xref: /freebsd/sys/netpfil/ipfw/ip_fw2.c (revision 4a77657cbc011ea657ccb079fff6b58b295eccb0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2002-2009 Luigi Rizzo, Universita` di Pisa
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 /*
30  * The FreeBSD IP packet firewall, main file
31  */
32 
33 #include "opt_ipfw.h"
34 #include "opt_ipdivert.h"
35 #include "opt_inet.h"
36 #ifndef INET
37 #error "IPFIREWALL requires INET"
38 #endif /* INET */
39 #include "opt_inet6.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/condvar.h>
44 #include <sys/counter.h>
45 #include <sys/eventhandler.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/kernel.h>
49 #include <sys/lock.h>
50 #include <sys/jail.h>
51 #include <sys/module.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/rwlock.h>
55 #include <sys/rmlock.h>
56 #include <sys/sdt.h>
57 #include <sys/socket.h>
58 #include <sys/socketvar.h>
59 #include <sys/sysctl.h>
60 #include <sys/syslog.h>
61 #include <sys/ucred.h>
62 #include <net/ethernet.h> /* for ETHERTYPE_IP */
63 #include <net/if.h>
64 #include <net/if_var.h>
65 #include <net/if_private.h>
66 #include <net/route.h>
67 #include <net/route/nhop.h>
68 #include <net/pfil.h>
69 #include <net/vnet.h>
70 #include <net/if_pfsync.h>
71 
72 #include <netpfil/pf/pf_mtag.h>
73 
74 #include <netinet/in.h>
75 #include <netinet/in_var.h>
76 #include <netinet/in_pcb.h>
77 #include <netinet/ip.h>
78 #include <netinet/ip_var.h>
79 #include <netinet/ip_icmp.h>
80 #include <netinet/ip_fw.h>
81 #include <netinet/ip_carp.h>
82 #include <netinet/pim.h>
83 #include <netinet/tcp_var.h>
84 #include <netinet/udp.h>
85 #include <netinet/udp_var.h>
86 #include <netinet/sctp.h>
87 #include <netinet/sctp_crc32.h>
88 #include <netinet/sctp_header.h>
89 
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #include <netinet/in_fib.h>
93 #ifdef INET6
94 #include <netinet6/in6_fib.h>
95 #include <netinet6/in6_pcb.h>
96 #include <netinet6/scope6_var.h>
97 #include <netinet6/ip6_var.h>
98 #endif
99 
100 #include <net/if_gre.h> /* for struct grehdr */
101 
102 #include <netpfil/ipfw/ip_fw_private.h>
103 
104 #include <machine/in_cksum.h>	/* XXX for in_cksum */
105 
106 #ifdef MAC
107 #include <security/mac/mac_framework.h>
108 #endif
109 
110 #define	IPFW_PROBE(probe, arg0, arg1, arg2, arg3, arg4, arg5)		\
111     SDT_PROBE6(ipfw, , , probe, arg0, arg1, arg2, arg3, arg4, arg5)
112 
113 SDT_PROVIDER_DEFINE(ipfw);
114 SDT_PROBE_DEFINE6(ipfw, , , rule__matched,
115     "int",			/* retval */
116     "int",			/* af */
117     "void *",			/* src addr */
118     "void *",			/* dst addr */
119     "struct ip_fw_args *",	/* args */
120     "struct ip_fw *"		/* rule */);
121 
122 /*
123  * static variables followed by global ones.
124  * All ipfw global variables are here.
125  */
126 
127 VNET_DEFINE_STATIC(int, fw_deny_unknown_exthdrs);
128 #define	V_fw_deny_unknown_exthdrs	VNET(fw_deny_unknown_exthdrs)
129 
130 VNET_DEFINE_STATIC(int, fw_permit_single_frag6) = 1;
131 #define	V_fw_permit_single_frag6	VNET(fw_permit_single_frag6)
132 
133 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
134 static int default_to_accept = 1;
135 #else
136 static int default_to_accept;
137 #endif
138 
139 VNET_DEFINE(int, autoinc_step);
140 VNET_DEFINE(int, fw_one_pass) = 1;
141 
142 VNET_DEFINE(unsigned int, fw_tables_max);
143 VNET_DEFINE(unsigned int, fw_tables_sets) = 0;	/* Don't use set-aware tables */
144 /* Use 128 tables by default */
145 static unsigned int default_fw_tables = IPFW_TABLES_DEFAULT;
146 
147 #ifndef IPFIREWALL_LINEAR_SKIPTO
148 VNET_DEFINE(int, skipto_cache) = 0;
149 #else
150 VNET_DEFINE(int, skipto_cache) = 1;
151 #endif
152 
153 static uint32_t jump(struct ip_fw_chain *chain, struct ip_fw *f,
154     uint32_t num, int tablearg, bool jump_backwards);
155 
156 /*
157  * Each rule belongs to one of 32 different sets (0..31).
158  * The variable set_disable contains one bit per set.
159  * If the bit is set, all rules in the corresponding set
160  * are disabled. Set RESVD_SET(31) is reserved for the default rule
161  * and rules that are not deleted by the flush command,
162  * and CANNOT be disabled.
163  * Rules in set RESVD_SET can only be deleted individually.
164  */
165 VNET_DEFINE(u_int32_t, set_disable);
166 #define	V_set_disable			VNET(set_disable)
167 
168 VNET_DEFINE(int, fw_verbose);
169 /* counter for ipfw_log(NULL...) */
170 VNET_DEFINE(u_int64_t, norule_counter);
171 VNET_DEFINE(int, verbose_limit);
172 
173 /* layer3_chain contains the list of rules for layer 3 */
174 VNET_DEFINE(struct ip_fw_chain, layer3_chain);
175 
176 /* ipfw_vnet_ready controls when we are open for business */
177 VNET_DEFINE(int, ipfw_vnet_ready) = 0;
178 
179 VNET_DEFINE(int, ipfw_nat_ready) = 0;
180 
181 ipfw_nat_t *ipfw_nat_ptr = NULL;
182 struct cfg_nat *(*lookup_nat_ptr)(struct nat_list *, int);
183 ipfw_nat_cfg_t *ipfw_nat_cfg_ptr;
184 ipfw_nat_cfg_t *ipfw_nat_del_ptr;
185 ipfw_nat_cfg_t *ipfw_nat_get_cfg_ptr;
186 ipfw_nat_cfg_t *ipfw_nat_get_log_ptr;
187 
188 #ifdef SYSCTL_NODE
189 uint32_t dummy_def = IPFW_DEFAULT_RULE;
190 static int sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS);
191 static int sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS);
192 
193 SYSBEGIN(f3)
194 
195 SYSCTL_NODE(_net_inet_ip, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
196     "Firewall");
197 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, one_pass,
198     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_one_pass), 0,
199     "Only do a single pass through ipfw when using dummynet(4)");
200 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, autoinc_step,
201     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(autoinc_step), 0,
202     "Rule number auto-increment step");
203 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose,
204     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE3, &VNET_NAME(fw_verbose), 0,
205     "Log matches to ipfw rules");
206 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, verbose_limit,
207     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(verbose_limit), 0,
208     "Set upper limit of matches of ipfw rules logged");
209 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, skipto_cache,
210     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(skipto_cache), 0,
211     "Status of linear skipto cache: 1 - enabled, 0 - disabled.");
212 SYSCTL_UINT(_net_inet_ip_fw, OID_AUTO, default_rule, CTLFLAG_RD,
213     &dummy_def, 0,
214     "The default/max possible rule number.");
215 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_max,
216     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
217     0, 0, sysctl_ipfw_table_num, "IU",
218     "Maximum number of concurrently used tables");
219 SYSCTL_PROC(_net_inet_ip_fw, OID_AUTO, tables_sets,
220     CTLFLAG_VNET | CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE,
221     0, 0, sysctl_ipfw_tables_sets, "IU",
222     "Use per-set namespace for tables");
223 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, default_to_accept, CTLFLAG_RDTUN,
224     &default_to_accept, 0,
225     "Make the default rule accept all packets.");
226 TUNABLE_INT("net.inet.ip.fw.tables_max", (int *)&default_fw_tables);
227 SYSCTL_INT(_net_inet_ip_fw, OID_AUTO, static_count,
228     CTLFLAG_VNET | CTLFLAG_RD, &VNET_NAME(layer3_chain.n_rules), 0,
229     "Number of static rules");
230 
231 #ifdef INET6
232 SYSCTL_DECL(_net_inet6_ip6);
233 SYSCTL_NODE(_net_inet6_ip6, OID_AUTO, fw, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
234     "Firewall");
235 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, deny_unknown_exthdrs,
236     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
237     &VNET_NAME(fw_deny_unknown_exthdrs), 0,
238     "Deny packets with unknown IPv6 Extension Headers");
239 SYSCTL_INT(_net_inet6_ip6_fw, OID_AUTO, permit_single_frag6,
240     CTLFLAG_VNET | CTLFLAG_RW | CTLFLAG_SECURE,
241     &VNET_NAME(fw_permit_single_frag6), 0,
242     "Permit single packet IPv6 fragments");
243 #endif /* INET6 */
244 
245 SYSEND
246 
247 #endif /* SYSCTL_NODE */
248 
249 /*
250  * Some macros used in the various matching options.
251  * L3HDR maps an ipv4 pointer into a layer3 header pointer of type T
252  * Other macros just cast void * into the appropriate type
253  */
254 #define	L3HDR(T, ip)	((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
255 #define	TCP(p)		((struct tcphdr *)(p))
256 #define	SCTP(p)		((struct sctphdr *)(p))
257 #define	UDP(p)		((struct udphdr *)(p))
258 #define	ICMP(p)		((struct icmphdr *)(p))
259 #define	ICMP6(p)	((struct icmp6_hdr *)(p))
260 
261 static __inline int
icmptype_match(struct icmphdr * icmp,ipfw_insn_u32 * cmd)262 icmptype_match(struct icmphdr *icmp, ipfw_insn_u32 *cmd)
263 {
264 	int type = icmp->icmp_type;
265 
266 	return (type <= ICMP_MAXTYPE && (cmd->d[0] & (1<<type)) );
267 }
268 
269 #define TT	( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
270     (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
271 
272 static int
is_icmp_query(struct icmphdr * icmp)273 is_icmp_query(struct icmphdr *icmp)
274 {
275 	int type = icmp->icmp_type;
276 
277 	return (type <= ICMP_MAXTYPE && (TT & (1<<type)) );
278 }
279 #undef TT
280 
281 /*
282  * The following checks use two arrays of 8 or 16 bits to store the
283  * bits that we want set or clear, respectively. They are in the
284  * low and high half of cmd->arg1 or cmd->d[0].
285  *
286  * We scan options and store the bits we find set. We succeed if
287  *
288  *	(want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
289  *
290  * The code is sometimes optimized not to store additional variables.
291  */
292 
293 static int
flags_match(ipfw_insn * cmd,u_int8_t bits)294 flags_match(ipfw_insn *cmd, u_int8_t bits)
295 {
296 	u_char want_clear;
297 	bits = ~bits;
298 
299 	if ( ((cmd->arg1 & 0xff) & bits) != 0)
300 		return 0; /* some bits we want set were clear */
301 	want_clear = (cmd->arg1 >> 8) & 0xff;
302 	if ( (want_clear & bits) != want_clear)
303 		return 0; /* some bits we want clear were set */
304 	return 1;
305 }
306 
307 static int
ipopts_match(struct ip * ip,ipfw_insn * cmd)308 ipopts_match(struct ip *ip, ipfw_insn *cmd)
309 {
310 	int optlen, bits = 0;
311 	u_char *cp = (u_char *)(ip + 1);
312 	int x = (ip->ip_hl << 2) - sizeof (struct ip);
313 
314 	for (; x > 0; x -= optlen, cp += optlen) {
315 		int opt = cp[IPOPT_OPTVAL];
316 
317 		if (opt == IPOPT_EOL)
318 			break;
319 		if (opt == IPOPT_NOP)
320 			optlen = 1;
321 		else {
322 			optlen = cp[IPOPT_OLEN];
323 			if (optlen <= 0 || optlen > x)
324 				return 0; /* invalid or truncated */
325 		}
326 		switch (opt) {
327 		default:
328 			break;
329 
330 		case IPOPT_LSRR:
331 			bits |= IP_FW_IPOPT_LSRR;
332 			break;
333 
334 		case IPOPT_SSRR:
335 			bits |= IP_FW_IPOPT_SSRR;
336 			break;
337 
338 		case IPOPT_RR:
339 			bits |= IP_FW_IPOPT_RR;
340 			break;
341 
342 		case IPOPT_TS:
343 			bits |= IP_FW_IPOPT_TS;
344 			break;
345 		}
346 	}
347 	return (flags_match(cmd, bits));
348 }
349 
350 /*
351  * Parse TCP options. The logic copied from tcp_dooptions().
352  */
353 static int
tcpopts_parse(const struct tcphdr * tcp,uint16_t * mss)354 tcpopts_parse(const struct tcphdr *tcp, uint16_t *mss)
355 {
356 	const u_char *cp = (const u_char *)(tcp + 1);
357 	int optlen, bits = 0;
358 	int cnt = (tcp->th_off << 2) - sizeof(struct tcphdr);
359 
360 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
361 		int opt = cp[0];
362 		if (opt == TCPOPT_EOL)
363 			break;
364 		if (opt == TCPOPT_NOP)
365 			optlen = 1;
366 		else {
367 			if (cnt < 2)
368 				break;
369 			optlen = cp[1];
370 			if (optlen < 2 || optlen > cnt)
371 				break;
372 		}
373 
374 		switch (opt) {
375 		default:
376 			break;
377 
378 		case TCPOPT_MAXSEG:
379 			if (optlen != TCPOLEN_MAXSEG)
380 				break;
381 			bits |= IP_FW_TCPOPT_MSS;
382 			if (mss != NULL)
383 				*mss = be16dec(cp + 2);
384 			break;
385 
386 		case TCPOPT_WINDOW:
387 			if (optlen == TCPOLEN_WINDOW)
388 				bits |= IP_FW_TCPOPT_WINDOW;
389 			break;
390 
391 		case TCPOPT_SACK_PERMITTED:
392 			if (optlen == TCPOLEN_SACK_PERMITTED)
393 				bits |= IP_FW_TCPOPT_SACK;
394 			break;
395 
396 		case TCPOPT_SACK:
397 			if (optlen > 2 && (optlen - 2) % TCPOLEN_SACK == 0)
398 				bits |= IP_FW_TCPOPT_SACK;
399 			break;
400 
401 		case TCPOPT_TIMESTAMP:
402 			if (optlen == TCPOLEN_TIMESTAMP)
403 				bits |= IP_FW_TCPOPT_TS;
404 			break;
405 		}
406 	}
407 	return (bits);
408 }
409 
410 static int
tcpopts_match(struct tcphdr * tcp,ipfw_insn * cmd)411 tcpopts_match(struct tcphdr *tcp, ipfw_insn *cmd)
412 {
413 
414 	return (flags_match(cmd, tcpopts_parse(tcp, NULL)));
415 }
416 
417 static int
iface_match(struct ifnet * ifp,ipfw_insn_if * cmd,struct ip_fw_chain * chain,uint32_t * tablearg)418 iface_match(struct ifnet *ifp, ipfw_insn_if *cmd, struct ip_fw_chain *chain,
419     uint32_t *tablearg)
420 {
421 
422 	if (ifp == NULL)	/* no iface with this packet, match fails */
423 		return (0);
424 
425 	/* Check by name or by IP address */
426 	if (cmd->name[0] != '\0') { /* match by name */
427 		if (cmd->name[0] == '\1') /* use tablearg to match */
428 			return ipfw_lookup_table(chain, cmd->p.kidx, 0,
429 			    &ifp->if_index, tablearg);
430 		/* Check name */
431 		if (cmd->p.glob) {
432 			if (fnmatch(cmd->name, ifp->if_xname, 0) == 0)
433 				return(1);
434 		} else {
435 			if (strncmp(ifp->if_xname, cmd->name, IFNAMSIZ) == 0)
436 				return(1);
437 		}
438 	} else {
439 #if !defined(USERSPACE) && defined(__FreeBSD__)	/* and OSX too ? */
440 		struct ifaddr *ia;
441 
442 		NET_EPOCH_ASSERT();
443 
444 		CK_STAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
445 			if (ia->ifa_addr->sa_family != AF_INET)
446 				continue;
447 			if (cmd->p.ip.s_addr == ((struct sockaddr_in *)
448 			    (ia->ifa_addr))->sin_addr.s_addr)
449 				return (1);	/* match */
450 		}
451 #endif /* __FreeBSD__ */
452 	}
453 	return(0);	/* no match, fail ... */
454 }
455 
456 /*
457  * The verify_path function checks if a route to the src exists and
458  * if it is reachable via ifp (when provided).
459  *
460  * The 'verrevpath' option checks that the interface that an IP packet
461  * arrives on is the same interface that traffic destined for the
462  * packet's source address would be routed out of.
463  * The 'versrcreach' option just checks that the source address is
464  * reachable via any route (except default) in the routing table.
465  * These two are a measure to block forged packets. This is also
466  * commonly known as "anti-spoofing" or Unicast Reverse Path
467  * Forwarding (Unicast RFP) in Cisco-ese. The name of the knobs
468  * is purposely reminiscent of the Cisco IOS command,
469  *
470  *   ip verify unicast reverse-path
471  *   ip verify unicast source reachable-via any
472  *
473  * which implements the same functionality. But note that the syntax
474  * is misleading, and the check may be performed on all IP packets
475  * whether unicast, multicast, or broadcast.
476  */
477 static int
verify_path(struct in_addr src,struct ifnet * ifp,u_int fib)478 verify_path(struct in_addr src, struct ifnet *ifp, u_int fib)
479 {
480 #if defined(USERSPACE) || !defined(__FreeBSD__)
481 	return 0;
482 #else
483 	struct nhop_object *nh;
484 
485 	nh = fib4_lookup(fib, src, 0, NHR_NONE, 0);
486 	if (nh == NULL)
487 		return (0);
488 
489 	/*
490 	 * If ifp is provided, check for equality with rtentry.
491 	 * We should use rt->rt_ifa->ifa_ifp, instead of rt->rt_ifp,
492 	 * in order to pass packets injected back by if_simloop():
493 	 * routing entry (via lo0) for our own address
494 	 * may exist, so we need to handle routing assymetry.
495 	 */
496 	if (ifp != NULL && ifp != nh->nh_aifp)
497 		return (0);
498 
499 	/* if no ifp provided, check if rtentry is not default route */
500 	if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
501 		return (0);
502 
503 	/* or if this is a blackhole/reject route */
504 	if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
505 		return (0);
506 
507 	/* found valid route */
508 	return 1;
509 #endif /* __FreeBSD__ */
510 }
511 
512 /*
513  * Generate an SCTP packet containing an ABORT chunk. The verification tag
514  * is given by vtag. The T-bit is set in the ABORT chunk if and only if
515  * reflected is not 0.
