1 /*-
2 * SPDX-License-Identifier: BSD-3-Clause
3 *
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
5 * The Regents of the University of California. All rights reserved.
6 * Copyright (c) 2007-2008,2010
7 * Swinburne University of Technology, Melbourne, Australia.
8 * Copyright (c) 2009-2010 Lawrence Stewart <lstewart@freebsd.org>
9 * Copyright (c) 2010 The FreeBSD Foundation
10 * Copyright (c) 2010-2011 Juniper Networks, Inc.
11 * All rights reserved.
12 *
13 * Portions of this software were developed at the Centre for Advanced Internet
14 * Architectures, Swinburne University of Technology, by Lawrence Stewart,
15 * James Healy and David Hayes, made possible in part by a grant from the Cisco
16 * University Research Program Fund at Community Foundation Silicon Valley.
17 *
18 * Portions of this software were developed at the Centre for Advanced
19 * Internet Architectures, Swinburne University of Technology, Melbourne,
20 * Australia by David Hayes under sponsorship from the FreeBSD Foundation.
21 *
22 * Portions of this software were developed by Robert N. M. Watson under
23 * contract to Juniper Networks, Inc.
24 *
25 * Redistribution and use in source and binary forms, with or without
26 * modification, are permitted provided that the following conditions
27 * are met:
28 * 1. Redistributions of source code must retain the above copyright
29 * notice, this list of conditions and the following disclaimer.
30 * 2. Redistributions in binary form must reproduce the above copyright
31 * notice, this list of conditions and the following disclaimer in the
32 * documentation and/or other materials provided with the distribution.
33 * 3. Neither the name of the University nor the names of its contributors
34 * may be used to endorse or promote products derived from this software
35 * without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
38 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
39 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
40 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
41 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
42 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
43 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
44 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
45 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
46 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
47 * SUCH DAMAGE.
48 */
49
50 #include <sys/cdefs.h>
51 #include "opt_inet.h"
52 #include "opt_inet6.h"
53 #include "opt_ipsec.h"
54 #include "opt_rss.h"
55
56 #include <sys/param.h>
57 #include <sys/arb.h>
58 #include <sys/kernel.h>
59 #ifdef TCP_HHOOK
60 #include <sys/hhook.h>
61 #endif
62 #include <sys/malloc.h>
63 #include <sys/mbuf.h>
64 #include <sys/proc.h> /* for proc0 declaration */
65 #include <sys/protosw.h>
66 #include <sys/qmath.h>
67 #include <sys/sdt.h>
68 #include <sys/signalvar.h>
69 #include <sys/socket.h>
70 #include <sys/socketvar.h>
71 #include <sys/sysctl.h>
72 #include <sys/syslog.h>
73 #include <sys/systm.h>
74 #include <sys/stats.h>
75
76 #include <machine/cpu.h> /* before tcp_seq.h, for tcp_random18() */
77
78 #include <vm/uma.h>
79
80 #include <net/if.h>
81 #include <net/if_var.h>
82 #include <net/route.h>
83 #include <net/rss_config.h>
84 #include <net/vnet.h>
85
86 #define TCPSTATES /* for logging */
87
88 #include <netinet/in.h>
89 #include <netinet/in_kdtrace.h>
90 #include <netinet/in_pcb.h>
91 #include <netinet/in_rss.h>
92 #include <netinet/in_systm.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_icmp.h> /* required for icmp_var.h */
95 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
96 #include <netinet/ip_var.h>
97 #include <netinet/ip_options.h>
98 #include <netinet/ip6.h>
99 #include <netinet/icmp6.h>
100 #include <netinet6/in6_pcb.h>
101 #include <netinet6/in6_rss.h>
102 #include <netinet6/in6_var.h>
103 #include <netinet6/ip6_var.h>
104 #include <netinet6/nd6.h>
105 #include <netinet/tcp.h>
106 #include <netinet/tcp_fsm.h>
107 #include <netinet/tcp_seq.h>
108 #include <netinet/tcp_timer.h>
109 #include <netinet/tcp_var.h>
110 #include <netinet/tcp_log_buf.h>
111 #include <netinet6/tcp6_var.h>
112 #include <netinet/tcpip.h>
113 #include <netinet/cc/cc.h>
114 #include <netinet/tcp_fastopen.h>
115 #include <netinet/tcp_syncache.h>
116 #ifdef TCP_OFFLOAD
117 #include <netinet/tcp_offload.h>
118 #endif
119 #include <netinet/tcp_ecn.h>
120 #include <netinet/udp.h>
121
122 #include <netipsec/ipsec_support.h>
123
124 #include <machine/in_cksum.h>
125
126 #include <security/mac/mac_framework.h>
127
128 const int tcprexmtthresh = 3;
129
130 VNET_DEFINE(int, tcp_log_in_vain) = 0;
131 SYSCTL_INT(_net_inet_tcp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW,
132 &VNET_NAME(tcp_log_in_vain), 0,
133 "Log all incoming TCP segments to closed ports");
134
135 VNET_DEFINE(int, tcp_bind_all_fibs) = 1;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, bind_all_fibs, CTLFLAG_VNET | CTLFLAG_RDTUN,
137 &VNET_NAME(tcp_bind_all_fibs), 0,
138 "Bound sockets receive traffic from all FIBs");
139
140 VNET_DEFINE(int, blackhole) = 0;
141 #define V_blackhole VNET(blackhole)
142 SYSCTL_INT(_net_inet_tcp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW,
143 &VNET_NAME(blackhole), 0,
144 "Do not send RST on segments to closed ports");
145
146 VNET_DEFINE(bool, blackhole_local) = false;
147 #define V_blackhole_local VNET(blackhole_local)
148 SYSCTL_BOOL(_net_inet_tcp, OID_AUTO, blackhole_local, CTLFLAG_VNET |
149 CTLFLAG_RW, &VNET_NAME(blackhole_local), false,
150 "Enforce net.inet.tcp.blackhole for locally originated packets");
151
152 VNET_DEFINE(int, tcp_delack_enabled) = 1;
153 SYSCTL_INT(_net_inet_tcp, OID_AUTO, delayed_ack, CTLFLAG_VNET | CTLFLAG_RW,
154 &VNET_NAME(tcp_delack_enabled), 0,
155 "Delay ACK to try and piggyback it onto a data packet");
156
157 VNET_DEFINE(int, drop_synfin) = 0;
158 SYSCTL_INT(_net_inet_tcp, OID_AUTO, drop_synfin, CTLFLAG_VNET | CTLFLAG_RW,
159 &VNET_NAME(drop_synfin), 0,
160 "Drop TCP packets with SYN+FIN set");
161
162 VNET_DEFINE(int, tcp_do_prr) = 1;
163 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_prr, CTLFLAG_VNET | CTLFLAG_RW,
164 &VNET_NAME(tcp_do_prr), 1,
165 "Enable Proportional Rate Reduction per RFC 6937");
166
167 VNET_DEFINE(int, tcp_do_newcwv) = 0;
168 SYSCTL_INT(_net_inet_tcp, OID_AUTO, newcwv, CTLFLAG_VNET | CTLFLAG_RW,
169 &VNET_NAME(tcp_do_newcwv), 0,
170 "Enable New Congestion Window Validation per RFC7661");
171
172 VNET_DEFINE(int, tcp_do_rfc3042) = 1;
173 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3042, CTLFLAG_VNET | CTLFLAG_RW,
174 &VNET_NAME(tcp_do_rfc3042), 0,
175 "Enable RFC 3042 (Limited Transmit)");
176
177 VNET_DEFINE(int, tcp_do_rfc3390) = 1;
178 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3390, CTLFLAG_VNET | CTLFLAG_RW,
179 &VNET_NAME(tcp_do_rfc3390), 0,
180 "Enable RFC 3390 (Increasing TCP's Initial Congestion Window)");
181
182 VNET_DEFINE(int, tcp_initcwnd_segments) = 10;
183 SYSCTL_INT(_net_inet_tcp, OID_AUTO, initcwnd_segments,
184 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_initcwnd_segments), 0,
185 "Slow-start flight size (initial congestion window) in number of segments");
186
187 VNET_DEFINE(int, tcp_do_rfc3465) = 1;
188 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rfc3465, CTLFLAG_VNET | CTLFLAG_RW,
189 &VNET_NAME(tcp_do_rfc3465), 0,
190 "Enable RFC 3465 (Appropriate Byte Counting)");
191
192 VNET_DEFINE(int, tcp_abc_l_var) = 2;
193 SYSCTL_INT(_net_inet_tcp, OID_AUTO, abc_l_var, CTLFLAG_VNET | CTLFLAG_RW,
194 &VNET_NAME(tcp_abc_l_var), 2,
195 "Cap the max cwnd increment during slow-start to this number of segments");
196
197 VNET_DEFINE(int, tcp_insecure_syn) = 0;
198 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_syn, CTLFLAG_VNET | CTLFLAG_RW,
199 &VNET_NAME(tcp_insecure_syn), 0,
200 "Follow RFC793 instead of RFC5961 criteria for accepting SYN packets");
201
202 VNET_DEFINE(int, tcp_insecure_rst) = 0;
203 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_rst, CTLFLAG_VNET | CTLFLAG_RW,
204 &VNET_NAME(tcp_insecure_rst), 0,
205 "Follow RFC793 instead of RFC5961 criteria for accepting RST packets");
206
207 VNET_DEFINE(int, tcp_insecure_ack) = 0;
208 SYSCTL_INT(_net_inet_tcp, OID_AUTO, insecure_ack, CTLFLAG_VNET | CTLFLAG_RW,
209 &VNET_NAME(tcp_insecure_ack), 0,
210 "Follow RFC793 criteria for validating SEG.ACK");
211
212 VNET_DEFINE(int, tcp_recvspace) = 1024*64;
213 #define V_tcp_recvspace VNET(tcp_recvspace)
214 SYSCTL_INT(_net_inet_tcp, TCPCTL_RECVSPACE, recvspace, CTLFLAG_VNET | CTLFLAG_RW,
215 &VNET_NAME(tcp_recvspace), 0, "Initial receive socket buffer size");
216
217 VNET_DEFINE(int, tcp_do_autorcvbuf) = 1;
218 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_auto, CTLFLAG_VNET | CTLFLAG_RW,
219 &VNET_NAME(tcp_do_autorcvbuf), 0,
220 "Enable automatic receive buffer sizing");
221
222 VNET_DEFINE(int, tcp_autorcvbuf_max) = 8*1024*1024;
223 SYSCTL_INT(_net_inet_tcp, OID_AUTO, recvbuf_max, CTLFLAG_VNET | CTLFLAG_RW,
224 &VNET_NAME(tcp_autorcvbuf_max), 0,
225 "Max size of automatic receive buffer");
226
227 VNET_DEFINE(struct inpcbinfo, tcbinfo);
228
229 /*
230 * TCP statistics are stored in an array of counter(9)s, which size matches
231 * size of struct tcpstat. TCP running connection count is a regular array.
232 */
233 VNET_PCPUSTAT_DEFINE(struct tcpstat, tcpstat);
234 SYSCTL_VNET_PCPUSTAT(_net_inet_tcp, TCPCTL_STATS, stats, struct tcpstat,
235 tcpstat, "TCP statistics (struct tcpstat, netinet/tcp_var.h)");
236 VNET_DEFINE(counter_u64_t, tcps_states[TCP_NSTATES]);
237 SYSCTL_COUNTER_U64_ARRAY(_net_inet_tcp, TCPCTL_STATES, states, CTLFLAG_RD |
238 CTLFLAG_VNET, &VNET_NAME(tcps_states)[0], TCP_NSTATES,
239 "TCP connection counts by TCP state");
240
241 /*
242 * Kernel module interface for updating tcpstat. The first argument is an index
243 * into tcpstat treated as an array.
244 */
245 void
kmod_tcpstat_add(int statnum,int val)246 kmod_tcpstat_add(int statnum, int val)
247 {
248
249 counter_u64_add(VNET(tcpstat)[statnum], val);
250 }
251
252 /*
253 * Make sure that we only start a SACK loss recovery when
254 * receiving a duplicate ACK with a SACK block, and also
255 * complete SACK loss recovery in case the other end
256 * reneges.
257 */
258 static bool inline
tcp_is_sack_recovery(struct tcpcb * tp,struct tcpopt * to)259 tcp_is_sack_recovery(struct tcpcb *tp, struct tcpopt *to)
260 {
261 return ((tp->t_flags & TF_SACK_PERMIT) &&
262 ((to->to_flags & TOF_SACK) ||
263 (!TAILQ_EMPTY(&tp->snd_holes))));
264 }
265
266 #ifdef TCP_HHOOK
267 /*
268 * Wrapper for the TCP established input helper hook.
269 */
270 void
hhook_run_tcp_est_in(struct tcpcb * tp,struct tcphdr * th,struct tcpopt * to)271 hhook_run_tcp_est_in(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to)
272 {
273 struct tcp_hhook_data hhook_data;
274
275 if (V_tcp_hhh[HHOOK_TCP_EST_IN]->hhh_nhooks > 0) {
276 hhook_data.tp = tp;
277 hhook_data.th = th;
278 hhook_data.to = to;
279
280 hhook_run_hooks(V_tcp_hhh[HHOOK_TCP_EST_IN], &hhook_data,
281 &tp->t_osd);
282 }
283 }
284 #endif
285
286 /*
287 * CC wrapper hook functions
288 */
289 void
cc_ack_received(struct tcpcb * tp,struct tcphdr * th,uint16_t nsegs,uint16_t type)290 cc_ack_received(struct tcpcb *tp, struct tcphdr *th, uint16_t nsegs,
291 uint16_t type)
292 {
293 #ifdef STATS
294 int32_t gput;
295 #endif
296
297 INP_WLOCK_ASSERT(tptoinpcb(tp));
298
299 tp->t_ccv.nsegs = nsegs;
300 tp->t_ccv.bytes_this_ack = BYTES_THIS_ACK(tp, th);
301 if ((!V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd)) ||
302 (V_tcp_do_newcwv && (tp->snd_cwnd <= tp->snd_wnd) &&
303 (tp->snd_cwnd < (tcp_compute_pipe(tp) * 2))))
304 tp->t_ccv.flags |= CCF_CWND_LIMITED;
305 else
306 tp->t_ccv.flags &= ~CCF_CWND_LIMITED;
307
308 if (type == CC_ACK) {
309 #ifdef STATS
310 stats_voi_update_abs_s32(tp->t_stats, VOI_TCP_CALCFRWINDIFF,
311 ((int32_t)tp->snd_cwnd) - tp->snd_wnd);
312 if (!IN_RECOVERY(tp->t_flags))
313 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_ACKLEN,
314 tp->t_ccv.bytes_this_ack / (tcp_maxseg(tp) * nsegs));
315 if ((tp->t_flags & TF_GPUTINPROG) &&
316 SEQ_GEQ(th->th_ack, tp->gput_ack)) {
317 /*
318 * Compute goodput in bits per millisecond.
319 */
320 gput = (((int64_t)SEQ_SUB(th->th_ack, tp->gput_seq)) << 3) /
321 max(1, tcp_ts_getticks() - tp->gput_ts);
322 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_GPUT,
323 gput);
324 /*
325 * XXXLAS: This is a temporary hack, and should be
326 * chained off VOI_TCP_GPUT when stats(9) grows an API
327 * to deal with chained VOIs.
328 */
329 if (tp->t_stats_gput_prev > 0)
330 stats_voi_update_abs_s32(tp->t_stats,
331 VOI_TCP_GPUT_ND,
332 ((gput - tp->t_stats_gput_prev) * 100) /
333 tp->t_stats_gput_prev);
334 tp->t_flags &= ~TF_GPUTINPROG;
335 tp->t_stats_gput_prev = gput;
336 }
337 #endif /* STATS */
338 if (tp->snd_cwnd > tp->snd_ssthresh) {
339 tp->t_bytes_acked += tp->t_ccv.bytes_this_ack;
340 if (tp->t_bytes_acked >= tp->snd_cwnd) {
341 tp->t_bytes_acked -= tp->snd_cwnd;
342 tp->t_ccv.flags |= CCF_ABC_SENTAWND;
343 }
344 } else {
345 tp->t_ccv.flags &= ~CCF_ABC_SENTAWND;
346 tp->t_bytes_acked = 0;
347 }
348 }
349
350 if (CC_ALGO(tp)->ack_received != NULL) {
351 /* XXXLAS: Find a way to live without this */
352 tp->t_ccv.curack = th->th_ack;
353 CC_ALGO(tp)->ack_received(&tp->t_ccv, type);
354 }
355 #ifdef STATS
356 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_LCWIN, tp->snd_cwnd);
357 #endif
358 }
359
360 void
cc_conn_init(struct tcpcb * tp)361 cc_conn_init(struct tcpcb *tp)
362 {
363 struct hc_metrics_lite metrics;
364 struct inpcb *inp = tptoinpcb(tp);
365 u_int maxseg;
366 int rtt;
367
368 INP_WLOCK_ASSERT(inp);
369
370 tcp_hc_get(&inp->inp_inc, &metrics);
371 maxseg = tcp_maxseg(tp);
372
373 if (tp->t_srtt == 0 && (rtt = metrics.hc_rtt)) {
374 tp->t_srtt = rtt;
375 TCPSTAT_INC(tcps_usedrtt);
376 if (metrics.hc_rttvar) {
377 tp->t_rttvar = metrics.hc_rttvar;
378 TCPSTAT_INC(tcps_usedrttvar);
379 } else {
380 /* default variation is +- 1 rtt */
381 tp->t_rttvar =
382 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
383 }
384 TCPT_RANGESET(tp->t_rxtcur,
385 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
386 tp->t_rttmin, tcp_rexmit_max);
387 }
388 if (metrics.hc_ssthresh) {
389 /*
390 * There's some sort of gateway or interface
391 * buffer limit on the path. Use this to set
392 * the slow start threshold, but set the
393 * threshold to no less than 2*mss.
394 */
395 tp->snd_ssthresh = max(2 * maxseg, metrics.hc_ssthresh);
396 TCPSTAT_INC(tcps_usedssthresh);
397 }
398
399 /*
400 * Set the initial slow-start flight size.
401 *
402 * If a SYN or SYN/ACK was lost and retransmitted, we have to
403 * reduce the initial CWND to one segment as congestion is likely
404 * requiring us to be cautious.
405 */
406 if (tp->snd_cwnd == 1)
407 tp->snd_cwnd = maxseg; /* SYN(-ACK) lost */
408 else
409 tp->snd_cwnd = tcp_compute_initwnd(maxseg);
410
411 if (CC_ALGO(tp)->conn_init != NULL)
412 CC_ALGO(tp)->conn_init(&tp->t_ccv);
413 }
414
415 void inline
cc_cong_signal(struct tcpcb * tp,struct tcphdr * th,uint32_t type)416 cc_cong_signal(struct tcpcb *tp, struct tcphdr *th, uint32_t type)
417 {
418 INP_WLOCK_ASSERT(tptoinpcb(tp));
419
420 #ifdef STATS
421 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_CSIG, type);
422 #endif
423
424 switch(type) {
425 case CC_NDUPACK:
426 if (!IN_FASTRECOVERY(tp->t_flags)) {
427 tp->snd_recover = tp->snd_max;
428 if (tp->t_flags2 & TF2_ECN_PERMIT)
429 tp->t_flags2 |= TF2_ECN_SND_CWR;
430 }
431 break;
432 case CC_ECN:
433 if (!IN_CONGRECOVERY(tp->t_flags) ||
434 /*
435 * Allow ECN reaction on ACK to CWR, if
436 * that data segment was also CE marked.
