1 //===- AArch64.cpp --------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "InputFiles.h"
10 #include "OutputSections.h"
11 #include "Symbols.h"
12 #include "SyntheticSections.h"
13 #include "Target.h"
14 #include "lld/Common/ErrorHandler.h"
15 #include "llvm/BinaryFormat/ELF.h"
16 #include "llvm/Support/Endian.h"
17
18 using namespace llvm;
19 using namespace llvm::support::endian;
20 using namespace llvm::ELF;
21 using namespace lld;
22 using namespace lld::elf;
23
24 // Page(Expr) is the page address of the expression Expr, defined
25 // as (Expr & ~0xFFF). (This applies even if the machine page size
26 // supported by the platform has a different value.)
getAArch64Page(uint64_t expr)27 uint64_t elf::getAArch64Page(uint64_t expr) {
28 return expr & ~static_cast<uint64_t>(0xFFF);
29 }
30
31 namespace {
32 class AArch64 : public TargetInfo {
33 public:
34 AArch64();
35 RelExpr getRelExpr(RelType type, const Symbol &s,
36 const uint8_t *loc) const override;
37 RelType getDynRel(RelType type) const override;
38 int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
39 void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
40 void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
41 void writePltHeader(uint8_t *buf) const override;
42 void writePlt(uint8_t *buf, const Symbol &sym,
43 uint64_t pltEntryAddr) const override;
44 bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
45 uint64_t branchAddr, const Symbol &s,
46 int64_t a) const override;
47 uint32_t getThunkSectionSpacing() const override;
48 bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
49 bool usesOnlyLowPageBits(RelType type) const override;
50 void relocate(uint8_t *loc, const Relocation &rel,
51 uint64_t val) const override;
52 RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
53 void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
54
55 private:
56 void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
57 void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
58 void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
59 };
60
61 struct AArch64Relaxer {
62 bool safeToRelaxAdrpLdr = false;
63
64 AArch64Relaxer(ArrayRef<Relocation> relocs);
65 bool tryRelaxAdrpAdd(const Relocation &adrpRel, const Relocation &addRel,
66 uint64_t secAddr, uint8_t *buf) const;
67 bool tryRelaxAdrpLdr(const Relocation &adrpRel, const Relocation &ldrRel,
68 uint64_t secAddr, uint8_t *buf) const;
69 };
70 } // namespace
71
72 // Return the bits [Start, End] from Val shifted Start bits.
73 // For instance, getBits(0xF0, 4, 8) returns 0xF.
getBits(uint64_t val,int start,int end)74 static uint64_t getBits(uint64_t val, int start, int end) {
75 uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1;
76 return (val >> start) & mask;
77 }
78
AArch64()79 AArch64::AArch64() {
80 copyRel = R_AARCH64_COPY;
81 relativeRel = R_AARCH64_RELATIVE;
82 iRelativeRel = R_AARCH64_IRELATIVE;
83 gotRel = R_AARCH64_GLOB_DAT;
84 pltRel = R_AARCH64_JUMP_SLOT;
85 symbolicRel = R_AARCH64_ABS64;
86 tlsDescRel = R_AARCH64_TLSDESC;
87 tlsGotRel = R_AARCH64_TLS_TPREL64;
88 pltHeaderSize = 32;
89 pltEntrySize = 16;
90 ipltEntrySize = 16;
91 defaultMaxPageSize = 65536;
92
93 // Align to the 2 MiB page size (known as a superpage or huge page).
94 // FreeBSD automatically promotes 2 MiB-aligned allocations.
95 defaultImageBase = 0x200000;
96
97 needsThunks = true;
98 }
99
getRelExpr(RelType type,const Symbol & s,const uint8_t * loc) const100 RelExpr AArch64::getRelExpr(RelType type, const Symbol &s,
101 const uint8_t *loc) const {
102 switch (type) {
103 case R_AARCH64_ABS16:
104 case R_AARCH64_ABS32:
105 case R_AARCH64_ABS64:
106 case R_AARCH64_ADD_ABS_LO12_NC:
107 case R_AARCH64_LDST128_ABS_LO12_NC:
108 case R_AARCH64_LDST16_ABS_LO12_NC:
109 case R_AARCH64_LDST32_ABS_LO12_NC:
110 case R_AARCH64_LDST64_ABS_LO12_NC:
111 case R_AARCH64_LDST8_ABS_LO12_NC:
112 case R_AARCH64_MOVW_SABS_G0:
113 case R_AARCH64_MOVW_SABS_G1:
114 case R_AARCH64_MOVW_SABS_G2:
115 case R_AARCH64_MOVW_UABS_G0:
116 case R_AARCH64_MOVW_UABS_G0_NC:
117 case R_AARCH64_MOVW_UABS_G1:
118 case R_AARCH64_MOVW_UABS_G1_NC:
119 case R_AARCH64_MOVW_UABS_G2:
120 case R_AARCH64_MOVW_UABS_G2_NC:
121 case R_AARCH64_MOVW_UABS_G3:
122 return R_ABS;
123 case R_AARCH64_AUTH_ABS64:
124 return R_AARCH64_AUTH;
125 case R_AARCH64_TLSDESC_ADR_PAGE21:
126 return R_AARCH64_TLSDESC_PAGE;
127 case R_AARCH64_TLSDESC_LD64_LO12:
128 case R_AARCH64_TLSDESC_ADD_LO12:
129 return R_TLSDESC;
130 case R_AARCH64_TLSDESC_CALL:
131 return R_TLSDESC_CALL;
132 case R_AARCH64_TLSLE_ADD_TPREL_HI12:
133 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
134 case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
135 case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
136 case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
137 case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
138 case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
139 case R_AARCH64_TLSLE_MOVW_TPREL_G0:
140 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
141 case R_AARCH64_TLSLE_MOVW_TPREL_G1:
142 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
143 case R_AARCH64_TLSLE_MOVW_TPREL_G2:
144 return R_TPREL;
145 case R_AARCH64_CALL26:
146 case R_AARCH64_CONDBR19:
147 case R_AARCH64_JUMP26:
148 case R_AARCH64_TSTBR14:
149 return R_PLT_PC;
150 case R_AARCH64_PLT32:
