1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2017 Nexenta Systems, Inc.
24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
25 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
26 * Copyright 2015 RackTop Systems.
27 * Copyright (c) 2016, Intel Corporation.
28 * Copyright 2020 Joyent, Inc.
29 * Copyright 2023 Oxide Computer Company
30 */
31
32 /*
33 * Pool import support functions.
34 *
35 * Used by zpool, ztest, zdb, and zhack to locate importable configs. Since
36 * these commands are expected to run in the global zone, we can assume
37 * that the devices are all readable when called.
38 *
39 * To import a pool, we rely on reading the configuration information from the
40 * ZFS label of each device. If we successfully read the label, then we
41 * organize the configuration information in the following hierarchy:
42 *
43 * pool guid -> toplevel vdev guid -> label txg
44 *
45 * Duplicate entries matching this same tuple will be discarded. Once we have
46 * examined every device, we pick the best label txg config for each toplevel
47 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
48 * update any paths that have changed. Finally, we attempt to import the pool
49 * using our derived config, and record the results.
50 */
51
52 #include <stdio.h>
53 #include <stdarg.h>
54 #include <assert.h>
55 #include <ctype.h>
56 #include <devid.h>
57 #include <dirent.h>
58 #include <errno.h>
59 #include <libintl.h>
60 #include <stddef.h>
61 #include <stdlib.h>
62 #include <string.h>
63 #include <sys/stat.h>
64 #include <unistd.h>
65 #include <fcntl.h>
66 #include <sys/vtoc.h>
67 #include <sys/dktp/fdisk.h>
68 #include <sys/efi_partition.h>
69 #include <sys/vdev_impl.h>
70 #include <sys/fs/zfs.h>
71
72 #include <thread_pool.h>
73 #include <libzutil.h>
74 #include <libnvpair.h>
75
76 #include "zutil_import.h"
77
78 #ifdef NDEBUG
79 #define verify(EX) ((void)(EX))
80 #else
81 #define verify(EX) assert(EX)
82 #endif
83
84 /*PRINTFLIKE2*/
85 static void
zutil_error_aux(libpc_handle_t * hdl,const char * fmt,...)86 zutil_error_aux(libpc_handle_t *hdl, const char *fmt, ...)
87 {
88 va_list ap;
89
90 va_start(ap, fmt);
91
92 (void) vsnprintf(hdl->lpc_desc, sizeof (hdl->lpc_desc), fmt, ap);
93 hdl->lpc_desc_active = B_TRUE;
94
95 va_end(ap);
96 }
97
98 static void
zutil_verror(libpc_handle_t * hdl,const char * error,const char * fmt,va_list ap)99 zutil_verror(libpc_handle_t *hdl, const char *error, const char *fmt,
100 va_list ap)
101 {
102 char action[1024];
103
104 (void) vsnprintf(action, sizeof (action), fmt, ap);
105
106 if (hdl->lpc_desc_active)
107 hdl->lpc_desc_active = B_FALSE;
108 else
109 hdl->lpc_desc[0] = '\0';
110
111 if (hdl->lpc_printerr) {
112 if (hdl->lpc_desc[0] != '\0')
113 error = hdl->lpc_desc;
114
115 (void) fprintf(stderr, "%s: %s\n", action, error);
116 }
117 }
118
119 /*PRINTFLIKE3*/
120 static int
zutil_error_fmt(libpc_handle_t * hdl,const char * error,const char * fmt,...)121 zutil_error_fmt(libpc_handle_t *hdl, const char *error, const char *fmt, ...)
122 {
123 va_list ap;
124
125 va_start(ap, fmt);
126
127 zutil_verror(hdl, error, fmt, ap);
128
129 va_end(ap);
130
131 return (-1);
132 }
133
134 static int
zutil_error(libpc_handle_t * hdl,const char * error,const char * msg)135 zutil_error(libpc_handle_t *hdl, const char *error, const char *msg)
136 {
137 return (zutil_error_fmt(hdl, error, "%s", msg));
138 }
139
140 static int
zutil_no_memory(libpc_handle_t * hdl)141 zutil_no_memory(libpc_handle_t *hdl)
142 {
143 (void) zutil_error(hdl, EZFS_NOMEM, "internal error");
144 exit(1);
145 }
146
147 void *
zutil_alloc(libpc_handle_t * hdl,size_t size)148 zutil_alloc(libpc_handle_t *hdl, size_t size)
149 {
150 void *data;
151
152 if ((data = calloc(1, size)) == NULL)
153 (void) zutil_no_memory(hdl);
154
155 return (data);
156 }
157
158 char *
zutil_strdup(libpc_handle_t * hdl,const char * str)159 zutil_strdup(libpc_handle_t *hdl, const char *str)
160 {
161 char *ret;
162
163 if ((ret = strdup(str)) == NULL)
164 (void) zutil_no_memory(hdl);
165
166 return (ret);
167 }
168
169 /*
170 * Intermediate structures used to gather configuration information.
171 */
172 typedef struct config_entry {
173 uint64_t ce_txg;
174 nvlist_t *ce_config;
175 struct config_entry *ce_next;
176 } config_entry_t;
177
178 typedef struct vdev_entry {
179 uint64_t ve_guid;
180 config_entry_t *ve_configs;
181 struct vdev_entry *ve_next;
182 } vdev_entry_t;
183
184 typedef struct pool_entry {
185 uint64_t pe_guid;
186 vdev_entry_t *pe_vdevs;
187 struct pool_entry *pe_next;
188 } pool_entry_t;
189
190 typedef struct name_entry {
191 char *ne_name;
192 uint64_t ne_guid;
193 struct name_entry *ne_next;
194 } name_entry_t;
195
196 typedef struct pool_list {
197 pool_entry_t *pools;
198 name_entry_t *names;
199 } pool_list_t;
200
201 /*
202 * Go through and fix up any path and/or devid information for the given vdev
203 * configuration.