437 */
438 SEQ_GEQ(th->th_ack, tp->snd_recover)) {
439 EXIT_CONGRECOVERY(tp->t_flags);
440 TCPSTAT_INC(tcps_ecn_rcwnd);
441 tp->snd_recover = tp->snd_max + 1;
442 if (tp->t_flags2 & TF2_ECN_PERMIT)
443 tp->t_flags2 |= TF2_ECN_SND_CWR;
444 }
445 break;
446 case CC_RTO:
447 tp->t_dupacks = 0;
448 tp->t_bytes_acked = 0;
449 EXIT_RECOVERY(tp->t_flags);
450 if (tp->t_flags2 & TF2_ECN_PERMIT)
451 tp->t_flags2 |= TF2_ECN_SND_CWR;
452 break;
453 case CC_RTO_ERR:
454 TCPSTAT_INC(tcps_sndrexmitbad);
455 /* RTO was unnecessary, so reset everything. */
456 tp->snd_cwnd = tp->snd_cwnd_prev;
457 tp->snd_ssthresh = tp->snd_ssthresh_prev;
458 tp->snd_recover = tp->snd_recover_prev;
459 if (tp->t_flags & TF_WASFRECOVERY)
460 ENTER_FASTRECOVERY(tp->t_flags);
461 if (tp->t_flags & TF_WASCRECOVERY)
462 ENTER_CONGRECOVERY(tp->t_flags);
463 tp->snd_nxt = tp->snd_max;
464 tp->t_flags &= ~TF_PREVVALID;
465 tp->t_rxtshift = 0;
466 tp->t_badrxtwin = 0;
467 break;
468 }
469 if (SEQ_LT(tp->snd_fack, tp->snd_una) ||
470 SEQ_GT(tp->snd_fack, tp->snd_max)) {
471 tp->snd_fack = tp->snd_una;
472 }
473
474 if (CC_ALGO(tp)->cong_signal != NULL) {
475 if (th != NULL)
476 tp->t_ccv.curack = th->th_ack;
477 CC_ALGO(tp)->cong_signal(&tp->t_ccv, type);
478 }
479 }
480
481 void inline
cc_post_recovery(struct tcpcb * tp,struct tcphdr * th)482 cc_post_recovery(struct tcpcb *tp, struct tcphdr *th)
483 {
484 INP_WLOCK_ASSERT(tptoinpcb(tp));
485
486 if (CC_ALGO(tp)->post_recovery != NULL) {
487 if (SEQ_LT(tp->snd_fack, th->th_ack) ||
488 SEQ_GT(tp->snd_fack, tp->snd_max)) {
489 tp->snd_fack = th->th_ack;
490 }
491 tp->t_ccv.curack = th->th_ack;
492 CC_ALGO(tp)->post_recovery(&tp->t_ccv);
493 }
494 EXIT_RECOVERY(tp->t_flags);
495
496 tp->t_bytes_acked = 0;
497 tp->sackhint.delivered_data = 0;
498 tp->sackhint.prr_delivered = 0;
499 tp->sackhint.prr_out = 0;
500 }
501
502 /*
503 * Indicate whether this ack should be delayed. We can delay the ack if
504 * following conditions are met:
505 * - There is no delayed ack timer in progress.
506 * - Our last ack wasn't a 0-sized window. We never want to delay
507 * the ack that opens up a 0-sized window.
508 * - LRO wasn't used for this segment. We make sure by checking that the
509 * segment size is not larger than the MSS.
510 */
511 #define DELAY_ACK(tp, tlen) \
512 ((!tcp_timer_active(tp, TT_DELACK) && \
513 (tp->t_flags & TF_RXWIN0SENT) == 0) && \
514 (tlen <= tp->t_maxseg) && \
515 (V_tcp_delack_enabled || (tp->t_flags & TF_NEEDSYN)))
516
517 void inline
cc_ecnpkt_handler_flags(struct tcpcb * tp,uint16_t flags,uint8_t iptos)518 cc_ecnpkt_handler_flags(struct tcpcb *tp, uint16_t flags, uint8_t iptos)
519 {
520 INP_WLOCK_ASSERT(tptoinpcb(tp));
521
522 if (CC_ALGO(tp)->ecnpkt_handler != NULL) {
523 switch (iptos & IPTOS_ECN_MASK) {
524 case IPTOS_ECN_CE:
525 tp->t_ccv.flags |= CCF_IPHDR_CE;
526 break;
527 case IPTOS_ECN_ECT0:
528 /* FALLTHROUGH */
529 case IPTOS_ECN_ECT1:
530 /* FALLTHROUGH */
531 case IPTOS_ECN_NOTECT:
532 tp->t_ccv.flags &= ~CCF_IPHDR_CE;
533 break;
534 }
535
536 if (flags & TH_CWR)
537 tp->t_ccv.flags |= CCF_TCPHDR_CWR;
538 else
539 tp->t_ccv.flags &= ~CCF_TCPHDR_CWR;
540
541 CC_ALGO(tp)->ecnpkt_handler(&tp->t_ccv);
542
543 if (tp->t_ccv.flags & CCF_ACKNOW) {
544 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
545 tp->t_flags |= TF_ACKNOW;
546 }
547 }
548 }
549
550 void inline
cc_ecnpkt_handler(struct tcpcb * tp,struct tcphdr * th,uint8_t iptos)551 cc_ecnpkt_handler(struct tcpcb *tp, struct tcphdr *th, uint8_t iptos)
552 {
553 cc_ecnpkt_handler_flags(tp, tcp_get_flags(th), iptos);
554 }
555
556 /*
557 * TCP input handling is split into multiple parts:
558 * tcp6_input is a thin wrapper around tcp_input for the extended
559 * ip6_protox[] call format in ip6_input
560 * tcp_input handles primary segment validation, inpcb lookup and
561 * SYN processing on listen sockets
562 * tcp_do_segment processes the ACK and text of the segment for
563 * establishing, established and closing connections
564 */
565 #ifdef INET6
566 int
tcp6_input_with_port(struct mbuf ** mp,int * offp,int proto,uint16_t port)567 tcp6_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port)
568 {
569 struct mbuf *m;
570
571 m = *mp;
572 if (m->m_len < *offp + sizeof(struct tcphdr)) {
573 m = m_pullup(m, *offp + sizeof(struct tcphdr));
574 if (m == NULL) {
575 *mp = m;
576 TCPSTAT_INC(tcps_rcvshort);
577 return (IPPROTO_DONE);
578 }
579 }
580
581 *mp = m;
582 return (tcp_input_with_port(mp, offp, proto, port));
583 }
584
585 int
tcp6_input(struct mbuf ** mp,int * offp,int proto)586 tcp6_input(struct mbuf **mp, int *offp, int proto)
587 {
588
589 return(tcp6_input_with_port(mp, offp, proto, 0));
590 }
591 #endif /* INET6 */
592
593 int
tcp_input_with_port(struct mbuf ** mp,int * offp,int proto,uint16_t port)594 tcp_input_with_port(struct mbuf **mp, int *offp, int proto, uint16_t port)
595 {
596 struct mbuf *m = *mp;
597 struct tcphdr *th = NULL;
598 struct ip *ip = NULL;
599 struct inpcb *inp = NULL;
600 struct tcpcb *tp = NULL;
601 struct socket *so = NULL;
602 u_char *optp = NULL;
603 int off0;
604 int optlen = 0;
605 #ifdef INET
606 int len;
607 uint8_t ipttl;
608 #endif
609 int tlen = 0, off;
610 int drop_hdrlen;
611 int thflags;
612 int lookupflag;
613 uint8_t iptos;
614 struct m_tag *fwd_tag = NULL;
615 #ifdef INET6
616 struct ip6_hdr *ip6 = NULL;
617 int isipv6;
618 #else
619 const void *ip6 = NULL;
620 #endif /* INET6 */
621 struct tcpopt to; /* options in this segment */
622 char *s = NULL; /* address and port logging */
623 bool closed_port = false; /* segment is hitting a closed port */
624
625 NET_EPOCH_ASSERT();
626
627 #ifdef INET6
628 isipv6 = (mtod(m, struct ip *)->ip_v == 6) ? 1 : 0;
629 #endif
630
631 off0 = *offp;
632 m = *mp;
633 *mp = NULL;
634 to.to_flags = 0;
635 TCPSTAT_INC(tcps_rcvtotal);
636
637 m->m_pkthdr.tcp_tun_port = port;
638 #ifdef INET6
639 if (isipv6) {
640 ip6 = mtod(m, struct ip6_hdr *);
641 th = (struct tcphdr *)((caddr_t)ip6 + off0);
642 tlen = sizeof(*ip6) + ntohs(ip6->ip6_plen) - off0;
643 if (port)
644 goto skip6_csum;
645 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
646 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
647 th->th_sum = m->m_pkthdr.csum_data;
648 else
649 th->th_sum = in6_cksum_pseudo(ip6, tlen,
650 IPPROTO_TCP, m->m_pkthdr.csum_data);
651 th->th_sum ^= 0xffff;
652 } else if (m->m_pkthdr.csum_flags & CSUM_IP6_TCP) {
653 /*
654 * Packet from local host (maybe from a VM).
655 * Checksum not required.
656 */
657 th->th_sum = 0;
658 } else
659 th->th_sum = in6_cksum(m, IPPROTO_TCP, off0, tlen);
660 if (th->th_sum) {
661 TCPSTAT_INC(tcps_rcvbadsum);
662 goto drop;
663 }
664 skip6_csum:
665 /*
666 * Be proactive about unspecified IPv6 address in source.
667 * As we use all-zero to indicate unbounded/unconnected pcb,
668 * unspecified IPv6 address can be used to confuse us.
669 *
670 * Note that packets with unspecified IPv6 destination is
671 * already dropped in ip6_input.
672 */
673 KASSERT(!IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_dst),
674 ("%s: unspecified destination v6 address", __func__));
675 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
676 IP6STAT_INC(ip6s_badscope); /* XXX */
677 goto drop;
678 }
679 iptos = IPV6_TRAFFIC_CLASS(ip6);
680 }
681 #endif
682 #if defined(INET) && defined(INET6)
683 else
684 #endif
685 #ifdef INET
686 {
687 /*
688 * Get IP and TCP header together in first mbuf.
689 * Note: IP leaves IP header in first mbuf.
690 */
691 if (off0 > sizeof (struct ip)) {
692 ip_stripoptions(m);
693 off0 = sizeof(struct ip);
694 }
695 if (m->m_len < sizeof (struct tcpiphdr)) {
696 if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
697 == NULL) {
698 TCPSTAT_INC(tcps_rcvshort);
699 return (IPPROTO_DONE);
700 }
701 }
702 ip = mtod(m, struct ip *);
703 th = (struct tcphdr *)((caddr_t)ip + off0);
704 tlen = ntohs(ip->ip_len) - off0;
705
706 iptos = ip->ip_tos;
707 if (port)
708 goto skip_csum;
709 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
710 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
711 th->th_sum = m->m_pkthdr.csum_data;
712 else
713 th->th_sum = in_pseudo(ip->ip_src.s_addr,
714 ip->ip_dst.s_addr,
715 htonl(m->m_pkthdr.csum_data + tlen +
716 IPPROTO_TCP));
717 th->th_sum ^= 0xffff;
718 } else if (m->m_pkthdr.csum_flags & CSUM_IP_TCP) {
719 /*
720 * Packet from local host (maybe from a VM).
721 * Checksum not required.
722 */
723 th->th_sum = 0;
724 } else {
725 struct ipovly *ipov = (struct ipovly *)ip;
726
727 /*
728 * Checksum extended TCP header and data.
729 */
730 len = off0 + tlen;
731 ipttl = ip->ip_ttl;
732 bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
733 ipov->ih_len = htons(tlen);
734 th->th_sum = in_cksum(m, len);
735 /* Reset length for SDT probes. */
736 ip->ip_len = htons(len);
737 /* Reset TOS bits */
738 ip->ip_tos = iptos;
739 /* Re-initialization for later version check */
740 ip->ip_ttl = ipttl;
741 ip->ip_v = IPVERSION;
742 ip->ip_hl = off0 >> 2;
743 }
744 skip_csum:
745 if (th->th_sum && (port == 0)) {
746 TCPSTAT_INC(tcps_rcvbadsum);
747 goto drop;
748 }
749 KASSERT(ip->ip_dst.s_addr != INADDR_ANY,
750 ("%s: unspecified destination v4 address", __func__));
751 if (__predict_false(ip->ip_src.s_addr == INADDR_ANY)) {
752 IPSTAT_INC(ips_badaddr);
753 goto drop;
754 }
755 }
756 #endif /* INET */
757
758 /*
759 * Check that TCP offset makes sense,
760 * pull out TCP options and adjust length. XXX
761 */
762 off = th->th_off << 2;
763 if (off < sizeof (struct tcphdr) || off > tlen) {
764 TCPSTAT_INC(tcps_rcvbadoff);
765 goto drop;
766 }
767 tlen -= off; /* tlen is used instead of ti->ti_len */
768 if (off > sizeof (struct tcphdr)) {
769 #ifdef INET6
770 if (isipv6) {
771 if (m->m_len < off0 + off) {
772 m = m_pullup(m, off0 + off);
773 if (m == NULL) {
774 TCPSTAT_INC(tcps_rcvshort);
775 return (IPPROTO_DONE);
776 }
777 }
778 ip6 = mtod(m, struct ip6_hdr *);
779 th = (struct tcphdr *)((caddr_t)ip6 + off0);
780 }
781 #endif
782 #if defined(INET) && defined(INET6)
783 else
784 #endif
785 #ifdef INET
786 {
787 if (m->m_len < sizeof(struct ip) + off) {
788 if ((m = m_pullup(m, sizeof (struct ip) + off))
789 == NULL) {
790 TCPSTAT_INC(tcps_rcvshort);
791 return (IPPROTO_DONE);
792 }
793 ip = mtod(m, struct ip *);
794 th = (struct tcphdr *)((caddr_t)ip + off0);
795 }
796 }
797 #endif
798 optlen = off - sizeof (struct tcphdr);
799 optp = (u_char *)(th + 1);
800 }
801 thflags = tcp_get_flags(th);
802
803 /*
804 * Convert TCP protocol specific fields to host format.
805 */
806 tcp_fields_to_host(th);
807
808 /*
809 * Delay dropping TCP, IP headers, IPv6 ext headers, and TCP options.
810 */
811 drop_hdrlen = off0 + off;
812
813 /*
814 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain.
815 */
816 if (
817 #ifdef INET6
818 (isipv6 && (m->m_flags & M_IP6_NEXTHOP))
819 #ifdef INET
820 || (!isipv6 && (m->m_flags & M_IP_NEXTHOP))
821 #endif
822 #endif
823 #if defined(INET) && !defined(INET6)
824 (m->m_flags & M_IP_NEXTHOP)
825 #endif
826 )
827 fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
828
829 /*
830 * For initial SYN packets we don't need write lock on matching
831 * PCB, be it a listening one or a synchronized one. The packet
832 * shall not modify its state.
833 */
834 lookupflag = INPLOOKUP_WILDCARD |
835 ((thflags & (TH_ACK|TH_SYN)) == TH_SYN ?
836 INPLOOKUP_RLOCKPCB : INPLOOKUP_WLOCKPCB) |
837 (V_tcp_bind_all_fibs ? 0 : INPLOOKUP_FIB);
838 findpcb:
839 tp = NULL;
840 #ifdef INET6
841 if (isipv6 && fwd_tag != NULL) {
842 struct sockaddr_in6 *next_hop6;
843
844 next_hop6 = (struct sockaddr_in6 *)(fwd_tag + 1);
845 /*
846 * Transparently forwarded. Pretend to be the destination.
847 * Already got one like this?
848 */
849 inp = in6_pcblookup_mbuf(&V_tcbinfo,
850 &ip6->ip6_src, th->th_sport, &ip6->ip6_dst, th->th_dport,
851 lookupflag & ~INPLOOKUP_WILDCARD, m->m_pkthdr.rcvif, m);
852 if (!inp) {
853 /*
854 * It's new. Try to find the ambushing socket.
855 * Because we've rewritten the destination address,
856 * any hardware-generated hash is ignored.
857 */
858 inp = in6_pcblookup(&V_tcbinfo, &ip6->ip6_src,
859 th->th_sport, &next_hop6->sin6_addr,
860 next_hop6->sin6_port ? ntohs(next_hop6->sin6_port) :
861 th->th_dport, lookupflag, m->m_pkthdr.rcvif);
862 }
863 } else if (isipv6) {
864 inp = in6_pcblookup_mbuf(&V_tcbinfo, &ip6->ip6_src,
865 th->th_sport, &ip6->ip6_dst, th->th_dport, lookupflag,
866 m->m_pkthdr.rcvif, m);
867 }
868 #endif /* INET6 */
869 #if defined(INET6) && defined(INET)
870 else
871 #endif
872 #ifdef INET
873 if (fwd_tag != NULL) {
874 struct sockaddr_in *next_hop;
875
876 next_hop = (struct sockaddr_in *)(fwd_tag+1);
877 /*
878 * Transparently forwarded. Pretend to be the destination.
879 * already got one like this?
880 */
881 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src, th->th_sport,
882 ip->ip_dst, th->th_dport, lookupflag & ~INPLOOKUP_WILDCARD,
883 m->m_pkthdr.rcvif, m);
884 if (!inp) {
885 /*
886 * It's new. Try to find the ambushing socket.
887 * Because we've rewritten the destination address,
888 * any hardware-generated hash is ignored.
889 */
890 inp = in_pcblookup(&V_tcbinfo, ip->ip_src,
891 th->th_sport, next_hop->sin_addr,
892 next_hop->sin_port ? ntohs(next_hop->sin_port) :
893 th->th_dport, lookupflag, m->m_pkthdr.rcvif);
894 }
895 } else
896 inp = in_pcblookup_mbuf(&V_tcbinfo, ip->ip_src,
897 th->th_sport, ip->ip_dst, th->th_dport, lookupflag,
898 m->m_pkthdr.rcvif, m);
899 #endif /* INET */
900
901 /*
902 * If the INPCB does not exist then all data in the incoming
903 * segment is discarded and an appropriate RST is sent back.
904 * XXX MRT Send RST using which routing table?
905 */
906 if (inp == NULL) {
907 if ((lookupflag & INPLOOKUP_WILDCARD) == 0) {
908 /* We came here after second (safety) lookup. */
909 MPASS(!closed_port);
910 } else {
911 /*
912 * Log communication attempts to ports that are not
913 * in use.
914 */
915 if (((V_tcp_log_in_vain == 1 && (thflags & TH_SYN)) ||
916 V_tcp_log_in_vain == 2) &&
917 (s = tcp_log_vain(NULL, th, (void *)ip, ip6))) {
918 log(LOG_INFO, "%s; %s: Connection attempt "
919 "to closed port\n", s, __func__);
920 }
921 closed_port = true;
922 }
923 goto dropwithreset;
924 }
925 INP_LOCK_ASSERT(inp);
926
927 if ((inp->inp_flowtype == M_HASHTYPE_NONE) &&
928 !SOLISTENING(inp->inp_socket)) {
929 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
930 inp->inp_flowid = m->m_pkthdr.flowid;
931 inp->inp_flowtype = M_HASHTYPE_GET(m);
932 #ifdef RSS
933 } else {
934 /* assign flowid by software RSS hash */
935 #ifdef INET6
936 if (isipv6) {
937 rss_proto_software_hash_v6(&inp->in6p_faddr,
938 &inp->in6p_laddr,
939 inp->inp_fport,
940 inp->inp_lport,
941 IPPROTO_TCP,
942 &inp->inp_flowid,
943 &inp->inp_flowtype);
944 } else
945 #endif /* INET6 */
946 {
947 rss_proto_software_hash_v4(inp->inp_faddr,
948 inp->inp_laddr,
949 inp->inp_fport,
950 inp->inp_lport,
951 IPPROTO_TCP,
952 &inp->inp_flowid,
953 &inp->inp_flowtype);
954 }
955 #endif /* RSS */
956 }
957 }
958 #if defined(IPSEC) || defined(IPSEC_SUPPORT)
959 #ifdef INET6
960 if (isipv6 && IPSEC_ENABLED(ipv6) &&
961 IPSEC_CHECK_POLICY(ipv6, m, inp) != 0) {
962 goto dropunlock;
963 }
964 #ifdef INET
965 else
966 #endif
967 #endif /* INET6 */
968 #ifdef INET
969 if (IPSEC_ENABLED(ipv4) &&
970 IPSEC_CHECK_POLICY(ipv4, m, inp) != 0) {
971 goto dropunlock;
972 }
973 #endif /* INET */
974 #endif /* IPSEC */
975
976 /*
977 * Check the minimum TTL for socket.
978 */
979 if (inp->inp_ip_minttl != 0) {
980 #ifdef INET6
981 if (isipv6) {
982 if (inp->inp_ip_minttl > ip6->ip6_hlim)
983 goto dropunlock;
984 } else
985 #endif
986 if (inp->inp_ip_minttl > ip->ip_ttl)
987 goto dropunlock;
988 }
989
990 tp = intotcpcb(inp);
991 switch (tp->t_state) {
992 case TCPS_TIME_WAIT:
993 /*
994 * A previous connection in TIMEWAIT state is supposed to catch
995 * stray or duplicate segments arriving late. If this segment
996 * was a legitimate new connection attempt, the old INPCB gets
997 * removed and we can try again to find a listening socket.
998 */
999 tcp_dooptions(&to, optp, optlen,
1000 (thflags & TH_SYN) ? TO_SYN : 0);
1001 /*
1002 * tcp_twcheck unlocks the inp always, and frees the m if fails.
1003 */
1004 if (tcp_twcheck(inp, &to, th, m, tlen))
1005 goto findpcb;
1006 return (IPPROTO_DONE);
1007 case TCPS_CLOSED:
1008 /*
1009 * The TCPCB may no longer exist if the connection is winding
1010 * down or it is in the CLOSED state. Either way we drop the
1011 * segment and send an appropriate response.
1012 */
1013 closed_port = true;
1014 goto dropwithreset;
1015 }
1016
1017 if ((tp->t_port != port) && (tp->t_state > TCPS_LISTEN)) {
1018 closed_port = true;
1019 goto dropwithreset;
1020 }
1021
1022 #ifdef TCP_OFFLOAD
1023 if (tp->t_flags & TF_TOE) {
1024 tcp_offload_input(tp, m);
1025 m = NULL; /* consumed by the TOE driver */
1026 goto dropunlock;
1027 }
1028 #endif
1029
1030 #ifdef MAC
1031 if (mac_inpcb_check_deliver(inp, m))
1032 goto dropunlock;
1033 #endif
1034 so = inp->inp_socket;
1035 KASSERT(so != NULL, ("%s: so == NULL", __func__));
1036 /*
1037 * When the socket is accepting connections (the INPCB is in LISTEN
1038 * state) we look into the SYN cache if this is a new connection
1039 * attempt or the completion of a previous one.