151 const_cast<Symbol &>(s).thunkAccessed = true;
152 return R_PLT_PC;
153 case R_AARCH64_PREL16:
154 case R_AARCH64_PREL32:
155 case R_AARCH64_PREL64:
156 case R_AARCH64_ADR_PREL_LO21:
157 case R_AARCH64_LD_PREL_LO19:
158 case R_AARCH64_MOVW_PREL_G0:
159 case R_AARCH64_MOVW_PREL_G0_NC:
160 case R_AARCH64_MOVW_PREL_G1:
161 case R_AARCH64_MOVW_PREL_G1_NC:
162 case R_AARCH64_MOVW_PREL_G2:
163 case R_AARCH64_MOVW_PREL_G2_NC:
164 case R_AARCH64_MOVW_PREL_G3:
165 return R_PC;
166 case R_AARCH64_ADR_PREL_PG_HI21:
167 case R_AARCH64_ADR_PREL_PG_HI21_NC:
168 return R_AARCH64_PAGE_PC;
169 case R_AARCH64_LD64_GOT_LO12_NC:
170 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
171 return R_GOT;
172 case R_AARCH64_LD64_GOTPAGE_LO15:
173 return R_AARCH64_GOT_PAGE;
174 case R_AARCH64_ADR_GOT_PAGE:
175 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
176 return R_AARCH64_GOT_PAGE_PC;
177 case R_AARCH64_GOTPCREL32:
178 case R_AARCH64_GOT_LD_PREL19:
179 return R_GOT_PC;
180 case R_AARCH64_NONE:
181 return R_NONE;
182 default:
183 error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
184 ") against symbol " + toString(s));
185 return R_NONE;
186 }
187 }
188
adjustTlsExpr(RelType type,RelExpr expr) const189 RelExpr AArch64::adjustTlsExpr(RelType type, RelExpr expr) const {
190 if (expr == R_RELAX_TLS_GD_TO_IE) {
191 if (type == R_AARCH64_TLSDESC_ADR_PAGE21)
192 return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC;
193 return R_RELAX_TLS_GD_TO_IE_ABS;
194 }
195 return expr;
196 }
197
usesOnlyLowPageBits(RelType type) const198 bool AArch64::usesOnlyLowPageBits(RelType type) const {
199 switch (type) {
200 default:
201 return false;
202 case R_AARCH64_ADD_ABS_LO12_NC:
203 case R_AARCH64_LD64_GOT_LO12_NC:
204 case R_AARCH64_LDST128_ABS_LO12_NC:
205 case R_AARCH64_LDST16_ABS_LO12_NC:
206 case R_AARCH64_LDST32_ABS_LO12_NC:
207 case R_AARCH64_LDST64_ABS_LO12_NC:
208 case R_AARCH64_LDST8_ABS_LO12_NC:
209 case R_AARCH64_TLSDESC_ADD_LO12:
210 case R_AARCH64_TLSDESC_LD64_LO12:
211 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
212 return true;
213 }
214 }
215
getDynRel(RelType type) const216 RelType AArch64::getDynRel(RelType type) const {
217 if (type == R_AARCH64_ABS64 || type == R_AARCH64_AUTH_ABS64)
218 return type;
219 return R_AARCH64_NONE;
220 }
221
getImplicitAddend(const uint8_t * buf,RelType type) const222 int64_t AArch64::getImplicitAddend(const uint8_t *buf, RelType type) const {
223 switch (type) {
224 case R_AARCH64_TLSDESC:
225 return read64(buf + 8);
226 case R_AARCH64_NONE:
227 case R_AARCH64_GLOB_DAT:
228 case R_AARCH64_JUMP_SLOT:
229 return 0;
230 case R_AARCH64_ABS16:
231 case R_AARCH64_PREL16:
232 return SignExtend64<16>(read16(buf));
233 case R_AARCH64_ABS32:
234 case R_AARCH64_PREL32:
235 return SignExtend64<32>(read32(buf));
236 case R_AARCH64_ABS64:
237 case R_AARCH64_PREL64:
238 case R_AARCH64_RELATIVE:
239 case R_AARCH64_IRELATIVE:
240 case R_AARCH64_TLS_TPREL64:
241 return read64(buf);
242
243 // The following relocation types all point at instructions, and
244 // relocate an immediate field in the instruction.
245 //
246 // The general rule, from AAELF64 §5.7.2 "Addends and PC-bias",
247 // says: "If the relocation relocates an instruction the immediate
248 // field of the instruction is extracted, scaled as required by
249 // the instruction field encoding, and sign-extended to 64 bits".
250
251 // The R_AARCH64_MOVW family operates on wide MOV/MOVK/MOVZ
252 // instructions, which have a 16-bit immediate field with its low
253 // bit in bit 5 of the instruction encoding. When the immediate
254 // field is used as an implicit addend for REL-type relocations,
255 // it is treated as added to the low bits of the output value, not
256 // shifted depending on the relocation type.
257 //
258 // This allows REL relocations to express the requirement 'please
259 // add 12345 to this symbol value and give me the four 16-bit
260 // chunks of the result', by putting the same addend 12345 in all
261 // four instructions. Carries between the 16-bit chunks are
262 // handled correctly, because the whole 64-bit addition is done
263 // once per relocation.
264 case R_AARCH64_MOVW_UABS_G0:
265 case R_AARCH64_MOVW_UABS_G0_NC:
266 case R_AARCH64_MOVW_UABS_G1:
267 case R_AARCH64_MOVW_UABS_G1_NC:
268 case R_AARCH64_MOVW_UABS_G2:
269 case R_AARCH64_MOVW_UABS_G2_NC:
270 case R_AARCH64_MOVW_UABS_G3:
271 return SignExtend64<16>(getBits(read32(buf), 5, 20));
272
273 // R_AARCH64_TSTBR14 points at a TBZ or TBNZ instruction, which
274 // has a 14-bit offset measured in instructions, i.e. shifted left
275 // by 2.
276 case R_AARCH64_TSTBR14:
277 return SignExtend64<16>(getBits(read32(buf), 5, 18) << 2);
278
279 // R_AARCH64_CONDBR19 operates on the ordinary B.cond instruction,
280 // which has a 19-bit offset measured in instructions.
281 //
282 // R_AARCH64_LD_PREL_LO19 operates on the LDR (literal)
283 // instruction, which also has a 19-bit offset, measured in 4-byte
284 // chunks. So the calculation is the same as for
285 // R_AARCH64_CONDBR19.
286 case R_AARCH64_CONDBR19:
287 case R_AARCH64_LD_PREL_LO19:
288 return SignExtend64<21>(getBits(read32(buf), 5, 23) << 2);
289
290 // R_AARCH64_ADD_ABS_LO12_NC operates on ADD (immediate). The
291 // immediate can optionally be shifted left by 12 bits, but this
292 // relocation is intended for the case where it is not.