204 */
205 static int
fix_paths(nvlist_t * nv,name_entry_t * names)206 fix_paths(nvlist_t *nv, name_entry_t *names)
207 {
208 nvlist_t **child;
209 uint_t c, children;
210 uint64_t guid;
211 name_entry_t *ne, *best;
212 char *path, *devid;
213 int matched;
214
215 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
216 &child, &children) == 0) {
217 for (c = 0; c < children; c++)
218 if (fix_paths(child[c], names) != 0)
219 return (-1);
220 return (0);
221 }
222
223 /*
224 * This is a leaf (file or disk) vdev. In either case, go through
225 * the name list and see if we find a matching guid. If so, replace
226 * the path and see if we can calculate a new devid.
227 *
228 * There may be multiple names associated with a particular guid, in
229 * which case we have overlapping slices or multiple paths to the same
230 * disk. If this is the case, then we want to pick the path that is
231 * the most similar to the original, where "most similar" is the number
232 * of matching characters starting from the end of the path. This will
233 * preserve slice numbers even if the disks have been reorganized, and
234 * will also catch preferred disk names if multiple paths exist.
235 */
236 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
237 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
238 path = NULL;
239
240 matched = 0;
241 best = NULL;
242 for (ne = names; ne != NULL; ne = ne->ne_next) {
243 if (ne->ne_guid == guid) {
244 const char *src, *dst;
245 int count;
246
247 if (path == NULL) {
248 best = ne;
249 break;
250 }
251
252 src = ne->ne_name + strlen(ne->ne_name) - 1;
253 dst = path + strlen(path) - 1;
254 for (count = 0; src >= ne->ne_name && dst >= path;
255 src--, dst--, count++)
256 if (*src != *dst)
257 break;
258
259 /*
260 * At this point, 'count' is the number of characters
261 * matched from the end.
262 */
263 if (count > matched || best == NULL) {
264 best = ne;
265 matched = count;
266 }
267 }
268 }
269
270 if (best == NULL)
271 return (0);
272
273 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
274 return (-1);
275
276 if ((devid = devid_str_from_path(best->ne_name)) == NULL) {
277 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
278 } else {
279 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) {
280 devid_str_free(devid);
281 return (-1);
282 }
283 devid_str_free(devid);
284 }
285
286 return (0);
287 }
288
289 /*
290 * Add the given configuration to the list of known devices.
291 */
292 static int
add_config(libpc_handle_t * hdl,pool_list_t * pl,const char * path,int order,int num_labels,nvlist_t * config)293 add_config(libpc_handle_t *hdl, pool_list_t *pl, const char *path,
294 int order, int num_labels, nvlist_t *config)
295 {
296 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
297 pool_entry_t *pe;
298 vdev_entry_t *ve;
299 config_entry_t *ce;
300 name_entry_t *ne;
301
302 /*
303 * If this is a hot spare not currently in use or level 2 cache
304 * device, add it to the list of names to translate, but don't do
305 * anything else.
306 */
307 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
308 &state) == 0 &&
309 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
310 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
311 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL)
312 return (-1);
313
314 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) {
315 free(ne);
316 return (-1);
317 }
318
319 ne->ne_guid = vdev_guid;
320 ne->ne_next = pl->names;
321 pl->names = ne;
322
323 return (0);
324 }
325
326 /*
327 * If we have a valid config but cannot read any of these fields, then
328 * it means we have a half-initialized label. In vdev_label_init()
329 * we write a label with txg == 0 so that we can identify the device
330 * in case the user refers to the same disk later on. If we fail to
331 * create the pool, we'll be left with a label in this state
332 * which should not be considered part of a valid pool.
333 */
334 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
335 &pool_guid) != 0 ||
336 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
337 &vdev_guid) != 0 ||
338 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
339 &top_guid) != 0 ||
340 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
341 &txg) != 0 || txg == 0) {
342 return (0);
343 }
344
345 /*
346 * First, see if we know about this pool. If not, then add it to the
347 * list of known pools.
348 */
349 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
350 if (pe->pe_guid == pool_guid)
351 break;
352 }
353
354 if (pe == NULL) {
355 if ((pe = zutil_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
356 return (-1);
357 }
358 pe->pe_guid = pool_guid;
359 pe->pe_next = pl->pools;
360 pl->pools = pe;
361 }
362
363 /*
364 * Second, see if we know about this toplevel vdev. Add it if its
365 * missing.
366 */
367 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
368 if (ve->ve_guid == top_guid)
369 break;
370 }
371
372 if (ve == NULL) {
373 if ((ve = zutil_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
374 return (-1);
375 }
376 ve->ve_guid = top_guid;
377 ve->ve_next = pe->pe_vdevs;
378 pe->pe_vdevs = ve;
379 }
380
381 /*
382 * Third, see if we have a config with a matching transaction group. If
383 * so, then we do nothing. Otherwise, add it to the list of known
384 * configs.
385 */
386 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
387 if (ce->ce_txg == txg)
388 break;
389 }
390
391 if (ce == NULL) {
392 if ((ce = zutil_alloc(hdl, sizeof (config_entry_t))) == NULL) {
393 return (-1);
394 }
395 ce->ce_txg = txg;
396 ce->ce_config = fnvlist_dup(config);
397 ce->ce_next = ve->ve_configs;
398 ve->ve_configs = ce;
399 }
400
401 /*
402 * At this point we've successfully added our config to the list of
403 * known configs. The last thing to do is add the vdev guid -> path
404 * mappings so that we can fix up the configuration as necessary before
405 * doing the import.
406 */
407 if ((ne = zutil_alloc(hdl, sizeof (name_entry_t))) == NULL)
408 return (-1);
409
410 if ((ne->ne_name = zutil_strdup(hdl, path)) == NULL) {
411 free(ne);
412 return (-1);
413 }
414
415 ne->ne_guid = vdev_guid;
416 ne->ne_next = pl->names;
417 pl->names = ne;
418
419 return (0);
420 }
421
422 /*
423 * Returns true if the named pool matches the given GUID.
