xref: /linux/include/linux/netdevice.h (revision 85502b2214d50ba0ddf2a5fb454e4d28a160d175)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <linux/netdev_features.h>
44 #include <linux/neighbour.h>
45 #include <linux/netdevice_xmit.h>
46 #include <uapi/linux/netdevice.h>
47 #include <uapi/linux/if_bonding.h>
48 #include <uapi/linux/pkt_cls.h>
49 #include <uapi/linux/netdev.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 #include <net/dropreason-core.h>
55 #include <net/neighbour_tables.h>
56 
57 struct netpoll_info;
58 struct device;
59 struct ethtool_ops;
60 struct kernel_hwtstamp_config;
61 struct phy_device;
62 struct dsa_port;
63 struct ip_tunnel_parm_kern;
64 struct macsec_context;
65 struct macsec_ops;
66 struct netdev_config;
67 struct netdev_name_node;
68 struct sd_flow_limit;
69 struct sfp_bus;
70 /* 802.11 specific */
71 struct wireless_dev;
72 /* 802.15.4 specific */
73 struct wpan_dev;
74 struct mpls_dev;
75 /* UDP Tunnel offloads */
76 struct udp_tunnel_info;
77 struct udp_tunnel_nic_info;
78 struct udp_tunnel_nic;
79 struct bpf_prog;
80 struct xdp_buff;
81 struct xdp_frame;
82 struct xdp_metadata_ops;
83 struct xdp_md;
84 struct ethtool_netdev_state;
85 struct phy_link_topology;
86 struct hwtstamp_provider;
87 
88 typedef u32 xdp_features_t;
89 
90 void synchronize_net(void);
91 void netdev_set_default_ethtool_ops(struct net_device *dev,
92 				    const struct ethtool_ops *ops);
93 void netdev_sw_irq_coalesce_default_on(struct net_device *dev);
94 
95 /* Backlog congestion levels */
96 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
97 #define NET_RX_DROP		1	/* packet dropped */
98 
99 #define MAX_NEST_DEV 8
100 
101 /*
102  * Transmit return codes: transmit return codes originate from three different
103  * namespaces:
104  *
105  * - qdisc return codes
106  * - driver transmit return codes
107  * - errno values
108  *
109  * Drivers are allowed to return any one of those in their hard_start_xmit()
110  * function. Real network devices commonly used with qdiscs should only return
111  * the driver transmit return codes though - when qdiscs are used, the actual
112  * transmission happens asynchronously, so the value is not propagated to
113  * higher layers. Virtual network devices transmit synchronously; in this case
114  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
115  * others are propagated to higher layers.
116  */
117 
118 /* qdisc ->enqueue() return codes. */
119 #define NET_XMIT_SUCCESS	0x00
120 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
121 #define NET_XMIT_CN		0x02	/* congestion notification	*/
122 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
123 
124 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
125  * indicates that the device will soon be dropping packets, or already drops
126  * some packets of the same priority; prompting us to send less aggressively. */
127 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
128 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
129 
130 /* Driver transmit return codes */
131 #define NETDEV_TX_MASK		0xf0
132 
133 enum netdev_tx {
134 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
135 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
136 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
137 };
138 typedef enum netdev_tx netdev_tx_t;
139 
140 /*
141  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
142  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
143  */
dev_xmit_complete(int rc)144 static inline bool dev_xmit_complete(int rc)
145 {
146 	/*
147 	 * Positive cases with an skb consumed by a driver:
148 	 * - successful transmission (rc == NETDEV_TX_OK)
149 	 * - error while transmitting (rc < 0)
150 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
151 	 */
152 	if (likely(rc < NET_XMIT_MASK))
153 		return true;
154 
155 	return false;
156 }
157 
158 /*
159  *	Compute the worst-case header length according to the protocols
160  *	used.
161  */
162 
163 #if defined(CONFIG_HYPERV_NET)
164 # define LL_MAX_HEADER 128
165 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
166 # if defined(CONFIG_MAC80211_MESH)
167 #  define LL_MAX_HEADER 128
168 # else
169 #  define LL_MAX_HEADER 96
170 # endif
171 #else
172 # define LL_MAX_HEADER 32
173 #endif
174 
175 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
176     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
177 #define MAX_HEADER LL_MAX_HEADER
178 #else
179 #define MAX_HEADER (LL_MAX_HEADER + 48)
180 #endif
181 
182 /*
183  *	Old network device statistics. Fields are native words
184  *	(unsigned long) so they can be read and written atomically.
185  */
186 
187 #define NET_DEV_STAT(FIELD)			\
188 	union {					\
189 		unsigned long FIELD;		\
190 		atomic_long_t __##FIELD;	\
191 	}
192 
193 struct net_device_stats {
194 	NET_DEV_STAT(rx_packets);
195 	NET_DEV_STAT(tx_packets);
196 	NET_DEV_STAT(rx_bytes);
197 	NET_DEV_STAT(tx_bytes);
198 	NET_DEV_STAT(rx_errors);
199 	NET_DEV_STAT(tx_errors);
200 	NET_DEV_STAT(rx_dropped);
201 	NET_DEV_STAT(tx_dropped);
202 	NET_DEV_STAT(multicast);
203 	NET_DEV_STAT(collisions);
204 	NET_DEV_STAT(rx_length_errors);
205 	NET_DEV_STAT(rx_over_errors);
206 	NET_DEV_STAT(rx_crc_errors);
207 	NET_DEV_STAT(rx_frame_errors);
208 	NET_DEV_STAT(rx_fifo_errors);
209 	NET_DEV_STAT(rx_missed_errors);
210 	NET_DEV_STAT(tx_aborted_errors);
211 	NET_DEV_STAT(tx_carrier_errors);
212 	NET_DEV_STAT(tx_fifo_errors);
213 	NET_DEV_STAT(tx_heartbeat_errors);
214 	NET_DEV_STAT(tx_window_errors);
215 	NET_DEV_STAT(rx_compressed);
216 	NET_DEV_STAT(tx_compressed);
217 };
218 #undef NET_DEV_STAT
219 
220 /* per-cpu stats, allocated on demand.
221  * Try to fit them in a single cache line, for dev_get_stats() sake.
222  */
223 struct net_device_core_stats {
224 	unsigned long	rx_dropped;
225 	unsigned long	tx_dropped;
226 	unsigned long	rx_nohandler;
227 	unsigned long	rx_otherhost_dropped;
228 } __aligned(4 * sizeof(unsigned long));
229 
230 #include <linux/cache.h>
231 #include <linux/skbuff.h>
232 
233 struct neighbour;
234 struct neigh_parms;
235 struct sk_buff;
236 
237 struct netdev_hw_addr {
238 	struct list_head	list;
239 	struct rb_node		node;
240 	unsigned char		addr[MAX_ADDR_LEN];
241 	unsigned char		type;
242 #define NETDEV_HW_ADDR_T_LAN		1
243 #define NETDEV_HW_ADDR_T_SAN		2
244 #define NETDEV_HW_ADDR_T_UNICAST	3
245 #define NETDEV_HW_ADDR_T_MULTICAST	4
246 	bool			global_use;
247 	int			sync_cnt;
248 	int			refcount;
249 	int			synced;
250 	struct rcu_head		rcu_head;
251 };
252 
253 struct netdev_hw_addr_list {
254 	struct list_head	list;
255 	int			count;
256 
257 	/* Auxiliary tree for faster lookup on addition and deletion */
258 	struct rb_root		tree;
259 };
260 
261 #define netdev_hw_addr_list_count(l) ((l)->count)
262 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
263 #define netdev_hw_addr_list_for_each(ha, l) \
264 	list_for_each_entry(ha, &(l)->list, list)
265 
266 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
267 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
268 #define netdev_for_each_uc_addr(ha, dev) \
269 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
270 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
271 	netdev_for_each_uc_addr((_ha), (_dev)) \
272 		if ((_ha)->sync_cnt)
273 
274 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
275 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
276 #define netdev_for_each_mc_addr(ha, dev) \
277 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
278 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
279 	netdev_for_each_mc_addr((_ha), (_dev)) \
280 		if ((_ha)->sync_cnt)
281 
282 struct hh_cache {
283 	unsigned int	hh_len;
284 	seqlock_t	hh_lock;
285 
286 	/* cached hardware header; allow for machine alignment needs.        */
287 #define HH_DATA_MOD	16
288 #define HH_DATA_OFF(__len) \
289 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
290 #define HH_DATA_ALIGN(__len) \
291 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
292 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
293 };
294 
295 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
296  * Alternative is:
297  *   dev->hard_header_len ? (dev->hard_header_len +
298  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
299  *
300  * We could use other alignment values, but we must maintain the
301  * relationship HH alignment <= LL alignment.
302  */
303 #define LL_RESERVED_SPACE(dev) \
304 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
305 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
307 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
308 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
309 
310 struct header_ops {
311 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
312 			   unsigned short type, const void *daddr,
313 			   const void *saddr, unsigned int len);
314 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
315 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
316 	void	(*cache_update)(struct hh_cache *hh,
317 				const struct net_device *dev,
318 				const unsigned char *haddr);
319 	bool	(*validate)(const char *ll_header, unsigned int len);
320 	__be16	(*parse_protocol)(const struct sk_buff *skb);
321 };
322 
323 /* These flag bits are private to the generic network queueing
324  * layer; they may not be explicitly referenced by any other
325  * code.
326  */
327 
328 enum netdev_state_t {
329 	__LINK_STATE_START,
330 	__LINK_STATE_PRESENT,
331 	__LINK_STATE_NOCARRIER,
332 	__LINK_STATE_LINKWATCH_PENDING,
333 	__LINK_STATE_DORMANT,
334 	__LINK_STATE_TESTING,
335 };
336 
337 struct gro_list {
338 	struct list_head	list;
339 	int			count;
340 };
341 
342 /*
343  * size of gro hash buckets, must be <= the number of bits in
344  * gro_node::bitmask
345  */
346 #define GRO_HASH_BUCKETS	8
347 
348 /**
349  * struct gro_node - structure to support Generic Receive Offload
350  * @bitmask: bitmask to indicate used buckets in @hash
351  * @hash: hashtable of pending aggregated skbs, separated by flows
352  * @rx_list: list of pending ``GRO_NORMAL`` skbs
353  * @rx_count: cached current length of @rx_list
354  * @cached_napi_id: napi_struct::napi_id cached for hotpath, 0 for standalone
355  */
356 struct gro_node {
357 	unsigned long		bitmask;
358 	struct gro_list		hash[GRO_HASH_BUCKETS];
359 	struct list_head	rx_list;
360 	u32			rx_count;
361 	u32			cached_napi_id;
362 };
363 
364 /*
365  * Structure for per-NAPI config
366  */
367 struct napi_config {
368 	u64 gro_flush_timeout;
369 	u64 irq_suspend_timeout;
370 	u32 defer_hard_irqs;
371 	cpumask_t affinity_mask;
372 	unsigned int napi_id;
373 };
374 
375 /*
376  * Structure for NAPI scheduling similar to tasklet but with weighting
377  */
378 struct napi_struct {
379 	/* The poll_list must only be managed by the entity which
380 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
381 	 * whoever atomically sets that bit can add this napi_struct
382 	 * to the per-CPU poll_list, and whoever clears that bit
383 	 * can remove from the list right before clearing the bit.