293 case R_AARCH64_ADD_ABS_LO12_NC:
294 return SignExtend64<12>(getBits(read32(buf), 10, 21));
295
296 // R_AARCH64_ADR_PREL_LO21 operates on an ADR instruction, whose
297 // 21-bit immediate is split between two bits high up in the word
298 // (in fact the two _lowest_ order bits of the value) and 19 bits
299 // lower down.
300 //
301 // R_AARCH64_ADR_PREL_PG_HI21[_NC] operate on an ADRP instruction,
302 // which encodes the immediate in the same way, but will shift it
303 // left by 12 bits when the instruction executes. For the same
304 // reason as the MOVW family, we don't apply that left shift here.
305 case R_AARCH64_ADR_PREL_LO21:
306 case R_AARCH64_ADR_PREL_PG_HI21:
307 case R_AARCH64_ADR_PREL_PG_HI21_NC:
308 return SignExtend64<21>((getBits(read32(buf), 5, 23) << 2) |
309 getBits(read32(buf), 29, 30));
310
311 // R_AARCH64_{JUMP,CALL}26 operate on B and BL, which have a
312 // 26-bit offset measured in instructions.
313 case R_AARCH64_JUMP26:
314 case R_AARCH64_CALL26:
315 return SignExtend64<28>(getBits(read32(buf), 0, 25) << 2);
316
317 default:
318 internalLinkerError(getErrorLocation(buf),
319 "cannot read addend for relocation " + toString(type));
320 return 0;
321 }
322 }
323
writeGotPlt(uint8_t * buf,const Symbol &) const324 void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const {
325 write64(buf, in.plt->getVA());
326 }
327
writeIgotPlt(uint8_t * buf,const Symbol & s) const328 void AArch64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
329 if (config->writeAddends)
330 write64(buf, s.getVA());
331 }
332
writePltHeader(uint8_t * buf) const333 void AArch64::writePltHeader(uint8_t *buf) const {
334 const uint8_t pltData[] = {
335 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
336 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2]))
337 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))]
338 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2]))
339 0x20, 0x02, 0x1f, 0xd6, // br x17
340 0x1f, 0x20, 0x03, 0xd5, // nop
341 0x1f, 0x20, 0x03, 0xd5, // nop
342 0x1f, 0x20, 0x03, 0xd5 // nop
343 };
344 memcpy(buf, pltData, sizeof(pltData));
345
346 uint64_t got = in.gotPlt->getVA();
347 uint64_t plt = in.plt->getVA();
348 relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
349 getAArch64Page(got + 16) - getAArch64Page(plt + 4));
350 relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
351 relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
352 }
353
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const354 void AArch64::writePlt(uint8_t *buf, const Symbol &sym,
355 uint64_t pltEntryAddr) const {
356 const uint8_t inst[] = {
357 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n]))
358 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))]
359 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[n]))
360 0x20, 0x02, 0x1f, 0xd6 // br x17
361 };
362 memcpy(buf, inst, sizeof(inst));
363
364 uint64_t gotPltEntryAddr = sym.getGotPltVA();
365 relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
366 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
367 relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
368 relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
369 }
370
needsThunk(RelExpr expr,RelType type,const InputFile * file,uint64_t branchAddr,const Symbol & s,int64_t a) const371 bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
372 uint64_t branchAddr, const Symbol &s,
373 int64_t a) const {
374 // If s is an undefined weak symbol and does not have a PLT entry then it will
375 // be resolved as a branch to the next instruction. If it is hidden, its
376 // binding has been converted to local, so we just check isUndefined() here. A
377 // undefined non-weak symbol will have been errored.
378 if (s.isUndefined() && !s.isInPlt())
379 return false;
380 // ELF for the ARM 64-bit architecture, section Call and Jump relocations
381 // only permits range extension thunks for R_AARCH64_CALL26 and
382 // R_AARCH64_JUMP26 relocation types.
383 if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
384 type != R_AARCH64_PLT32)
385 return false;
386 uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a);
387 return !inBranchRange(type, branchAddr, dst);
388 }
389
getThunkSectionSpacing() const390 uint32_t AArch64::getThunkSectionSpacing() const {
391 // See comment in Arch/ARM.cpp for a more detailed explanation of
392 // getThunkSectionSpacing(). For AArch64 the only branches we are permitted to
393 // Thunk have a range of +/- 128 MiB
394 return (128 * 1024 * 1024) - 0x30000;
395 }
396
inBranchRange(RelType type,uint64_t src,uint64_t dst) const397 bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
398 if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
399 type != R_AARCH64_PLT32)
400 return true;
401 // The AArch64 call and unconditional branch instructions have a range of
402 // +/- 128 MiB. The PLT32 relocation supports a range up to +/- 2 GiB.
403 uint64_t range =
404 type == R_AARCH64_PLT32 ? (UINT64_C(1) << 31) : (128 * 1024 * 1024);
405 if (dst > src) {
406 // Immediate of branch is signed.
407 range -= 4;
408 return dst - src <= range;
409 }
410 return src - dst <= range;
411 }
412
write32AArch64Addr(uint8_t * l,uint64_t imm)413 static void write32AArch64Addr(uint8_t *l, uint64_t imm) {
414 uint32_t immLo = (imm & 0x3) << 29;
415 uint32_t immHi = (imm & 0x1FFFFC) << 3;
416 uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
417 write32le(l, (read32le(l) & ~mask) | immLo | immHi);
418 }
419
writeMaskedBits32le(uint8_t * p,int32_t v,uint32_t mask)420 static void writeMaskedBits32le(uint8_t *p, int32_t v, uint32_t mask) {
421 write32le(p, (read32le(p) & ~mask) | v);
422 }
423
424 // Update the immediate field in a AARCH64 ldr, str, and add instruction.
write32Imm12(uint8_t * l,uint64_t imm)425 static void write32Imm12(uint8_t *l, uint64_t imm) {
426 writeMaskedBits32le(l, (imm & 0xFFF) << 10, 0xFFF << 10);
427 }
428
429 // Update the immediate field in an AArch64 movk, movn or movz instruction
430 // for a signed relocation, and update the opcode of a movn or movz instruction
431 // to match the sign of the operand.
writeSMovWImm(uint8_t * loc,uint32_t imm)432 static void writeSMovWImm(uint8_t *loc, uint32_t imm) {
433 uint32_t inst = read32le(loc);
434 // Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk.
435 if (!(inst & (1 << 29))) {
436 // movn or movz.
437 if (imm & 0x10000) {
438 // Change opcode to movn, which takes an inverted operand.
439 imm ^= 0xFFFF;
440 inst &= ~(1 << 30);
441 } else {
442 // Change opcode to movz.