1040 */
1041 KASSERT(tp->t_state == TCPS_LISTEN || !SOLISTENING(so),
1042 ("%s: so accepting but tp %p not listening", __func__, tp));
1043 if (tp->t_state == TCPS_LISTEN && SOLISTENING(so)) {
1044 struct in_conninfo inc;
1045
1046 bzero(&inc, sizeof(inc));
1047 #ifdef INET6
1048 if (isipv6) {
1049 inc.inc_flags |= INC_ISIPV6;
1050 if (inp->inp_inc.inc_flags & INC_IPV6MINMTU)
1051 inc.inc_flags |= INC_IPV6MINMTU;
1052 inc.inc6_faddr = ip6->ip6_src;
1053 inc.inc6_laddr = ip6->ip6_dst;
1054 } else
1055 #endif
1056 {
1057 inc.inc_faddr = ip->ip_src;
1058 inc.inc_laddr = ip->ip_dst;
1059 }
1060 inc.inc_fport = th->th_sport;
1061 inc.inc_lport = th->th_dport;
1062 inc.inc_fibnum = so->so_fibnum;
1063
1064 /*
1065 * Check for an existing connection attempt in syncache if
1066 * the flag is only ACK. A successful lookup creates a new
1067 * socket appended to the listen queue in SYN_RECEIVED state.
1068 */
1069 if ((thflags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK) {
1070 int result;
1071
1072 /*
1073 * Parse the TCP options here because
1074 * syncookies need access to the reflected
1075 * timestamp.
1076 */
1077 tcp_dooptions(&to, optp, optlen, 0);
1078 /*
1079 * NB: syncache_expand() doesn't unlock inp.
1080 */
1081 result = syncache_expand(&inc, &to, th, &so, m, port);
1082 if (result < 0) {
1083 /*
1084 * A failing TCP MD5 signature comparison
1085 * must result in the segment being dropped
1086 * and must not produce any response back
1087 * to the sender.
1088 */
1089 goto dropunlock;
1090 } else if (result == 0) {
1091 /*
1092 * No syncache entry, or ACK was not for our
1093 * SYN/ACK. Do our protection against double
1094 * ACK. If peer sent us 2 ACKs, then for the
1095 * first one syncache_expand() successfully
1096 * converted syncache entry into a socket,
1097 * while we were waiting on the inpcb lock. We
1098 * don't want to sent RST for the second ACK,
1099 * so we perform second lookup without wildcard
1100 * match, hoping to find the new socket. If
1101 * the ACK is stray indeed, the missing
1102 * INPLOOKUP_WILDCARD flag in lookupflag would
1103 * hint the above code that the lookup was a
1104 * second attempt.
1105 *
1106 * NB: syncache did its own logging
1107 * of the failure cause.
1108 */
1109 INP_WUNLOCK(inp);
1110 lookupflag &= ~INPLOOKUP_WILDCARD;
1111 goto findpcb;
1112 }
1113 tfo_socket_result:
1114 if (so == NULL) {
1115 /*
1116 * We completed the 3-way handshake
1117 * but could not allocate a socket
1118 * either due to memory shortage,
1119 * listen queue length limits or
1120 * global socket limits. Send RST
1121 * or wait and have the remote end
1122 * retransmit the ACK for another
1123 * try.
1124 */
1125 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1126 log(LOG_DEBUG, "%s; %s: Listen socket: "
1127 "Socket allocation failed due to "
1128 "limits or memory shortage, %s\n",
1129 s, __func__,
1130 V_tcp_sc_rst_sock_fail ?
1131 "sending RST" : "try again");
1132 if (V_tcp_sc_rst_sock_fail) {
1133 goto dropwithreset;
1134 } else
1135 goto dropunlock;
1136 }
1137 /*
1138 * Socket is created in state SYN_RECEIVED.
1139 * Unlock the listen socket, lock the newly
1140 * created socket and update the tp variable.
1141 * If we came here via jump to tfo_socket_result,
1142 * then listening socket is read-locked.
1143 */
1144 INP_UNLOCK(inp); /* listen socket */
1145 inp = sotoinpcb(so);
1146 /*
1147 * New connection inpcb is already locked by
1148 * syncache_expand().
1149 */
1150 INP_WLOCK_ASSERT(inp);
1151 tp = intotcpcb(inp);
1152 KASSERT(tp->t_state == TCPS_SYN_RECEIVED,
1153 ("%s: ", __func__));
1154 /*
1155 * Process the segment and the data it
1156 * contains. tcp_do_segment() consumes
1157 * the mbuf chain and unlocks the inpcb.
1158 */
1159 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1160 tp->t_fb->tfb_tcp_do_segment(tp, m, th, drop_hdrlen,
1161 tlen, iptos);
1162 return (IPPROTO_DONE);
1163 }
1164 /*
1165 * Segment flag validation for new connection attempts:
1166 *
1167 * Our (SYN|ACK) response was rejected.
1168 * Check with syncache and remove entry to prevent
1169 * retransmits.
1170 *
1171 * NB: syncache_chkrst does its own logging of failure
1172 * causes.
1173 */
1174 if (thflags & TH_RST) {
1175 syncache_chkrst(&inc, th, m, port);
1176 goto dropunlock;
1177 }
1178 /*
1179 * We can't do anything without SYN.
1180 */
1181 if ((thflags & TH_SYN) == 0) {
1182 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1183 log(LOG_DEBUG, "%s; %s: Listen socket: "
1184 "SYN is missing, segment ignored\n",
1185 s, __func__);
1186 TCPSTAT_INC(tcps_badsyn);
1187 goto dropunlock;
1188 }
1189 /*
1190 * (SYN|ACK) is bogus on a listen socket.
1191 */
1192 if (thflags & TH_ACK) {
1193 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1194 log(LOG_DEBUG, "%s; %s: Listen socket: "
1195 "SYN|ACK invalid, segment ignored\n",
1196 s, __func__);
1197 TCPSTAT_INC(tcps_badsyn);
1198 goto dropunlock;
1199 }
1200 /*
1201 * If the drop_synfin option is enabled, drop all
1202 * segments with both the SYN and FIN bits set.
1203 * This prevents e.g. nmap from identifying the
1204 * TCP/IP stack.
1205 * XXX: Poor reasoning. nmap has other methods
1206 * and is constantly refining its stack detection
1207 * strategies.
1208 * XXX: This is a violation of the TCP specification
1209 * and was used by RFC1644.
1210 */
1211 if ((thflags & TH_FIN) && V_drop_synfin) {
1212 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1213 log(LOG_DEBUG, "%s; %s: Listen socket: "
1214 "SYN|FIN segment ignored (based on "
1215 "sysctl setting)\n", s, __func__);
1216 TCPSTAT_INC(tcps_badsyn);
1217 goto dropunlock;
1218 }
1219 /*
1220 * Segment's flags are (SYN) or (SYN|FIN).
1221 *
1222 * TH_PUSH, TH_URG, TH_ECE, TH_CWR are ignored
1223 * as they do not affect the state of the TCP FSM.
1224 * The data pointed to by TH_URG and th_urp is ignored.
1225 */
1226 KASSERT((thflags & (TH_RST|TH_ACK)) == 0,
1227 ("%s: Listen socket: TH_RST or TH_ACK set", __func__));
1228 KASSERT(thflags & (TH_SYN),
1229 ("%s: Listen socket: TH_SYN not set", __func__));
1230 INP_RLOCK_ASSERT(inp);
1231 #ifdef INET6
1232 /*
1233 * If deprecated address is forbidden,
1234 * we do not accept SYN to deprecated interface
1235 * address to prevent any new inbound connection from
1236 * getting established.
1237 * When we do not accept SYN, we send a TCP RST,
1238 * with deprecated source address (instead of dropping
1239 * it). We compromise it as it is much better for peer
1240 * to send a RST, and RST will be the final packet
1241 * for the exchange.
1242 *
1243 * If we do not forbid deprecated addresses, we accept
1244 * the SYN packet. RFC2462 does not suggest dropping
1245 * SYN in this case.
1246 * If we decipher RFC2462 5.5.4, it says like this:
1247 * 1. use of deprecated addr with existing
1248 * communication is okay - "SHOULD continue to be
1249 * used"
1250 * 2. use of it with new communication:
1251 * (2a) "SHOULD NOT be used if alternate address
1252 * with sufficient scope is available"
1253 * (2b) nothing mentioned otherwise.
1254 * Here we fall into (2b) case as we have no choice in
1255 * our source address selection - we must obey the peer.
1256 *
1257 * The wording in RFC2462 is confusing, and there are
1258 * multiple description text for deprecated address
1259 * handling - worse, they are not exactly the same.
1260 * I believe 5.5.4 is the best one, so we follow 5.5.4.
1261 */
1262 if (isipv6 && !V_ip6_use_deprecated) {
1263 struct in6_ifaddr *ia6;
1264
1265 ia6 = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false);
1266 if (ia6 != NULL &&
1267 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1268 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1269 log(LOG_DEBUG, "%s; %s: Listen socket: "
1270 "Connection attempt to deprecated "
1271 "IPv6 address rejected\n",
1272 s, __func__);
1273 goto dropwithreset;
1274 }
1275 }
1276 #endif /* INET6 */
1277 /*
1278 * Basic sanity checks on incoming SYN requests:
1279 * Don't respond if the destination is a link layer
1280 * broadcast according to RFC1122 4.2.3.10, p. 104.
1281 * If it is from this socket it must be forged.
1282 * Don't respond if the source or destination is a
1283 * global or subnet broad- or multicast address.
1284 * Note that it is quite possible to receive unicast
1285 * link-layer packets with a broadcast IP address. Use
1286 * in_ifnet_broadcast() to find them.
1287 */
1288 if (m->m_flags & (M_BCAST|M_MCAST)) {
1289 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1290 log(LOG_DEBUG, "%s; %s: Listen socket: "
1291 "Connection attempt from broad- or multicast "
1292 "link layer address ignored\n", s, __func__);
1293 goto dropunlock;
1294 }
1295 #ifdef INET6
1296 if (isipv6) {
1297 if (th->th_dport == th->th_sport &&
1298 IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &ip6->ip6_src)) {
1299 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1300 log(LOG_DEBUG, "%s; %s: Listen socket: "
1301 "Connection attempt to/from self "
1302 "ignored\n", s, __func__);
1303 goto dropunlock;
1304 }
1305 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
1306 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
1307 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1308 log(LOG_DEBUG, "%s; %s: Listen socket: "
1309 "Connection attempt from/to multicast "
1310 "address ignored\n", s, __func__);
1311 goto dropunlock;
1312 }
1313 }
1314 #endif
1315 #if defined(INET) && defined(INET6)
1316 else
1317 #endif
1318 #ifdef INET
1319 {
1320 if (th->th_dport == th->th_sport &&
1321 ip->ip_dst.s_addr == ip->ip_src.s_addr) {
1322 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1323 log(LOG_DEBUG, "%s; %s: Listen socket: "
1324 "Connection attempt from/to self "
1325 "ignored\n", s, __func__);
1326 goto dropunlock;
1327 }
1328 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
1329 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
1330 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
1331 in_ifnet_broadcast(ip->ip_dst, m->m_pkthdr.rcvif)) {
1332 if ((s = tcp_log_addrs(&inc, th, NULL, NULL)))
1333 log(LOG_DEBUG, "%s; %s: Listen socket: "
1334 "Connection attempt from/to broad- "
1335 "or multicast address ignored\n",
1336 s, __func__);
1337 goto dropunlock;
1338 }
1339 }
1340 #endif
1341 /*
1342 * SYN appears to be valid. Create compressed TCP state
1343 * for syncache.
1344 */
1345 TCP_PROBE3(debug__input, tp, th, m);
1346 tcp_dooptions(&to, optp, optlen, TO_SYN);
1347 if ((so = syncache_add(&inc, &to, th, inp, so, m, NULL, NULL,
1348 iptos, port)) != NULL)
1349 goto tfo_socket_result;
1350
1351 /*
1352 * Entry added to syncache and mbuf consumed.
1353 * Only the listen socket is unlocked by syncache_add().
1354 */
1355 return (IPPROTO_DONE);
1356 }
1357 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1358 if (tp->t_flags & TF_SIGNATURE) {
1359 tcp_dooptions(&to, optp, optlen, thflags);
1360 if ((to.to_flags & TOF_SIGNATURE) == 0) {
1361 TCPSTAT_INC(tcps_sig_err_nosigopt);
1362 goto dropunlock;
1363 }
1364 if (!TCPMD5_ENABLED() ||
1365 TCPMD5_INPUT(m, th, to.to_signature) != 0)
1366 goto dropunlock;
1367 }
1368 #endif
1369 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1370
1371 /*
1372 * Segment belongs to a connection in SYN_SENT, ESTABLISHED or later
1373 * state. tcp_do_segment() always consumes the mbuf chain, unlocks
1374 * the inpcb, and unlocks pcbinfo.
1375 *
1376 * XXXGL: in case of a pure SYN arriving on existing connection
1377 * TCP stacks won't need to modify the PCB, they would either drop
1378 * the segment silently, or send a challenge ACK. However, we try
1379 * to upgrade the lock, because calling convention for stacks is
1380 * write-lock on PCB. If upgrade fails, drop the SYN.
1381 */
1382 if ((lookupflag & INPLOOKUP_RLOCKPCB) && INP_TRY_UPGRADE(inp) == 0)
1383 goto dropunlock;
1384
1385 tp->t_fb->tfb_tcp_do_segment(tp, m, th, drop_hdrlen, tlen, iptos);
1386 return (IPPROTO_DONE);
1387
1388 dropwithreset:
1389 /*
1390 * When blackholing do not respond with a RST but
1391 * completely ignore the segment and drop it.
1392 */
1393 if (((!closed_port && V_blackhole == 3) ||
1394 (closed_port &&
1395 ((V_blackhole == 1 && (thflags & TH_SYN)) || V_blackhole > 1))) &&
1396 (V_blackhole_local || (
1397 #ifdef INET6
1398 isipv6 ? !in6_localip(&ip6->ip6_src) :
1399 #endif
1400 #ifdef INET
1401 !in_localip(ip->ip_src)
1402 #else
1403 true
1404 #endif
1405 )))
1406 goto dropunlock;
1407 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1408 tcp_dropwithreset(m, th, tp, tlen);
1409 m = NULL; /* mbuf chain got consumed. */
1410
1411 dropunlock:
1412 if (m != NULL)
1413 TCP_PROBE5(receive, NULL, tp, m, tp, th);
1414
1415 if (inp != NULL)
1416 INP_UNLOCK(inp);
1417
1418 drop:
1419 if (s != NULL)
1420 free(s, M_TCPLOG);
1421 if (m != NULL)
1422 m_freem(m);
1423 return (IPPROTO_DONE);
1424 }
1425
1426 /*
1427 * Automatic sizing of receive socket buffer. Often the send
1428 * buffer size is not optimally adjusted to the actual network
1429 * conditions at hand (delay bandwidth product). Setting the
1430 * buffer size too small limits throughput on links with high
1431 * bandwidth and high delay (eg. trans-continental/oceanic links).
1432 *
1433 * On the receive side the socket buffer memory is only rarely
1434 * used to any significant extent. This allows us to be much
1435 * more aggressive in scaling the receive socket buffer. For
1436 * the case that the buffer space is actually used to a large
1437 * extent and we run out of kernel memory we can simply drop
1438 * the new segments; TCP on the sender will just retransmit it
1439 * later. Setting the buffer size too big may only consume too
1440 * much kernel memory if the application doesn't read() from
1441 * the socket or packet loss or reordering makes use of the
1442 * reassembly queue.
1443 *
1444 * The criteria to step up the receive buffer one notch are:
1445 * 1. Application has not set receive buffer size with
1446 * SO_RCVBUF. Setting SO_RCVBUF clears SB_AUTOSIZE.
1447 * 2. the number of bytes received during 1/2 of an sRTT
1448 * is at least 3/8 of the current socket buffer size.
1449 * 3. receive buffer size has not hit maximal automatic size;
1450 *
1451 * If all of the criteria are met, we increase the socket buffer
1452 * by a 1/2 (bounded by the max). This allows us to keep ahead
1453 * of slow-start but also makes it so our peer never gets limited
1454 * by our rwnd which we then open up causing a burst.
1455 *
1456 * This algorithm does two steps per RTT at most and only if
1457 * we receive a bulk stream w/o packet losses or reorderings.
1458 * Shrinking the buffer during idle times is not necessary as
1459 * it doesn't consume any memory when idle.
1460 *
1461 * TODO: Only step up if the application is actually serving
1462 * the buffer to better manage the socket buffer resources.
1463 */
1464 int
tcp_autorcvbuf(struct mbuf * m,struct tcphdr * th,struct socket * so,struct tcpcb * tp,int tlen)1465 tcp_autorcvbuf(struct mbuf *m, struct tcphdr *th, struct socket *so,
1466 struct tcpcb *tp, int tlen)
1467 {
1468 int newsize = 0;
1469
1470 if (V_tcp_do_autorcvbuf && (so->so_rcv.sb_flags & SB_AUTOSIZE) &&
1471 tp->t_srtt != 0 && tp->rfbuf_ts != 0 &&
1472 TCP_TS_TO_TICKS(tcp_ts_getticks() - tp->rfbuf_ts) >
1473 ((tp->t_srtt >> TCP_RTT_SHIFT)/2)) {
1474 if (tp->rfbuf_cnt > ((so->so_rcv.sb_hiwat / 2)/ 4 * 3) &&
1475 so->so_rcv.sb_hiwat < V_tcp_autorcvbuf_max) {
1476 newsize = min((so->so_rcv.sb_hiwat + (so->so_rcv.sb_hiwat/2)), V_tcp_autorcvbuf_max);
1477 }
1478 TCP_PROBE6(receive__autoresize, NULL, tp, m, tp, th, newsize);
1479
1480 /* Start over with next RTT. */
1481 tp->rfbuf_ts = 0;
1482 tp->rfbuf_cnt = 0;
1483 } else {
1484 tp->rfbuf_cnt += tlen; /* add up */
1485 }
1486 return (newsize);
1487 }
1488
1489 int
tcp_input(struct mbuf ** mp,int * offp,int proto)1490 tcp_input(struct mbuf **mp, int *offp, int proto)
1491 {
1492 return(tcp_input_with_port(mp, offp, proto, 0));
1493 }
1494
1495 static void
tcp_handle_wakeup(struct tcpcb * tp)1496 tcp_handle_wakeup(struct tcpcb *tp)
1497 {
1498
1499 INP_WLOCK_ASSERT(tptoinpcb(tp));
1500
1501 if (tp->t_flags & TF_WAKESOR) {
1502 struct socket *so = tptosocket(tp);
1503
1504 tp->t_flags &= ~TF_WAKESOR;
1505 SOCK_RECVBUF_LOCK_ASSERT(so);
1506 sorwakeup_locked(so);
1507 }
1508 }
1509
1510 void
tcp_do_segment(struct tcpcb * tp,struct mbuf * m,struct tcphdr * th,int drop_hdrlen,int tlen,uint8_t iptos)1511 tcp_do_segment(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th,
1512 int drop_hdrlen, int tlen, uint8_t iptos)
1513 {
1514 uint16_t thflags;
1515 int acked, ourfinisacked, needoutput = 0;
1516 sackstatus_t sack_changed;
1517 int todrop, win, incforsyn = 0;
1518 uint32_t tiwin;
1519 uint16_t nsegs;
1520 char *s;
1521 struct inpcb *inp = tptoinpcb(tp);
1522 struct socket *so = tptosocket(tp);
1523 struct in_conninfo *inc = &inp->inp_inc;
1524 struct mbuf *mfree;
1525 struct tcpopt to;
1526 int tfo_syn;
1527 u_int maxseg = 0;
1528 bool no_data;
1529
1530 no_data = (tlen == 0);
1531 thflags = tcp_get_flags(th);
1532 tp->sackhint.last_sack_ack = 0;
1533 sack_changed = SACK_NOCHANGE;
1534 nsegs = max(1, m->m_pkthdr.lro_nsegs);
1535
1536 NET_EPOCH_ASSERT();
1537 INP_WLOCK_ASSERT(inp);
1538 KASSERT(tp->t_state > TCPS_LISTEN, ("%s: TCPS_LISTEN",
1539 __func__));
1540 KASSERT(tp->t_state != TCPS_TIME_WAIT, ("%s: TCPS_TIME_WAIT",
1541 __func__));
1542
1543 TCP_LOG_EVENT(tp, th, &so->so_rcv, &so->so_snd, TCP_LOG_IN, 0,
1544 tlen, NULL, true);
1545
1546 if ((thflags & TH_SYN) && (thflags & TH_FIN) && V_drop_synfin) {
1547 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1548 log(LOG_DEBUG, "%s; %s: "
1549 "SYN|FIN segment ignored (based on "
1550 "sysctl setting)\n", s, __func__);
1551 free(s, M_TCPLOG);
1552 }
1553 goto drop;
1554 }
1555
1556 /*
1557 * If a segment with the ACK-bit set arrives in the SYN-SENT state
1558 * check SEQ.ACK first.