384 	 */
385 	struct list_head	poll_list;
386 
387 	unsigned long		state;
388 	int			weight;
389 	u32			defer_hard_irqs_count;
390 	int			(*poll)(struct napi_struct *, int);
391 #ifdef CONFIG_NETPOLL
392 	/* CPU actively polling if netpoll is configured */
393 	int			poll_owner;
394 #endif
395 	/* CPU on which NAPI has been scheduled for processing */
396 	int			list_owner;
397 	struct net_device	*dev;
398 	struct sk_buff		*skb;
399 	struct gro_node		gro;
400 	struct hrtimer		timer;
401 	/* all fields past this point are write-protected by netdev_lock */
402 	struct task_struct	*thread;
403 	unsigned long		gro_flush_timeout;
404 	unsigned long		irq_suspend_timeout;
405 	u32			defer_hard_irqs;
406 	/* control-path-only fields follow */
407 	u32			napi_id;
408 	struct list_head	dev_list;
409 	struct hlist_node	napi_hash_node;
410 	int			irq;
411 	struct irq_affinity_notify notify;
412 	int			napi_rmap_idx;
413 	int			index;
414 	struct napi_config	*config;
415 };
416 
417 enum {
418 	NAPI_STATE_SCHED,		/* Poll is scheduled */
419 	NAPI_STATE_MISSED,		/* reschedule a napi */
420 	NAPI_STATE_DISABLE,		/* Disable pending */
421 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
422 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
423 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
424 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
425 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
426 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
427 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
428 	NAPI_STATE_HAS_NOTIFIER,	/* Napi has an IRQ notifier */
429 };
430 
431 enum {
432 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
433 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
434 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
435 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
436 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
437 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
438 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
439 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
440 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
441 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
442 	NAPIF_STATE_HAS_NOTIFIER	= BIT(NAPI_STATE_HAS_NOTIFIER),
443 };
444 
445 enum gro_result {
446 	GRO_MERGED,
447 	GRO_MERGED_FREE,
448 	GRO_HELD,
449 	GRO_NORMAL,
450 	GRO_CONSUMED,
451 };
452 typedef enum gro_result gro_result_t;
453 
454 /*
455  * enum rx_handler_result - Possible return values for rx_handlers.
456  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
457  * further.
458  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
459  * case skb->dev was changed by rx_handler.
460  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
461  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
462  *
463  * rx_handlers are functions called from inside __netif_receive_skb(), to do
464  * special processing of the skb, prior to delivery to protocol handlers.
465  *
466  * Currently, a net_device can only have a single rx_handler registered. Trying
467  * to register a second rx_handler will return -EBUSY.
468  *
469  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
470  * To unregister a rx_handler on a net_device, use
471  * netdev_rx_handler_unregister().
472  *
473  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
474  * do with the skb.
475  *
476  * If the rx_handler consumed the skb in some way, it should return
477  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
478  * the skb to be delivered in some other way.
479  *
480  * If the rx_handler changed skb->dev, to divert the skb to another
481  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
482  * new device will be called if it exists.
483  *
484  * If the rx_handler decides the skb should be ignored, it should return
485  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
486  * are registered on exact device (ptype->dev == skb->dev).
487  *
488  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
489  * delivered, it should return RX_HANDLER_PASS.
490  *
491  * A device without a registered rx_handler will behave as if rx_handler
492  * returned RX_HANDLER_PASS.
493  */
494 
495 enum rx_handler_result {
496 	RX_HANDLER_CONSUMED,
497 	RX_HANDLER_ANOTHER,
498 	RX_HANDLER_EXACT,
499 	RX_HANDLER_PASS,
500 };
501 typedef enum rx_handler_result rx_handler_result_t;
502 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
503 
504 void __napi_schedule(struct napi_struct *n);
505 void __napi_schedule_irqoff(struct napi_struct *n);
506 
napi_disable_pending(struct napi_struct * n)507 static inline bool napi_disable_pending(struct napi_struct *n)
508 {
509 	return test_bit(NAPI_STATE_DISABLE, &n->state);
510 }
511 
napi_prefer_busy_poll(struct napi_struct * n)512 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
513 {
514 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
515 }
516 
517 /**
518  * napi_is_scheduled - test if NAPI is scheduled
519  * @n: NAPI context
520  *
521  * This check is "best-effort". With no locking implemented,
522  * a NAPI can be scheduled or terminate right after this check
523  * and produce not precise results.
524  *
525  * NAPI_STATE_SCHED is an internal state, napi_is_scheduled
526  * should not be used normally and napi_schedule should be
527  * used instead.
528  *
529  * Use only if the driver really needs to check if a NAPI
530  * is scheduled for example in the context of delayed timer
531  * that can be skipped if a NAPI is already scheduled.
532  *
533  * Return: True if NAPI is scheduled, False otherwise.
534  */
napi_is_scheduled(struct napi_struct * n)535 static inline bool napi_is_scheduled(struct napi_struct *n)
536 {
537 	return test_bit(NAPI_STATE_SCHED, &n->state);
538 }
539 
540 bool napi_schedule_prep(struct napi_struct *n);
541 
542 /**
543  *	napi_schedule - schedule NAPI poll
544  *	@n: NAPI context
545  *
546  * Schedule NAPI poll routine to be called if it is not already
547  * running.
548  * Return: true if we schedule a NAPI or false if not.
549  * Refer to napi_schedule_prep() for additional reason on why
550  * a NAPI might not be scheduled.
551  */
napi_schedule(struct napi_struct * n)552 static inline bool napi_schedule(struct napi_struct *n)
553 {
554 	if (napi_schedule_prep(n)) {
555 		__napi_schedule(n);
556 		return true;
557 	}
558 
559 	return false;
560 }
561 
562 /**
563  *	napi_schedule_irqoff - schedule NAPI poll
564  *	@n: NAPI context
565  *
566  * Variant of napi_schedule(), assuming hard irqs are masked.
567  */
napi_schedule_irqoff(struct napi_struct * n)568 static inline void napi_schedule_irqoff(struct napi_struct *n)
569 {
570 	if (napi_schedule_prep(n))
571 		__napi_schedule_irqoff(n);
572 }
573 
574 /**
575  * napi_complete_done - NAPI processing complete
576  * @n: NAPI context
577  * @work_done: number of packets processed
578  *
579  * Mark NAPI processing as complete. Should only be called if poll budget
580  * has not been completely consumed.
581  * Prefer over napi_complete().
582  * Return: false if device should avoid rearming interrupts.
583  */
584 bool napi_complete_done(struct napi_struct *n, int work_done);
585 
napi_complete(struct napi_struct * n)586 static inline bool napi_complete(struct napi_struct *n)
587 {
588 	return napi_complete_done(n, 0);
589 }
590 
591 int dev_set_threaded(struct net_device *dev, bool threaded);
592 
593 void napi_disable(struct napi_struct *n);
594 void napi_disable_locked(struct napi_struct *n);
595 
596 void napi_enable(struct napi_struct *n);
597 void napi_enable_locked(struct napi_struct *n);
598 
599 /**
600  *	napi_synchronize - wait until NAPI is not running
601  *	@n: NAPI context
602  *
603  * Wait until NAPI is done being scheduled on this context.
604  * Waits till any outstanding processing completes but
605  * does not disable future activations.
606  */
napi_synchronize(const struct napi_struct * n)607 static inline void napi_synchronize(const struct napi_struct *n)
608 {
609 	if (IS_ENABLED(CONFIG_SMP))
610 		while (test_bit(NAPI_STATE_SCHED, &n->state))
611 			msleep(1);
612 	else
613 		barrier();
614 }
615 
616 /**
617  *	napi_if_scheduled_mark_missed - if napi is running, set the
618  *	NAPIF_STATE_MISSED
619  *	@n: NAPI context
620  *
621  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
622  * NAPI is scheduled.
623  **/
napi_if_scheduled_mark_missed(struct napi_struct * n)624 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
625 {
626 	unsigned long val, new;
627 
628 	val = READ_ONCE(n->state);
629 	do {
630 		if (val & NAPIF_STATE_DISABLE)
631 			return true;
632 
633 		if (!(val & NAPIF_STATE_SCHED))
634 			return false;
635 
636 		new = val | NAPIF_STATE_MISSED;
637 	} while (!try_cmpxchg(&n->state, &val, new));
638 
639 	return true;
640 }
641 
642 enum netdev_queue_state_t {
643 	__QUEUE_STATE_DRV_XOFF,
644 	__QUEUE_STATE_STACK_XOFF,
645 	__QUEUE_STATE_FROZEN,
646 };
647 
648 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
649 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
650 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
651 
652 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
653 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
654 					QUEUE_STATE_FROZEN)
655 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
656 					QUEUE_STATE_FROZEN)
657 
658 /*
659  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
660  * netif_tx_* functions below are used to manipulate this flag.  The
661  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
662  * queue independently.  The netif_xmit_*stopped functions below are called
663  * to check if the queue has been stopped by the driver or stack (either
664  * of the XOFF bits are set in the state).  Drivers should not need to call
665  * netif_xmit*stopped functions, they should only be using netif_tx_*.