443 inst |= 1 << 30;
444 }
445 }
446 write32le(loc, inst | ((imm & 0xFFFF) << 5));
447 }
448
relocate(uint8_t * loc,const Relocation & rel,uint64_t val) const449 void AArch64::relocate(uint8_t *loc, const Relocation &rel,
450 uint64_t val) const {
451 switch (rel.type) {
452 case R_AARCH64_ABS16:
453 case R_AARCH64_PREL16:
454 checkIntUInt(loc, val, 16, rel);
455 write16(loc, val);
456 break;
457 case R_AARCH64_ABS32:
458 case R_AARCH64_PREL32:
459 checkIntUInt(loc, val, 32, rel);
460 write32(loc, val);
461 break;
462 case R_AARCH64_PLT32:
463 case R_AARCH64_GOTPCREL32:
464 checkInt(loc, val, 32, rel);
465 write32(loc, val);
466 break;
467 case R_AARCH64_ABS64:
468 // AArch64 relocations to tagged symbols have extended semantics, as
469 // described here:
470 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative.
471 // tl;dr: encode the symbol's special addend in the place, which is an
472 // offset to the point where the logical tag is derived from. Quick hack, if
473 // the addend is within the symbol's bounds, no need to encode the tag
474 // derivation offset.
475 if (rel.sym && rel.sym->isTagged() &&
476 (rel.addend < 0 ||
477 rel.addend >= static_cast<int64_t>(rel.sym->getSize())))
478 write64(loc, -rel.addend);
479 else
480 write64(loc, val);
481 break;
482 case R_AARCH64_PREL64:
483 write64(loc, val);
484 break;
485 case R_AARCH64_AUTH_ABS64:
486 // If val is wider than 32 bits, the relocation must have been moved from
487 // .relr.auth.dyn to .rela.dyn, and the addend write is not needed.
488 //
489 // If val fits in 32 bits, we have two potential scenarios:
490 // * True RELR: Write the 32-bit `val`.
491 // * RELA: Even if the value now fits in 32 bits, it might have been
492 // converted from RELR during an iteration in
493 // finalizeAddressDependentContent(). Writing the value is harmless
494 // because dynamic linking ignores it.
495 if (isInt<32>(val))
496 write32(loc, val);
497 break;
498 case R_AARCH64_ADD_ABS_LO12_NC:
499 write32Imm12(loc, val);
500 break;
501 case R_AARCH64_ADR_GOT_PAGE:
502 case R_AARCH64_ADR_PREL_PG_HI21:
503 case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
504 case R_AARCH64_TLSDESC_ADR_PAGE21:
505 checkInt(loc, val, 33, rel);
506 [[fallthrough]];
507 case R_AARCH64_ADR_PREL_PG_HI21_NC:
508 write32AArch64Addr(loc, val >> 12);
509 break;
510 case R_AARCH64_ADR_PREL_LO21:
511 checkInt(loc, val, 21, rel);
512 write32AArch64Addr(loc, val);
513 break;
514 case R_AARCH64_JUMP26:
515 // Normally we would just write the bits of the immediate field, however
516 // when patching instructions for the cpu errata fix -fix-cortex-a53-843419
517 // we want to replace a non-branch instruction with a branch immediate
518 // instruction. By writing all the bits of the instruction including the
519 // opcode and the immediate (0 001 | 01 imm26) we can do this
520 // transformation by placing a R_AARCH64_JUMP26 relocation at the offset of
521 // the instruction we want to patch.
522 write32le(loc, 0x14000000);
523 [[fallthrough]];
524 case R_AARCH64_CALL26:
525 checkInt(loc, val, 28, rel);
526 writeMaskedBits32le(loc, (val & 0x0FFFFFFC) >> 2, 0x0FFFFFFC >> 2);
527 break;
528 case R_AARCH64_CONDBR19:
529 case R_AARCH64_LD_PREL_LO19:
530 case R_AARCH64_GOT_LD_PREL19:
531 checkAlignment(loc, val, 4, rel);
532 checkInt(loc, val, 21, rel);
533 writeMaskedBits32le(loc, (val & 0x1FFFFC) << 3, 0x1FFFFC << 3);
534 break;
535 case R_AARCH64_LDST8_ABS_LO12_NC:
536 case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
537 write32Imm12(loc, getBits(val, 0, 11));
538 break;
539 case R_AARCH64_LDST16_ABS_LO12_NC:
540 case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
541 checkAlignment(loc, val, 2, rel);
542 write32Imm12(loc, getBits(val, 1, 11));
543 break;
544 case R_AARCH64_LDST32_ABS_LO12_NC:
545 case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
546 checkAlignment(loc, val, 4, rel);
547 write32Imm12(loc, getBits(val, 2, 11));
548 break;
549 case R_AARCH64_LDST64_ABS_LO12_NC:
550 case R_AARCH64_LD64_GOT_LO12_NC:
551 case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
552 case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
553 case R_AARCH64_TLSDESC_LD64_LO12:
554 checkAlignment(loc, val, 8, rel);
555 write32Imm12(loc, getBits(val, 3, 11));
556 break;
557 case R_AARCH64_LDST128_ABS_LO12_NC:
558 case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
559 checkAlignment(loc, val, 16, rel);
560 write32Imm12(loc, getBits(val, 4, 11));
561 break;
562 case R_AARCH64_LD64_GOTPAGE_LO15:
563 checkAlignment(loc, val, 8, rel);
564 write32Imm12(loc, getBits(val, 3, 14));
565 break;
566 case R_AARCH64_MOVW_UABS_G0:
567 checkUInt(loc, val, 16, rel);
568 [[fallthrough]];
569 case R_AARCH64_MOVW_UABS_G0_NC:
570 writeMaskedBits32le(loc, (val & 0xFFFF) << 5, 0xFFFF << 5);
571 break;
572 case R_AARCH64_MOVW_UABS_G1:
573 checkUInt(loc, val, 32, rel);
574 [[fallthrough]];
575 case R_AARCH64_MOVW_UABS_G1_NC:
576 writeMaskedBits32le(loc, (val & 0xFFFF0000) >> 11, 0xFFFF0000 >> 11);
577 break;
578 case R_AARCH64_MOVW_UABS_G2:
579 checkUInt(loc, val, 48, rel);
580 [[fallthrough]];
581 case R_AARCH64_MOVW_UABS_G2_NC:
582 writeMaskedBits32le(loc, (val & 0xFFFF00000000) >> 27,
583 0xFFFF00000000 >> 27);
584 break;
585 case R_AARCH64_MOVW_UABS_G3:
586 writeMaskedBits32le(loc, (val & 0xFFFF000000000000) >> 43,
587 0xFFFF000000000000 >> 43);
588 break;
589 case R_AARCH64_MOVW_PREL_G0:
590 case R_AARCH64_MOVW_SABS_G0:
591 case R_AARCH64_TLSLE_MOVW_TPREL_G0:
592 checkInt(loc, val, 17, rel);
593 [[fallthrough]];
