT);
2042 Register ResultReg = createResultReg(DstRC);
2043 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2044 TII.get(ARM::VMOVDRR), ResultReg)
2045 .addReg(RVLocs[0].getLocReg())
2046 .addReg(RVLocs[1].getLocReg()));
2047
2048 UsedRegs.push_back(RVLocs[0].getLocReg());
2049 UsedRegs.push_back(RVLocs[1].getLocReg());
2050
2051 // Finally update the result.
2052 updateValueMap(I, ResultReg);
2053 } else {
2054 assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!");
2055 MVT CopyVT = RVLocs[0].getValVT();
2056
2057 // Special handling for extended integers.
2058 if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
2059 CopyVT = MVT::i32;
2060
2061 const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT);
2062
2063 Register ResultReg = createResultReg(DstRC);
2064 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2065 TII.get(TargetOpcode::COPY),
2066 ResultReg).addReg(RVLocs[0].getLocReg());
2067 UsedRegs.push_back(RVLocs[0].getLocReg());
2068
2069 // Finally update the result.
2070 updateValueMap(I, ResultReg);
2071 }
2072 }
2073
2074 return true;
2075 }
2076
SelectRet(const Instruction * I)2077 bool ARMFastISel::SelectRet(const Instruction *I) {
2078 const ReturnInst *Ret = cast<ReturnInst>(I);
2079 const Function &F = *I->getParent()->getParent();
2080 const bool IsCmseNSEntry = F.hasFnAttribute("cmse_nonsecure_entry");
2081
2082 if (!FuncInfo.CanLowerReturn)
2083 return false;
2084
2085 if (TLI.supportSwiftError() &&
2086 F.getAttributes().hasAttrSomewhere(Attribute::SwiftError))
2087 return false;
2088
2089 if (TLI.supportSplitCSR(FuncInfo.MF))
2090 return false;
2091
2092 // Build a list of return value registers.
2093 SmallVector<unsigned, 4> RetRegs;
2094
2095 CallingConv::ID CC = F.getCallingConv();
2096 if (Ret->getNumOperands() > 0) {
2097 SmallVector<ISD::OutputArg, 4> Outs;
2098 GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
2099
2100 // Analyze operands of the call, assigning locations to each operand.
2101 SmallVector<CCValAssign, 16> ValLocs;
2102 CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext());
2103 CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */,
2104 F.isVarArg()));
2105
2106 const Value *RV = Ret->getOperand(0);
2107 Register Reg = getRegForValue(RV);
2108 if (Reg == 0)
2109 return false;
2110
2111 // Only handle a single return value for now.
2112 if (ValLocs.size() != 1)
2113 return false;
2114
2115 CCValAssign &VA = ValLocs[0];
2116
2117 // Don't bother handling odd stuff for now.
2118 if (VA.getLocInfo() != CCValAssign::Full)
2119 return false;
2120 // Only handle register returns for now.
2121 if (!VA.isRegLoc())
2122 return false;
2123
2124 unsigned SrcReg = Reg + VA.getValNo();
2125 EVT RVEVT = TLI.getValueType(DL, RV->getType());
2126 if (!RVEVT.isSimple()) return false;
2127 MVT RVVT = RVEVT.getSimpleVT();
2128 MVT DestVT = VA.getValVT();
2129 // Special handling for extended integers.
2130 if (RVVT != DestVT) {
2131 if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
2132 return false;
2133
2134 assert(DestVT == MVT::i32 && "ARM should always ext to i32");
2135
2136 // Perform extension if flagged as either zext or sext. Otherwise, do
2137 // nothing.
2138 if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
2139 SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt());
2140 if (SrcReg == 0) return false;
2141 }
2142 }
2143
2144 // Make the copy.
2145 Register DstReg = VA.getLocReg();
2146 const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
2147 // Avoid a cross-class copy. This is very unlikely.
2148 if (!SrcRC->contains(DstReg))
2149 return false;
2150 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2151 TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg);
2152
2153 // Add register to return instruction.
2154 RetRegs.push_back(VA.getLocReg());
2155 }
2156
2157 unsigned RetOpc;
2158 if (IsCmseNSEntry)
2159 if (isThumb2)
2160 RetOpc = ARM::tBXNS_RET;
2161 else
2162 llvm_unreachable("CMSE not valid for non-Thumb targets");
2163 else
2164 RetOpc = Subtarget->getReturnOpcode();
2165
2166 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2167 TII.get(RetOpc));
2168 AddOptionalDefs(MIB);
2169 for (unsigned R : RetRegs)
2170 MIB.addReg(R, RegState::Implicit);
2171 return true;
2172 }
2173
ARMSelectCallOp(bool UseReg)2174 unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) {
2175 if (UseReg)
2176 return isThumb2 ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF);
2177 else
2178 return isThumb2 ? ARM::tBL : ARM::BL;
2179 }
2180
getLibcallReg(const Twine & Name)2181 unsigned ARMFastISel::getLibcallReg(const Twine &Name) {
2182 // Manually compute the global's type to avoid building it when unnecessary.
