xref: /freebsd/sys/contrib/openzfs/module/os/linux/zfs/zfs_vnops_os.c (revision 3a8960711f4319f9b894ea2453c89065ee1b3a10)
1 // SPDX-License-Identifier: CDDL-1.0
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or https://opensource.org/licenses/CDDL-1.0.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 
23 /*
24  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25  * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
26  * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
27  * Copyright 2017 Nexenta Systems, Inc.
28  */
29 
30 /* Portions Copyright 2007 Jeremy Teo */
31 /* Portions Copyright 2010 Robert Milkowski */
32 
33 
34 #include <sys/types.h>
35 #include <sys/param.h>
36 #include <sys/time.h>
37 #include <sys/sysmacros.h>
38 #include <sys/vfs.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/pathname.h>
47 #include <sys/cmn_err.h>
48 #include <sys/errno.h>
49 #include <sys/zfs_dir.h>
50 #include <sys/zfs_acl.h>
51 #include <sys/zfs_ioctl.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/dmu.h>
54 #include <sys/dmu_objset.h>
55 #include <sys/spa.h>
56 #include <sys/txg.h>
57 #include <sys/dbuf.h>
58 #include <sys/zap.h>
59 #include <sys/sa.h>
60 #include <sys/policy.h>
61 #include <sys/sunddi.h>
62 #include <sys/sid.h>
63 #include <sys/zfs_ctldir.h>
64 #include <sys/zfs_fuid.h>
65 #include <sys/zfs_quota.h>
66 #include <sys/zfs_sa.h>
67 #include <sys/zfs_vnops.h>
68 #include <sys/zfs_rlock.h>
69 #include <sys/cred.h>
70 #include <sys/zpl.h>
71 #include <sys/zil.h>
72 #include <sys/sa_impl.h>
73 #include <linux/mm_compat.h>
74 
75 /*
76  * Programming rules.
77  *
78  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
79  * properly lock its in-core state, create a DMU transaction, do the work,
80  * record this work in the intent log (ZIL), commit the DMU transaction,
81  * and wait for the intent log to commit if it is a synchronous operation.
82  * Moreover, the vnode ops must work in both normal and log replay context.
83  * The ordering of events is important to avoid deadlocks and references
84  * to freed memory.  The example below illustrates the following Big Rules:
85  *
86  *  (1) A check must be made in each zfs thread for a mounted file system.
87  *	This is done avoiding races using zfs_enter(zfsvfs).
88  *      A zfs_exit(zfsvfs) is needed before all returns.  Any znodes
89  *      must be checked with zfs_verify_zp(zp).  Both of these macros
90  *      can return EIO from the calling function.
91  *
92  *  (2) zrele() should always be the last thing except for zil_commit() (if
93  *	necessary) and zfs_exit(). This is for 3 reasons: First, if it's the
94  *	last reference, the vnode/znode can be freed, so the zp may point to
95  *	freed memory.  Second, the last reference will call zfs_zinactive(),
96  *	which may induce a lot of work -- pushing cached pages (which acquires
97  *	range locks) and syncing out cached atime changes.  Third,
98  *	zfs_zinactive() may require a new tx, which could deadlock the system
99  *	if you were already holding one. This deadlock occurs because the tx
100  *	currently being operated on prevents a txg from syncing, which
101  *	prevents the new tx from progressing, resulting in a deadlock.  If you
102  *	must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
103  *	is a synonym for zrele().
104  *
105  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
106  *	as they can span dmu_tx_assign() calls.
107  *
108  *  (4) If ZPL locks are held, pass DMU_TX_NOWAIT as the second argument to
109  *      dmu_tx_assign().  This is critical because we don't want to block
110  *      while holding locks.
111  *
112  *	If no ZPL locks are held (aside from zfs_enter()), use DMU_TX_WAIT.
113  *	This reduces lock contention and CPU usage when we must wait (note
114  *	that if throughput is constrained by the storage, nearly every
115  *	transaction must wait).
116  *
117  *      Note, in particular, that if a lock is sometimes acquired before
118  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
119  *      to use a non-blocking assign can deadlock the system.  The scenario:
120  *
121  *	Thread A has grabbed a lock before calling dmu_tx_assign().
122  *	Thread B is in an already-assigned tx, and blocks for this lock.
123  *	Thread A calls dmu_tx_assign(DMU_TX_WAIT) and blocks in
124  *	txg_wait_open() forever, because the previous txg can't quiesce
125  *	until B's tx commits.
126  *
127  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is
128  *	DMU_TX_NOWAIT, then drop all locks, call dmu_tx_wait(), and try
129  *	again.  On subsequent calls to dmu_tx_assign(), pass
130  *	DMU_TX_NOTHROTTLE in addition to DMU_TX_NOWAIT, to indicate that
131  *	this operation has already called dmu_tx_wait().  This will ensure
132  *	that we don't retry forever, waiting a short bit each time.
133  *
134  *  (5)	If the operation succeeded, generate the intent log entry for it
135  *	before dropping locks.  This ensures that the ordering of events
136  *	in the intent log matches the order in which they actually occurred.
137  *	During ZIL replay the zfs_log_* functions will update the sequence
138  *	number to indicate the zil transaction has replayed.
139  *
140  *  (6)	At the end of each vnode op, the DMU tx must always commit,
141  *	regardless of whether there were any errors.
142  *
143  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
144  *	to ensure that synchronous semantics are provided when necessary.
145  *
146  * In general, this is how things should be ordered in each vnode op:
147  *
148  *	zfs_enter(zfsvfs);		// exit if unmounted
149  * top:
150  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may igrab())
151  *	rw_enter(...);			// grab any other locks you need
152  *	tx = dmu_tx_create(...);	// get DMU tx
153  *	dmu_tx_hold_*();		// hold each object you might modify
154  *	error = dmu_tx_assign(tx,
155  *	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
156  *	if (error) {
157  *		rw_exit(...);		// drop locks
158  *		zfs_dirent_unlock(dl);	// unlock directory entry
159  *		zrele(...);		// release held znodes
160  *		if (error == ERESTART) {
161  *			waited = B_TRUE;
162  *			dmu_tx_wait(tx);
163  *			dmu_tx_abort(tx);
164  *			goto top;
165  *		}
166  *		dmu_tx_abort(tx);	// abort DMU tx
167  *		zfs_exit(zfsvfs);	// finished in zfs
168  *		return (error);		// really out of space
169  *	}
170  *	error = do_real_work();		// do whatever this VOP does
171  *	if (error == 0)
172  *		zfs_log_*(...);		// on success, make ZIL entry
173  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
174  *	rw_exit(...);			// drop locks
175  *	zfs_dirent_unlock(dl);		// unlock directory entry
176  *	zrele(...);			// release held znodes
177  *	zil_commit(zilog, foid);	// synchronous when necessary
178  *	zfs_exit(zfsvfs);		// finished in zfs
179  *	return (error);			// done, report error
180  */
181 int
zfs_open(struct inode * ip,int mode,int flag,cred_t * cr)182 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
183 {
184 	(void) cr;
185 	znode_t	*zp = ITOZ(ip);
186 	zfsvfs_t *zfsvfs = ITOZSB(ip);
187 	int error;
188 
189 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
190 		return (error);
191 
192 	/* Honor ZFS_APPENDONLY file attribute */
193 	if (blk_mode_is_open_write(mode) && (zp->z_pflags & ZFS_APPENDONLY) &&
194 	    ((flag & O_APPEND) == 0)) {
195 		zfs_exit(zfsvfs, FTAG);
196 		return (SET_ERROR(EPERM));
197 	}
198 
199 	/*
200 	 * Keep a count of the synchronous opens in the znode.  On first
201 	 * synchronous open we must convert all previous async transactions
202 	 * into sync to keep correct ordering.
203 	 */
204 	if (flag & O_SYNC) {
205 		if (atomic_inc_32_nv(&zp->z_sync_cnt) == 1)
206 			zil_async_to_sync(zfsvfs->z_log, zp->z_id);
207 	}
208 
209 	zfs_exit(zfsvfs, FTAG);
210 	return (0);
211 }
212 
213 int
zfs_close(struct inode * ip,int flag,cred_t * cr)214 zfs_close(struct inode *ip, int flag, cred_t *cr)
215 {
216 	(void) cr;
217 	znode_t	*zp = ITOZ(ip);
218 	zfsvfs_t *zfsvfs = ITOZSB(ip);
219 	int error;
220 
221 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
222 		return (error);
223 
224 	/* Decrement the synchronous opens in the znode */
225 	if (flag & O_SYNC)
226 		atomic_dec_32(&zp->z_sync_cnt);
227 
228 	zfs_exit(zfsvfs, FTAG);
229 	return (0);
230 }
231 
232 #if defined(_KERNEL)
233 
234 static int zfs_fillpage(struct inode *ip, struct page *pp);
235 
236 /*
237  * When a file is memory mapped, we must keep the IO data synchronized
238  * between the DMU cache and the memory mapped pages.  Update all mapped
239  * pages with the contents of the coresponding dmu buffer.
240  */
241 void
update_pages(znode_t * zp,int64_t start,int len,objset_t * os)242 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
243 {
244 	struct address_space *mp = ZTOI(zp)->i_mapping;
245 	int64_t off = start & (PAGE_SIZE - 1);
246 
247 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
248 		uint64_t nbytes = MIN(PAGE_SIZE - off, len);
249 
250 		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
251 		if (pp) {
252 			if (mapping_writably_mapped(mp))
253 				flush_dcache_page(pp);
254 
255 			void *pb = kmap(pp);
256 			int error = dmu_read(os, zp->z_id, start + off,
257 			    nbytes, pb + off, DMU_READ_PREFETCH);
258 			kunmap(pp);
259 
260 			if (error) {
261 				SetPageError(pp);
262 				ClearPageUptodate(pp);
263 			} else {
264 				ClearPageError(pp);
265 				SetPageUptodate(pp);
266 
267 				if (mapping_writably_mapped(mp))
268 					flush_dcache_page(pp);
269 
270 				mark_page_accessed(pp);
271 			}
272 
273 			unlock_page(pp);
274 			put_page(pp);
275 		}
276 
277 		len -= nbytes;
278 		off = 0;
279 	}
280 }
281 
282 /*
283  * When a file is memory mapped, we must keep the I/O data synchronized
284  * between the DMU cache and the memory mapped pages.  Preferentially read
285  * from memory mapped pages, otherwise fallback to reading through the dmu.
286  */
287 int
mappedread(znode_t * zp,int nbytes,zfs_uio_t * uio)288 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
289 {
290 	struct inode *ip = ZTOI(zp);
291 	struct address_space *mp = ip->i_mapping;
292 	int64_t start = uio->uio_loffset;
293 	int64_t off = start & (PAGE_SIZE - 1);
294 	int len = nbytes;
295 	int error = 0;
296 
297 	for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
298 		uint64_t bytes = MIN(PAGE_SIZE - off, len);
299 
300 		struct page *pp = find_lock_page(mp, start >> PAGE_SHIFT);
301 		if (pp) {
302 
303 			/*
304 			 * If filemap_fault() retries there exists a window
305 			 * where the page will be unlocked and not up to date.
306 			 * In this case we must try and fill the page.
307 			 */
308 			if (unlikely(!PageUptodate(pp))) {
309 				error = zfs_fillpage(ip, pp);
310 				if (error) {
311 					unlock_page(pp);
312 					put_page(pp);
313 					return (error);
314 				}
315 			}
316 
317 			ASSERT(PageUptodate(pp) || PageDirty(pp));
318 
319 			unlock_page(pp);
320 
321 			void *pb = kmap(pp);
322 			error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
323 			kunmap(pp);
324 
325 			if (mapping_writably_mapped(mp))
326 				flush_dcache_page(pp);
327 
328 			mark_page_accessed(pp);
329 			put_page(pp);
330 		} else {
331 			error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
332 			    uio, bytes, DMU_READ_PREFETCH);
333 		}
334 
335 		len -= bytes;
336 		off = 0;
337 
338 		if (error)
339 			break;
340 	}
341 
342 	return (error);
343 }
344 #endif /* _KERNEL */
345 
346 static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
347 
348 /*
349  * Write the bytes to a file.
350  *
351  *	IN:	zp	- znode of file to be written to
352  *		data	- bytes to write
353  *		len	- number of bytes to write
354  *		pos	- offset to start writing at
355  *
356  *	OUT:	resid	- remaining bytes to write
357  *
358  *	RETURN:	0 if success
359  *		positive error code if failure.  EIO is	returned
360  *		for a short write when residp isn't provided.
361  *
362  * Timestamps:
363  *	zp - ctime|mtime updated if byte count > 0
364  */
365 int
zfs_write_simple(znode_t * zp,const void * data,size_t len,loff_t pos,size_t * residp)366 zfs_write_simple(znode_t *zp, const void *data, size_t len,
367     loff_t pos, size_t *residp)
368 {
369 	fstrans_cookie_t cookie;
370 	int error;
371 
372 	struct iovec iov;
373 	iov.iov_base = (void *)data;
374 	iov.iov_len = len;
375 
376 	zfs_uio_t uio;
377 	zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
378 
379 	cookie = spl_fstrans_mark();
380 	error = zfs_write(zp, &uio, 0, kcred);
381 	spl_fstrans_unmark(cookie);
382 
383 	if (error == 0) {
384 		if (residp != NULL)
385 			*residp = zfs_uio_resid(&uio);
386 		else if (zfs_uio_resid(&uio) != 0)
387 			error = SET_ERROR(EIO);
388 	}
389 
390 	return (error);
391 }
392 
393 static void
zfs_rele_async_task(void * arg)394 zfs_rele_async_task(void *arg)
395 {
396 	iput(arg);
397 }
398 
399 void
zfs_zrele_async(znode_t * zp)400 zfs_zrele_async(znode_t *zp)
401 {
402 	struct inode *ip = ZTOI(zp);
403 	objset_t *os = ITOZSB(ip)->z_os;
404 
405 	ASSERT(atomic_read(&ip->i_count) > 0);
406 	ASSERT(os != NULL);
407 
408 	/*
409 	 * If decrementing the count would put us at 0, we can't do it inline
410 	 * here, because that would be synchronous. Instead, dispatch an iput
411 	 * to run later.
412 	 *
413 	 * For more information on the dangers of a synchronous iput, see the
414 	 * header comment of this file.
415 	 */
416 	if (!atomic_add_unless(&ip->i_count, -1, 1)) {
417 		VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
418 		    zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
419 	}
420 }
421 
422 
423 /*
424  * Lookup an entry in a directory, or an extended attribute directory.
425  * If it exists, return a held inode reference for it.
426  *
427  *	IN:	zdp	- znode of directory to search.
428  *		nm	- name of entry to lookup.
429  *		flags	- LOOKUP_XATTR set if looking for an attribute.
430  *		cr	- credentials of caller.
431  *		direntflags - directory lookup flags
432  *		realpnp - returned pathname.
433  *
434  *	OUT:	zpp	- znode of located entry, NULL if not found.
435  *
436  *	RETURN:	0 on success, error code on failure.
437  *
438  * Timestamps:
439  *	NA
440  */
441 int
zfs_lookup(znode_t * zdp,char * nm,znode_t ** zpp,int flags,cred_t * cr,int * direntflags,pathname_t * realpnp)442 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
443     int *direntflags, pathname_t *realpnp)
444 {
445 	zfsvfs_t *zfsvfs = ZTOZSB(zdp);
446 	int error = 0;
447 
448 	/*
449 	 * Fast path lookup, however we must skip DNLC lookup
450 	 * for case folding or normalizing lookups because the
451 	 * DNLC code only stores the passed in name.  This means
452 	 * creating 'a' and removing 'A' on a case insensitive
453 	 * file system would work, but DNLC still thinks 'a'
454 	 * exists and won't let you create it again on the next
455 	 * pass through fast path.
456 	 */
457 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
458 
459 		if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
460 			return (SET_ERROR(ENOTDIR));
461 		} else if (zdp->z_sa_hdl == NULL) {
462 			return (SET_ERROR(EIO));
463 		}
464 
465 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
466 			error = zfs_fastaccesschk_execute(zdp, cr);
467 			if (!error) {
468 				*zpp = zdp;
469 				zhold(*zpp);
470 				return (0);
471 			}
472 			return (error);
473 		}
474 	}
475 
476 	if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
477 		return (error);
478 
479 	*zpp = NULL;
480 
481 	if (flags & LOOKUP_XATTR) {
482 		/*
483 		 * We don't allow recursive attributes..
484 		 * Maybe someday we will.
485 		 */
486 		if (zdp->z_pflags & ZFS_XATTR) {
487 			zfs_exit(zfsvfs, FTAG);
488 			return (SET_ERROR(EINVAL));
489 		}
490 
491 		if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
492 			zfs_exit(zfsvfs, FTAG);
493 			return (error);
494 		}
495 
496 		/*
497 		 * Do we have permission to get into attribute directory?
498 		 */
499 
500 		if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
501 		    B_TRUE, cr, zfs_init_idmap))) {
502 			zrele(*zpp);
503 			*zpp = NULL;
504 		}
505 
506 		zfs_exit(zfsvfs, FTAG);
507 		return (error);
508 	}
509 
510 	if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
511 		zfs_exit(zfsvfs, FTAG);
512 		return (SET_ERROR(ENOTDIR));
513 	}
514 
515 	/*
516 	 * Check accessibility of directory.
517 	 */
518 
519 	if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr,
520 	    zfs_init_idmap))) {
521 		zfs_exit(zfsvfs, FTAG);
522 		return (error);
523 	}
524 
525 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
526 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
527 		zfs_exit(zfsvfs, FTAG);
528 		return (SET_ERROR(EILSEQ));
529 	}
530 
531 	error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
532 	if ((error == 0) && (*zpp))
533 		zfs_znode_update_vfs(*zpp);
534 
535 	zfs_exit(zfsvfs, FTAG);
536 	return (error);
537 }
538 
539 /*
540  * Perform a linear search in directory for the name of specific inode.
541  * Note we don't pass in the buffer size of name because it's hardcoded to
542  * NAME_MAX+1(256) in Linux.
543  *
544  *	IN:	dzp	- znode of directory to search.
545  *		zp	- znode of the target
546  *
547  *	OUT:	name	- dentry name of the target
548  *
549  *	RETURN:	0 on success, error code on failure.