666  */
667 
668 struct netdev_queue {
669 /*
670  * read-mostly part
671  */
672 	struct net_device	*dev;
673 	netdevice_tracker	dev_tracker;
674 
675 	struct Qdisc __rcu	*qdisc;
676 	struct Qdisc __rcu	*qdisc_sleeping;
677 #ifdef CONFIG_SYSFS
678 	struct kobject		kobj;
679 	const struct attribute_group	**groups;
680 #endif
681 	unsigned long		tx_maxrate;
682 	/*
683 	 * Number of TX timeouts for this queue
684 	 * (/sys/class/net/DEV/Q/trans_timeout)
685 	 */
686 	atomic_long_t		trans_timeout;
687 
688 	/* Subordinate device that the queue has been assigned to */
689 	struct net_device	*sb_dev;
690 #ifdef CONFIG_XDP_SOCKETS
691 	/* "ops protected", see comment about net_device::lock */
692 	struct xsk_buff_pool    *pool;
693 #endif
694 
695 /*
696  * write-mostly part
697  */
698 #ifdef CONFIG_BQL
699 	struct dql		dql;
700 #endif
701 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
702 	int			xmit_lock_owner;
703 	/*
704 	 * Time (in jiffies) of last Tx
705 	 */
706 	unsigned long		trans_start;
707 
708 	unsigned long		state;
709 
710 /*
711  * slow- / control-path part
712  */
713 	/* NAPI instance for the queue
714 	 * "ops protected", see comment about net_device::lock
715 	 */
716 	struct napi_struct	*napi;
717 
718 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
719 	int			numa_node;
720 #endif
721 } ____cacheline_aligned_in_smp;
722 
723 extern int sysctl_fb_tunnels_only_for_init_net;
724 extern int sysctl_devconf_inherit_init_net;
725 
726 /*
727  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
728  *                                     == 1 : For initns only
729  *                                     == 2 : For none.
730  */
net_has_fallback_tunnels(const struct net * net)731 static inline bool net_has_fallback_tunnels(const struct net *net)
732 {
733 #if IS_ENABLED(CONFIG_SYSCTL)
734 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
735 
736 	return !fb_tunnels_only_for_init_net ||
737 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
738 #else
739 	return true;
740 #endif
741 }
742 
net_inherit_devconf(void)743 static inline int net_inherit_devconf(void)
744 {
745 #if IS_ENABLED(CONFIG_SYSCTL)
746 	return READ_ONCE(sysctl_devconf_inherit_init_net);
747 #else
748 	return 0;
749 #endif
750 }
751 
netdev_queue_numa_node_read(const struct netdev_queue * q)752 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
753 {
754 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
755 	return q->numa_node;
756 #else
757 	return NUMA_NO_NODE;
758 #endif
759 }
760 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)761 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
762 {
763 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
764 	q->numa_node = node;
765 #endif
766 }
767 
768 #ifdef CONFIG_RFS_ACCEL
769 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
770 			 u16 filter_id);
771 #endif
772 
773 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
774 enum xps_map_type {
775 	XPS_CPUS = 0,
776 	XPS_RXQS,
777 	XPS_MAPS_MAX,
778 };
779 
780 #ifdef CONFIG_XPS
781 /*
782  * This structure holds an XPS map which can be of variable length.  The
783  * map is an array of queues.
784  */
785 struct xps_map {
786 	unsigned int len;
787 	unsigned int alloc_len;
788 	struct rcu_head rcu;
789 	u16 queues[];
790 };
791 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
792 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
793        - sizeof(struct xps_map)) / sizeof(u16))
794 
795 /*
796  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
797  *
798  * We keep track of the number of cpus/rxqs used when the struct is allocated,
799  * in nr_ids. This will help not accessing out-of-bound memory.
800  *
801  * We keep track of the number of traffic classes used when the struct is
802  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
803  * not crossing its upper bound, as the original dev->num_tc can be updated in
804  * the meantime.
805  */
806 struct xps_dev_maps {
807 	struct rcu_head rcu;
808 	unsigned int nr_ids;
809 	s16 num_tc;
810 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
811 };
812 
813 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
814 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
815 
816 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
817 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
818 
819 #endif /* CONFIG_XPS */
820 
821 #define TC_MAX_QUEUE	16
822 #define TC_BITMASK	15
823 /* HW offloaded queuing disciplines txq count and offset maps */
824 struct netdev_tc_txq {
825 	u16 count;
826 	u16 offset;
827 };
828 
829 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
830 /*
831  * This structure is to hold information about the device
832  * configured to run FCoE protocol stack.
833  */
834 struct netdev_fcoe_hbainfo {
835 	char	manufacturer[64];
836 	char	serial_number[64];
837 	char	hardware_version[64];
838 	char	driver_version[64];
839 	char	optionrom_version[64];
840 	char	firmware_version[64];
841 	char	model[256];
842 	char	model_description[256];
843 };
844 #endif
845 
846 #define MAX_PHYS_ITEM_ID_LEN 32
847 
848 /* This structure holds a unique identifier to identify some
849  * physical item (port for example) used by a netdevice.
850  */
851 struct netdev_phys_item_id {
852 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
853 	unsigned char id_len;
854 };
855 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)856 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
857 					    struct netdev_phys_item_id *b)
858 {
859 	return a->id_len == b->id_len &&
860 	       memcmp(a->id, b->id, a->id_len) == 0;
861 }
862 
863 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
864 				       struct sk_buff *skb,
865 				       struct net_device *sb_dev);
866 
867 enum net_device_path_type {
868 	DEV_PATH_ETHERNET = 0,
869 	DEV_PATH_VLAN,
870 	DEV_PATH_BRIDGE,
871 	DEV_PATH_PPPOE,
872 	DEV_PATH_DSA,
873 	DEV_PATH_MTK_WDMA,
874 };
875 
876 struct net_device_path {
877 	enum net_device_path_type	type;
878 	const struct net_device		*dev;
879 	union {
880 		struct {
881 			u16		id;
882 			__be16		proto;
883 			u8		h_dest[ETH_ALEN];
884 		} encap;
885 		struct {
886 			enum {
887 				DEV_PATH_BR_VLAN_KEEP,
888 				DEV_PATH_BR_VLAN_TAG,
889 				DEV_PATH_BR_VLAN_UNTAG,
890 				DEV_PATH_BR_VLAN_UNTAG_HW,
891 			}		vlan_mode;
892 			u16		vlan_id;
893 			__be16		vlan_proto;
894 		} bridge;
895 		struct {
896 			int port;
897 			u16 proto;
898 		} dsa;
899 		struct {
900 			u8 wdma_idx;
901 			u8 queue;
902 			u16 wcid;
903 			u8 bss;
904 			u8 amsdu;
905 		} mtk_wdma;
906 	};
907 };
908 
909 #define NET_DEVICE_PATH_STACK_MAX	5
910 #define NET_DEVICE_PATH_VLAN_MAX	2
911 
912 struct net_device_path_stack {
913 	int			num_paths;
914 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
915 };
916 
917 struct net_device_path_ctx {
918 	const struct net_device *dev;
919 	u8			daddr[ETH_ALEN];
920 
921 	int			num_vlans;
922 	struct {
923 		u16		id;
924 		__be16		proto;
925 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
926 };
927 
928 enum tc_setup_type {
929 	TC_QUERY_CAPS,
930 	TC_SETUP_QDISC_MQPRIO,
931 	TC_SETUP_CLSU32,
932 	TC_SETUP_CLSFLOWER,
933 	TC_SETUP_CLSMATCHALL,
934 	TC_SETUP_CLSBPF,
935 	TC_SETUP_BLOCK,
936 	TC_SETUP_QDISC_CBS,
937 	TC_SETUP_QDISC_RED,
938 	TC_SETUP_QDISC_PRIO,
939 	TC_SETUP_QDISC_MQ,
940 	TC_SETUP_QDISC_ETF,
941 	TC_SETUP_ROOT_QDISC,
942 	TC_SETUP_QDISC_GRED,
943 	TC_SETUP_QDISC_TAPRIO,
944 	TC_SETUP_FT,
945 	TC_SETUP_QDISC_ETS,
946 	TC_SETUP_QDISC_TBF,
947 	TC_SETUP_QDISC_FIFO,
948 	TC_SETUP_QDISC_HTB,
949 	TC_SETUP_ACT,
950 };
951 
952 /* These structures hold the attributes of bpf state that are being passed
953  * to the netdevice through the bpf op.
954  */
955 enum bpf_netdev_command {
956 	/* Set or clear a bpf program used in the earliest stages of packet
957 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
958 	 * is responsible for calling bpf_prog_put on any old progs that are
959 	 * stored. In case of error, the callee need not release the new prog
960 	 * reference, but on success it takes ownership and must bpf_prog_put
961 	 * when it is no longer used.
962 	 */
963 	XDP_SETUP_PROG,
964 	XDP_SETUP_PROG_HW,
965 	/* BPF program for offload callbacks, invoked at program load time. */
966 	BPF_OFFLOAD_MAP_ALLOC,
967 	BPF_OFFLOAD_MAP_FREE,
968 	XDP_SETUP_XSK_POOL,
969 };
970 
971 struct bpf_prog_offload_ops;
972 struct netlink_ext_ack;
973 struct xdp_umem;
974 struct xdp_dev_bulk_queue;
975 struct bpf_xdp_link;
976 
977 enum bpf_xdp_mode {
978 	XDP_MODE_SKB = 0,
979 	XDP_MODE_DRV = 1,
980 	XDP_MODE_HW = 2,
981 	__MAX_XDP_MODE
982 };
983 
984 struct bpf_xdp_entity {
985 	struct bpf_prog *prog;
986 	struct bpf_xdp_link *link;
987 };
988 
989 struct netdev_bpf {
990 	enum bpf_netdev_command command;
991 	union {
992 		/* XDP_SETUP_PROG */
993 		struct {
994 			u32 flags;
995 			struct bpf_prog *prog;
996 			struct netlink_ext_ack *extack;
997 		};
998 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
999 		struct {
1000 			struct bpf_offloaded_map *offmap;
1001 		};
1002 		/* XDP_SETUP_XSK_POOL */
1003 		struct {
1004 			struct xsk_buff_pool *pool;
1005 			u16 queue_id;
1006 		} xsk;
1007 	};
1008 };
1009 
1010 /* Flags for ndo_xsk_wakeup. */
1011 #define XDP_WAKEUP_RX (1 << 0)
1012 #define XDP_WAKEUP_TX (1 << 1)
1013 
1014 #ifdef CONFIG_XFRM_OFFLOAD
1015 struct xfrmdev_ops {
1016 	int	(*xdo_dev_state_add)(struct net_device *dev,
1017 				     struct xfrm_state *x,
1018 				     struct netlink_ext_ack *extack);
1019 	void	(*xdo_dev_state_delete)(struct net_device *dev,
1020 					struct xfrm_state *x);
1021 	void	(*xdo_dev_state_free)(struct net_device *dev,
1022 				      struct xfrm_state *x);
1023 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1024 				       struct xfrm_state *x);
1025 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1026 	void	(*xdo_dev_state_update_stats) (struct xfrm_state *x);
1027 	int	(*xdo_dev_policy_add) (struct xfrm_policy *x, struct netlink_ext_ack *extack);
1028 	void	(*xdo_dev_policy_delete) (struct xfrm_policy *x);
1029 	void	(*xdo_dev_policy_free) (struct xfrm_policy *x);
1030 };
1031 #endif
1032 
1033 struct dev_ifalias {
1034 	struct rcu_head rcuhead;
1035 	char ifalias[];
1036 };
1037 
1038 struct devlink;
1039 struct tlsdev_ops;
1040 
1041 struct netdev_net_notifier {
1042 	struct list_head list;
1043 	struct notifier_block *nb;
1044 };
1045 
1046 /*
1047  * This structure defines the management hooks for network devices.