516  */
517 
518 static struct mbuf *
ipfw_send_abort(struct mbuf * replyto,struct ipfw_flow_id * id,u_int32_t vtag,int reflected)519 ipfw_send_abort(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t vtag,
520     int reflected)
521 {
522 	struct mbuf *m;
523 	struct ip *ip;
524 #ifdef INET6
525 	struct ip6_hdr *ip6;
526 #endif
527 	struct sctphdr *sctp;
528 	struct sctp_chunkhdr *chunk;
529 	u_int16_t hlen, plen, tlen;
530 
531 	MGETHDR(m, M_NOWAIT, MT_DATA);
532 	if (m == NULL)
533 		return (NULL);
534 
535 	M_SETFIB(m, id->fib);
536 #ifdef MAC
537 	if (replyto != NULL)
538 		mac_netinet_firewall_reply(replyto, m);
539 	else
540 		mac_netinet_firewall_send(m);
541 #else
542 	(void)replyto;		/* don't warn about unused arg */
543 #endif
544 
545 	switch (id->addr_type) {
546 	case 4:
547 		hlen = sizeof(struct ip);
548 		break;
549 #ifdef INET6
550 	case 6:
551 		hlen = sizeof(struct ip6_hdr);
552 		break;
553 #endif
554 	default:
555 		/* XXX: log me?!? */
556 		FREE_PKT(m);
557 		return (NULL);
558 	}
559 	plen = sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr);
560 	tlen = hlen + plen;
561 	m->m_data += max_linkhdr;
562 	m->m_flags |= M_SKIP_FIREWALL;
563 	m->m_pkthdr.len = m->m_len = tlen;
564 	m->m_pkthdr.rcvif = NULL;
565 	bzero(m->m_data, tlen);
566 
567 	switch (id->addr_type) {
568 	case 4:
569 		ip = mtod(m, struct ip *);
570 
571 		ip->ip_v = 4;
572 		ip->ip_hl = sizeof(struct ip) >> 2;
573 		ip->ip_tos = IPTOS_LOWDELAY;
574 		ip->ip_len = htons(tlen);
575 		ip->ip_id = htons(0);
576 		ip->ip_off = htons(0);
577 		ip->ip_ttl = V_ip_defttl;
578 		ip->ip_p = IPPROTO_SCTP;
579 		ip->ip_sum = 0;
580 		ip->ip_src.s_addr = htonl(id->dst_ip);
581 		ip->ip_dst.s_addr = htonl(id->src_ip);
582 
583 		sctp = (struct sctphdr *)(ip + 1);
584 		break;
585 #ifdef INET6
586 	case 6:
587 		ip6 = mtod(m, struct ip6_hdr *);
588 
589 		ip6->ip6_vfc = IPV6_VERSION;
590 		ip6->ip6_plen = htons(plen);
591 		ip6->ip6_nxt = IPPROTO_SCTP;
592 		ip6->ip6_hlim = IPV6_DEFHLIM;
593 		ip6->ip6_src = id->dst_ip6;
594 		ip6->ip6_dst = id->src_ip6;
595 
596 		sctp = (struct sctphdr *)(ip6 + 1);
597 		break;
598 #endif
599 	}
600 
601 	sctp->src_port = htons(id->dst_port);
602 	sctp->dest_port = htons(id->src_port);
603 	sctp->v_tag = htonl(vtag);
604 	sctp->checksum = htonl(0);
605 
606 	chunk = (struct sctp_chunkhdr *)(sctp + 1);
607 	chunk->chunk_type = SCTP_ABORT_ASSOCIATION;
608 	chunk->chunk_flags = 0;
609 	if (reflected != 0) {
610 		chunk->chunk_flags |= SCTP_HAD_NO_TCB;
611 	}
612 	chunk->chunk_length = htons(sizeof(struct sctp_chunkhdr));
613 
614 	sctp->checksum = sctp_calculate_cksum(m, hlen);
615 
616 	return (m);
617 }
618 
619 /*
620  * Generate a TCP packet, containing either a RST or a keepalive.
621  * When flags & TH_RST, we are sending a RST packet, because of a
622  * "reset" action matched the packet.
623  * Otherwise we are sending a keepalive, and flags & TH_
624  * The 'replyto' mbuf is the mbuf being replied to, if any, and is required
625  * so that MAC can label the reply appropriately.
626  */
627 struct mbuf *
ipfw_send_pkt(struct mbuf * replyto,struct ipfw_flow_id * id,u_int32_t seq,u_int32_t ack,int flags)628 ipfw_send_pkt(struct mbuf *replyto, struct ipfw_flow_id *id, u_int32_t seq,
629     u_int32_t ack, int flags)
630 {
631 	struct mbuf *m = NULL;		/* stupid compiler */
632 	struct ip *h = NULL;		/* stupid compiler */
633 #ifdef INET6
634 	struct ip6_hdr *h6 = NULL;
635 #endif
636 	struct tcphdr *th = NULL;
637 	int len, dir;
638 
639 	MGETHDR(m, M_NOWAIT, MT_DATA);
640 	if (m == NULL)
641 		return (NULL);
642 
643 	M_SETFIB(m, id->fib);
644 #ifdef MAC
645 	if (replyto != NULL)
646 		mac_netinet_firewall_reply(replyto, m);
647 	else
648 		mac_netinet_firewall_send(m);
649 #else
650 	(void)replyto;		/* don't warn about unused arg */
651 #endif
652 
653 	switch (id->addr_type) {
654 	case 4:
655 		len = sizeof(struct ip) + sizeof(struct tcphdr);
656 		break;
657 #ifdef INET6
658 	case 6:
659 		len = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
660 		break;
661 #endif
662 	default:
663 		/* XXX: log me?!? */
664 		FREE_PKT(m);
665 		return (NULL);
666 	}
667 	dir = ((flags & (TH_SYN | TH_RST)) == TH_SYN);
668 
669 	m->m_data += max_linkhdr;
670 	m->m_flags |= M_SKIP_FIREWALL;
671 	m->m_pkthdr.len = m->m_len = len;
672 	m->m_pkthdr.rcvif = NULL;
673 	bzero(m->m_data, len);
674 
675 	switch (id->addr_type) {
676 	case 4:
677 		h = mtod(m, struct ip *);
678 
679 		/* prepare for checksum */
680 		h->ip_p = IPPROTO_TCP;
681 		h->ip_len = htons(sizeof(struct tcphdr));
682 		if (dir) {
683 			h->ip_src.s_addr = htonl(id->src_ip);
684 			h->ip_dst.s_addr = htonl(id->dst_ip);
685 		} else {
686 			h->ip_src.s_addr = htonl(id->dst_ip);
687 			h->ip_dst.s_addr = htonl(id->src_ip);
688 		}
689 
690 		th = (struct tcphdr *)(h + 1);
691 		break;
692 #ifdef INET6
693 	case 6:
694 		h6 = mtod(m, struct ip6_hdr *);
695 
696 		/* prepare for checksum */
697 		h6->ip6_nxt = IPPROTO_TCP;
698 		h6->ip6_plen = htons(sizeof(struct tcphdr));
699 		if (dir) {
700 			h6->ip6_src = id->src_ip6;
701 			h6->ip6_dst = id->dst_ip6;
702 		} else {
703 			h6->ip6_src = id->dst_ip6;
704 			h6->ip6_dst = id->src_ip6;
705 		}
706 
707 		th = (struct tcphdr *)(h6 + 1);
708 		break;
709 #endif
710 	}
711 
712 	if (dir) {
713 		th->th_sport = htons(id->src_port);
714 		th->th_dport = htons(id->dst_port);
715 	} else {
716 		th->th_sport = htons(id->dst_port);
717 		th->th_dport = htons(id->src_port);
718 	}
719 	th->th_off = sizeof(struct tcphdr) >> 2;
720 
721 	if (flags & TH_RST) {
722 		if (flags & TH_ACK) {
723 			th->th_seq = htonl(ack);
724 			tcp_set_flags(th, TH_RST);
725 		} else {
726 			if (flags & TH_SYN)
727 				seq++;
728 			th->th_ack = htonl(seq);
729 			tcp_set_flags(th, TH_RST | TH_ACK);
730 		}
731 	} else {
732 		/*
733 		 * Keepalive - use caller provided sequence numbers
734 		 */
735 		th->th_seq = htonl(seq);
736 		th->th_ack = htonl(ack);
737 		tcp_set_flags(th, TH_ACK);
738 	}
739 
740 	switch (id->addr_type) {
741 	case 4:
742 		th->th_sum = in_cksum(m, len);
743 
744 		/* finish the ip header */
745 		h->ip_v = 4;
746 		h->ip_hl = sizeof(*h) >> 2;
747 		h->ip_tos = IPTOS_LOWDELAY;
748 		h->ip_off = htons(0);
749 		h->ip_len = htons(len);
750 		h->ip_ttl = V_ip_defttl;
751 		h->ip_sum = 0;
752 		break;
753 #ifdef INET6
754 	case 6:
755 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(*h6),
756 		    sizeof(struct tcphdr));
757 
758 		/* finish the ip6 header */
759 		h6->ip6_vfc |= IPV6_VERSION;
760 		h6->ip6_hlim = IPV6_DEFHLIM;
761 		break;
762 #endif
763 	}
764 
765 	return (m);
766 }
767 
768 #ifdef INET6
769 /*
770  * ipv6 specific rules here...
771  */
772 static __inline int
icmp6type_match(int type,ipfw_insn_u32 * cmd)773 icmp6type_match(int type, ipfw_insn_u32 *cmd)
774 {
775 	return (type <= ICMP6_MAXTYPE && (cmd->d[type/32] & (1<<(type%32)) ) );
776 }
777 
778 static int
flow6id_match(int curr_flow,ipfw_insn_u32 * cmd)779 flow6id_match(int curr_flow, ipfw_insn_u32 *cmd)
780 {
781 	int i;
782 	for (i=0; i <= cmd->o.arg1; ++i)
783 		if (curr_flow == cmd->d[i])
784 			return 1;
785 	return 0;
786 }
787 
788 /* support for IP6_*_ME opcodes */
789 static const struct in6_addr lla_mask = {{{
790 	0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff,
791 	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
792 }}};
793 
794 static int
ipfw_localip6(struct in6_addr * in6)795 ipfw_localip6(struct in6_addr *in6)
796 {
797 	struct rm_priotracker in6_ifa_tracker;
798 	struct in6_ifaddr *ia;
799 
800 	if (IN6_IS_ADDR_MULTICAST(in6))
801 		return (0);
802 
803 	if (!IN6_IS_ADDR_LINKLOCAL(in6))
804 		return (in6_localip(in6));
805 
806 	IN6_IFADDR_RLOCK(&in6_ifa_tracker);
807 	CK_STAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
808 		if (!IN6_IS_ADDR_LINKLOCAL(&ia->ia_addr.sin6_addr))
809 			continue;
810 		if (IN6_ARE_MASKED_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
811 		    in6, &lla_mask)) {
812 			IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
813 			return (1);
814 		}
815 	}
816 	IN6_IFADDR_RUNLOCK(&in6_ifa_tracker);
817 	return (0);
818 }
819 
820 static int
verify_path6(struct in6_addr * src,struct ifnet * ifp,u_int fib)821 verify_path6(struct in6_addr *src, struct ifnet *ifp, u_int fib)
822 {
823 	struct nhop_object *nh;
824 
825 	if (IN6_IS_SCOPE_LINKLOCAL(src))
826 		return (1);
827 
828 	nh = fib6_lookup(fib, src, 0, NHR_NONE, 0);
829 	if (nh == NULL)
830 		return (0);
831 
832 	/* If ifp is provided, check for equality with route table. */
833 	if (ifp != NULL && ifp != nh->nh_aifp)
834 		return (0);
835 
836 	/* if no ifp provided, check if rtentry is not default route */
837 	if (ifp == NULL && (nh->nh_flags & NHF_DEFAULT) != 0)
838 		return (0);
839 
840 	/* or if this is a blackhole/reject route */
841 	if (ifp == NULL && (nh->nh_flags & (NHF_REJECT|NHF_BLACKHOLE)) != 0)
842 		return (0);
843 
844 	/* found valid route */
845 	return 1;
846 }
847 
848 static int
is_icmp6_query(int icmp6_type)849 is_icmp6_query(int icmp6_type)
850 {
851 	if ((icmp6_type <= ICMP6_MAXTYPE) &&
852 	    (icmp6_type == ICMP6_ECHO_REQUEST ||
853 	    icmp6_type == ICMP6_MEMBERSHIP_QUERY ||
854 	    icmp6_type == ICMP6_WRUREQUEST ||
855 	    icmp6_type == ICMP6_FQDN_QUERY ||
856 	    icmp6_type == ICMP6_NI_QUERY))
857 		return (1);
858 
859 	return (0);
860 }
861 
862 static int
map_icmp_unreach(int code)863 map_icmp_unreach(int code)
864 {
865 
866 	/* RFC 7915 p4.2 */
867 	switch (code) {
868 	case ICMP_UNREACH_NET:
869 	case ICMP_UNREACH_HOST:
870 	case ICMP_UNREACH_SRCFAIL:
871 	case ICMP_UNREACH_NET_UNKNOWN:
872 	case ICMP_UNREACH_HOST_UNKNOWN:
873 	case ICMP_UNREACH_TOSNET:
874 	case ICMP_UNREACH_TOSHOST:
875 		return (ICMP6_DST_UNREACH_NOROUTE);
876 	case ICMP_UNREACH_PORT:
877 		return (ICMP6_DST_UNREACH_NOPORT);
878 	default:
879 		/*
880 		 * Map the rest of codes into admit prohibited.
881 		 * XXX: unreach proto should be mapped into ICMPv6
882 		 * parameter problem, but we use only unreach type.
883 		 */
884 		return (ICMP6_DST_UNREACH_ADMIN);
885 	}
886 }
887 
888 static void
send_reject6(struct ip_fw_args * args,int code,u_int hlen,const struct ip6_hdr * ip6)889 send_reject6(struct ip_fw_args *args, int code, u_int hlen,
890     const struct ip6_hdr *ip6)
891 {
892 	struct mbuf *m;
893 
894 	m = args->m;
895 	if (code == ICMP6_UNREACH_RST && args->f_id.proto == IPPROTO_TCP) {
896 		const struct tcphdr * tcp;
897 		tcp = (const struct tcphdr *)((const char *)ip6 + hlen);
898 
899 		if ((tcp_get_flags(tcp) & TH_RST) == 0) {
900 			struct mbuf *m0;
901 			m0 = ipfw_send_pkt(args->m, &(args->f_id),
902 			    ntohl(tcp->th_seq), ntohl(tcp->th_ack),
903 			    tcp_get_flags(tcp) | TH_RST);
904 			if (m0 != NULL)
905 				ip6_output(m0, NULL, NULL, 0, NULL, NULL,
906 				    NULL);
907 		}
908 		FREE_PKT(m);
909 	} else if (code == ICMP6_UNREACH_ABORT &&
910 	    args->f_id.proto == IPPROTO_SCTP) {
911 		struct mbuf *m0;
912 		const struct sctphdr *sctp;
913 		u_int32_t v_tag;
914 		int reflected;
915 
916 		sctp = (const struct sctphdr *)((const char *)ip6 + hlen);
917 		reflected = 1;
918 		v_tag = ntohl(sctp->v_tag);
919 		/* Investigate the first chunk header if available */
920 		if (m->m_len >= hlen + sizeof(struct sctphdr) +
921 		    sizeof(struct sctp_chunkhdr)) {
922 			const struct sctp_chunkhdr *chunk;
923 
924 			chunk = (const struct sctp_chunkhdr *)(sctp + 1);
925 			switch (chunk->chunk_type) {
926 			case SCTP_INITIATION:
927 				/*
928 				 * Packets containing an INIT chunk MUST have
929 				 * a zero v-tag.
930 				 */
931 				if (v_tag != 0) {
932 					v_tag = 0;
933 					break;
934 				}
935 				/* INIT chunk MUST NOT be bundled */
936 				if (m->m_pkthdr.len >
937 				    hlen + sizeof(struct sctphdr) +
938 				    ntohs(chunk->chunk_length) + 3) {
939 					break;
940 				}
941 				/* Use the initiate tag if available */
942 				if ((m->m_len >= hlen + sizeof(struct sctphdr) +
943 				    sizeof(struct sctp_chunkhdr) +
944 				    offsetof(struct sctp_init, a_rwnd))) {
945 					const struct sctp_init *init;
946 
947 					init = (const struct sctp_init *)(chunk + 1);
948 					v_tag = ntohl(init->initiate_tag);
949 					reflected = 0;
950 				}
951 				break;
952 			case SCTP_ABORT_ASSOCIATION:
953 				/*
954 				 * If the packet contains an ABORT chunk, don't
955 				 * reply.
956 				 * XXX: We should search through all chunks,
957 				 * but do not do that to avoid attacks.
958 				 */
959 				v_tag = 0;
960 				break;
961 			}
962 		}
963 		if (v_tag == 0) {
964 			m0 = NULL;
965 		} else {
966 			m0 = ipfw_send_abort(args->m, &(args->f_id), v_tag,
967 			    reflected);
968 		}
969 		if (m0 != NULL)
970 			ip6_output(m0, NULL, NULL, 0, NULL, NULL, NULL);
971 		FREE_PKT(m);
972 	} else if (code != ICMP6_UNREACH_RST && code != ICMP6_UNREACH_ABORT) {
973 		/* Send an ICMPv6 unreach. */
974 #if 0
975 		/*
976 		 * Unlike above, the mbufs need to line up with the ip6 hdr,
977 		 * as the contents are read. We need to m_adj() the
978 		 * needed amount.
979 		 * The mbuf will however be thrown away so we can adjust it.
980 		 * Remember we did an m_pullup on it already so we
981 		 * can make some assumptions about contiguousness.
982 		 */
983 		if (args->L3offset)
984 			m_adj(m, args->L3offset);
985 #endif
986 		icmp6_error(m, ICMP6_DST_UNREACH, code, 0);
987 	} else
988 		FREE_PKT(m);
989 
990 	args->m = NULL;
991 }
992 
993 #endif /* INET6 */
994 
995 /*
996  * sends a reject message, consuming the mbuf passed as an argument.
997  */
998 static void
send_reject(struct ip_fw_args * args,int code,uint16_t mtu,int iplen,const struct ip * ip)999 send_reject(struct ip_fw_args *args, int code, uint16_t mtu, int iplen,
1000     const struct ip *ip)
1001 {
1002 #if 0
1003 	/* XXX When ip is not guaranteed to be at mtod() we will
1004 	 * need to account for this */
1005 	 * The mbuf will however be thrown away so we can adjust it.
1006 	 * Remember we did an m_pullup on it already so we
1007 	 * can make some assumptions about contiguousness.