550  */
551 int
zfs_get_name(znode_t * dzp,char * name,znode_t * zp)552 zfs_get_name(znode_t *dzp, char *name, znode_t *zp)
553 {
554 	zfsvfs_t *zfsvfs = ZTOZSB(dzp);
555 	int error = 0;
556 
557 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
558 		return (error);
559 
560 	if ((error = zfs_verify_zp(zp)) != 0) {
561 		zfs_exit(zfsvfs, FTAG);
562 		return (error);
563 	}
564 
565 	/* ctldir should have got their name in zfs_vget */
566 	if (dzp->z_is_ctldir || zp->z_is_ctldir) {
567 		zfs_exit(zfsvfs, FTAG);
568 		return (ENOENT);
569 	}
570 
571 	/* buffer len is hardcoded to 256 in Linux kernel */
572 	error = zap_value_search(zfsvfs->z_os, dzp->z_id, zp->z_id,
573 	    ZFS_DIRENT_OBJ(-1ULL), name, ZAP_MAXNAMELEN);
574 
575 	zfs_exit(zfsvfs, FTAG);
576 	return (error);
577 }
578 
579 /*
580  * Attempt to create a new entry in a directory.  If the entry
581  * already exists, truncate the file if permissible, else return
582  * an error.  Return the ip of the created or trunc'd file.
583  *
584  *	IN:	dzp	- znode of directory to put new file entry in.
585  *		name	- name of new file entry.
586  *		vap	- attributes of new file.
587  *		excl	- flag indicating exclusive or non-exclusive mode.
588  *		mode	- mode to open file with.
589  *		cr	- credentials of caller.
590  *		flag	- file flag.
591  *		vsecp	- ACL to be set
592  *		mnt_ns	- user namespace of the mount
593  *
594  *	OUT:	zpp	- znode of created or trunc'd entry.
595  *
596  *	RETURN:	0 on success, error code on failure.
597  *
598  * Timestamps:
599  *	dzp - ctime|mtime updated if new entry created
600  *	 zp - ctime|mtime always, atime if new
601  */
602 int
zfs_create(znode_t * dzp,char * name,vattr_t * vap,int excl,int mode,znode_t ** zpp,cred_t * cr,int flag,vsecattr_t * vsecp,zidmap_t * mnt_ns)603 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
604     int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp,
605     zidmap_t *mnt_ns)
606 {
607 	znode_t		*zp;
608 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
609 	zilog_t		*zilog;
610 	objset_t	*os;
611 	zfs_dirlock_t	*dl;
612 	dmu_tx_t	*tx;
613 	int		error;
614 	uid_t		uid;
615 	gid_t		gid;
616 	zfs_acl_ids_t   acl_ids;
617 	boolean_t	fuid_dirtied;
618 	boolean_t	have_acl = B_FALSE;
619 	boolean_t	waited = B_FALSE;
620 	boolean_t	skip_acl = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
621 
622 	/*
623 	 * If we have an ephemeral id, ACL, or XVATTR then
624 	 * make sure file system is at proper version
625 	 */
626 
627 	gid = crgetgid(cr);
628 	uid = crgetuid(cr);
629 
630 	if (zfsvfs->z_use_fuids == B_FALSE &&
631 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
632 		return (SET_ERROR(EINVAL));
633 
634 	if (name == NULL)
635 		return (SET_ERROR(EINVAL));
636 
637 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
638 		return (error);
639 	os = zfsvfs->z_os;
640 	zilog = zfsvfs->z_log;
641 
642 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
643 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
644 		zfs_exit(zfsvfs, FTAG);
645 		return (SET_ERROR(EILSEQ));
646 	}
647 
648 	if (vap->va_mask & ATTR_XVATTR) {
649 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
650 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
651 			zfs_exit(zfsvfs, FTAG);
652 			return (error);
653 		}
654 	}
655 
656 top:
657 	*zpp = NULL;
658 	if (*name == '\0') {
659 		/*
660 		 * Null component name refers to the directory itself.
661 		 */
662 		zhold(dzp);
663 		zp = dzp;
664 		dl = NULL;
665 		error = 0;
666 	} else {
667 		/* possible igrab(zp) */
668 		int zflg = 0;
669 
670 		if (flag & FIGNORECASE)
671 			zflg |= ZCILOOK;
672 
673 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
674 		    NULL, NULL);
675 		if (error) {
676 			if (have_acl)
677 				zfs_acl_ids_free(&acl_ids);
678 			if (strcmp(name, "..") == 0)
679 				error = SET_ERROR(EISDIR);
680 			zfs_exit(zfsvfs, FTAG);
681 			return (error);
682 		}
683 	}
684 
685 	if (zp == NULL) {
686 		uint64_t txtype;
687 		uint64_t projid = ZFS_DEFAULT_PROJID;
688 
689 		/*
690 		 * Create a new file object and update the directory
691 		 * to reference it.
692 		 */
693 		if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, skip_acl, cr,
694 		    mnt_ns))) {
695 			if (have_acl)
696 				zfs_acl_ids_free(&acl_ids);
697 			goto out;
698 		}
699 
700 		/*
701 		 * We only support the creation of regular files in
702 		 * extended attribute directories.
703 		 */
704 
705 		if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
706 			if (have_acl)
707 				zfs_acl_ids_free(&acl_ids);
708 			error = SET_ERROR(EINVAL);
709 			goto out;
710 		}
711 
712 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
713 		    cr, vsecp, &acl_ids, mnt_ns)) != 0)
714 			goto out;
715 		have_acl = B_TRUE;
716 
717 		if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
718 			projid = zfs_inherit_projid(dzp);
719 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
720 			zfs_acl_ids_free(&acl_ids);
721 			error = SET_ERROR(EDQUOT);
722 			goto out;
723 		}
724 
725 		tx = dmu_tx_create(os);
726 
727 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
728 		    ZFS_SA_BASE_ATTR_SIZE);
729 
730 		fuid_dirtied = zfsvfs->z_fuid_dirty;
731 		if (fuid_dirtied)
732 			zfs_fuid_txhold(zfsvfs, tx);
733 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
734 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
735 		if (!zfsvfs->z_use_sa &&
736 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
737 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
738 			    0, acl_ids.z_aclp->z_acl_bytes);
739 		}
740 
741 		error = dmu_tx_assign(tx,
742 		    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
743 		if (error) {
744 			zfs_dirent_unlock(dl);
745 			if (error == ERESTART) {
746 				waited = B_TRUE;
747 				dmu_tx_wait(tx);
748 				dmu_tx_abort(tx);
749 				goto top;
750 			}
751 			zfs_acl_ids_free(&acl_ids);
752 			dmu_tx_abort(tx);
753 			zfs_exit(zfsvfs, FTAG);
754 			return (error);
755 		}
756 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
757 
758 		error = zfs_link_create(dl, zp, tx, ZNEW);
759 		if (error != 0) {
760 			/*
761 			 * Since, we failed to add the directory entry for it,
762 			 * delete the newly created dnode.
763 			 */
764 			zfs_znode_delete(zp, tx);
765 			remove_inode_hash(ZTOI(zp));
766 			zfs_acl_ids_free(&acl_ids);
767 			dmu_tx_commit(tx);
768 			goto out;
769 		}
770 
771 		if (fuid_dirtied)
772 			zfs_fuid_sync(zfsvfs, tx);
773 
774 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
775 		if (flag & FIGNORECASE)
776 			txtype |= TX_CI;
777 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
778 		    vsecp, acl_ids.z_fuidp, vap);
779 		zfs_acl_ids_free(&acl_ids);
780 		dmu_tx_commit(tx);
781 	} else {
782 		int aflags = (flag & O_APPEND) ? V_APPEND : 0;
783 
784 		if (have_acl)
785 			zfs_acl_ids_free(&acl_ids);
786 
787 		/*
788 		 * A directory entry already exists for this name.
789 		 */
790 		/*
791 		 * Can't truncate an existing file if in exclusive mode.
792 		 */
793 		if (excl) {
794 			error = SET_ERROR(EEXIST);
795 			goto out;
796 		}
797 		/*
798 		 * Can't open a directory for writing.
799 		 */
800 		if (S_ISDIR(ZTOI(zp)->i_mode)) {
801 			error = SET_ERROR(EISDIR);
802 			goto out;
803 		}
804 		/*
805 		 * Verify requested access to file.
806 		 */
807 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr,
808 		    mnt_ns))) {
809 			goto out;
810 		}
811 
812 		mutex_enter(&dzp->z_lock);
813 		dzp->z_seq++;
814 		mutex_exit(&dzp->z_lock);
815 
816 		/*
817 		 * Truncate regular files if requested.
818 		 */
819 		if (S_ISREG(ZTOI(zp)->i_mode) &&
820 		    (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
821 			/* we can't hold any locks when calling zfs_freesp() */
822 			if (dl) {
823 				zfs_dirent_unlock(dl);
824 				dl = NULL;
825 			}
826 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
827 		}
828 	}
829 out:
830 
831 	if (dl)
832 		zfs_dirent_unlock(dl);
833 
834 	if (error) {
835 		if (zp)
836 			zrele(zp);
837 	} else {
838 		zfs_znode_update_vfs(dzp);
839 		zfs_znode_update_vfs(zp);
840 		*zpp = zp;
841 	}
842 
843 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
844 		zil_commit(zilog, 0);
845 
846 	zfs_exit(zfsvfs, FTAG);
847 	return (error);
848 }
849 
850 int
zfs_tmpfile(struct inode * dip,vattr_t * vap,int excl,int mode,struct inode ** ipp,cred_t * cr,int flag,vsecattr_t * vsecp,zidmap_t * mnt_ns)851 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
852     int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp,
853     zidmap_t *mnt_ns)
854 {
855 	(void) excl, (void) mode, (void) flag;
856 	znode_t		*zp = NULL, *dzp = ITOZ(dip);
857 	zfsvfs_t	*zfsvfs = ITOZSB(dip);
858 	objset_t	*os;
859 	dmu_tx_t	*tx;
860 	int		error;
861 	uid_t		uid;
862 	gid_t		gid;
863 	zfs_acl_ids_t   acl_ids;
864 	uint64_t	projid = ZFS_DEFAULT_PROJID;
865 	boolean_t	fuid_dirtied;
866 	boolean_t	have_acl = B_FALSE;
867 	boolean_t	waited = B_FALSE;
868 
869 	/*
870 	 * If we have an ephemeral id, ACL, or XVATTR then
871 	 * make sure file system is at proper version
872 	 */
873 
874 	gid = crgetgid(cr);
875 	uid = crgetuid(cr);
876 
877 	if (zfsvfs->z_use_fuids == B_FALSE &&
878 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
879 		return (SET_ERROR(EINVAL));
880 
881 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
882 		return (error);
883 	os = zfsvfs->z_os;
884 
885 	if (vap->va_mask & ATTR_XVATTR) {
886 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
887 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
888 			zfs_exit(zfsvfs, FTAG);
889 			return (error);
890 		}
891 	}
892 
893 top:
894 	*ipp = NULL;
895 
896 	/*
897 	 * Create a new file object and update the directory
898 	 * to reference it.
899 	 */
900 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
901 		if (have_acl)
902 			zfs_acl_ids_free(&acl_ids);
903 		goto out;
904 	}
905 
906 	if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
907 	    cr, vsecp, &acl_ids, mnt_ns)) != 0)
908 		goto out;
909 	have_acl = B_TRUE;
910 
911 	if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
912 		projid = zfs_inherit_projid(dzp);
913 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
914 		zfs_acl_ids_free(&acl_ids);
915 		error = SET_ERROR(EDQUOT);
916 		goto out;
917 	}
918 
919 	tx = dmu_tx_create(os);
920 
921 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
922 	    ZFS_SA_BASE_ATTR_SIZE);
923 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
924 
925 	fuid_dirtied = zfsvfs->z_fuid_dirty;
926 	if (fuid_dirtied)
927 		zfs_fuid_txhold(zfsvfs, tx);
928 	if (!zfsvfs->z_use_sa &&
929 	    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
930 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
931 		    0, acl_ids.z_aclp->z_acl_bytes);
932 	}
933 	error = dmu_tx_assign(tx,
934 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
935 	if (error) {
936 		if (error == ERESTART) {
937 			waited = B_TRUE;
938 			dmu_tx_wait(tx);
939 			dmu_tx_abort(tx);
940 			goto top;
941 		}
942 		zfs_acl_ids_free(&acl_ids);
943 		dmu_tx_abort(tx);
944 		zfs_exit(zfsvfs, FTAG);
945 		return (error);
946 	}
947 	zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
948 
949 	if (fuid_dirtied)
950 		zfs_fuid_sync(zfsvfs, tx);
951 
952 	/* Add to unlinked set */
953 	zp->z_unlinked = B_TRUE;
954 	zfs_unlinked_add(zp, tx);
955 	zfs_acl_ids_free(&acl_ids);
956 	dmu_tx_commit(tx);
957 out:
958 
959 	if (error) {
960 		if (zp)
961 			zrele(zp);
962 	} else {
963 		zfs_znode_update_vfs(dzp);
964 		zfs_znode_update_vfs(zp);
965 		*ipp = ZTOI(zp);
966 	}
967 
968 	zfs_exit(zfsvfs, FTAG);
969 	return (error);
970 }
971 
972 /*
973  * Remove an entry from a directory.
974  *
975  *	IN:	dzp	- znode of directory to remove entry from.
976  *		name	- name of entry to remove.
977  *		cr	- credentials of caller.
978  *		flags	- case flags.
979  *
980  *	RETURN:	0 if success
981  *		error code if failure
982  *
983  * Timestamps:
984  *	dzp - ctime|mtime
985  *	 ip - ctime (if nlink > 0)
986  */
987 
988 static uint64_t null_xattr = 0;
989 
990 int
zfs_remove(znode_t * dzp,char * name,cred_t * cr,int flags)991 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
992 {
993 	znode_t		*zp;
994 	znode_t		*xzp;
995 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
996 	zilog_t		*zilog;
997 	uint64_t	acl_obj, xattr_obj;
998 	uint64_t	xattr_obj_unlinked = 0;
999 	uint64_t	obj = 0;
1000 	uint64_t	links;
1001 	zfs_dirlock_t	*dl;
1002 	dmu_tx_t	*tx;
1003 	boolean_t	may_delete_now, delete_now = FALSE;
1004 	boolean_t	unlinked, toobig = FALSE;
1005 	uint64_t	txtype;
1006 	pathname_t	*realnmp = NULL;
1007 	pathname_t	realnm;
1008 	int		error;
1009 	int		zflg = ZEXISTS;
1010 	boolean_t	waited = B_FALSE;
1011 
1012 	if (name == NULL)
1013 		return (SET_ERROR(EINVAL));
1014 
1015 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1016 		return (error);
1017 	zilog = zfsvfs->z_log;
1018 
1019 	if (flags & FIGNORECASE) {
1020 		zflg |= ZCILOOK;
1021 		pn_alloc(&realnm);
1022 		realnmp = &realnm;
1023 	}
1024 
1025 top:
1026 	xattr_obj = 0;
1027 	xzp = NULL;
1028 	/*
1029 	 * Attempt to lock directory; fail if entry doesn't exist.
1030 	 */
1031 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1032 	    NULL, realnmp))) {
1033 		if (realnmp)
1034 			pn_free(realnmp);
1035 		zfs_exit(zfsvfs, FTAG);
1036 		return (error);
1037 	}
1038 
1039 	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1040 		goto out;
1041 	}
1042 
1043 	/*
1044 	 * Need to use rmdir for removing directories.
1045 	 */
1046 	if (S_ISDIR(ZTOI(zp)->i_mode)) {
1047 		error = SET_ERROR(EPERM);
1048 		goto out;
1049 	}
1050 
1051 	mutex_enter(&zp->z_lock);
1052 	may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
1053 	    !zn_has_cached_data(zp, 0, LLONG_MAX);
1054 	mutex_exit(&zp->z_lock);
1055 
1056 	/*
1057 	 * We may delete the znode now, or we may put it in the unlinked set;
1058 	 * it depends on whether we're the last link, and on whether there are
1059 	 * other holds on the inode.  So we dmu_tx_hold() the right things to
1060 	 * allow for either case.
1061 	 */
1062 	obj = zp->z_id;
1063 	tx = dmu_tx_create(zfsvfs->z_os);
1064 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1065 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1066 	zfs_sa_upgrade_txholds(tx, zp);
1067 	zfs_sa_upgrade_txholds(tx, dzp);
1068 	if (may_delete_now) {
1069 		toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1070 		/* if the file is too big, only hold_free a token amount */
1071 		dmu_tx_hold_free(tx, zp->z_id, 0,
1072 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1073 	}
1074 
1075 	/* are there any extended attributes? */
1076 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1077 	    &xattr_obj, sizeof (xattr_obj));
1078 	if (error == 0 && xattr_obj) {
1079 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1080 		ASSERT0(error);
1081 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1082 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1083 	}
1084 
1085 	mutex_enter(&zp->z_lock);
1086 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1087 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1088 	mutex_exit(&zp->z_lock);
1089 
1090 	/* charge as an update -- would be nice not to charge at all */
1091 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1092 
1093 	/*
1094 	 * Mark this transaction as typically resulting in a net free of space
1095 	 */
1096 	dmu_tx_mark_netfree(tx);
1097 
1098 	error = dmu_tx_assign(tx,
1099 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
1100 	if (error) {
1101 		zfs_dirent_unlock(dl);
1102 		if (error == ERESTART) {
1103 			waited = B_TRUE;
1104 			dmu_tx_wait(tx);
1105 			dmu_tx_abort(tx);
1106 			zrele(zp);
1107 			if (xzp)
1108 				zrele(xzp);
1109 			goto top;
1110 		}
1111 		if (realnmp)
1112 			pn_free(realnmp);
1113 		dmu_tx_abort(tx);
1114 		zrele(zp);
1115 		if (xzp)
1116 			zrele(xzp);
1117 		zfs_exit(zfsvfs, FTAG);
1118 		return (error);
1119 	}
1120 
1121 	/*
1122 	 * Remove the directory entry.
1123 	 */
1124 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1125 
1126 	if (error) {
1127 		dmu_tx_commit(tx);
1128 		goto out;
1129 	}
1130 
1131 	if (unlinked) {
1132 		/*
1133 		 * Hold z_lock so that we can make sure that the ACL obj
1134 		 * hasn't changed.  Could have been deleted due to
1135 		 * zfs_sa_upgrade().