1048  * The following hooks can be defined; unless noted otherwise, they are
1049  * optional and can be filled with a null pointer.
1050  *
1051  * int (*ndo_init)(struct net_device *dev);
1052  *     This function is called once when a network device is registered.
1053  *     The network device can use this for any late stage initialization
1054  *     or semantic validation. It can fail with an error code which will
1055  *     be propagated back to register_netdev.
1056  *
1057  * void (*ndo_uninit)(struct net_device *dev);
1058  *     This function is called when device is unregistered or when registration
1059  *     fails. It is not called if init fails.
1060  *
1061  * int (*ndo_open)(struct net_device *dev);
1062  *     This function is called when a network device transitions to the up
1063  *     state.
1064  *
1065  * int (*ndo_stop)(struct net_device *dev);
1066  *     This function is called when a network device transitions to the down
1067  *     state.
1068  *
1069  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1070  *                               struct net_device *dev);
1071  *	Called when a packet needs to be transmitted.
1072  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1073  *	the queue before that can happen; it's for obsolete devices and weird
1074  *	corner cases, but the stack really does a non-trivial amount
1075  *	of useless work if you return NETDEV_TX_BUSY.
1076  *	Required; cannot be NULL.
1077  *
1078  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1079  *					   struct net_device *dev
1080  *					   netdev_features_t features);
1081  *	Called by core transmit path to determine if device is capable of
1082  *	performing offload operations on a given packet. This is to give
1083  *	the device an opportunity to implement any restrictions that cannot
1084  *	be otherwise expressed by feature flags. The check is called with
1085  *	the set of features that the stack has calculated and it returns
1086  *	those the driver believes to be appropriate.
1087  *
1088  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1089  *                         struct net_device *sb_dev);
1090  *	Called to decide which queue to use when device supports multiple
1091  *	transmit queues.
1092  *
1093  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1094  *	This function is called to allow device receiver to make
1095  *	changes to configuration when multicast or promiscuous is enabled.
1096  *
1097  * void (*ndo_set_rx_mode)(struct net_device *dev);
1098  *	This function is called device changes address list filtering.
1099  *	If driver handles unicast address filtering, it should set
1100  *	IFF_UNICAST_FLT in its priv_flags.
1101  *
1102  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1103  *	This function  is called when the Media Access Control address
1104  *	needs to be changed. If this interface is not defined, the
1105  *	MAC address can not be changed.
1106  *
1107  * int (*ndo_validate_addr)(struct net_device *dev);
1108  *	Test if Media Access Control address is valid for the device.
1109  *
1110  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1111  *	Old-style ioctl entry point. This is used internally by the
1112  *	ieee802154 subsystem but is no longer called by the device
1113  *	ioctl handler.
1114  *
1115  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1116  *	Used by the bonding driver for its device specific ioctls:
1117  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1118  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1119  *
1120  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1121  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1122  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1123  *
1124  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1125  *	Used to set network devices bus interface parameters. This interface
1126  *	is retained for legacy reasons; new devices should use the bus
1127  *	interface (PCI) for low level management.
1128  *
1129  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1130  *	Called when a user wants to change the Maximum Transfer Unit
1131  *	of a device.
1132  *
1133  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1134  *	Callback used when the transmitter has not made any progress
1135  *	for dev->watchdog ticks.
1136  *
1137  * void (*ndo_get_stats64)(struct net_device *dev,
1138  *                         struct rtnl_link_stats64 *storage);
1139  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1140  *	Called when a user wants to get the network device usage
1141  *	statistics. Drivers must do one of the following:
1142  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1143  *	   rtnl_link_stats64 structure passed by the caller.
1144  *	2. Define @ndo_get_stats to update a net_device_stats structure
1145  *	   (which should normally be dev->stats) and return a pointer to
1146  *	   it. The structure may be changed asynchronously only if each
1147  *	   field is written atomically.
1148  *	3. Update dev->stats asynchronously and atomically, and define
1149  *	   neither operation.
1150  *
1151  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1152  *	Return true if this device supports offload stats of this attr_id.
1153  *
1154  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1155  *	void *attr_data)
1156  *	Get statistics for offload operations by attr_id. Write it into the
1157  *	attr_data pointer.
1158  *
1159  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1160  *	If device supports VLAN filtering this function is called when a
1161  *	VLAN id is registered.
1162  *
1163  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1164  *	If device supports VLAN filtering this function is called when a
1165  *	VLAN id is unregistered.
1166  *
1167  * void (*ndo_poll_controller)(struct net_device *dev);
1168  *
1169  *	SR-IOV management functions.
1170  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1171  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1172  *			  u8 qos, __be16 proto);
1173  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1174  *			  int max_tx_rate);
1175  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1176  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1177  * int (*ndo_get_vf_config)(struct net_device *dev,
1178  *			    int vf, struct ifla_vf_info *ivf);
1179  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1180  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1181  *			  struct nlattr *port[]);
1182  *
1183  *      Enable or disable the VF ability to query its RSS Redirection Table and
1184  *      Hash Key. This is needed since on some devices VF share this information
1185  *      with PF and querying it may introduce a theoretical security risk.
1186  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1187  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1188  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1189  *		       void *type_data);
1190  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1191  *	This is always called from the stack with the rtnl lock held and netif
1192  *	tx queues stopped. This allows the netdevice to perform queue
1193  *	management safely.
1194  *
1195  *	Fiber Channel over Ethernet (FCoE) offload functions.
1196  * int (*ndo_fcoe_enable)(struct net_device *dev);
1197  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1198  *	so the underlying device can perform whatever needed configuration or
1199  *	initialization to support acceleration of FCoE traffic.
1200  *
1201  * int (*ndo_fcoe_disable)(struct net_device *dev);
1202  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1203  *	so the underlying device can perform whatever needed clean-ups to
1204  *	stop supporting acceleration of FCoE traffic.
1205  *
1206  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1207  *			     struct scatterlist *sgl, unsigned int sgc);
1208  *	Called when the FCoE Initiator wants to initialize an I/O that
1209  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1210  *	perform necessary setup and returns 1 to indicate the device is set up
1211  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1212  *
1213  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1214  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1215  *	indicated by the FC exchange id 'xid', so the underlying device can
1216  *	clean up and reuse resources for later DDP requests.
1217  *
1218  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1219  *			      struct scatterlist *sgl, unsigned int sgc);
1220  *	Called when the FCoE Target wants to initialize an I/O that
1221  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1222  *	perform necessary setup and returns 1 to indicate the device is set up
1223  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1224  *
1225  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1226  *			       struct netdev_fcoe_hbainfo *hbainfo);
1227  *	Called when the FCoE Protocol stack wants information on the underlying
1228  *	device. This information is utilized by the FCoE protocol stack to
1229  *	register attributes with Fiber Channel management service as per the
1230  *	FC-GS Fabric Device Management Information(FDMI) specification.
1231  *
1232  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1233  *	Called when the underlying device wants to override default World Wide
1234  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1235  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1236  *	protocol stack to use.
1237  *
1238  *	RFS acceleration.
1239  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1240  *			    u16 rxq_index, u32 flow_id);
1241  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1242  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1243  *	Return the filter ID on success, or a negative error code.
1244  *
1245  *	Slave management functions (for bridge, bonding, etc).
1246  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1247  *	Called to make another netdev an underling.
1248  *
1249  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1250  *	Called to release previously enslaved netdev.
1251  *
1252  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1253  *					    struct sk_buff *skb,
1254  *					    bool all_slaves);
1255  *	Get the xmit slave of master device. If all_slaves is true, function
1256  *	assume all the slaves can transmit.
1257  *
1258  *      Feature/offload setting functions.
1259  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1260  *		netdev_features_t features);
1261  *	Adjusts the requested feature flags according to device-specific
1262  *	constraints, and returns the resulting flags. Must not modify
1263  *	the device state.
1264  *
1265  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1266  *	Called to update device configuration to new features. Passed
1267  *	feature set might be less than what was returned by ndo_fix_features()).
1268  *	Must return >0 or -errno if it changed dev->features itself.
1269  *
1270  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1271  *		      struct net_device *dev,
1272  *		      const unsigned char *addr, u16 vid, u16 flags,
1273  *		      bool *notified, struct netlink_ext_ack *extack);
1274  *	Adds an FDB entry to dev for addr.
1275  *	Callee shall set *notified to true if it sent any appropriate
1276  *	notification(s). Otherwise core will send a generic one.
1277  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1278  *		      struct net_device *dev,
1279  *		      const unsigned char *addr, u16 vid
1280  *		      bool *notified, struct netlink_ext_ack *extack);
1281  *	Deletes the FDB entry from dev corresponding to addr.
1282  *	Callee shall set *notified to true if it sent any appropriate
1283  *	notification(s). Otherwise core will send a generic one.
1284  * int (*ndo_fdb_del_bulk)(struct nlmsghdr *nlh, struct net_device *dev,
1285  *			   struct netlink_ext_ack *extack);
1286  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1287  *		       struct net_device *dev, struct net_device *filter_dev,
1288  *		       int *idx)
1289  *	Used to add FDB entries to dump requests. Implementers should add
1290  *	entries to skb and update idx with the number of entries.