2183 Type *GVTy = PointerType::get(*Context, /*AS=*/0);
2184 EVT LCREVT = TLI.getValueType(DL, GVTy);
2185 if (!LCREVT.isSimple()) return 0;
2186
2187 GlobalValue *GV = M.getNamedGlobal(Name.str());
2188 if (!GV)
2189 GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false,
2190 GlobalValue::ExternalLinkage, nullptr, Name);
2191
2192 return ARMMaterializeGV(GV, LCREVT.getSimpleVT());
2193 }
2194
2195 // A quick function that will emit a call for a named libcall in F with the
2196 // vector of passed arguments for the Instruction in I. We can assume that we
2197 // can emit a call for any libcall we can produce. This is an abridged version
2198 // of the full call infrastructure since we won't need to worry about things
2199 // like computed function pointers or strange arguments at call sites.
2200 // TODO: Try to unify this and the normal call bits for ARM, then try to unify
2201 // with X86.
ARMEmitLibcall(const Instruction * I,RTLIB::Libcall Call)2202 bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) {
2203 CallingConv::ID CC = TLI.getLibcallCallingConv(Call);
2204
2205 // Handle *simple* calls for now.
2206 Type *RetTy = I->getType();
2207 MVT RetVT;
2208 if (RetTy->isVoidTy())
2209 RetVT = MVT::isVoid;
2210 else if (!isTypeLegal(RetTy, RetVT))
2211 return false;
2212
2213 // Can't handle non-double multi-reg retvals.
2214 if (RetVT != MVT::isVoid && RetVT != MVT::i32) {
2215 SmallVector<CCValAssign, 16> RVLocs;
2216 CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
2217 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false));
2218 if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2219 return false;
2220 }
2221
2222 // Set up the argument vectors.
2223 SmallVector<Value*, 8> Args;
2224 SmallVector<Register, 8> ArgRegs;
2225 SmallVector<MVT, 8> ArgVTs;
2226 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2227 Args.reserve(I->getNumOperands());
2228 ArgRegs.reserve(I->getNumOperands());
2229 ArgVTs.reserve(I->getNumOperands());
2230 ArgFlags.reserve(I->getNumOperands());
2231 for (Value *Op : I->operands()) {
2232 Register Arg = getRegForValue(Op);
2233 if (Arg == 0) return false;
2234
2235 Type *ArgTy = Op->getType();
2236 MVT ArgVT;
2237 if (!isTypeLegal(ArgTy, ArgVT)) return false;
2238
2239 ISD::ArgFlagsTy Flags;
2240 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));
2241
2242 Args.push_back(Op);
2243 ArgRegs.push_back(Arg);
2244 ArgVTs.push_back(ArgVT);
2245 ArgFlags.push_back(Flags);
2246 }
2247
2248 // Handle the arguments now that we've gotten them.
2249 SmallVector<Register, 4> RegArgs;
2250 unsigned NumBytes;
2251 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2252 RegArgs, CC, NumBytes, false))
2253 return false;
2254
2255 Register CalleeReg;
2256 if (Subtarget->genLongCalls()) {
2257 CalleeReg = getLibcallReg(TLI.getLibcallName(Call));
2258 if (CalleeReg == 0) return false;
2259 }
2260
2261 // Issue the call.
2262 unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls());
2263 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2264 MIMD, TII.get(CallOpc));
2265 // BL / BLX don't take a predicate, but tBL / tBLX do.
2266 if (isThumb2)
2267 MIB.add(predOps(ARMCC::AL));
2268 if (Subtarget->genLongCalls()) {
2269 CalleeReg =
2270 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
2271 MIB.addReg(CalleeReg);
2272 } else
2273 MIB.addExternalSymbol(TLI.getLibcallName(Call));
2274
2275 // Add implicit physical register uses to the call.
2276 for (Register R : RegArgs)
2277 MIB.addReg(R, RegState::Implicit);
2278
2279 // Add a register mask with the call-preserved registers.
2280 // Proper defs for return values will be added by setPhysRegsDeadExcept().
2281 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2282
2283 // Finish off the call including any return values.
2284 SmallVector<Register, 4> UsedRegs;
2285 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false;
2286
2287 // Set all unused physreg defs as dead.
2288 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2289
2290 return true;
2291 }
2292
SelectCall(const Instruction * I,const char * IntrMemName=nullptr)2293 bool ARMFastISel::SelectCall(const Instruction *I,
2294 const char *IntrMemName = nullptr) {
2295 const CallInst *CI = cast<CallInst>(I);
2296 const Value *Callee = CI->getCalledOperand();
2297
2298 // Can't handle inline asm.
2299 if (isa<InlineAsm>(Callee)) return false;
2300
2301 // Allow SelectionDAG isel to handle tail calls.
2302 if (CI->isTailCall()) return false;
2303
2304 // Check the calling convention.
2305 CallingConv::ID CC = CI->getCallingConv();
2306
2307 // TODO: Avoid some calling conventions?
2308
2309 FunctionType *FTy = CI->getFunctionType();
2310 bool isVarArg = FTy->isVarArg();
2311
2312 // Handle *simple* calls for now.