1008 	 */
1009 	if (args->L3offset)
1010 		m_adj(m, args->L3offset);
1011 #endif
1012 	if (code != ICMP_REJECT_RST && code != ICMP_REJECT_ABORT) {
1013 		/* Send an ICMP unreach */
1014 		icmp_error(args->m, ICMP_UNREACH, code, 0L, mtu);
1015 	} else if (code == ICMP_REJECT_RST && args->f_id.proto == IPPROTO_TCP) {
1016 		struct tcphdr *const tcp =
1017 		    L3HDR(struct tcphdr, mtod(args->m, struct ip *));
1018 		if ( (tcp_get_flags(tcp) & TH_RST) == 0) {
1019 			struct mbuf *m;
1020 			m = ipfw_send_pkt(args->m, &(args->f_id),
1021 				ntohl(tcp->th_seq), ntohl(tcp->th_ack),
1022 				tcp_get_flags(tcp) | TH_RST);
1023 			if (m != NULL)
1024 				ip_output(m, NULL, NULL, 0, NULL, NULL);
1025 		}
1026 		FREE_PKT(args->m);
1027 	} else if (code == ICMP_REJECT_ABORT &&
1028 	    args->f_id.proto == IPPROTO_SCTP) {
1029 		struct mbuf *m;
1030 		struct sctphdr *sctp;
1031 		struct sctp_chunkhdr *chunk;
1032 		struct sctp_init *init;
1033 		u_int32_t v_tag;
1034 		int reflected;
1035 
1036 		sctp = L3HDR(struct sctphdr, mtod(args->m, struct ip *));
1037 		reflected = 1;
1038 		v_tag = ntohl(sctp->v_tag);
1039 		if (iplen >= (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1040 		    sizeof(struct sctp_chunkhdr)) {
1041 			/* Look at the first chunk header if available */
1042 			chunk = (struct sctp_chunkhdr *)(sctp + 1);
1043 			switch (chunk->chunk_type) {
1044 			case SCTP_INITIATION:
1045 				/*
1046 				 * Packets containing an INIT chunk MUST have
1047 				 * a zero v-tag.
1048 				 */
1049 				if (v_tag != 0) {
1050 					v_tag = 0;
1051 					break;
1052 				}
1053 				/* INIT chunk MUST NOT be bundled */
1054 				if (iplen >
1055 				    (ip->ip_hl << 2) + sizeof(struct sctphdr) +
1056 				    ntohs(chunk->chunk_length) + 3) {
1057 					break;
1058 				}
1059 				/* Use the initiate tag if available */
1060 				if ((iplen >= (ip->ip_hl << 2) +
1061 				    sizeof(struct sctphdr) +
1062 				    sizeof(struct sctp_chunkhdr) +
1063 				    offsetof(struct sctp_init, a_rwnd))) {
1064 					init = (struct sctp_init *)(chunk + 1);
1065 					v_tag = ntohl(init->initiate_tag);
1066 					reflected = 0;
1067 				}
1068 				break;
1069 			case SCTP_ABORT_ASSOCIATION:
1070 				/*
1071 				 * If the packet contains an ABORT chunk, don't
1072 				 * reply.
1073 				 * XXX: We should search through all chunks,
1074 				 * but do not do that to avoid attacks.
1075 				 */
1076 				v_tag = 0;
1077 				break;
1078 			}
1079 		}
1080 		if (v_tag == 0) {
1081 			m = NULL;
1082 		} else {
1083 			m = ipfw_send_abort(args->m, &(args->f_id), v_tag,
1084 			    reflected);
1085 		}
1086 		if (m != NULL)
1087 			ip_output(m, NULL, NULL, 0, NULL, NULL);
1088 		FREE_PKT(args->m);
1089 	} else
1090 		FREE_PKT(args->m);
1091 	args->m = NULL;
1092 }
1093 
1094 /*
1095  * Support for uid/gid/jail lookup. These tests are expensive
1096  * (because we may need to look into the list of active sockets)
1097  * so we cache the results. ugid_lookupp is 0 if we have not
1098  * yet done a lookup, 1 if we succeeded, and -1 if we tried
1099  * and failed. The function always returns the match value.
1100  * We could actually spare the variable and use *uc, setting
1101  * it to '(void *)check_uidgid if we have no info, NULL if
1102  * we tried and failed, or any other value if successful.
1103  */
1104 static int
check_uidgid(ipfw_insn_u32 * insn,struct ip_fw_args * args,int * ugid_lookupp,struct ucred ** uc)1105 check_uidgid(ipfw_insn_u32 *insn, struct ip_fw_args *args, int *ugid_lookupp,
1106     struct ucred **uc)
1107 {
1108 #if defined(USERSPACE)
1109 	return 0;	// not supported in userspace
1110 #else
1111 #ifndef __FreeBSD__
1112 	/* XXX */
1113 	return cred_check(insn, proto, oif,
1114 	    dst_ip, dst_port, src_ip, src_port,
1115 	    (struct bsd_ucred *)uc, ugid_lookupp, ((struct mbuf *)inp)->m_skb);
1116 #else  /* FreeBSD */
1117 	struct in_addr src_ip, dst_ip;
1118 	struct inpcbinfo *pi;
1119 	struct ipfw_flow_id *id;
1120 	struct inpcb *pcb, *inp;
1121 	int lookupflags;
1122 	int match;
1123 
1124 	id = &args->f_id;
1125 	inp = args->inp;
1126 
1127 	/*
1128 	 * Check to see if the UDP or TCP stack supplied us with
1129 	 * the PCB. If so, rather then holding a lock and looking
1130 	 * up the PCB, we can use the one that was supplied.
1131 	 */
1132 	if (inp && *ugid_lookupp == 0) {
1133 		INP_LOCK_ASSERT(inp);
1134 		if (inp->inp_socket != NULL) {
1135 			*uc = crhold(inp->inp_cred);
1136 			*ugid_lookupp = 1;
1137 		} else
1138 			*ugid_lookupp = -1;
1139 	}
1140 	/*
1141 	 * If we have already been here and the packet has no
1142 	 * PCB entry associated with it, then we can safely
1143 	 * assume that this is a no match.
1144 	 */
1145 	if (*ugid_lookupp == -1)
1146 		return (0);
1147 	if (id->proto == IPPROTO_TCP) {
1148 		lookupflags = 0;
1149 		pi = &V_tcbinfo;
1150 	} else if (id->proto == IPPROTO_UDP) {
1151 		lookupflags = INPLOOKUP_WILDCARD;
1152 		pi = &V_udbinfo;
1153 	} else if (id->proto == IPPROTO_UDPLITE) {
1154 		lookupflags = INPLOOKUP_WILDCARD;
1155 		pi = &V_ulitecbinfo;
1156 	} else
1157 		return 0;
1158 	lookupflags |= INPLOOKUP_RLOCKPCB;
1159 	match = 0;
1160 	if (*ugid_lookupp == 0) {
1161 		if (id->addr_type == 6) {
1162 #ifdef INET6
1163 			if (args->flags & IPFW_ARGS_IN)
1164 				pcb = in6_pcblookup_mbuf(pi,
1165 				    &id->src_ip6, htons(id->src_port),
1166 				    &id->dst_ip6, htons(id->dst_port),
1167 				    lookupflags, NULL, args->m);
1168 			else
1169 				pcb = in6_pcblookup_mbuf(pi,
1170 				    &id->dst_ip6, htons(id->dst_port),
1171 				    &id->src_ip6, htons(id->src_port),
1172 				    lookupflags, args->ifp, args->m);
1173 #else
1174 			*ugid_lookupp = -1;
1175 			return (0);
1176 #endif
1177 		} else {
1178 			src_ip.s_addr = htonl(id->src_ip);
1179 			dst_ip.s_addr = htonl(id->dst_ip);
1180 			if (args->flags & IPFW_ARGS_IN)
1181 				pcb = in_pcblookup_mbuf(pi,
1182 				    src_ip, htons(id->src_port),
1183 				    dst_ip, htons(id->dst_port),
1184 				    lookupflags, NULL, args->m);
1185 			else
1186 				pcb = in_pcblookup_mbuf(pi,
1187 				    dst_ip, htons(id->dst_port),
1188 				    src_ip, htons(id->src_port),
1189 				    lookupflags, args->ifp, args->m);
1190 		}
1191 		if (pcb != NULL) {
1192 			INP_RLOCK_ASSERT(pcb);
1193 			*uc = crhold(pcb->inp_cred);
1194 			*ugid_lookupp = 1;
1195 			INP_RUNLOCK(pcb);
1196 		}
1197 		if (*ugid_lookupp == 0) {
1198 			/*
1199 			 * We tried and failed, set the variable to -1
1200 			 * so we will not try again on this packet.
1201 			 */
1202 			*ugid_lookupp = -1;
1203 			return (0);
1204 		}
1205 	}
1206 	if (insn->o.opcode == O_UID)
1207 		match = ((*uc)->cr_uid == (uid_t)insn->d[0]);
1208 	else if (insn->o.opcode == O_GID)
1209 		match = groupmember((gid_t)insn->d[0], *uc);
1210 	else if (insn->o.opcode == O_JAIL)
1211 		match = ((*uc)->cr_prison->pr_id == (int)insn->d[0]);
1212 	return (match);
1213 #endif /* __FreeBSD__ */
1214 #endif /* not supported in userspace */
1215 }
1216 
1217 /*
1218  * Helper function to set args with info on the rule after the matching
1219  * one. slot is precise, whereas we guess rule_id as they are
1220  * assigned sequentially.
1221  */
1222 static inline void
set_match(struct ip_fw_args * args,int slot,struct ip_fw_chain * chain)1223 set_match(struct ip_fw_args *args, int slot,
1224 	struct ip_fw_chain *chain)
1225 {
1226 	args->rule.chain_id = chain->id;
1227 	args->rule.slot = slot + 1; /* we use 0 as a marker */
1228 	args->rule.rule_id = 1 + chain->map[slot]->id;
1229 	args->rule.rulenum = chain->map[slot]->rulenum;
1230 	args->flags |= IPFW_ARGS_REF;
1231 }
1232 
1233 static uint32_t
jump_lookup_pos(struct ip_fw_chain * chain,struct ip_fw * f,uint32_t num,int tablearg,bool jump_backwards)1234 jump_lookup_pos(struct ip_fw_chain *chain, struct ip_fw *f, uint32_t num,
1235     int tablearg, bool jump_backwards)
1236 {
1237 	int f_pos, i;
1238 
1239 	/*
1240 	 * Make sure we do not jump backward.
1241 	 */
1242 	i = IP_FW_ARG_TABLEARG(chain, num, skipto);
1243 	if (!jump_backwards && i <= f->rulenum)
1244 		i = f->rulenum + 1;
1245 
1246 	if (V_skipto_cache == 0)
1247 		f_pos = ipfw_find_rule(chain, i, 0);
1248 	else {
1249 		/*
1250 		 * Make sure we do not do out of bounds access.
1251 		 */
1252 		if (i >= IPFW_DEFAULT_RULE)
1253 			i = IPFW_DEFAULT_RULE - 1;
1254 		f_pos = chain->idxmap[i];
1255 	}
1256 
1257 	return (f_pos);
1258 }
1259 
1260 static uint32_t
jump(struct ip_fw_chain * chain,struct ip_fw * f,uint32_t num,int tablearg,bool jump_backwards)1261 jump(struct ip_fw_chain *chain, struct ip_fw *f, uint32_t num,
1262     int tablearg, bool jump_backwards)
1263 {
1264 	int f_pos;
1265 
1266 	/* Can't use cache with IP_FW_TARG */
1267 	if (num == IP_FW_TARG)
1268 		return jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1269 
1270 	/*
1271 	 * If possible use cached f_pos (in f->cache.pos),
1272 	 * whose version is written in f->cache.id (horrible hacks
1273 	 * to avoid changing the ABI).
1274 	 *
1275 	 * Multiple threads can execute the same rule simultaneously,
1276 	 * we need to ensure that cache.pos is updated before cache.id.
1277 	 */
1278 
1279 #ifdef __LP64__
1280 	struct ip_fw_jump_cache cache;
1281 
1282 	cache.raw_value = f->cache.raw_value;
1283 	if (cache.id == chain->id)
1284 		return (cache.pos);
1285 
1286 	f_pos = jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1287 
1288 	cache.pos = f_pos;
1289 	cache.id = chain->id;
1290 	f->cache.raw_value = cache.raw_value;
1291 #else
1292 	if (f->cache.id == chain->id) {
1293 		/* Load pos after id */
1294 		atomic_thread_fence_acq();
1295 		return (f->cache.pos);
1296 	}
1297 
1298 	f_pos = jump_lookup_pos(chain, f, num, tablearg, jump_backwards);
1299 
1300 	f->cache.pos = f_pos;
1301 	/* Store id after pos */
1302 	atomic_thread_fence_rel();
1303 	f->cache.id = chain->id;
1304 #endif /* !__LP64__ */
1305 	return (f_pos);
1306 }
1307 
1308 #define	TARG(k, f)	IP_FW_ARG_TABLEARG(chain, k, f)
1309 
1310 static inline int
tvalue_match(struct ip_fw_chain * ch,const ipfw_insn_table * cmd,uint32_t tablearg)1311 tvalue_match(struct ip_fw_chain *ch, const ipfw_insn_table *cmd,
1312     uint32_t tablearg)
1313 {
1314 	uint32_t tvalue;
1315 
1316 	switch (IPFW_TVALUE_TYPE(&cmd->o)) {
1317 	case TVALUE_PIPE:
1318 		tvalue = TARG_VAL(ch, tablearg, pipe);
1319 		break;
1320 	case TVALUE_DIVERT:
1321 		tvalue = TARG_VAL(ch, tablearg, divert);
1322 		break;
1323 	case TVALUE_SKIPTO:
1324 		tvalue = TARG_VAL(ch, tablearg, skipto);
1325 		break;
1326 	case TVALUE_NETGRAPH:
1327 		tvalue = TARG_VAL(ch, tablearg, netgraph);
1328 		break;
1329 	case TVALUE_FIB:
1330 		tvalue = TARG_VAL(ch, tablearg, fib);
1331 		break;
1332 	case TVALUE_NAT:
1333 		tvalue = TARG_VAL(ch, tablearg, nat);
1334 		break;
1335 	case TVALUE_NH4:
1336 		tvalue = TARG_VAL(ch, tablearg, nh4);
1337 		break;
1338 	case TVALUE_DSCP:
1339 		tvalue = TARG_VAL(ch, tablearg, dscp);
1340 		break;
1341 	case TVALUE_LIMIT:
1342 		tvalue = TARG_VAL(ch, tablearg, limit);
1343 		break;
1344 	case TVALUE_MARK:
1345 		tvalue = TARG_VAL(ch, tablearg, mark);
1346 		break;
1347 	case TVALUE_TAG:
1348 	default:
1349 		tvalue = TARG_VAL(ch, tablearg, tag);
1350 		break;
1351 	}
1352 	return (tvalue == cmd->value);
1353 }
1354 
1355 /*
1356  * The main check routine for the firewall.
1357  *
1358  * All arguments are in args so we can modify them and return them
1359  * back to the caller.
1360  *
1361  * Parameters:
1362  *
1363  *	args->m	(in/out) The packet; we set to NULL when/if we nuke it.
1364  *		Starts with the IP header.
1365  *	args->L3offset	Number of bytes bypassed if we came from L2.
1366  *			e.g. often sizeof(eh)  ** NOTYET **
1367  *	args->ifp	Incoming or outgoing interface.
1368  *	args->divert_rule (in/out)
1369  *		Skip up to the first rule past this rule number;
1370  *		upon return, non-zero port number for divert or tee.
1371  *
1372  *	args->rule	Pointer to the last matching rule (in/out)
1373  *	args->next_hop	Socket we are forwarding to (out).
1374  *	args->next_hop6	IPv6 next hop we are forwarding to (out).
1375  *	args->f_id	Addresses grabbed from the packet (out)
1376  * 	args->rule.info	a cookie depending on rule action
1377  *
1378  * Return value:
1379  *
1380  *	IP_FW_PASS	the packet must be accepted
1381  *	IP_FW_DENY	the packet must be dropped
1382  *	IP_FW_DIVERT	divert packet, port in m_tag
1383  *	IP_FW_TEE	tee packet, port in m_tag
1384  *	IP_FW_DUMMYNET	to dummynet, pipe in args->cookie
1385  *	IP_FW_NETGRAPH	into netgraph, cookie args->cookie
1386  *		args->rule contains the matching rule,
1387  *		args->rule.info has additional information.
1388  *
1389  */
1390 int
ipfw_chk(struct ip_fw_args * args)1391 ipfw_chk(struct ip_fw_args *args)
1392 {
1393 
1394 	/*
1395 	 * Local variables holding state while processing a packet:
1396 	 *
1397 	 * IMPORTANT NOTE: to speed up the processing of rules, there
1398 	 * are some assumption on the values of the variables, which
1399 	 * are documented here. Should you change them, please check
1400 	 * the implementation of the various instructions to make sure
1401 	 * that they still work.
1402 	 *
1403 	 * m | args->m	Pointer to the mbuf, as received from the caller.
1404 	 *	It may change if ipfw_chk() does an m_pullup, or if it
1405 	 *	consumes the packet because it calls send_reject().
1406 	 *	XXX This has to change, so that ipfw_chk() never modifies
1407 	 *	or consumes the buffer.
1408 	 *	OR
1409 	 * args->mem	Pointer to contigous memory chunk.
1410 	 * ip	Is the beginning of the ip(4 or 6) header.
1411 	 * eh	Ethernet header in case if input is Layer2.
1412 	 */
1413 	struct mbuf *m;
1414 	struct ip *ip;
1415 	struct ether_header *eh;
1416 
1417 	/*
1418 	 * For rules which contain uid/gid or jail constraints, cache
1419 	 * a copy of the users credentials after the pcb lookup has been
1420 	 * executed. This will speed up the processing of rules with
1421 	 * these types of constraints, as well as decrease contention
1422 	 * on pcb related locks.
1423 	 */
1424 #ifndef __FreeBSD__
1425 	struct bsd_ucred ucred_cache;
1426 #else
1427 	struct ucred *ucred_cache = NULL;
1428 #endif
1429 	uint32_t f_pos = 0;	/* index of current rule in the array */
1430 	int ucred_lookup = 0;
1431 	int retval = 0;
1432 	struct ifnet *oif, *iif;
1433 
1434 	/*
1435 	 * hlen	The length of the IP header.
1436 	 */
1437 	u_int hlen = 0;		/* hlen >0 means we have an IP pkt */
1438 
1439 	/*
1440 	 * offset	The offset of a fragment. offset != 0 means that
1441 	 *	we have a fragment at this offset of an IPv4 packet.
1442 	 *	offset == 0 means that (if this is an IPv4 packet)
1443 	 *	this is the first or only fragment.
1444 	 *	For IPv6 offset|ip6f_mf == 0 means there is no Fragment Header
1445 	 *	or there is a single packet fragment (fragment header added
1446 	 *	without needed).  We will treat a single packet fragment as if
1447 	 *	there was no fragment header (or log/block depending on the
1448 	 *	V_fw_permit_single_frag6 sysctl setting).