1559 */
1560 if ((tp->t_state == TCPS_SYN_SENT) && (thflags & TH_ACK) &&
1561 (SEQ_LEQ(th->th_ack, tp->iss) || SEQ_GT(th->th_ack, tp->snd_max))) {
1562 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
1563 goto dropwithreset;
1564 }
1565
1566 /*
1567 * Segment received on connection.
1568 * Reset idle time and keep-alive timer.
1569 * XXX: This should be done after segment
1570 * validation to ignore broken/spoofed segs.
1571 */
1572 if (tp->t_idle_reduce &&
1573 (tp->snd_max == tp->snd_una) &&
1574 ((ticks - tp->t_rcvtime) >= tp->t_rxtcur))
1575 cc_after_idle(tp);
1576 tp->t_rcvtime = ticks;
1577
1578 if (thflags & TH_FIN)
1579 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_FIN);
1580 /*
1581 * Scale up the window into a 32-bit value.
1582 * For the SYN_SENT state the scale is zero.
1583 */
1584 tiwin = th->th_win << tp->snd_scale;
1585 #ifdef STATS
1586 stats_voi_update_abs_ulong(tp->t_stats, VOI_TCP_FRWIN, tiwin);
1587 #endif
1588
1589 /*
1590 * TCP ECN processing.
1591 */
1592 if (tcp_ecn_input_segment(tp, thflags, tlen,
1593 tcp_packets_this_ack(tp, th->th_ack),
1594 iptos))
1595 cc_cong_signal(tp, th, CC_ECN);
1596
1597 /*
1598 * Parse options on any incoming segment.
1599 */
1600 tcp_dooptions(&to, (u_char *)(th + 1),
1601 (th->th_off << 2) - sizeof(struct tcphdr),
1602 (thflags & TH_SYN) ? TO_SYN : 0);
1603 if (tp->t_flags2 & TF2_PROC_SACK_PROHIBIT) {
1604 /*
1605 * We don't look at sack's from the
1606 * peer because the MSS is too small which
1607 * can subject us to an attack.
1608 */
1609 to.to_flags &= ~TOF_SACK;
1610 }
1611 #if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
1612 if ((tp->t_flags & TF_SIGNATURE) != 0 &&
1613 (to.to_flags & TOF_SIGNATURE) == 0) {
1614 TCPSTAT_INC(tcps_sig_err_sigopt);
1615 /* XXX: should drop? */
1616 }
1617 #endif
1618 /*
1619 * If echoed timestamp is later than the current time,
1620 * fall back to non RFC1323 RTT calculation. Normalize
1621 * timestamp if syncookies were used when this connection
1622 * was established.
1623 */
1624 if ((to.to_flags & TOF_TS) && (to.to_tsecr != 0)) {
1625 to.to_tsecr -= tp->ts_offset;
1626 if (TSTMP_GT(to.to_tsecr, tcp_ts_getticks())) {
1627 to.to_tsecr = 0;
1628 }
1629 }
1630 /*
1631 * Process options only when we get SYN/ACK back. The SYN case
1632 * for incoming connections is handled in tcp_syncache.
1633 * According to RFC1323 the window field in a SYN (i.e., a <SYN>
1634 * or <SYN,ACK>) segment itself is never scaled.
1635 * XXX this is traditional behavior, may need to be cleaned up.
1636 */
1637 if (tp->t_state == TCPS_SYN_SENT && (thflags & TH_SYN)) {
1638 /* Handle parallel SYN for ECN */
1639 tcp_ecn_input_parallel_syn(tp, thflags, iptos);
1640 if ((to.to_flags & TOF_SCALE) &&
1641 (tp->t_flags & TF_REQ_SCALE) &&
1642 !(tp->t_flags & TF_NOOPT)) {
1643 tp->t_flags |= TF_RCVD_SCALE;
1644 tp->snd_scale = to.to_wscale;
1645 } else {
1646 tp->t_flags &= ~TF_REQ_SCALE;
1647 }
1648 /*
1649 * Initial send window. It will be updated with
1650 * the next incoming segment to the scaled value.
1651 */
1652 tp->snd_wnd = th->th_win;
1653 if ((to.to_flags & TOF_TS) &&
1654 (tp->t_flags & TF_REQ_TSTMP) &&
1655 !(tp->t_flags & TF_NOOPT)) {
1656 tp->t_flags |= TF_RCVD_TSTMP;
1657 tp->ts_recent = to.to_tsval;
1658 tp->ts_recent_age = tcp_ts_getticks();
1659 } else {
1660 tp->t_flags &= ~TF_REQ_TSTMP;
1661 }
1662 if (to.to_flags & TOF_MSS) {
1663 tcp_mss(tp, to.to_mss);
1664 }
1665 if ((tp->t_flags & TF_SACK_PERMIT) &&
1666 (!(to.to_flags & TOF_SACKPERM) ||
1667 (tp->t_flags & TF_NOOPT))) {
1668 tp->t_flags &= ~TF_SACK_PERMIT;
1669 }
1670 if (tp->t_flags & TF_FASTOPEN) {
1671 if ((to.to_flags & TOF_FASTOPEN) &&
1672 !(tp->t_flags & TF_NOOPT)) {
1673 uint16_t mss;
1674
1675 if (to.to_flags & TOF_MSS) {
1676 mss = to.to_mss;
1677 } else {
1678 if ((inp->inp_vflag & INP_IPV6) != 0) {
1679 mss = TCP6_MSS;
1680 } else {
1681 mss = TCP_MSS;
1682 }
1683 }
1684 tcp_fastopen_update_cache(tp, mss,
1685 to.to_tfo_len, to.to_tfo_cookie);
1686 } else {
1687 tcp_fastopen_disable_path(tp);
1688 }
1689 }
1690 }
1691
1692 /*
1693 * If timestamps were negotiated during SYN/ACK and a
1694 * segment without a timestamp is received, silently drop
1695 * the segment, unless it is a RST segment or missing timestamps are
1696 * tolerated.
1697 * See section 3.2 of RFC 7323.
1698 */
1699 if ((tp->t_flags & TF_RCVD_TSTMP) && !(to.to_flags & TOF_TS)) {
1700 if (((thflags & TH_RST) != 0) || V_tcp_tolerate_missing_ts) {
1701 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1702 log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1703 "segment processed normally\n",
1704 s, __func__);
1705 free(s, M_TCPLOG);
1706 }
1707 } else {
1708 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1709 log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1710 "segment silently dropped\n", s, __func__);
1711 free(s, M_TCPLOG);
1712 }
1713 goto drop;
1714 }
1715 }
1716 /*
1717 * If timestamps were not negotiated during SYN/ACK and a
1718 * segment with a timestamp is received, ignore the
1719 * timestamp and process the packet normally.
1720 * See section 3.2 of RFC 7323.
1721 */
1722 if (!(tp->t_flags & TF_RCVD_TSTMP) && (to.to_flags & TOF_TS)) {
1723 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1724 log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1725 "segment processed normally\n", s, __func__);
1726 free(s, M_TCPLOG);
1727 }
1728 }
1729
1730 /*
1731 * Header prediction: check for the two common cases
1732 * of a uni-directional data xfer. If the packet has
1733 * no control flags, is in-sequence, the window didn't
1734 * change and we're not retransmitting, it's a
1735 * candidate. If the length is zero and the ack moved
1736 * forward, we're the sender side of the xfer. Just
1737 * free the data acked & wake any higher level process
1738 * that was blocked waiting for space. If the length
1739 * is non-zero and the ack didn't move, we're the
1740 * receiver side. If we're getting packets in-order
1741 * (the reassembly queue is empty), add the data to
1742 * the socket buffer and note that we need a delayed ack.
1743 * Make sure that the hidden state-flags are also off.
1744 * Since we check for TCPS_ESTABLISHED first, it can only
1745 * be TH_NEEDSYN.
1746 */
1747 if (tp->t_state == TCPS_ESTABLISHED &&
1748 th->th_seq == tp->rcv_nxt &&
1749 (thflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1750 tp->snd_nxt == tp->snd_max &&
1751 tiwin && tiwin == tp->snd_wnd &&
1752 ((tp->t_flags & (TF_NEEDSYN|TF_NEEDFIN)) == 0) &&
1753 SEGQ_EMPTY(tp) &&
1754 ((to.to_flags & TOF_TS) == 0 ||
1755 TSTMP_GEQ(to.to_tsval, tp->ts_recent)) ) {
1756 /*
1757 * If last ACK falls within this segment's sequence numbers,
1758 * record the timestamp.
1759 * NOTE that the test is modified according to the latest
1760 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
1761 */
1762 if ((to.to_flags & TOF_TS) != 0 &&
1763 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1764 tp->ts_recent_age = tcp_ts_getticks();
1765 tp->ts_recent = to.to_tsval;
1766 }
1767
1768 if (no_data) {
1769 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1770 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1771 !IN_RECOVERY(tp->t_flags) &&
1772 (to.to_flags & TOF_SACK) == 0 &&
1773 TAILQ_EMPTY(&tp->snd_holes)) {
1774 /*
1775 * This is a pure ack for outstanding data.
1776 */
1777 TCPSTAT_INC(tcps_predack);
1778
1779 /*
1780 * "bad retransmit" recovery.
1781 */
1782 if (tp->t_rxtshift == 1 &&
1783 tp->t_flags & TF_PREVVALID &&
1784 tp->t_badrxtwin != 0 &&
1785 (((to.to_flags & TOF_TS) != 0 &&
1786 to.to_tsecr != 0 &&
1787 TSTMP_LT(to.to_tsecr, tp->t_badrxtwin)) ||
1788 ((to.to_flags & TOF_TS) == 0 &&
1789 TSTMP_LT(ticks, tp->t_badrxtwin))))
1790 cc_cong_signal(tp, th, CC_RTO_ERR);
1791
1792 /*
1793 * Recalculate the transmit timer / rtt.
1794 *
1795 * Some boxes send broken timestamp replies
1796 * during the SYN+ACK phase, ignore
1797 * timestamps of 0 or we could calculate a
1798 * huge RTT and blow up the retransmit timer.
1799 */
1800 if ((to.to_flags & TOF_TS) != 0 &&
1801 to.to_tsecr) {
1802 uint32_t t;
1803
1804 t = tcp_ts_getticks() - to.to_tsecr;
1805 if (!tp->t_rttlow || tp->t_rttlow > t)
1806 tp->t_rttlow = t;
1807 tcp_xmit_timer(tp,
1808 TCP_TS_TO_TICKS(t) + 1);
1809 } else if (tp->t_rtttime &&
1810 SEQ_GT(th->th_ack, tp->t_rtseq)) {
1811 if (!tp->t_rttlow ||
1812 tp->t_rttlow > ticks - tp->t_rtttime)
1813 tp->t_rttlow = ticks - tp->t_rtttime;
1814 tcp_xmit_timer(tp,
1815 ticks - tp->t_rtttime);
1816 }
1817 acked = BYTES_THIS_ACK(tp, th);
1818
1819 #ifdef TCP_HHOOK
1820 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
1821 hhook_run_tcp_est_in(tp, th, &to);
1822 #endif
1823
1824 TCPSTAT_ADD(tcps_rcvackpack, nsegs);
1825 TCPSTAT_ADD(tcps_rcvackbyte, acked);
1826 sbdrop(&so->so_snd, acked);
1827 if (SEQ_GT(tp->snd_una, tp->snd_recover) &&
1828 SEQ_LEQ(th->th_ack, tp->snd_recover))
1829 tp->snd_recover = th->th_ack - 1;
1830
1831 /*
1832 * Let the congestion control algorithm update
1833 * congestion control related information. This
1834 * typically means increasing the congestion
1835 * window.
1836 */
1837 cc_ack_received(tp, th, nsegs, CC_ACK);
1838
1839 tp->snd_una = th->th_ack;
1840 /*
1841 * Pull snd_wl2 up to prevent seq wrap relative
1842 * to th_ack.
1843 */
1844 tp->snd_wl2 = th->th_ack;
1845 tp->t_dupacks = 0;
1846 m_freem(m);
1847
1848 /*
1849 * If all outstanding data are acked, stop
1850 * retransmit timer, otherwise restart timer
1851 * using current (possibly backed-off) value.
1852 * If process is waiting for space,
1853 * wakeup/selwakeup/signal. If data
1854 * are ready to send, let tcp_output
1855 * decide between more output or persist.
1856 */
1857 TCP_PROBE3(debug__input, tp, th, m);
1858 /*
1859 * Clear t_acktime if remote side has ACKd
1860 * all data in the socket buffer.
1861 * Otherwise, update t_acktime if we received
1862 * a sufficiently large ACK.
1863 */
1864 if (sbavail(&so->so_snd) == 0)
1865 tp->t_acktime = 0;
1866 else if (acked > 1)
1867 tp->t_acktime = ticks;
1868 if (tp->snd_una == tp->snd_max)
1869 tcp_timer_activate(tp, TT_REXMT, 0);
1870 else if (!tcp_timer_active(tp, TT_PERSIST))
1871 tcp_timer_activate(tp, TT_REXMT,
1872 TP_RXTCUR(tp));
1873 sowwakeup(so);
1874 /*
1875 * Only call tcp_output when there
1876 * is new data available to be sent
1877 * or we need to send an ACK.
1878 */
1879 if ((tp->t_flags & TF_ACKNOW) ||
1880 (sbavail(&so->so_snd) >=
1881 SEQ_SUB(tp->snd_max, tp->snd_una))) {
1882 (void) tcp_output(tp);
1883 }
1884 goto check_delack;
1885 }
1886 } else if (th->th_ack == tp->snd_una &&
1887 tlen <= sbspace(&so->so_rcv)) {
1888 int newsize = 0; /* automatic sockbuf scaling */
1889
1890 /*
1891 * This is a pure, in-sequence data packet with
1892 * nothing on the reassembly queue and we have enough
1893 * buffer space to take it.
1894 */
1895 /* Clean receiver SACK report if present */
1896 if ((tp->t_flags & TF_SACK_PERMIT) && tp->rcv_numsacks)
1897 tcp_clean_sackreport(tp);
1898 TCPSTAT_INC(tcps_preddat);
1899 tp->rcv_nxt += tlen;
1900 if (tlen &&
1901 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
1902 (tp->t_fbyte_in == 0)) {
1903 tp->t_fbyte_in = ticks;
1904 if (tp->t_fbyte_in == 0)
1905 tp->t_fbyte_in = 1;
1906 if (tp->t_fbyte_out && tp->t_fbyte_in)
1907 tp->t_flags2 |= TF2_FBYTES_COMPLETE;
1908 }
1909 /*
1910 * Pull snd_wl1 up to prevent seq wrap relative to
1911 * th_seq.
1912 */
1913 tp->snd_wl1 = th->th_seq;
1914 /*
1915 * Pull rcv_up up to prevent seq wrap relative to
1916 * rcv_nxt.
1917 */
1918 tp->rcv_up = tp->rcv_nxt;
1919 TCPSTAT_ADD(tcps_rcvpack, nsegs);
1920 TCPSTAT_ADD(tcps_rcvbyte, tlen);
1921 TCP_PROBE3(debug__input, tp, th, m);
1922
1923 newsize = tcp_autorcvbuf(m, th, so, tp, tlen);
1924
1925 /* Add data to socket buffer. */
1926 SOCK_RECVBUF_LOCK(so);
1927 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
1928 m_freem(m);
1929 } else {
1930 /*
1931 * Set new socket buffer size.
1932 * Give up when limit is reached.
1933 */
1934 if (newsize)
1935 if (!sbreserve_locked(so, SO_RCV,
1936 newsize, NULL))
1937 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1938 m_adj(m, drop_hdrlen); /* delayed header drop */
1939 sbappendstream_locked(&so->so_rcv, m, 0);
1940 }
1941 /* NB: sorwakeup_locked() does an implicit unlock. */
1942 sorwakeup_locked(so);
1943 if (DELAY_ACK(tp, tlen)) {
1944 tp->t_flags |= TF_DELACK;
1945 } else {
1946 tp->t_flags |= TF_ACKNOW;
1947 (void) tcp_output(tp);
1948 }
1949 goto check_delack;
1950 }
1951 }
1952
1953 /*
1954 * Calculate amount of space in receive window,
1955 * and then do TCP input processing.
1956 * Receive window is amount of space in rcv queue,
1957 * but not less than advertised window.
1958 */
1959 win = sbspace(&so->so_rcv);
1960 if (win < 0)
1961 win = 0;
1962 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1963
1964 switch (tp->t_state) {
1965 /*
1966 * If the state is SYN_RECEIVED:
1967 * if seg contains an ACK, but not for our SYN/ACK, send a RST.
1968 */
1969 case TCPS_SYN_RECEIVED:
1970 if (thflags & TH_RST) {
1971 /* Handle RST segments later. */
1972 break;
1973 }
1974 if ((thflags & TH_ACK) &&
1975 (SEQ_LEQ(th->th_ack, tp->snd_una) ||
1976 SEQ_GT(th->th_ack, tp->snd_max))) {
1977 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
1978 goto dropwithreset;
1979 }
1980 if (tp->t_flags & TF_FASTOPEN) {
1981 /*
1982 * When a TFO connection is in SYN_RECEIVED, the
1983 * only valid packets are the initial SYN, a
1984 * retransmit/copy of the initial SYN (possibly with
1985 * a subset of the original data), a valid ACK, a
1986 * FIN, or a RST.
1987 */
1988 if ((thflags & (TH_SYN|TH_ACK)) == (TH_SYN|TH_ACK)) {
1989 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
1990 goto dropwithreset;
1991 } else if (thflags & TH_SYN) {
1992 /* non-initial SYN is ignored */
1993 if ((tcp_timer_active(tp, TT_DELACK) ||
1994 tcp_timer_active(tp, TT_REXMT)))
1995 goto drop;
1996 } else if (!(thflags & (TH_ACK|TH_FIN|TH_RST))) {
1997 goto drop;
1998 }
1999 }
2000 break;
2001
2002 /*
2003 * If the state is SYN_SENT:
2004 * if seg contains a RST with valid ACK (SEQ.ACK has already
2005 * been verified), then drop the connection.
2006 * if seg contains a RST without an ACK, drop the seg.
2007 * if seg does not contain SYN, then drop the seg.
2008 * Otherwise this is an acceptable SYN segment
2009 * initialize tp->rcv_nxt and tp->irs
2010 * if seg contains ack then advance tp->snd_una
2011 * if seg contains an ECE and ECN support is enabled, the stream
2012 * is ECN capable.
2013 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2014 * arrange for segment to be acked (eventually)
2015 * continue processing rest of data/controls, beginning with URG
2016 */
2017 case TCPS_SYN_SENT:
2018 if ((thflags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) {
2019 TCP_PROBE5(connect__refused, NULL, tp,
2020 m, tp, th);
2021 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2022 tp = tcp_drop(tp, ECONNREFUSED);
2023 }
2024 if (thflags & TH_RST)
2025 goto drop;
2026 if (!(thflags & TH_SYN))
2027 goto drop;
2028
2029 tp->irs = th->th_seq;
2030 tcp_rcvseqinit(tp);
2031 if (thflags & TH_ACK) {
2032 int tfo_partial_ack = 0;
2033
2034 TCPSTAT_INC(tcps_connects);
2035 soisconnected(so);
2036 #ifdef MAC
2037 mac_socketpeer_set_from_mbuf(m, so);
2038 #endif
2039 /* Do window scaling on this connection? */
2040 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2041 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2042 tp->rcv_scale = tp->request_r_scale;
2043 }
2044 tp->rcv_adv += min(tp->rcv_wnd,
2045 TCP_MAXWIN << tp->rcv_scale);
2046 tp->snd_una++; /* SYN is acked */
2047 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2048 tp->snd_nxt = tp->snd_una;
2049 /*
2050 * If not all the data that was sent in the TFO SYN
2051 * has been acked, resend the remainder right away.
2052 */
2053 if ((tp->t_flags & TF_FASTOPEN) &&
2054 (tp->snd_una != tp->snd_max)) {
2055 tp->snd_nxt = th->th_ack;
2056 tfo_partial_ack = 1;
2057 }
2058 /*
2059 * If there's data, delay ACK; if there's also a FIN
2060 * ACKNOW will be turned on later.
2061 */
2062 if (DELAY_ACK(tp, tlen) && tlen != 0 && !tfo_partial_ack)
2063 tcp_timer_activate(tp, TT_DELACK,
2064 tcp_delacktime);
2065 else
2066 tp->t_flags |= TF_ACKNOW;
2067
2068 tcp_ecn_input_syn_sent(tp, thflags, iptos);
2069
2070 /*
2071 * Received <SYN,ACK> in SYN_SENT[*] state.