2313 Type *RetTy = I->getType();
2314 MVT RetVT;
2315 if (RetTy->isVoidTy())
2316 RetVT = MVT::isVoid;
2317 else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 &&
2318 RetVT != MVT::i8 && RetVT != MVT::i1)
2319 return false;
2320
2321 // Can't handle non-double multi-reg retvals.
2322 if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 &&
2323 RetVT != MVT::i16 && RetVT != MVT::i32) {
2324 SmallVector<CCValAssign, 16> RVLocs;
2325 CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context);
2326 CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg));
2327 if (RVLocs.size() >= 2 && RetVT != MVT::f64)
2328 return false;
2329 }
2330
2331 // Set up the argument vectors.
2332 SmallVector<Value*, 8> Args;
2333 SmallVector<Register, 8> ArgRegs;
2334 SmallVector<MVT, 8> ArgVTs;
2335 SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
2336 unsigned arg_size = CI->arg_size();
2337 Args.reserve(arg_size);
2338 ArgRegs.reserve(arg_size);
2339 ArgVTs.reserve(arg_size);
2340 ArgFlags.reserve(arg_size);
2341 for (auto ArgI = CI->arg_begin(), ArgE = CI->arg_end(); ArgI != ArgE; ++ArgI) {
2342 // If we're lowering a memory intrinsic instead of a regular call, skip the
2343 // last argument, which shouldn't be passed to the underlying function.
2344 if (IntrMemName && ArgE - ArgI <= 1)
2345 break;
2346
2347 ISD::ArgFlagsTy Flags;
2348 unsigned ArgIdx = ArgI - CI->arg_begin();
2349 if (CI->paramHasAttr(ArgIdx, Attribute::SExt))
2350 Flags.setSExt();
2351 if (CI->paramHasAttr(ArgIdx, Attribute::ZExt))
2352 Flags.setZExt();
2353
2354 // FIXME: Only handle *easy* calls for now.
2355 if (CI->paramHasAttr(ArgIdx, Attribute::InReg) ||
2356 CI->paramHasAttr(ArgIdx, Attribute::StructRet) ||
2357 CI->paramHasAttr(ArgIdx, Attribute::SwiftSelf) ||
2358 CI->paramHasAttr(ArgIdx, Attribute::SwiftError) ||
2359 CI->paramHasAttr(ArgIdx, Attribute::Nest) ||
2360 CI->paramHasAttr(ArgIdx, Attribute::ByVal))
2361 return false;
2362
2363 Type *ArgTy = (*ArgI)->getType();
2364 MVT ArgVT;
2365 if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 &&
2366 ArgVT != MVT::i1)
2367 return false;
2368
2369 Register Arg = getRegForValue(*ArgI);
2370 if (!Arg.isValid())
2371 return false;
2372
2373 Flags.setOrigAlign(DL.getABITypeAlign(ArgTy));
2374
2375 Args.push_back(*ArgI);
2376 ArgRegs.push_back(Arg);
2377 ArgVTs.push_back(ArgVT);
2378 ArgFlags.push_back(Flags);
2379 }
2380
2381 // Handle the arguments now that we've gotten them.
2382 SmallVector<Register, 4> RegArgs;
2383 unsigned NumBytes;
2384 if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags,
2385 RegArgs, CC, NumBytes, isVarArg))
2386 return false;
2387
2388 bool UseReg = false;
2389 const GlobalValue *GV = dyn_cast<GlobalValue>(Callee);
2390 if (!GV || Subtarget->genLongCalls()) UseReg = true;
2391
2392 Register CalleeReg;
2393 if (UseReg) {
2394 if (IntrMemName)
2395 CalleeReg = getLibcallReg(IntrMemName);
2396 else
2397 CalleeReg = getRegForValue(Callee);
2398
2399 if (CalleeReg == 0) return false;
2400 }
2401
2402 // Issue the call.
2403 unsigned CallOpc = ARMSelectCallOp(UseReg);
2404 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
2405 MIMD, TII.get(CallOpc));
2406
2407 // ARM calls don't take a predicate, but tBL / tBLX do.
2408 if(isThumb2)
2409 MIB.add(predOps(ARMCC::AL));
2410 if (UseReg) {
2411 CalleeReg =
2412 constrainOperandRegClass(TII.get(CallOpc), CalleeReg, isThumb2 ? 2 : 0);
2413 MIB.addReg(CalleeReg);
2414 } else if (!IntrMemName)
2415 MIB.addGlobalAddress(GV, 0, 0);
2416 else
2417 MIB.addExternalSymbol(IntrMemName, 0);
2418
2419 // Add implicit physical register uses to the call.
2420 for (Register R : RegArgs)
2421 MIB.addReg(R, RegState::Implicit);
2422
2423 // Add a register mask with the call-preserved registers.
2424 // Proper defs for return values will be added by setPhysRegsDeadExcept().
2425 MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
2426
2427 // Finish off the call including any return values.
2428 SmallVector<Register, 4> UsedRegs;
2429 if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg))
2430 return false;
2431
2432 // Set all unused physreg defs as dead.