594 case R_AARCH64_MOVW_PREL_G0_NC:
595 case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
596 writeSMovWImm(loc, val);
597 break;
598 case R_AARCH64_MOVW_PREL_G1:
599 case R_AARCH64_MOVW_SABS_G1:
600 case R_AARCH64_TLSLE_MOVW_TPREL_G1:
601 checkInt(loc, val, 33, rel);
602 [[fallthrough]];
603 case R_AARCH64_MOVW_PREL_G1_NC:
604 case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
605 writeSMovWImm(loc, val >> 16);
606 break;
607 case R_AARCH64_MOVW_PREL_G2:
608 case R_AARCH64_MOVW_SABS_G2:
609 case R_AARCH64_TLSLE_MOVW_TPREL_G2:
610 checkInt(loc, val, 49, rel);
611 [[fallthrough]];
612 case R_AARCH64_MOVW_PREL_G2_NC:
613 writeSMovWImm(loc, val >> 32);
614 break;
615 case R_AARCH64_MOVW_PREL_G3:
616 writeSMovWImm(loc, val >> 48);
617 break;
618 case R_AARCH64_TSTBR14:
619 checkInt(loc, val, 16, rel);
620 writeMaskedBits32le(loc, (val & 0xFFFC) << 3, 0xFFFC << 3);
621 break;
622 case R_AARCH64_TLSLE_ADD_TPREL_HI12:
623 checkUInt(loc, val, 24, rel);
624 write32Imm12(loc, val >> 12);
625 break;
626 case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
627 case R_AARCH64_TLSDESC_ADD_LO12:
628 write32Imm12(loc, val);
629 break;
630 case R_AARCH64_TLSDESC:
631 // For R_AARCH64_TLSDESC the addend is stored in the second 64-bit word.
632 write64(loc + 8, val);
633 break;
634 default:
635 llvm_unreachable("unknown relocation");
636 }
637 }
638
relaxTlsGdToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const639 void AArch64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
640 uint64_t val) const {
641 // TLSDESC Global-Dynamic relocation are in the form:
642 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
643 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
644 // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
645 // .tlsdesccall [R_AARCH64_TLSDESC_CALL]
646 // blr x1
647 // And it can optimized to:
648 // movz x0, #0x0, lsl #16
649 // movk x0, #0x10
650 // nop
651 // nop
652 checkUInt(loc, val, 32, rel);
653
654 switch (rel.type) {
655 case R_AARCH64_TLSDESC_ADD_LO12:
656 case R_AARCH64_TLSDESC_CALL:
657 write32le(loc, 0xd503201f); // nop
658 return;
659 case R_AARCH64_TLSDESC_ADR_PAGE21:
660 write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz
661 return;
662 case R_AARCH64_TLSDESC_LD64_LO12:
663 write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk
664 return;
665 default:
666 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
667 }
668 }
669
relaxTlsGdToIe(uint8_t * loc,const Relocation & rel,uint64_t val) const670 void AArch64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
671 uint64_t val) const {
672 // TLSDESC Global-Dynamic relocation are in the form:
673 // adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
674 // ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
675 // add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
676 // .tlsdesccall [R_AARCH64_TLSDESC_CALL]
677 // blr x1
678 // And it can optimized to:
679 // adrp x0, :gottprel:v
680 // ldr x0, [x0, :gottprel_lo12:v]
681 // nop
682 // nop
683
684 switch (rel.type) {
685 case R_AARCH64_TLSDESC_ADD_LO12:
686 case R_AARCH64_TLSDESC_CALL:
687 write32le(loc, 0xd503201f); // nop
688 break;
689 case R_AARCH64_TLSDESC_ADR_PAGE21:
690 write32le(loc, 0x90000000); // adrp
691 relocateNoSym(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val);
692 break;
693 case R_AARCH64_TLSDESC_LD64_LO12:
694 write32le(loc, 0xf9400000); // ldr
695 relocateNoSym(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val);
696 break;
697 default:
698 llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
699 }
700 }
701
relaxTlsIeToLe(uint8_t * loc,const Relocation & rel,uint64_t val) const702 void AArch64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
703 uint64_t val) const {
704 checkUInt(loc, val, 32, rel);
705
706 if (rel.type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
707 // Generate MOVZ.
708 uint32_t regNo = read32le(loc) & 0x1f;
709 write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5));
710 return;
711 }
712 if (rel.type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
713 // Generate MOVK.
714 uint32_t regNo = read32le(loc) & 0x1f;
715 write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5));
716 return;
717 }
718 llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
719 }
720
AArch64Relaxer(ArrayRef<Relocation> relocs)721 AArch64Relaxer::AArch64Relaxer(ArrayRef<Relocation> relocs) {
722 if (!config->relax)
723 return;
724 // Check if R_AARCH64_ADR_GOT_PAGE and R_AARCH64_LD64_GOT_LO12_NC
725 // always appear in pairs.
726 size_t i = 0;
727 const size_t size = relocs.size();
728 for (; i != size; ++i) {
729 if (relocs[i].type == R_AARCH64_ADR_GOT_PAGE) {
730 if (i + 1 < size && relocs[i + 1].type == R_AARCH64_LD64_GOT_LO12_NC) {
731 ++i;
732 continue;
733 }
734 break;
735 } else if (relocs[i].type == R_AARCH64_LD64_GOT_LO12_NC) {
736 break;
737 }
738 }
739 safeToRelaxAdrpLdr = i == size;
740 }
741
tryRelaxAdrpAdd(const Relocation & adrpRel,const Relocation & addRel,uint64_t secAddr,uint8_t * buf) const742 bool AArch64Relaxer::tryRelaxAdrpAdd(const Relocation &adrpRel,
743 const Relocation &addRel, uint64_t secAddr,
744 uint8_t *buf) const {
745 // When the address of sym is within the range of ADR then
746 // we may relax
747 // ADRP xn, sym
748 // ADD xn, xn, :lo12: sym
749 // to
750 // NOP
751 // ADR xn, sym
752 if (!config->relax || adrpRel.type != R_AARCH64_ADR_PREL_PG_HI21 ||
753 addRel.type != R_AARCH64_ADD_ABS_LO12_NC)
754 return false;
755 // Check if the relocations apply to consecutive instructions.