424 */
425 static int
zutil_pool_active(libpc_handle_t * hdl,const char * name,uint64_t guid,boolean_t * isactive)426 zutil_pool_active(libpc_handle_t *hdl, const char *name, uint64_t guid,
427 boolean_t *isactive)
428 {
429 ASSERT(hdl->lpc_ops->pco_pool_active != NULL);
430
431 int error = hdl->lpc_ops->pco_pool_active(hdl->lpc_lib_handle, name,
432 guid, isactive);
433
434 return (error);
435 }
436
437 static nvlist_t *
zutil_refresh_config(libpc_handle_t * hdl,nvlist_t * tryconfig)438 zutil_refresh_config(libpc_handle_t *hdl, nvlist_t *tryconfig)
439 {
440 ASSERT(hdl->lpc_ops->pco_refresh_config != NULL);
441
442 return (hdl->lpc_ops->pco_refresh_config(hdl->lpc_lib_handle,
443 tryconfig));
444 }
445
446 /*
447 * Determine if the vdev id is a hole in the namespace.
448 */
449 static boolean_t
vdev_is_hole(uint64_t * hole_array,uint_t holes,uint_t id)450 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
451 {
452 for (int c = 0; c < holes; c++) {
453
454 /* Top-level is a hole */
455 if (hole_array[c] == id)
456 return (B_TRUE);
457 }
458 return (B_FALSE);
459 }
460
461 /*
462 * Convert our list of pools into the definitive set of configurations. We
463 * start by picking the best config for each toplevel vdev. Once that's done,
464 * we assemble the toplevel vdevs into a full config for the pool. We make a
465 * pass to fix up any incorrect paths, and then add it to the main list to
466 * return to the user.
467 */
468 static nvlist_t *
get_configs(libpc_handle_t * hdl,pool_list_t * pl,boolean_t active_ok,nvlist_t * policy)469 get_configs(libpc_handle_t *hdl, pool_list_t *pl, boolean_t active_ok,
470 nvlist_t *policy)
471 {
472 pool_entry_t *pe;
473 vdev_entry_t *ve;
474 config_entry_t *ce;
475 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot;
476 nvlist_t **spares, **l2cache;
477 uint_t i, nspares, nl2cache;
478 boolean_t config_seen;
479 uint64_t best_txg;
480 char *name, *hostname = NULL;
481 uint64_t guid;
482 uint_t children = 0;
483 nvlist_t **child = NULL;
484 uint_t holes;
485 uint64_t *hole_array, max_id;
486 uint_t c;
487 boolean_t isactive;
488 uint64_t hostid;
489 nvlist_t *nvl;
490 boolean_t found_one = B_FALSE;
491 boolean_t valid_top_config = B_FALSE;
492
493 if (nvlist_alloc(&ret, 0, 0) != 0)
494 goto nomem;
495
496 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
497 uint64_t id, max_txg = 0;
498
499 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
500 goto nomem;
501 config_seen = B_FALSE;
502
503 /*
504 * Iterate over all toplevel vdevs. Grab the pool configuration
505 * from the first one we find, and then go through the rest and
506 * add them as necessary to the 'vdevs' member of the config.
507 */
508 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
509
510 /*
511 * Determine the best configuration for this vdev by
512 * selecting the config with the latest transaction
513 * group.
514 */
515 best_txg = 0;
516 for (ce = ve->ve_configs; ce != NULL;
517 ce = ce->ce_next) {
518
519 if (ce->ce_txg > best_txg) {
520 tmp = ce->ce_config;
521 best_txg = ce->ce_txg;
522 }
523 }
524
525 /*
526 * We rely on the fact that the max txg for the
527 * pool will contain the most up-to-date information
528 * about the valid top-levels in the vdev namespace.
529 */
530 if (best_txg > max_txg) {
531 (void) nvlist_remove(config,
532 ZPOOL_CONFIG_VDEV_CHILDREN,
533 DATA_TYPE_UINT64);
534 (void) nvlist_remove(config,
535 ZPOOL_CONFIG_HOLE_ARRAY,
536 DATA_TYPE_UINT64_ARRAY);
537
538 max_txg = best_txg;
539 hole_array = NULL;
540 holes = 0;
541 max_id = 0;
542 valid_top_config = B_FALSE;
543
544 if (nvlist_lookup_uint64(tmp,
545 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
546 verify(nvlist_add_uint64(config,
547 ZPOOL_CONFIG_VDEV_CHILDREN,
548 max_id) == 0);
549 valid_top_config = B_TRUE;
550 }
551
552 if (nvlist_lookup_uint64_array(tmp,
553 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
554 &holes) == 0) {
555 verify(nvlist_add_uint64_array(config,
556 ZPOOL_CONFIG_HOLE_ARRAY,
557 hole_array, holes) == 0);
558 }
559 }
560
561 if (!config_seen) {
562 /*
563 * Copy the relevant pieces of data to the pool
564 * configuration:
565 *
566 * version
567 * pool guid
568 * name
569 * comment (if available)
570 * pool state
571 * hostid (if available)
572 * hostname (if available)
573 */
574 uint64_t state, version;
575 char *comment = NULL;
576
577 version = fnvlist_lookup_uint64(tmp,
578 ZPOOL_CONFIG_VERSION);
579 fnvlist_add_uint64(config,
580 ZPOOL_CONFIG_VERSION, version);
581 guid = fnvlist_lookup_uint64(tmp,
582 ZPOOL_CONFIG_POOL_GUID);
583 fnvlist_add_uint64(config,
584 ZPOOL_CONFIG_POOL_GUID, guid);
585 name = fnvlist_lookup_string(tmp,
586 ZPOOL_CONFIG_POOL_NAME);
587 fnvlist_add_string(config,
588 ZPOOL_CONFIG_POOL_NAME, name);
589
590 if (nvlist_lookup_string(tmp,
591 ZPOOL_CONFIG_COMMENT, &comment) == 0)
592 fnvlist_add_string(config,
593 ZPOOL_CONFIG_COMMENT, comment);
594
595 state = fnvlist_lookup_uint64(tmp,
596 ZPOOL_CONFIG_POOL_STATE);
597 fnvlist_add_uint64(config,
598 ZPOOL_CONFIG_POOL_STATE, state);
599
600 hostid = 0;
601 if (nvlist_lookup_uint64(tmp,
602 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
603 fnvlist_add_uint64(config,
604 ZPOOL_CONFIG_HOSTID, hostid);
605 hostname = fnvlist_lookup_string(tmp,
606 ZPOOL_CONFIG_HOSTNAME);
607 fnvlist_add_string(config,
608 ZPOOL_CONFIG_HOSTNAME, hostname);
609 }
610
611 config_seen = B_TRUE;
612 }
613
614 /*
615 * Add this top-level vdev to the child array.