1449 	 */
1450 	u_short offset = 0;
1451 	u_short ip6f_mf = 0;
1452 
1453 	/*
1454 	 * Local copies of addresses. They are only valid if we have
1455 	 * an IP packet.
1456 	 *
1457 	 * proto	The protocol. Set to 0 for non-ip packets,
1458 	 *	or to the protocol read from the packet otherwise.
1459 	 *	proto != 0 means that we have an IPv4 packet.
1460 	 *
1461 	 * src_port, dst_port	port numbers, in HOST format. Only
1462 	 *	valid for TCP and UDP packets.
1463 	 *
1464 	 * src_ip, dst_ip	ip addresses, in NETWORK format.
1465 	 *	Only valid for IPv4 packets.
1466 	 */
1467 	uint8_t proto;
1468 	uint16_t src_port, dst_port;		/* NOTE: host format	*/
1469 	struct in_addr src_ip, dst_ip;		/* NOTE: network format	*/
1470 	int iplen = 0;
1471 	int pktlen;
1472 
1473 	struct ipfw_dyn_info dyn_info;
1474 	struct ip_fw *q = NULL;
1475 	struct ip_fw_chain *chain = &V_layer3_chain;
1476 
1477 	/*
1478 	 * We store in ulp a pointer to the upper layer protocol header.
1479 	 * In the ipv4 case this is easy to determine from the header,
1480 	 * but for ipv6 we might have some additional headers in the middle.
1481 	 * ulp is NULL if not found.
1482 	 */
1483 	void *ulp = NULL;		/* upper layer protocol pointer. */
1484 
1485 	/* XXX ipv6 variables */
1486 	int is_ipv6 = 0;
1487 #ifdef INET6
1488 	uint8_t	icmp6_type = 0;
1489 #endif
1490 	uint16_t ext_hd = 0;	/* bits vector for extension header filtering */
1491 	/* end of ipv6 variables */
1492 
1493 	int is_ipv4 = 0;
1494 
1495 	int done = 0;		/* flag to exit the outer loop */
1496 	IPFW_RLOCK_TRACKER;
1497 	bool mem;
1498 	bool need_send_reject = false;
1499 	int reject_code;
1500 	uint16_t reject_mtu;
1501 
1502 	if ((mem = (args->flags & IPFW_ARGS_LENMASK))) {
1503 		if (args->flags & IPFW_ARGS_ETHER) {
1504 			eh = (struct ether_header *)args->mem;
1505 			if (eh->ether_type == htons(ETHERTYPE_VLAN))
1506 				ip = (struct ip *)
1507 				    ((struct ether_vlan_header *)eh + 1);
1508 			else
1509 				ip = (struct ip *)(eh + 1);
1510 		} else {
1511 			eh = NULL;
1512 			ip = (struct ip *)args->mem;
1513 		}
1514 		pktlen = IPFW_ARGS_LENGTH(args->flags);
1515 		args->f_id.fib = args->ifp->if_fib;	/* best guess */
1516 	} else {
1517 		m = args->m;
1518 		if (m->m_flags & M_SKIP_FIREWALL || (! V_ipfw_vnet_ready))
1519 			return (IP_FW_PASS);	/* accept */
1520 		if (args->flags & IPFW_ARGS_ETHER) {
1521 	                /* We need some amount of data to be contiguous. */
1522 			if (m->m_len < min(m->m_pkthdr.len, max_protohdr) &&
1523 			    (args->m = m = m_pullup(m, min(m->m_pkthdr.len,
1524 			    max_protohdr))) == NULL)
1525 				goto pullup_failed;
1526 			eh = mtod(m, struct ether_header *);
1527 			ip = (struct ip *)(eh + 1);
1528 		} else {
1529 			eh = NULL;
1530 			ip = mtod(m, struct ip *);
1531 		}
1532 		pktlen = m->m_pkthdr.len;
1533 		args->f_id.fib = M_GETFIB(m); /* mbuf not altered */
1534 	}
1535 
1536 	dst_ip.s_addr = 0;		/* make sure it is initialized */
1537 	src_ip.s_addr = 0;		/* make sure it is initialized */
1538 	src_port = dst_port = 0;
1539 
1540 	DYN_INFO_INIT(&dyn_info);
1541 /*
1542  * PULLUP_TO(len, p, T) makes sure that len + sizeof(T) is contiguous,
1543  * then it sets p to point at the offset "len" in the mbuf. WARNING: the
1544  * pointer might become stale after other pullups (but we never use it
1545  * this way).
1546  */
1547 #define	PULLUP_TO(_len, p, T)	PULLUP_LEN(_len, p, sizeof(T))
1548 #define	EHLEN	(eh != NULL ? ((char *)ip - (char *)eh) : 0)
1549 #define	_PULLUP_LOCKED(_len, p, T, unlock)			\
1550 do {								\
1551 	int x = (_len) + T + EHLEN;				\
1552 	if (mem) {						\
1553 		if (__predict_false(pktlen < x)) {		\
1554 			unlock;					\
1555 			goto pullup_failed;			\
1556 		}						\
1557 		p = (char *)args->mem + (_len) + EHLEN;		\
1558 	} else {						\
1559 		if (__predict_false((m)->m_len < x)) {		\
1560 			args->m = m = m_pullup(m, x);		\
1561 			if (m == NULL) {			\
1562 				unlock;				\
1563 				goto pullup_failed;		\
1564 			}					\
1565 		}						\
1566 		p = mtod(m, char *) + (_len) + EHLEN;		\
1567 	}							\
1568 } while (0)
1569 
1570 #define	PULLUP_LEN(_len, p, T)	_PULLUP_LOCKED(_len, p, T, )
1571 #define	PULLUP_LEN_LOCKED(_len, p, T)	\
1572     _PULLUP_LOCKED(_len, p, T, IPFW_PF_RUNLOCK(chain));	\
1573     UPDATE_POINTERS()
1574 /*
1575  * In case pointers got stale after pullups, update them.
1576  */
1577 #define	UPDATE_POINTERS()					\
1578 do {								\
1579 	if (!mem) {						\
1580 		if (eh != NULL) {				\
1581 			eh = mtod(m, struct ether_header *);	\
1582 			ip = (struct ip *)(eh + 1);		\
1583 		} else						\
1584 			ip = mtod(m, struct ip *);		\
1585 		args->m = m;					\
1586 	}							\
1587 } while (0)
1588 
1589 	/* Identify IP packets and fill up variables. */
1590 	if (pktlen >= sizeof(struct ip6_hdr) &&
1591 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IPV6)) &&
1592 	    ip->ip_v == 6) {
1593 		struct ip6_hdr *ip6 = (struct ip6_hdr *)ip;
1594 
1595 		is_ipv6 = 1;
1596 		args->flags |= IPFW_ARGS_IP6;
1597 		hlen = sizeof(struct ip6_hdr);
1598 		proto = ip6->ip6_nxt;
1599 		/* Search extension headers to find upper layer protocols */
1600 		while (ulp == NULL && offset == 0) {
1601 			switch (proto) {
1602 			case IPPROTO_ICMPV6:
1603 				PULLUP_TO(hlen, ulp, struct icmp6_hdr);
1604 #ifdef INET6
1605 				icmp6_type = ICMP6(ulp)->icmp6_type;
1606 #endif
1607 				break;
1608 
1609 			case IPPROTO_TCP:
1610 				PULLUP_TO(hlen, ulp, struct tcphdr);
1611 				dst_port = TCP(ulp)->th_dport;
1612 				src_port = TCP(ulp)->th_sport;
1613 				/* save flags for dynamic rules */
1614 				args->f_id._flags = tcp_get_flags(TCP(ulp));
1615 				break;
1616 
1617 			case IPPROTO_SCTP:
1618 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1619 				    sizeof(struct sctp_chunkhdr) +
1620 				    offsetof(struct sctp_init, a_rwnd))
1621 					PULLUP_LEN(hlen, ulp,
1622 					    sizeof(struct sctphdr) +
1623 					    sizeof(struct sctp_chunkhdr) +
1624 					    offsetof(struct sctp_init, a_rwnd));
1625 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1626 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1627 				else
1628 					PULLUP_LEN(hlen, ulp,
1629 					    sizeof(struct sctphdr));
1630 				src_port = SCTP(ulp)->src_port;
1631 				dst_port = SCTP(ulp)->dest_port;
1632 				break;
1633 
1634 			case IPPROTO_UDP:
1635 			case IPPROTO_UDPLITE:
1636 				PULLUP_TO(hlen, ulp, struct udphdr);
1637 				dst_port = UDP(ulp)->uh_dport;
1638 				src_port = UDP(ulp)->uh_sport;
1639 				break;
1640 
1641 			case IPPROTO_HOPOPTS:	/* RFC 2460 */
1642 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1643 				ext_hd |= EXT_HOPOPTS;
1644 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1645 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1646 				ulp = NULL;
1647 				break;
1648 
1649 			case IPPROTO_ROUTING:	/* RFC 2460 */
1650 				PULLUP_TO(hlen, ulp, struct ip6_rthdr);
1651 				switch (((struct ip6_rthdr *)ulp)->ip6r_type) {
1652 				case 0:
1653 					ext_hd |= EXT_RTHDR0;
1654 					break;
1655 				case 2:
1656 					ext_hd |= EXT_RTHDR2;
1657 					break;
1658 				default:
1659 					if (V_fw_verbose)
1660 						printf("IPFW2: IPV6 - Unknown "
1661 						    "Routing Header type(%d)\n",
1662 						    ((struct ip6_rthdr *)
1663 						    ulp)->ip6r_type);
1664 					if (V_fw_deny_unknown_exthdrs)
1665 					    return (IP_FW_DENY);
1666 					break;
1667 				}
1668 				ext_hd |= EXT_ROUTING;
1669 				hlen += (((struct ip6_rthdr *)ulp)->ip6r_len + 1) << 3;
1670 				proto = ((struct ip6_rthdr *)ulp)->ip6r_nxt;
1671 				ulp = NULL;
1672 				break;
1673 
1674 			case IPPROTO_FRAGMENT:	/* RFC 2460 */
1675 				PULLUP_TO(hlen, ulp, struct ip6_frag);
1676 				ext_hd |= EXT_FRAGMENT;
1677 				hlen += sizeof (struct ip6_frag);
1678 				proto = ((struct ip6_frag *)ulp)->ip6f_nxt;
1679 				offset = ((struct ip6_frag *)ulp)->ip6f_offlg &
1680 					IP6F_OFF_MASK;
1681 				ip6f_mf = ((struct ip6_frag *)ulp)->ip6f_offlg &
1682 					IP6F_MORE_FRAG;
1683 				if (V_fw_permit_single_frag6 == 0 &&
1684 				    offset == 0 && ip6f_mf == 0) {
1685 					if (V_fw_verbose)
1686 						printf("IPFW2: IPV6 - Invalid "
1687 						    "Fragment Header\n");
1688 					if (V_fw_deny_unknown_exthdrs)
1689 					    return (IP_FW_DENY);
1690 					break;
1691 				}
1692 				args->f_id.extra =
1693 				    ntohl(((struct ip6_frag *)ulp)->ip6f_ident);
1694 				ulp = NULL;
1695 				break;
1696 
1697 			case IPPROTO_DSTOPTS:	/* RFC 2460 */
1698 				PULLUP_TO(hlen, ulp, struct ip6_hbh);
1699 				ext_hd |= EXT_DSTOPTS;
1700 				hlen += (((struct ip6_hbh *)ulp)->ip6h_len + 1) << 3;
1701 				proto = ((struct ip6_hbh *)ulp)->ip6h_nxt;
1702 				ulp = NULL;
1703 				break;
1704 
1705 			case IPPROTO_AH:	/* RFC 2402 */
1706 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1707 				ext_hd |= EXT_AH;
1708 				hlen += (((struct ip6_ext *)ulp)->ip6e_len + 2) << 2;
1709 				proto = ((struct ip6_ext *)ulp)->ip6e_nxt;
1710 				ulp = NULL;
1711 				break;
1712 
1713 			case IPPROTO_ESP:	/* RFC 2406 */
1714 				PULLUP_TO(hlen, ulp, uint32_t);	/* SPI, Seq# */
1715 				/* Anything past Seq# is variable length and
1716 				 * data past this ext. header is encrypted. */
1717 				ext_hd |= EXT_ESP;
1718 				break;
1719 
1720 			case IPPROTO_NONE:	/* RFC 2460 */
1721 				/*
1722 				 * Packet ends here, and IPv6 header has
1723 				 * already been pulled up. If ip6e_len!=0
1724 				 * then octets must be ignored.
1725 				 */
1726 				ulp = ip; /* non-NULL to get out of loop. */
1727 				break;
1728 
1729 			case IPPROTO_OSPFIGP:
1730 				/* XXX OSPF header check? */
1731 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1732 				break;
1733 
1734 			case IPPROTO_PIM:
1735 				/* XXX PIM header check? */
1736 				PULLUP_TO(hlen, ulp, struct pim);
1737 				break;
1738 
1739 			case IPPROTO_GRE:	/* RFC 1701 */
1740 				/* XXX GRE header check? */
1741 				PULLUP_TO(hlen, ulp, struct grehdr);
1742 				break;
1743 
1744 			case IPPROTO_CARP:
1745 				PULLUP_TO(hlen, ulp, offsetof(
1746 				    struct carp_header, carp_counter));
1747 				if (CARP_ADVERTISEMENT !=
1748 				    ((struct carp_header *)ulp)->carp_type)
1749 					return (IP_FW_DENY);
1750 				break;
1751 
1752 			case IPPROTO_IPV6:	/* RFC 2893 */
1753 				PULLUP_TO(hlen, ulp, struct ip6_hdr);
1754 				break;
1755 
1756 			case IPPROTO_IPV4:	/* RFC 2893 */
1757 				PULLUP_TO(hlen, ulp, struct ip);
1758 				break;
1759 
1760 			case IPPROTO_PFSYNC:
1761 				PULLUP_TO(hlen, ulp, struct pfsync_header);
1762 				break;
1763 
1764 			default:
1765 				if (V_fw_verbose)
1766 					printf("IPFW2: IPV6 - Unknown "
1767 					    "Extension Header(%d), ext_hd=%x\n",
1768 					     proto, ext_hd);
1769 				if (V_fw_deny_unknown_exthdrs)
1770 				    return (IP_FW_DENY);
1771 				PULLUP_TO(hlen, ulp, struct ip6_ext);
1772 				break;
1773 			} /*switch */
1774 		}
1775 		UPDATE_POINTERS();
1776 		ip6 = (struct ip6_hdr *)ip;
1777 		args->f_id.addr_type = 6;
1778 		args->f_id.src_ip6 = ip6->ip6_src;
1779 		args->f_id.dst_ip6 = ip6->ip6_dst;
1780 		args->f_id.flow_id6 = ntohl(ip6->ip6_flow);
1781 		iplen = ntohs(ip6->ip6_plen) + sizeof(*ip6);
1782 	} else if (pktlen >= sizeof(struct ip) &&
1783 	    (eh == NULL || eh->ether_type == htons(ETHERTYPE_IP)) &&
1784 	    ip->ip_v == 4) {
1785 		is_ipv4 = 1;
1786 		args->flags |= IPFW_ARGS_IP4;
1787 		hlen = ip->ip_hl << 2;
1788 		/*
1789 		 * Collect parameters into local variables for faster
1790 		 * matching.
1791 		 */
1792 		proto = ip->ip_p;
1793 		src_ip = ip->ip_src;
1794 		dst_ip = ip->ip_dst;
1795 		offset = ntohs(ip->ip_off) & IP_OFFMASK;
1796 		iplen = ntohs(ip->ip_len);
1797 
1798 		if (offset == 0) {
1799 			switch (proto) {
1800 			case IPPROTO_TCP:
1801 				PULLUP_TO(hlen, ulp, struct tcphdr);
1802 				dst_port = TCP(ulp)->th_dport;
1803 				src_port = TCP(ulp)->th_sport;
1804 				/* save flags for dynamic rules */
1805 				args->f_id._flags = tcp_get_flags(TCP(ulp));
1806 				break;
1807 
1808 			case IPPROTO_SCTP:
1809 				if (pktlen >= hlen + sizeof(struct sctphdr) +
1810 				    sizeof(struct sctp_chunkhdr) +
1811 				    offsetof(struct sctp_init, a_rwnd))
1812 					PULLUP_LEN(hlen, ulp,
1813 					    sizeof(struct sctphdr) +
1814 					    sizeof(struct sctp_chunkhdr) +
1815 					    offsetof(struct sctp_init, a_rwnd));
1816 				else if (pktlen >= hlen + sizeof(struct sctphdr))
1817 					PULLUP_LEN(hlen, ulp, pktlen - hlen);
1818 				else
1819 					PULLUP_LEN(hlen, ulp,
1820 					    sizeof(struct sctphdr));
1821 				src_port = SCTP(ulp)->src_port;
1822 				dst_port = SCTP(ulp)->dest_port;
1823 				break;
1824 
1825 			case IPPROTO_UDP:
1826 			case IPPROTO_UDPLITE:
1827 				PULLUP_TO(hlen, ulp, struct udphdr);
1828 				dst_port = UDP(ulp)->uh_dport;
1829 				src_port = UDP(ulp)->uh_sport;
1830 				break;
1831 
1832 			case IPPROTO_ICMP:
1833 				PULLUP_TO(hlen, ulp, struct icmphdr);
1834 				//args->f_id.flags = ICMP(ulp)->icmp_type;
1835 				break;
1836 
1837 			default:
1838 				break;
1839 			}
1840 		} else {
1841 			if (offset == 1 && proto == IPPROTO_TCP) {
1842 				/* RFC 3128 */
1843 				goto pullup_failed;
1844 			}
1845 		}
1846 
1847 		UPDATE_POINTERS();
1848 		args->f_id.addr_type = 4;
1849 		args->f_id.src_ip = ntohl(src_ip.s_addr);
1850 		args->f_id.dst_ip = ntohl(dst_ip.s_addr);
1851 	} else {
1852 		proto = 0;
1853 		dst_ip.s_addr = src_ip.s_addr = 0;
1854 
1855 		args->f_id.addr_type = 1; /* XXX */
1856 	}
1857 #undef PULLUP_TO
1858 	pktlen = iplen < pktlen ? iplen: pktlen;
1859 
1860 	/* Properly initialize the rest of f_id */
1861 	args->f_id.proto = proto;
1862 	args->f_id.src_port = src_port = ntohs(src_port);
1863 	args->f_id.dst_port = dst_port = ntohs(dst_port);
1864 
1865 	IPFW_PF_RLOCK(chain);
1866 	if (! V_ipfw_vnet_ready) { /* shutting down, leave NOW. */
1867 		IPFW_PF_RUNLOCK(chain);
1868 		return (IP_FW_PASS);	/* accept */
1869 	}
1870 	if (args->flags & IPFW_ARGS_REF) {
1871 		/*
1872 		 * Packet has already been tagged as a result of a previous
1873 		 * match on rule args->rule aka args->rule_id (PIPE, QUEUE,
1874 		 * REASS, NETGRAPH, DIVERT/TEE...)