756 if (adrpRel.offset + 4 != addRel.offset)
757 return false;
758 if (adrpRel.sym != addRel.sym)
759 return false;
760 if (adrpRel.addend != 0 || addRel.addend != 0)
761 return false;
762
763 uint32_t adrpInstr = read32le(buf + adrpRel.offset);
764 uint32_t addInstr = read32le(buf + addRel.offset);
765 // Check if the first instruction is ADRP and the second instruction is ADD.
766 if ((adrpInstr & 0x9f000000) != 0x90000000 ||
767 (addInstr & 0xffc00000) != 0x91000000)
768 return false;
769 uint32_t adrpDestReg = adrpInstr & 0x1f;
770 uint32_t addDestReg = addInstr & 0x1f;
771 uint32_t addSrcReg = (addInstr >> 5) & 0x1f;
772 if (adrpDestReg != addDestReg || adrpDestReg != addSrcReg)
773 return false;
774
775 Symbol &sym = *adrpRel.sym;
776 // Check if the address difference is within 1MiB range.
777 int64_t val = sym.getVA() - (secAddr + addRel.offset);
778 if (val < -1024 * 1024 || val >= 1024 * 1024)
779 return false;
780
781 Relocation adrRel = {R_ABS, R_AARCH64_ADR_PREL_LO21, addRel.offset,
782 /*addend=*/0, &sym};
783 // nop
784 write32le(buf + adrpRel.offset, 0xd503201f);
785 // adr x_<dest_reg>
786 write32le(buf + adrRel.offset, 0x10000000 | adrpDestReg);
787 target->relocate(buf + adrRel.offset, adrRel, val);
788 return true;
789 }
790
tryRelaxAdrpLdr(const Relocation & adrpRel,const Relocation & ldrRel,uint64_t secAddr,uint8_t * buf) const791 bool AArch64Relaxer::tryRelaxAdrpLdr(const Relocation &adrpRel,
792 const Relocation &ldrRel, uint64_t secAddr,
793 uint8_t *buf) const {
794 if (!safeToRelaxAdrpLdr)
795 return false;
796
797 // When the definition of sym is not preemptible then we may
798 // be able to relax
799 // ADRP xn, :got: sym
800 // LDR xn, [ xn :got_lo12: sym]
801 // to
802 // ADRP xn, sym
803 // ADD xn, xn, :lo_12: sym
804
805 if (adrpRel.type != R_AARCH64_ADR_GOT_PAGE ||
806 ldrRel.type != R_AARCH64_LD64_GOT_LO12_NC)
807 return false;
808 // Check if the relocations apply to consecutive instructions.
809 if (adrpRel.offset + 4 != ldrRel.offset)
810 return false;
811 // Check if the relocations reference the same symbol and
812 // skip undefined, preemptible and STT_GNU_IFUNC symbols.
813 if (!adrpRel.sym || adrpRel.sym != ldrRel.sym || !adrpRel.sym->isDefined() ||
814 adrpRel.sym->isPreemptible || adrpRel.sym->isGnuIFunc())
815 return false;
816 // Check if the addends of the both relocations are zero.
817 if (adrpRel.addend != 0 || ldrRel.addend != 0)
818 return false;
819 uint32_t adrpInstr = read32le(buf + adrpRel.offset);
820 uint32_t ldrInstr = read32le(buf + ldrRel.offset);
821 // Check if the first instruction is ADRP and the second instruction is LDR.
822 if ((adrpInstr & 0x9f000000) != 0x90000000 ||
823 (ldrInstr & 0x3b000000) != 0x39000000)
824 return false;
825 // Check the value of the sf bit.
826 if (!(ldrInstr >> 31))
827 return false;
828 uint32_t adrpDestReg = adrpInstr & 0x1f;
829 uint32_t ldrDestReg = ldrInstr & 0x1f;
830 uint32_t ldrSrcReg = (ldrInstr >> 5) & 0x1f;
831 // Check if ADPR and LDR use the same register.
832 if (adrpDestReg != ldrDestReg || adrpDestReg != ldrSrcReg)
833 return false;
834
835 Symbol &sym = *adrpRel.sym;
836 // GOT references to absolute symbols can't be relaxed to use ADRP/ADD in
837 // position-independent code because these instructions produce a relative
838 // address.
839 if (config->isPic && !cast<Defined>(sym).section)
840 return false;
841 // Check if the address difference is within 4GB range.
842 int64_t val =
843 getAArch64Page(sym.getVA()) - getAArch64Page(secAddr + adrpRel.offset);
844 if (val != llvm::SignExtend64(val, 33))
845 return false;
846
847 Relocation adrpSymRel = {R_AARCH64_PAGE_PC, R_AARCH64_ADR_PREL_PG_HI21,
848 adrpRel.offset, /*addend=*/0, &sym};
849 Relocation addRel = {R_ABS, R_AARCH64_ADD_ABS_LO12_NC, ldrRel.offset,
850 /*addend=*/0, &sym};
851
852 // adrp x_<dest_reg>
853 write32le(buf + adrpSymRel.offset, 0x90000000 | adrpDestReg);
854 // add x_<dest reg>, x_<dest reg>
855 write32le(buf + addRel.offset, 0x91000000 | adrpDestReg | (adrpDestReg << 5));
856
857 target->relocate(buf + adrpSymRel.offset, adrpSymRel,
858 SignExtend64(getAArch64Page(sym.getVA()) -
859 getAArch64Page(secAddr + adrpSymRel.offset),
860 64));
861 target->relocate(buf + addRel.offset, addRel, SignExtend64(sym.getVA(), 64));
862 tryRelaxAdrpAdd(adrpSymRel, addRel, secAddr, buf);
863 return true;
864 }
865
866 // Tagged symbols have upper address bits that are added by the dynamic loader,
867 // and thus need the full 64-bit GOT entry. Do not relax such symbols.