616 */
617 verify(nvlist_lookup_nvlist(tmp,
618 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
619 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
620 &id) == 0);
621
622 if (id >= children) {
623 nvlist_t **newchild;
624
625 newchild = zutil_alloc(hdl, (id + 1) *
626 sizeof (nvlist_t *));
627 if (newchild == NULL)
628 goto nomem;
629
630 for (c = 0; c < children; c++)
631 newchild[c] = child[c];
632
633 free(child);
634 child = newchild;
635 children = id + 1;
636 }
637 if (nvlist_dup(nvtop, &child[id], 0) != 0)
638 goto nomem;
639
640 }
641
642 /*
643 * If we have information about all the top-levels then
644 * clean up the nvlist which we've constructed. This
645 * means removing any extraneous devices that are
646 * beyond the valid range or adding devices to the end
647 * of our array which appear to be missing.
648 */
649 if (valid_top_config) {
650 if (max_id < children) {
651 for (c = max_id; c < children; c++)
652 nvlist_free(child[c]);
653 children = max_id;
654 } else if (max_id > children) {
655 nvlist_t **newchild;
656
657 newchild = zutil_alloc(hdl, (max_id) *
658 sizeof (nvlist_t *));
659 if (newchild == NULL)
660 goto nomem;
661
662 for (c = 0; c < children; c++)
663 newchild[c] = child[c];
664
665 free(child);
666 child = newchild;
667 children = max_id;
668 }
669 }
670
671 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
672 &guid) == 0);
673
674 /*
675 * The vdev namespace may contain holes as a result of
676 * device removal. We must add them back into the vdev
677 * tree before we process any missing devices.
678 */
679 if (holes > 0) {
680 ASSERT(valid_top_config);
681
682 for (c = 0; c < children; c++) {
683 nvlist_t *holey;
684
685 if (child[c] != NULL ||
686 !vdev_is_hole(hole_array, holes, c))
687 continue;
688
689 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
690 0) != 0)
691 goto nomem;
692
693 /*
694 * Holes in the namespace are treated as
695 * "hole" top-level vdevs and have a
696 * special flag set on them.
697 */
698 if (nvlist_add_string(holey,
699 ZPOOL_CONFIG_TYPE,
700 VDEV_TYPE_HOLE) != 0 ||
701 nvlist_add_uint64(holey,
702 ZPOOL_CONFIG_ID, c) != 0 ||
703 nvlist_add_uint64(holey,
704 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
705 nvlist_free(holey);
706 goto nomem;
707 }
708 child[c] = holey;
709 }
710 }
711
712 /*
713 * Look for any missing top-level vdevs. If this is the case,
714 * create a faked up 'missing' vdev as a placeholder. We cannot
715 * simply compress the child array, because the kernel performs
716 * certain checks to make sure the vdev IDs match their location
717 * in the configuration.
718 */
719 for (c = 0; c < children; c++) {
720 if (child[c] == NULL) {
721 nvlist_t *missing;
722 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
723 0) != 0)
724 goto nomem;
725 if (nvlist_add_string(missing,
726 ZPOOL_CONFIG_TYPE,
727 VDEV_TYPE_MISSING) != 0 ||
728 nvlist_add_uint64(missing,
729 ZPOOL_CONFIG_ID, c) != 0 ||
730 nvlist_add_uint64(missing,
731 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
732 nvlist_free(missing);
733 goto nomem;
734 }
735 child[c] = missing;
736 }
737 }
738
739 /*
740 * Put all of this pool's top-level vdevs into a root vdev.
741 */
742 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
743 goto nomem;
744 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
745 VDEV_TYPE_ROOT) != 0 ||
746 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
747 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
748 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
749 child, children) != 0) {
750 nvlist_free(nvroot);
751 goto nomem;
752 }
753
754 for (c = 0; c < children; c++)
755 nvlist_free(child[c]);
756 free(child);
757 children = 0;
758 child = NULL;
759
760 /*
761 * Go through and fix up any paths and/or devids based on our
762 * known list of vdev GUID -> path mappings.
763 */
764 if (fix_paths(nvroot, pl->names) != 0) {
765 nvlist_free(nvroot);
766 goto nomem;
767 }
768
769 /*
770 * Add the root vdev to this pool's configuration.
771 */
772 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
773 nvroot) != 0) {
774 nvlist_free(nvroot);
775 goto nomem;
776 }
777 nvlist_free(nvroot);
778
779 /*
780 * zdb uses this path to report on active pools that were
781 * imported or created using -R.
782 */
783 if (active_ok)
784 goto add_pool;
785
786 /*
787 * Determine if this pool is currently active, in which case we
788 * can't actually import it.
789 */
790 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
791 &name) == 0);
792 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
793 &guid) == 0);
794
795 if (zutil_pool_active(hdl, name, guid, &isactive) != 0)
796 goto error;
797
798 if (isactive) {
799 nvlist_free(config);
800 config = NULL;
801 continue;
802 }
803
804 if (policy != NULL) {
805 if (nvlist_add_nvlist(config, ZPOOL_LOAD_POLICY,
806 policy) != 0)
807 goto nomem;
808 }
809
810 if ((nvl = zutil_refresh_config(hdl, config)) == NULL) {
811 nvlist_free(config);
812 config = NULL;
813 continue;
814 }
815
816 nvlist_free(config);
817 config = nvl;
818
819 /*
820 * Go through and update the paths for spares, now that we have
821 * them.