1291  *
1292  * int (*ndo_mdb_add)(struct net_device *dev, struct nlattr *tb[],
1293  *		      u16 nlmsg_flags, struct netlink_ext_ack *extack);
1294  *	Adds an MDB entry to dev.
1295  * int (*ndo_mdb_del)(struct net_device *dev, struct nlattr *tb[],
1296  *		      struct netlink_ext_ack *extack);
1297  *	Deletes the MDB entry from dev.
1298  * int (*ndo_mdb_del_bulk)(struct net_device *dev, struct nlattr *tb[],
1299  *			   struct netlink_ext_ack *extack);
1300  *	Bulk deletes MDB entries from dev.
1301  * int (*ndo_mdb_dump)(struct net_device *dev, struct sk_buff *skb,
1302  *		       struct netlink_callback *cb);
1303  *	Dumps MDB entries from dev. The first argument (marker) in the netlink
1304  *	callback is used by core rtnetlink code.
1305  *
1306  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1307  *			     u16 flags, struct netlink_ext_ack *extack)
1308  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1309  *			     struct net_device *dev, u32 filter_mask,
1310  *			     int nlflags)
1311  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1312  *			     u16 flags);
1313  *
1314  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1315  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1316  *	which do not represent real hardware may define this to allow their
1317  *	userspace components to manage their virtual carrier state. Devices
1318  *	that determine carrier state from physical hardware properties (eg
1319  *	network cables) or protocol-dependent mechanisms (eg
1320  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1321  *
1322  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1323  *			       struct netdev_phys_item_id *ppid);
1324  *	Called to get ID of physical port of this device. If driver does
1325  *	not implement this, it is assumed that the hw is not able to have
1326  *	multiple net devices on single physical port.
1327  *
1328  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1329  *				 struct netdev_phys_item_id *ppid)
1330  *	Called to get the parent ID of the physical port of this device.
1331  *
1332  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1333  *				 struct net_device *dev)
1334  *	Called by upper layer devices to accelerate switching or other
1335  *	station functionality into hardware. 'pdev is the lowerdev
1336  *	to use for the offload and 'dev' is the net device that will
1337  *	back the offload. Returns a pointer to the private structure
1338  *	the upper layer will maintain.
1339  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1340  *	Called by upper layer device to delete the station created
1341  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1342  *	the station and priv is the structure returned by the add
1343  *	operation.
1344  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1345  *			     int queue_index, u32 maxrate);
1346  *	Called when a user wants to set a max-rate limitation of specific
1347  *	TX queue.
1348  * int (*ndo_get_iflink)(const struct net_device *dev);
1349  *	Called to get the iflink value of this device.
1350  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1351  *	This function is used to get egress tunnel information for given skb.
1352  *	This is useful for retrieving outer tunnel header parameters while
1353  *	sampling packet.
1354  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1355  *	This function is used to specify the headroom that the skb must
1356  *	consider when allocation skb during packet reception. Setting
1357  *	appropriate rx headroom value allows avoiding skb head copy on
1358  *	forward. Setting a negative value resets the rx headroom to the
1359  *	default value.
1360  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1361  *	This function is used to set or query state related to XDP on the
1362  *	netdevice and manage BPF offload. See definition of
1363  *	enum bpf_netdev_command for details.
1364  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1365  *			u32 flags);
1366  *	This function is used to submit @n XDP packets for transmit on a
1367  *	netdevice. Returns number of frames successfully transmitted, frames
1368  *	that got dropped are freed/returned via xdp_return_frame().
1369  *	Returns negative number, means general error invoking ndo, meaning
1370  *	no frames were xmit'ed and core-caller will free all frames.
1371  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1372  *					        struct xdp_buff *xdp);
1373  *      Get the xmit slave of master device based on the xdp_buff.
1374  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1375  *      This function is used to wake up the softirq, ksoftirqd or kthread
1376  *	responsible for sending and/or receiving packets on a specific
1377  *	queue id bound to an AF_XDP socket. The flags field specifies if
1378  *	only RX, only Tx, or both should be woken up using the flags
1379  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1380  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm_kern *p,
1381  *			 int cmd);
1382  *	Add, change, delete or get information on an IPv4 tunnel.
1383  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1384  *	If a device is paired with a peer device, return the peer instance.
1385  *	The caller must be under RCU read context.
1386  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1387  *     Get the forwarding path to reach the real device from the HW destination address
1388  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1389  *			     const struct skb_shared_hwtstamps *hwtstamps,
1390  *			     bool cycles);
1391  *	Get hardware timestamp based on normal/adjustable time or free running
1392  *	cycle counter. This function is required if physical clock supports a
1393  *	free running cycle counter.
1394  *
1395  * int (*ndo_hwtstamp_get)(struct net_device *dev,
1396  *			   struct kernel_hwtstamp_config *kernel_config);
1397  *	Get the currently configured hardware timestamping parameters for the
1398  *	NIC device.
1399  *
1400  * int (*ndo_hwtstamp_set)(struct net_device *dev,
1401  *			   struct kernel_hwtstamp_config *kernel_config,
1402  *			   struct netlink_ext_ack *extack);
1403  *	Change the hardware timestamping parameters for NIC device.
1404  */
1405 struct net_device_ops {
1406 	int			(*ndo_init)(struct net_device *dev);
1407 	void			(*ndo_uninit)(struct net_device *dev);
1408 	int			(*ndo_open)(struct net_device *dev);
1409 	int			(*ndo_stop)(struct net_device *dev);
1410 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1411 						  struct net_device *dev);
1412 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1413 						      struct net_device *dev,
1414 						      netdev_features_t features);
1415 	u16			(*ndo_select_queue)(struct net_device *dev,
1416 						    struct sk_buff *skb,
1417 						    struct net_device *sb_dev);
1418 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1419 						       int flags);
1420 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1421 	int			(*ndo_set_mac_address)(struct net_device *dev,
1422 						       void *addr);
1423 	int			(*ndo_validate_addr)(struct net_device *dev);
1424 	int			(*ndo_do_ioctl)(struct net_device *dev,
1425 					        struct ifreq *ifr, int cmd);
1426 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1427 						 struct ifreq *ifr, int cmd);
1428 	int			(*ndo_siocbond)(struct net_device *dev,
1429 						struct ifreq *ifr, int cmd);
1430 	int			(*ndo_siocwandev)(struct net_device *dev,
1431 						  struct if_settings *ifs);
1432 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1433 						      struct ifreq *ifr,
1434 						      void __user *data, int cmd);
1435 	int			(*ndo_set_config)(struct net_device *dev,
1436 					          struct ifmap *map);
1437 	int			(*ndo_change_mtu)(struct net_device *dev,
1438 						  int new_mtu);
1439 	int			(*ndo_neigh_setup)(struct net_device *dev,
1440 						   struct neigh_parms *);
1441 	void			(*ndo_tx_timeout) (struct net_device *dev,
1442 						   unsigned int txqueue);
1443 
1444 	void			(*ndo_get_stats64)(struct net_device *dev,
1445 						   struct rtnl_link_stats64 *storage);
1446 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1447 	int			(*ndo_get_offload_stats)(int attr_id,
1448 							 const struct net_device *dev,
1449 							 void *attr_data);
1450 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1451 
1452 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1453 						       __be16 proto, u16 vid);
1454 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1455 						        __be16 proto, u16 vid);
1456 #ifdef CONFIG_NET_POLL_CONTROLLER
1457 	void                    (*ndo_poll_controller)(struct net_device *dev);
1458 	int			(*ndo_netpoll_setup)(struct net_device *dev);
1459 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1460 #endif
1461 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1462 						  int queue, u8 *mac);
1463 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1464 						   int queue, u16 vlan,
1465 						   u8 qos, __be16 proto);
1466 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1467 						   int vf, int min_tx_rate,
1468 						   int max_tx_rate);
1469 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1470 						       int vf, bool setting);
1471 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1472 						    int vf, bool setting);
1473 	int			(*ndo_get_vf_config)(struct net_device *dev,
1474 						     int vf,
1475 						     struct ifla_vf_info *ivf);
1476 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1477 							 int vf, int link_state);
1478 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1479 						    int vf,
1480 						    struct ifla_vf_stats
1481 						    *vf_stats);
1482 	int			(*ndo_set_vf_port)(struct net_device *dev,
1483 						   int vf,
1484 						   struct nlattr *port[]);
1485 	int			(*ndo_get_vf_port)(struct net_device *dev,
1486 						   int vf, struct sk_buff *skb);
1487 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1488 						   int vf,
1489 						   struct ifla_vf_guid *node_guid,
1490 						   struct ifla_vf_guid *port_guid);
1491 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1492 						   int vf, u64 guid,
1493 						   int guid_type);
1494 	int			(*ndo_set_vf_rss_query_en)(
1495 						   struct net_device *dev,
1496 						   int vf, bool setting);
1497 	int			(*ndo_setup_tc)(struct net_device *dev,
1498 						enum tc_setup_type type,
1499 						void *type_data);
1500 #if IS_ENABLED(CONFIG_FCOE)
1501 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1502 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1503 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1504 						      u16 xid,
1505 						      struct scatterlist *sgl,
1506 						      unsigned int sgc);
1507 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1508 						     u16 xid);
1509 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1510 						       u16 xid,
1511 						       struct scatterlist *sgl,
1512 						       unsigned int sgc);
1513 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1514 							struct netdev_fcoe_hbainfo *hbainfo);
1515 #endif
1516 
1517 #if IS_ENABLED(CONFIG_LIBFCOE)