1875 		 * Validate the slot and continue from the next one
1876 		 * if still present, otherwise do a lookup.
1877 		 */
1878 		f_pos = (args->rule.chain_id == chain->id) ?
1879 		    args->rule.slot :
1880 		    ipfw_find_rule(chain, args->rule.rulenum,
1881 			args->rule.rule_id);
1882 	} else {
1883 		f_pos = 0;
1884 	}
1885 
1886 	if (args->flags & IPFW_ARGS_IN) {
1887 		iif = args->ifp;
1888 		oif = NULL;
1889 	} else {
1890 		MPASS(args->flags & IPFW_ARGS_OUT);
1891 		iif = mem ? NULL : m_rcvif(m);
1892 		oif = args->ifp;
1893 	}
1894 
1895 	/*
1896 	 * Now scan the rules, and parse microinstructions for each rule.
1897 	 * We have two nested loops and an inner switch. Sometimes we
1898 	 * need to break out of one or both loops, or re-enter one of
1899 	 * the loops with updated variables. Loop variables are:
1900 	 *
1901 	 *	f_pos (outer loop) points to the current rule.
1902 	 *		On output it points to the matching rule.
1903 	 *	done (outer loop) is used as a flag to break the loop.
1904 	 *	l (inner loop)	residual length of current rule.
1905 	 *		cmd points to the current microinstruction.
1906 	 *
1907 	 * We break the inner loop by setting l=0 and possibly
1908 	 * cmdlen=0 if we don't want to advance cmd.
1909 	 * We break the outer loop by setting done=1
1910 	 * We can restart the inner loop by setting l>0 and f_pos, f, cmd
1911 	 * as needed.
1912 	 */
1913 	for (; f_pos < chain->n_rules; f_pos++) {
1914 		ipfw_insn *cmd;
1915 		uint32_t tablearg = 0;
1916 		int l, cmdlen, skip_or; /* skip rest of OR block */
1917 		struct ip_fw *f;
1918 
1919 		f = chain->map[f_pos];
1920 		if (V_set_disable & (1 << f->set) )
1921 			continue;
1922 
1923 		skip_or = 0;
1924 		for (l = f->cmd_len, cmd = f->cmd ; l > 0 ;
1925 		    l -= cmdlen, cmd += cmdlen) {
1926 			int match;
1927 
1928 			/*
1929 			 * check_body is a jump target used when we find a
1930 			 * CHECK_STATE, and need to jump to the body of
1931 			 * the target rule.
1932 			 */
1933 
1934 /* check_body: */
1935 			cmdlen = F_LEN(cmd);
1936 			/*
1937 			 * An OR block (insn_1 || .. || insn_n) has the
1938 			 * F_OR bit set in all but the last instruction.
1939 			 * The first match will set "skip_or", and cause
1940 			 * the following instructions to be skipped until
1941 			 * past the one with the F_OR bit clear.
1942 			 */
1943 			if (skip_or) {		/* skip this instruction */
1944 				if ((cmd->len & F_OR) == 0)
1945 					skip_or = 0;	/* next one is good */
1946 				continue;
1947 			}
1948 			match = 0; /* set to 1 if we succeed */
1949 
1950 			switch (cmd->opcode) {
1951 			/*
1952 			 * The first set of opcodes compares the packet's
1953 			 * fields with some pattern, setting 'match' if a
1954 			 * match is found. At the end of the loop there is
1955 			 * logic to deal with F_NOT and F_OR flags associated
1956 			 * with the opcode.
1957 			 */
1958 			case O_NOP:
1959 				match = 1;
1960 				break;
1961 
1962 			case O_FORWARD_MAC:
1963 				printf("ipfw: opcode %d unimplemented\n",
1964 				    cmd->opcode);
1965 				break;
1966 
1967 			case O_GID:
1968 			case O_UID:
1969 			case O_JAIL:
1970 				/*
1971 				 * We only check offset == 0 && proto != 0,
1972 				 * as this ensures that we have a
1973 				 * packet with the ports info.
1974 				 */
1975 				if (offset != 0)
1976 					break;
1977 				if (proto == IPPROTO_TCP ||
1978 				    proto == IPPROTO_UDP ||
1979 				    proto == IPPROTO_UDPLITE)
1980 					match = check_uidgid(
1981 						    (ipfw_insn_u32 *)cmd,
1982 						    args, &ucred_lookup,
1983 #ifdef __FreeBSD__
1984 						    &ucred_cache);
1985 #else
1986 						    (void *)&ucred_cache);
1987 #endif
1988 				break;
1989 
1990 			case O_RECV:
1991 				match = iface_match(iif, (ipfw_insn_if *)cmd,
1992 				    chain, &tablearg);
1993 				break;
1994 
1995 			case O_XMIT:
1996 				match = iface_match(oif, (ipfw_insn_if *)cmd,
1997 				    chain, &tablearg);
1998 				break;
1999 
2000 			case O_VIA:
2001 				match = iface_match(args->ifp,
2002 				    (ipfw_insn_if *)cmd, chain, &tablearg);
2003 				break;
2004 
2005 			case O_MACADDR2:
2006 				if (args->flags & IPFW_ARGS_ETHER) {
2007 					u_int32_t *want = (u_int32_t *)
2008 						((ipfw_insn_mac *)cmd)->addr;
2009 					u_int32_t *mask = (u_int32_t *)
2010 						((ipfw_insn_mac *)cmd)->mask;
2011 					u_int32_t *hdr = (u_int32_t *)eh;
2012 
2013 					match =
2014 					    ( want[0] == (hdr[0] & mask[0]) &&
2015 					      want[1] == (hdr[1] & mask[1]) &&
2016 					      want[2] == (hdr[2] & mask[2]) );
2017 				}
2018 				break;
2019 
2020 			case O_MAC_TYPE:
2021 				if (args->flags & IPFW_ARGS_ETHER) {
2022 					u_int16_t *p =
2023 					    ((ipfw_insn_u16 *)cmd)->ports;
2024 					int i;
2025 
2026 					for (i = cmdlen - 1; !match && i>0;
2027 					    i--, p += 2)
2028 						match =
2029 						    (ntohs(eh->ether_type) >=
2030 						    p[0] &&
2031 						    ntohs(eh->ether_type) <=
2032 						    p[1]);
2033 				}
2034 				break;
2035 
2036 			case O_FRAG:
2037 				if (is_ipv4) {
2038 					/*
2039 					 * Since flags_match() works with
2040 					 * uint8_t we pack ip_off into 8 bits.
2041 					 * For this match offset is a boolean.
2042 					 */
2043 					match = flags_match(cmd,
2044 					    ((ntohs(ip->ip_off) & ~IP_OFFMASK)
2045 					    >> 8) | (offset != 0));
2046 				} else {
2047 					/*
2048 					 * Compatibility: historically bare
2049 					 * "frag" would match IPv6 fragments.
2050 					 */
2051 					match = (cmd->arg1 == 0x1 &&
2052 					    (offset != 0));
2053 				}
2054 				break;
2055 
2056 			case O_IN:	/* "out" is "not in" */
2057 				match = (oif == NULL);
2058 				break;
2059 
2060 			case O_LAYER2:
2061 				match = (args->flags & IPFW_ARGS_ETHER);
2062 				break;
2063 
2064 			case O_DIVERTED:
2065 				if ((args->flags & IPFW_ARGS_REF) == 0)
2066 					break;
2067 				/*
2068 				 * For diverted packets, args->rule.info
2069 				 * contains the divert port (in host format)
2070 				 * reason and direction.
2071 				 */
2072 				match = ((args->rule.info & IPFW_IS_MASK) ==
2073 				    IPFW_IS_DIVERT) && (
2074 				    ((args->rule.info & IPFW_INFO_IN) ?
2075 					1: 2) & cmd->arg1);
2076 				break;
2077 
2078 			case O_PROTO:
2079 				/*
2080 				 * We do not allow an arg of 0 so the
2081 				 * check of "proto" only suffices.
2082 				 */
2083 				match = (proto == cmd->arg1);
2084 				break;
2085 
2086 			case O_IP_SRC:
2087 				match = is_ipv4 &&
2088 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2089 				    src_ip.s_addr);
2090 				break;
2091 
2092 			case O_IP_DST_LOOKUP:
2093 				if (IPFW_LOOKUP_TYPE(cmd) != LOOKUP_NONE) {
2094 				  void *pkey = NULL;
2095 				  uint32_t key, vidx;
2096 				  uint16_t keylen = 0; /* zero if can't match the packet */
2097 				  uint8_t lookup_type;
2098 
2099 				lookup_type = IPFW_LOOKUP_TYPE(cmd);
2100 
2101 				switch (lookup_type) {
2102 				case LOOKUP_DST_IP:
2103 				case LOOKUP_SRC_IP:
2104 					if (is_ipv4) {
2105 						keylen = sizeof(in_addr_t);
2106 						if (lookup_type == LOOKUP_DST_IP)
2107 							pkey = &dst_ip;
2108 						else
2109 							pkey = &src_ip;
2110 					} else if (is_ipv6) {
2111 						keylen = sizeof(struct in6_addr);
2112 						if (lookup_type == LOOKUP_DST_IP)
2113 							pkey = &args->f_id.dst_ip6;
2114 						else
2115 							pkey = &args->f_id.src_ip6;
2116 					} else /* only for L3 */
2117 						break;
2118 				case LOOKUP_DSCP:
2119 					if (is_ipv4)
2120 						key = ip->ip_tos >> 2;
2121 					else if (is_ipv6)
2122 						key = IPV6_DSCP(
2123 						    (struct ip6_hdr *)ip) >> 2;
2124 					else
2125 						break; /* only for L3 */
2126 
2127 					key &= 0x3f;
2128 					if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2129 						key &= insntod(cmd, table)->value;
2130 					pkey = &key;
2131 					keylen = sizeof(key);
2132 					break;
2133 				case LOOKUP_DST_PORT:
2134 				case LOOKUP_SRC_PORT:
2135 					/* only for L3 */
2136 					if (is_ipv6 == 0 && is_ipv4 == 0) {
2137 						break;
2138 					}
2139 					/* Skip fragments */
2140 					if (offset != 0) {
2141 						break;
2142 					}
2143 					/* Skip proto without ports */
2144 					if (proto != IPPROTO_TCP &&
2145 					    proto != IPPROTO_UDP &&
2146 					    proto != IPPROTO_UDPLITE &&
2147 					    proto != IPPROTO_SCTP)
2148 						break;
2149 					if (lookup_type == LOOKUP_DST_PORT)
2150 						key = dst_port;
2151 					else
2152 						key = src_port;
2153 					pkey = &key;
2154 					if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2155 						key &= insntod(cmd, table)->value;
2156 					keylen = sizeof(key);
2157 					break;
2158 				case LOOKUP_DST_MAC:
2159 				case LOOKUP_SRC_MAC:
2160 					/* only for L2 */
2161 					if ((args->flags & IPFW_ARGS_ETHER) == 0)
2162 						break;
2163 
2164 					pkey = lookup_type == LOOKUP_DST_MAC ?
2165 					    eh->ether_dhost : eh->ether_shost;
2166 					keylen = ETHER_ADDR_LEN;
2167 					break;
2168 #ifndef USERSPACE
2169 				case LOOKUP_UID:
2170 				case LOOKUP_JAIL:
2171 					check_uidgid(insntod(cmd, u32),
2172 					    args, &ucred_lookup,
2173 #ifdef __FreeBSD__
2174 					    &ucred_cache);
2175 					if (lookup_type == LOOKUP_UID)
2176 						key = ucred_cache->cr_uid;
2177 					else if (lookup_type == LOOKUP_JAIL)
2178 						key = ucred_cache->cr_prison->pr_id;
2179 #else /* !__FreeBSD__ */
2180 					    (void *)&ucred_cache);
2181 					if (lookup_type == LOOKUP_UID)
2182 						key = ucred_cache.uid;
2183 					else if (lookup_type == LOOKUP_JAIL)
2184 						key = ucred_cache.xid;
2185 #endif /* !__FreeBSD__ */
2186 					pkey = &key;
2187 					if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2188 						key &= insntod(cmd, table)->value;
2189 					keylen = sizeof(key);
2190 					break;
2191 #endif /* !USERSPACE */
2192 				case LOOKUP_MARK:
2193 					key = args->rule.pkt_mark;
2194 					if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2195 						key &= insntod(cmd, table)->value;
2196 					pkey = &key;
2197 					keylen = sizeof(key);
2198 					break;
2199 				case LOOKUP_RULENUM:
2200 					key = f->rulenum;
2201 					if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2202 						key &= insntod(cmd, table)->value;
2203 					pkey = &key;
2204 					keylen = sizeof(key);
2205 					break;
2206 				}
2207 				/* unknown key type */
2208 				if (keylen == 0)
2209 					break;
2210 				match = ipfw_lookup_table(chain,
2211 				    insntod(cmd, kidx)->kidx, keylen,
2212 				    pkey, &vidx);
2213 
2214 				if (match)
2215 					tablearg = vidx;
2216 				break;
2217 			}
2218 				/* LOOKUP_NONE */
2219 				/* FALLTHROUGH */
2220 			case O_IP_SRC_LOOKUP:
2221 			{
2222 				void *pkey;
2223 				uint32_t vidx;
2224 				uint16_t keylen;
2225 
2226 				if (is_ipv4) {
2227 					keylen = sizeof(in_addr_t);
2228 					if (cmd->opcode == O_IP_DST_LOOKUP)
2229 						pkey = &dst_ip;
2230 					else
2231 						pkey = &src_ip;
2232 				} else if (is_ipv6) {
2233 					keylen = sizeof(struct in6_addr);
2234 					if (cmd->opcode == O_IP_DST_LOOKUP)
2235 						pkey = &args->f_id.dst_ip6;
2236 					else
2237 						pkey = &args->f_id.src_ip6;
2238 				} else
2239 					break;
2240 				match = ipfw_lookup_table(chain,
2241 				    insntod(cmd, kidx)->kidx,
2242 				    keylen, pkey, &vidx);
2243 				if (!match)
2244 					break;
2245 				if (cmdlen == F_INSN_SIZE(ipfw_insn_table)) {
2246 					match = tvalue_match(chain,
2247 					    insntod(cmd, table), vidx);
2248 					if (!match)
2249 						break;
2250 				}
2251 				tablearg = vidx;
2252 				break;
2253 			}
2254 
2255 			case O_MAC_SRC_LOOKUP:
2256 			case O_MAC_DST_LOOKUP:
2257 			{
2258 				void *pkey;
2259 				uint32_t vidx;
2260 				uint16_t keylen = ETHER_ADDR_LEN;
2261 
2262 				/* Need ether frame */
2263 				if ((args->flags & IPFW_ARGS_ETHER) == 0)
2264 					break;
2265 
2266 				if (cmd->opcode == O_MAC_DST_LOOKUP)
2267 					pkey = eh->ether_dhost;
2268 				else
2269 					pkey = eh->ether_shost;
2270 
2271 				match = ipfw_lookup_table(chain,
2272 				    insntod(cmd, kidx)->kidx,
2273 				    keylen, pkey, &vidx);
2274 				if (!match)
2275 					break;
2276 				if (cmdlen == F_INSN_SIZE(ipfw_insn_table)) {
2277 					match = tvalue_match(chain,
2278 					    insntod(cmd, table), vidx);
2279 					if (!match)
2280 						break;
2281 				}
2282 				tablearg = vidx;
2283 				break;
2284 			}
2285 
2286 			case O_IP_FLOW_LOOKUP:
2287 			{
2288 				uint32_t vidx = 0;
2289 
2290 				match = ipfw_lookup_table(chain,
2291 				    insntod(cmd, kidx)->kidx, 0,
2292 				    &args->f_id, &vidx);
2293 				if (!match)
2294 					break;
2295 				if (cmdlen == F_INSN_SIZE(ipfw_insn_table))
2296 					match = tvalue_match(chain,
2297 					    insntod(cmd, table), vidx);
2298 				if (match)
2299 					tablearg = vidx;
2300 				break;
2301 			}
2302 
2303 			case O_IP_SRC_MASK:
2304 			case O_IP_DST_MASK:
2305 				if (is_ipv4) {
2306 				    uint32_t a =
2307 					(cmd->opcode == O_IP_DST_MASK) ?
2308 					    dst_ip.s_addr : src_ip.s_addr;
2309 				    uint32_t *p = ((ipfw_insn_u32 *)cmd)->d;
2310 				    int i = cmdlen-1;
2311 
2312 				    for (; !match && i>0; i-= 2, p+= 2)
2313 					match = (p[0] == (a & p[1]));
2314 				}
2315 				break;
2316 
2317 			case O_IP_SRC_ME:
2318 				if (is_ipv4) {
2319 					match = in_localip(src_ip);
2320 					break;
2321 				}
2322 #ifdef INET6
2323 				/* FALLTHROUGH */
2324 			case O_IP6_SRC_ME:
2325 				match = is_ipv6 &&
2326 				    ipfw_localip6(&args->f_id.src_ip6);
2327 #endif
2328 				break;
2329 
2330 			case O_IP_DST_SET:
2331 			case O_IP_SRC_SET:
2332 				if (is_ipv4) {
2333 					u_int32_t *d = (u_int32_t *)(cmd+1);
2334 					u_int32_t addr =
2335 					    cmd->opcode == O_IP_DST_SET ?
2336 						args->f_id.dst_ip :
2337 						args->f_id.src_ip;
2338 
2339 					    if (addr < d[0])
2340 						    break;
2341 					    addr -= d[0]; /* subtract base */
2342 					    match = (addr < cmd->arg1) &&
2343 						( d[ 1 + (addr>>5)] &
2344 						  (1<<(addr & 0x1f)) );
2345 				}
2346 				break;
2347 
2348 			case O_IP_DST:
2349 				match = is_ipv4 &&
2350 				    (((ipfw_insn_ip *)cmd)->addr.s_addr ==
2351 				    dst_ip.s_addr);
2352 				break;
2353 
2354 			case O_IP_DST_ME:
2355 				if (is_ipv4) {
2356 					match = in_localip(dst_ip);
2357 					break;
2358 				}
2359 #ifdef INET6
2360 				/* FALLTHROUGH */
2361 			case O_IP6_DST_ME:
2362 				match = is_ipv6 &&
2363 				    ipfw_localip6(&args->f_id.dst_ip6);
2364 #endif
2365 				break;
2366 
2367 			case O_IP_SRCPORT:
2368 			case O_IP_DSTPORT:
2369 				/*
2370 				 * offset == 0 && proto != 0 is enough
2371 				 * to guarantee that we have a
2372 				 * packet with port info.
2373 				 */
2374 				if ((proto == IPPROTO_UDP ||
2375 				    proto == IPPROTO_UDPLITE ||
2376 				    proto == IPPROTO_TCP ||
2377 				    proto == IPPROTO_SCTP) && offset == 0) {
2378 					u_int16_t x =
2379 					    (cmd->opcode == O_IP_SRCPORT) ?