2433 static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
2434
2435 return true;
2436 }
2437
ARMIsMemCpySmall(uint64_t Len)2438 bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) {
2439 return Len <= 16;
2440 }
2441
ARMTryEmitSmallMemCpy(Address Dest,Address Src,uint64_t Len,MaybeAlign Alignment)2442 bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len,
2443 MaybeAlign Alignment) {
2444 // Make sure we don't bloat code by inlining very large memcpy's.
2445 if (!ARMIsMemCpySmall(Len))
2446 return false;
2447
2448 while (Len) {
2449 MVT VT;
2450 if (!Alignment || *Alignment >= 4) {
2451 if (Len >= 4)
2452 VT = MVT::i32;
2453 else if (Len >= 2)
2454 VT = MVT::i16;
2455 else {
2456 assert(Len == 1 && "Expected a length of 1!");
2457 VT = MVT::i8;
2458 }
2459 } else {
2460 assert(Alignment && "Alignment is set in this branch");
2461 // Bound based on alignment.
2462 if (Len >= 2 && *Alignment == 2)
2463 VT = MVT::i16;
2464 else {
2465 VT = MVT::i8;
2466 }
2467 }
2468
2469 bool RV;
2470 Register ResultReg;
2471 RV = ARMEmitLoad(VT, ResultReg, Src);
2472 assert(RV && "Should be able to handle this load.");
2473 RV = ARMEmitStore(VT, ResultReg, Dest);
2474 assert(RV && "Should be able to handle this store.");
2475 (void)RV;
2476
2477 unsigned Size = VT.getSizeInBits()/8;
2478 Len -= Size;
2479 Dest.Offset += Size;
2480 Src.Offset += Size;
2481 }
2482
2483 return true;
2484 }
2485
SelectIntrinsicCall(const IntrinsicInst & I)2486 bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) {
2487 // FIXME: Handle more intrinsics.
2488 switch (I.getIntrinsicID()) {
2489 default: return false;
2490 case Intrinsic::frameaddress: {
2491 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
2492 MFI.setFrameAddressIsTaken(true);
2493
2494 unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12;
2495 const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass
2496 : &ARM::GPRRegClass;
2497
2498 const ARMBaseRegisterInfo *RegInfo =
2499 static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo());
2500 Register FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF));
2501 unsigned SrcReg = FramePtr;
2502
2503 // Recursively load frame address
2504 // ldr r0 [fp]
2505 // ldr r0 [r0]
2506 // ldr r0 [r0]
2507 // ...
2508 unsigned DestReg;
2509 unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue();
2510 while (Depth--) {
2511 DestReg = createResultReg(RC);
2512 AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2513 TII.get(LdrOpc), DestReg)
2514 .addReg(SrcReg).addImm(0));
2515 SrcReg = DestReg;
2516 }
2517 updateValueMap(&I, SrcReg);
2518 return true;
2519 }
2520 case Intrinsic::memcpy:
2521 case Intrinsic::memmove: {
2522 const MemTransferInst &MTI = cast<MemTransferInst>(I);
2523 // Don't handle volatile.
2524 if (MTI.isVolatile())
2525 return false;
2526
2527 // Disable inlining for memmove before calls to ComputeAddress. Otherwise,
2528 // we would emit dead code because we don't currently handle memmoves.
2529 bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy);
2530 if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) {
2531 // Small memcpy's are common enough that we want to do them without a call
2532 // if possible.
2533 uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue();
2534 if (ARMIsMemCpySmall(Len)) {
2535 Address Dest, Src;
2536 if (!ARMComputeAddress(MTI.getRawDest(), Dest) ||
2537 !ARMComputeAddress(MTI.getRawSource(), Src))
2538 return false;
2539 MaybeAlign Alignment;
2540 if (MTI.getDestAlign() || MTI.getSourceAlign())
2541 Alignment = std::min(MTI.getDestAlign().valueOrOne(),
2542 MTI.getSourceAlign().valueOrOne());
2543 if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment))
2544 return true;
2545 }
2546 }
2547
2548 if (!MTI.getLength()->getType()->isIntegerTy(32))
2549 return false;
2550
2551 if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255)
2552 return false;
2553
2554 const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove";
2555 return SelectCall(&I, IntrMemName);
2556 }
2557 case Intrinsic::memset: {
2558 const MemSetInst &MSI = cast<MemSetInst>(I);
2559 // Don't handle volatile.
2560 if (MSI.isVolatile())
2561 return false;
2562
2563 if (!MSI.getLength()->getType()->isIntegerTy(32))
2564 return false;
2565
2566 if (MSI.getDestAddressSpace() > 255)
2567 return false;
2568
2569 return SelectCall(&I, "memset");
2570 }
2571 case Intrinsic::trap: {
2572 unsigned Opcode;
2573 if (Subtarget->isThumb())
2574 Opcode = ARM::tTRAP;
2575 else
2576 Opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
2577 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opcode));
2578 return true;
2579 }
2580 }
2581 }
2582
SelectTrunc(const Instruction * I)2583 bool ARMFastISel::SelectTrunc(const Instruction *I) {
2584 // The high bits for a type smaller than the register size are assumed to be
2585 // undefined.