1518 #define NETDEV_FCOE_WWNN 0
1519 #define NETDEV_FCOE_WWPN 1
1520 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1521 						    u64 *wwn, int type);
1522 #endif
1523 
1524 #ifdef CONFIG_RFS_ACCEL
1525 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1526 						     const struct sk_buff *skb,
1527 						     u16 rxq_index,
1528 						     u32 flow_id);
1529 #endif
1530 	int			(*ndo_add_slave)(struct net_device *dev,
1531 						 struct net_device *slave_dev,
1532 						 struct netlink_ext_ack *extack);
1533 	int			(*ndo_del_slave)(struct net_device *dev,
1534 						 struct net_device *slave_dev);
1535 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1536 						      struct sk_buff *skb,
1537 						      bool all_slaves);
1538 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1539 							struct sock *sk);
1540 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1541 						    netdev_features_t features);
1542 	int			(*ndo_set_features)(struct net_device *dev,
1543 						    netdev_features_t features);
1544 	int			(*ndo_neigh_construct)(struct net_device *dev,
1545 						       struct neighbour *n);
1546 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1547 						     struct neighbour *n);
1548 
1549 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1550 					       struct nlattr *tb[],
1551 					       struct net_device *dev,
1552 					       const unsigned char *addr,
1553 					       u16 vid,
1554 					       u16 flags,
1555 					       bool *notified,
1556 					       struct netlink_ext_ack *extack);
1557 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1558 					       struct nlattr *tb[],
1559 					       struct net_device *dev,
1560 					       const unsigned char *addr,
1561 					       u16 vid,
1562 					       bool *notified,
1563 					       struct netlink_ext_ack *extack);
1564 	int			(*ndo_fdb_del_bulk)(struct nlmsghdr *nlh,
1565 						    struct net_device *dev,
1566 						    struct netlink_ext_ack *extack);
1567 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1568 						struct netlink_callback *cb,
1569 						struct net_device *dev,
1570 						struct net_device *filter_dev,
1571 						int *idx);
1572 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1573 					       struct nlattr *tb[],
1574 					       struct net_device *dev,
1575 					       const unsigned char *addr,
1576 					       u16 vid, u32 portid, u32 seq,
1577 					       struct netlink_ext_ack *extack);
1578 	int			(*ndo_mdb_add)(struct net_device *dev,
1579 					       struct nlattr *tb[],
1580 					       u16 nlmsg_flags,
1581 					       struct netlink_ext_ack *extack);
1582 	int			(*ndo_mdb_del)(struct net_device *dev,
1583 					       struct nlattr *tb[],
1584 					       struct netlink_ext_ack *extack);
1585 	int			(*ndo_mdb_del_bulk)(struct net_device *dev,
1586 						    struct nlattr *tb[],
1587 						    struct netlink_ext_ack *extack);
1588 	int			(*ndo_mdb_dump)(struct net_device *dev,
1589 						struct sk_buff *skb,
1590 						struct netlink_callback *cb);
1591 	int			(*ndo_mdb_get)(struct net_device *dev,
1592 					       struct nlattr *tb[], u32 portid,
1593 					       u32 seq,
1594 					       struct netlink_ext_ack *extack);
1595 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1596 						      struct nlmsghdr *nlh,
1597 						      u16 flags,
1598 						      struct netlink_ext_ack *extack);
1599 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1600 						      u32 pid, u32 seq,
1601 						      struct net_device *dev,
1602 						      u32 filter_mask,
1603 						      int nlflags);
1604 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1605 						      struct nlmsghdr *nlh,
1606 						      u16 flags);
1607 	int			(*ndo_change_carrier)(struct net_device *dev,
1608 						      bool new_carrier);
1609 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1610 							struct netdev_phys_item_id *ppid);
1611 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1612 							  struct netdev_phys_item_id *ppid);
1613 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1614 							  char *name, size_t len);
1615 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1616 							struct net_device *dev);
1617 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1618 							void *priv);
1619 
1620 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1621 						      int queue_index,
1622 						      u32 maxrate);
1623 	int			(*ndo_get_iflink)(const struct net_device *dev);
1624 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1625 						       struct sk_buff *skb);
1626 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1627 						       int needed_headroom);
1628 	int			(*ndo_bpf)(struct net_device *dev,
1629 					   struct netdev_bpf *bpf);
1630 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1631 						struct xdp_frame **xdp,
1632 						u32 flags);
1633 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1634 							  struct xdp_buff *xdp);
1635 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1636 						  u32 queue_id, u32 flags);
1637 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1638 						  struct ip_tunnel_parm_kern *p,
1639 						  int cmd);
1640 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1641 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1642                                                          struct net_device_path *path);
1643 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1644 						  const struct skb_shared_hwtstamps *hwtstamps,
1645 						  bool cycles);
1646 	int			(*ndo_hwtstamp_get)(struct net_device *dev,
1647 						    struct kernel_hwtstamp_config *kernel_config);
1648 	int			(*ndo_hwtstamp_set)(struct net_device *dev,
1649 						    struct kernel_hwtstamp_config *kernel_config,
1650 						    struct netlink_ext_ack *extack);
1651 
1652 #if IS_ENABLED(CONFIG_NET_SHAPER)
1653 	/**
1654 	 * @net_shaper_ops: Device shaping offload operations
1655 	 * see include/net/net_shapers.h
1656 	 */
1657 	const struct net_shaper_ops *net_shaper_ops;
1658 #endif
1659 };
1660 
1661 /**
1662  * enum netdev_priv_flags - &struct net_device priv_flags
1663  *
1664  * These are the &struct net_device, they are only set internally
1665  * by drivers and used in the kernel. These flags are invisible to
1666  * userspace; this means that the order of these flags can change
1667  * during any kernel release.
1668  *
1669  * You should add bitfield booleans after either net_device::priv_flags
1670  * (hotpath) or ::threaded (slowpath) instead of extending these flags.
1671  *
1672  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1673  * @IFF_EBRIDGE: Ethernet bridging device
1674  * @IFF_BONDING: bonding master or slave
1675  * @IFF_ISATAP: ISATAP interface (RFC4214)
1676  * @IFF_WAN_HDLC: WAN HDLC device
1677  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1678  *	release skb->dst
1679  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1680  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1681  * @IFF_MACVLAN_PORT: device used as macvlan port
1682  * @IFF_BRIDGE_PORT: device used as bridge port
1683  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1684  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1685  * @IFF_UNICAST_FLT: Supports unicast filtering
1686  * @IFF_TEAM_PORT: device used as team port
1687  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1688  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1689  *	change when it's running
1690  * @IFF_MACVLAN: Macvlan device
1691  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1692  *	underlying stacked devices
1693  * @IFF_L3MDEV_MASTER: device is an L3 master device
1694  * @IFF_NO_QUEUE: device can run without qdisc attached
1695  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1696  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1697  * @IFF_TEAM: device is a team device
1698  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1699  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1700  *	entity (i.e. the master device for bridged veth)
1701  * @IFF_MACSEC: device is a MACsec device
1702  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1703  * @IFF_FAILOVER: device is a failover master device
1704  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1705  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1706  * @IFF_NO_ADDRCONF: prevent ipv6 addrconf
1707  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1708  *	skb_headlen(skb) == 0 (data starts from frag0)
1709  */
1710 enum netdev_priv_flags {
1711 	IFF_802_1Q_VLAN			= 1<<0,
1712 	IFF_EBRIDGE			= 1<<1,
1713 	IFF_BONDING			= 1<<2,
1714 	IFF_ISATAP			= 1<<3,
1715 	IFF_WAN_HDLC			= 1<<4,
1716 	IFF_XMIT_DST_RELEASE		= 1<<5,
1717 	IFF_DONT_BRIDGE			= 1<<6,
1718 	IFF_DISABLE_NETPOLL		= 1<<7,
1719 	IFF_MACVLAN_PORT		= 1<<8,
1720 	IFF_BRIDGE_PORT			= 1<<9,
1721 	IFF_OVS_DATAPATH		= 1<<10,
1722 	IFF_TX_SKB_SHARING		= 1<<11,
1723 	IFF_UNICAST_FLT			= 1<<12,
1724 	IFF_TEAM_PORT			= 1<<13,
1725 	IFF_SUPP_NOFCS			= 1<<14,
1726 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1727 	IFF_MACVLAN			= 1<<16,
1728 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1729 	IFF_L3MDEV_MASTER		= 1<<18,
1730 	IFF_NO_QUEUE			= 1<<19,
1731 	IFF_OPENVSWITCH			= 1<<20,
1732 	IFF_L3MDEV_SLAVE		= 1<<21,
1733 	IFF_TEAM			= 1<<22,
1734 	IFF_RXFH_CONFIGURED		= 1<<23,
1735 	IFF_PHONY_HEADROOM		= 1<<24,
1736 	IFF_MACSEC			= 1<<25,
1737 	IFF_NO_RX_HANDLER		= 1<<26,
1738 	IFF_FAILOVER			= 1<<27,
1739 	IFF_FAILOVER_SLAVE		= 1<<28,
1740 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1741 	IFF_NO_ADDRCONF			= BIT_ULL(30),
1742 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1743 };
1744 
1745 /* Specifies the type of the struct net_device::ml_priv pointer */
1746 enum netdev_ml_priv_type {
1747 	ML_PRIV_NONE,
1748 	ML_PRIV_CAN,
1749 };
1750 
1751 enum netdev_stat_type {
1752 	NETDEV_PCPU_STAT_NONE,
1753 	NETDEV_PCPU_STAT_LSTATS, /* struct pcpu_lstats */
1754 	NETDEV_PCPU_STAT_TSTATS, /* struct pcpu_sw_netstats */
1755 	NETDEV_PCPU_STAT_DSTATS, /* struct pcpu_dstats */
1756 };
1757 
1758 enum netdev_reg_state {
1759 	NETREG_UNINITIALIZED = 0,
1760 	NETREG_REGISTERED,	/* completed register_netdevice */
1761 	NETREG_UNREGISTERING,	/* called unregister_netdevice */
1762 	NETREG_UNREGISTERED,	/* completed unregister todo */
1763 	NETREG_RELEASED,	/* called free_netdev */
1764 	NETREG_DUMMY,		/* dummy device for NAPI poll */
1765 };
1766 
1767 /**
1768  *	struct net_device - The DEVICE structure.
1769  *
1770  *	Actually, this whole structure is a big mistake.  It mixes I/O
1771  *	data with strictly "high-level" data, and it has to know about
1772  *	almost every data structure used in the INET module.
1773  *
1774  *	@priv_flags:	flags invisible to userspace defined as bits, see
1775  *			enum netdev_priv_flags for the definitions
1776  *	@lltx:		device supports lockless Tx. Deprecated for real HW
1777  *			drivers. Mainly used by logical interfaces, such as
1778  *			bonding and tunnels
1779  *	@netmem_tx:	device support netmem_tx.
1780  *
1781  *	@name:	This is the first field of the "visible" part of this structure
1782  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1783  *		of the interface.