822 */
823 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
824 &nvroot) == 0);
825 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
826 &spares, &nspares) == 0) {
827 for (i = 0; i < nspares; i++) {
828 if (fix_paths(spares[i], pl->names) != 0)
829 goto nomem;
830 }
831 }
832
833 /*
834 * Update the paths for l2cache devices.
835 */
836 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
837 &l2cache, &nl2cache) == 0) {
838 for (i = 0; i < nl2cache; i++) {
839 if (fix_paths(l2cache[i], pl->names) != 0)
840 goto nomem;
841 }
842 }
843
844 /*
845 * Restore the original information read from the actual label.
846 */
847 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
848 DATA_TYPE_UINT64);
849 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
850 DATA_TYPE_STRING);
851 if (hostid != 0) {
852 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
853 hostid) == 0);
854 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
855 hostname) == 0);
856 }
857
858 add_pool:
859 /*
860 * Add this pool to the list of configs.
861 */
862 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
863 &name) == 0);
864 if (nvlist_add_nvlist(ret, name, config) != 0)
865 goto nomem;
866
867 found_one = B_TRUE;
868 nvlist_free(config);
869 config = NULL;
870 }
871
872 if (!found_one) {
873 nvlist_free(ret);
874 ret = NULL;
875 }
876
877 return (ret);
878
879 nomem:
880 (void) zutil_no_memory(hdl);
881 error:
882 nvlist_free(config);
883 nvlist_free(ret);
884 for (c = 0; c < children; c++)
885 nvlist_free(child[c]);
886 free(child);
887
888 return (NULL);
889 }
890
891 /*
892 * Return the offset of the given label.
893 */
894 static uint64_t
label_offset(uint64_t size,int l)895 label_offset(uint64_t size, int l)
896 {
897 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
898 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
899 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
900 }
901
902 /*
903 * Given a file descriptor, read the label information and return an nvlist
904 * describing the configuration, if there is one. The number of valid
905 * labels found will be returned in num_labels when non-NULL.
906 */
907 int
zpool_read_label(int fd,nvlist_t ** config,int * num_labels)908 zpool_read_label(int fd, nvlist_t **config, int *num_labels)
909 {
910 struct stat64 statbuf;
911 int l, count = 0;
912 vdev_label_t *label;
913 nvlist_t *expected_config = NULL;
914 uint64_t expected_guid = 0, size;
915
916 *config = NULL;
917
918 if (num_labels != NULL)
919 *num_labels = 0;
920
921 if (fstat64(fd, &statbuf) == -1)
922 return (0);
923 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
924
925 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
926 return (-1);
927
928 for (l = 0; l < VDEV_LABELS; l++) {
929 uint64_t state, guid, txg;
930
931 if (pread64(fd, label, sizeof (vdev_label_t),
932 label_offset(size, l)) != sizeof (vdev_label_t))
933 continue;
934
935 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
936 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
937 continue;
938
939 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_GUID,
940 &guid) != 0 || guid == 0) {
941 nvlist_free(*config);
942 continue;
943 }
944
945 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
946 &state) != 0 || state > POOL_STATE_L2CACHE) {
947 nvlist_free(*config);
948 continue;
949 }
950
951 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
952 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
953 &txg) != 0 || txg == 0)) {
954 nvlist_free(*config);
955 continue;
956 }
957
958 if (expected_guid) {
959 if (expected_guid == guid)
960 count++;
961
962 nvlist_free(*config);
963 } else {
964 expected_config = *config;
965 expected_guid = guid;
966 count++;
967 }
968 }
969
970 if (num_labels != NULL)
971 *num_labels = count;
972
973 free(label);
974 *config = expected_config;
975
976 return (0);
977 }
978
979 static int
slice_cache_compare(const void * arg1,const void * arg2)980 slice_cache_compare(const void *arg1, const void *arg2)
981 {
982 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
983 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
984 char *nm1slice, *nm2slice;
985 int rv;
986
987 /*
988 * slices zero and two are the most likely to provide results,
989 * so put those first
990 */
991 nm1slice = strstr(nm1, "s0");
992 nm2slice = strstr(nm2, "s0");
993 if (nm1slice && !nm2slice) {
994 return (-1);
995 }
996 if (!nm1slice && nm2slice) {
997 return (1);
998 }
999 nm1slice = strstr(nm1, "s2");
1000 nm2slice = strstr(nm2, "s2");
1001 if (nm1slice && !nm2slice) {
1002 return (-1);
1003 }
1004 if (!nm1slice && nm2slice) {
1005 return (1);
1006 }
1007
1008 rv = strcmp(nm1, nm2);
1009 if (rv == 0)
1010 return (0);
1011 return (rv > 0 ? 1 : -1);
1012 }
1013
1014 static void
check_one_slice(avl_tree_t * r,char * diskname,uint_t partno,diskaddr_t size,uint_t blksz)1015 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
1016 diskaddr_t size, uint_t blksz)