2586 Value *Op = I->getOperand(0);
2587
2588 EVT SrcVT, DestVT;
2589 SrcVT = TLI.getValueType(DL, Op->getType(), true);
2590 DestVT = TLI.getValueType(DL, I->getType(), true);
2591
2592 if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
2593 return false;
2594 if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
2595 return false;
2596
2597 Register SrcReg = getRegForValue(Op);
2598 if (!SrcReg) return false;
2599
2600 // Because the high bits are undefined, a truncate doesn't generate
2601 // any code.
2602 updateValueMap(I, SrcReg);
2603 return true;
2604 }
2605
ARMEmitIntExt(MVT SrcVT,unsigned SrcReg,MVT DestVT,bool isZExt)2606 unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
2607 bool isZExt) {
2608 if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8)
2609 return 0;
2610 if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1)
2611 return 0;
2612
2613 // Table of which combinations can be emitted as a single instruction,
2614 // and which will require two.
2615 static const uint8_t isSingleInstrTbl[3][2][2][2] = {
2616 // ARM Thumb
2617 // !hasV6Ops hasV6Ops !hasV6Ops hasV6Ops
2618 // ext: s z s z s z s z
2619 /* 1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } },
2620 /* 8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } },
2621 /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }
2622 };
2623
2624 // Target registers for:
2625 // - For ARM can never be PC.
2626 // - For 16-bit Thumb are restricted to lower 8 registers.
2627 // - For 32-bit Thumb are restricted to non-SP and non-PC.
2628 static const TargetRegisterClass *RCTbl[2][2] = {
2629 // Instructions: Two Single
2630 /* ARM */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass },
2631 /* Thumb */ { &ARM::tGPRRegClass, &ARM::rGPRRegClass }
2632 };
2633
2634 // Table governing the instruction(s) to be emitted.
2635 static const struct InstructionTable {
2636 uint32_t Opc : 16;
2637 uint32_t hasS : 1; // Some instructions have an S bit, always set it to 0.
2638 uint32_t Shift : 7; // For shift operand addressing mode, used by MOVsi.
2639 uint32_t Imm : 8; // All instructions have either a shift or a mask.
2640 } IT[2][2][3][2] = {
2641 { // Two instructions (first is left shift, second is in this table).
2642 { // ARM Opc S Shift Imm
2643 /* 1 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 31 },
2644 /* 1 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 31 } },
2645 /* 8 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 24 },
2646 /* 8 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 24 } },
2647 /* 16 bit sext */ { { ARM::MOVsi , 1, ARM_AM::asr , 16 },
2648 /* 16 bit zext */ { ARM::MOVsi , 1, ARM_AM::lsr , 16 } }
2649 },
2650 { // Thumb Opc S Shift Imm
2651 /* 1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 31 },
2652 /* 1 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 31 } },
2653 /* 8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 24 },
2654 /* 8 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 24 } },
2655 /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift, 16 },
2656 /* 16 bit zext */ { ARM::tLSRri , 0, ARM_AM::no_shift, 16 } }
2657 }
2658 },
2659 { // Single instruction.
2660 { // ARM Opc S Shift Imm
2661 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
2662 /* 1 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 1 } },
2663 /* 8 bit sext */ { { ARM::SXTB , 0, ARM_AM::no_shift, 0 },
2664 /* 8 bit zext */ { ARM::ANDri , 1, ARM_AM::no_shift, 255 } },
2665 /* 16 bit sext */ { { ARM::SXTH , 0, ARM_AM::no_shift, 0 },
2666 /* 16 bit zext */ { ARM::UXTH , 0, ARM_AM::no_shift, 0 } }
2667 },
2668 { // Thumb Opc S Shift Imm
2669 /* 1 bit sext */ { { ARM::KILL , 0, ARM_AM::no_shift, 0 },
2670 /* 1 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 1 } },
2671 /* 8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift, 0 },
2672 /* 8 bit zext */ { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } },
2673 /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift, 0 },
2674 /* 16 bit zext */ { ARM::t2UXTH , 0, ARM_AM::no_shift, 0 } }
2675 }
2676 }
2677 };
2678
2679 unsigned SrcBits = SrcVT.getSizeInBits();
2680 unsigned DestBits = DestVT.getSizeInBits();
2681 (void) DestBits;
2682 assert((SrcBits < DestBits) && "can only extend to larger types");
2683 assert((DestBits == 32 || DestBits == 16 || DestBits == 8) &&
2684 "other sizes unimplemented");
2685 assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) &&
2686 "other sizes unimplemented");
2687
2688 bool hasV6Ops = Subtarget->hasV6Ops();
2689 unsigned Bitness = SrcBits / 8; // {1,8,16}=>{0,1,2}
2690 assert((Bitness < 3) && "sanity-check table bounds");
2691
2692 bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt];
2693 const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr];
2694 const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt];
2695 unsigned Opc = ITP->Opc;
2696 assert(ARM::KILL != Opc && "Invalid table entry");
2697 unsigned hasS = ITP->hasS;
2698 ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift;
2699 assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) &&
2700 "only MOVsi has shift operand addressing mode");
2701 unsigned Imm = ITP->Imm;
2702
2703 // 16-bit Thumb instructions always set CPSR (unless they're in an IT block).