1784  *
1785  *	@name_node:	Name hashlist node
1786  *	@ifalias:	SNMP alias
1787  *	@mem_end:	Shared memory end
1788  *	@mem_start:	Shared memory start
1789  *	@base_addr:	Device I/O address
1790  *	@irq:		Device IRQ number
1791  *
1792  *	@state:		Generic network queuing layer state, see netdev_state_t
1793  *	@dev_list:	The global list of network devices
1794  *	@napi_list:	List entry used for polling NAPI devices
1795  *	@unreg_list:	List entry  when we are unregistering the
1796  *			device; see the function unregister_netdev
1797  *	@close_list:	List entry used when we are closing the device
1798  *	@ptype_all:     Device-specific packet handlers for all protocols
1799  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1800  *
1801  *	@adj_list:	Directly linked devices, like slaves for bonding
1802  *	@features:	Currently active device features
1803  *	@hw_features:	User-changeable features
1804  *
1805  *	@wanted_features:	User-requested features
1806  *	@vlan_features:		Mask of features inheritable by VLAN devices
1807  *
1808  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1809  *				This field indicates what encapsulation
1810  *				offloads the hardware is capable of doing,
1811  *				and drivers will need to set them appropriately.
1812  *
1813  *	@mpls_features:	Mask of features inheritable by MPLS
1814  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1815  *
1816  *	@ifindex:	interface index
1817  *	@group:		The group the device belongs to
1818  *
1819  *	@stats:		Statistics struct, which was left as a legacy, use
1820  *			rtnl_link_stats64 instead
1821  *
1822  *	@core_stats:	core networking counters,
1823  *			do not use this in drivers
1824  *	@carrier_up_count:	Number of times the carrier has been up
1825  *	@carrier_down_count:	Number of times the carrier has been down
1826  *
1827  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1828  *				instead of ioctl,
1829  *				see <net/iw_handler.h> for details.
1830  *
1831  *	@netdev_ops:	Includes several pointers to callbacks,
1832  *			if one wants to override the ndo_*() functions
1833  *	@xdp_metadata_ops:	Includes pointers to XDP metadata callbacks.
1834  *	@xsk_tx_metadata_ops:	Includes pointers to AF_XDP TX metadata callbacks.
1835  *	@ethtool_ops:	Management operations
1836  *	@l3mdev_ops:	Layer 3 master device operations
1837  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1838  *			discovery handling. Necessary for e.g. 6LoWPAN.
1839  *	@xfrmdev_ops:	Transformation offload operations
1840  *	@tlsdev_ops:	Transport Layer Security offload operations
1841  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1842  *			of Layer 2 headers.
1843  *
1844  *	@flags:		Interface flags (a la BSD)
1845  *	@xdp_features:	XDP capability supported by the device
1846  *	@gflags:	Global flags ( kept as legacy )
1847  *	@priv_len:	Size of the ->priv flexible array
1848  *	@priv:		Flexible array containing private data
1849  *	@operstate:	RFC2863 operstate
1850  *	@link_mode:	Mapping policy to operstate
1851  *	@if_port:	Selectable AUI, TP, ...
1852  *	@dma:		DMA channel
1853  *	@mtu:		Interface MTU value
1854  *	@min_mtu:	Interface Minimum MTU value
1855  *	@max_mtu:	Interface Maximum MTU value
1856  *	@type:		Interface hardware type
1857  *	@hard_header_len: Maximum hardware header length.
1858  *	@min_header_len:  Minimum hardware header length
1859  *
1860  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1861  *			  cases can this be guaranteed
1862  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1863  *			  cases can this be guaranteed. Some cases also use
1864  *			  LL_MAX_HEADER instead to allocate the skb
1865  *
1866  *	interface address info:
1867  *
1868  * 	@perm_addr:		Permanent hw address
1869  * 	@addr_assign_type:	Hw address assignment type
1870  * 	@addr_len:		Hardware address length
1871  *	@upper_level:		Maximum depth level of upper devices.
1872  *	@lower_level:		Maximum depth level of lower devices.
1873  *	@neigh_priv_len:	Used in neigh_alloc()
1874  * 	@dev_id:		Used to differentiate devices that share
1875  * 				the same link layer address
1876  * 	@dev_port:		Used to differentiate devices that share
1877  * 				the same function
1878  *	@addr_list_lock:	XXX: need comments on this one
1879  *	@name_assign_type:	network interface name assignment type
1880  *	@uc_promisc:		Counter that indicates promiscuous mode
1881  *				has been enabled due to the need to listen to
1882  *				additional unicast addresses in a device that
1883  *				does not implement ndo_set_rx_mode()
1884  *	@uc:			unicast mac addresses
1885  *	@mc:			multicast mac addresses
1886  *	@dev_addrs:		list of device hw addresses
1887  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1888  *	@promiscuity:		Number of times the NIC is told to work in
1889  *				promiscuous mode; if it becomes 0 the NIC will
1890  *				exit promiscuous mode
1891  *	@allmulti:		Counter, enables or disables allmulticast mode
1892  *
1893  *	@vlan_info:	VLAN info
1894  *	@dsa_ptr:	dsa specific data
1895  *	@tipc_ptr:	TIPC specific data
1896  *	@atalk_ptr:	AppleTalk link
1897  *	@ip_ptr:	IPv4 specific data
1898  *	@ip6_ptr:	IPv6 specific data
1899  *	@ax25_ptr:	AX.25 specific data
1900  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1901  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1902  *			 device struct
1903  *	@mpls_ptr:	mpls_dev struct pointer
1904  *	@mctp_ptr:	MCTP specific data
1905  *
1906  *	@dev_addr:	Hw address (before bcast,
1907  *			because most packets are unicast)
1908  *
1909  *	@_rx:			Array of RX queues
1910  *	@num_rx_queues:		Number of RX queues
1911  *				allocated at register_netdev() time
1912  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1913  *	@xdp_prog:		XDP sockets filter program pointer
1914  *
1915  *	@rx_handler:		handler for received packets
1916  *	@rx_handler_data: 	XXX: need comments on this one
1917  *	@tcx_ingress:		BPF & clsact qdisc specific data for ingress processing
1918  *	@ingress_queue:		XXX: need comments on this one
1919  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1920  *	@broadcast:		hw bcast address
1921  *
1922  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1923  *			indexed by RX queue number. Assigned by driver.
1924  *			This must only be set if the ndo_rx_flow_steer
1925  *			operation is defined
1926  *	@index_hlist:		Device index hash chain
1927  *
1928  *	@_tx:			Array of TX queues
1929  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1930  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1931  *	@qdisc:			Root qdisc from userspace point of view
1932  *	@tx_queue_len:		Max frames per queue allowed
1933  *	@tx_global_lock: 	XXX: need comments on this one
1934  *	@xdp_bulkq:		XDP device bulk queue
1935  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1936  *
1937  *	@xps_maps:	XXX: need comments on this one
1938  *	@tcx_egress:		BPF & clsact qdisc specific data for egress processing
1939  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1940  *	@qdisc_hash:		qdisc hash table
1941  *	@watchdog_timeo:	Represents the timeout that is used by
1942  *				the watchdog (see dev_watchdog())
1943  *	@watchdog_timer:	List of timers
1944  *
1945  *	@proto_down_reason:	reason a netdev interface is held down
1946  *	@pcpu_refcnt:		Number of references to this device
1947  *	@dev_refcnt:		Number of references to this device
1948  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1949  *	@todo_list:		Delayed register/unregister
1950  *	@link_watch_list:	XXX: need comments on this one
1951  *
1952  *	@reg_state:		Register/unregister state machine
1953  *	@dismantle:		Device is going to be freed
1954  *	@needs_free_netdev:	Should unregister perform free_netdev?
1955  *	@priv_destructor:	Called from unregister
1956  *	@npinfo:		XXX: need comments on this one
1957  * 	@nd_net:		Network namespace this network device is inside
1958  *				protected by @lock
1959  *
1960  * 	@ml_priv:	Mid-layer private
1961  *	@ml_priv_type:  Mid-layer private type
1962  *
1963  *	@pcpu_stat_type:	Type of device statistics which the core should
1964  *				allocate/free: none, lstats, tstats, dstats. none
1965  *				means the driver is handling statistics allocation/
1966  *				freeing internally.
1967  *	@lstats:		Loopback statistics: packets, bytes
1968  *	@tstats:		Tunnel statistics: RX/TX packets, RX/TX bytes
1969  *	@dstats:		Dummy statistics: RX/TX/drop packets, RX/TX bytes
1970  *
1971  *	@garp_port:	GARP
1972  *	@mrp_port:	MRP
1973  *
1974  *	@dm_private:	Drop monitor private
1975  *
1976  *	@dev:		Class/net/name entry
1977  *	@sysfs_groups:	Space for optional device, statistics and wireless
1978  *			sysfs groups
1979  *
1980  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1981  *	@rtnl_link_ops:	Rtnl_link_ops
1982  *	@stat_ops:	Optional ops for queue-aware statistics
1983  *	@queue_mgmt_ops:	Optional ops for queue management
1984  *
1985  *	@gso_max_size:	Maximum size of generic segmentation offload
1986  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1987  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1988  *			NIC for GSO
1989  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1990  * 	@gso_ipv4_max_size:	Maximum size of generic segmentation offload,
1991  * 				for IPv4.
1992  *
1993  *	@dcbnl_ops:	Data Center Bridging netlink ops
1994  *	@num_tc:	Number of traffic classes in the net device
1995  *	@tc_to_txq:	XXX: need comments on this one
1996  *	@prio_tc_map:	XXX: need comments on this one
1997  *
1998  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1999  *
2000  *	@priomap:	XXX: need comments on this one
2001  *	@link_topo:	Physical link topology tracking attached PHYs
2002  *	@phydev:	Physical device may attach itself
2003  *			for hardware timestamping
2004  *	@sfp_bus:	attached &struct sfp_bus structure.
2005  *
2006  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
2007  *
2008  *	@proto_down:	protocol port state information can be sent to the
2009  *			switch driver and used to set the phys state of the
2010  *			switch port.
2011  *
2012  *	@threaded:	napi threaded mode is enabled
2013  *
2014  *	@irq_affinity_auto: driver wants the core to store and re-assign the IRQ
2015  *			    affinity. Set by netif_enable_irq_affinity(), then
2016  *			    the driver must create a persistent napi by
2017  *			    netif_napi_add_config() and finally bind the napi to
2018  *			    IRQ (via netif_napi_set_irq()).
2019  *
2020  *	@rx_cpu_rmap_auto: driver wants the core to manage the ARFS rmap.
2021  *	                   Set by calling netif_enable_cpu_rmap().