2380 						src_port : dst_port ;
2381 					u_int16_t *p =
2382 					    ((ipfw_insn_u16 *)cmd)->ports;
2383 					int i;
2384 
2385 					for (i = cmdlen - 1; !match && i>0;
2386 					    i--, p += 2)
2387 						match = (x>=p[0] && x<=p[1]);
2388 				}
2389 				break;
2390 
2391 			case O_ICMPTYPE:
2392 				match = (offset == 0 && proto==IPPROTO_ICMP &&
2393 				    icmptype_match(ICMP(ulp), (ipfw_insn_u32 *)cmd) );
2394 				break;
2395 
2396 #ifdef INET6
2397 			case O_ICMP6TYPE:
2398 				match = is_ipv6 && offset == 0 &&
2399 				    proto==IPPROTO_ICMPV6 &&
2400 				    icmp6type_match(
2401 					ICMP6(ulp)->icmp6_type,
2402 					(ipfw_insn_u32 *)cmd);
2403 				break;
2404 #endif /* INET6 */
2405 
2406 			case O_IPOPT:
2407 				match = (is_ipv4 &&
2408 				    ipopts_match(ip, cmd) );
2409 				break;
2410 
2411 			case O_IPVER:
2412 				match = ((is_ipv4 || is_ipv6) &&
2413 				    cmd->arg1 == ip->ip_v);
2414 				break;
2415 
2416 			case O_IPID:
2417 			case O_IPTTL:
2418 				if (!is_ipv4)
2419 					break;
2420 			case O_IPLEN:
2421 				{	/* only for IP packets */
2422 				    uint16_t x;
2423 				    uint16_t *p;
2424 				    int i;
2425 
2426 				    if (cmd->opcode == O_IPLEN)
2427 					x = iplen;
2428 				    else if (cmd->opcode == O_IPTTL)
2429 					x = ip->ip_ttl;
2430 				    else /* must be IPID */
2431 					x = ntohs(ip->ip_id);
2432 				    if (cmdlen == 1) {
2433 					match = (cmd->arg1 == x);
2434 					break;
2435 				    }
2436 				    /* otherwise we have ranges */
2437 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2438 				    i = cmdlen - 1;
2439 				    for (; !match && i>0; i--, p += 2)
2440 					match = (x >= p[0] && x <= p[1]);
2441 				}
2442 				break;
2443 
2444 			case O_IPPRECEDENCE:
2445 				match = (is_ipv4 &&
2446 				    (cmd->arg1 == (ip->ip_tos & 0xe0)) );
2447 				break;
2448 
2449 			case O_IPTOS:
2450 				match = (is_ipv4 &&
2451 				    flags_match(cmd, ip->ip_tos));
2452 				break;
2453 
2454 			case O_DSCP:
2455 			    {
2456 				uint32_t *p;
2457 				uint16_t x;
2458 
2459 				p = ((ipfw_insn_u32 *)cmd)->d;
2460 
2461 				if (is_ipv4)
2462 					x = ip->ip_tos >> 2;
2463 				else if (is_ipv6) {
2464 					x = IPV6_DSCP(
2465 					    (struct ip6_hdr *)ip) >> 2;
2466 					x &= 0x3f;
2467 				} else
2468 					break;
2469 
2470 				/* DSCP bitmask is stored as low_u32 high_u32 */
2471 				if (x >= 32)
2472 					match = *(p + 1) & (1 << (x - 32));
2473 				else
2474 					match = *p & (1 << x);
2475 			    }
2476 				break;
2477 
2478 			case O_TCPDATALEN:
2479 				if (proto == IPPROTO_TCP && offset == 0) {
2480 				    struct tcphdr *tcp;
2481 				    uint16_t x;
2482 				    uint16_t *p;
2483 				    int i;
2484 #ifdef INET6
2485 				    if (is_ipv6) {
2486 					    struct ip6_hdr *ip6;
2487 
2488 					    ip6 = (struct ip6_hdr *)ip;
2489 					    if (ip6->ip6_plen == 0) {
2490 						    /*
2491 						     * Jumbo payload is not
2492 						     * supported by this
2493 						     * opcode.
2494 						     */
2495 						    break;
2496 					    }
2497 					    x = iplen - hlen;
2498 				    } else
2499 #endif /* INET6 */
2500 					    x = iplen - (ip->ip_hl << 2);
2501 				    tcp = TCP(ulp);
2502 				    x -= tcp->th_off << 2;
2503 				    if (cmdlen == 1) {
2504 					match = (cmd->arg1 == x);
2505 					break;
2506 				    }
2507 				    /* otherwise we have ranges */
2508 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2509 				    i = cmdlen - 1;
2510 				    for (; !match && i>0; i--, p += 2)
2511 					match = (x >= p[0] && x <= p[1]);
2512 				}
2513 				break;
2514 
2515 			case O_TCPFLAGS:
2516 				/*
2517 				 * Note that this is currently only set up to
2518 				 * match the lower 8 TCP header flag bits, not
2519 				 * the full compliment of all 12 flags.
2520 				 */
2521 				match = (proto == IPPROTO_TCP && offset == 0 &&
2522 				    flags_match(cmd, tcp_get_flags(TCP(ulp))));
2523 				break;
2524 
2525 			case O_TCPOPTS:
2526 				if (proto == IPPROTO_TCP && offset == 0 && ulp){
2527 					PULLUP_LEN_LOCKED(hlen, ulp,
2528 					    (TCP(ulp)->th_off << 2));
2529 					match = tcpopts_match(TCP(ulp), cmd);
2530 				}
2531 				break;
2532 
2533 			case O_TCPSEQ:
2534 				match = (proto == IPPROTO_TCP && offset == 0 &&
2535 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2536 					TCP(ulp)->th_seq);
2537 				break;
2538 
2539 			case O_TCPACK:
2540 				match = (proto == IPPROTO_TCP && offset == 0 &&
2541 				    ((ipfw_insn_u32 *)cmd)->d[0] ==
2542 					TCP(ulp)->th_ack);
2543 				break;
2544 
2545 			case O_TCPMSS:
2546 				if (proto == IPPROTO_TCP &&
2547 				    (args->f_id._flags & TH_SYN) != 0 &&
2548 				    ulp != NULL) {
2549 					uint16_t mss, *p;
2550 					int i;
2551 
2552 					PULLUP_LEN_LOCKED(hlen, ulp,
2553 					    (TCP(ulp)->th_off << 2));
2554 					if ((tcpopts_parse(TCP(ulp), &mss) &
2555 					    IP_FW_TCPOPT_MSS) == 0)
2556 						break;
2557 					if (cmdlen == 1) {
2558 						match = (cmd->arg1 == mss);
2559 						break;
2560 					}
2561 					/* Otherwise we have ranges. */
2562 					p = ((ipfw_insn_u16 *)cmd)->ports;
2563 					i = cmdlen - 1;
2564 					for (; !match && i > 0; i--, p += 2)
2565 						match = (mss >= p[0] &&
2566 						    mss <= p[1]);
2567 				}
2568 				break;
2569 
2570 			case O_TCPWIN:
2571 				if (proto == IPPROTO_TCP && offset == 0) {
2572 				    uint16_t x;
2573 				    uint16_t *p;
2574 				    int i;
2575 
2576 				    x = ntohs(TCP(ulp)->th_win);
2577 				    if (cmdlen == 1) {
2578 					match = (cmd->arg1 == x);
2579 					break;
2580 				    }
2581 				    /* Otherwise we have ranges. */
2582 				    p = ((ipfw_insn_u16 *)cmd)->ports;
2583 				    i = cmdlen - 1;
2584 				    for (; !match && i > 0; i--, p += 2)
2585 					match = (x >= p[0] && x <= p[1]);
2586 				}
2587 				break;
2588 
2589 			case O_ESTAB:
2590 				/* reject packets which have SYN only */
2591 				/* XXX should i also check for TH_ACK ? */
2592 				match = (proto == IPPROTO_TCP && offset == 0 &&
2593 				    (tcp_get_flags(TCP(ulp)) &
2594 				     (TH_RST | TH_ACK | TH_SYN)) != TH_SYN);
2595 				break;
2596 
2597 			case O_ALTQ: {
2598 				struct pf_mtag *at;
2599 				struct m_tag *mtag;
2600 				ipfw_insn_altq *altq = (ipfw_insn_altq *)cmd;
2601 
2602 				/*
2603 				 * ALTQ uses mbuf tags from another
2604 				 * packet filtering system - pf(4).
2605 				 * We allocate a tag in its format
2606 				 * and fill it in, pretending to be pf(4).
2607 				 */
2608 				match = 1;
2609 				at = pf_find_mtag(m);
2610 				if (at != NULL && at->qid != 0)
2611 					break;
2612 				mtag = m_tag_get(PACKET_TAG_PF,
2613 				    sizeof(struct pf_mtag), M_NOWAIT | M_ZERO);
2614 				if (mtag == NULL) {
2615 					/*
2616 					 * Let the packet fall back to the
2617 					 * default ALTQ.
2618 					 */
2619 					break;
2620 				}
2621 				m_tag_prepend(m, mtag);
2622 				at = (struct pf_mtag *)(mtag + 1);
2623 				at->qid = altq->qid;
2624 				at->hdr = ip;
2625 				break;
2626 			}
2627 
2628 			case O_LOG:
2629 				ipfw_log(chain, f, hlen, args,
2630 				    offset | ip6f_mf, tablearg, ip, eh);
2631 				match = 1;
2632 				break;
2633 
2634 			case O_PROB:
2635 				match = (random()<((ipfw_insn_u32 *)cmd)->d[0]);
2636 				break;
2637 
2638 			case O_VERREVPATH:
2639 				/* Outgoing packets automatically pass/match */
2640 				match = (args->flags & IPFW_ARGS_OUT ||
2641 				    (
2642 #ifdef INET6
2643 				    is_ipv6 ?
2644 					verify_path6(&(args->f_id.src_ip6),
2645 					    iif, args->f_id.fib) :
2646 #endif
2647 				    verify_path(src_ip, iif, args->f_id.fib)));
2648 				break;
2649 
2650 			case O_VERSRCREACH:
2651 				/* Outgoing packets automatically pass/match */
2652 				match = (hlen > 0 && ((oif != NULL) || (
2653 #ifdef INET6
2654 				    is_ipv6 ?
2655 				        verify_path6(&(args->f_id.src_ip6),
2656 				            NULL, args->f_id.fib) :
2657 #endif
2658 				    verify_path(src_ip, NULL, args->f_id.fib))));
2659 				break;
2660 
2661 			case O_ANTISPOOF:
2662 				/* Outgoing packets automatically pass/match */
2663 				if (oif == NULL && hlen > 0 &&
2664 				    (  (is_ipv4 && in_localaddr(src_ip))
2665 #ifdef INET6
2666 				    || (is_ipv6 &&
2667 				        in6_localaddr(&(args->f_id.src_ip6)))
2668 #endif
2669 				    ))
2670 					match =
2671 #ifdef INET6
2672 					    is_ipv6 ? verify_path6(
2673 					        &(args->f_id.src_ip6), iif,
2674 						args->f_id.fib) :
2675 #endif
2676 					    verify_path(src_ip, iif,
2677 					        args->f_id.fib);
2678 				else
2679 					match = 1;
2680 				break;
2681 
2682 			case O_IPSEC:
2683 				match = (m_tag_find(m,
2684 				    PACKET_TAG_IPSEC_IN_DONE, NULL) != NULL);
2685 				/* otherwise no match */
2686 				break;
2687 
2688 #ifdef INET6
2689 			case O_IP6_SRC:
2690 				match = is_ipv6 &&
2691 				    IN6_ARE_ADDR_EQUAL(&args->f_id.src_ip6,
2692 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2693 				break;
2694 
2695 			case O_IP6_DST:
2696 				match = is_ipv6 &&
2697 				IN6_ARE_ADDR_EQUAL(&args->f_id.dst_ip6,
2698 				    &((ipfw_insn_ip6 *)cmd)->addr6);
2699 				break;
2700 			case O_IP6_SRC_MASK:
2701 			case O_IP6_DST_MASK:
2702 				if (is_ipv6) {
2703 					int i = cmdlen - 1;
2704 					struct in6_addr p;
2705 					struct in6_addr *d =
2706 					    &((ipfw_insn_ip6 *)cmd)->addr6;
2707 
2708 					for (; !match && i > 0; d += 2,
2709 					    i -= F_INSN_SIZE(struct in6_addr)
2710 					    * 2) {
2711 						p = (cmd->opcode ==
2712 						    O_IP6_SRC_MASK) ?
2713 						    args->f_id.src_ip6:
2714 						    args->f_id.dst_ip6;
2715 						APPLY_MASK(&p, &d[1]);
2716 						match =
2717 						    IN6_ARE_ADDR_EQUAL(&d[0],
2718 						    &p);
2719 					}
2720 				}
2721 				break;
2722 
2723 			case O_FLOW6ID:
2724 				match = is_ipv6 &&
2725 				    flow6id_match(args->f_id.flow_id6,
2726 				    (ipfw_insn_u32 *) cmd);
2727 				break;
2728 
2729 			case O_EXT_HDR:
2730 				match = is_ipv6 &&
2731 				    (ext_hd & ((ipfw_insn *) cmd)->arg1);
2732 				break;
2733 
2734 			case O_IP6:
2735 				match = is_ipv6;
2736 				break;
2737 #endif
2738 
2739 			case O_IP4:
2740 				match = is_ipv4;
2741 				break;
2742 
2743 			case O_TAG: {
2744 				struct m_tag *mtag;
2745 				uint32_t tag = TARG(cmd->arg1, tag);
2746 
2747 				/* Packet is already tagged with this tag? */
2748 				mtag = m_tag_locate(m, MTAG_IPFW, tag, NULL);
2749 
2750 				/* We have `untag' action when F_NOT flag is
2751 				 * present. And we must remove this mtag from
2752 				 * mbuf and reset `match' to zero (`match' will
2753 				 * be inversed later).
2754 				 * Otherwise we should allocate new mtag and
2755 				 * push it into mbuf.
2756 				 */
2757 				if (cmd->len & F_NOT) { /* `untag' action */
2758 					if (mtag != NULL)
2759 						m_tag_delete(m, mtag);
2760 					match = 0;
2761 				} else {
2762 					if (mtag == NULL) {
2763 						mtag = m_tag_alloc( MTAG_IPFW,
2764 						    tag, 0, M_NOWAIT);
2765 						if (mtag != NULL)
2766 							m_tag_prepend(m, mtag);
2767 					}
2768 					match = 1;
2769 				}
2770 				break;
2771 			}
2772 
2773 			case O_FIB: /* try match the specified fib */
2774 				if (args->f_id.fib == cmd->arg1)
2775 					match = 1;
2776 				break;
2777 
2778 			case O_SOCKARG:	{
2779 #ifndef USERSPACE	/* not supported in userspace */
2780 				struct inpcb *inp = args->inp;
2781 				struct inpcbinfo *pi;
2782 				bool inp_locked = false;
2783 
2784 				if (proto == IPPROTO_TCP)
2785 					pi = &V_tcbinfo;
2786 				else if (proto == IPPROTO_UDP)
2787 					pi = &V_udbinfo;
2788 				else if (proto == IPPROTO_UDPLITE)
2789 					pi = &V_ulitecbinfo;
2790 				else
2791 					break;
2792 
2793 				/*
2794 				 * XXXRW: so_user_cookie should almost
2795 				 * certainly be inp_user_cookie?
2796 				 */
2797 
2798 				/*
2799 				 * For incoming packet lookup the inpcb
2800 				 * using the src/dest ip/port tuple.
2801 				 */
2802 				if (is_ipv4 && inp == NULL) {
2803 					inp = in_pcblookup(pi,
2804 					    src_ip, htons(src_port),
2805 					    dst_ip, htons(dst_port),
2806 					    INPLOOKUP_RLOCKPCB, NULL);
2807 					inp_locked = true;
2808 				}
2809 #ifdef INET6
2810 				if (is_ipv6 && inp == NULL) {
2811 					inp = in6_pcblookup(pi,
2812 					    &args->f_id.src_ip6,
2813 					    htons(src_port),
2814 					    &args->f_id.dst_ip6,
2815 					    htons(dst_port),
2816 					    INPLOOKUP_RLOCKPCB, NULL);
2817 					inp_locked = true;
2818 				}
2819 #endif /* INET6 */
2820 				if (inp != NULL) {
2821 					if (inp->inp_socket) {
2822 						tablearg =
2823 						    inp->inp_socket->so_user_cookie;
2824 						if (tablearg)
2825 							match = 1;
2826 					}
2827 					if (inp_locked)
2828 						INP_RUNLOCK(inp);
2829 				}
2830 #endif /* !USERSPACE */
2831 				break;
2832 			}
2833 
2834 			case O_TAGGED: {
2835 				struct m_tag *mtag;
2836 				uint32_t tag = TARG(cmd->arg1, tag);
2837 
2838 				if (cmdlen == 1) {
2839 					match = m_tag_locate(m, MTAG_IPFW,
2840 					    tag, NULL) != NULL;
2841 					break;
2842 				}
2843 
2844 				/* we have ranges */
2845 				for (mtag = m_tag_first(m);
2846 				    mtag != NULL && !match;
2847 				    mtag = m_tag_next(m, mtag)) {
2848 					uint16_t *p;
2849 					int i;
2850 
2851 					if (mtag->m_tag_cookie != MTAG_IPFW)
2852 						continue;
2853 
2854 					p = ((ipfw_insn_u16 *)cmd)->ports;
2855 					i = cmdlen - 1;
2856 					for(; !match && i > 0; i--, p += 2)
2857 						match =
2858 						    mtag->m_tag_id >= p[0] &&
2859 						    mtag->m_tag_id <= p[1];
2860 				}
2861 				break;
2862 			}
2863 
2864 			case O_MARK: {
2865 				uint32_t mark;
2866 				if (cmd->arg1 == IP_FW_TARG)
2867 					mark = TARG_VAL(chain, tablearg, mark);
2868 				else
2869 					mark = insntoc(cmd, u32)->d[0];
2870 				match =
2871 				    (args->rule.pkt_mark &
2872 				    insntoc(cmd, u32)->d[1]) ==
2873 				    (mark & insntoc(cmd, u32)->d[1]);
2874 				break;
2875 			}
2876 
2877 			/*
2878 			 * The second set of opcodes represents 'actions',
2879 			 * i.e. the terminal part of a rule once the packet
2880 			 * matches all previous patterns.
2881 			 * Typically there is only one action for each rule,
2882 			 * and the opcode is stored at the end of the rule
2883 			 * (but there are exceptions -- see below).
2884 			 *
2885 			 * In general, here we set retval and terminate the
2886 			 * outer loop (would be a 'break 3' in some language,
2887 			 * but we need to set l=0, done=1)
2888 			 *
2889 			 * Exceptions:
2890 			 * O_COUNT and O_SKIPTO actions:
2891 			 *   instead of terminating, we jump to the next rule
2892 			 *   (setting l=0), or to the SKIPTO target (setting
2893 			 *   f/f_len, cmd and l as needed), respectively.