1136 		 */
1137 		mutex_enter(&zp->z_lock);
1138 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1139 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1140 		delete_now = may_delete_now && !toobig &&
1141 		    atomic_read(&ZTOI(zp)->i_count) == 1 &&
1142 		    !zn_has_cached_data(zp, 0, LLONG_MAX) &&
1143 		    xattr_obj == xattr_obj_unlinked &&
1144 		    zfs_external_acl(zp) == acl_obj;
1145 		VERIFY_IMPLY(xattr_obj_unlinked, xzp);
1146 	}
1147 
1148 	if (delete_now) {
1149 		if (xattr_obj_unlinked) {
1150 			ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1151 			mutex_enter(&xzp->z_lock);
1152 			xzp->z_unlinked = B_TRUE;
1153 			clear_nlink(ZTOI(xzp));
1154 			links = 0;
1155 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1156 			    &links, sizeof (links), tx);
1157 			ASSERT3U(error,  ==,  0);
1158 			mutex_exit(&xzp->z_lock);
1159 			zfs_unlinked_add(xzp, tx);
1160 
1161 			if (zp->z_is_sa)
1162 				error = sa_remove(zp->z_sa_hdl,
1163 				    SA_ZPL_XATTR(zfsvfs), tx);
1164 			else
1165 				error = sa_update(zp->z_sa_hdl,
1166 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1167 				    sizeof (uint64_t), tx);
1168 			ASSERT0(error);
1169 		}
1170 		/*
1171 		 * Add to the unlinked set because a new reference could be
1172 		 * taken concurrently resulting in a deferred destruction.
1173 		 */
1174 		zfs_unlinked_add(zp, tx);
1175 		mutex_exit(&zp->z_lock);
1176 	} else if (unlinked) {
1177 		mutex_exit(&zp->z_lock);
1178 		zfs_unlinked_add(zp, tx);
1179 	}
1180 
1181 	txtype = TX_REMOVE;
1182 	if (flags & FIGNORECASE)
1183 		txtype |= TX_CI;
1184 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1185 
1186 	dmu_tx_commit(tx);
1187 out:
1188 	if (realnmp)
1189 		pn_free(realnmp);
1190 
1191 	zfs_dirent_unlock(dl);
1192 	zfs_znode_update_vfs(dzp);
1193 	zfs_znode_update_vfs(zp);
1194 
1195 	if (delete_now)
1196 		zrele(zp);
1197 	else
1198 		zfs_zrele_async(zp);
1199 
1200 	if (xzp) {
1201 		zfs_znode_update_vfs(xzp);
1202 		zfs_zrele_async(xzp);
1203 	}
1204 
1205 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1206 		zil_commit(zilog, 0);
1207 
1208 	zfs_exit(zfsvfs, FTAG);
1209 	return (error);
1210 }
1211 
1212 /*
1213  * Create a new directory and insert it into dzp using the name
1214  * provided.  Return a pointer to the inserted directory.
1215  *
1216  *	IN:	dzp	- znode of directory to add subdir to.
1217  *		dirname	- name of new directory.
1218  *		vap	- attributes of new directory.
1219  *		cr	- credentials of caller.
1220  *		flags	- case flags.
1221  *		vsecp	- ACL to be set
1222  *		mnt_ns	- user namespace of the mount
1223  *
1224  *	OUT:	zpp	- znode of created directory.
1225  *
1226  *	RETURN:	0 if success
1227  *		error code if failure
1228  *
1229  * Timestamps:
1230  *	dzp - ctime|mtime updated
1231  *	zpp - ctime|mtime|atime updated
1232  */
1233 int
zfs_mkdir(znode_t * dzp,char * dirname,vattr_t * vap,znode_t ** zpp,cred_t * cr,int flags,vsecattr_t * vsecp,zidmap_t * mnt_ns)1234 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1235     cred_t *cr, int flags, vsecattr_t *vsecp, zidmap_t *mnt_ns)
1236 {
1237 	znode_t		*zp;
1238 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1239 	zilog_t		*zilog;
1240 	zfs_dirlock_t	*dl;
1241 	uint64_t	txtype;
1242 	dmu_tx_t	*tx;
1243 	int		error;
1244 	int		zf = ZNEW;
1245 	uid_t		uid;
1246 	gid_t		gid = crgetgid(cr);
1247 	zfs_acl_ids_t   acl_ids;
1248 	boolean_t	fuid_dirtied;
1249 	boolean_t	waited = B_FALSE;
1250 
1251 	ASSERT(S_ISDIR(vap->va_mode));
1252 
1253 	/*
1254 	 * If we have an ephemeral id, ACL, or XVATTR then
1255 	 * make sure file system is at proper version
1256 	 */
1257 
1258 	uid = crgetuid(cr);
1259 	if (zfsvfs->z_use_fuids == B_FALSE &&
1260 	    (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1261 		return (SET_ERROR(EINVAL));
1262 
1263 	if (dirname == NULL)
1264 		return (SET_ERROR(EINVAL));
1265 
1266 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1267 		return (error);
1268 	zilog = zfsvfs->z_log;
1269 
1270 	if (dzp->z_pflags & ZFS_XATTR) {
1271 		zfs_exit(zfsvfs, FTAG);
1272 		return (SET_ERROR(EINVAL));
1273 	}
1274 
1275 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1276 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1277 		zfs_exit(zfsvfs, FTAG);
1278 		return (SET_ERROR(EILSEQ));
1279 	}
1280 	if (flags & FIGNORECASE)
1281 		zf |= ZCILOOK;
1282 
1283 	if (vap->va_mask & ATTR_XVATTR) {
1284 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1285 		    crgetuid(cr), cr, vap->va_mode)) != 0) {
1286 			zfs_exit(zfsvfs, FTAG);
1287 			return (error);
1288 		}
1289 	}
1290 
1291 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1292 	    vsecp, &acl_ids, mnt_ns)) != 0) {
1293 		zfs_exit(zfsvfs, FTAG);
1294 		return (error);
1295 	}
1296 	/*
1297 	 * First make sure the new directory doesn't exist.
1298 	 *
1299 	 * Existence is checked first to make sure we don't return
1300 	 * EACCES instead of EEXIST which can cause some applications
1301 	 * to fail.
1302 	 */
1303 top:
1304 	*zpp = NULL;
1305 
1306 	if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1307 	    NULL, NULL))) {
1308 		zfs_acl_ids_free(&acl_ids);
1309 		zfs_exit(zfsvfs, FTAG);
1310 		return (error);
1311 	}
1312 
1313 	if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr,
1314 	    mnt_ns))) {
1315 		zfs_acl_ids_free(&acl_ids);
1316 		zfs_dirent_unlock(dl);
1317 		zfs_exit(zfsvfs, FTAG);
1318 		return (error);
1319 	}
1320 
1321 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1322 		zfs_acl_ids_free(&acl_ids);
1323 		zfs_dirent_unlock(dl);
1324 		zfs_exit(zfsvfs, FTAG);
1325 		return (SET_ERROR(EDQUOT));
1326 	}
1327 
1328 	/*
1329 	 * Add a new entry to the directory.
1330 	 */
1331 	tx = dmu_tx_create(zfsvfs->z_os);
1332 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1333 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1334 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1335 	if (fuid_dirtied)
1336 		zfs_fuid_txhold(zfsvfs, tx);
1337 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1338 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1339 		    acl_ids.z_aclp->z_acl_bytes);
1340 	}
1341 
1342 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1343 	    ZFS_SA_BASE_ATTR_SIZE);
1344 
1345 	error = dmu_tx_assign(tx,
1346 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
1347 	if (error) {
1348 		zfs_dirent_unlock(dl);
1349 		if (error == ERESTART) {
1350 			waited = B_TRUE;
1351 			dmu_tx_wait(tx);
1352 			dmu_tx_abort(tx);
1353 			goto top;
1354 		}
1355 		zfs_acl_ids_free(&acl_ids);
1356 		dmu_tx_abort(tx);
1357 		zfs_exit(zfsvfs, FTAG);
1358 		return (error);
1359 	}
1360 
1361 	/*
1362 	 * Create new node.
1363 	 */
1364 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1365 
1366 	/*
1367 	 * Now put new name in parent dir.
1368 	 */
1369 	error = zfs_link_create(dl, zp, tx, ZNEW);
1370 	if (error != 0) {
1371 		zfs_znode_delete(zp, tx);
1372 		remove_inode_hash(ZTOI(zp));
1373 		goto out;
1374 	}
1375 
1376 	if (fuid_dirtied)
1377 		zfs_fuid_sync(zfsvfs, tx);
1378 
1379 	*zpp = zp;
1380 
1381 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1382 	if (flags & FIGNORECASE)
1383 		txtype |= TX_CI;
1384 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1385 	    acl_ids.z_fuidp, vap);
1386 
1387 out:
1388 	zfs_acl_ids_free(&acl_ids);
1389 
1390 	dmu_tx_commit(tx);
1391 
1392 	zfs_dirent_unlock(dl);
1393 
1394 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1395 		zil_commit(zilog, 0);
1396 
1397 	if (error != 0) {
1398 		zrele(zp);
1399 	} else {
1400 		zfs_znode_update_vfs(dzp);
1401 		zfs_znode_update_vfs(zp);
1402 	}
1403 	zfs_exit(zfsvfs, FTAG);
1404 	return (error);
1405 }
1406 
1407 /*
1408  * Remove a directory subdir entry.  If the current working
1409  * directory is the same as the subdir to be removed, the
1410  * remove will fail.
1411  *
1412  *	IN:	dzp	- znode of directory to remove from.
1413  *		name	- name of directory to be removed.
1414  *		cwd	- inode of current working directory.
1415  *		cr	- credentials of caller.
1416  *		flags	- case flags
1417  *
1418  *	RETURN:	0 on success, error code on failure.
1419  *
1420  * Timestamps:
1421  *	dzp - ctime|mtime updated
1422  */
1423 int
zfs_rmdir(znode_t * dzp,char * name,znode_t * cwd,cred_t * cr,int flags)1424 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1425     int flags)
1426 {
1427 	znode_t		*zp;
1428 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1429 	zilog_t		*zilog;
1430 	zfs_dirlock_t	*dl;
1431 	dmu_tx_t	*tx;
1432 	int		error;
1433 	int		zflg = ZEXISTS;
1434 	boolean_t	waited = B_FALSE;
1435 
1436 	if (name == NULL)
1437 		return (SET_ERROR(EINVAL));
1438 
1439 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1440 		return (error);
1441 	zilog = zfsvfs->z_log;
1442 
1443 	if (flags & FIGNORECASE)
1444 		zflg |= ZCILOOK;
1445 top:
1446 	zp = NULL;
1447 
1448 	/*
1449 	 * Attempt to lock directory; fail if entry doesn't exist.
1450 	 */
1451 	if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1452 	    NULL, NULL))) {
1453 		zfs_exit(zfsvfs, FTAG);
1454 		return (error);
1455 	}
1456 
1457 	if ((error = zfs_zaccess_delete(dzp, zp, cr, zfs_init_idmap))) {
1458 		goto out;
1459 	}
1460 
1461 	if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1462 		error = SET_ERROR(ENOTDIR);
1463 		goto out;
1464 	}
1465 
1466 	if (zp == cwd) {
1467 		error = SET_ERROR(EINVAL);
1468 		goto out;
1469 	}
1470 
1471 	/*
1472 	 * Grab a lock on the directory to make sure that no one is
1473 	 * trying to add (or lookup) entries while we are removing it.
1474 	 */
1475 	rw_enter(&zp->z_name_lock, RW_WRITER);
1476 
1477 	/*
1478 	 * Grab a lock on the parent pointer to make sure we play well
1479 	 * with the treewalk and directory rename code.
1480 	 */
1481 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1482 
1483 	tx = dmu_tx_create(zfsvfs->z_os);
1484 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1485 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1486 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1487 	zfs_sa_upgrade_txholds(tx, zp);
1488 	zfs_sa_upgrade_txholds(tx, dzp);
1489 	dmu_tx_mark_netfree(tx);
1490 	error = dmu_tx_assign(tx,
1491 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
1492 	if (error) {
1493 		rw_exit(&zp->z_parent_lock);
1494 		rw_exit(&zp->z_name_lock);
1495 		zfs_dirent_unlock(dl);
1496 		if (error == ERESTART) {
1497 			waited = B_TRUE;
1498 			dmu_tx_wait(tx);
1499 			dmu_tx_abort(tx);
1500 			zrele(zp);
1501 			goto top;
1502 		}
1503 		dmu_tx_abort(tx);
1504 		zrele(zp);
1505 		zfs_exit(zfsvfs, FTAG);
1506 		return (error);
1507 	}
1508 
1509 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1510 
1511 	if (error == 0) {
1512 		uint64_t txtype = TX_RMDIR;
1513 		if (flags & FIGNORECASE)
1514 			txtype |= TX_CI;
1515 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1516 		    B_FALSE);
1517 	}
1518 
1519 	dmu_tx_commit(tx);
1520 
1521 	rw_exit(&zp->z_parent_lock);
1522 	rw_exit(&zp->z_name_lock);
1523 out:
1524 	zfs_dirent_unlock(dl);
1525 
1526 	zfs_znode_update_vfs(dzp);
1527 	zfs_znode_update_vfs(zp);
1528 	zrele(zp);
1529 
1530 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1531 		zil_commit(zilog, 0);
1532 
1533 	zfs_exit(zfsvfs, FTAG);
1534 	return (error);
1535 }
1536 
1537 /*
1538  * Read directory entries from the given directory cursor position and emit
1539  * name and position for each entry.
1540  *
1541  *	IN:	ip	- inode of directory to read.
1542  *		ctx	- directory entry context.
1543  *		cr	- credentials of caller.
1544  *
1545  *	RETURN:	0 if success
1546  *		error code if failure
1547  *
1548  * Timestamps:
1549  *	ip - atime updated
1550  *
1551  * Note that the low 4 bits of the cookie returned by zap is always zero.
1552  * This allows us to use the low range for "special" directory entries:
1553  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
1554  * we use the offset 2 for the '.zfs' directory.
1555  */
1556 int
zfs_readdir(struct inode * ip,struct dir_context * ctx,cred_t * cr)1557 zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr)
1558 {
1559 	(void) cr;
1560 	znode_t		*zp = ITOZ(ip);
1561 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
1562 	objset_t	*os;
1563 	zap_cursor_t	zc;
1564 	zap_attribute_t	*zap;
1565 	int		error;
1566 	uint8_t		prefetch;
1567 	uint8_t		type;
1568 	int		done = 0;
1569 	uint64_t	parent;
1570 	uint64_t	offset; /* must be unsigned; checks for < 1 */
1571 
1572 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1573 		return (error);
1574 
1575 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1576 	    &parent, sizeof (parent))) != 0)
1577 		goto out;
1578 
1579 	/*
1580 	 * Quit if directory has been removed (posix)
1581 	 */
1582 	if (zp->z_unlinked)
1583 		goto out;
1584 
1585 	error = 0;
1586 	os = zfsvfs->z_os;
1587 	offset = ctx->pos;
1588 	prefetch = zp->z_zn_prefetch;
1589 	zap = zap_attribute_long_alloc();
1590 
1591 	/*
1592 	 * Initialize the iterator cursor.
1593 	 */
1594 	if (offset <= 3) {
1595 		/*
1596 		 * Start iteration from the beginning of the directory.
1597 		 */
1598 		zap_cursor_init(&zc, os, zp->z_id);
1599 	} else {
1600 		/*
1601 		 * The offset is a serialized cursor.
1602 		 */
1603 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1604 	}
1605 
1606 	/*
1607 	 * Transform to file-system independent format
1608 	 */
1609 	while (!done) {
1610 		uint64_t objnum;
1611 		/*
1612 		 * Special case `.', `..', and `.zfs'.
1613 		 */
1614 		if (offset == 0) {
1615 			(void) strcpy(zap->za_name, ".");
1616 			zap->za_normalization_conflict = 0;
1617 			objnum = zp->z_id;
1618 			type = DT_DIR;
1619 		} else if (offset == 1) {
1620 			(void) strcpy(zap->za_name, "..");
1621 			zap->za_normalization_conflict = 0;
1622 			objnum = parent;
1623 			type = DT_DIR;
1624 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
1625 			(void) strcpy(zap->za_name, ZFS_CTLDIR_NAME);
1626 			zap->za_normalization_conflict = 0;
1627 			objnum = ZFSCTL_INO_ROOT;
1628 			type = DT_DIR;
1629 		} else {
1630 			/*
1631 			 * Grab next entry.
1632 			 */
1633 			if ((error = zap_cursor_retrieve(&zc, zap))) {
1634 				if (error == ENOENT)
1635 					break;
1636 				else
1637 					goto update;
1638 			}
1639 
1640 			/*
1641 			 * Allow multiple entries provided the first entry is
1642 			 * the object id.  Non-zpl consumers may safely make
1643 			 * use of the additional space.
1644 			 *
1645 			 * XXX: This should be a feature flag for compatibility
1646 			 */
1647 			if (zap->za_integer_length != 8 ||
1648 			    zap->za_num_integers == 0) {
1649 				cmn_err(CE_WARN, "zap_readdir: bad directory "
1650 				    "entry, obj = %lld, offset = %lld, "
1651 				    "length = %d, num = %lld\n",
1652 				    (u_longlong_t)zp->z_id,
1653 				    (u_longlong_t)offset,
1654 				    zap->za_integer_length,
1655 				    (u_longlong_t)zap->za_num_integers);
1656 				error = SET_ERROR(ENXIO);
1657 				goto update;
1658 			}
1659 
1660 			objnum = ZFS_DIRENT_OBJ(zap->za_first_integer);
1661 			type = ZFS_DIRENT_TYPE(zap->za_first_integer);
1662 		}
1663 
1664 		done = !dir_emit(ctx, zap->za_name, strlen(zap->za_name),
1665 		    objnum, type);
1666 		if (done)
1667 			break;
1668 
1669 		if (prefetch)
1670 			dmu_prefetch_dnode(os, objnum, ZIO_PRIORITY_SYNC_READ);
1671 
1672 		/*
1673 		 * Move to the next entry, fill in the previous offset.
1674 		 */
1675 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1676 			zap_cursor_advance(&zc);
1677 			offset = zap_cursor_serialize(&zc);
1678 		} else {
1679 			offset += 1;
1680 		}
1681 		ctx->pos = offset;
1682 	}
1683 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1684 
1685 update:
1686 	zap_cursor_fini(&zc);
1687 	zap_attribute_free(zap);
1688 	if (error == ENOENT)
1689 		error = 0;
1690 out:
1691 	zfs_exit(zfsvfs, FTAG);
1692 
1693 	return (error);
1694 }
1695 
1696 /*
1697  * Get the basic file attributes and place them in the provided kstat
1698  * structure.  The inode is assumed to be the authoritative source
1699  * for most of the attributes.  However, the znode currently has the
1700  * authoritative atime, blksize, and block count.
1701  *
1702  *	IN:	ip	- inode of file.
1703  *
1704  *	OUT:	sp	- kstat values.