1017 {
1018 rdsk_node_t tmpnode;
1019 rdsk_node_t *node;
1020 char sname[MAXNAMELEN];
1021
1022 tmpnode.rn_name = &sname[0];
1023 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
1024 diskname, partno);
1025 /*
1026 * protect against division by zero for disk labels that
1027 * contain a bogus sector size
1028 */
1029 if (blksz == 0)
1030 blksz = DEV_BSIZE;
1031 /* too small to contain a zpool? */
1032 if ((size < (SPA_MINDEVSIZE / blksz)) &&
1033 (node = avl_find(r, &tmpnode, NULL)))
1034 node->rn_nozpool = B_TRUE;
1035 }
1036
1037 static void
nozpool_all_slices(avl_tree_t * r,const char * sname)1038 nozpool_all_slices(avl_tree_t *r, const char *sname)
1039 {
1040 char diskname[MAXNAMELEN];
1041 char *ptr;
1042 int i;
1043
1044 (void) strncpy(diskname, sname, MAXNAMELEN);
1045 if (((ptr = strrchr(diskname, 's')) == NULL) &&
1046 ((ptr = strrchr(diskname, 'p')) == NULL))
1047 return;
1048 ptr[0] = 's';
1049 ptr[1] = '\0';
1050 for (i = 0; i < NDKMAP; i++)
1051 check_one_slice(r, diskname, i, 0, 1);
1052 ptr[0] = 'p';
1053 for (i = 0; i <= FD_NUMPART; i++)
1054 check_one_slice(r, diskname, i, 0, 1);
1055 }
1056
1057 static void
check_slices(avl_tree_t * r,int fd,const char * sname)1058 check_slices(avl_tree_t *r, int fd, const char *sname)
1059 {
1060 struct extvtoc vtoc;
1061 struct dk_gpt *gpt;
1062 char diskname[MAXNAMELEN];
1063 char *ptr;
1064 int i;
1065
1066 (void) strncpy(diskname, sname, MAXNAMELEN);
1067 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1068 return;
1069 ptr[1] = '\0';
1070
1071 if (read_extvtoc(fd, &vtoc) >= 0) {
1072 for (i = 0; i < NDKMAP; i++)
1073 check_one_slice(r, diskname, i,
1074 vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1075 } else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1076 /*
1077 * on x86 we'll still have leftover links that point
1078 * to slices s[9-15], so use NDKMAP instead
1079 */
1080 for (i = 0; i < NDKMAP; i++)
1081 check_one_slice(r, diskname, i,
1082 gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1083 /* nodes p[1-4] are never used with EFI labels */
1084 ptr[0] = 'p';
1085 for (i = 1; i <= FD_NUMPART; i++)
1086 check_one_slice(r, diskname, i, 0, 1);
1087 efi_free(gpt);
1088 }
1089 }
1090
1091 void
zpool_open_func(void * arg)1092 zpool_open_func(void *arg)
1093 {
1094 rdsk_node_t *rn = arg;
1095 struct stat64 statbuf;
1096 nvlist_t *config;
1097 int error;
1098 int num_labels = 0;
1099 int fd;
1100
1101 if (rn->rn_nozpool)
1102 return;
1103 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1104 /* symlink to a device that's no longer there */
1105 if (errno == ENOENT)
1106 nozpool_all_slices(rn->rn_avl, rn->rn_name);
1107 return;
1108 }
1109 /*
1110 * Ignore failed stats. We only want regular
1111 * files, character devs and block devs.
1112 */
1113 if (fstat64(fd, &statbuf) != 0 ||
1114 (!S_ISREG(statbuf.st_mode) &&
1115 !S_ISCHR(statbuf.st_mode) &&
1116 !S_ISBLK(statbuf.st_mode))) {
1117 (void) close(fd);
1118 return;
1119 }
1120 /* this file is too small to hold a zpool */
1121 if (S_ISREG(statbuf.st_mode) &&
1122 statbuf.st_size < SPA_MINDEVSIZE) {
1123 (void) close(fd);
1124 return;
1125 } else if (!S_ISREG(statbuf.st_mode)) {
1126 /*
1127 * Try to read the disk label first so we don't have to
1128 * open a bunch of minor nodes that can't have a zpool.
1129 */
1130 check_slices(rn->rn_avl, fd, rn->rn_name);
1131 }
1132
1133 error = zpool_read_label(fd, &config, &num_labels);
1134 if (error != 0) {
1135 (void) close(fd);
1136 return;
1137 }
1138
1139 if (num_labels == 0) {
1140 (void) close(fd);
1141 nvlist_free(config);
1142 return;
1143 }
1144
1145 (void) close(fd);
1146
1147 rn->rn_config = config;
1148 rn->rn_num_labels = num_labels;
1149 }
1150
1151 /*
1152 * Given a list of directories to search, find all pools stored on disk. This
1153 * includes partial pools which are not available to import. If no args are
1154 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1155 * poolname or guid (but not both) are provided by the caller when trying
1156 * to import a specific pool.
1157 */
1158 static nvlist_t *
zpool_find_import_impl(libpc_handle_t * hdl,importargs_t * iarg)1159 zpool_find_import_impl(libpc_handle_t *hdl, importargs_t *iarg)
1160 {
1161 int i, dirs = iarg->paths;
1162 struct dirent64 *dp;
1163 char path[MAXPATHLEN];
1164 char *end, **dir = iarg->path;
1165 size_t pathleft;
1166 nvlist_t *ret = NULL;
1167 static char *default_dir = ZFS_DISK_ROOT;
1168 pool_list_t pools = { 0 };
1169 pool_entry_t *pe, *penext;
1170 vdev_entry_t *ve, *venext;
1171 config_entry_t *ce, *cenext;
1172 name_entry_t *ne, *nenext;
1173 avl_tree_t slice_cache;
1174 rdsk_node_t *slice;
1175 void *cookie;
1176
1177 if (dirs == 0) {
1178 dirs = 1;
1179 dir = &default_dir;
1180 }
1181
1182 /*
1183 * Go through and read the label configuration information from every
1184 * possible device, organizing the information according to pool GUID
1185 * and toplevel GUID.