2072 * Transitions:
2073 * SYN_SENT --> ESTABLISHED
2074 * SYN_SENT* --> FIN_WAIT_1
2075 */
2076 tp->t_starttime = ticks;
2077 if (tp->t_flags & TF_NEEDFIN) {
2078 tp->t_acktime = ticks;
2079 tcp_state_change(tp, TCPS_FIN_WAIT_1);
2080 tp->t_flags &= ~TF_NEEDFIN;
2081 thflags &= ~TH_SYN;
2082 } else {
2083 tcp_state_change(tp, TCPS_ESTABLISHED);
2084 TCP_PROBE5(connect__established, NULL, tp,
2085 m, tp, th);
2086 cc_conn_init(tp);
2087 tcp_timer_activate(tp, TT_KEEP,
2088 TP_KEEPIDLE(tp));
2089 }
2090 } else {
2091 /*
2092 * Received initial SYN in SYN-SENT[*] state =>
2093 * simultaneous open.
2094 * If it succeeds, connection is * half-synchronized.
2095 * Otherwise, do 3-way handshake:
2096 * SYN-SENT -> SYN-RECEIVED
2097 * SYN-SENT* -> SYN-RECEIVED*
2098 */
2099 tp->t_flags |= (TF_ACKNOW | TF_NEEDSYN | TF_SONOTCONN);
2100 tcp_timer_activate(tp, TT_REXMT, 0);
2101 tcp_state_change(tp, TCPS_SYN_RECEIVED);
2102 }
2103
2104 /*
2105 * Advance th->th_seq to correspond to first data byte.
2106 * If data, trim to stay within window,
2107 * dropping FIN if necessary.
2108 */
2109 th->th_seq++;
2110 if (tlen > tp->rcv_wnd) {
2111 todrop = tlen - tp->rcv_wnd;
2112 m_adj(m, -todrop);
2113 tlen = tp->rcv_wnd;
2114 thflags &= ~TH_FIN;
2115 TCPSTAT_INC(tcps_rcvpackafterwin);
2116 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2117 }
2118 tp->snd_wl1 = th->th_seq - 1;
2119 tp->rcv_up = th->th_seq;
2120 /*
2121 * Client side of transaction: already sent SYN and data.
2122 * If the remote host used T/TCP to validate the SYN,
2123 * our data will be ACK'd; if so, enter normal data segment
2124 * processing in the middle of step 5, ack processing.
2125 * Otherwise, goto step 6.
2126 */
2127 if (thflags & TH_ACK)
2128 goto process_ACK;
2129
2130 goto step6;
2131 }
2132
2133 /*
2134 * States other than LISTEN or SYN_SENT.
2135 * First check the RST flag and sequence number since reset segments
2136 * are exempt from the timestamp and connection count tests. This
2137 * fixes a bug introduced by the Stevens, vol. 2, p. 960 bugfix
2138 * below which allowed reset segments in half the sequence space
2139 * to fall though and be processed (which gives forged reset
2140 * segments with a random sequence number a 50 percent chance of
2141 * killing a connection).
2142 * Then check timestamp, if present.
2143 * Then check the connection count, if present.
2144 * Then check that at least some bytes of segment are within
2145 * receive window. If segment begins before rcv_nxt,
2146 * drop leading data (and SYN); if nothing left, just ack.
2147 */
2148 if (thflags & TH_RST) {
2149 /*
2150 * RFC5961 Section 3.2
2151 *
2152 * - RST drops connection only if SEG.SEQ == RCV.NXT.
2153 * - If RST is in window, we send challenge ACK.
2154 *
2155 * Note: to take into account delayed ACKs, we should
2156 * test against last_ack_sent instead of rcv_nxt.
2157 * Note 2: we handle special case of closed window, not
2158 * covered by the RFC.
2159 */
2160 if ((SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2161 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
2162 (tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
2163 KASSERT(tp->t_state != TCPS_SYN_SENT,
2164 ("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
2165 __func__, th, tp));
2166
2167 if (V_tcp_insecure_rst ||
2168 tp->last_ack_sent == th->th_seq) {
2169 TCPSTAT_INC(tcps_drops);
2170 /* Drop the connection. */
2171 switch (tp->t_state) {
2172 case TCPS_SYN_RECEIVED:
2173 so->so_error = ECONNREFUSED;
2174 goto close;
2175 case TCPS_ESTABLISHED:
2176 case TCPS_FIN_WAIT_1:
2177 case TCPS_FIN_WAIT_2:
2178 case TCPS_CLOSE_WAIT:
2179 case TCPS_CLOSING:
2180 case TCPS_LAST_ACK:
2181 so->so_error = ECONNRESET;
2182 close:
2183 /* FALLTHROUGH */
2184 default:
2185 tcp_log_end_status(tp, TCP_EI_STATUS_CLIENT_RST);
2186 tp = tcp_close(tp);
2187 }
2188 } else {
2189 TCPSTAT_INC(tcps_badrst);
2190 tcp_send_challenge_ack(tp, th, m);
2191 m = NULL;
2192 }
2193 }
2194 goto drop;
2195 }
2196
2197 /*
2198 * RFC5961 Section 4.2
2199 * Send challenge ACK for any SYN in synchronized state.
2200 */
2201 if ((thflags & TH_SYN) && tp->t_state != TCPS_SYN_SENT &&
2202 tp->t_state != TCPS_SYN_RECEIVED) {
2203 TCPSTAT_INC(tcps_badsyn);
2204 if (V_tcp_insecure_syn &&
2205 SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
2206 SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
2207 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2208 tp = tcp_drop(tp, ECONNRESET);
2209 } else {
2210 tcp_ecn_input_syn_sent(tp, thflags, iptos);
2211 tcp_send_challenge_ack(tp, th, m);
2212 m = NULL;
2213 }
2214 goto drop;
2215 }
2216
2217 /*
2218 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2219 * and it's less than ts_recent, drop it.
2220 */
2221 if ((to.to_flags & TOF_TS) != 0 && tp->ts_recent &&
2222 TSTMP_LT(to.to_tsval, tp->ts_recent)) {
2223 /* Check to see if ts_recent is over 24 days old. */
2224 if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
2225 /*
2226 * Invalidate ts_recent. If this segment updates
2227 * ts_recent, the age will be reset later and ts_recent
2228 * will get a valid value. If it does not, setting
2229 * ts_recent to zero will at least satisfy the
2230 * requirement that zero be placed in the timestamp
2231 * echo reply when ts_recent isn't valid. The
2232 * age isn't reset until we get a valid ts_recent
2233 * because we don't want out-of-order segments to be
2234 * dropped when ts_recent is old.
2235 */
2236 tp->ts_recent = 0;
2237 } else {
2238 TCPSTAT_INC(tcps_rcvduppack);
2239 TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
2240 TCPSTAT_INC(tcps_pawsdrop);
2241 if (tlen)
2242 goto dropafterack;
2243 goto drop;
2244 }
2245 }
2246
2247 /*
2248 * In the SYN-RECEIVED state, validate that the packet belongs to
2249 * this connection before trimming the data to fit the receive
2250 * window. Check the sequence number versus IRS since we know
2251 * the sequence numbers haven't wrapped. This is a partial fix
2252 * for the "LAND" DoS attack.
2253 */
2254 if (tp->t_state == TCPS_SYN_RECEIVED && SEQ_LT(th->th_seq, tp->irs)) {
2255 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
2256 goto dropwithreset;
2257 }
2258
2259 todrop = tp->rcv_nxt - th->th_seq;
2260 if (todrop > 0) {
2261 if (thflags & TH_SYN) {
2262 thflags &= ~TH_SYN;
2263 th->th_seq++;
2264 if (th->th_urp > 1)
2265 th->th_urp--;
2266 else
2267 thflags &= ~TH_URG;
2268 todrop--;
2269 }
2270 /*
2271 * Following if statement from Stevens, vol. 2, p. 960.
2272 */
2273 if (todrop > tlen
2274 || (todrop == tlen && (thflags & TH_FIN) == 0)) {
2275 /*
2276 * Any valid FIN must be to the left of the window.
2277 * At this point the FIN must be a duplicate or out
2278 * of sequence; drop it.
2279 */
2280 thflags &= ~TH_FIN;
2281
2282 /*
2283 * Send an ACK to resynchronize and drop any data.
2284 * But keep on processing for RST or ACK.
2285 */
2286 tp->t_flags |= TF_ACKNOW;
2287 todrop = tlen;
2288 TCPSTAT_INC(tcps_rcvduppack);
2289 TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
2290 } else {
2291 TCPSTAT_INC(tcps_rcvpartduppack);
2292 TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
2293 }
2294 /*
2295 * DSACK - add SACK block for dropped range
2296 */
2297 if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
2298 tcp_update_sack_list(tp, th->th_seq,
2299 th->th_seq + todrop);
2300 /*
2301 * ACK now, as the next in-sequence segment
2302 * will clear the DSACK block again
2303 */
2304 tp->t_flags |= TF_ACKNOW;
2305 }
2306 drop_hdrlen += todrop; /* drop from the top afterwards */
2307 th->th_seq += todrop;
2308 tlen -= todrop;
2309 if (th->th_urp > todrop)
2310 th->th_urp -= todrop;
2311 else {
2312 thflags &= ~TH_URG;
2313 th->th_urp = 0;
2314 }
2315 }
2316
2317 /*
2318 * If new data are received on a connection after the
2319 * user processes are gone, then RST the other end if
2320 * no FIN has been processed.
2321 */
2322 if ((tp->t_flags & TF_CLOSED) && tlen > 0 &&
2323 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2324 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
2325 log(LOG_DEBUG, "%s; %s: %s: Received %d bytes of data "
2326 "after socket was closed, "
2327 "sending RST and removing tcpcb\n",
2328 s, __func__, tcpstates[tp->t_state], tlen);
2329 free(s, M_TCPLOG);
2330 }
2331 tcp_log_end_status(tp, TCP_EI_STATUS_DATA_A_CLOSE);
2332 /* tcp_close will kill the inp pre-log the Reset */
2333 tcp_log_end_status(tp, TCP_EI_STATUS_SERVER_RST);
2334 tp = tcp_close(tp);
2335 TCPSTAT_INC(tcps_rcvafterclose);
2336 goto dropwithreset;
2337 }
2338
2339 /*
2340 * If segment ends after window, drop trailing data
2341 * (and PUSH and FIN); if nothing left, just ACK.
2342 */
2343 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2344 if (todrop > 0) {
2345 TCPSTAT_INC(tcps_rcvpackafterwin);
2346 if (todrop >= tlen) {
2347 TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
2348 /*
2349 * If window is closed can only take segments at
2350 * window edge, and have to drop data and PUSH from
2351 * incoming segments. Continue processing, but
2352 * remember to ack. Otherwise, drop segment
2353 * and ack.
2354 */
2355 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2356 tp->t_flags |= TF_ACKNOW;
2357 TCPSTAT_INC(tcps_rcvwinprobe);
2358 } else
2359 goto dropafterack;
2360 } else
2361 TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
2362 m_adj(m, -todrop);
2363 tlen -= todrop;
2364 thflags &= ~(TH_PUSH|TH_FIN);
2365 }
2366
2367 /*
2368 * If last ACK falls within this segment's sequence numbers,
2369 * record its timestamp.
2370 * NOTE:
2371 * 1) That the test incorporates suggestions from the latest
2372 * proposal of the tcplw@cray.com list (Braden 1993/04/26).
2373 * 2) That updating only on newer timestamps interferes with
2374 * our earlier PAWS tests, so this check should be solely
2375 * predicated on the sequence space of this segment.
2376 * 3) That we modify the segment boundary check to be
2377 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2378 * instead of RFC1323's
2379 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2380 * This modified check allows us to overcome RFC1323's
2381 * limitations as described in Stevens TCP/IP Illustrated
2382 * Vol. 2 p.869. In such cases, we can still calculate the
2383 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2384 */
2385 if ((to.to_flags & TOF_TS) != 0 &&
2386 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2387 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2388 ((thflags & (TH_SYN|TH_FIN)) != 0))) {
2389 tp->ts_recent_age = tcp_ts_getticks();
2390 tp->ts_recent = to.to_tsval;
2391 }
2392
2393 /*
2394 * If the ACK bit is off: if in SYN-RECEIVED state or SENDSYN
2395 * flag is on (half-synchronized state), then queue data for
2396 * later processing; else drop segment and return.
2397 */
2398 if ((thflags & TH_ACK) == 0) {
2399 if (tp->t_state == TCPS_SYN_RECEIVED ||
2400 (tp->t_flags & TF_NEEDSYN)) {
2401 if (tp->t_state == TCPS_SYN_RECEIVED &&
2402 (tp->t_flags & TF_FASTOPEN)) {
2403 tp->snd_wnd = tiwin;
2404 cc_conn_init(tp);
2405 }
2406 goto step6;
2407 } else if (tp->t_flags & TF_ACKNOW)
2408 goto dropafterack;
2409 else
2410 goto drop;
2411 }
2412
2413 /*
2414 * Ack processing.
2415 */
2416 if (SEQ_GEQ(tp->snd_una, tp->iss + (TCP_MAXWIN << tp->snd_scale))) {
2417 /* Checking SEG.ACK against ISS is definitely redundant. */
2418 tp->t_flags2 |= TF2_NO_ISS_CHECK;
2419 }
2420 if (!V_tcp_insecure_ack) {
2421 tcp_seq seq_min;
2422 bool ghost_ack_check;
2423
2424 if (tp->t_flags2 & TF2_NO_ISS_CHECK) {
2425 /* Check for too old ACKs (RFC 5961, Section 5.2). */
2426 seq_min = tp->snd_una - tp->max_sndwnd;
2427 ghost_ack_check = false;
2428 } else {
2429 if (SEQ_GT(tp->iss + 1, tp->snd_una - tp->max_sndwnd)) {
2430 /* Checking for ghost ACKs is stricter. */
2431 seq_min = tp->iss + 1;
2432 ghost_ack_check = true;
2433 } else {
2434 /*
2435 * Checking for too old ACKs (RFC 5961,
2436 * Section 5.2) is stricter.
2437 */
2438 seq_min = tp->snd_una - tp->max_sndwnd;
2439 ghost_ack_check = false;
2440 }
2441 }
2442 if (SEQ_LT(th->th_ack, seq_min)) {
2443 if (ghost_ack_check)
2444 TCPSTAT_INC(tcps_rcvghostack);
2445 else
2446 TCPSTAT_INC(tcps_rcvacktooold);
2447 tcp_send_challenge_ack(tp, th, m);
2448 m = NULL;
2449 goto drop;
2450 }
2451 }
2452 switch (tp->t_state) {
2453 /*
2454 * In SYN_RECEIVED state, the ack ACKs our SYN, so enter
2455 * ESTABLISHED state and continue processing.
2456 * The ACK was checked above.
2457 */
2458 case TCPS_SYN_RECEIVED:
2459
2460 TCPSTAT_INC(tcps_connects);
2461 if (tp->t_flags & TF_SONOTCONN) {
2462 /*
2463 * Usually SYN_RECEIVED had been created from a LISTEN,
2464 * and solisten_enqueue() has already marked the socket
2465 * layer as connected. If it didn't, which can happen
2466 * only with an accept_filter(9), then the tp is marked
2467 * with TF_SONOTCONN. The other reason for this mark
2468 * to be set is a simultaneous open, a SYN_RECEIVED
2469 * that had been created from SYN_SENT.
2470 */
2471 tp->t_flags &= ~TF_SONOTCONN;
2472 soisconnected(so);
2473 }
2474 /* Do window scaling? */
2475 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2476 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2477 tp->rcv_scale = tp->request_r_scale;
2478 }
2479 tp->snd_wnd = tiwin;
2480 /*
2481 * Make transitions:
2482 * SYN-RECEIVED -> ESTABLISHED
2483 * SYN-RECEIVED* -> FIN-WAIT-1
2484 */
2485 tp->t_starttime = ticks;
2486 if ((tp->t_flags & TF_FASTOPEN) && tp->t_tfo_pending) {
2487 tcp_fastopen_decrement_counter(tp->t_tfo_pending);
2488 tp->t_tfo_pending = NULL;
2489 }
2490 if (tp->t_flags & TF_NEEDFIN) {
2491 tp->t_acktime = ticks;
2492 tcp_state_change(tp, TCPS_FIN_WAIT_1);
2493 tp->t_flags &= ~TF_NEEDFIN;
2494 } else {
2495 tcp_state_change(tp, TCPS_ESTABLISHED);
2496 TCP_PROBE5(accept__established, NULL, tp,
2497 m, tp, th);
2498 /*
2499 * TFO connections call cc_conn_init() during SYN
2500 * processing. Calling it again here for such
2501 * connections is not harmless as it would undo the
2502 * snd_cwnd reduction that occurs when a TFO SYN|ACK
2503 * is retransmitted.
2504 */
2505 if (!(tp->t_flags & TF_FASTOPEN))
2506 cc_conn_init(tp);
2507 tcp_timer_activate(tp, TT_KEEP, TP_KEEPIDLE(tp));
2508 }
2509 /*
2510 * Account for the ACK of our SYN prior to
2511 * regular ACK processing below, except for
2512 * simultaneous SYN, which is handled later.
2513 */
2514 if (SEQ_GT(th->th_ack, tp->snd_una) && !(tp->t_flags & TF_NEEDSYN))
2515 incforsyn = 1;
2516 /*
2517 * If segment contains data or ACK, will call tcp_reass()
2518 * later; if not, do so now to pass queued data to user.
2519 */
2520 if (tlen == 0 && (thflags & TH_FIN) == 0) {
2521 (void) tcp_reass(tp, (struct tcphdr *)0, NULL, 0,
2522 (struct mbuf *)0);
2523 tcp_handle_wakeup(tp);
2524 }
2525 tp->snd_wl1 = th->th_seq - 1;
2526 /* FALLTHROUGH */
2527
2528 /*
2529 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2530 * ACKs. If the ack is in the range
2531 * tp->snd_una < th->th_ack <= tp->snd_max
2532 * then advance tp->snd_una to th->th_ack and drop
2533 * data from the retransmission queue. If this ACK reflects
2534 * more up to date window information we update our window information.
2535 */
2536 case TCPS_ESTABLISHED:
2537 case TCPS_FIN_WAIT_1:
2538 case TCPS_FIN_WAIT_2:
2539 case TCPS_CLOSE_WAIT:
2540 case TCPS_CLOSING:
2541 case TCPS_LAST_ACK:
2542 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2543 TCPSTAT_INC(tcps_rcvacktoomuch);
2544 goto dropafterack;
2545 }
2546 if (tcp_is_sack_recovery(tp, &to)) {
2547 sack_changed = tcp_sack_doack(tp, &to, th->th_ack);
2548 if ((sack_changed != SACK_NOCHANGE) &&
2549 (tp->t_flags & TF_LRD)) {
2550 tcp_sack_lost_retransmission(tp, th);
2551 }
2552 } else
2553 /*
2554 * Reset the value so that previous (valid) value
2555 * from the last ack with SACK doesn't get used.
2556 */
2557 tp->sackhint.sacked_bytes = 0;
2558
2559 #ifdef TCP_HHOOK
2560 /* Run HHOOK_TCP_ESTABLISHED_IN helper hooks. */
2561 hhook_run_tcp_est_in(tp, th, &to);
2562 #endif
2563
2564 if (SEQ_LT(th->th_ack, tp->snd_una)) {
2565 /* This is old ACK information, don't process it. */
2566 break;
2567 }
2568 if (th->th_ack == tp->snd_una) {
2569 /* Check if this is a duplicate ACK. */
2570 if ((tp->t_flags & TF_SACK_PERMIT) &&
2571 V_tcp_do_newsack) {
2572 /*
2573 * If SEG.ACK == SND.UNA, RFC 6675 requires a
2574 * duplicate ACK to selectively acknowledge
2575 * at least one byte, which was not selectively
2576 * acknowledged before.
2577 */
2578 if (sack_changed == SACK_NOCHANGE) {
2579 break;
2580 }
2581 } else {
2582 /*
2583 * If SEG.ACK == SND.UNA, RFC 5681 requires a
2584 * duplicate ACK to have no data on it and to
2585 * not be a window update.
2586 */
2587 if (!no_data || tiwin != tp->snd_wnd) {
2588 break;
2589 }
2590 }
2591 /*
2592 * If this is the first time we've seen a
2593 * FIN from the remote, this is not a
2594 * duplicate ACK and it needs to be processed
2595 * normally.
2596 * This happens during a simultaneous close.
2597 */
2598 if ((thflags & TH_FIN) &&
2599 (TCPS_HAVERCVDFIN(tp->t_state) == 0)) {
2600 tp->t_dupacks = 0;
2601 break;
2602 }
2603 /* Perform duplicate ACK processing. */
2604 TCPSTAT_INC(tcps_rcvdupack);
2605 maxseg = tcp_maxseg(tp);
2606 if (!tcp_timer_active(tp, TT_REXMT)) {
2607 tp->t_dupacks = 0;
2608 } else if (++tp->t_dupacks > tcprexmtthresh ||
2609 IN_FASTRECOVERY(tp->t_flags)) {
2610 cc_ack_received(tp, th, nsegs, CC_DUPACK);
2611 if (V_tcp_do_prr &&
2612 IN_FASTRECOVERY(tp->t_flags) &&
2613 (tp->t_flags & TF_SACK_PERMIT)) {
2614 tcp_do_prr_ack(tp, th, &to,
2615 sack_changed, &maxseg);
2616 } else if (tcp_is_sack_recovery(tp, &to) &&
2617 IN_FASTRECOVERY(tp->t_flags) &&
2618 (tp->snd_nxt == tp->snd_max)) {
2619 int awnd;
2620
2621 /*
2622 * Compute the amount of data in flight first.