1705  *
1706  *	RETURN:	0 (always succeeds)
1707  */
1708 int
1709 #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
zfs_getattr_fast(zidmap_t * user_ns,u32 request_mask,struct inode * ip,struct kstat * sp)1710 zfs_getattr_fast(zidmap_t *user_ns, u32 request_mask, struct inode *ip,
1711     struct kstat *sp)
1712 #else
1713 zfs_getattr_fast(zidmap_t *user_ns, struct inode *ip, struct kstat *sp)
1714 #endif
1715 {
1716 	znode_t *zp = ITOZ(ip);
1717 	zfsvfs_t *zfsvfs = ITOZSB(ip);
1718 	uint32_t blksize;
1719 	u_longlong_t nblocks;
1720 	int error;
1721 
1722 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1723 		return (error);
1724 
1725 	mutex_enter(&zp->z_lock);
1726 
1727 #ifdef HAVE_GENERIC_FILLATTR_IDMAP_REQMASK
1728 	zpl_generic_fillattr(user_ns, request_mask, ip, sp);
1729 #else
1730 	zpl_generic_fillattr(user_ns, ip, sp);
1731 #endif
1732 	/*
1733 	 * +1 link count for root inode with visible '.zfs' directory.
1734 	 */
1735 	if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1736 		if (sp->nlink < ZFS_LINK_MAX)
1737 			sp->nlink++;
1738 
1739 	sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1740 	sp->blksize = blksize;
1741 	sp->blocks = nblocks;
1742 
1743 	if (unlikely(zp->z_blksz == 0)) {
1744 		/*
1745 		 * Block size hasn't been set; suggest maximal I/O transfers.
1746 		 */
1747 		sp->blksize = zfsvfs->z_max_blksz;
1748 	}
1749 
1750 	mutex_exit(&zp->z_lock);
1751 
1752 	/*
1753 	 * Required to prevent NFS client from detecting different inode
1754 	 * numbers of snapshot root dentry before and after snapshot mount.
1755 	 */
1756 	if (zfsvfs->z_issnap) {
1757 		if (ip->i_sb->s_root->d_inode == ip)
1758 			sp->ino = ZFSCTL_INO_SNAPDIRS -
1759 			    dmu_objset_id(zfsvfs->z_os);
1760 	}
1761 
1762 	zfs_exit(zfsvfs, FTAG);
1763 
1764 	return (0);
1765 }
1766 
1767 /*
1768  * For the operation of changing file's user/group/project, we need to
1769  * handle not only the main object that is assigned to the file directly,
1770  * but also the ones that are used by the file via hidden xattr directory.
1771  *
1772  * Because the xattr directory may contains many EA entries, as to it may
1773  * be impossible to change all of them via the transaction of changing the
1774  * main object's user/group/project attributes. Then we have to change them
1775  * via other multiple independent transactions one by one. It may be not good
1776  * solution, but we have no better idea yet.
1777  */
1778 static int
zfs_setattr_dir(znode_t * dzp)1779 zfs_setattr_dir(znode_t *dzp)
1780 {
1781 	struct inode	*dxip = ZTOI(dzp);
1782 	struct inode	*xip = NULL;
1783 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
1784 	objset_t	*os = zfsvfs->z_os;
1785 	zap_cursor_t	zc;
1786 	zap_attribute_t	*zap;
1787 	zfs_dirlock_t	*dl;
1788 	znode_t		*zp = NULL;
1789 	dmu_tx_t	*tx = NULL;
1790 	uint64_t	uid, gid;
1791 	sa_bulk_attr_t	bulk[4];
1792 	int		count;
1793 	int		err;
1794 
1795 	zap = zap_attribute_alloc();
1796 	zap_cursor_init(&zc, os, dzp->z_id);
1797 	while ((err = zap_cursor_retrieve(&zc, zap)) == 0) {
1798 		count = 0;
1799 		if (zap->za_integer_length != 8 || zap->za_num_integers != 1) {
1800 			err = ENXIO;
1801 			break;
1802 		}
1803 
1804 		err = zfs_dirent_lock(&dl, dzp, (char *)zap->za_name, &zp,
1805 		    ZEXISTS, NULL, NULL);
1806 		if (err == ENOENT)
1807 			goto next;
1808 		if (err)
1809 			break;
1810 
1811 		xip = ZTOI(zp);
1812 		if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1813 		    KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1814 		    zp->z_projid == dzp->z_projid)
1815 			goto next;
1816 
1817 		tx = dmu_tx_create(os);
1818 		if (!(zp->z_pflags & ZFS_PROJID))
1819 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1820 		else
1821 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1822 
1823 		err = dmu_tx_assign(tx, DMU_TX_WAIT);
1824 		if (err)
1825 			break;
1826 
1827 		mutex_enter(&dzp->z_lock);
1828 
1829 		if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1830 			xip->i_uid = dxip->i_uid;
1831 			uid = zfs_uid_read(dxip);
1832 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1833 			    &uid, sizeof (uid));
1834 		}
1835 
1836 		if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1837 			xip->i_gid = dxip->i_gid;
1838 			gid = zfs_gid_read(dxip);
1839 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1840 			    &gid, sizeof (gid));
1841 		}
1842 
1843 
1844 		uint64_t projid = dzp->z_projid;
1845 		if (zp->z_projid != projid) {
1846 			if (!(zp->z_pflags & ZFS_PROJID)) {
1847 				err = sa_add_projid(zp->z_sa_hdl, tx, projid);
1848 				if (unlikely(err == EEXIST)) {
1849 					err = 0;
1850 				} else if (err != 0) {
1851 					goto sa_add_projid_err;
1852 				} else {
1853 					projid = ZFS_INVALID_PROJID;
1854 				}
1855 			}
1856 
1857 			if (projid != ZFS_INVALID_PROJID) {
1858 				zp->z_projid = projid;
1859 				SA_ADD_BULK_ATTR(bulk, count,
1860 				    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
1861 				    sizeof (zp->z_projid));
1862 			}
1863 		}
1864 
1865 sa_add_projid_err:
1866 		mutex_exit(&dzp->z_lock);
1867 
1868 		if (likely(count > 0)) {
1869 			err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1870 			dmu_tx_commit(tx);
1871 		} else if (projid == ZFS_INVALID_PROJID) {
1872 			dmu_tx_commit(tx);
1873 		} else {
1874 			dmu_tx_abort(tx);
1875 		}
1876 		tx = NULL;
1877 		if (err != 0 && err != ENOENT)
1878 			break;
1879 
1880 next:
1881 		if (zp) {
1882 			zrele(zp);
1883 			zp = NULL;
1884 			zfs_dirent_unlock(dl);
1885 		}
1886 		zap_cursor_advance(&zc);
1887 	}
1888 
1889 	if (tx)
1890 		dmu_tx_abort(tx);
1891 	if (zp) {
1892 		zrele(zp);
1893 		zfs_dirent_unlock(dl);
1894 	}
1895 	zap_cursor_fini(&zc);
1896 	zap_attribute_free(zap);
1897 
1898 	return (err == ENOENT ? 0 : err);
1899 }
1900 
1901 /*
1902  * Set the file attributes to the values contained in the
1903  * vattr structure.
1904  *
1905  *	IN:	zp	- znode of file to be modified.
1906  *		vap	- new attribute values.
1907  *			  If ATTR_XVATTR set, then optional attrs are being set
1908  *		flags	- ATTR_UTIME set if non-default time values provided.
1909  *			- ATTR_NOACLCHECK (CIFS context only).
1910  *		cr	- credentials of caller.
1911  *		mnt_ns	- user namespace of the mount
1912  *
1913  *	RETURN:	0 if success
1914  *		error code if failure
1915  *
1916  * Timestamps:
1917  *	ip - ctime updated, mtime updated if size changed.
1918  */
1919 int
zfs_setattr(znode_t * zp,vattr_t * vap,int flags,cred_t * cr,zidmap_t * mnt_ns)1920 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr, zidmap_t *mnt_ns)
1921 {
1922 	struct inode	*ip;
1923 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
1924 	objset_t	*os;
1925 	zilog_t		*zilog;
1926 	dmu_tx_t	*tx;
1927 	vattr_t		oldva;
1928 	xvattr_t	*tmpxvattr;
1929 	uint_t		mask = vap->va_mask;
1930 	uint_t		saved_mask = 0;
1931 	int		trim_mask = 0;
1932 	uint64_t	new_mode;
1933 	uint64_t	new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1934 	uint64_t	xattr_obj;
1935 	uint64_t	mtime[2], ctime[2], atime[2];
1936 	uint64_t	projid = ZFS_INVALID_PROJID;
1937 	znode_t		*attrzp;
1938 	int		need_policy = FALSE;
1939 	int		err, err2 = 0;
1940 	zfs_fuid_info_t *fuidp = NULL;
1941 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
1942 	xoptattr_t	*xoap;
1943 	zfs_acl_t	*aclp;
1944 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1945 	boolean_t	fuid_dirtied = B_FALSE;
1946 	boolean_t	handle_eadir = B_FALSE;
1947 	sa_bulk_attr_t	*bulk, *xattr_bulk;
1948 	int		count = 0, xattr_count = 0, bulks = 8;
1949 
1950 	if (mask == 0)
1951 		return (0);
1952 
1953 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1954 		return (err);
1955 	ip = ZTOI(zp);
1956 	os = zfsvfs->z_os;
1957 
1958 	/*
1959 	 * If this is a xvattr_t, then get a pointer to the structure of
1960 	 * optional attributes.  If this is NULL, then we have a vattr_t.
1961 	 */
1962 	xoap = xva_getxoptattr(xvap);
1963 	if (xoap != NULL && (mask & ATTR_XVATTR)) {
1964 		if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1965 			if (!dmu_objset_projectquota_enabled(os) ||
1966 			    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1967 				zfs_exit(zfsvfs, FTAG);
1968 				return (SET_ERROR(ENOTSUP));
1969 			}
1970 
1971 			projid = xoap->xoa_projid;
1972 			if (unlikely(projid == ZFS_INVALID_PROJID)) {
1973 				zfs_exit(zfsvfs, FTAG);
1974 				return (SET_ERROR(EINVAL));
1975 			}
1976 
1977 			if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1978 				projid = ZFS_INVALID_PROJID;
1979 			else
1980 				need_policy = TRUE;
1981 		}
1982 
1983 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1984 		    (xoap->xoa_projinherit !=
1985 		    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1986 		    (!dmu_objset_projectquota_enabled(os) ||
1987 		    (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1988 			zfs_exit(zfsvfs, FTAG);
1989 			return (SET_ERROR(ENOTSUP));
1990 		}
1991 	}
1992 
1993 	zilog = zfsvfs->z_log;
1994 
1995 	/*
1996 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
1997 	 * that file system is at proper version level
1998 	 */
1999 
2000 	if (zfsvfs->z_use_fuids == B_FALSE &&
2001 	    (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2002 	    ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2003 	    (mask & ATTR_XVATTR))) {
2004 		zfs_exit(zfsvfs, FTAG);
2005 		return (SET_ERROR(EINVAL));
2006 	}
2007 
2008 	if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2009 		zfs_exit(zfsvfs, FTAG);
2010 		return (SET_ERROR(EISDIR));
2011 	}
2012 
2013 	if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2014 		zfs_exit(zfsvfs, FTAG);
2015 		return (SET_ERROR(EINVAL));
2016 	}
2017 
2018 	tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2019 	xva_init(tmpxvattr);
2020 
2021 	bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2022 	xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2023 
2024 	/*
2025 	 * Immutable files can only alter immutable bit and atime
2026 	 */
2027 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2028 	    ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2029 	    ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2030 		err = SET_ERROR(EPERM);
2031 		goto out3;
2032 	}
2033 
2034 	if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2035 		err = SET_ERROR(EPERM);
2036 		goto out3;
2037 	}
2038 
2039 	/*
2040 	 * Verify timestamps doesn't overflow 32 bits.
2041 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2042 	 * handle times greater than 2039.  This check should be removed
2043 	 * once large timestamps are fully supported.
2044 	 */
2045 	if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2046 		if (((mask & ATTR_ATIME) &&
2047 		    TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2048 		    ((mask & ATTR_MTIME) &&
2049 		    TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2050 			err = SET_ERROR(EOVERFLOW);
2051 			goto out3;
2052 		}
2053 	}
2054 
2055 top:
2056 	attrzp = NULL;
2057 	aclp = NULL;
2058 
2059 	/* Can this be moved to before the top label? */
2060 	if (zfs_is_readonly(zfsvfs)) {
2061 		err = SET_ERROR(EROFS);
2062 		goto out3;
2063 	}
2064 
2065 	/*
2066 	 * First validate permissions
2067 	 */
2068 
2069 	if (mask & ATTR_SIZE) {
2070 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr,
2071 		    mnt_ns);
2072 		if (err)
2073 			goto out3;
2074 
2075 		/*
2076 		 * XXX - Note, we are not providing any open
2077 		 * mode flags here (like FNDELAY), so we may
2078 		 * block if there are locks present... this
2079 		 * should be addressed in openat().
2080 		 */
2081 		/* XXX - would it be OK to generate a log record here? */
2082 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2083 		if (err)
2084 			goto out3;
2085 	}
2086 
2087 	if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2088 	    ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2089 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2090 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2091 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2092 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2093 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2094 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2095 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2096 		    skipaclchk, cr, mnt_ns);
2097 	}
2098 
2099 	if (mask & (ATTR_UID|ATTR_GID)) {
2100 		int	idmask = (mask & (ATTR_UID|ATTR_GID));
2101 		int	take_owner;
2102 		int	take_group;
2103 		uid_t	uid;
2104 		gid_t	gid;
2105 
2106 		/*
2107 		 * NOTE: even if a new mode is being set,
2108 		 * we may clear S_ISUID/S_ISGID bits.
2109 		 */
2110 
2111 		if (!(mask & ATTR_MODE))
2112 			vap->va_mode = zp->z_mode;
2113 
2114 		/*
2115 		 * Take ownership or chgrp to group we are a member of
2116 		 */
2117 
2118 		uid = zfs_uid_to_vfsuid(mnt_ns, zfs_i_user_ns(ip),
2119 		    vap->va_uid);
2120 		gid = zfs_gid_to_vfsgid(mnt_ns, zfs_i_user_ns(ip),
2121 		    vap->va_gid);
2122 		take_owner = (mask & ATTR_UID) && (uid == crgetuid(cr));
2123 		take_group = (mask & ATTR_GID) &&
2124 		    zfs_groupmember(zfsvfs, gid, cr);
2125 
2126 		/*
2127 		 * If both ATTR_UID and ATTR_GID are set then take_owner and
2128 		 * take_group must both be set in order to allow taking
2129 		 * ownership.
2130 		 *
2131 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2132 		 *
2133 		 */
2134 
2135 		if (((idmask == (ATTR_UID|ATTR_GID)) &&
2136 		    take_owner && take_group) ||
2137 		    ((idmask == ATTR_UID) && take_owner) ||
2138 		    ((idmask == ATTR_GID) && take_group)) {
2139 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2140 			    skipaclchk, cr, mnt_ns) == 0) {
2141 				/*
2142 				 * Remove setuid/setgid for non-privileged users
2143 				 */
2144 				(void) secpolicy_setid_clear(vap, cr);
2145 				trim_mask = (mask & (ATTR_UID|ATTR_GID));
2146 			} else {
2147 				need_policy =  TRUE;
2148 			}
2149 		} else {
2150 			need_policy =  TRUE;
2151 		}
2152 	}
2153 
2154 	mutex_enter(&zp->z_lock);
2155 	oldva.va_mode = zp->z_mode;
2156 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2157 	if (mask & ATTR_XVATTR) {
2158 		/*
2159 		 * Update xvattr mask to include only those attributes
2160 		 * that are actually changing.
2161 		 *
2162 		 * the bits will be restored prior to actually setting
2163 		 * the attributes so the caller thinks they were set.
2164 		 */
2165 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2166 			if (xoap->xoa_appendonly !=
2167 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2168 				need_policy = TRUE;
2169 			} else {
2170 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2171 				XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2172 			}
2173 		}
2174 
2175 		if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2176 			if (xoap->xoa_projinherit !=
2177 			    ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2178 				need_policy = TRUE;
2179 			} else {
2180 				XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2181 				XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2182 			}
2183 		}
2184 
2185 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2186 			if (xoap->xoa_nounlink !=
2187 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2188 				need_policy = TRUE;
2189 			} else {
2190 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2191 				XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2192 			}
2193 		}
2194 
2195 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2196 			if (xoap->xoa_immutable !=
2197 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2198 				need_policy = TRUE;
2199 			} else {
2200 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2201 				XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2202 			}
2203 		}
2204 
2205 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2206 			if (xoap->xoa_nodump !=
2207 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2208 				need_policy = TRUE;
2209 			} else {
2210 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2211 				XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2212 			}
2213 		}
2214 
2215 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2216 			if (xoap->xoa_av_modified !=
2217 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2218 				need_policy = TRUE;
2219 			} else {
2220 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2221 				XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2222 			}
2223 		}
2224 
2225 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2226 			if ((!S_ISREG(ip->i_mode) &&
2227 			    xoap->xoa_av_quarantined) ||
2228 			    xoap->xoa_av_quarantined !=
2229 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2230 				need_policy = TRUE;
2231 			} else {
2232 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2233 				XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2234 			}
2235 		}
2236 
2237 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2238 			mutex_exit(&zp->z_lock);
2239 			err = SET_ERROR(EPERM);
2240 			goto out3;
2241 		}
2242 
2243 		if (need_policy == FALSE &&
2244 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2245 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2246 			need_policy = TRUE;
2247 		}
2248 	}
2249 
2250 	mutex_exit(&zp->z_lock);
2251 
2252 	if (mask & ATTR_MODE) {
2253 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr,
2254 		    mnt_ns) == 0) {
2255 			err = secpolicy_setid_setsticky_clear(ip, vap,
2256 			    &oldva, cr, mnt_ns, zfs_i_user_ns(ip));
2257 			if (err)
2258 				goto out3;
2259 			trim_mask |= ATTR_MODE;
2260 		} else {
2261 			need_policy = TRUE;
2262 		}
2263 	}
2264 
2265 	if (need_policy) {
2266 		/*
2267 		 * If trim_mask is set then take ownership
2268 		 * has been granted or write_acl is present and user
2269 		 * has the ability to modify mode.  In that case remove
2270 		 * UID|GID and or MODE from mask so that
2271 		 * secpolicy_vnode_setattr() doesn't revoke it.