1186 */
1187 for (i = 0; i < dirs; i++) {
1188 tpool_t *t;
1189 char rdsk[MAXPATHLEN];
1190 int dfd;
1191 boolean_t config_failed = B_FALSE;
1192 DIR *dirp;
1193
1194 /* use realpath to normalize the path */
1195 if (realpath(dir[i], path) == 0) {
1196 (void) zutil_error_fmt(hdl, EZFS_BADPATH,
1197 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1198 goto error;
1199 }
1200 end = &path[strlen(path)];
1201 *end++ = '/';
1202 *end = 0;
1203 pathleft = &path[sizeof (path)] - end;
1204
1205 /*
1206 * Using raw devices instead of block devices when we're
1207 * reading the labels skips a bunch of slow operations during
1208 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1209 */
1210 if (strcmp(path, ZFS_DISK_ROOTD) == 0)
1211 (void) strlcpy(rdsk, ZFS_RDISK_ROOTD, sizeof (rdsk));
1212 else
1213 (void) strlcpy(rdsk, path, sizeof (rdsk));
1214
1215 if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1216 (dirp = fdopendir(dfd)) == NULL) {
1217 if (dfd >= 0)
1218 (void) close(dfd);
1219 zutil_error_aux(hdl, strerror(errno));
1220 (void) zutil_error_fmt(hdl, EZFS_BADPATH,
1221 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1222 rdsk);
1223 goto error;
1224 }
1225
1226 avl_create(&slice_cache, slice_cache_compare,
1227 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1228 /*
1229 * This is not MT-safe, but we have no MT consumers of libzutil
1230 */
1231 while ((dp = readdir64(dirp)) != NULL) {
1232 char *name = dp->d_name;
1233 avl_index_t where;
1234
1235 if (name[0] == '.' &&
1236 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1237 continue;
1238
1239 slice = zutil_alloc(hdl, sizeof (rdsk_node_t));
1240 slice->rn_name = name;
1241 slice->rn_avl = &slice_cache;
1242 slice->rn_dfd = dfd;
1243 slice->rn_hdl = hdl;
1244 slice->rn_nozpool = B_FALSE;
1245 /*
1246 * readdir(3C) buffers several directory entries per
1247 * actual read operation. It is possible that if
1248 * directory entries appear between reading one chunk
1249 * and the next, that the same entry name can end up
1250 * being returned more than once. We need to check that
1251 * this entry doesn't already exist before adding it to
1252 * the tree.
1253 */
1254 if (avl_find(&slice_cache, slice, &where) == NULL) {
1255 slice->rn_name = zutil_strdup(hdl, name);
1256 avl_insert(&slice_cache, slice, where);
1257 } else {
1258 free(slice);
1259 }
1260 }
1261 /*
1262 * create a thread pool to do all of this in parallel;
1263 * rn_nozpool is not protected, so this is racy in that
1264 * multiple tasks could decide that the same slice can
1265 * not hold a zpool, which is benign. Also choose
1266 * double the number of processors; we hold a lot of
1267 * locks in the kernel, so going beyond this doesn't
1268 * buy us much.
1269 */
1270 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1271 0, NULL);
1272 for (slice = avl_first(&slice_cache); slice;
1273 (slice = avl_walk(&slice_cache, slice,
1274 AVL_AFTER)))
1275 (void) tpool_dispatch(t, zpool_open_func, slice);
1276 tpool_wait(t);
1277 tpool_destroy(t);
1278
1279 cookie = NULL;
1280 while ((slice = avl_destroy_nodes(&slice_cache,
1281 &cookie)) != NULL) {
1282 if (slice->rn_config != NULL && !config_failed) {
1283 nvlist_t *config = slice->rn_config;
1284 boolean_t matched = B_TRUE;
1285
1286 if (iarg->poolname != NULL) {
1287 char *pname;
1288
1289 matched = nvlist_lookup_string(config,
1290 ZPOOL_CONFIG_POOL_NAME,
1291 &pname) == 0 &&
1292 strcmp(iarg->poolname, pname) == 0;
1293 } else if (iarg->guid != 0) {
1294 uint64_t this_guid;
1295
1296 matched = nvlist_lookup_uint64(config,
1297 ZPOOL_CONFIG_POOL_GUID,
1298 &this_guid) == 0 &&
1299 iarg->guid == this_guid;
1300 }
1301 if (matched) {
1302 /*
1303 * use the non-raw path for the config
1304 */
1305 (void) strlcpy(end, slice->rn_name,
1306 pathleft);
1307 (void) add_config(hdl, &pools,
1308 path, slice->rn_order,
1309 slice->rn_num_labels, config);
1310 }
1311 nvlist_free(config);
1312 }
1313 free(slice->rn_name);
1314 free(slice);
1315 }
1316 avl_destroy(&slice_cache);
1317
1318 (void) closedir(dirp);
1319
1320 if (config_failed)
1321 goto error;
1322 }
1323
1324 ret = get_configs(hdl, &pools, iarg->can_be_active, iarg->policy);
1325
1326 error:
1327 for (pe = pools.pools; pe != NULL; pe = penext) {
1328 penext = pe->pe_next;
1329 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1330 venext = ve->ve_next;
1331 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1332 cenext = ce->ce_next;
1333 nvlist_free(ce->ce_config);
1334 free(ce);
1335 }
1336 free(ve);
1337 }
1338 free(pe);
1339 }
1340
1341 for (ne = pools.names; ne != NULL; ne = nenext) {
1342 nenext = ne->ne_next;
1343 free(ne->ne_name);
1344 free(ne);
1345 }
1346
1347 return (ret);
1348 }
1349
1350 /*
1351 * Given a cache file, return the contents as a list of importable pools.
1352 * poolname or guid (but not both) are provided by the caller when trying
1353 * to import a specific pool.
1354 */
1355 static nvlist_t *
zpool_find_import_cached(libpc_handle_t * hdl,const char * cachefile,const char * poolname,uint64_t guid)1356 zpool_find_import_cached(libpc_handle_t *hdl, const char *cachefile,
1357 const char *poolname, uint64_t guid)
1358 {
1359 char *buf;
1360 int fd;
1361 struct stat64 statbuf;
1362 nvlist_t *raw, *src, *dst;
1363 nvlist_t *pools;
1364 nvpair_t *elem;
1365 char *name;
1366 uint64_t this_guid;
1367 boolean_t active;
1368
1369 verify(poolname == NULL || guid == 0);
1370
1371 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1372 zutil_error_aux(hdl, "%s", strerror(errno));
1373 (void) zutil_error(hdl, EZFS_BADCACHE,
1374 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1375 return (NULL);
1376 }
1377
1378 if (fstat64(fd, &statbuf) != 0) {
1379 zutil_error_aux(hdl, "%s", strerror(errno));
1380 (void) close(fd);
1381 (void) zutil_error(hdl, EZFS_BADCACHE,
1382 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1383 return (NULL);
1384 }
1385
1386 if ((buf = zutil_alloc(hdl, statbuf.st_size)) == NULL) {
1387 (void) close(fd);
1388 return (NULL);
1389 }
1390
1391 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1392 (void) close(fd);
1393 free(buf);
1394 (void) zutil_error(hdl, EZFS_BADCACHE,
1395 dgettext(TEXT_DOMAIN,
1396 "failed to read cache file contents"));
1397 return (NULL);
1398 }
1399
1400 (void) close(fd);
1401
1402 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1403 free(buf);
1404 (void) zutil_error(hdl, EZFS_BADCACHE,
1405 dgettext(TEXT_DOMAIN,
1406 "invalid or corrupt cache file contents"));
1407 return (NULL);
1408 }
1409
1410 free(buf);
1411
1412 /*
1413 * Go through and get the current state of the pools and refresh their
1414 * state.