2623 * We can inject new data into the pipe iff
2624 * we have less than ssthresh
2625 * worth of data in flight.
2626 */
2627 awnd = tcp_compute_pipe(tp);
2628 if (awnd < tp->snd_ssthresh) {
2629 tp->snd_cwnd += imax(maxseg,
2630 imin(2 * maxseg,
2631 tp->sackhint.delivered_data));
2632 if (tp->snd_cwnd > tp->snd_ssthresh)
2633 tp->snd_cwnd = tp->snd_ssthresh;
2634 }
2635 } else if (tcp_is_sack_recovery(tp, &to) &&
2636 IN_FASTRECOVERY(tp->t_flags) &&
2637 SEQ_LT(tp->snd_nxt, tp->snd_max)) {
2638 tp->snd_cwnd += imax(maxseg,
2639 imin(2 * maxseg,
2640 tp->sackhint.delivered_data));
2641 } else {
2642 tp->snd_cwnd += maxseg;
2643 }
2644 (void) tcp_output(tp);
2645 goto drop;
2646 } else if (tp->t_dupacks == tcprexmtthresh ||
2647 (tp->t_flags & TF_SACK_PERMIT &&
2648 V_tcp_do_newsack &&
2649 tp->sackhint.sacked_bytes >
2650 (tcprexmtthresh - 1) * maxseg)) {
2651 enter_recovery:
2652 /*
2653 * Above is the RFC6675 trigger condition of
2654 * more than (dupthresh-1)*maxseg sacked data.
2655 * If the count of holes in the
2656 * scoreboard is >= dupthresh, we could
2657 * also enter loss recovery, but don't
2658 * have that value readily available.
2659 */
2660 tp->t_dupacks = tcprexmtthresh;
2661 tcp_seq onxt = tp->snd_nxt;
2662
2663 /*
2664 * If we're doing sack, check to
2665 * see if we're already in sack
2666 * recovery. If we're not doing sack,
2667 * check to see if we're in newreno
2668 * recovery.
2669 */
2670 if (tcp_is_sack_recovery(tp, &to)) {
2671 if (IN_FASTRECOVERY(tp->t_flags)) {
2672 tp->t_dupacks = 0;
2673 break;
2674 }
2675 } else {
2676 if (SEQ_LEQ(th->th_ack,
2677 tp->snd_recover)) {
2678 tp->t_dupacks = 0;
2679 break;
2680 }
2681 }
2682 /* Congestion signal before ack. */
2683 cc_cong_signal(tp, th, CC_NDUPACK);
2684 cc_ack_received(tp, th, nsegs, CC_DUPACK);
2685 tcp_timer_activate(tp, TT_REXMT, 0);
2686 tp->t_rtttime = 0;
2687 if (V_tcp_do_prr) {
2688 /*
2689 * snd_ssthresh and snd_recover are
2690 * already updated by cc_cong_signal.
2691 */
2692 if (tcp_is_sack_recovery(tp, &to)) {
2693 /*
2694 * Include Limited Transmit
2695 * segments here
2696 */
2697 tp->sackhint.prr_delivered =
2698 imin(tp->snd_max - th->th_ack,
2699 (tp->snd_limited + 1) * maxseg);
2700 } else {
2701 tp->sackhint.prr_delivered =
2702 maxseg;
2703 }
2704 tp->sackhint.recover_fs = max(1,
2705 tp->snd_nxt - tp->snd_una);
2706 }
2707 tp->snd_limited = 0;
2708 if (tcp_is_sack_recovery(tp, &to)) {
2709 TCPSTAT_INC(tcps_sack_recovery_episode);
2710 /*
2711 * When entering LR after RTO due to
2712 * Duplicate ACKs, retransmit existing
2713 * holes from the scoreboard.
2714 */
2715 tcp_resend_sackholes(tp);
2716 /* Avoid inflating cwnd in tcp_output */
2717 tp->snd_nxt = tp->snd_max;
2718 tp->snd_cwnd = tcp_compute_pipe(tp) +
2719 maxseg;
2720 (void) tcp_output(tp);
2721 /* Set cwnd to the expected flightsize */
2722 tp->snd_cwnd = tp->snd_ssthresh;
2723 goto drop;
2724 }
2725 tp->snd_nxt = th->th_ack;
2726 tp->snd_cwnd = maxseg;
2727 (void) tcp_output(tp);
2728 KASSERT(tp->snd_limited <= 2,
2729 ("%s: tp->snd_limited too big",
2730 __func__));
2731 tp->snd_cwnd = tp->snd_ssthresh +
2732 maxseg *
2733 (tp->t_dupacks - tp->snd_limited);
2734 if (SEQ_GT(onxt, tp->snd_nxt))
2735 tp->snd_nxt = onxt;
2736 goto drop;
2737 } else if (V_tcp_do_rfc3042) {
2738 /*
2739 * Process first and second duplicate
2740 * ACKs. Each indicates a segment
2741 * leaving the network, creating room
2742 * for more. Make sure we can send a
2743 * packet on reception of each duplicate
2744 * ACK by increasing snd_cwnd by one
2745 * segment. Restore the original
2746 * snd_cwnd after packet transmission.
2747 */
2748 cc_ack_received(tp, th, nsegs, CC_DUPACK);
2749 uint32_t oldcwnd = tp->snd_cwnd;
2750 tcp_seq oldsndmax = tp->snd_max;
2751 u_int sent;
2752 int avail;
2753
2754 KASSERT(tp->t_dupacks == 1 ||
2755 tp->t_dupacks == 2,
2756 ("%s: dupacks not 1 or 2",
2757 __func__));
2758 if (tp->t_dupacks == 1)
2759 tp->snd_limited = 0;
2760 if ((tp->snd_nxt == tp->snd_max) &&
2761 (tp->t_rxtshift == 0))
2762 tp->snd_cwnd =
2763 SEQ_SUB(tp->snd_nxt, tp->snd_una);
2764 tp->snd_cwnd +=
2765 (tp->t_dupacks - tp->snd_limited) * maxseg;
2766 tp->snd_cwnd -= tcp_sack_adjust(tp);
2767 /*
2768 * Only call tcp_output when there
2769 * is new data available to be sent
2770 * or we need to send an ACK.
2771 */
2772 SOCK_SENDBUF_LOCK(so);
2773 avail = sbavail(&so->so_snd);
2774 SOCK_SENDBUF_UNLOCK(so);
2775 if (tp->t_flags & TF_ACKNOW ||
2776 (avail >=
2777 SEQ_SUB(tp->snd_nxt, tp->snd_una))) {
2778 (void) tcp_output(tp);
2779 }
2780 sent = SEQ_SUB(tp->snd_max, oldsndmax);
2781 if (sent > maxseg) {
2782 KASSERT((tp->t_dupacks == 2 &&
2783 tp->snd_limited == 0) ||
2784 (sent == maxseg + 1 &&
2785 tp->t_flags & TF_SENTFIN) ||
2786 (sent < 2 * maxseg &&
2787 tp->t_flags & TF_NODELAY),
2788 ("%s: sent too much: %u>%u",
2789 __func__, sent, maxseg));
2790 tp->snd_limited = 2;
2791 } else if (sent > 0) {
2792 ++tp->snd_limited;
2793 }
2794 tp->snd_cwnd = oldcwnd;
2795 goto drop;
2796 }
2797 break;
2798 }
2799 KASSERT(SEQ_GT(th->th_ack, tp->snd_una),
2800 ("%s: SEQ_LEQ(th_ack, snd_una)", __func__));
2801 /*
2802 * This ack is advancing the left edge, reset the
2803 * counter.
2804 */
2805 tp->t_dupacks = 0;
2806 /*
2807 * If this ack also has new SACK info, increment the
2808 * t_dupacks as per RFC 6675. The variable
2809 * sack_changed tracks all changes to the SACK
2810 * scoreboard, including when partial ACKs without
2811 * SACK options are received, and clear the scoreboard
2812 * from the left side. Such partial ACKs should not be
2813 * counted as dupacks here.
2814 */
2815 if (V_tcp_do_newsack &&
2816 tcp_is_sack_recovery(tp, &to) &&
2817 (((tp->t_rxtshift == 0) && (sack_changed != SACK_NOCHANGE)) ||
2818 ((tp->t_rxtshift > 0) && (sack_changed == SACK_NEWLOSS))) &&
2819 (tp->snd_nxt == tp->snd_max)) {
2820 tp->t_dupacks++;
2821 /* limit overhead by setting maxseg last */
2822 if (!IN_FASTRECOVERY(tp->t_flags) &&
2823 (tp->sackhint.sacked_bytes >
2824 (tcprexmtthresh - 1) * (maxseg = tcp_maxseg(tp)))) {
2825 goto enter_recovery;
2826 }
2827 }
2828 /*
2829 * If the congestion window was inflated to account
2830 * for the other side's cached packets, retract it.
2831 */
2832 if (SEQ_LT(th->th_ack, tp->snd_recover)) {
2833 if (IN_FASTRECOVERY(tp->t_flags)) {
2834 if (tp->t_flags & TF_SACK_PERMIT) {
2835 if (V_tcp_do_prr &&
2836 (to.to_flags & TOF_SACK)) {
2837 tcp_timer_activate(tp,
2838 TT_REXMT, 0);
2839 tp->t_rtttime = 0;
2840 tcp_do_prr_ack(tp, th, &to,
2841 sack_changed, &maxseg);
2842 tp->t_flags |= TF_ACKNOW;
2843 (void) tcp_output(tp);
2844 } else {
2845 tcp_sack_partialack(tp, th,
2846 &maxseg);
2847 }
2848 } else {
2849 tcp_newreno_partial_ack(tp, th);
2850 }
2851 } else if (IN_CONGRECOVERY(tp->t_flags) &&
2852 (V_tcp_do_prr)) {
2853 tp->sackhint.delivered_data =
2854 BYTES_THIS_ACK(tp, th);
2855 tp->snd_fack = th->th_ack;
2856 /*
2857 * During ECN cwnd reduction
2858 * always use PRR-SSRB
2859 */
2860 tcp_do_prr_ack(tp, th, &to, SACK_CHANGE,
2861 &maxseg);
2862 (void) tcp_output(tp);
2863 }
2864 }
2865 /*
2866 * If we reach this point, ACK is not a duplicate,
2867 * i.e., it ACKs something we sent.
2868 */
2869 if (tp->t_flags & TF_NEEDSYN) {
2870 /*
2871 * T/TCP: Connection was half-synchronized, and our
2872 * SYN has been ACK'd (so connection is now fully
2873 * synchronized). Go to non-starred state,
2874 * increment snd_una for ACK of SYN, and check if
2875 * we can do window scaling.
2876 */
2877 tp->t_flags &= ~TF_NEEDSYN;
2878 tp->snd_una++;
2879 /* Do window scaling? */
2880 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2881 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2882 tp->rcv_scale = tp->request_r_scale;
2883 /* Send window already scaled. */
2884 }
2885 }
2886
2887 process_ACK:
2888 INP_WLOCK_ASSERT(inp);
2889
2890 /*
2891 * Adjust for the SYN bit in sequence space,
2892 * but don't account for it in cwnd calculations.
2893 * This is for the SYN_RECEIVED, non-simultaneous
2894 * SYN case. SYN_SENT and simultaneous SYN are
2895 * treated elsewhere.
2896 */
2897 if (incforsyn)
2898 tp->snd_una++;
2899 acked = BYTES_THIS_ACK(tp, th);
2900 KASSERT(acked >= 0, ("%s: acked unexepectedly negative "
2901 "(tp->snd_una=%u, th->th_ack=%u, tp=%p, m=%p)", __func__,
2902 tp->snd_una, th->th_ack, tp, m));
2903 TCPSTAT_ADD(tcps_rcvackpack, nsegs);
2904 TCPSTAT_ADD(tcps_rcvackbyte, acked);
2905
2906 /*
2907 * If we just performed our first retransmit, and the ACK
2908 * arrives within our recovery window, then it was a mistake
2909 * to do the retransmit in the first place. Recover our
2910 * original cwnd and ssthresh, and proceed to transmit where
2911 * we left off.
2912 */
2913 if (tp->t_rxtshift == 1 &&
2914 tp->t_flags & TF_PREVVALID &&
2915 tp->t_badrxtwin != 0 &&
2916 to.to_flags & TOF_TS &&
2917 to.to_tsecr != 0 &&
2918 TSTMP_LT(to.to_tsecr, tp->t_badrxtwin))
2919 cc_cong_signal(tp, th, CC_RTO_ERR);
2920
2921 /*
2922 * If we have a timestamp reply, update smoothed
2923 * round trip time. If no timestamp is present but
2924 * transmit timer is running and timed sequence
2925 * number was acked, update smoothed round trip time.
2926 * Since we now have an rtt measurement, cancel the
2927 * timer backoff (cf., Phil Karn's retransmit alg.).
2928 * Recompute the initial retransmit timer.
2929 *
2930 * Some boxes send broken timestamp replies
2931 * during the SYN+ACK phase, ignore
2932 * timestamps of 0 or we could calculate a
2933 * huge RTT and blow up the retransmit timer.
2934 */
2935 if ((to.to_flags & TOF_TS) != 0 && to.to_tsecr) {
2936 uint32_t t;
2937
2938 t = tcp_ts_getticks() - to.to_tsecr;
2939 if (!tp->t_rttlow || tp->t_rttlow > t)
2940 tp->t_rttlow = t;
2941 tcp_xmit_timer(tp, TCP_TS_TO_TICKS(t) + 1);
2942 } else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq)) {
2943 if (!tp->t_rttlow || tp->t_rttlow > ticks - tp->t_rtttime)
2944 tp->t_rttlow = ticks - tp->t_rtttime;
2945 tcp_xmit_timer(tp, ticks - tp->t_rtttime);
2946 }
2947
2948 SOCK_SENDBUF_LOCK(so);
2949 /*
2950 * Clear t_acktime if remote side has ACKd all data in the
2951 * socket buffer and FIN (if applicable).
2952 * Otherwise, update t_acktime if we received a sufficiently
2953 * large ACK.
2954 */
2955 if ((tp->t_state <= TCPS_CLOSE_WAIT &&
2956 acked == sbavail(&so->so_snd)) ||
2957 acked > sbavail(&so->so_snd))
2958 tp->t_acktime = 0;
2959 else if (acked > 1)
2960 tp->t_acktime = ticks;
2961
2962 /*
2963 * If all outstanding data is acked, stop retransmit
2964 * timer and remember to restart (more output or persist).
2965 * If there is more data to be acked, restart retransmit
2966 * timer, using current (possibly backed-off) value.
2967 */
2968 if (th->th_ack == tp->snd_max) {
2969 tcp_timer_activate(tp, TT_REXMT, 0);
2970 needoutput = 1;
2971 } else if (!tcp_timer_active(tp, TT_PERSIST))
2972 tcp_timer_activate(tp, TT_REXMT, TP_RXTCUR(tp));
2973
2974 /*
2975 * If no data (only SYN) was ACK'd,
2976 * skip rest of ACK processing.
2977 */
2978 if (acked == 0) {
2979 SOCK_SENDBUF_UNLOCK(so);
2980 goto step6;
2981 }
2982
2983 /*
2984 * Let the congestion control algorithm update congestion
2985 * control related information. This typically means increasing
2986 * the congestion window.
2987 */
2988 cc_ack_received(tp, th, nsegs, CC_ACK);
2989
2990 if (acked > sbavail(&so->so_snd)) {
2991 if (tp->snd_wnd >= sbavail(&so->so_snd))
2992 tp->snd_wnd -= sbavail(&so->so_snd);
2993 else
2994 tp->snd_wnd = 0;
2995 mfree = sbcut_locked(&so->so_snd,
2996 (int)sbavail(&so->so_snd));
2997 ourfinisacked = 1;
2998 } else {
2999 mfree = sbcut_locked(&so->so_snd, acked);
3000 if (tp->snd_wnd >= (uint32_t) acked)
3001 tp->snd_wnd -= acked;
3002 else
3003 tp->snd_wnd = 0;
3004 ourfinisacked = 0;
3005 }
3006 /* NB: sowwakeup_locked() does an implicit unlock. */
3007 sowwakeup_locked(so);
3008 m_freem(mfree);
3009 /* Detect una wraparound. */
3010 if (!IN_RECOVERY(tp->t_flags) &&
3011 SEQ_GT(tp->snd_una, tp->snd_recover) &&
3012 SEQ_LEQ(th->th_ack, tp->snd_recover))
3013 tp->snd_recover = th->th_ack - 1;
3014 tp->snd_una = th->th_ack;
3015 if (IN_RECOVERY(tp->t_flags) &&
3016 SEQ_GEQ(th->th_ack, tp->snd_recover)) {
3017 cc_post_recovery(tp, th);
3018 }
3019 if (SEQ_GT(tp->snd_una, tp->snd_recover)) {
3020 tp->snd_recover = tp->snd_una;
3021 }
3022 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
3023 tp->snd_nxt = tp->snd_una;
3024
3025 switch (tp->t_state) {
3026 /*
3027 * In FIN_WAIT_1 STATE in addition to the processing
3028 * for the ESTABLISHED state if our FIN is now acknowledged
3029 * then enter FIN_WAIT_2.
3030 */
3031 case TCPS_FIN_WAIT_1:
3032 if (ourfinisacked) {
3033 /*
3034 * If we can't receive any more
3035 * data, then closing user can proceed.
3036 * Starting the timer is contrary to the
3037 * specification, but if we don't get a FIN
3038 * we'll hang forever.
3039 */
3040 if (so->so_rcv.sb_state & SBS_CANTRCVMORE) {
3041 tcp_free_sackholes(tp);
3042 soisdisconnected(so);
3043 tcp_timer_activate(tp, TT_2MSL,
3044 (tcp_fast_finwait2_recycle ?
3045 tcp_finwait2_timeout :
3046 TP_MAXIDLE(tp)));
3047 }
3048 tcp_state_change(tp, TCPS_FIN_WAIT_2);
3049 }
3050 break;
3051
3052 /*
3053 * In CLOSING STATE in addition to the processing for
3054 * the ESTABLISHED state if the ACK acknowledges our FIN
3055 * then enter the TIME-WAIT state, otherwise ignore
3056 * the segment.
3057 */
3058 case TCPS_CLOSING:
3059 if (ourfinisacked) {
3060 tcp_twstart(tp);
3061 m_freem(m);
3062 return;
3063 }
3064 break;
3065
3066 /*
3067 * In LAST_ACK, we may still be waiting for data to drain
3068 * and/or to be acked, as well as for the ack of our FIN.
3069 * If our FIN is now acknowledged, delete the TCB,
3070 * enter the closed state and return.
3071 */
3072 case TCPS_LAST_ACK:
3073 if (ourfinisacked) {
3074 tp = tcp_close(tp);
3075 goto drop;
3076 }
3077 break;
3078 }
3079 }
3080
3081 step6:
3082 INP_WLOCK_ASSERT(inp);
3083
3084 /*
3085 * Update window information.
3086 * Don't look at window if no ACK: TAC's send garbage on first SYN.
3087 */
3088 if ((thflags & TH_ACK) &&
3089 (SEQ_LT(tp->snd_wl1, th->th_seq) ||
3090 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
3091 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
3092 /* keep track of pure window updates */
3093 if (no_data && tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
3094 TCPSTAT_INC(tcps_rcvwinupd);
3095 tp->snd_wnd = tiwin;
3096 tp->snd_wl1 = th->th_seq;
3097 tp->snd_wl2 = th->th_ack;
3098 if (tp->snd_wnd > tp->max_sndwnd)
3099 tp->max_sndwnd = tp->snd_wnd;
3100 needoutput = 1;
3101 }
3102
3103 /*
3104 * Process segments with URG.
3105 */
3106 if ((thflags & TH_URG) && th->th_urp &&
3107 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3108 /*
3109 * This is a kludge, but if we receive and accept
3110 * random urgent pointers, we'll crash in
3111 * soreceive. It's hard to imagine someone
3112 * actually wanting to send this much urgent data.
3113 */
3114 SOCK_RECVBUF_LOCK(so);
3115 if (th->th_urp + sbavail(&so->so_rcv) > sb_max) {
3116 th->th_urp = 0; /* XXX */
3117 thflags &= ~TH_URG; /* XXX */
3118 SOCK_RECVBUF_UNLOCK(so); /* XXX */
3119 goto dodata; /* XXX */
3120 }
3121 /*
3122 * If this segment advances the known urgent pointer,
3123 * then mark the data stream. This should not happen
3124 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
3125 * a FIN has been received from the remote side.
3126 * In these states we ignore the URG.