2704 bool setsCPSR = &ARM::tGPRRegClass == RC;
2705 unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi;
2706 unsigned ResultReg;
2707 // MOVsi encodes shift and immediate in shift operand addressing mode.
2708 // The following condition has the same value when emitting two
2709 // instruction sequences: both are shifts.
2710 bool ImmIsSO = (Shift != ARM_AM::no_shift);
2711
2712 // Either one or two instructions are emitted.
2713 // They're always of the form:
2714 // dst = in OP imm
2715 // CPSR is set only by 16-bit Thumb instructions.
2716 // Predicate, if any, is AL.
2717 // S bit, if available, is always 0.
2718 // When two are emitted the first's result will feed as the second's input,
2719 // that value is then dead.
2720 unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2;
2721 for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) {
2722 ResultReg = createResultReg(RC);
2723 bool isLsl = (0 == Instr) && !isSingleInstr;
2724 unsigned Opcode = isLsl ? LSLOpc : Opc;
2725 ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift;
2726 unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm;
2727 bool isKill = 1 == Instr;
2728 MachineInstrBuilder MIB = BuildMI(
2729 *FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opcode), ResultReg);
2730 if (setsCPSR)
2731 MIB.addReg(ARM::CPSR, RegState::Define);
2732 SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR);
2733 MIB.addReg(SrcReg, isKill * RegState::Kill)
2734 .addImm(ImmEnc)
2735 .add(predOps(ARMCC::AL));
2736 if (hasS)
2737 MIB.add(condCodeOp());
2738 // Second instruction consumes the first's result.
2739 SrcReg = ResultReg;
2740 }
2741
2742 return ResultReg;
2743 }
2744
SelectIntExt(const Instruction * I)2745 bool ARMFastISel::SelectIntExt(const Instruction *I) {
2746 // On ARM, in general, integer casts don't involve legal types; this code
2747 // handles promotable integers.
2748 Type *DestTy = I->getType();
2749 Value *Src = I->getOperand(0);
2750 Type *SrcTy = Src->getType();
2751
2752 bool isZExt = isa<ZExtInst>(I);
2753 Register SrcReg = getRegForValue(Src);
2754 if (!SrcReg) return false;
2755
2756 EVT SrcEVT, DestEVT;
2757 SrcEVT = TLI.getValueType(DL, SrcTy, true);
2758 DestEVT = TLI.getValueType(DL, DestTy, true);
2759 if (!SrcEVT.isSimple()) return false;
2760 if (!DestEVT.isSimple()) return false;
2761
2762 MVT SrcVT = SrcEVT.getSimpleVT();
2763 MVT DestVT = DestEVT.getSimpleVT();
2764 unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt);
2765 if (ResultReg == 0) return false;
2766 updateValueMap(I, ResultReg);
2767 return true;
2768 }
2769
SelectShift(const Instruction * I,ARM_AM::ShiftOpc ShiftTy)2770 bool ARMFastISel::SelectShift(const Instruction *I,
2771 ARM_AM::ShiftOpc ShiftTy) {
2772 // We handle thumb2 mode by target independent selector
2773 // or SelectionDAG ISel.
2774 if (isThumb2)
2775 return false;
2776
2777 // Only handle i32 now.
2778 EVT DestVT = TLI.getValueType(DL, I->getType(), true);
2779 if (DestVT != MVT::i32)
2780 return false;
2781
2782 unsigned Opc = ARM::MOVsr;
2783 unsigned ShiftImm;
2784 Value *Src2Value = I->getOperand(1);
2785 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) {
2786 ShiftImm = CI->getZExtValue();
2787
2788 // Fall back to selection DAG isel if the shift amount
2789 // is zero or greater than the width of the value type.
2790 if (ShiftImm == 0 || ShiftImm >=32)
2791 return false;
2792
2793 Opc = ARM::MOVsi;
2794 }
2795
2796 Value *Src1Value = I->getOperand(0);
2797 Register Reg1 = getRegForValue(Src1Value);
2798 if (Reg1 == 0) return false;
2799
2800 unsigned Reg2 = 0;
2801 if (Opc == ARM::MOVsr) {
2802 Reg2 = getRegForValue(Src2Value);
2803 if (Reg2 == 0) return false;
2804 }
2805
2806 Register ResultReg = createResultReg(&ARM::GPRnopcRegClass);
2807 if(ResultReg == 0) return false;
2808
2809 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2810 TII.get(Opc), ResultReg)
2811 .addReg(Reg1);
2812
2813 if (Opc == ARM::MOVsi)
2814 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm));
2815 else if (Opc == ARM::MOVsr) {
2816 MIB.addReg(Reg2);
2817 MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0));
2818 }
2819
2820 AddOptionalDefs(MIB);
2821 updateValueMap(I, ResultReg);
2822 return true;
2823 }
2824
2825 // TODO: SoftFP support.