2272 		 */
2273 
2274 		if (trim_mask) {
2275 			saved_mask = vap->va_mask;
2276 			vap->va_mask &= ~trim_mask;
2277 		}
2278 		err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2279 		    zfs_zaccess_unix, zp);
2280 		if (err)
2281 			goto out3;
2282 
2283 		if (trim_mask)
2284 			vap->va_mask |= saved_mask;
2285 	}
2286 
2287 	/*
2288 	 * secpolicy_vnode_setattr, or take ownership may have
2289 	 * changed va_mask
2290 	 */
2291 	mask = vap->va_mask;
2292 
2293 	if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2294 		handle_eadir = B_TRUE;
2295 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2296 		    &xattr_obj, sizeof (xattr_obj));
2297 
2298 		if (err == 0 && xattr_obj) {
2299 			err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2300 			if (err)
2301 				goto out2;
2302 		}
2303 		if (mask & ATTR_UID) {
2304 			new_kuid = zfs_fuid_create(zfsvfs,
2305 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2306 			if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2307 			    zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2308 			    new_kuid)) {
2309 				if (attrzp)
2310 					zrele(attrzp);
2311 				err = SET_ERROR(EDQUOT);
2312 				goto out2;
2313 			}
2314 		}
2315 
2316 		if (mask & ATTR_GID) {
2317 			new_kgid = zfs_fuid_create(zfsvfs,
2318 			    (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2319 			if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2320 			    zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2321 			    new_kgid)) {
2322 				if (attrzp)
2323 					zrele(attrzp);
2324 				err = SET_ERROR(EDQUOT);
2325 				goto out2;
2326 			}
2327 		}
2328 
2329 		if (projid != ZFS_INVALID_PROJID &&
2330 		    zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2331 			if (attrzp)
2332 				zrele(attrzp);
2333 			err = EDQUOT;
2334 			goto out2;
2335 		}
2336 	}
2337 	tx = dmu_tx_create(os);
2338 
2339 	if (mask & ATTR_MODE) {
2340 		uint64_t pmode = zp->z_mode;
2341 		uint64_t acl_obj;
2342 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2343 
2344 		if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2345 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2346 			err = EPERM;
2347 			goto out;
2348 		}
2349 
2350 		if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2351 			goto out;
2352 
2353 		mutex_enter(&zp->z_lock);
2354 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2355 			/*
2356 			 * Are we upgrading ACL from old V0 format
2357 			 * to V1 format?
2358 			 */
2359 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2360 			    zfs_znode_acl_version(zp) ==
2361 			    ZFS_ACL_VERSION_INITIAL) {
2362 				dmu_tx_hold_free(tx, acl_obj, 0,
2363 				    DMU_OBJECT_END);
2364 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2365 				    0, aclp->z_acl_bytes);
2366 			} else {
2367 				dmu_tx_hold_write(tx, acl_obj, 0,
2368 				    aclp->z_acl_bytes);
2369 			}
2370 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2371 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2372 			    0, aclp->z_acl_bytes);
2373 		}
2374 		mutex_exit(&zp->z_lock);
2375 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2376 	} else {
2377 		if (((mask & ATTR_XVATTR) &&
2378 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2379 		    (projid != ZFS_INVALID_PROJID &&
2380 		    !(zp->z_pflags & ZFS_PROJID)))
2381 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2382 		else
2383 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2384 	}
2385 
2386 	if (attrzp) {
2387 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2388 	}
2389 
2390 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2391 	if (fuid_dirtied)
2392 		zfs_fuid_txhold(zfsvfs, tx);
2393 
2394 	zfs_sa_upgrade_txholds(tx, zp);
2395 
2396 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
2397 	if (err)
2398 		goto out;
2399 
2400 	count = 0;
2401 	/*
2402 	 * Set each attribute requested.
2403 	 * We group settings according to the locks they need to acquire.
2404 	 *
2405 	 * Note: you cannot set ctime directly, although it will be
2406 	 * updated as a side-effect of calling this function.
2407 	 */
2408 
2409 	if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2410 		/*
2411 		 * For the existed object that is upgraded from old system,
2412 		 * its on-disk layout has no slot for the project ID attribute.
2413 		 * But quota accounting logic needs to access related slots by
2414 		 * offset directly. So we need to adjust old objects' layout
2415 		 * to make the project ID to some unified and fixed offset.
2416 		 */
2417 		if (attrzp)
2418 			err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2419 		if (err == 0)
2420 			err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2421 
2422 		if (unlikely(err == EEXIST))
2423 			err = 0;
2424 		else if (err != 0)
2425 			goto out;
2426 		else
2427 			projid = ZFS_INVALID_PROJID;
2428 	}
2429 
2430 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2431 		mutex_enter(&zp->z_acl_lock);
2432 	mutex_enter(&zp->z_lock);
2433 
2434 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2435 	    &zp->z_pflags, sizeof (zp->z_pflags));
2436 
2437 	if (attrzp) {
2438 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2439 			mutex_enter(&attrzp->z_acl_lock);
2440 		mutex_enter(&attrzp->z_lock);
2441 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2442 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2443 		    sizeof (attrzp->z_pflags));
2444 		if (projid != ZFS_INVALID_PROJID) {
2445 			attrzp->z_projid = projid;
2446 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2447 			    SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2448 			    sizeof (attrzp->z_projid));
2449 		}
2450 	}
2451 
2452 	if (mask & (ATTR_UID|ATTR_GID)) {
2453 
2454 		if (mask & ATTR_UID) {
2455 			ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2456 			new_uid = zfs_uid_read(ZTOI(zp));
2457 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2458 			    &new_uid, sizeof (new_uid));
2459 			if (attrzp) {
2460 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2461 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2462 				    sizeof (new_uid));
2463 				ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2464 			}
2465 		}
2466 
2467 		if (mask & ATTR_GID) {
2468 			ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2469 			new_gid = zfs_gid_read(ZTOI(zp));
2470 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2471 			    NULL, &new_gid, sizeof (new_gid));
2472 			if (attrzp) {
2473 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2474 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2475 				    sizeof (new_gid));
2476 				ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2477 			}
2478 		}
2479 		if (!(mask & ATTR_MODE)) {
2480 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2481 			    NULL, &new_mode, sizeof (new_mode));
2482 			new_mode = zp->z_mode;
2483 		}
2484 		err = zfs_acl_chown_setattr(zp);
2485 		ASSERT(err == 0);
2486 		if (attrzp) {
2487 			err = zfs_acl_chown_setattr(attrzp);
2488 			ASSERT(err == 0);
2489 		}
2490 	}
2491 
2492 	if (mask & ATTR_MODE) {
2493 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2494 		    &new_mode, sizeof (new_mode));
2495 		zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2496 		ASSERT3P(aclp, !=, NULL);
2497 		err = zfs_aclset_common(zp, aclp, cr, tx);
2498 		ASSERT0(err);
2499 		if (zp->z_acl_cached)
2500 			zfs_acl_free(zp->z_acl_cached);
2501 		zp->z_acl_cached = aclp;
2502 		aclp = NULL;
2503 	}
2504 
2505 	if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2506 		zp->z_atime_dirty = B_FALSE;
2507 		inode_timespec_t tmp_atime = zpl_inode_get_atime(ip);
2508 		ZFS_TIME_ENCODE(&tmp_atime, atime);
2509 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2510 		    &atime, sizeof (atime));
2511 	}
2512 
2513 	if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2514 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2515 		zpl_inode_set_mtime_to_ts(ZTOI(zp),
2516 		    zpl_inode_timestamp_truncate(vap->va_mtime, ZTOI(zp)));
2517 
2518 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2519 		    mtime, sizeof (mtime));
2520 	}
2521 
2522 	if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2523 		ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2524 		zpl_inode_set_ctime_to_ts(ZTOI(zp),
2525 		    zpl_inode_timestamp_truncate(vap->va_ctime, ZTOI(zp)));
2526 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2527 		    ctime, sizeof (ctime));
2528 	}
2529 
2530 	if (projid != ZFS_INVALID_PROJID) {
2531 		zp->z_projid = projid;
2532 		SA_ADD_BULK_ATTR(bulk, count,
2533 		    SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2534 		    sizeof (zp->z_projid));
2535 	}
2536 
2537 	if (attrzp && mask) {
2538 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2539 		    SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2540 		    sizeof (ctime));
2541 	}
2542 
2543 	/*
2544 	 * Do this after setting timestamps to prevent timestamp
2545 	 * update from toggling bit
2546 	 */
2547 
2548 	if (xoap && (mask & ATTR_XVATTR)) {
2549 
2550 		/*
2551 		 * restore trimmed off masks
2552 		 * so that return masks can be set for caller.
2553 		 */
2554 
2555 		if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2556 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
2557 		}
2558 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2559 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
2560 		}
2561 		if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2562 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2563 		}
2564 		if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2565 			XVA_SET_REQ(xvap, XAT_NODUMP);
2566 		}
2567 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2568 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2569 		}
2570 		if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2571 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2572 		}
2573 		if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2574 			XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2575 		}
2576 
2577 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2578 			ASSERT(S_ISREG(ip->i_mode));
2579 
2580 		zfs_xvattr_set(zp, xvap, tx);
2581 	}
2582 
2583 	if (fuid_dirtied)
2584 		zfs_fuid_sync(zfsvfs, tx);
2585 
2586 	if (mask != 0)
2587 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2588 
2589 	mutex_exit(&zp->z_lock);
2590 	if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2591 		mutex_exit(&zp->z_acl_lock);
2592 
2593 	if (attrzp) {
2594 		if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2595 			mutex_exit(&attrzp->z_acl_lock);
2596 		mutex_exit(&attrzp->z_lock);
2597 	}
2598 out:
2599 	if (err == 0 && xattr_count > 0) {
2600 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2601 		    xattr_count, tx);
2602 		ASSERT(err2 == 0);
2603 	}
2604 
2605 	if (aclp)
2606 		zfs_acl_free(aclp);
2607 
2608 	if (fuidp) {
2609 		zfs_fuid_info_free(fuidp);
2610 		fuidp = NULL;
2611 	}
2612 
2613 	if (err) {
2614 		dmu_tx_abort(tx);
2615 		if (attrzp)
2616 			zrele(attrzp);
2617 		if (err == ERESTART)
2618 			goto top;
2619 	} else {
2620 		if (count > 0)
2621 			err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2622 		dmu_tx_commit(tx);
2623 		if (attrzp) {
2624 			if (err2 == 0 && handle_eadir)
2625 				err = zfs_setattr_dir(attrzp);
2626 			zrele(attrzp);
2627 		}
2628 		zfs_znode_update_vfs(zp);
2629 	}
2630 
2631 out2:
2632 	if (os->os_sync == ZFS_SYNC_ALWAYS)
2633 		zil_commit(zilog, 0);
2634 
2635 out3:
2636 	kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2637 	kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2638 	kmem_free(tmpxvattr, sizeof (xvattr_t));
2639 	zfs_exit(zfsvfs, FTAG);
2640 	return (err);
2641 }
2642 
2643 typedef struct zfs_zlock {
2644 	krwlock_t	*zl_rwlock;	/* lock we acquired */
2645 	znode_t		*zl_znode;	/* znode we held */
2646 	struct zfs_zlock *zl_next;	/* next in list */
2647 } zfs_zlock_t;
2648 
2649 /*
2650  * Drop locks and release vnodes that were held by zfs_rename_lock().
2651  */
2652 static void
zfs_rename_unlock(zfs_zlock_t ** zlpp)2653 zfs_rename_unlock(zfs_zlock_t **zlpp)
2654 {
2655 	zfs_zlock_t *zl;
2656 
2657 	while ((zl = *zlpp) != NULL) {
2658 		if (zl->zl_znode != NULL)
2659 			zfs_zrele_async(zl->zl_znode);
2660 		rw_exit(zl->zl_rwlock);
2661 		*zlpp = zl->zl_next;
2662 		kmem_free(zl, sizeof (*zl));
2663 	}
2664 }
2665 
2666 /*
2667  * Search back through the directory tree, using the ".." entries.
2668  * Lock each directory in the chain to prevent concurrent renames.
2669  * Fail any attempt to move a directory into one of its own descendants.
2670  * XXX - z_parent_lock can overlap with map or grow locks
2671  */
2672 static int
zfs_rename_lock(znode_t * szp,znode_t * tdzp,znode_t * sdzp,zfs_zlock_t ** zlpp)2673 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2674 {
2675 	zfs_zlock_t	*zl;
2676 	znode_t		*zp = tdzp;
2677 	uint64_t	rootid = ZTOZSB(zp)->z_root;
2678 	uint64_t	oidp = zp->z_id;
2679 	krwlock_t	*rwlp = &szp->z_parent_lock;
2680 	krw_t		rw = RW_WRITER;
2681 
2682 	/*
2683 	 * First pass write-locks szp and compares to zp->z_id.
2684 	 * Later passes read-lock zp and compare to zp->z_parent.
2685 	 */
2686 	do {
2687 		if (!rw_tryenter(rwlp, rw)) {
2688 			/*
2689 			 * Another thread is renaming in this path.
2690 			 * Note that if we are a WRITER, we don't have any
2691 			 * parent_locks held yet.
2692 			 */
2693 			if (rw == RW_READER && zp->z_id > szp->z_id) {
2694 				/*
2695 				 * Drop our locks and restart
2696 				 */
2697 				zfs_rename_unlock(&zl);
2698 				*zlpp = NULL;
2699 				zp = tdzp;
2700 				oidp = zp->z_id;
2701 				rwlp = &szp->z_parent_lock;
2702 				rw = RW_WRITER;
2703 				continue;
2704 			} else {
2705 				/*
2706 				 * Wait for other thread to drop its locks
2707 				 */
2708 				rw_enter(rwlp, rw);
2709 			}
2710 		}
2711 
2712 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2713 		zl->zl_rwlock = rwlp;
2714 		zl->zl_znode = NULL;
2715 		zl->zl_next = *zlpp;
2716 		*zlpp = zl;
2717 
2718 		if (oidp == szp->z_id)		/* We're a descendant of szp */
2719 			return (SET_ERROR(EINVAL));
2720 
2721 		if (oidp == rootid)		/* We've hit the top */
2722 			return (0);
2723 
2724 		if (rw == RW_READER) {		/* i.e. not the first pass */
2725 			int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2726 			if (error)
2727 				return (error);
2728 			zl->zl_znode = zp;
2729 		}
2730 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2731 		    &oidp, sizeof (oidp));
2732 		rwlp = &zp->z_parent_lock;
2733 		rw = RW_READER;
2734 
2735 	} while (zp->z_id != sdzp->z_id);
2736 
2737 	return (0);
2738 }
2739 
2740 /*
2741  * Move an entry from the provided source directory to the target
2742  * directory.  Change the entry name as indicated.
2743  *
2744  *	IN:	sdzp	- Source directory containing the "old entry".
2745  *		snm	- Old entry name.
2746  *		tdzp	- Target directory to contain the "new entry".
2747  *		tnm	- New entry name.
2748  *		cr	- credentials of caller.
2749  *		flags	- case flags
2750  *		rflags  - RENAME_* flags
2751  *		wa_vap  - attributes for RENAME_WHITEOUT (must be a char 0:0).
2752  *		mnt_ns	- user namespace of the mount
2753  *
2754  *	RETURN:	0 on success, error code on failure.
2755  *
2756  * Timestamps:
2757  *	sdzp,tdzp - ctime|mtime updated
2758  */
2759 int
zfs_rename(znode_t * sdzp,char * snm,znode_t * tdzp,char * tnm,cred_t * cr,int flags,uint64_t rflags,vattr_t * wo_vap,zidmap_t * mnt_ns)2760 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2761     cred_t *cr, int flags, uint64_t rflags, vattr_t *wo_vap, zidmap_t *mnt_ns)
2762 {
2763 	znode_t		*szp, *tzp;
2764 	zfsvfs_t	*zfsvfs = ZTOZSB(sdzp);
2765 	zilog_t		*zilog;
2766 	zfs_dirlock_t	*sdl, *tdl;
2767 	dmu_tx_t	*tx;
2768 	zfs_zlock_t	*zl;
2769 	int		cmp, serr, terr;
2770 	int		error = 0;
2771 	int		zflg = 0;
2772 	boolean_t	waited = B_FALSE;
2773 	/* Needed for whiteout inode creation. */
2774 	boolean_t	fuid_dirtied;
2775 	zfs_acl_ids_t	acl_ids;
2776 	boolean_t	have_acl = B_FALSE;
2777 	znode_t		*wzp = NULL;
2778 
2779 
2780 	if (snm == NULL || tnm == NULL)
2781 		return (SET_ERROR(EINVAL));
2782 
2783 	if (rflags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2784 		return (SET_ERROR(EINVAL));
2785 
2786 	/* Already checked by Linux VFS, but just to make sure. */
2787 	if (rflags & RENAME_EXCHANGE &&
2788 	    (rflags & (RENAME_NOREPLACE | RENAME_WHITEOUT)))
2789 		return (SET_ERROR(EINVAL));
2790 
2791 	/*
2792 	 * Make sure we only get wo_vap iff. RENAME_WHITEOUT and that it's the
2793 	 * right kind of vattr_t for the whiteout file. These are set
2794 	 * internally by ZFS so should never be incorrect.
2795 	 */
2796 	VERIFY_EQUIV(rflags & RENAME_WHITEOUT, wo_vap != NULL);
2797 	VERIFY_IMPLY(wo_vap, wo_vap->va_mode == S_IFCHR);
2798 	VERIFY_IMPLY(wo_vap, wo_vap->va_rdev == makedevice(0, 0));
2799 
2800 	if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
2801 		return (error);
2802 	zilog = zfsvfs->z_log;
2803 
2804 	if ((error = zfs_verify_zp(tdzp)) != 0) {
2805 		zfs_exit(zfsvfs, FTAG);
2806 		return (error);
2807 	}
2808 
2809 	/*
2810 	 * We check i_sb because snapshots and the ctldir must have different
2811 	 * super blocks.
2812 	 */
2813 	if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2814 	    zfsctl_is_node(ZTOI(tdzp))) {
2815 		zfs_exit(zfsvfs, FTAG);
2816 		return (SET_ERROR(EXDEV));
2817 	}
2818 
2819 	if (zfsvfs->z_utf8 && u8_validate(tnm,
2820 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2821 		zfs_exit(zfsvfs, FTAG);
2822 		return (SET_ERROR(EILSEQ));
2823 	}
2824 
2825 	if (flags & FIGNORECASE)
2826 		zflg |= ZCILOOK;
2827 
2828 top:
2829 	szp = NULL;
2830 	tzp = NULL;
2831 	zl = NULL;
2832 
2833 	/*
2834 	 * This is to prevent the creation of links into attribute space
2835 	 * by renaming a linked file into/outof an attribute directory.