3127 *
3128 * According to RFC961 (Assigned Protocols),
3129 * the urgent pointer points to the last octet
3130 * of urgent data. We continue, however,
3131 * to consider it to indicate the first octet
3132 * of data past the urgent section as the original
3133 * spec states (in one of two places).
3134 */
3135 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
3136 tp->rcv_up = th->th_seq + th->th_urp;
3137 so->so_oobmark = sbavail(&so->so_rcv) +
3138 (tp->rcv_up - tp->rcv_nxt) - 1;
3139 if (so->so_oobmark == 0)
3140 so->so_rcv.sb_state |= SBS_RCVATMARK;
3141 sohasoutofband(so);
3142 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
3143 }
3144 SOCK_RECVBUF_UNLOCK(so);
3145 /*
3146 * Remove out of band data so doesn't get presented to user.
3147 * This can happen independent of advancing the URG pointer,
3148 * but if two URG's are pending at once, some out-of-band
3149 * data may creep in... ick.
3150 */
3151 if (th->th_urp <= (uint32_t)tlen &&
3152 !(so->so_options & SO_OOBINLINE)) {
3153 /* hdr drop is delayed */
3154 tcp_pulloutofband(so, th, m, drop_hdrlen);
3155 }
3156 } else {
3157 /*
3158 * If no out of band data is expected,
3159 * pull receive urgent pointer along
3160 * with the receive window.
3161 */
3162 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
3163 tp->rcv_up = tp->rcv_nxt;
3164 }
3165 dodata: /* XXX */
3166 INP_WLOCK_ASSERT(inp);
3167
3168 /*
3169 * Process the segment text, merging it into the TCP sequencing queue,
3170 * and arranging for acknowledgment of receipt if necessary.
3171 * This process logically involves adjusting tp->rcv_wnd as data
3172 * is presented to the user (this happens in tcp_usrreq.c,
3173 * case PRU_RCVD). If a FIN has already been received on this
3174 * connection then we just ignore the text.
3175 */
3176 tfo_syn = ((tp->t_state == TCPS_SYN_RECEIVED) &&
3177 (tp->t_flags & TF_FASTOPEN));
3178 if ((tlen || (thflags & TH_FIN) || (tfo_syn && tlen > 0)) &&
3179 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3180 tcp_seq save_start = th->th_seq;
3181 tcp_seq save_rnxt = tp->rcv_nxt;
3182 int save_tlen = tlen;
3183 m_adj(m, drop_hdrlen); /* delayed header drop */
3184 /*
3185 * Insert segment which includes th into TCP reassembly queue
3186 * with control block tp. Set thflags to whether reassembly now
3187 * includes a segment with FIN. This handles the common case
3188 * inline (segment is the next to be received on an established
3189 * connection, and the queue is empty), avoiding linkage into
3190 * and removal from the queue and repetition of various
3191 * conversions.
3192 * Set DELACK for segments received in order, but ack
3193 * immediately when segments are out of order (so
3194 * fast retransmit can work).
3195 */
3196 if (th->th_seq == tp->rcv_nxt &&
3197 SEGQ_EMPTY(tp) &&
3198 (TCPS_HAVEESTABLISHED(tp->t_state) ||
3199 tfo_syn)) {
3200 if (DELAY_ACK(tp, tlen) || tfo_syn)
3201 tp->t_flags |= TF_DELACK;
3202 else
3203 tp->t_flags |= TF_ACKNOW;
3204 tp->rcv_nxt += tlen;
3205 if (tlen &&
3206 ((tp->t_flags2 & TF2_FBYTES_COMPLETE) == 0) &&
3207 (tp->t_fbyte_in == 0)) {
3208 tp->t_fbyte_in = ticks;
3209 if (tp->t_fbyte_in == 0)
3210 tp->t_fbyte_in = 1;
3211 if (tp->t_fbyte_out && tp->t_fbyte_in)
3212 tp->t_flags2 |= TF2_FBYTES_COMPLETE;
3213 }
3214 thflags = tcp_get_flags(th) & TH_FIN;
3215 TCPSTAT_INC(tcps_rcvpack);
3216 TCPSTAT_ADD(tcps_rcvbyte, tlen);
3217 SOCK_RECVBUF_LOCK(so);
3218 if (so->so_rcv.sb_state & SBS_CANTRCVMORE)
3219 m_freem(m);
3220 else
3221 sbappendstream_locked(&so->so_rcv, m, 0);
3222 tp->t_flags |= TF_WAKESOR;
3223 } else {
3224 /*
3225 * XXX: Due to the header drop above "th" is
3226 * theoretically invalid by now. Fortunately
3227 * m_adj() doesn't actually frees any mbufs
3228 * when trimming from the head.
3229 */
3230 tcp_seq temp = save_start;
3231
3232 thflags = tcp_reass(tp, th, &temp, &tlen, m);
3233 tp->t_flags |= TF_ACKNOW;
3234 }
3235 if ((tp->t_flags & TF_SACK_PERMIT) &&
3236 (save_tlen > 0) &&
3237 TCPS_HAVEESTABLISHED(tp->t_state)) {
3238 if ((tlen == 0) && (SEQ_LT(save_start, save_rnxt))) {
3239 /*
3240 * DSACK actually handled in the fastpath
3241 * above.
3242 */
3243 tcp_update_sack_list(tp, save_start,
3244 save_start + save_tlen);
3245 } else if ((tlen > 0) && SEQ_GT(tp->rcv_nxt, save_rnxt)) {
3246 if ((tp->rcv_numsacks >= 1) &&
3247 (tp->sackblks[0].end == save_start)) {
3248 /*
3249 * Partial overlap, recorded at todrop
3250 * above.
3251 */
3252 tcp_update_sack_list(tp,
3253 tp->sackblks[0].start,
3254 tp->sackblks[0].end);
3255 } else {
3256 tcp_update_dsack_list(tp, save_start,
3257 save_start + save_tlen);
3258 }
3259 } else if (tlen >= save_tlen) {
3260 /* Update of sackblks. */
3261 tcp_update_dsack_list(tp, save_start,
3262 save_start + save_tlen);
3263 } else if (tlen > 0) {
3264 tcp_update_dsack_list(tp, save_start,
3265 save_start + tlen);
3266 }
3267 }
3268 tcp_handle_wakeup(tp);
3269 #if 0
3270 /*
3271 * Note the amount of data that peer has sent into
3272 * our window, in order to estimate the sender's
3273 * buffer size.
3274 * XXX: Unused.
3275 */
3276 if (SEQ_GT(tp->rcv_adv, tp->rcv_nxt))
3277 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
3278 else
3279 len = so->so_rcv.sb_hiwat;
3280 #endif
3281 } else {
3282 if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
3283 if (tlen > 0) {
3284 if ((thflags & TH_FIN) != 0) {
3285 log(LOG_DEBUG, "%s; %s: %s: "
3286 "Received %d bytes of data and FIN "
3287 "after having received a FIN, "
3288 "just dropping both\n",
3289 s, __func__,
3290 tcpstates[tp->t_state], tlen);
3291 } else {
3292 log(LOG_DEBUG, "%s; %s: %s: "
3293 "Received %d bytes of data "
3294 "after having received a FIN, "
3295 "just dropping it\n",
3296 s, __func__,
3297 tcpstates[tp->t_state], tlen);
3298 }
3299 } else {
3300 if ((thflags & TH_FIN) != 0) {
3301 log(LOG_DEBUG, "%s; %s: %s: "
3302 "Received FIN "
3303 "after having received a FIN, "
3304 "just dropping it\n",
3305 s, __func__,
3306 tcpstates[tp->t_state]);
3307 }
3308 }
3309 free(s, M_TCPLOG);
3310 }
3311 m_freem(m);
3312 thflags &= ~TH_FIN;
3313 }
3314
3315 /*
3316 * If FIN is received ACK the FIN and let the user know
3317 * that the connection is closing.
3318 */
3319 if (thflags & TH_FIN) {
3320 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
3321 /* The socket upcall is handled by socantrcvmore. */
3322 socantrcvmore(so);
3323 /*
3324 * If connection is half-synchronized
3325 * (ie NEEDSYN flag on) then delay ACK,
3326 * so it may be piggybacked when SYN is sent.
3327 * Otherwise, since we received a FIN then no
3328 * more input can be expected, send ACK now.
3329 */
3330 if (tp->t_flags & TF_NEEDSYN)
3331 tp->t_flags |= TF_DELACK;
3332 else
3333 tp->t_flags |= TF_ACKNOW;
3334 tp->rcv_nxt++;
3335 }
3336 switch (tp->t_state) {
3337 /*
3338 * In SYN_RECEIVED and ESTABLISHED STATES
3339 * enter the CLOSE_WAIT state.
3340 */
3341 case TCPS_SYN_RECEIVED:
3342 tp->t_starttime = ticks;
3343 /* FALLTHROUGH */
3344 case TCPS_ESTABLISHED:
3345 tcp_state_change(tp, TCPS_CLOSE_WAIT);
3346 break;
3347
3348 /*
3349 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3350 * enter the CLOSING state.
3351 */
3352 case TCPS_FIN_WAIT_1:
3353 tcp_state_change(tp, TCPS_CLOSING);
3354 break;
3355
3356 /*
3357 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3358 * starting the time-wait timer, turning off the other
3359 * standard timers.
3360 */
3361 case TCPS_FIN_WAIT_2:
3362 tcp_twstart(tp);
3363 return;
3364 }
3365 }
3366 TCP_PROBE3(debug__input, tp, th, m);
3367
3368 /*
3369 * Return any desired output.
3370 */
3371 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3372 (void) tcp_output(tp);
3373 }
3374 check_delack:
3375 INP_WLOCK_ASSERT(inp);
3376
3377 if (tp->t_flags & TF_DELACK) {
3378 tp->t_flags &= ~TF_DELACK;
3379 tcp_timer_activate(tp, TT_DELACK, tcp_delacktime);
3380 }
3381 INP_WUNLOCK(inp);
3382 return;
3383
3384 dropafterack:
3385 /*
3386 * Generate an ACK dropping incoming segment if it occupies
3387 * sequence space, where the ACK reflects our state.
3388 *
3389 * We can now skip the test for the RST flag since all
3390 * paths to this code happen after packets containing
3391 * RST have been dropped.
3392 *
3393 * In the SYN-RECEIVED state, don't send an ACK unless the
3394 * segment we received passes the SYN-RECEIVED ACK test.
3395 * If it fails send a RST. This breaks the loop in the
3396 * "LAND" DoS attack, and also prevents an ACK storm
3397 * between two listening ports that have been sent forged
3398 * SYN segments, each with the source address of the other.
3399 */
3400 if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
3401 (SEQ_GT(tp->snd_una, th->th_ack) ||
3402 SEQ_GT(th->th_ack, tp->snd_max)) ) {
3403 tcp_log_end_status(tp, TCP_EI_STATUS_RST_IN_FRONT);
3404 goto dropwithreset;
3405 }
3406 TCP_PROBE3(debug__input, tp, th, m);
3407 tp->t_flags |= TF_ACKNOW;
3408 (void) tcp_output(tp);
3409 INP_WUNLOCK(inp);
3410 m_freem(m);
3411 return;
3412
3413 dropwithreset:
3414 tcp_dropwithreset(m, th, tp, tlen);
3415 if (tp != NULL) {
3416 INP_WUNLOCK(inp);
3417 }
3418 return;
3419
3420 drop:
3421 /*
3422 * Drop space held by incoming segment and return.
3423 */
3424 TCP_PROBE3(debug__input, tp, th, m);
3425 if (tp != NULL) {
3426 INP_WUNLOCK(inp);
3427 }
3428 m_freem(m);
3429 }
3430
3431 /*
3432 * Issue RST and make ACK acceptable to originator of segment.
3433 * The mbuf must still include the original packet header.
3434 * tp may be NULL.
3435 */
3436 void
tcp_dropwithreset(struct mbuf * m,struct tcphdr * th,struct tcpcb * tp,int tlen)3437 tcp_dropwithreset(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int tlen)
3438 {
3439 #ifdef INET
3440 struct ip *ip;
3441 #endif
3442 #ifdef INET6
3443 struct ip6_hdr *ip6;
3444 #endif
3445
3446 if (tp != NULL) {
3447 INP_LOCK_ASSERT(tptoinpcb(tp));
3448 }
3449
3450 /* Don't bother if destination was broadcast/multicast. */
3451 if ((tcp_get_flags(th) & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
3452 goto drop;
3453 #ifdef INET6
3454 if (mtod(m, struct ip *)->ip_v == 6) {
3455 ip6 = mtod(m, struct ip6_hdr *);
3456 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) ||
3457 IN6_IS_ADDR_MULTICAST(&ip6->ip6_src))
3458 goto drop;
3459 /* IPv6 anycast check is done at tcp6_input() */
3460 }
3461 #endif
3462 #if defined(INET) && defined(INET6)
3463 else
3464 #endif
3465 #ifdef INET
3466 {
3467 ip = mtod(m, struct ip *);
3468 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) ||
3469 IN_MULTICAST(ntohl(ip->ip_src.s_addr)) ||
3470 ip->ip_src.s_addr == htonl(INADDR_BROADCAST) ||
3471 in_ifnet_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3472 goto drop;
3473 }
3474 #endif
3475
3476 /* Perform bandwidth limiting. */
3477 if (badport_bandlim(BANDLIM_TCP_RST) < 0)
3478 goto drop;
3479
3480 /* tcp_respond consumes the mbuf chain. */
3481 if (tcp_get_flags(th) & TH_ACK) {
3482 tcp_respond(tp, mtod(m, void *), th, m, (tcp_seq)0,
3483 th->th_ack, TH_RST);
3484 } else {
3485 if (tcp_get_flags(th) & TH_SYN)
3486 tlen++;
3487 if (tcp_get_flags(th) & TH_FIN)
3488 tlen++;
3489 tcp_respond(tp, mtod(m, void *), th, m, th->th_seq+tlen,
3490 (tcp_seq)0, TH_RST|TH_ACK);
3491 }
3492 return;
3493 drop:
3494 m_freem(m);
3495 }
3496
3497 /*
3498 * Parse TCP options and place in tcpopt.
3499 */
3500 void
tcp_dooptions(struct tcpopt * to,u_char * cp,int cnt,int flags)3501 tcp_dooptions(struct tcpopt *to, u_char *cp, int cnt, int flags)
3502 {
3503 int opt, optlen;
3504
3505 to->to_flags = 0;
3506 for (; cnt > 0; cnt -= optlen, cp += optlen) {
3507 opt = cp[0];
3508 if (opt == TCPOPT_EOL)
3509 break;
3510 if (opt == TCPOPT_NOP)
3511 optlen = 1;
3512 else {
3513 if (cnt < 2)
3514 break;
3515 optlen = cp[1];
3516 if (optlen < 2 || optlen > cnt)
3517 break;
3518 }
3519 switch (opt) {
3520 case TCPOPT_MAXSEG:
3521 if (optlen != TCPOLEN_MAXSEG)
3522 continue;
3523 if (!(flags & TO_SYN))
3524 continue;
3525 to->to_flags |= TOF_MSS;
3526 bcopy((char *)cp + 2,
3527 (char *)&to->to_mss, sizeof(to->to_mss));
3528 to->to_mss = ntohs(to->to_mss);
3529 break;
3530 case TCPOPT_WINDOW:
3531 if (optlen != TCPOLEN_WINDOW)
3532 continue;
3533 if (!(flags & TO_SYN))
3534 continue;
3535 to->to_flags |= TOF_SCALE;
3536 to->to_wscale = min(cp[2], TCP_MAX_WINSHIFT);
3537 break;
3538 case TCPOPT_TIMESTAMP:
3539 if (optlen != TCPOLEN_TIMESTAMP)
3540 continue;
3541 to->to_flags |= TOF_TS;
3542 bcopy((char *)cp + 2,
3543 (char *)&to->to_tsval, sizeof(to->to_tsval));
3544 to->to_tsval = ntohl(to->to_tsval);
3545 bcopy((char *)cp + 6,
3546 (char *)&to->to_tsecr, sizeof(to->to_tsecr));
3547 to->to_tsecr = ntohl(to->to_tsecr);
3548 break;
3549 case TCPOPT_SIGNATURE:
3550 /*
3551 * In order to reply to a host which has set the
3552 * TCP_SIGNATURE option in its initial SYN, we have
3553 * to record the fact that the option was observed
3554 * here for the syncache code to perform the correct
3555 * response.
3556 */
3557 if (optlen != TCPOLEN_SIGNATURE)
3558 continue;
3559 to->to_flags |= TOF_SIGNATURE;
3560 to->to_signature = cp + 2;
3561 break;
3562 case TCPOPT_SACK_PERMITTED:
3563 if (optlen != TCPOLEN_SACK_PERMITTED)
3564 continue;
3565 if (!(flags & TO_SYN))
3566 continue;
3567 if (!V_tcp_do_sack)
3568 continue;
3569 to->to_flags |= TOF_SACKPERM;
3570 break;
3571 case TCPOPT_SACK:
3572 if (optlen <= 2 || (optlen - 2) % TCPOLEN_SACK != 0)
3573 continue;
3574 if (flags & TO_SYN)
3575 continue;
3576 to->to_flags |= TOF_SACK;
3577 to->to_nsacks = (optlen - 2) / TCPOLEN_SACK;
3578 to->to_sacks = cp + 2;
3579 TCPSTAT_INC(tcps_sack_rcv_blocks);
3580 break;
3581 case TCPOPT_FAST_OPEN:
3582 /*
3583 * Cookie length validation is performed by the
3584 * server side cookie checking code or the client
3585 * side cookie cache update code.
3586 */
3587 if (!(flags & TO_SYN))
3588 continue;
3589 if (!V_tcp_fastopen_client_enable &&
3590 !V_tcp_fastopen_server_enable)
3591 continue;
3592 to->to_flags |= TOF_FASTOPEN;
3593 to->to_tfo_len = optlen - 2;
3594 to->to_tfo_cookie = to->to_tfo_len ? cp + 2 : NULL;
3595 break;
3596 default:
3597 continue;
3598 }
3599 }
3600 }
3601
3602 /*
3603 * Pull out of band byte out of a segment so
3604 * it doesn't appear in the user's data queue.
3605 * It is still reflected in the segment length for
3606 * sequencing purposes.
3607 */
3608 void
tcp_pulloutofband(struct socket * so,struct tcphdr * th,struct mbuf * m,int off)3609 tcp_pulloutofband(struct socket *so, struct tcphdr *th, struct mbuf *m,
3610 int off)
3611 {
3612 int cnt = off + th->th_urp - 1;
3613
3614 while (cnt >= 0) {
3615 if (m->m_len > cnt) {
3616 char *cp = mtod(m, caddr_t) + cnt;
3617 struct tcpcb *tp = sototcpcb(so);
3618
3619 INP_WLOCK_ASSERT(tptoinpcb(tp));
3620
3621 tp->t_iobc = *cp;
3622 tp->t_oobflags |= TCPOOB_HAVEDATA;
3623 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3624 m->m_len--;
3625 if (m->m_flags & M_PKTHDR)
3626 m->m_pkthdr.len--;
3627 return;
3628 }
3629 cnt -= m->m_len;
3630 m = m->m_next;
3631 if (m == NULL)
3632 break;
3633 }
3634 panic("tcp_pulloutofband");
3635 }
3636
3637 /*
3638 * Collect new round-trip time estimate
3639 * and update averages and current timeout.
3640 */
3641 void
tcp_xmit_timer(struct tcpcb * tp,int rtt)3642 tcp_xmit_timer(struct tcpcb *tp, int rtt)
3643 {
3644 int delta;
3645
3646 INP_WLOCK_ASSERT(tptoinpcb(tp));
3647
3648 TCPSTAT_INC(tcps_rttupdated);
3649 if (tp->t_rttupdated < UCHAR_MAX)
3650 tp->t_rttupdated++;
3651 #ifdef STATS
3652 stats_voi_update_abs_u32(tp->t_stats, VOI_TCP_RTT,
3653 imax(0, rtt * 1000 / hz));
3654 #endif
3655 if ((tp->t_srtt != 0) && (tp->t_rxtshift <= TCP_RTT_INVALIDATE)) {
3656 /*
3657 * srtt is stored as fixed point with 5 bits after the
3658 * binary point (i.e., scaled by 8). The following magic
3659 * is equivalent to the smoothing algorithm in rfc793 with
3660 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3661 * point). Adjust rtt to origin 0.
3662 */
3663 delta = ((rtt - 1) << TCP_DELTA_SHIFT)
3664 - (tp->t_srtt >> (TCP_RTT_SHIFT - TCP_DELTA_SHIFT));
3665
3666 if ((tp->t_srtt += delta) <= 0)
3667 tp->t_srtt = 1;
3668
3669 /*
3670 * We accumulate a smoothed rtt variance (actually, a
3671 * smoothed mean difference), then set the retransmit
3672 * timer to smoothed rtt + 4 times the smoothed variance.
3673 * rttvar is stored as fixed point with 4 bits after the
3674 * binary point (scaled by 16). The following is
3675 * equivalent to rfc793 smoothing with an alpha of .75
3676 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3677 * rfc793's wired-in beta.