fastSelectInstruction(const Instruction * I)2826 bool ARMFastISel::fastSelectInstruction(const Instruction *I) {
2827 switch (I->getOpcode()) {
2828 case Instruction::Load:
2829 return SelectLoad(I);
2830 case Instruction::Store:
2831 return SelectStore(I);
2832 case Instruction::Br:
2833 return SelectBranch(I);
2834 case Instruction::IndirectBr:
2835 return SelectIndirectBr(I);
2836 case Instruction::ICmp:
2837 case Instruction::FCmp:
2838 return SelectCmp(I);
2839 case Instruction::FPExt:
2840 return SelectFPExt(I);
2841 case Instruction::FPTrunc:
2842 return SelectFPTrunc(I);
2843 case Instruction::SIToFP:
2844 return SelectIToFP(I, /*isSigned*/ true);
2845 case Instruction::UIToFP:
2846 return SelectIToFP(I, /*isSigned*/ false);
2847 case Instruction::FPToSI:
2848 return SelectFPToI(I, /*isSigned*/ true);
2849 case Instruction::FPToUI:
2850 return SelectFPToI(I, /*isSigned*/ false);
2851 case Instruction::Add:
2852 return SelectBinaryIntOp(I, ISD::ADD);
2853 case Instruction::Or:
2854 return SelectBinaryIntOp(I, ISD::OR);
2855 case Instruction::Sub:
2856 return SelectBinaryIntOp(I, ISD::SUB);
2857 case Instruction::FAdd:
2858 return SelectBinaryFPOp(I, ISD::FADD);
2859 case Instruction::FSub:
2860 return SelectBinaryFPOp(I, ISD::FSUB);
2861 case Instruction::FMul:
2862 return SelectBinaryFPOp(I, ISD::FMUL);
2863 case Instruction::SDiv:
2864 return SelectDiv(I, /*isSigned*/ true);
2865 case Instruction::UDiv:
2866 return SelectDiv(I, /*isSigned*/ false);
2867 case Instruction::SRem:
2868 return SelectRem(I, /*isSigned*/ true);
2869 case Instruction::URem:
2870 return SelectRem(I, /*isSigned*/ false);
2871 case Instruction::Call:
2872 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2873 return SelectIntrinsicCall(*II);
2874 return SelectCall(I);
2875 case Instruction::Select:
2876 return SelectSelect(I);
2877 case Instruction::Ret:
2878 return SelectRet(I);
2879 case Instruction::Trunc:
2880 return SelectTrunc(I);
2881 case Instruction::ZExt:
2882 case Instruction::SExt:
2883 return SelectIntExt(I);
2884 case Instruction::Shl:
2885 return SelectShift(I, ARM_AM::lsl);
2886 case Instruction::LShr:
2887 return SelectShift(I, ARM_AM::lsr);
2888 case Instruction::AShr:
2889 return SelectShift(I, ARM_AM::asr);
2890 default: break;
2891 }
2892 return false;
2893 }
2894
2895 // This table describes sign- and zero-extend instructions which can be
2896 // folded into a preceding load. All of these extends have an immediate
2897 // (sometimes a mask and sometimes a shift) that's applied after
2898 // extension.
2899 static const struct FoldableLoadExtendsStruct {
2900 uint16_t Opc[2]; // ARM, Thumb.
2901 uint8_t ExpectedImm;
2902 uint8_t isZExt : 1;
2903 uint8_t ExpectedVT : 7;
2904 } FoldableLoadExtends[] = {
2905 { { ARM::SXTH, ARM::t2SXTH }, 0, 0, MVT::i16 },
2906 { { ARM::UXTH, ARM::t2UXTH }, 0, 1, MVT::i16 },
2907 { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8 },
2908 { { ARM::SXTB, ARM::t2SXTB }, 0, 0, MVT::i8 },
2909 { { ARM::UXTB, ARM::t2UXTB }, 0, 1, MVT::i8 }
2910 };
2911
2912 /// The specified machine instr operand is a vreg, and that
2913 /// vreg is being provided by the specified load instruction. If possible,
2914 /// try to fold the load as an operand to the instruction, returning true if
2915 /// successful.
tryToFoldLoadIntoMI(MachineInstr * MI,unsigned OpNo,const LoadInst * LI)2916 bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo,
2917 const LoadInst *LI) {
2918 // Verify we have a legal type before going any further.
2919 MVT VT;
2920 if (!isLoadTypeLegal(LI->getType(), VT))
2921 return false;
2922
2923 // Combine load followed by zero- or sign-extend.
2924 // ldrb r1, [r0] ldrb r1, [r0]
2925 // uxtb r2, r1 =>
2926 // mov r3, r2 mov r3, r1
2927 if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm())
2928 return false;
2929 const uint64_t Imm = MI->getOperand(2).getImm();
2930
2931 bool Found = false;
2932 bool isZExt;
2933 for (const FoldableLoadExtendsStruct &FLE : FoldableLoadExtends) {
2934 if (FLE.Opc[isThumb2] == MI->getOpcode() &&
2935 (uint64_t)FLE.ExpectedImm == Imm &&
2936 MVT((MVT::SimpleValueType)FLE.ExpectedVT) == VT) {
2937 Found = true;
2938 isZExt = FLE.isZExt;
2939 }
2940 }
2941 if (!Found) return false;
2942
2943 // See if we can handle this address.