2836 	 * See the comment in zfs_link() for why this is considered bad.
2837 	 */
2838 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2839 		zfs_exit(zfsvfs, FTAG);
2840 		return (SET_ERROR(EINVAL));
2841 	}
2842 
2843 	/*
2844 	 * Lock source and target directory entries.  To prevent deadlock,
2845 	 * a lock ordering must be defined.  We lock the directory with
2846 	 * the smallest object id first, or if it's a tie, the one with
2847 	 * the lexically first name.
2848 	 */
2849 	if (sdzp->z_id < tdzp->z_id) {
2850 		cmp = -1;
2851 	} else if (sdzp->z_id > tdzp->z_id) {
2852 		cmp = 1;
2853 	} else {
2854 		/*
2855 		 * First compare the two name arguments without
2856 		 * considering any case folding.
2857 		 */
2858 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2859 
2860 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2861 		ASSERT(error == 0 || !zfsvfs->z_utf8);
2862 		if (cmp == 0) {
2863 			/*
2864 			 * POSIX: "If the old argument and the new argument
2865 			 * both refer to links to the same existing file,
2866 			 * the rename() function shall return successfully
2867 			 * and perform no other action."
2868 			 */
2869 			zfs_exit(zfsvfs, FTAG);
2870 			return (0);
2871 		}
2872 		/*
2873 		 * If the file system is case-folding, then we may
2874 		 * have some more checking to do.  A case-folding file
2875 		 * system is either supporting mixed case sensitivity
2876 		 * access or is completely case-insensitive.  Note
2877 		 * that the file system is always case preserving.
2878 		 *
2879 		 * In mixed sensitivity mode case sensitive behavior
2880 		 * is the default.  FIGNORECASE must be used to
2881 		 * explicitly request case insensitive behavior.
2882 		 *
2883 		 * If the source and target names provided differ only
2884 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
2885 		 * we will treat this as a special case in the
2886 		 * case-insensitive mode: as long as the source name
2887 		 * is an exact match, we will allow this to proceed as
2888 		 * a name-change request.
2889 		 */
2890 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2891 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
2892 		    flags & FIGNORECASE)) &&
2893 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2894 		    &error) == 0) {
2895 			/*
2896 			 * case preserving rename request, require exact
2897 			 * name matches
2898 			 */
2899 			zflg |= ZCIEXACT;
2900 			zflg &= ~ZCILOOK;
2901 		}
2902 	}
2903 
2904 	/*
2905 	 * If the source and destination directories are the same, we should
2906 	 * grab the z_name_lock of that directory only once.
2907 	 */
2908 	if (sdzp == tdzp) {
2909 		zflg |= ZHAVELOCK;
2910 		rw_enter(&sdzp->z_name_lock, RW_READER);
2911 	}
2912 
2913 	if (cmp < 0) {
2914 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2915 		    ZEXISTS | zflg, NULL, NULL);
2916 		terr = zfs_dirent_lock(&tdl,
2917 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2918 	} else {
2919 		terr = zfs_dirent_lock(&tdl,
2920 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
2921 		serr = zfs_dirent_lock(&sdl,
2922 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2923 		    NULL, NULL);
2924 	}
2925 
2926 	if (serr) {
2927 		/*
2928 		 * Source entry invalid or not there.
2929 		 */
2930 		if (!terr) {
2931 			zfs_dirent_unlock(tdl);
2932 			if (tzp)
2933 				zrele(tzp);
2934 		}
2935 
2936 		if (sdzp == tdzp)
2937 			rw_exit(&sdzp->z_name_lock);
2938 
2939 		if (strcmp(snm, "..") == 0)
2940 			serr = EINVAL;
2941 		zfs_exit(zfsvfs, FTAG);
2942 		return (serr);
2943 	}
2944 	if (terr) {
2945 		zfs_dirent_unlock(sdl);
2946 		zrele(szp);
2947 
2948 		if (sdzp == tdzp)
2949 			rw_exit(&sdzp->z_name_lock);
2950 
2951 		if (strcmp(tnm, "..") == 0)
2952 			terr = EINVAL;
2953 		zfs_exit(zfsvfs, FTAG);
2954 		return (terr);
2955 	}
2956 
2957 	/*
2958 	 * If we are using project inheritance, means if the directory has
2959 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2960 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2961 	 * such case, we only allow renames into our tree when the project
2962 	 * IDs are the same.
2963 	 */
2964 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2965 	    tdzp->z_projid != szp->z_projid) {
2966 		error = SET_ERROR(EXDEV);
2967 		goto out;
2968 	}
2969 
2970 	/*
2971 	 * Must have write access at the source to remove the old entry
2972 	 * and write access at the target to create the new entry.
2973 	 * Note that if target and source are the same, this can be
2974 	 * done in a single check.
2975 	 */
2976 	if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr, mnt_ns)))
2977 		goto out;
2978 
2979 	if (S_ISDIR(ZTOI(szp)->i_mode)) {
2980 		/*
2981 		 * Check to make sure rename is valid.
2982 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2983 		 */
2984 		if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2985 			goto out;
2986 	}
2987 
2988 	/*
2989 	 * Does target exist?
2990 	 */
2991 	if (tzp) {
2992 		if (rflags & RENAME_NOREPLACE) {
2993 			error = SET_ERROR(EEXIST);
2994 			goto out;
2995 		}
2996 		/*
2997 		 * Source and target must be the same type (unless exchanging).
2998 		 */
2999 		if (!(rflags & RENAME_EXCHANGE)) {
3000 			boolean_t s_is_dir = S_ISDIR(ZTOI(szp)->i_mode) != 0;
3001 			boolean_t t_is_dir = S_ISDIR(ZTOI(tzp)->i_mode) != 0;
3002 
3003 			if (s_is_dir != t_is_dir) {
3004 				error = SET_ERROR(s_is_dir ? ENOTDIR : EISDIR);
3005 				goto out;
3006 			}
3007 		}
3008 		/*
3009 		 * POSIX dictates that when the source and target
3010 		 * entries refer to the same file object, rename
3011 		 * must do nothing and exit without error.
3012 		 */
3013 		if (szp->z_id == tzp->z_id) {
3014 			error = 0;
3015 			goto out;
3016 		}
3017 	} else if (rflags & RENAME_EXCHANGE) {
3018 		/* Target must exist for RENAME_EXCHANGE. */
3019 		error = SET_ERROR(ENOENT);
3020 		goto out;
3021 	}
3022 
3023 	/* Set up inode creation for RENAME_WHITEOUT. */
3024 	if (rflags & RENAME_WHITEOUT) {
3025 		/*
3026 		 * Whiteout files are not regular files or directories, so to
3027 		 * match zfs_create() we do not inherit the project id.
3028 		 */
3029 		uint64_t wo_projid = ZFS_DEFAULT_PROJID;
3030 
3031 		error = zfs_zaccess(sdzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns);
3032 		if (error)
3033 			goto out;
3034 
3035 		if (!have_acl) {
3036 			error = zfs_acl_ids_create(sdzp, 0, wo_vap, cr, NULL,
3037 			    &acl_ids, mnt_ns);
3038 			if (error)
3039 				goto out;
3040 			have_acl = B_TRUE;
3041 		}
3042 
3043 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, wo_projid)) {
3044 			error = SET_ERROR(EDQUOT);
3045 			goto out;
3046 		}
3047 	}
3048 
3049 	tx = dmu_tx_create(zfsvfs->z_os);
3050 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3051 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3052 	dmu_tx_hold_zap(tx, sdzp->z_id,
3053 	    (rflags & RENAME_EXCHANGE) ? TRUE : FALSE, snm);
3054 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3055 	if (sdzp != tdzp) {
3056 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3057 		zfs_sa_upgrade_txholds(tx, tdzp);
3058 	}
3059 	if (tzp) {
3060 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3061 		zfs_sa_upgrade_txholds(tx, tzp);
3062 	}
3063 	if (rflags & RENAME_WHITEOUT) {
3064 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3065 		    ZFS_SA_BASE_ATTR_SIZE);
3066 
3067 		dmu_tx_hold_zap(tx, sdzp->z_id, TRUE, snm);
3068 		dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3069 		if (!zfsvfs->z_use_sa &&
3070 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3071 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3072 			    0, acl_ids.z_aclp->z_acl_bytes);
3073 		}
3074 	}
3075 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3076 	if (fuid_dirtied)
3077 		zfs_fuid_txhold(zfsvfs, tx);
3078 	zfs_sa_upgrade_txholds(tx, szp);
3079 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3080 	error = dmu_tx_assign(tx,
3081 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
3082 	if (error) {
3083 		if (zl != NULL)
3084 			zfs_rename_unlock(&zl);
3085 		zfs_dirent_unlock(sdl);
3086 		zfs_dirent_unlock(tdl);
3087 
3088 		if (sdzp == tdzp)
3089 			rw_exit(&sdzp->z_name_lock);
3090 
3091 		if (error == ERESTART) {
3092 			waited = B_TRUE;
3093 			dmu_tx_wait(tx);
3094 			dmu_tx_abort(tx);
3095 			zrele(szp);
3096 			if (tzp)
3097 				zrele(tzp);
3098 			goto top;
3099 		}
3100 		dmu_tx_abort(tx);
3101 		zrele(szp);
3102 		if (tzp)
3103 			zrele(tzp);
3104 		zfs_exit(zfsvfs, FTAG);
3105 		return (error);
3106 	}
3107 
3108 	/*
3109 	 * Unlink the source.
3110 	 */
3111 	szp->z_pflags |= ZFS_AV_MODIFIED;
3112 	if (tdzp->z_pflags & ZFS_PROJINHERIT)
3113 		szp->z_pflags |= ZFS_PROJINHERIT;
3114 
3115 	error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3116 	    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3117 	VERIFY0(error);
3118 
3119 	error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3120 	if (error)
3121 		goto commit;
3122 
3123 	/*
3124 	 * Unlink the target.
3125 	 */
3126 	if (tzp) {
3127 		int tzflg = zflg;
3128 
3129 		if (rflags & RENAME_EXCHANGE) {
3130 			/* This inode will be re-linked soon. */
3131 			tzflg |= ZRENAMING;
3132 
3133 			tzp->z_pflags |= ZFS_AV_MODIFIED;
3134 			if (sdzp->z_pflags & ZFS_PROJINHERIT)
3135 				tzp->z_pflags |= ZFS_PROJINHERIT;
3136 
3137 			error = sa_update(tzp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3138 			    (void *)&tzp->z_pflags, sizeof (uint64_t), tx);
3139 			ASSERT0(error);
3140 		}
3141 		error = zfs_link_destroy(tdl, tzp, tx, tzflg, NULL);
3142 		if (error)
3143 			goto commit_link_szp;
3144 	}
3145 
3146 	/*
3147 	 * Create the new target links:
3148 	 *   * We always link the target.
3149 	 *   * RENAME_EXCHANGE: Link the old target to the source.
3150 	 *   * RENAME_WHITEOUT: Create a whiteout inode in-place of the source.
3151 	 */
3152 	error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3153 	if (error) {
3154 		/*
3155 		 * If we have removed the existing target, a subsequent call to
3156 		 * zfs_link_create() to add back the same entry, but with a new
3157 		 * dnode (szp), should not fail.
3158 		 */
3159 		ASSERT3P(tzp, ==, NULL);
3160 		goto commit_link_tzp;
3161 	}
3162 
3163 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3164 	case RENAME_EXCHANGE:
3165 		error = zfs_link_create(sdl, tzp, tx, ZRENAMING);
3166 		/*
3167 		 * The same argument as zfs_link_create() failing for
3168 		 * szp applies here, since the source directory must
3169 		 * have had an entry we are replacing.
3170 		 */
3171 		ASSERT0(error);
3172 		if (error)
3173 			goto commit_unlink_td_szp;
3174 		break;
3175 	case RENAME_WHITEOUT:
3176 		zfs_mknode(sdzp, wo_vap, tx, cr, 0, &wzp, &acl_ids);
3177 		error = zfs_link_create(sdl, wzp, tx, ZNEW);
3178 		if (error) {
3179 			zfs_znode_delete(wzp, tx);
3180 			remove_inode_hash(ZTOI(wzp));
3181 			goto commit_unlink_td_szp;
3182 		}
3183 		break;
3184 	}
3185 
3186 	if (fuid_dirtied)
3187 		zfs_fuid_sync(zfsvfs, tx);
3188 
3189 	switch (rflags & (RENAME_EXCHANGE | RENAME_WHITEOUT)) {
3190 	case RENAME_EXCHANGE:
3191 		zfs_log_rename_exchange(zilog, tx,
3192 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3193 		    tdzp, tdl->dl_name, szp);
3194 		break;
3195 	case RENAME_WHITEOUT:
3196 		zfs_log_rename_whiteout(zilog, tx,
3197 		    (flags & FIGNORECASE ? TX_CI : 0), sdzp, sdl->dl_name,
3198 		    tdzp, tdl->dl_name, szp, wzp);
3199 		break;
3200 	default:
3201 		ASSERT0(rflags & ~RENAME_NOREPLACE);
3202 		zfs_log_rename(zilog, tx, (flags & FIGNORECASE ? TX_CI : 0),
3203 		    sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp);
3204 		break;
3205 	}
3206 
3207 commit:
3208 	dmu_tx_commit(tx);
3209 out:
3210 	if (have_acl)
3211 		zfs_acl_ids_free(&acl_ids);
3212 
3213 	zfs_znode_update_vfs(sdzp);
3214 	if (sdzp == tdzp)
3215 		rw_exit(&sdzp->z_name_lock);
3216 
3217 	if (sdzp != tdzp)
3218 		zfs_znode_update_vfs(tdzp);
3219 
3220 	zfs_znode_update_vfs(szp);
3221 	zrele(szp);
3222 	if (wzp) {
3223 		zfs_znode_update_vfs(wzp);
3224 		zrele(wzp);
3225 	}
3226 	if (tzp) {
3227 		zfs_znode_update_vfs(tzp);
3228 		zrele(tzp);
3229 	}
3230 
3231 	if (zl != NULL)
3232 		zfs_rename_unlock(&zl);
3233 
3234 	zfs_dirent_unlock(sdl);
3235 	zfs_dirent_unlock(tdl);
3236 
3237 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3238 		zil_commit(zilog, 0);
3239 
3240 	zfs_exit(zfsvfs, FTAG);
3241 	return (error);
3242 
3243 	/*
3244 	 * Clean-up path for broken link state.
3245 	 *
3246 	 * At this point we are in a (very) bad state, so we need to do our
3247 	 * best to correct the state. In particular, all of the nlinks are
3248 	 * wrong because we were destroying and creating links with ZRENAMING.
3249 	 *
3250 	 * In some form, all of these operations have to resolve the state:
3251 	 *
3252 	 *  * link_destroy() *must* succeed. Fortunately, this is very likely
3253 	 *    since we only just created it.
3254 	 *
3255 	 *  * link_create()s are allowed to fail (though they shouldn't because
3256 	 *    we only just unlinked them and are putting the entries back
3257 	 *    during clean-up). But if they fail, we can just forcefully drop
3258 	 *    the nlink value to (at the very least) avoid broken nlink values
3259 	 *    -- though in the case of non-empty directories we will have to
3260 	 *    panic (otherwise we'd have a leaked directory with a broken ..).
3261 	 */
3262 commit_unlink_td_szp:
3263 	VERIFY0(zfs_link_destroy(tdl, szp, tx, ZRENAMING, NULL));
3264 commit_link_tzp:
3265 	if (tzp) {
3266 		if (zfs_link_create(tdl, tzp, tx, ZRENAMING))
3267 			VERIFY0(zfs_drop_nlink(tzp, tx, NULL));
3268 	}
3269 commit_link_szp:
3270 	if (zfs_link_create(sdl, szp, tx, ZRENAMING))
3271 		VERIFY0(zfs_drop_nlink(szp, tx, NULL));
3272 	goto commit;
3273 }
3274 
3275 /*
3276  * Insert the indicated symbolic reference entry into the directory.
3277  *
3278  *	IN:	dzp	- Directory to contain new symbolic link.
3279  *		name	- Name of directory entry in dip.
3280  *		vap	- Attributes of new entry.
3281  *		link	- Name for new symlink entry.
3282  *		cr	- credentials of caller.
3283  *		flags	- case flags
3284  *		mnt_ns	- user namespace of the mount
3285  *
3286  *	OUT:	zpp	- Znode for new symbolic link.
3287  *
3288  *	RETURN:	0 on success, error code on failure.
3289  *
3290  * Timestamps:
3291  *	dip - ctime|mtime updated
3292  */
3293 int
zfs_symlink(znode_t * dzp,char * name,vattr_t * vap,char * link,znode_t ** zpp,cred_t * cr,int flags,zidmap_t * mnt_ns)3294 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3295     znode_t **zpp, cred_t *cr, int flags, zidmap_t *mnt_ns)
3296 {
3297 	znode_t		*zp;
3298 	zfs_dirlock_t	*dl;
3299 	dmu_tx_t	*tx;
3300 	zfsvfs_t	*zfsvfs = ZTOZSB(dzp);
3301 	zilog_t		*zilog;
3302 	uint64_t	len = strlen(link);
3303 	int		error;
3304 	int		zflg = ZNEW;
3305 	zfs_acl_ids_t	acl_ids;
3306 	boolean_t	fuid_dirtied;
3307 	uint64_t	txtype = TX_SYMLINK;
3308 	boolean_t	waited = B_FALSE;
3309 
3310 	ASSERT(S_ISLNK(vap->va_mode));
3311 
3312 	if (name == NULL)
3313 		return (SET_ERROR(EINVAL));
3314 
3315 	if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
3316 		return (error);
3317 	zilog = zfsvfs->z_log;
3318 
3319 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3320 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3321 		zfs_exit(zfsvfs, FTAG);
3322 		return (SET_ERROR(EILSEQ));
3323 	}
3324 	if (flags & FIGNORECASE)
3325 		zflg |= ZCILOOK;
3326 
3327 	if (len > MAXPATHLEN) {
3328 		zfs_exit(zfsvfs, FTAG);
3329 		return (SET_ERROR(ENAMETOOLONG));
3330 	}
3331 
3332 	if ((error = zfs_acl_ids_create(dzp, 0,
3333 	    vap, cr, NULL, &acl_ids, mnt_ns)) != 0) {
3334 		zfs_exit(zfsvfs, FTAG);
3335 		return (error);
3336 	}
3337 top:
3338 	*zpp = NULL;
3339 
3340 	/*
3341 	 * Attempt to lock directory; fail if entry already exists.