2894 			 *
2895 			 * O_TAG, O_LOG and O_ALTQ action parameters:
2896 			 *   perform some action and set match = 1;
2897 			 *
2898 			 * O_LIMIT and O_KEEP_STATE: these opcodes are
2899 			 *   not real 'actions', and are stored right
2900 			 *   before the 'action' part of the rule (one
2901 			 *   exception is O_SKIP_ACTION which could be
2902 			 *   between these opcodes and 'action' one).
2903 			 *   These opcodes try to install an entry in the
2904 			 *   state tables; if successful, we continue with
2905 			 *   the next opcode (match=1; break;), otherwise
2906 			 *   the packet must be dropped (set retval,
2907 			 *   break loops with l=0, done=1)
2908 			 *
2909 			 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2910 			 *   cause a lookup of the state table, and a jump
2911 			 *   to the 'action' part of the parent rule
2912 			 *   if an entry is found, or
2913 			 *   (CHECK_STATE only) a jump to the next rule if
2914 			 *   the entry is not found.
2915 			 *   The result of the lookup is cached so that
2916 			 *   further instances of these opcodes become NOPs.
2917 			 *   The jump to the next rule is done by setting
2918 			 *   l=0, cmdlen=0.
2919 			 *
2920 			 * O_SKIP_ACTION: this opcode is not a real 'action'
2921 			 *  either, and is stored right before the 'action'
2922 			 *  part of the rule, right after the O_KEEP_STATE
2923 			 *  opcode. It causes match failure so the real
2924 			 *  'action' could be executed only if the rule
2925 			 *  is checked via dynamic rule from the state
2926 			 *  table, as in such case execution starts
2927 			 *  from the true 'action' opcode directly.
2928 			 *
2929 			 */
2930 			case O_LIMIT:
2931 			case O_KEEP_STATE:
2932 				if (ipfw_dyn_install_state(chain, f,
2933 				    (ipfw_insn_limit *)cmd, args, ulp,
2934 				    pktlen, &dyn_info, tablearg)) {
2935 					/* error or limit violation */
2936 					retval = IP_FW_DENY;
2937 					l = 0;	/* exit inner loop */
2938 					done = 1; /* exit outer loop */
2939 				}
2940 				match = 1;
2941 				break;
2942 
2943 			case O_PROBE_STATE:
2944 			case O_CHECK_STATE:
2945 				/*
2946 				 * dynamic rules are checked at the first
2947 				 * keep-state or check-state occurrence,
2948 				 * with the result being stored in dyn_info.
2949 				 * The compiler introduces a PROBE_STATE
2950 				 * instruction for us when we have a
2951 				 * KEEP_STATE (because PROBE_STATE needs
2952 				 * to be run first).
2953 				 */
2954 				if (DYN_LOOKUP_NEEDED(&dyn_info, cmd) &&
2955 				    (q = ipfw_dyn_lookup_state(args, ulp,
2956 				    pktlen, cmd, &dyn_info)) != NULL) {
2957 					/*
2958 					 * Found dynamic entry, jump to the
2959 					 * 'action' part of the parent rule
2960 					 * by setting f, cmd, l and clearing
2961 					 * cmdlen.
2962 					 */
2963 					f = q;
2964 					f_pos = dyn_info.f_pos;
2965 					cmd = ACTION_PTR(f);
2966 					l = f->cmd_len - f->act_ofs;
2967 					cmdlen = 0;
2968 					continue;
2969 				}
2970 				/*
2971 				 * Dynamic entry not found. If CHECK_STATE,
2972 				 * skip to next rule, if PROBE_STATE just
2973 				 * ignore and continue with next opcode.
2974 				 */
2975 				if (cmd->opcode == O_CHECK_STATE)
2976 					l = 0;	/* exit inner loop */
2977 				match = 1;
2978 				break;
2979 
2980 			case O_SKIP_ACTION:
2981 				match = 0;	/* skip to the next rule */
2982 				l = 0;		/* exit inner loop */
2983 				break;
2984 
2985 			case O_ACCEPT:
2986 				retval = 0;	/* accept */
2987 				l = 0;		/* exit inner loop */
2988 				done = 1;	/* exit outer loop */
2989 				break;
2990 
2991 			case O_PIPE:
2992 			case O_QUEUE:
2993 				set_match(args, f_pos, chain);
2994 				args->rule.info = TARG(cmd->arg1, pipe);
2995 				if (cmd->opcode == O_PIPE)
2996 					args->rule.info |= IPFW_IS_PIPE;
2997 				if (V_fw_one_pass)
2998 					args->rule.info |= IPFW_ONEPASS;
2999 				retval = IP_FW_DUMMYNET;
3000 				l = 0;          /* exit inner loop */
3001 				done = 1;       /* exit outer loop */
3002 				break;
3003 
3004 			case O_DIVERT:
3005 			case O_TEE:
3006 				if (args->flags & IPFW_ARGS_ETHER)
3007 					break;	/* not on layer 2 */
3008 				/* otherwise this is terminal */
3009 				l = 0;		/* exit inner loop */
3010 				done = 1;	/* exit outer loop */
3011 				retval = (cmd->opcode == O_DIVERT) ?
3012 					IP_FW_DIVERT : IP_FW_TEE;
3013 				set_match(args, f_pos, chain);
3014 				args->rule.info = TARG(cmd->arg1, divert);
3015 				break;
3016 
3017 			case O_COUNT:
3018 				IPFW_INC_RULE_COUNTER(f, pktlen);
3019 				l = 0;		/* exit inner loop */
3020 				break;
3021 
3022 			case O_SKIPTO:
3023 			    IPFW_INC_RULE_COUNTER(f, pktlen);
3024 			    f_pos = jump(chain, f,
3025 				insntod(cmd, u32)->d[0], tablearg, false);
3026 			    /*
3027 			     * Skip disabled rules, and re-enter
3028 			     * the inner loop with the correct
3029 			     * f_pos, f, l and cmd.
3030 			     * Also clear cmdlen and skip_or
3031 			     */
3032 			    for (; f_pos < chain->n_rules - 1 &&
3033 				    (V_set_disable &
3034 				     (1 << chain->map[f_pos]->set));
3035 				    f_pos++)
3036 				;
3037 			    /* Re-enter the inner loop at the skipto rule. */
3038 			    f = chain->map[f_pos];
3039 			    l = f->cmd_len;
3040 			    cmd = f->cmd;
3041 			    match = 1;
3042 			    cmdlen = 0;
3043 			    skip_or = 0;
3044 			    continue;
3045 			    break;	/* not reached */
3046 
3047 			case O_CALLRETURN: {
3048 				/*
3049 				 * Implementation of `subroutine' call/return,
3050 				 * in the stack carried in an mbuf tag. This
3051 				 * is different from `skipto' in that any call
3052 				 * address is possible (`skipto' must prevent
3053 				 * backward jumps to avoid endless loops).
3054 				 * We have `return' action when F_NOT flag is
3055 				 * present. The `m_tag_id' field is used as
3056 				 * stack pointer.
3057 				 */
3058 				struct m_tag *mtag;
3059 				uint32_t jmpto, *stack;
3060 
3061 #define	IS_CALL		((cmd->len & F_NOT) == 0)
3062 #define	IS_RETURN	((cmd->len & F_NOT) != 0)
3063 				/*
3064 				 * Hand-rolled version of m_tag_locate() with
3065 				 * wildcard `type'.
3066 				 * If not already tagged, allocate new tag.
3067 				 */
3068 				mtag = m_tag_first(m);
3069 				while (mtag != NULL) {
3070 					if (mtag->m_tag_cookie ==
3071 					    MTAG_IPFW_CALL)
3072 						break;
3073 					mtag = m_tag_next(m, mtag);
3074 				}
3075 
3076 				/*
3077 				 * We keep ruleset id in the first element
3078 				 * of stack. If it doesn't match chain->id,
3079 				 * then we can't trust information in the
3080 				 * stack, since rules were changed.
3081 				 * We reset stack pointer to be able reuse
3082 				 * tag if it will be needed.
3083 				 */
3084 				if (mtag != NULL) {
3085 					stack = (uint32_t *)(mtag + 1);
3086 					if (stack[0] != chain->id) {
3087 						stack[0] = chain->id;
3088 						mtag->m_tag_id = 0;
3089 					}
3090 				}
3091 
3092 				/*
3093 				 * If there is no mtag or stack is empty,
3094 				 * `return` continues with next rule.
3095 				 */
3096 				if (IS_RETURN && (mtag == NULL ||
3097 				    mtag->m_tag_id == 0)) {
3098 					l = 0;		/* exit inner loop */
3099 					break;
3100 				}
3101 
3102 				if (mtag == NULL) {
3103 					MPASS(IS_CALL);
3104 					mtag = m_tag_alloc(MTAG_IPFW_CALL, 0,
3105 					    IPFW_CALLSTACK_SIZE *
3106 					    sizeof(uint32_t), M_NOWAIT);
3107 					if (mtag != NULL) {
3108 						m_tag_prepend(m, mtag);
3109 						stack = (uint32_t *)(mtag + 1);
3110 						stack[0] = chain->id;
3111 					}
3112 				}
3113 
3114 				if (mtag == NULL) {
3115 					printf("ipfw: rule %u: failed to "
3116 					    "allocate call stack. "
3117 					    "Denying packet.\n",
3118 					    f->rulenum);
3119 					l = 0;		/* exit inner loop */
3120 					done = 1;	/* exit outer loop */
3121 					retval = IP_FW_DENY; /* drop packet */
3122 					break;
3123 				}
3124 
3125 				if (IS_CALL && mtag->m_tag_id >=
3126 				    IPFW_CALLSTACK_SIZE - 1) {
3127 					printf("ipfw: rule %u: call stack "
3128 					    "overflow. Denying packet.\n",
3129 					    f->rulenum);
3130 					l = 0;		/* exit inner loop */
3131 					done = 1;	/* exit outer loop */
3132 					retval = IP_FW_DENY; /* drop packet */
3133 					break;
3134 				}
3135 
3136 				MPASS(stack == (uint32_t *)(mtag + 1));
3137 				IPFW_INC_RULE_COUNTER(f, pktlen);
3138 
3139 				if (IS_CALL) {
3140 					stack[++mtag->m_tag_id] = f_pos;
3141 					f_pos = jump(chain, f,
3142 					    insntod(cmd, u32)->d[0],
3143 					    tablearg, true);
3144 				} else {	/* `return' action */
3145 					jmpto = stack[mtag->m_tag_id--];
3146 					if (cmd->arg1 == RETURN_NEXT_RULE)
3147 						f_pos = jmpto + 1;
3148 					else /* RETURN_NEXT_RULENUM */
3149 						f_pos = ipfw_find_rule(chain,
3150 						    chain->map[
3151 						    jmpto]->rulenum + 1, 0);
3152 				}
3153 
3154 				/*
3155 				 * Skip disabled rules, and re-enter
3156 				 * the inner loop with the correct
3157 				 * f_pos, f, l and cmd.
3158 				 * Also clear cmdlen and skip_or
3159 				 */
3160 				MPASS(f_pos < chain->n_rules - 1);
3161 				for (; f_pos < chain->n_rules - 1 &&
3162 				    (V_set_disable &
3163 				    (1 << chain->map[f_pos]->set)); f_pos++)
3164 					;
3165 				/*
3166 				 * Re-enter the inner loop at the dest
3167 				 * rule.
3168 				 */
3169 				f = chain->map[f_pos];
3170 				l = f->cmd_len;
3171 				cmd = f->cmd;
3172 				cmdlen = 0;
3173 				skip_or = 0;
3174 				continue;
3175 				break;	/* NOTREACHED */
3176 			}
3177 #undef IS_CALL
3178 #undef IS_RETURN
3179 
3180 			case O_REJECT:
3181 				/*
3182 				 * Drop the packet and send a reject notice
3183 				 * if the packet is not ICMP (or is an ICMP
3184 				 * query), and it is not multicast/broadcast.
3185 				 */
3186 				if (hlen > 0 && is_ipv4 && offset == 0 &&
3187 				    (proto != IPPROTO_ICMP ||
3188 				     is_icmp_query(ICMP(ulp))) &&
3189 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3190 				    !IN_MULTICAST(ntohl(dst_ip.s_addr))) {
3191 					KASSERT(!need_send_reject,
3192 					    ("o_reject - need_send_reject was set previously"));
3193 					if ((reject_code = cmd->arg1) == ICMP_UNREACH_NEEDFRAG &&
3194 					    cmd->len == F_INSN_SIZE(ipfw_insn_u16)) {
3195 						reject_mtu =
3196 						    ((ipfw_insn_u16 *)cmd)->ports[0];
3197 					} else {
3198 						reject_mtu = 0;
3199 					}
3200 					need_send_reject = true;
3201 				}
3202 				/* FALLTHROUGH */
3203 #ifdef INET6
3204 			case O_UNREACH6:
3205 				if (hlen > 0 && is_ipv6 &&
3206 				    ((offset & IP6F_OFF_MASK) == 0) &&
3207 				    (proto != IPPROTO_ICMPV6 ||
3208 				     (is_icmp6_query(icmp6_type) == 1)) &&
3209 				    !(m->m_flags & (M_BCAST|M_MCAST)) &&
3210 				    !IN6_IS_ADDR_MULTICAST(
3211 					&args->f_id.dst_ip6)) {
3212 					KASSERT(!need_send_reject,
3213 					    ("o_unreach6 - need_send_reject was set previously"));
3214 					reject_code = cmd->arg1;
3215 					if (cmd->opcode == O_REJECT) {
3216 						reject_code =
3217 						    map_icmp_unreach(reject_code);
3218 					}
3219 					need_send_reject = true;
3220 				}
3221 				/* FALLTHROUGH */
3222 #endif
3223 			case O_DENY:
3224 				retval = IP_FW_DENY;
3225 				l = 0;		/* exit inner loop */
3226 				done = 1;	/* exit outer loop */
3227 				break;
3228 
3229 			case O_FORWARD_IP:
3230 				if (args->flags & IPFW_ARGS_ETHER)
3231 					break;	/* not valid on layer2 pkts */
3232 				if (q != f ||
3233 				    dyn_info.direction == MATCH_FORWARD) {
3234 				    struct sockaddr_in *sa;
3235 
3236 				    sa = &(((ipfw_insn_sa *)cmd)->sa);
3237 				    if (sa->sin_addr.s_addr == INADDR_ANY) {
3238 #ifdef INET6
3239 					/*
3240 					 * We use O_FORWARD_IP opcode for
3241 					 * fwd rule with tablearg, but tables
3242 					 * now support IPv6 addresses. And
3243 					 * when we are inspecting IPv6 packet,
3244 					 * we can use nh6 field from
3245 					 * table_value as next_hop6 address.
3246 					 */
3247 					if (is_ipv6) {
3248 						struct ip_fw_nh6 *nh6;
3249 
3250 						args->flags |= IPFW_ARGS_NH6;
3251 						nh6 = &args->hopstore6;
3252 						nh6->sin6_addr = TARG_VAL(
3253 						    chain, tablearg, nh6);
3254 						nh6->sin6_port = sa->sin_port;
3255 						nh6->sin6_scope_id = TARG_VAL(
3256 						    chain, tablearg, zoneid);
3257 					} else
3258 #endif
3259 					{
3260 						args->flags |= IPFW_ARGS_NH4;
3261 						args->hopstore.sin_port =
3262 						    sa->sin_port;
3263 						sa = &args->hopstore;
3264 						sa->sin_family = AF_INET;
3265 						sa->sin_len = sizeof(*sa);
3266 						sa->sin_addr.s_addr = htonl(
3267 						    TARG_VAL(chain, tablearg,
3268 						    nh4));
3269 					}
3270 				    } else {
3271 					    args->flags |= IPFW_ARGS_NH4PTR;
3272 					    args->next_hop = sa;
3273 				    }
3274 				}
3275 				retval = IP_FW_PASS;
3276 				l = 0;          /* exit inner loop */
3277 				done = 1;       /* exit outer loop */
3278 				break;
3279 
3280 #ifdef INET6
3281 			case O_FORWARD_IP6:
3282 				if (args->flags & IPFW_ARGS_ETHER)
3283 					break;	/* not valid on layer2 pkts */
3284 				if (q != f ||
3285 				    dyn_info.direction == MATCH_FORWARD) {
3286 					struct sockaddr_in6 *sin6;
3287 
3288 					sin6 = &(((ipfw_insn_sa6 *)cmd)->sa);
3289 					args->flags |= IPFW_ARGS_NH6PTR;
3290 					args->next_hop6 = sin6;
3291 				}
3292 				retval = IP_FW_PASS;
3293 				l = 0;		/* exit inner loop */
3294 				done = 1;	/* exit outer loop */
3295 				break;
3296 #endif
3297 
3298 			case O_NETGRAPH:
3299 			case O_NGTEE:
3300 				set_match(args, f_pos, chain);
3301 				args->rule.info = TARG(cmd->arg1, netgraph);
3302 				if (V_fw_one_pass)
3303 					args->rule.info |= IPFW_ONEPASS;
3304 				retval = (cmd->opcode == O_NETGRAPH) ?
3305 				    IP_FW_NETGRAPH : IP_FW_NGTEE;
3306 				l = 0;          /* exit inner loop */
3307 				done = 1;       /* exit outer loop */
3308 				break;
3309 
3310 			case O_SETFIB: {
3311 				uint32_t fib;
3312 
3313 				IPFW_INC_RULE_COUNTER(f, pktlen);
3314 				fib = TARG(cmd->arg1, fib) & 0x7FFF;
3315 				if (fib >= rt_numfibs)
3316 					fib = 0;
3317 				M_SETFIB(m, fib);
3318 				args->f_id.fib = fib; /* XXX */
3319 				l = 0;		/* exit inner loop */
3320 				break;
3321 		        }
3322 
3323 			case O_SETDSCP: {
3324 				uint16_t code;
3325 
3326 				code = TARG(cmd->arg1, dscp) & 0x3F;
3327 				l = 0;		/* exit inner loop */
3328 				if (is_ipv4) {
3329 					uint16_t old;
3330 
3331 					old = *(uint16_t *)ip;
3332 					ip->ip_tos = (code << 2) |
3333 					    (ip->ip_tos & 0x03);
3334 					ip->ip_sum = cksum_adjust(ip->ip_sum,
3335 					    old, *(uint16_t *)ip);
3336 				} else if (is_ipv6) {
3337 					/* update cached value */
3338 					args->f_id.flow_id6 =
3339 					    ntohl(*(uint32_t *)ip) & ~0x0FC00000;
3340 					args->f_id.flow_id6 |= code << 22;
3341 
3342 					*((uint32_t *)ip) =
3343 					    htonl(args->f_id.flow_id6);
3344 				} else
3345 					break;
3346 
3347 				IPFW_INC_RULE_COUNTER(f, pktlen);
3348 				break;
3349 			}
3350 
3351 			case O_NAT:
3352 				l = 0;          /* exit inner loop */
3353 				done = 1;       /* exit outer loop */
3354 				/*
3355 				 * Ensure that we do not invoke NAT handler for
3356 				 * non IPv4 packets. Libalias expects only IPv4.