3678 */
3679 if (delta < 0)
3680 delta = -delta;
3681 delta -= tp->t_rttvar >> (TCP_RTTVAR_SHIFT - TCP_DELTA_SHIFT);
3682 if ((tp->t_rttvar += delta) <= 0)
3683 tp->t_rttvar = 1;
3684 } else {
3685 /*
3686 * No rtt measurement yet - use the unsmoothed rtt.
3687 * Set the variance to half the rtt (so our first
3688 * retransmit happens at 3*rtt).
3689 */
3690 tp->t_srtt = rtt << TCP_RTT_SHIFT;
3691 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT - 1);
3692 }
3693 tp->t_rtttime = 0;
3694 tp->t_rxtshift = 0;
3695
3696 /*
3697 * the retransmit should happen at rtt + 4 * rttvar.
3698 * Because of the way we do the smoothing, srtt and rttvar
3699 * will each average +1/2 tick of bias. When we compute
3700 * the retransmit timer, we want 1/2 tick of rounding and
3701 * 1 extra tick because of +-1/2 tick uncertainty in the
3702 * firing of the timer. The bias will give us exactly the
3703 * 1.5 tick we need. But, because the bias is
3704 * statistical, we have to test that we don't drop below
3705 * the minimum feasible timer (which is 2 ticks).
3706 */
3707 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3708 max(tp->t_rttmin, rtt + 2), tcp_rexmit_max);
3709
3710 /*
3711 * We received an ack for a packet that wasn't retransmitted;
3712 * it is probably safe to discard any error indications we've
3713 * received recently. This isn't quite right, but close enough
3714 * for now (a route might have failed after we sent a segment,
3715 * and the return path might not be symmetrical).
3716 */
3717 tp->t_softerror = 0;
3718 }
3719
3720 /*
3721 * Determine a reasonable value for maxseg size.
3722 * If the route is known, check route for mtu.
3723 * If none, use an mss that can be handled on the outgoing interface
3724 * without forcing IP to fragment. If no route is found, route has no mtu,
3725 * or the destination isn't local, use a default, hopefully conservative
3726 * size (usually 512 or the default IP max size, but no more than the mtu
3727 * of the interface), as we can't discover anything about intervening
3728 * gateways or networks. We also initialize the congestion/slow start
3729 * window to be a single segment if the destination isn't local.
3730 * While looking at the routing entry, we also initialize other path-dependent
3731 * parameters from pre-set or cached values in the routing entry.
3732 *
3733 * NOTE that resulting t_maxseg doesn't include space for TCP options or
3734 * IP options, e.g. IPSEC data, since length of this data may vary, and
3735 * thus it is calculated for every segment separately in tcp_output().
3736 *
3737 * NOTE that this routine is only called when we process an incoming
3738 * segment, or an ICMP need fragmentation datagram. Outgoing SYN/ACK MSS
3739 * settings are handled in tcp_mssopt().
3740 */
3741 void
tcp_mss_update(struct tcpcb * tp,int offer,int mtuoffer,struct hc_metrics_lite * metricptr,struct tcp_ifcap * cap)3742 tcp_mss_update(struct tcpcb *tp, int offer, int mtuoffer,
3743 struct hc_metrics_lite *metricptr, struct tcp_ifcap *cap)
3744 {
3745 int mss = 0;
3746 uint32_t maxmtu = 0;
3747 struct inpcb *inp = tptoinpcb(tp);
3748 struct hc_metrics_lite metrics;
3749 #ifdef INET6
3750 int isipv6 = ((inp->inp_vflag & INP_IPV6) != 0) ? 1 : 0;
3751 size_t min_protoh = isipv6 ?
3752 sizeof (struct ip6_hdr) + sizeof (struct tcphdr) :
3753 sizeof (struct tcpiphdr);
3754 #else
3755 size_t min_protoh = sizeof(struct tcpiphdr);
3756 #endif
3757
3758 INP_WLOCK_ASSERT(inp);
3759
3760 if (tp->t_port)
3761 min_protoh += V_tcp_udp_tunneling_overhead;
3762 if (mtuoffer != -1) {
3763 KASSERT(offer == -1, ("%s: conflict", __func__));
3764 offer = mtuoffer - min_protoh;
3765 }
3766
3767 /* Initialize. */
3768 #ifdef INET6
3769 if (isipv6) {
3770 maxmtu = tcp_maxmtu6(&inp->inp_inc, cap);
3771 tp->t_maxseg = V_tcp_v6mssdflt;
3772 }
3773 #endif
3774 #if defined(INET) && defined(INET6)
3775 else
3776 #endif
3777 #ifdef INET
3778 {
3779 maxmtu = tcp_maxmtu(&inp->inp_inc, cap);
3780 tp->t_maxseg = V_tcp_mssdflt;
3781 }
3782 #endif
3783
3784 /*
3785 * No route to sender, stay with default mss and return.
3786 */
3787 if (maxmtu == 0) {
3788 /*
3789 * In case we return early we need to initialize metrics
3790 * to a defined state as tcp_hc_get() would do for us
3791 * if there was no cache hit.
3792 */
3793 if (metricptr != NULL)
3794 bzero(metricptr, sizeof(struct hc_metrics_lite));
3795 return;
3796 }
3797
3798 /* What have we got? */
3799 switch (offer) {
3800 case 0:
3801 /*
3802 * Offer == 0 means that there was no MSS on the SYN
3803 * segment, in this case we use tcp_mssdflt as
3804 * already assigned to t_maxseg above.
3805 */
3806 offer = tp->t_maxseg;
3807 break;
3808
3809 case -1:
3810 /*
3811 * Offer == -1 means that we didn't receive SYN yet.
3812 */
3813 /* FALLTHROUGH */
3814
3815 default:
3816 /*
3817 * Prevent DoS attack with too small MSS. Round up
3818 * to at least minmss.
3819 */
3820 offer = max(offer, V_tcp_minmss);
3821 }
3822
3823 if (metricptr == NULL)
3824 metricptr = &metrics;
3825 tcp_hc_get(&inp->inp_inc, metricptr);
3826
3827 /*
3828 * If there's a discovered mtu in tcp hostcache, use it.
3829 * Else, use the link mtu.
3830 */
3831 if (metricptr->hc_mtu)
3832 mss = min(metricptr->hc_mtu, maxmtu) - min_protoh;
3833 else {
3834 #ifdef INET6
3835 if (isipv6) {
3836 mss = maxmtu - min_protoh;
3837 if (!V_path_mtu_discovery &&
3838 !in6_localaddr(&inp->in6p_faddr))
3839 mss = min(mss, V_tcp_v6mssdflt);
3840 }
3841 #endif
3842 #if defined(INET) && defined(INET6)
3843 else
3844 #endif
3845 #ifdef INET
3846 {
3847 mss = maxmtu - min_protoh;
3848 if (!V_path_mtu_discovery &&
3849 !in_localaddr(inp->inp_faddr))
3850 mss = min(mss, V_tcp_mssdflt);
3851 }
3852 #endif
3853 /*
3854 * XXX - The above conditional (mss = maxmtu - min_protoh)
3855 * probably violates the TCP spec.
3856 * The problem is that, since we don't know the
3857 * other end's MSS, we are supposed to use a conservative
3858 * default. But, if we do that, then MTU discovery will
3859 * never actually take place, because the conservative
3860 * default is much less than the MTUs typically seen
3861 * on the Internet today. For the moment, we'll sweep
3862 * this under the carpet.
3863 *
3864 * The conservative default might not actually be a problem
3865 * if the only case this occurs is when sending an initial
3866 * SYN with options and data to a host we've never talked
3867 * to before. Then, they will reply with an MSS value which
3868 * will get recorded and the new parameters should get
3869 * recomputed. For Further Study.
3870 */
3871 }
3872 mss = min(mss, offer);
3873
3874 /*
3875 * Sanity check: make sure that maxseg will be large
3876 * enough to allow some data on segments even if the
3877 * all the option space is used (40bytes). Otherwise
3878 * funny things may happen in tcp_output.
3879 *
3880 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3881 */
3882 mss = max(mss, 64);
3883
3884 tp->t_maxseg = mss;
3885 if (tp->t_maxseg < V_tcp_mssdflt) {
3886 /*
3887 * The MSS is so small we should not process incoming
3888 * SACK's since we are subject to attack in such a
3889 * case.
3890 */
3891 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
3892 } else {
3893 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
3894 }
3895
3896 }
3897
3898 void
tcp_mss(struct tcpcb * tp,int offer)3899 tcp_mss(struct tcpcb *tp, int offer)
3900 {
3901 int mss;
3902 uint32_t bufsize;
3903 struct inpcb *inp = tptoinpcb(tp);
3904 struct socket *so;
3905 struct hc_metrics_lite metrics;
3906 struct tcp_ifcap cap;
3907
3908 KASSERT(tp != NULL, ("%s: tp == NULL", __func__));
3909
3910 bzero(&cap, sizeof(cap));
3911 tcp_mss_update(tp, offer, -1, &metrics, &cap);
3912
3913 mss = tp->t_maxseg;
3914
3915 /*
3916 * If there's a pipesize, change the socket buffer to that size,
3917 * don't change if sb_hiwat is different than default (then it
3918 * has been changed on purpose with setsockopt).
3919 * Make the socket buffers an integral number of mss units;
3920 * if the mss is larger than the socket buffer, decrease the mss.
3921 */
3922 so = inp->inp_socket;
3923 SOCK_SENDBUF_LOCK(so);
3924 if ((so->so_snd.sb_hiwat == V_tcp_sendspace) && metrics.hc_sendpipe)
3925 bufsize = metrics.hc_sendpipe;
3926 else
3927 bufsize = so->so_snd.sb_hiwat;
3928 if (bufsize < mss)
3929 mss = bufsize;
3930 else {
3931 bufsize = roundup(bufsize, mss);
3932 if (bufsize > sb_max)
3933 bufsize = sb_max;
3934 if (bufsize > so->so_snd.sb_hiwat)
3935 (void)sbreserve_locked(so, SO_SND, bufsize, NULL);
3936 }
3937 SOCK_SENDBUF_UNLOCK(so);
3938 /*
3939 * Sanity check: make sure that maxseg will be large
3940 * enough to allow some data on segments even if the
3941 * all the option space is used (40bytes). Otherwise
3942 * funny things may happen in tcp_output.
3943 *
3944 * XXXGL: shouldn't we reserve space for IP/IPv6 options?
3945 */
3946 tp->t_maxseg = max(mss, 64);
3947 if (tp->t_maxseg < V_tcp_mssdflt) {
3948 /*
3949 * The MSS is so small we should not process incoming
3950 * SACK's since we are subject to attack in such a
3951 * case.
3952 */
3953 tp->t_flags2 |= TF2_PROC_SACK_PROHIBIT;
3954 } else {
3955 tp->t_flags2 &= ~TF2_PROC_SACK_PROHIBIT;
3956 }
3957
3958 SOCK_RECVBUF_LOCK(so);
3959 if ((so->so_rcv.sb_hiwat == V_tcp_recvspace) && metrics.hc_recvpipe)
3960 bufsize = metrics.hc_recvpipe;
3961 else
3962 bufsize = so->so_rcv.sb_hiwat;
3963 if (bufsize > mss) {
3964 bufsize = roundup(bufsize, mss);
3965 if (bufsize > sb_max)
3966 bufsize = sb_max;
3967 if (bufsize > so->so_rcv.sb_hiwat)
3968 (void)sbreserve_locked(so, SO_RCV, bufsize, NULL);
3969 }
3970 SOCK_RECVBUF_UNLOCK(so);
3971
3972 /* Check the interface for TSO capabilities. */
3973 if (cap.ifcap & CSUM_TSO) {
3974 tp->t_flags |= TF_TSO;
3975 tp->t_tsomax = cap.tsomax;
3976 tp->t_tsomaxsegcount = cap.tsomaxsegcount;
3977 tp->t_tsomaxsegsize = cap.tsomaxsegsize;
3978 if (cap.ipsec_tso)
3979 tp->t_flags2 |= TF2_IPSEC_TSO;
3980 }
3981 }
3982
3983 /*
3984 * Determine the MSS option to send on an outgoing SYN.
3985 */
3986 int
tcp_mssopt(struct in_conninfo * inc)3987 tcp_mssopt(struct in_conninfo *inc)
3988 {
3989 int mss = 0;
3990 uint32_t thcmtu = 0;
3991 uint32_t maxmtu = 0;
3992 size_t min_protoh;
3993
3994 KASSERT(inc != NULL, ("tcp_mssopt with NULL in_conninfo pointer"));
3995
3996 #ifdef INET6
3997 if (inc->inc_flags & INC_ISIPV6) {
3998 mss = V_tcp_v6mssdflt;
3999 maxmtu = tcp_maxmtu6(inc, NULL);
4000 min_protoh = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
4001 }
4002 #endif
4003 #if defined(INET) && defined(INET6)
4004 else
4005 #endif
4006 #ifdef INET
4007 {
4008 mss = V_tcp_mssdflt;
4009 maxmtu = tcp_maxmtu(inc, NULL);
4010 min_protoh = sizeof(struct tcpiphdr);
4011 }
4012 #endif
4013 #if defined(INET6) || defined(INET)
4014 thcmtu = tcp_hc_getmtu(inc); /* IPv4 and IPv6 */
4015 #endif
4016
4017 if (maxmtu && thcmtu)
4018 mss = min(maxmtu, thcmtu) - min_protoh;
4019 else if (maxmtu || thcmtu)
4020 mss = max(maxmtu, thcmtu) - min_protoh;
4021
4022 return (mss);
4023 }
4024
4025 void
tcp_do_prr_ack(struct tcpcb * tp,struct tcphdr * th,struct tcpopt * to,sackstatus_t sack_changed,u_int * maxsegp)4026 tcp_do_prr_ack(struct tcpcb *tp, struct tcphdr *th, struct tcpopt *to,
4027 sackstatus_t sack_changed, u_int *maxsegp)
4028 {
4029 int snd_cnt = 0, limit = 0, del_data = 0, pipe = 0;
4030 u_int maxseg;
4031
4032 INP_WLOCK_ASSERT(tptoinpcb(tp));
4033
4034 if (*maxsegp == 0) {
4035 *maxsegp = tcp_maxseg(tp);
4036 }
4037 maxseg = *maxsegp;
4038 /*
4039 * Compute the amount of data that this ACK is indicating
4040 * (del_data) and an estimate of how many bytes are in the
4041 * network.
4042 */
4043 if (tcp_is_sack_recovery(tp, to) ||
4044 (IN_CONGRECOVERY(tp->t_flags) &&
4045 !IN_FASTRECOVERY(tp->t_flags))) {
4046 del_data = tp->sackhint.delivered_data;
4047 pipe = tcp_compute_pipe(tp);
4048 } else {
4049 if (tp->sackhint.prr_delivered < (tcprexmtthresh * maxseg +
4050 tp->snd_recover - tp->snd_una)) {
4051 del_data = maxseg;
4052 }
4053 pipe = imax(0, tp->snd_max - tp->snd_una -
4054 imin(INT_MAX / 65536, tp->t_dupacks) * maxseg);
4055 }
4056 tp->sackhint.prr_delivered += del_data;
4057 /*
4058 * Proportional Rate Reduction
4059 */
4060 if (pipe >= tp->snd_ssthresh) {
4061 if (tp->sackhint.recover_fs == 0)
4062 tp->sackhint.recover_fs =
4063 imax(1, tp->snd_nxt - tp->snd_una);
4064 snd_cnt = howmany((long)tp->sackhint.prr_delivered *
4065 tp->snd_ssthresh, tp->sackhint.recover_fs) -
4066 tp->sackhint.prr_out + maxseg - 1;
4067 } else {
4068 /*
4069 * PRR 6937bis heuristic:
4070 * - A partial ack without SACK block beneath snd_recover
4071 * indicates further loss.
4072 * - An SACK scoreboard update adding a new hole indicates
4073 * further loss, so be conservative and send at most one
4074 * segment.
4075 * - Prevent ACK splitting attacks, by being conservative
4076 * when no new data is acked.
4077 */
4078 if ((sack_changed == SACK_NEWLOSS) || (del_data == 0)) {
4079 limit = tp->sackhint.prr_delivered -
4080 tp->sackhint.prr_out;
4081 } else {
4082 limit = imax(tp->sackhint.prr_delivered -
4083 tp->sackhint.prr_out, del_data) +
4084 maxseg;
4085 }
4086 snd_cnt = imin((tp->snd_ssthresh - pipe), limit);
4087 }
4088 snd_cnt = imax(snd_cnt, 0) / maxseg;
4089 /*
4090 * Send snd_cnt new data into the network in response to this ack.
4091 * If there is going to be a SACK retransmission, adjust snd_cwnd
4092 * accordingly.
4093 */
4094 if (IN_FASTRECOVERY(tp->t_flags)) {
4095 if (tcp_is_sack_recovery(tp, to)) {
4096 tp->snd_cwnd = pipe - del_data + (snd_cnt * maxseg);
4097 } else {
4098 tp->snd_cwnd = (tp->snd_max - tp->snd_una) +
4099 (snd_cnt * maxseg);
4100 }
4101 } else if (IN_CONGRECOVERY(tp->t_flags)) {
4102 tp->snd_cwnd = pipe - del_data + (snd_cnt * maxseg);
4103 }
4104 tp->snd_cwnd = imax(maxseg, tp->snd_cwnd);
4105 }
4106
4107 /*
4108 * On a partial ack arrives, force the retransmission of the
4109 * next unacknowledged segment. Do not clear tp->t_dupacks.
4110 * By setting snd_nxt to ti_ack, this forces retransmission timer to
4111 * be started again.
4112 */
4113 void
tcp_newreno_partial_ack(struct tcpcb * tp,struct tcphdr * th)4114 tcp_newreno_partial_ack(struct tcpcb *tp, struct tcphdr *th)
4115 {
4116 tcp_seq onxt = tp->snd_nxt;
4117 uint32_t ocwnd = tp->snd_cwnd;
4118 u_int maxseg = tcp_maxseg(tp);
4119
4120 INP_WLOCK_ASSERT(tptoinpcb(tp));
4121
4122 tcp_timer_activate(tp, TT_REXMT, 0);
4123 tp->t_rtttime = 0;
4124 if (IN_FASTRECOVERY(tp->t_flags)) {
4125 tp->snd_nxt = th->th_ack;
4126 /*
4127 * Set snd_cwnd to one segment beyond acknowledged offset.
4128 * (tp->snd_una has not yet been updated when this function is called.)
4129 */
4130 tp->snd_cwnd = maxseg + BYTES_THIS_ACK(tp, th);
4131 tp->t_flags |= TF_ACKNOW;
4132 (void) tcp_output(tp);
4133 tp->snd_cwnd = ocwnd;
4134 if (SEQ_GT(onxt, tp->snd_nxt))
4135 tp->snd_nxt = onxt;
4136 }
4137 /*
4138 * Partial window deflation. Relies on fact that tp->snd_una
4139 * not updated yet.
4140 */
4141 if (tp->snd_cwnd > BYTES_THIS_ACK(tp, th))
4142 tp->snd_cwnd -= BYTES_THIS_ACK(tp, th);
4143 else
4144 tp->snd_cwnd = 0;
4145 tp->snd_cwnd += maxseg;
4146 }
4147
4148 int
tcp_compute_pipe(struct tcpcb * tp)4149 tcp_compute_pipe(struct tcpcb *tp)
4150 {
4151 int pipe;
4152
4153 if (tp->t_fb->tfb_compute_pipe != NULL) {
4154 pipe = (*tp->t_fb->tfb_compute_pipe)(tp);
4155 } else if (V_tcp_do_newsack) {
4156 pipe = tp->snd_max - tp->snd_una +
4157 tp->sackhint.sack_bytes_rexmit -
4158 tp->sackhint.sacked_bytes -
4159 tp->sackhint.lost_bytes;
4160 } else {
4161 pipe = tp->snd_nxt - tp->snd_fack + tp->sackhint.sack_bytes_rexmit;
4162 }
4163 return (imax(pipe, 0));
4164 }
4165
4166 uint32_t
tcp_compute_initwnd(uint32_t maxseg)4167 tcp_compute_initwnd(uint32_t maxseg)
4168 {
4169 /*
4170 * Calculate the Initial Window, also used as Restart Window
4171 *
4172 * RFC5681 Section 3.1 specifies the default conservative values.
4173 * RFC3390 specifies slightly more aggressive values.
4174 * RFC6928 increases it to ten segments.
4175 * Support for user specified value for initial flight size.
4176 */
4177 if (V_tcp_initcwnd_segments)
4178 return min(V_tcp_initcwnd_segments * maxseg,
4179 max(2 * maxseg, V_tcp_initcwnd_segments * 1460));
4180 else if (V_tcp_do_rfc3390)
4181 return min(4 * maxseg, max(2 * maxseg, 4380));
4182 else {
4183 /* Per RFC5681 Section 3.1 */
4184 if (maxseg > 2190)
4185 return (2 * maxseg);
4186 else if (maxseg > 1095)
4187 return (3 * maxseg);
4188 else
4189 return (4 * maxseg);
4190 }
4191 }
4192