3342 	 */
3343 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3344 	if (error) {
3345 		zfs_acl_ids_free(&acl_ids);
3346 		zfs_exit(zfsvfs, FTAG);
3347 		return (error);
3348 	}
3349 
3350 	if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr, mnt_ns))) {
3351 		zfs_acl_ids_free(&acl_ids);
3352 		zfs_dirent_unlock(dl);
3353 		zfs_exit(zfsvfs, FTAG);
3354 		return (error);
3355 	}
3356 
3357 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3358 		zfs_acl_ids_free(&acl_ids);
3359 		zfs_dirent_unlock(dl);
3360 		zfs_exit(zfsvfs, FTAG);
3361 		return (SET_ERROR(EDQUOT));
3362 	}
3363 	tx = dmu_tx_create(zfsvfs->z_os);
3364 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3365 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3366 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3367 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3368 	    ZFS_SA_BASE_ATTR_SIZE + len);
3369 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3370 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3371 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3372 		    acl_ids.z_aclp->z_acl_bytes);
3373 	}
3374 	if (fuid_dirtied)
3375 		zfs_fuid_txhold(zfsvfs, tx);
3376 	error = dmu_tx_assign(tx,
3377 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
3378 	if (error) {
3379 		zfs_dirent_unlock(dl);
3380 		if (error == ERESTART) {
3381 			waited = B_TRUE;
3382 			dmu_tx_wait(tx);
3383 			dmu_tx_abort(tx);
3384 			goto top;
3385 		}
3386 		zfs_acl_ids_free(&acl_ids);
3387 		dmu_tx_abort(tx);
3388 		zfs_exit(zfsvfs, FTAG);
3389 		return (error);
3390 	}
3391 
3392 	/*
3393 	 * Create a new object for the symlink.
3394 	 * for version 4 ZPL datasets the symlink will be an SA attribute
3395 	 */
3396 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3397 
3398 	if (fuid_dirtied)
3399 		zfs_fuid_sync(zfsvfs, tx);
3400 
3401 	mutex_enter(&zp->z_lock);
3402 	if (zp->z_is_sa)
3403 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3404 		    link, len, tx);
3405 	else
3406 		zfs_sa_symlink(zp, link, len, tx);
3407 	mutex_exit(&zp->z_lock);
3408 
3409 	zp->z_size = len;
3410 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3411 	    &zp->z_size, sizeof (zp->z_size), tx);
3412 	/*
3413 	 * Insert the new object into the directory.
3414 	 */
3415 	error = zfs_link_create(dl, zp, tx, ZNEW);
3416 	if (error != 0) {
3417 		zfs_znode_delete(zp, tx);
3418 		remove_inode_hash(ZTOI(zp));
3419 	} else {
3420 		if (flags & FIGNORECASE)
3421 			txtype |= TX_CI;
3422 		zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3423 
3424 		zfs_znode_update_vfs(dzp);
3425 		zfs_znode_update_vfs(zp);
3426 	}
3427 
3428 	zfs_acl_ids_free(&acl_ids);
3429 
3430 	dmu_tx_commit(tx);
3431 
3432 	zfs_dirent_unlock(dl);
3433 
3434 	if (error == 0) {
3435 		*zpp = zp;
3436 
3437 		if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3438 			zil_commit(zilog, 0);
3439 	} else {
3440 		zrele(zp);
3441 	}
3442 
3443 	zfs_exit(zfsvfs, FTAG);
3444 	return (error);
3445 }
3446 
3447 /*
3448  * Return, in the buffer contained in the provided uio structure,
3449  * the symbolic path referred to by ip.
3450  *
3451  *	IN:	ip	- inode of symbolic link
3452  *		uio	- structure to contain the link path.
3453  *		cr	- credentials of caller.
3454  *
3455  *	RETURN:	0 if success
3456  *		error code if failure
3457  *
3458  * Timestamps:
3459  *	ip - atime updated
3460  */
3461 int
zfs_readlink(struct inode * ip,zfs_uio_t * uio,cred_t * cr)3462 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3463 {
3464 	(void) cr;
3465 	znode_t		*zp = ITOZ(ip);
3466 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3467 	int		error;
3468 
3469 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3470 		return (error);
3471 
3472 	mutex_enter(&zp->z_lock);
3473 	if (zp->z_is_sa)
3474 		error = sa_lookup_uio(zp->z_sa_hdl,
3475 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3476 	else
3477 		error = zfs_sa_readlink(zp, uio);
3478 	mutex_exit(&zp->z_lock);
3479 
3480 	zfs_exit(zfsvfs, FTAG);
3481 	return (error);
3482 }
3483 
3484 /*
3485  * Insert a new entry into directory tdzp referencing szp.
3486  *
3487  *	IN:	tdzp	- Directory to contain new entry.
3488  *		szp	- znode of new entry.
3489  *		name	- name of new entry.
3490  *		cr	- credentials of caller.
3491  *		flags	- case flags.
3492  *
3493  *	RETURN:	0 if success
3494  *		error code if failure
3495  *
3496  * Timestamps:
3497  *	tdzp - ctime|mtime updated
3498  *	 szp - ctime updated
3499  */
3500 int
zfs_link(znode_t * tdzp,znode_t * szp,char * name,cred_t * cr,int flags)3501 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3502     int flags)
3503 {
3504 	struct inode *sip = ZTOI(szp);
3505 	znode_t		*tzp;
3506 	zfsvfs_t	*zfsvfs = ZTOZSB(tdzp);
3507 	zilog_t		*zilog;
3508 	zfs_dirlock_t	*dl;
3509 	dmu_tx_t	*tx;
3510 	int		error;
3511 	int		zf = ZNEW;
3512 	uint64_t	parent;
3513 	uid_t		owner;
3514 	boolean_t	waited = B_FALSE;
3515 	boolean_t	is_tmpfile = 0;
3516 	uint64_t	txg;
3517 
3518 	is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3519 
3520 	ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3521 
3522 	if (name == NULL)
3523 		return (SET_ERROR(EINVAL));
3524 
3525 	if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3526 		return (error);
3527 	zilog = zfsvfs->z_log;
3528 
3529 	/*
3530 	 * POSIX dictates that we return EPERM here.
3531 	 * Better choices include ENOTSUP or EISDIR.
3532 	 */
3533 	if (S_ISDIR(sip->i_mode)) {
3534 		zfs_exit(zfsvfs, FTAG);
3535 		return (SET_ERROR(EPERM));
3536 	}
3537 
3538 	if ((error = zfs_verify_zp(szp)) != 0) {
3539 		zfs_exit(zfsvfs, FTAG);
3540 		return (error);
3541 	}
3542 
3543 	/*
3544 	 * If we are using project inheritance, means if the directory has
3545 	 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3546 	 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3547 	 * such case, we only allow hard link creation in our tree when the
3548 	 * project IDs are the same.
3549 	 */
3550 	if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3551 	    tdzp->z_projid != szp->z_projid) {
3552 		zfs_exit(zfsvfs, FTAG);
3553 		return (SET_ERROR(EXDEV));
3554 	}
3555 
3556 	/*
3557 	 * We check i_sb because snapshots and the ctldir must have different
3558 	 * super blocks.
3559 	 */
3560 	if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3561 		zfs_exit(zfsvfs, FTAG);
3562 		return (SET_ERROR(EXDEV));
3563 	}
3564 
3565 	/* Prevent links to .zfs/shares files */
3566 
3567 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3568 	    &parent, sizeof (uint64_t))) != 0) {
3569 		zfs_exit(zfsvfs, FTAG);
3570 		return (error);
3571 	}
3572 	if (parent == zfsvfs->z_shares_dir) {
3573 		zfs_exit(zfsvfs, FTAG);
3574 		return (SET_ERROR(EPERM));
3575 	}
3576 
3577 	if (zfsvfs->z_utf8 && u8_validate(name,
3578 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3579 		zfs_exit(zfsvfs, FTAG);
3580 		return (SET_ERROR(EILSEQ));
3581 	}
3582 	if (flags & FIGNORECASE)
3583 		zf |= ZCILOOK;
3584 
3585 	/*
3586 	 * We do not support links between attributes and non-attributes
3587 	 * because of the potential security risk of creating links
3588 	 * into "normal" file space in order to circumvent restrictions
3589 	 * imposed in attribute space.
3590 	 */
3591 	if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3592 		zfs_exit(zfsvfs, FTAG);
3593 		return (SET_ERROR(EINVAL));
3594 	}
3595 
3596 	owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3597 	    cr, ZFS_OWNER);
3598 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3599 		zfs_exit(zfsvfs, FTAG);
3600 		return (SET_ERROR(EPERM));
3601 	}
3602 
3603 	if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr,
3604 	    zfs_init_idmap))) {
3605 		zfs_exit(zfsvfs, FTAG);
3606 		return (error);
3607 	}
3608 
3609 top:
3610 	/*
3611 	 * Attempt to lock directory; fail if entry already exists.
3612 	 */
3613 	error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3614 	if (error) {
3615 		zfs_exit(zfsvfs, FTAG);
3616 		return (error);
3617 	}
3618 
3619 	tx = dmu_tx_create(zfsvfs->z_os);
3620 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3621 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3622 	if (is_tmpfile)
3623 		dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3624 
3625 	zfs_sa_upgrade_txholds(tx, szp);
3626 	zfs_sa_upgrade_txholds(tx, tdzp);
3627 	error = dmu_tx_assign(tx,
3628 	    (waited ? DMU_TX_NOTHROTTLE : 0) | DMU_TX_NOWAIT);
3629 	if (error) {
3630 		zfs_dirent_unlock(dl);
3631 		if (error == ERESTART) {
3632 			waited = B_TRUE;
3633 			dmu_tx_wait(tx);
3634 			dmu_tx_abort(tx);
3635 			goto top;
3636 		}
3637 		dmu_tx_abort(tx);
3638 		zfs_exit(zfsvfs, FTAG);
3639 		return (error);
3640 	}
3641 	/* unmark z_unlinked so zfs_link_create will not reject */
3642 	if (is_tmpfile)
3643 		szp->z_unlinked = B_FALSE;
3644 	error = zfs_link_create(dl, szp, tx, 0);
3645 
3646 	if (error == 0) {
3647 		uint64_t txtype = TX_LINK;
3648 		/*
3649 		 * tmpfile is created to be in z_unlinkedobj, so remove it.
3650 		 * Also, we don't log in ZIL, because all previous file
3651 		 * operation on the tmpfile are ignored by ZIL. Instead we
3652 		 * always wait for txg to sync to make sure all previous
3653 		 * operation are sync safe.
3654 		 */
3655 		if (is_tmpfile) {
3656 			VERIFY(zap_remove_int(zfsvfs->z_os,
3657 			    zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
3658 		} else {
3659 			if (flags & FIGNORECASE)
3660 				txtype |= TX_CI;
3661 			zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3662 		}
3663 	} else if (is_tmpfile) {
3664 		/* restore z_unlinked since when linking failed */
3665 		szp->z_unlinked = B_TRUE;
3666 	}
3667 	txg = dmu_tx_get_txg(tx);
3668 	dmu_tx_commit(tx);
3669 
3670 	zfs_dirent_unlock(dl);
3671 
3672 	if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3673 		zil_commit(zilog, 0);
3674 
3675 	if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
3676 		txg_wait_flag_t wait_flags =
3677 		    spa_get_failmode(dmu_objset_spa(zfsvfs->z_os)) ==
3678 		    ZIO_FAILURE_MODE_CONTINUE ? TXG_WAIT_SUSPEND : 0;
3679 		error = txg_wait_synced_flags(dmu_objset_pool(zfsvfs->z_os),
3680 		    txg, wait_flags);
3681 		if (error != 0) {
3682 			ASSERT3U(error, ==, ESHUTDOWN);
3683 			error = SET_ERROR(EIO);
3684 		}
3685 	}
3686 
3687 	zfs_znode_update_vfs(tdzp);
3688 	zfs_znode_update_vfs(szp);
3689 	zfs_exit(zfsvfs, FTAG);
3690 	return (error);
3691 }
3692 
3693 static void
zfs_putpage_sync_commit_cb(void * arg)3694 zfs_putpage_sync_commit_cb(void *arg)
3695 {
3696 	struct page *pp = arg;
3697 
3698 	ClearPageError(pp);
3699 	end_page_writeback(pp);
3700 }
3701 
3702 static void
zfs_putpage_async_commit_cb(void * arg)3703 zfs_putpage_async_commit_cb(void *arg)
3704 {
3705 	struct page *pp = arg;
3706 	znode_t *zp = ITOZ(pp->mapping->host);
3707 
3708 	ClearPageError(pp);
3709 	end_page_writeback(pp);
3710 	atomic_dec_32(&zp->z_async_writes_cnt);
3711 }
3712 
3713 /*
3714  * Push a page out to disk, once the page is on stable storage the
3715  * registered commit callback will be run as notification of completion.
3716  *
3717  *	IN:	ip	 - page mapped for inode.
3718  *		pp	 - page to push (page is locked)
3719  *		wbc	 - writeback control data
3720  *		for_sync - does the caller intend to wait synchronously for the
3721  *			   page writeback to complete?
3722  *
3723  *	RETURN:	0 if success
3724  *		error code if failure
3725  *
3726  * Timestamps:
3727  *	ip - ctime|mtime updated
3728  */
3729 int
zfs_putpage(struct inode * ip,struct page * pp,struct writeback_control * wbc,boolean_t for_sync)3730 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc,
3731     boolean_t for_sync)
3732 {
3733 	znode_t		*zp = ITOZ(ip);
3734 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3735 	loff_t		offset;
3736 	loff_t		pgoff;
3737 	unsigned int	pglen;
3738 	dmu_tx_t	*tx;
3739 	caddr_t		va;
3740 	int		err = 0;
3741 	uint64_t	mtime[2], ctime[2];
3742 	inode_timespec_t tmp_ts;
3743 	sa_bulk_attr_t	bulk[3];
3744 	int		cnt = 0;
3745 	struct address_space *mapping;
3746 
3747 	if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3748 		return (err);
3749 
3750 	ASSERT(PageLocked(pp));
3751 
3752 	pgoff = page_offset(pp);	/* Page byte-offset in file */
3753 	offset = i_size_read(ip);	/* File length in bytes */
3754 	pglen = MIN(PAGE_SIZE,		/* Page length in bytes */
3755 	    P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3756 
3757 	/* Page is beyond end of file */
3758 	if (pgoff >= offset) {
3759 		unlock_page(pp);
3760 		zfs_exit(zfsvfs, FTAG);
3761 		return (0);
3762 	}
3763 
3764 	/* Truncate page length to end of file */
3765 	if (pgoff + pglen > offset)
3766 		pglen = offset - pgoff;
3767 
3768 #if 0
3769 	/*
3770 	 * FIXME: Allow mmap writes past its quota.  The correct fix
3771 	 * is to register a page_mkwrite() handler to count the page
3772 	 * against its quota when it is about to be dirtied.
3773 	 */
3774 	if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3775 	    KUID_TO_SUID(ip->i_uid)) ||
3776 	    zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3777 	    KGID_TO_SGID(ip->i_gid)) ||
3778 	    (zp->z_projid != ZFS_DEFAULT_PROJID &&
3779 	    zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3780 	    zp->z_projid))) {
3781 		err = EDQUOT;
3782 	}
3783 #endif
3784 
3785 	/*
3786 	 * The ordering here is critical and must adhere to the following
3787 	 * rules in order to avoid deadlocking in either zfs_read() or
3788 	 * zfs_free_range() due to a lock inversion.
3789 	 *
3790 	 * 1) The page must be unlocked prior to acquiring the range lock.
3791 	 *    This is critical because zfs_read() calls find_lock_page()
3792 	 *    which may block on the page lock while holding the range lock.
3793 	 *
3794 	 * 2) Before setting or clearing write back on a page the range lock
3795 	 *    must be held in order to prevent a lock inversion with the
3796 	 *    zfs_free_range() function.
3797 	 *
3798 	 * This presents a problem because upon entering this function the
3799 	 * page lock is already held.  To safely acquire the range lock the
3800 	 * page lock must be dropped.  This creates a window where another
3801 	 * process could truncate, invalidate, dirty, or write out the page.
3802 	 *
3803 	 * Therefore, after successfully reacquiring the range and page locks
3804 	 * the current page state is checked.  In the common case everything
3805 	 * will be as is expected and it can be written out.  However, if
3806 	 * the page state has changed it must be handled accordingly.
3807 	 */
3808 	mapping = pp->mapping;
3809 	redirty_page_for_writepage(wbc, pp);
3810 	unlock_page(pp);
3811 
3812 	zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3813 	    pgoff, pglen, RL_WRITER);
3814 	lock_page(pp);
3815 
3816 	/* Page mapping changed or it was no longer dirty, we're done */
3817 	if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3818 		unlock_page(pp);
3819 		zfs_rangelock_exit(lr);
3820 		zfs_exit(zfsvfs, FTAG);
3821 		return (0);
3822 	}
3823 
3824 	/* Another process started write block if required */
3825 	if (PageWriteback(pp)) {
3826 		unlock_page(pp);
3827 		zfs_rangelock_exit(lr);
3828 
3829 		if (wbc->sync_mode != WB_SYNC_NONE) {
3830 			/*
3831 			 * Speed up any non-sync page writebacks since
3832 			 * they may take several seconds to complete.
3833 			 * Refer to the comment in zpl_fsync() for details.
3834 			 */
3835 			if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
3836 				zil_commit(zfsvfs->z_log, zp->z_id);
3837 			}
3838 
3839 			if (PageWriteback(pp))
3840 #ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
3841 				folio_wait_bit(page_folio(pp), PG_writeback);
3842 #else
3843 				wait_on_page_bit(pp, PG_writeback);
3844 #endif
3845 		}
3846 
3847 		zfs_exit(zfsvfs, FTAG);
3848 		return (0);
3849 	}
3850 
3851 	/* Clear the dirty flag the required locks are held */
3852 	if (!clear_page_dirty_for_io(pp)) {
3853 		unlock_page(pp);
3854 		zfs_rangelock_exit(lr);
3855 		zfs_exit(zfsvfs, FTAG);
3856 		return (0);
3857 	}
3858 
3859 	/*
3860 	 * Counterpart for redirty_page_for_writepage() above.  This page
3861 	 * was in fact not skipped and should not be counted as if it were.