3357 				 */
3358 				if (!is_ipv4 || !IPFW_NAT_LOADED) {
3359 				    retval = IP_FW_DENY;
3360 				    break;
3361 				}
3362 
3363 				struct cfg_nat *t;
3364 				int nat_id;
3365 
3366 				args->rule.info = 0;
3367 				set_match(args, f_pos, chain);
3368 				/* Check if this is 'global' nat rule */
3369 				if (cmd->arg1 == IP_FW_NAT44_GLOBAL) {
3370 					retval = ipfw_nat_ptr(args, NULL, m);
3371 					break;
3372 				}
3373 				t = ((ipfw_insn_nat *)cmd)->nat;
3374 				if (t == NULL) {
3375 					nat_id = TARG(cmd->arg1, nat);
3376 					t = (*lookup_nat_ptr)(&chain->nat, nat_id);
3377 
3378 					if (t == NULL) {
3379 					    retval = IP_FW_DENY;
3380 					    break;
3381 					}
3382 					if (cmd->arg1 != IP_FW_TARG)
3383 					    ((ipfw_insn_nat *)cmd)->nat = t;
3384 				}
3385 				retval = ipfw_nat_ptr(args, t, m);
3386 				break;
3387 
3388 			case O_REASS: {
3389 				int ip_off;
3390 
3391 				l = 0;	/* in any case exit inner loop */
3392 				if (is_ipv6) /* IPv6 is not supported yet */
3393 					break;
3394 				IPFW_INC_RULE_COUNTER(f, pktlen);
3395 				ip_off = ntohs(ip->ip_off);
3396 
3397 				/* if not fragmented, go to next rule */
3398 				if ((ip_off & (IP_MF | IP_OFFMASK)) == 0)
3399 				    break;
3400 
3401 				args->m = m = ip_reass(m);
3402 
3403 				/*
3404 				 * do IP header checksum fixup.
3405 				 */
3406 				if (m == NULL) { /* fragment got swallowed */
3407 				    retval = IP_FW_DENY;
3408 				} else { /* good, packet complete */
3409 				    int hlen;
3410 
3411 				    ip = mtod(m, struct ip *);
3412 				    hlen = ip->ip_hl << 2;
3413 				    ip->ip_sum = 0;
3414 				    if (hlen == sizeof(struct ip))
3415 					ip->ip_sum = in_cksum_hdr(ip);
3416 				    else
3417 					ip->ip_sum = in_cksum(m, hlen);
3418 				    retval = IP_FW_REASS;
3419 				    args->rule.info = 0;
3420 				    set_match(args, f_pos, chain);
3421 				}
3422 				done = 1;	/* exit outer loop */
3423 				break;
3424 			}
3425 
3426 			case O_SETMARK: {
3427 				l = 0;		/* exit inner loop */
3428 				args->rule.pkt_mark = (
3429 				    (cmd->arg1 == IP_FW_TARG) ?
3430 				    TARG_VAL(chain, tablearg, mark) :
3431 				    insntoc(cmd, u32)->d[0]);
3432 
3433 				IPFW_INC_RULE_COUNTER(f, pktlen);
3434 				break;
3435 			}
3436 
3437 			case O_EXTERNAL_ACTION:
3438 				l = 0; /* in any case exit inner loop */
3439 				retval = ipfw_run_eaction(chain, args,
3440 				    cmd, &done);
3441 				/*
3442 				 * If both @retval and @done are zero,
3443 				 * consider this as rule matching and
3444 				 * update counters.
3445 				 */
3446 				if (retval == 0 && done == 0) {
3447 					IPFW_INC_RULE_COUNTER(f, pktlen);
3448 					/*
3449 					 * Reset the result of the last
3450 					 * dynamic state lookup.
3451 					 * External action can change
3452 					 * @args content, and it may be
3453 					 * used for new state lookup later.
3454 					 */
3455 					DYN_INFO_INIT(&dyn_info);
3456 				}
3457 				break;
3458 
3459 			default:
3460 				panic("ipfw: rule %u: unknown opcode %d\n",
3461 				    f->rulenum, cmd->opcode);
3462 			} /* end of switch() on opcodes */
3463 			/*
3464 			 * if we get here with l=0, then match is irrelevant.
3465 			 */
3466 
3467 			if (cmd->len & F_NOT)
3468 				match = !match;
3469 
3470 			if (match) {
3471 				if (cmd->len & F_OR)
3472 					skip_or = 1;
3473 			} else {
3474 				if (!(cmd->len & F_OR)) /* not an OR block, */
3475 					break;		/* try next rule    */
3476 			}
3477 
3478 		}	/* end of inner loop, scan opcodes */
3479 #undef PULLUP_LEN
3480 #undef PULLUP_LEN_LOCKED
3481 
3482 		if (done)
3483 			break;
3484 
3485 /* next_rule:; */	/* try next rule		*/
3486 
3487 	}		/* end of outer for, scan rules */
3488 
3489 	if (done) {
3490 		struct ip_fw *rule = chain->map[f_pos];
3491 		/* Update statistics */
3492 		IPFW_INC_RULE_COUNTER(rule, pktlen);
3493 		IPFW_PROBE(rule__matched, retval,
3494 		    is_ipv4 ? AF_INET : AF_INET6,
3495 		    is_ipv4 ? (uintptr_t)&src_ip :
3496 		        (uintptr_t)&args->f_id.src_ip6,
3497 		    is_ipv4 ? (uintptr_t)&dst_ip :
3498 		        (uintptr_t)&args->f_id.dst_ip6,
3499 		    args, rule);
3500 	} else {
3501 		retval = IP_FW_DENY;
3502 		printf("ipfw: ouch!, skip past end of rules, denying packet\n");
3503 	}
3504 	IPFW_PF_RUNLOCK(chain);
3505 	if (need_send_reject) {
3506 #ifdef INET6
3507 		if (is_ipv6)
3508 			send_reject6(args, reject_code, hlen,
3509 				     (struct ip6_hdr *)ip);
3510 		else
3511 #endif
3512 			send_reject(args, reject_code, reject_mtu,
3513 				    iplen, ip);
3514 	}
3515 #ifdef __FreeBSD__
3516 	if (ucred_cache != NULL)
3517 		crfree(ucred_cache);
3518 #endif
3519 	return (retval);
3520 
3521 pullup_failed:
3522 	if (V_fw_verbose)
3523 		printf("ipfw: pullup failed\n");
3524 	return (IP_FW_DENY);
3525 }
3526 
3527 /*
3528  * Set maximum number of tables that can be used in given VNET ipfw instance.
3529  */
3530 #ifdef SYSCTL_NODE
3531 static int
sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)3532 sysctl_ipfw_table_num(SYSCTL_HANDLER_ARGS)
3533 {
3534 	int error;
3535 	unsigned int ntables;
3536 
3537 	ntables = V_fw_tables_max;
3538 
3539 	error = sysctl_handle_int(oidp, &ntables, 0, req);
3540 	/* Read operation or some error */
3541 	if ((error != 0) || (req->newptr == NULL))
3542 		return (error);
3543 
3544 	return (ipfw_resize_tables(&V_layer3_chain, ntables));
3545 }
3546 
3547 /*
3548  * Switches table namespace between global and per-set.
3549  */
3550 static int
sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)3551 sysctl_ipfw_tables_sets(SYSCTL_HANDLER_ARGS)
3552 {
3553 	int error;
3554 	unsigned int sets;
3555 
3556 	sets = V_fw_tables_sets;
3557 
3558 	error = sysctl_handle_int(oidp, &sets, 0, req);
3559 	/* Read operation or some error */
3560 	if ((error != 0) || (req->newptr == NULL))
3561 		return (error);
3562 
3563 	return (ipfw_switch_tables_namespace(&V_layer3_chain, sets));
3564 }
3565 #endif
3566 
3567 /*
3568  * Module and VNET glue
3569  */
3570 
3571 /*
3572  * Stuff that must be initialised only on boot or module load
3573  */
3574 static int
ipfw_init(void)3575 ipfw_init(void)
3576 {
3577 	int error = 0;
3578 
3579 	/*
3580  	 * Only print out this stuff the first time around,
3581 	 * when called from the sysinit code.
3582 	 */
3583 	printf("ipfw2 "
3584 #ifdef INET6
3585 		"(+ipv6) "
3586 #endif
3587 		"initialized, divert %s, nat %s, "
3588 		"default to %s, logging ",
3589 #ifdef IPDIVERT
3590 		"enabled",
3591 #else
3592 		"loadable",
3593 #endif
3594 #ifdef IPFIREWALL_NAT
3595 		"enabled",
3596 #else
3597 		"loadable",
3598 #endif
3599 		default_to_accept ? "accept" : "deny");
3600 
3601 	/*
3602 	 * Note: V_xxx variables can be accessed here but the vnet specific
3603 	 * initializer may not have been called yet for the VIMAGE case.
3604 	 * Tuneables will have been processed. We will print out values for
3605 	 * the default vnet.
3606 	 * XXX This should all be rationalized AFTER 8.0
3607 	 */
3608 	if (V_fw_verbose == 0)
3609 		printf("disabled\n");
3610 	else if (V_verbose_limit == 0)
3611 		printf("unlimited\n");
3612 	else
3613 		printf("limited to %d packets/entry by default\n",
3614 		    V_verbose_limit);
3615 
3616 	/* Check user-supplied table count for validness */
3617 	if (default_fw_tables > IPFW_TABLES_MAX)
3618 	  default_fw_tables = IPFW_TABLES_MAX;
3619 
3620 	ipfw_init_sopt_handler();
3621 	ipfw_init_obj_rewriter();
3622 	ipfw_iface_init();
3623 	return (error);
3624 }
3625 
3626 /*
3627  * Called for the removal of the last instance only on module unload.
3628  */
3629 static void
ipfw_destroy(void)3630 ipfw_destroy(void)
3631 {
3632 
3633 	ipfw_iface_destroy();
3634 	ipfw_destroy_sopt_handler();
3635 	ipfw_destroy_obj_rewriter();
3636 	printf("IP firewall unloaded\n");
3637 }
3638 
3639 /*
3640  * Stuff that must be initialized for every instance
3641  * (including the first of course).
3642  */
3643 static int
vnet_ipfw_init(const void * unused)3644 vnet_ipfw_init(const void *unused)
3645 {
3646 	int error, first;
3647 	struct ip_fw *rule = NULL;
3648 	struct ip_fw_chain *chain;
3649 
3650 	chain = &V_layer3_chain;
3651 
3652 	first = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3653 
3654 	/* First set up some values that are compile time options */
3655 	V_autoinc_step = 100;	/* bounded to 1..1000 in add_rule() */
3656 	V_fw_deny_unknown_exthdrs = 1;
3657 #ifdef IPFIREWALL_VERBOSE
3658 	V_fw_verbose = 1;
3659 #endif
3660 #ifdef IPFIREWALL_VERBOSE_LIMIT
3661 	V_verbose_limit = IPFIREWALL_VERBOSE_LIMIT;
3662 #endif
3663 #ifdef IPFIREWALL_NAT
3664 	LIST_INIT(&chain->nat);
3665 #endif
3666 
3667 	/* Init shared services hash table */
3668 	ipfw_init_srv(chain);
3669 
3670 	ipfw_init_counters();
3671 	/* Set initial number of tables */
3672 	V_fw_tables_max = default_fw_tables;
3673 	error = ipfw_init_tables(chain, first);
3674 	if (error) {
3675 		printf("ipfw2: setting up tables failed\n");
3676 		free(chain->map, M_IPFW);
3677 		free(rule, M_IPFW);
3678 		return (ENOSPC);
3679 	}
3680 
3681 	IPFW_LOCK_INIT(chain);
3682 
3683 	/* fill and insert the default rule */
3684 	rule = ipfw_alloc_rule(chain, sizeof(struct ip_fw));
3685 	rule->flags |= IPFW_RULE_NOOPT;
3686 	rule->cmd_len = 1;
3687 	rule->cmd[0].len = 1;
3688 	rule->cmd[0].opcode = default_to_accept ? O_ACCEPT : O_DENY;
3689 	chain->default_rule = rule;
3690 	ipfw_add_protected_rule(chain, rule, 0);
3691 
3692 	ipfw_dyn_init(chain);
3693 	ipfw_eaction_init(chain, first);
3694 	ipfw_init_skipto_cache(chain);
3695 	ipfw_bpf_init(first);
3696 
3697 	/* First set up some values that are compile time options */
3698 	V_ipfw_vnet_ready = 1;		/* Open for business */
3699 
3700 	/*
3701 	 * Hook the sockopt handler and pfil hooks for ipv4 and ipv6.
3702 	 * Even if the latter two fail we still keep the module alive
3703 	 * because the sockopt and layer2 paths are still useful.
3704 	 * ipfw[6]_hook return 0 on success, ENOENT on failure,
3705 	 * so we can ignore the exact return value and just set a flag.
3706 	 *
3707 	 * Note that V_fw[6]_enable are manipulated by a SYSCTL_PROC so
3708 	 * changes in the underlying (per-vnet) variables trigger
3709 	 * immediate hook()/unhook() calls.
3710 	 * In layer2 we have the same behaviour, except that V_ether_ipfw
3711 	 * is checked on each packet because there are no pfil hooks.
3712 	 */
3713 	V_ip_fw_ctl_ptr = ipfw_ctl3;
3714 	error = ipfw_attach_hooks();
3715 	return (error);
3716 }
3717 
3718 /*
3719  * Called for the removal of each instance.
3720  */
3721 static int
vnet_ipfw_uninit(const void * unused)3722 vnet_ipfw_uninit(const void *unused)
3723 {
3724 	struct ip_fw *reap;
3725 	struct ip_fw_chain *chain = &V_layer3_chain;
3726 	int i, last;
3727 
3728 	V_ipfw_vnet_ready = 0; /* tell new callers to go away */
3729 	/*
3730 	 * disconnect from ipv4, ipv6, layer2 and sockopt.
3731 	 * Then grab, release and grab again the WLOCK so we make
3732 	 * sure the update is propagated and nobody will be in.
3733 	 */
3734 	ipfw_detach_hooks();
3735 	V_ip_fw_ctl_ptr = NULL;
3736 
3737 	last = IS_DEFAULT_VNET(curvnet) ? 1 : 0;
3738 
3739 	IPFW_UH_WLOCK(chain);
3740 	IPFW_UH_WUNLOCK(chain);
3741 
3742 	ipfw_dyn_uninit(0);	/* run the callout_drain */
3743 
3744 	IPFW_UH_WLOCK(chain);
3745 
3746 	reap = NULL;
3747 	IPFW_WLOCK(chain);
3748 	for (i = 0; i < chain->n_rules; i++)
3749 		ipfw_reap_add(chain, &reap, chain->map[i]);
3750 	free(chain->map, M_IPFW);
3751 	ipfw_destroy_skipto_cache(chain);
3752 	IPFW_WUNLOCK(chain);
3753 	IPFW_UH_WUNLOCK(chain);
3754 	ipfw_destroy_tables(chain, last);
3755 	ipfw_eaction_uninit(chain, last);
3756 	if (reap != NULL)
3757 		ipfw_reap_rules(reap);
3758 	vnet_ipfw_iface_destroy(chain);
3759 	ipfw_destroy_srv(chain);
3760 	IPFW_LOCK_DESTROY(chain);
3761 	ipfw_dyn_uninit(1);	/* free the remaining parts */
3762 	ipfw_destroy_counters();
3763 	ipfw_bpf_uninit(last);
3764 	return (0);
3765 }
3766 
3767 /*
3768  * Module event handler.
3769  * In general we have the choice of handling most of these events by the
3770  * event handler or by the (VNET_)SYS(UN)INIT handlers. I have chosen to
3771  * use the SYSINIT handlers as they are more capable of expressing the
3772  * flow of control during module and vnet operations, so this is just
3773  * a skeleton. Note there is no SYSINIT equivalent of the module
3774  * SHUTDOWN handler, but we don't have anything to do in that case anyhow.
3775  */
3776 static int
ipfw_modevent(module_t mod,int type,void * unused)3777 ipfw_modevent(module_t mod, int type, void *unused)
3778 {
3779 	int err = 0;
3780 
3781 	switch (type) {
3782 	case MOD_LOAD:
3783 		/* Called once at module load or
3784 	 	 * system boot if compiled in. */
3785 		break;
3786 	case MOD_QUIESCE:
3787 		/* Called before unload. May veto unloading. */
3788 		break;
3789 	case MOD_UNLOAD:
3790 		/* Called during unload. */
3791 		break;
3792 	case MOD_SHUTDOWN:
3793 		/* Called during system shutdown. */
3794 		break;
3795 	default:
3796 		err = EOPNOTSUPP;
3797 		break;
3798 	}
3799 	return err;
3800 }
3801 
3802 static moduledata_t ipfwmod = {
3803 	"ipfw",
3804 	ipfw_modevent,
3805 	0
3806 };
3807 
3808 /* Define startup order. */
3809 #define	IPFW_SI_SUB_FIREWALL	SI_SUB_PROTO_FIREWALL
3810 #define	IPFW_MODEVENT_ORDER	(SI_ORDER_ANY - 255) /* On boot slot in here. */
3811 #define	IPFW_MODULE_ORDER	(IPFW_MODEVENT_ORDER + 1) /* A little later. */
3812 #define	IPFW_VNET_ORDER		(IPFW_MODEVENT_ORDER + 2) /* Later still. */
3813 
3814 DECLARE_MODULE(ipfw, ipfwmod, IPFW_SI_SUB_FIREWALL, IPFW_MODEVENT_ORDER);
3815 FEATURE(ipfw_ctl3, "ipfw new sockopt calls");
3816 MODULE_VERSION(ipfw, 3);
3817 /* should declare some dependencies here */
3818 
3819 /*
3820  * Starting up. Done in order after ipfwmod() has been called.
3821  * VNET_SYSINIT is also called for each existing vnet and each new vnet.
3822  */
3823 SYSINIT(ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3824 	    ipfw_init, NULL);
3825 VNET_SYSINIT(vnet_ipfw_init, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3826 	    vnet_ipfw_init, NULL);
3827 
3828 /*
3829  * Closing up shop. These are done in REVERSE ORDER, but still
3830  * after ipfwmod() has been called. Not called on reboot.
3831  * VNET_SYSUNINIT is also called for each exiting vnet as it exits.
3832  * or when the module is unloaded.
3833  */
3834 SYSUNINIT(ipfw_destroy, IPFW_SI_SUB_FIREWALL, IPFW_MODULE_ORDER,
3835 	    ipfw_destroy, NULL);
3836 VNET_SYSUNINIT(vnet_ipfw_uninit, IPFW_SI_SUB_FIREWALL, IPFW_VNET_ORDER,
3837 	    vnet_ipfw_uninit, NULL);
3838 /* end of file */
3839