2944 Address Addr;
2945 if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false;
2946
2947 Register ResultReg = MI->getOperand(0).getReg();
2948 if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlign(), isZExt, false))
2949 return false;
2950 MachineBasicBlock::iterator I(MI);
2951 removeDeadCode(I, std::next(I));
2952 return true;
2953 }
2954
ARMLowerPICELF(const GlobalValue * GV,MVT VT)2955 unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, MVT VT) {
2956 bool UseGOT_PREL = !GV->isDSOLocal();
2957 LLVMContext *Context = &MF->getFunction().getContext();
2958 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2959 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
2960 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2961 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
2962 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
2963 /*AddCurrentAddress=*/UseGOT_PREL);
2964
2965 Align ConstAlign =
2966 MF->getDataLayout().getPrefTypeAlign(PointerType::get(*Context, 0));
2967 unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign);
2968 MachineMemOperand *CPMMO =
2969 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
2970 MachineMemOperand::MOLoad, 4, Align(4));
2971
2972 Register TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass);
2973 unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp;
2974 MachineInstrBuilder MIB =
2975 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), TempReg)
2976 .addConstantPoolIndex(Idx)
2977 .addMemOperand(CPMMO);
2978 if (Opc == ARM::LDRcp)
2979 MIB.addImm(0);
2980 MIB.add(predOps(ARMCC::AL));
2981
2982 // Fix the address by adding pc.
2983 Register DestReg = createResultReg(TLI.getRegClassFor(VT));
2984 Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR
2985 : ARM::PICADD;
2986 DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0);
2987 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD, TII.get(Opc), DestReg)
2988 .addReg(TempReg)
2989 .addImm(ARMPCLabelIndex);
2990
2991 if (!Subtarget->isThumb())
2992 MIB.add(predOps(ARMCC::AL));
2993
2994 if (UseGOT_PREL && Subtarget->isThumb()) {
2995 Register NewDestReg = createResultReg(TLI.getRegClassFor(VT));
2996 MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
2997 TII.get(ARM::t2LDRi12), NewDestReg)
2998 .addReg(DestReg)
2999 .addImm(0);
3000 DestReg = NewDestReg;
3001 AddOptionalDefs(MIB);
3002 }
3003 return DestReg;
3004 }
3005
fastLowerArguments()3006 bool ARMFastISel::fastLowerArguments() {
3007 if (!FuncInfo.CanLowerReturn)
3008 return false;
3009
3010 const Function *F = FuncInfo.Fn;
3011 if (F->isVarArg())
3012 return false;
3013
3014 CallingConv::ID CC = F->getCallingConv();
3015 switch (CC) {
3016 default:
3017 return false;
3018 case CallingConv::Fast:
3019 case CallingConv::C:
3020 case CallingConv::ARM_AAPCS_VFP:
3021 case CallingConv::ARM_AAPCS:
3022 case CallingConv::ARM_APCS:
3023 case CallingConv::Swift:
3024 case CallingConv::SwiftTail:
3025 break;
3026 }
3027
3028 // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments
3029 // which are passed in r0 - r3.
3030 for (const Argument &Arg : F->args()) {
3031 if (Arg.getArgNo() >= 4)
3032 return false;
3033
3034 if (Arg.hasAttribute(Attribute::InReg) ||
3035 Arg.hasAttribute(Attribute::StructRet) ||
3036 Arg.hasAttribute(Attribute::SwiftSelf) ||
3037 Arg.hasAttribute(Attribute::SwiftError) ||
3038 Arg.hasAttribute(Attribute::ByVal))
3039 return false;
3040
3041 Type *ArgTy = Arg.getType();
3042 if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy())
3043 return false;
3044
3045 EVT ArgVT = TLI.getValueType(DL, ArgTy);
3046 if (!ArgVT.isSimple()) return false;
3047 switch (ArgVT.getSimpleVT().SimpleTy) {
3048 case MVT::i8:
3049 case MVT::i16:
3050 case MVT::i32:
3051 break;
3052 default:
3053 return false;
3054 }
3055 }
3056
3057 static const MCPhysReg GPRArgRegs[] = {
3058 ARM::R0, ARM::R1, ARM::R2, ARM::R3
3059 };
3060
3061 const TargetRegisterClass *RC = &ARM::rGPRRegClass;
3062 for (const Argument &Arg : F->args()) {
3063 unsigned ArgNo = Arg.getArgNo();
3064 unsigned SrcReg = GPRArgRegs[ArgNo];
3065 Register DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC);
3066 // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
3067 // Without this, EmitLiveInCopies may eliminate the livein if its only
3068 // use is a bitcast (which isn't turned into an instruction).
3069 Register ResultReg = createResultReg(RC);
3070 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, MIMD,
3071 TII.get(TargetOpcode::COPY),
3072 ResultReg).addReg(DstReg, getKillRegState(true));
3073 updateValueMap(&Arg, ResultReg);
3074 }
3075
3076 return true;
3077 }
3078
3079 namespace llvm {
3080
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo)3081 FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo,
3082 const TargetLibraryInfo *libInfo) {
3083 if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel())
3084 return new ARMFastISel(funcInfo, libInfo);
3085
3086 return nullptr;
3087 }
3088
3089 } // end namespace llvm
3090