3862 	 */
3863 	wbc->pages_skipped--;
3864 	if (!for_sync)
3865 		atomic_inc_32(&zp->z_async_writes_cnt);
3866 	set_page_writeback(pp);
3867 	unlock_page(pp);
3868 
3869 	tx = dmu_tx_create(zfsvfs->z_os);
3870 	dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3871 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3872 	zfs_sa_upgrade_txholds(tx, zp);
3873 
3874 	err = dmu_tx_assign(tx, DMU_TX_WAIT);
3875 	if (err != 0) {
3876 		dmu_tx_abort(tx);
3877 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
3878 		filemap_dirty_folio(page_mapping(pp), page_folio(pp));
3879 #else
3880 		__set_page_dirty_nobuffers(pp);
3881 #endif
3882 		ClearPageError(pp);
3883 		end_page_writeback(pp);
3884 		if (!for_sync)
3885 			atomic_dec_32(&zp->z_async_writes_cnt);
3886 		zfs_rangelock_exit(lr);
3887 		zfs_exit(zfsvfs, FTAG);
3888 		return (err);
3889 	}
3890 
3891 	va = kmap(pp);
3892 	ASSERT3U(pglen, <=, PAGE_SIZE);
3893 	dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3894 	kunmap(pp);
3895 
3896 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3897 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3898 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3899 	    &zp->z_pflags, 8);
3900 
3901 	/* Preserve the mtime and ctime provided by the inode */
3902 	tmp_ts = zpl_inode_get_mtime(ip);
3903 	ZFS_TIME_ENCODE(&tmp_ts, mtime);
3904 	tmp_ts = zpl_inode_get_ctime(ip);
3905 	ZFS_TIME_ENCODE(&tmp_ts, ctime);
3906 	zp->z_atime_dirty = B_FALSE;
3907 	zp->z_seq++;
3908 
3909 	err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3910 
3911 	boolean_t commit = B_FALSE;
3912 	if (wbc->sync_mode != WB_SYNC_NONE) {
3913 		/*
3914 		 * Note that this is rarely called under writepages(), because
3915 		 * writepages() normally handles the entire commit for
3916 		 * performance reasons.
3917 		 */
3918 		commit = B_TRUE;
3919 	} else if (!for_sync && atomic_load_32(&zp->z_sync_writes_cnt) > 0) {
3920 		/*
3921 		 * If the caller does not intend to wait synchronously
3922 		 * for this page writeback to complete and there are active
3923 		 * synchronous calls on this file, do a commit so that
3924 		 * the latter don't accidentally end up waiting for
3925 		 * our writeback to complete. Refer to the comment in
3926 		 * zpl_fsync() (when HAVE_FSYNC_RANGE is defined) for details.
3927 		 */
3928 		commit = B_TRUE;
3929 	}
3930 
3931 	zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, commit,
3932 	    B_FALSE, for_sync ? zfs_putpage_sync_commit_cb :
3933 	    zfs_putpage_async_commit_cb, pp);
3934 
3935 	dmu_tx_commit(tx);
3936 
3937 	zfs_rangelock_exit(lr);
3938 
3939 	if (commit)
3940 		zil_commit(zfsvfs->z_log, zp->z_id);
3941 
3942 	dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen);
3943 
3944 	zfs_exit(zfsvfs, FTAG);
3945 	return (err);
3946 }
3947 
3948 /*
3949  * Update the system attributes when the inode has been dirtied.  For the
3950  * moment we only update the mode, atime, mtime, and ctime.
3951  */
3952 int
zfs_dirty_inode(struct inode * ip,int flags)3953 zfs_dirty_inode(struct inode *ip, int flags)
3954 {
3955 	znode_t		*zp = ITOZ(ip);
3956 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
3957 	dmu_tx_t	*tx;
3958 	uint64_t	mode, atime[2], mtime[2], ctime[2];
3959 	inode_timespec_t tmp_ts;
3960 	sa_bulk_attr_t	bulk[4];
3961 	int		error = 0;
3962 	int		cnt = 0;
3963 
3964 	if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
3965 		return (0);
3966 
3967 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3968 		return (error);
3969 
3970 #ifdef I_DIRTY_TIME
3971 	/*
3972 	 * This is the lazytime semantic introduced in Linux 4.0
3973 	 * This flag will only be called from update_time when lazytime is set.
3974 	 * (Note, I_DIRTY_SYNC will also set if not lazytime)
3975 	 * Fortunately mtime and ctime are managed within ZFS itself, so we
3976 	 * only need to dirty atime.
3977 	 */
3978 	if (flags == I_DIRTY_TIME) {
3979 		zp->z_atime_dirty = B_TRUE;
3980 		goto out;
3981 	}
3982 #endif
3983 
3984 	tx = dmu_tx_create(zfsvfs->z_os);
3985 
3986 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3987 	zfs_sa_upgrade_txholds(tx, zp);
3988 
3989 	error = dmu_tx_assign(tx, DMU_TX_WAIT);
3990 	if (error) {
3991 		dmu_tx_abort(tx);
3992 		goto out;
3993 	}
3994 
3995 	mutex_enter(&zp->z_lock);
3996 	zp->z_atime_dirty = B_FALSE;
3997 
3998 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
3999 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
4000 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4001 	SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4002 
4003 	/* Preserve the mode, mtime and ctime provided by the inode */
4004 	tmp_ts = zpl_inode_get_atime(ip);
4005 	ZFS_TIME_ENCODE(&tmp_ts, atime);
4006 	tmp_ts = zpl_inode_get_mtime(ip);
4007 	ZFS_TIME_ENCODE(&tmp_ts, mtime);
4008 	tmp_ts = zpl_inode_get_ctime(ip);
4009 	ZFS_TIME_ENCODE(&tmp_ts, ctime);
4010 	mode = ip->i_mode;
4011 
4012 	zp->z_mode = mode;
4013 
4014 	error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4015 	mutex_exit(&zp->z_lock);
4016 
4017 	dmu_tx_commit(tx);
4018 out:
4019 	zfs_exit(zfsvfs, FTAG);
4020 	return (error);
4021 }
4022 
4023 void
zfs_inactive(struct inode * ip)4024 zfs_inactive(struct inode *ip)
4025 {
4026 	znode_t	*zp = ITOZ(ip);
4027 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4028 	uint64_t atime[2];
4029 	int error;
4030 	int need_unlock = 0;
4031 
4032 	/* Only read lock if we haven't already write locked, e.g. rollback */
4033 	if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
4034 		need_unlock = 1;
4035 		rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4036 	}
4037 	if (zp->z_sa_hdl == NULL) {
4038 		if (need_unlock)
4039 			rw_exit(&zfsvfs->z_teardown_inactive_lock);
4040 		return;
4041 	}
4042 
4043 	if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
4044 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4045 
4046 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4047 		zfs_sa_upgrade_txholds(tx, zp);
4048 		error = dmu_tx_assign(tx, DMU_TX_WAIT);
4049 		if (error) {
4050 			dmu_tx_abort(tx);
4051 		} else {
4052 			inode_timespec_t tmp_atime;
4053 			tmp_atime = zpl_inode_get_atime(ip);
4054 			ZFS_TIME_ENCODE(&tmp_atime, atime);
4055 			mutex_enter(&zp->z_lock);
4056 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4057 			    (void *)&atime, sizeof (atime), tx);
4058 			zp->z_atime_dirty = B_FALSE;
4059 			mutex_exit(&zp->z_lock);
4060 			dmu_tx_commit(tx);
4061 		}
4062 	}
4063 
4064 	zfs_zinactive(zp);
4065 	if (need_unlock)
4066 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4067 }
4068 
4069 /*
4070  * Fill pages with data from the disk.
4071  */
4072 static int
zfs_fillpage(struct inode * ip,struct page * pp)4073 zfs_fillpage(struct inode *ip, struct page *pp)
4074 {
4075 	znode_t *zp = ITOZ(ip);
4076 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4077 	loff_t i_size = i_size_read(ip);
4078 	u_offset_t io_off = page_offset(pp);
4079 	size_t io_len = PAGE_SIZE;
4080 
4081 	ASSERT3U(io_off, <, i_size);
4082 
4083 	if (io_off + io_len > i_size)
4084 		io_len = i_size - io_off;
4085 
4086 	void *va = kmap(pp);
4087 	int error = dmu_read(zfsvfs->z_os, zp->z_id, io_off,
4088 	    io_len, va, DMU_READ_PREFETCH);
4089 	if (io_len != PAGE_SIZE)
4090 		memset((char *)va + io_len, 0, PAGE_SIZE - io_len);
4091 	kunmap(pp);
4092 
4093 	if (error) {
4094 		/* convert checksum errors into IO errors */
4095 		if (error == ECKSUM)
4096 			error = SET_ERROR(EIO);
4097 
4098 		SetPageError(pp);
4099 		ClearPageUptodate(pp);
4100 	} else {
4101 		ClearPageError(pp);
4102 		SetPageUptodate(pp);
4103 	}
4104 
4105 	return (error);
4106 }
4107 
4108 /*
4109  * Uses zfs_fillpage to read data from the file and fill the page.
4110  *
4111  *	IN:	ip	 - inode of file to get data from.
4112  *		pp	 - page to read
4113  *
4114  *	RETURN:	0 on success, error code on failure.
4115  *
4116  * Timestamps:
4117  *	vp - atime updated
4118  */
4119 int
zfs_getpage(struct inode * ip,struct page * pp)4120 zfs_getpage(struct inode *ip, struct page *pp)
4121 {
4122 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4123 	znode_t *zp = ITOZ(ip);
4124 	int error;
4125 	loff_t i_size = i_size_read(ip);
4126 	u_offset_t io_off = page_offset(pp);
4127 	size_t io_len = PAGE_SIZE;
4128 
4129 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4130 		return (error);
4131 
4132 	ASSERT3U(io_off, <, i_size);
4133 
4134 	if (io_off + io_len > i_size)
4135 		io_len = i_size - io_off;
4136 
4137 	/*
4138 	 * It is important to hold the rangelock here because it is possible
4139 	 * a Direct I/O write or block clone might be taking place at the same
4140 	 * time that a page is being faulted in through filemap_fault(). With
4141 	 * Direct I/O writes and block cloning db->db_data will be set to NULL
4142 	 * with dbuf_clear_data() in dmu_buif_will_clone_or_dio(). If the
4143 	 * rangelock is not held, then there is a race between faulting in a
4144 	 * page and writing out a Direct I/O write or block cloning. Without
4145 	 * the rangelock a NULL pointer dereference can occur in
4146 	 * dmu_read_impl() for db->db_data during the mempcy operation when
4147 	 * zfs_fillpage() calls dmu_read().
4148 	 */
4149 	zfs_locked_range_t *lr = zfs_rangelock_tryenter(&zp->z_rangelock,
4150 	    io_off, io_len, RL_READER);
4151 	if (lr == NULL) {
4152 		/*
4153 		 * It is important to drop the page lock before grabbing the
4154 		 * rangelock to avoid another deadlock between here and
4155 		 * zfs_write() -> update_pages(). update_pages() holds both the
4156 		 * rangelock and the page lock.
4157 		 */
4158 		get_page(pp);
4159 		unlock_page(pp);
4160 		lr = zfs_rangelock_enter(&zp->z_rangelock, io_off,
4161 		    io_len, RL_READER);
4162 		lock_page(pp);
4163 		put_page(pp);
4164 	}
4165 	error = zfs_fillpage(ip, pp);
4166 	zfs_rangelock_exit(lr);
4167 
4168 	if (error == 0)
4169 		dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, PAGE_SIZE);
4170 
4171 	zfs_exit(zfsvfs, FTAG);
4172 
4173 	return (error);
4174 }
4175 
4176 /*
4177  * Check ZFS specific permissions to memory map a section of a file.
4178  *
4179  *	IN:	ip	- inode of the file to mmap
4180  *		off	- file offset
4181  *		addrp	- start address in memory region
4182  *		len	- length of memory region
4183  *		vm_flags- address flags
4184  *
4185  *	RETURN:	0 if success
4186  *		error code if failure
4187  */
4188 int
zfs_map(struct inode * ip,offset_t off,caddr_t * addrp,size_t len,unsigned long vm_flags)4189 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4190     unsigned long vm_flags)
4191 {
4192 	(void) addrp;
4193 	znode_t  *zp = ITOZ(ip);
4194 	zfsvfs_t *zfsvfs = ITOZSB(ip);
4195 	int error;
4196 
4197 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4198 		return (error);
4199 
4200 	if ((vm_flags & VM_WRITE) && (vm_flags & VM_SHARED) &&
4201 	    (zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4202 		zfs_exit(zfsvfs, FTAG);
4203 		return (SET_ERROR(EPERM));
4204 	}
4205 
4206 	if ((vm_flags & (VM_READ | VM_EXEC)) &&
4207 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4208 		zfs_exit(zfsvfs, FTAG);
4209 		return (SET_ERROR(EACCES));
4210 	}
4211 
4212 	if (off < 0 || len > MAXOFFSET_T - off) {
4213 		zfs_exit(zfsvfs, FTAG);
4214 		return (SET_ERROR(ENXIO));
4215 	}
4216 
4217 	zfs_exit(zfsvfs, FTAG);
4218 	return (0);
4219 }
4220 
4221 /*
4222  * Free or allocate space in a file.  Currently, this function only
4223  * supports the `F_FREESP' command.  However, this command is somewhat
4224  * misnamed, as its functionality includes the ability to allocate as
4225  * well as free space.
4226  *
4227  *	IN:	zp	- znode of file to free data in.
4228  *		cmd	- action to take (only F_FREESP supported).
4229  *		bfp	- section of file to free/alloc.
4230  *		flag	- current file open mode flags.
4231  *		offset	- current file offset.
4232  *		cr	- credentials of caller.
4233  *
4234  *	RETURN:	0 on success, error code on failure.
4235  *
4236  * Timestamps:
4237  *	zp - ctime|mtime updated
4238  */
4239 int
zfs_space(znode_t * zp,int cmd,flock64_t * bfp,int flag,offset_t offset,cred_t * cr)4240 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
4241     offset_t offset, cred_t *cr)
4242 {
4243 	(void) offset;
4244 	zfsvfs_t	*zfsvfs = ZTOZSB(zp);
4245 	uint64_t	off, len;
4246 	int		error;
4247 
4248 	if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
4249 		return (error);
4250 
4251 	if (cmd != F_FREESP) {
4252 		zfs_exit(zfsvfs, FTAG);
4253 		return (SET_ERROR(EINVAL));
4254 	}
4255 
4256 	/*
4257 	 * Callers might not be able to detect properly that we are read-only,
4258 	 * so check it explicitly here.
4259 	 */
4260 	if (zfs_is_readonly(zfsvfs)) {
4261 		zfs_exit(zfsvfs, FTAG);
4262 		return (SET_ERROR(EROFS));
4263 	}
4264 
4265 	if (bfp->l_len < 0) {
4266 		zfs_exit(zfsvfs, FTAG);
4267 		return (SET_ERROR(EINVAL));
4268 	}
4269 
4270 	/*
4271 	 * Permissions aren't checked on Solaris because on this OS
4272 	 * zfs_space() can only be called with an opened file handle.
4273 	 * On Linux we can get here through truncate_range() which
4274 	 * operates directly on inodes, so we need to check access rights.
4275 	 */
4276 	if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr,
4277 	    zfs_init_idmap))) {
4278 		zfs_exit(zfsvfs, FTAG);
4279 		return (error);
4280 	}
4281 
4282 	off = bfp->l_start;
4283 	len = bfp->l_len; /* 0 means from off to end of file */
4284 
4285 	error = zfs_freesp(zp, off, len, flag, TRUE);
4286 
4287 	zfs_exit(zfsvfs, FTAG);
4288 	return (error);
4289 }
4290 
4291 int
zfs_fid(struct inode * ip,fid_t * fidp)4292 zfs_fid(struct inode *ip, fid_t *fidp)
4293 {
4294 	znode_t		*zp = ITOZ(ip);
4295 	zfsvfs_t	*zfsvfs = ITOZSB(ip);
4296 	uint32_t	gen;
4297 	uint64_t	gen64;
4298 	uint64_t	object = zp->z_id;
4299 	zfid_short_t	*zfid;
4300 	int		size, i, error;
4301 
4302 	if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
4303 		return (error);
4304 
4305 	if (fidp->fid_len < SHORT_FID_LEN) {
4306 		fidp->fid_len = SHORT_FID_LEN;
4307 		zfs_exit(zfsvfs, FTAG);
4308 		return (SET_ERROR(ENOSPC));
4309 	}
4310 
4311 	if ((error = zfs_verify_zp(zp)) != 0) {
4312 		zfs_exit(zfsvfs, FTAG);
4313 		return (error);
4314 	}
4315 
4316 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4317 	    &gen64, sizeof (uint64_t))) != 0) {
4318 		zfs_exit(zfsvfs, FTAG);
4319 		return (error);
4320 	}
4321 
4322 	gen = (uint32_t)gen64;
4323 
4324 	size = SHORT_FID_LEN;
4325 
4326 	zfid = (zfid_short_t *)fidp;
4327 
4328 	zfid->zf_len = size;
4329 
4330 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4331 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4332 
4333 	/* Must have a non-zero generation number to distinguish from .zfs */
4334 	if (gen == 0)
4335 		gen = 1;
4336 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4337 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4338 
4339 	zfs_exit(zfsvfs, FTAG);
4340 	return (0);
4341 }
4342 
4343 #if defined(_KERNEL)
4344 EXPORT_SYMBOL(zfs_open);
4345 EXPORT_SYMBOL(zfs_close);
4346 EXPORT_SYMBOL(zfs_lookup);
4347 EXPORT_SYMBOL(zfs_create);
4348 EXPORT_SYMBOL(zfs_tmpfile);
4349 EXPORT_SYMBOL(zfs_remove);
4350 EXPORT_SYMBOL(zfs_mkdir);
4351 EXPORT_SYMBOL(zfs_rmdir);
4352 EXPORT_SYMBOL(zfs_readdir);
4353 EXPORT_SYMBOL(zfs_getattr_fast);
4354 EXPORT_SYMBOL(zfs_setattr);
4355 EXPORT_SYMBOL(zfs_rename);
4356 EXPORT_SYMBOL(zfs_symlink);
4357 EXPORT_SYMBOL(zfs_readlink);
4358 EXPORT_SYMBOL(zfs_link);
4359 EXPORT_SYMBOL(zfs_inactive);
4360 EXPORT_SYMBOL(zfs_space);
4361 EXPORT_SYMBOL(zfs_fid);
4362 EXPORT_SYMBOL(zfs_getpage);
4363 EXPORT_SYMBOL(zfs_putpage);
4364 EXPORT_SYMBOL(zfs_dirty_inode);
4365 EXPORT_SYMBOL(zfs_map);
4366 
4367 module_param(zfs_delete_blocks, ulong, 0644);
4368 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4369 #endif
4370