needsGotForMemtag(const Relocation & rel)868 static bool needsGotForMemtag(const Relocation &rel) {
869 return rel.sym->isTagged() && needsGot(rel.expr);
870 }
871
relocateAlloc(InputSectionBase & sec,uint8_t * buf) const872 void AArch64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
873 uint64_t secAddr = sec.getOutputSection()->addr;
874 if (auto *s = dyn_cast<InputSection>(&sec))
875 secAddr += s->outSecOff;
876 else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
877 secAddr += ehIn->getParent()->outSecOff;
878 AArch64Relaxer relaxer(sec.relocs());
879 for (size_t i = 0, size = sec.relocs().size(); i != size; ++i) {
880 const Relocation &rel = sec.relocs()[i];
881 uint8_t *loc = buf + rel.offset;
882 const uint64_t val =
883 sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
884 secAddr + rel.offset, *rel.sym, rel.expr);
885
886 if (needsGotForMemtag(rel)) {
887 relocate(loc, rel, val);
888 continue;
889 }
890
891 switch (rel.expr) {
892 case R_AARCH64_GOT_PAGE_PC:
893 if (i + 1 < size &&
894 relaxer.tryRelaxAdrpLdr(rel, sec.relocs()[i + 1], secAddr, buf)) {
895 ++i;
896 continue;
897 }
898 break;
899 case R_AARCH64_PAGE_PC:
900 if (i + 1 < size &&
901 relaxer.tryRelaxAdrpAdd(rel, sec.relocs()[i + 1], secAddr, buf)) {
902 ++i;
903 continue;
904 }
905 break;
906 case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
907 case R_RELAX_TLS_GD_TO_IE_ABS:
908 relaxTlsGdToIe(loc, rel, val);
909 continue;
910 case R_RELAX_TLS_GD_TO_LE:
911 relaxTlsGdToLe(loc, rel, val);
912 continue;
913 case R_RELAX_TLS_IE_TO_LE:
914 relaxTlsIeToLe(loc, rel, val);
915 continue;
916 default:
917 break;
918 }
919 relocate(loc, rel, val);
920 }
921 }
922
923 // AArch64 may use security features in variant PLT sequences. These are:
924 // Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target
925 // Indicator (BTI) introduced in armv8.5-a. The additional instructions used
926 // in the variant Plt sequences are encoded in the Hint space so they can be
927 // deployed on older architectures, which treat the instructions as a nop.
928 // PAC and BTI can be combined leading to the following combinations:
929 // writePltHeader
930 // writePltHeaderBti (no PAC Header needed)
931 // writePlt
932 // writePltBti (BTI only)
933 // writePltPac (PAC only)
934 // writePltBtiPac (BTI and PAC)
935 //
936 // When PAC is enabled the dynamic loader encrypts the address that it places
937 // in the .got.plt using the pacia1716 instruction which encrypts the value in
938 // x17 using the modifier in x16. The static linker places autia1716 before the
939 // indirect branch to x17 to authenticate the address in x17 with the modifier
940 // in x16. This makes it more difficult for an attacker to modify the value in
941 // the .got.plt.
942 //
943 // When BTI is enabled all indirect branches must land on a bti instruction.
944 // The static linker must place a bti instruction at the start of any PLT entry
945 // that may be the target of an indirect branch. As the PLT entries call the
946 // lazy resolver indirectly this must have a bti instruction at start. In
947 // general a bti instruction is not needed for a PLT entry as indirect calls
948 // are resolved to the function address and not the PLT entry for the function.
949 // There are a small number of cases where the PLT address can escape, such as
950 // taking the address of a function or ifunc via a non got-generating
951 // relocation, and a shared library refers to that symbol.
952 //
953 // We use the bti c variant of the instruction which permits indirect branches
954 // (br) via x16/x17 and indirect function calls (blr) via any register. The ABI
955 // guarantees that all indirect branches from code requiring BTI protection
956 // will go via x16/x17
957
958 namespace {
959 class AArch64BtiPac final : public AArch64 {
960 public:
961 AArch64BtiPac();
962 void writePltHeader(uint8_t *buf) const override;
963 void writePlt(uint8_t *buf, const Symbol &sym,
964 uint64_t pltEntryAddr) const override;
965
966 private:
967 bool btiHeader; // bti instruction needed in PLT Header and Entry
968 bool pacEntry; // autia1716 instruction needed in PLT Entry
969 };
970 } // namespace
971
AArch64BtiPac()972 AArch64BtiPac::AArch64BtiPac() {
973 btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI);
974 // A BTI (Branch Target Indicator) Plt Entry is only required if the
975 // address of the PLT entry can be taken by the program, which permits an
976 // indirect jump to the PLT entry. This can happen when the address
977 // of the PLT entry for a function is canonicalised due to the address of
978 // the function in an executable being taken by a shared library, or
979 // non-preemptible ifunc referenced by non-GOT-generating, non-PLT-generating
980 // relocations.
981 // The PAC PLT entries require dynamic loader support and this isn't known
982 // from properties in the objects, so we use the command line flag.
983 pacEntry = config->zPacPlt;
984
985 if (btiHeader || pacEntry) {
986 pltEntrySize = 24;
987 ipltEntrySize = 24;
988 }
989 }
990
writePltHeader(uint8_t * buf) const991 void AArch64BtiPac::writePltHeader(uint8_t *buf) const {
992 const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
993 const uint8_t pltData[] = {
994 0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
995 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2]))
996 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))]
997 0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2]))
998 0x20, 0x02, 0x1f, 0xd6, // br x17
999 0x1f, 0x20, 0x03, 0xd5, // nop
1000 0x1f, 0x20, 0x03, 0xd5 // nop
1001 };
1002 const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
1003
1004 uint64_t got = in.gotPlt->getVA();
1005 uint64_t plt = in.plt->getVA();
1006
1007 if (btiHeader) {
1008 // PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C
1009 // instruction.
1010 memcpy(buf, btiData, sizeof(btiData));
1011 buf += sizeof(btiData);
1012 plt += sizeof(btiData);
1013 }
1014 memcpy(buf, pltData, sizeof(pltData));
1015
1016 relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
1017 getAArch64Page(got + 16) - getAArch64Page(plt + 8));
1018 relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
1019 relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
1020 if (!btiHeader)
1021 // We didn't add the BTI c instruction so round out size with NOP.
1022 memcpy(buf + sizeof(pltData), nopData, sizeof(nopData));
1023 }
1024
writePlt(uint8_t * buf,const Symbol & sym,uint64_t pltEntryAddr) const1025 void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym,
1026 uint64_t pltEntryAddr) const {
1027 // The PLT entry is of the form:
1028 // [btiData] addrInst (pacBr | stdBr) [nopData]
1029 const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
1030 const uint8_t addrInst[] = {
1031 0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n]))
1032 0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))]
1033 0x10, 0x02, 0x00, 0x91 // add x16, x16, Offset(&(.got.plt[n]))
1034 };
1035 const uint8_t pacBr[] = {
1036 0x9f, 0x21, 0x03, 0xd5, // autia1716
1037 0x20, 0x02, 0x1f, 0xd6 // br x17
1038 };
1039 const uint8_t stdBr[] = {
1040 0x20, 0x02, 0x1f, 0xd6, // br x17
1041 0x1f, 0x20, 0x03, 0xd5 // nop
1042 };
1043 const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
1044
1045 // NEEDS_COPY indicates a non-ifunc canonical PLT entry whose address may
1046 // escape to shared objects. isInIplt indicates a non-preemptible ifunc. Its
1047 // address may escape if referenced by a direct relocation. If relative
1048 // vtables are used then if the vtable is in a shared object the offsets will
1049 // be to the PLT entry. The condition is conservative.