1415 */
1416 if (nvlist_alloc(&pools, 0, 0) != 0) {
1417 (void) zutil_no_memory(hdl);
1418 nvlist_free(raw);
1419 return (NULL);
1420 }
1421
1422 elem = NULL;
1423 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1424 src = fnvpair_value_nvlist(elem);
1425
1426 name = fnvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME);
1427 if (poolname != NULL && strcmp(poolname, name) != 0)
1428 continue;
1429
1430 this_guid = fnvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID);
1431 if (guid != 0 && guid != this_guid)
1432 continue;
1433
1434 if (zutil_pool_active(hdl, name, this_guid, &active) != 0) {
1435 nvlist_free(raw);
1436 nvlist_free(pools);
1437 return (NULL);
1438 }
1439
1440 if (active)
1441 continue;
1442
1443 if (nvlist_add_string(src, ZPOOL_CONFIG_CACHEFILE,
1444 cachefile) != 0) {
1445 (void) zutil_no_memory(hdl);
1446 nvlist_free(raw);
1447 nvlist_free(pools);
1448 return (NULL);
1449 }
1450
1451 if ((dst = zutil_refresh_config(hdl, src)) == NULL) {
1452 nvlist_free(raw);
1453 nvlist_free(pools);
1454 return (NULL);
1455 }
1456
1457 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1458 (void) zutil_no_memory(hdl);
1459 nvlist_free(dst);
1460 nvlist_free(raw);
1461 nvlist_free(pools);
1462 return (NULL);
1463 }
1464 nvlist_free(dst);
1465 }
1466
1467 nvlist_free(raw);
1468 return (pools);
1469 }
1470
1471 nvlist_t *
zpool_search_import(void * hdl,importargs_t * import,const pool_config_ops_t * pco)1472 zpool_search_import(void *hdl, importargs_t *import,
1473 const pool_config_ops_t *pco)
1474 {
1475 libpc_handle_t handle = { 0 };
1476 nvlist_t *pools = NULL;
1477
1478 handle.lpc_lib_handle = hdl;
1479 handle.lpc_ops = pco;
1480 handle.lpc_printerr = B_TRUE;
1481
1482 verify(import->poolname == NULL || import->guid == 0);
1483
1484 if (import->cachefile != NULL)
1485 pools = zpool_find_import_cached(&handle, import->cachefile,
1486 import->poolname, import->guid);
1487 else
1488 pools = zpool_find_import_impl(&handle, import);
1489
1490 if ((pools == NULL || nvlist_empty(pools)) &&
1491 handle.lpc_open_access_error && geteuid() != 0) {
1492 (void) zutil_error(&handle, EZFS_EACESS, dgettext(TEXT_DOMAIN,
1493 "no pools found"));
1494 }
1495
1496 return (pools);
1497 }
1498
1499 static boolean_t
pool_match(nvlist_t * cfg,char * tgt)1500 pool_match(nvlist_t *cfg, char *tgt)
1501 {
1502 uint64_t v, guid = strtoull(tgt, NULL, 0);
1503 char *s;
1504
1505 if (guid != 0) {
1506 if (nvlist_lookup_uint64(cfg, ZPOOL_CONFIG_POOL_GUID, &v) == 0)
1507 return (v == guid);
1508 } else {
1509 if (nvlist_lookup_string(cfg, ZPOOL_CONFIG_POOL_NAME, &s) == 0)
1510 return (strcmp(s, tgt) == 0);
1511 }
1512 return (B_FALSE);
1513 }
1514
1515 int
zpool_find_config(void * hdl,const char * target,nvlist_t ** configp,importargs_t * args,const pool_config_ops_t * pco)1516 zpool_find_config(void *hdl, const char *target, nvlist_t **configp,
1517 importargs_t *args, const pool_config_ops_t *pco)
1518 {
1519 nvlist_t *pools;
1520 nvlist_t *match = NULL;
1521 nvlist_t *config = NULL;
1522 char *sepp = NULL;
1523 int count = 0;
1524 char *targetdup = strdup(target);
1525
1526 *configp = NULL;
1527
1528 if ((sepp = strpbrk(targetdup, "/@")) != NULL) {
1529 *sepp = '\0';
1530 }
1531
1532 pools = zpool_search_import(hdl, args, pco);
1533
1534 if (pools != NULL) {
1535 nvpair_t *elem = NULL;
1536 while ((elem = nvlist_next_nvpair(pools, elem)) != NULL) {
1537 VERIFY0(nvpair_value_nvlist(elem, &config));
1538 if (pool_match(config, targetdup)) {
1539 count++;
1540 if (match != NULL) {
1541 /* multiple matches found */
1542 continue;
1543 } else {
1544 match = config;
1545 }
1546 }
1547 }
1548 }
1549
1550 if (count == 0) {
1551 free(targetdup);
1552 return (ENOENT);
1553 }
1554
1555 if (count > 1) {
1556 free(targetdup);
1557 return (EINVAL);
1558 }
1559
1560 *configp = match;
1561 free(targetdup);
1562
1563 return (0);
1564 }
1565