1050 bool hasBti = btiHeader &&
1051 (sym.hasFlag(NEEDS_COPY) || sym.isInIplt || sym.thunkAccessed);
1052 if (hasBti) {
1053 memcpy(buf, btiData, sizeof(btiData));
1054 buf += sizeof(btiData);
1055 pltEntryAddr += sizeof(btiData);
1056 }
1057
1058 uint64_t gotPltEntryAddr = sym.getGotPltVA();
1059 memcpy(buf, addrInst, sizeof(addrInst));
1060 relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
1061 getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
1062 relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
1063 relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
1064
1065 if (pacEntry)
1066 memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr));
1067 else
1068 memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr));
1069 if (!hasBti)
1070 // We didn't add the BTI c instruction so round out size with NOP.
1071 memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData));
1072 }
1073
getTargetInfo()1074 static TargetInfo *getTargetInfo() {
1075 if ((config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ||
1076 config->zPacPlt) {
1077 static AArch64BtiPac t;
1078 return &t;
1079 }
1080 static AArch64 t;
1081 return &t;
1082 }
1083
getAArch64TargetInfo()1084 TargetInfo *elf::getAArch64TargetInfo() { return getTargetInfo(); }
1085
1086 template <class ELFT>
1087 static void
addTaggedSymbolReferences(InputSectionBase & sec,DenseMap<Symbol *,unsigned> & referenceCount)1088 addTaggedSymbolReferences(InputSectionBase &sec,
1089 DenseMap<Symbol *, unsigned> &referenceCount) {
1090 assert(sec.type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC);
1091
1092 const RelsOrRelas<ELFT> rels = sec.relsOrRelas<ELFT>();
1093 if (rels.areRelocsRel())
1094 error("non-RELA relocations are not allowed with memtag globals");
1095
1096 for (const typename ELFT::Rela &rel : rels.relas) {
1097 Symbol &sym = sec.file->getRelocTargetSym(rel);
1098 // Linker-synthesized symbols such as __executable_start may be referenced
1099 // as tagged in input objfiles, and we don't want them to be tagged. A
1100 // cheap way to exclude them is the type check, but their type is
1101 // STT_NOTYPE. In addition, this save us from checking untaggable symbols,
1102 // like functions or TLS symbols.
1103 if (sym.type != STT_OBJECT)
1104 continue;
1105 // STB_LOCAL symbols can't be referenced from outside the object file, and
1106 // thus don't need to be checked for references from other object files.
1107 if (sym.binding == STB_LOCAL) {
1108 sym.setIsTagged(true);
1109 continue;
1110 }
1111 ++referenceCount[&sym];
1112 }
1113 sec.markDead();
1114 }
1115
1116 // A tagged symbol must be denoted as being tagged by all references and the
1117 // chosen definition. For simplicity, here, it must also be denoted as tagged
1118 // for all definitions. Otherwise:
1119 //
1120 // 1. A tagged definition can be used by an untagged declaration, in which case
1121 // the untagged access may be PC-relative, causing a tag mismatch at
1122 // runtime.
1123 // 2. An untagged definition can be used by a tagged declaration, where the
1124 // compiler has taken advantage of the increased alignment of the tagged
1125 // declaration, but the alignment at runtime is wrong, causing a fault.
1126 //
1127 // Ideally, this isn't a problem, as any TU that imports or exports tagged
1128 // symbols should also be built with tagging. But, to handle these cases, we
1129 // demote the symbol to be untagged.
createTaggedSymbols(const SmallVector<ELFFileBase *,0> & files)1130 void lld::elf::createTaggedSymbols(const SmallVector<ELFFileBase *, 0> &files) {
1131 assert(hasMemtag());
1132
1133 // First, collect all symbols that are marked as tagged, and count how many
1134 // times they're marked as tagged.
1135 DenseMap<Symbol *, unsigned> taggedSymbolReferenceCount;
1136 for (InputFile* file : files) {
1137 if (file->kind() != InputFile::ObjKind)
1138 continue;
1139 for (InputSectionBase *section : file->getSections()) {
1140 if (!section || section->type != SHT_AARCH64_MEMTAG_GLOBALS_STATIC ||
1141 section == &InputSection::discarded)
1142 continue;
1143 invokeELFT(addTaggedSymbolReferences, *section,
1144 taggedSymbolReferenceCount);
1145 }
1146 }
1147
1148 // Now, go through all the symbols. If the number of declarations +
1149 // definitions to a symbol exceeds the amount of times they're marked as
1150 // tagged, it means we have an objfile that uses the untagged variant of the
1151 // symbol.
1152 for (InputFile *file : files) {
1153 if (file->kind() != InputFile::BinaryKind &&
1154 file->kind() != InputFile::ObjKind)
1155 continue;
1156
1157 for (Symbol *symbol : file->getSymbols()) {
1158 // See `addTaggedSymbolReferences` for more details.
1159 if (symbol->type != STT_OBJECT ||
1160 symbol->binding == STB_LOCAL)
1161 continue;
1162 auto it = taggedSymbolReferenceCount.find(symbol);
1163 if (it == taggedSymbolReferenceCount.end()) continue;
1164 unsigned &remainingAllowedTaggedRefs = it->second;
1165 if (remainingAllowedTaggedRefs == 0) {
1166 taggedSymbolReferenceCount.erase(it);
1167 continue;
1168 }
1169 --remainingAllowedTaggedRefs;
1170 }
1171 }
1172
1173 // `addTaggedSymbolReferences` has already checked that we have RELA
1174 // relocations, the only other way to get written addends is with
1175 // --apply-dynamic-relocs.
1176 if (!taggedSymbolReferenceCount.empty() && config->writeAddends)
1177 error("--apply-dynamic-relocs cannot be used with MTE globals");
1178
1179 // Now, `taggedSymbolReferenceCount` should only contain symbols that are
1180 // defined as tagged exactly the same amount as it's referenced, meaning all
1181 // uses are tagged.
1182 for (auto &[symbol, remainingTaggedRefs] : taggedSymbolReferenceCount) {
1183 assert(remainingTaggedRefs == 0 &&
1184 "Symbol is defined as tagged more times than it's used");
1185 symbol->setIsTagged(true);
1186 }
1187 }
1188