2022  *
2023  *	@see_all_hwtstamp_requests: device wants to see calls to
2024  *			ndo_hwtstamp_set() for all timestamp requests
2025  *			regardless of source, even if those aren't
2026  *			HWTSTAMP_SOURCE_NETDEV
2027  *	@change_proto_down: device supports setting carrier via IFLA_PROTO_DOWN
2028  *	@netns_immutable: interface can't change network namespaces
2029  *	@fcoe_mtu:	device supports maximum FCoE MTU, 2158 bytes
2030  *
2031  *	@net_notifier_list:	List of per-net netdev notifier block
2032  *				that follow this device when it is moved
2033  *				to another network namespace.
2034  *
2035  *	@macsec_ops:    MACsec offloading ops
2036  *
2037  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
2038  *				offload capabilities of the device
2039  *	@udp_tunnel_nic:	UDP tunnel offload state
2040  *	@ethtool:	ethtool related state
2041  *	@xdp_state:		stores info on attached XDP BPF programs
2042  *
2043  *	@nested_level:	Used as a parameter of spin_lock_nested() of
2044  *			dev->addr_list_lock.
2045  *	@unlink_list:	As netif_addr_lock() can be called recursively,
2046  *			keep a list of interfaces to be deleted.
2047  *	@gro_max_size:	Maximum size of aggregated packet in generic
2048  *			receive offload (GRO)
2049  * 	@gro_ipv4_max_size:	Maximum size of aggregated packet in generic
2050  * 				receive offload (GRO), for IPv4.
2051  *	@xdp_zc_max_segs:	Maximum number of segments supported by AF_XDP
2052  *				zero copy driver
2053  *
2054  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2055  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2056  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2057  *	@dev_registered_tracker:	tracker for reference held while
2058  *					registered
2059  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2060  *
2061  *	@devlink_port:	Pointer to related devlink port structure.
2062  *			Assigned by a driver before netdev registration using
2063  *			SET_NETDEV_DEVLINK_PORT macro. This pointer is static
2064  *			during the time netdevice is registered.
2065  *
2066  *	@dpll_pin: Pointer to the SyncE source pin of a DPLL subsystem,
2067  *		   where the clock is recovered.
2068  *
2069  *	@max_pacing_offload_horizon: max EDT offload horizon in nsec.
2070  *	@napi_config: An array of napi_config structures containing per-NAPI
2071  *		      settings.
2072  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
2073  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
2074  *				allow to avoid NIC hard IRQ, on busy queues.
2075  *
2076  *	@neighbours:	List heads pointing to this device's neighbours'
2077  *			dev_list, one per address-family.
2078  *	@hwprov: Tracks which PTP performs hardware packet time stamping.
2079  *
2080  *	FIXME: cleanup struct net_device such that network protocol info
2081  *	moves out.
2082  */
2083 
2084 struct net_device {
2085 	/* Cacheline organization can be found documented in
2086 	 * Documentation/networking/net_cachelines/net_device.rst.
2087 	 * Please update the document when adding new fields.
2088 	 */
2089 
2090 	/* TX read-mostly hotpath */
2091 	__cacheline_group_begin(net_device_read_tx);
2092 	struct_group(priv_flags_fast,
2093 		unsigned long		priv_flags:32;
2094 		unsigned long		lltx:1;
2095 		unsigned long		netmem_tx:1;
2096 	);
2097 	const struct net_device_ops *netdev_ops;
2098 	const struct header_ops *header_ops;
2099 	struct netdev_queue	*_tx;
2100 	netdev_features_t	gso_partial_features;
2101 	unsigned int		real_num_tx_queues;
2102 	unsigned int		gso_max_size;
2103 	unsigned int		gso_ipv4_max_size;
2104 	u16			gso_max_segs;
2105 	s16			num_tc;
2106 	/* Note : dev->mtu is often read without holding a lock.
2107 	 * Writers usually hold RTNL.
2108 	 * It is recommended to use READ_ONCE() to annotate the reads,
2109 	 * and to use WRITE_ONCE() to annotate the writes.
2110 	 */
2111 	unsigned int		mtu;
2112 	unsigned short		needed_headroom;
2113 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2114 #ifdef CONFIG_XPS
2115 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2116 #endif
2117 #ifdef CONFIG_NETFILTER_EGRESS
2118 	struct nf_hook_entries __rcu *nf_hooks_egress;
2119 #endif
2120 #ifdef CONFIG_NET_XGRESS
2121 	struct bpf_mprog_entry __rcu *tcx_egress;
2122 #endif
2123 	__cacheline_group_end(net_device_read_tx);
2124 
2125 	/* TXRX read-mostly hotpath */
2126 	__cacheline_group_begin(net_device_read_txrx);
2127 	union {
2128 		struct pcpu_lstats __percpu		*lstats;
2129 		struct pcpu_sw_netstats __percpu	*tstats;
2130 		struct pcpu_dstats __percpu		*dstats;
2131 	};
2132 	unsigned long		state;
2133 	unsigned int		flags;
2134 	unsigned short		hard_header_len;
2135 	netdev_features_t	features;
2136 	struct inet6_dev __rcu	*ip6_ptr;
2137 	__cacheline_group_end(net_device_read_txrx);
2138 
2139 	/* RX read-mostly hotpath */
2140 	__cacheline_group_begin(net_device_read_rx);
2141 	struct bpf_prog __rcu	*xdp_prog;
2142 	struct list_head	ptype_specific;
2143 	int			ifindex;
2144 	unsigned int		real_num_rx_queues;
2145 	struct netdev_rx_queue	*_rx;
2146 	unsigned int		gro_max_size;
2147 	unsigned int		gro_ipv4_max_size;
2148 	rx_handler_func_t __rcu	*rx_handler;
2149 	void __rcu		*rx_handler_data;
2150 	possible_net_t			nd_net;
2151 #ifdef CONFIG_NETPOLL
2152 	struct netpoll_info __rcu	*npinfo;
2153 #endif
2154 #ifdef CONFIG_NET_XGRESS
2155 	struct bpf_mprog_entry __rcu *tcx_ingress;
2156 #endif
2157 	__cacheline_group_end(net_device_read_rx);
2158 
2159 	char			name[IFNAMSIZ];
2160 	struct netdev_name_node	*name_node;
2161 	struct dev_ifalias	__rcu *ifalias;
2162 	/*
2163 	 *	I/O specific fields
2164 	 *	FIXME: Merge these and struct ifmap into one
2165 	 */
2166 	unsigned long		mem_end;
2167 	unsigned long		mem_start;
2168 	unsigned long		base_addr;
2169 
2170 	/*
2171 	 *	Some hardware also needs these fields (state,dev_list,
2172 	 *	napi_list,unreg_list,close_list) but they are not
2173 	 *	part of the usual set specified in Space.c.
2174 	 */
2175 
2176 
2177 	struct list_head	dev_list;
2178 	struct list_head	napi_list;
2179 	struct list_head	unreg_list;
2180 	struct list_head	close_list;
2181 	struct list_head	ptype_all;
2182 
2183 	struct {
2184 		struct list_head upper;
2185 		struct list_head lower;
2186 	} adj_list;
2187 
2188 	/* Read-mostly cache-line for fast-path access */
2189 	xdp_features_t		xdp_features;
2190 	const struct xdp_metadata_ops *xdp_metadata_ops;
2191 	const struct xsk_tx_metadata_ops *xsk_tx_metadata_ops;
2192 	unsigned short		gflags;
2193 
2194 	unsigned short		needed_tailroom;
2195 
2196 	netdev_features_t	hw_features;
2197 	netdev_features_t	wanted_features;
2198 	netdev_features_t	vlan_features;
2199 	netdev_features_t	hw_enc_features;
2200 	netdev_features_t	mpls_features;
2201 
2202 	unsigned int		min_mtu;
2203 	unsigned int		max_mtu;
2204 	unsigned short		type;
2205 	unsigned char		min_header_len;
2206 	unsigned char		name_assign_type;
2207 
2208 	int			group;
2209 
2210 	struct net_device_stats	stats; /* not used by modern drivers */
2211 
2212 	struct net_device_core_stats __percpu *core_stats;
2213 
2214 	/* Stats to monitor link on/off, flapping */
2215 	atomic_t		carrier_up_count;
2216 	atomic_t		carrier_down_count;
2217 
2218 #ifdef CONFIG_WIRELESS_EXT
2219 	const struct iw_handler_def *wireless_handlers;
2220 #endif
2221 	const struct ethtool_ops *ethtool_ops;
2222 #ifdef CONFIG_NET_L3_MASTER_DEV
2223 	const struct l3mdev_ops	*l3mdev_ops;
2224 #endif
2225 #if IS_ENABLED(CONFIG_IPV6)
2226 	const struct ndisc_ops *ndisc_ops;
2227 #endif
2228 
2229 #ifdef CONFIG_XFRM_OFFLOAD
2230 	const struct xfrmdev_ops *xfrmdev_ops;
2231 #endif
2232 
2233 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2234 	const struct tlsdev_ops *tlsdev_ops;
2235 #endif
2236 
2237 	unsigned int		operstate;
2238 	unsigned char		link_mode;
2239 
2240 	unsigned char		if_port;
2241 	unsigned char		dma;
2242 
2243 	/* Interface address info. */
2244 	unsigned char		perm_addr[MAX_ADDR_LEN];
2245 	unsigned char		addr_assign_type;
2246 	unsigned char		addr_len;
2247 	unsigned char		upper_level;
2248 	unsigned char		lower_level;
2249 
2250 	unsigned short		neigh_priv_len;
2251 	unsigned short          dev_id;
2252 	unsigned short          dev_port;
2253 	int			irq;
2254 	u32			priv_len;
2255 
2256 	spinlock_t		addr_list_lock;
2257 
2258 	struct netdev_hw_addr_list	uc;
2259 	struct netdev_hw_addr_list	mc;
2260 	struct netdev_hw_addr_list	dev_addrs;
2261 
2262 #ifdef CONFIG_SYSFS
2263 	struct kset		*queues_kset;
2264 #endif
2265 #ifdef CONFIG_LOCKDEP
2266 	struct list_head	unlink_list;
2267 #endif
2268 	unsigned int		promiscuity;
2269 	unsigned int		allmulti;
2270 	bool			uc_promisc;
2271 #ifdef CONFIG_LOCKDEP
2272 	unsigned char		nested_level;
2273 #endif
2274 
2275 
2276 	/* Protocol-specific pointers */
2277 	struct in_device __rcu	*ip_ptr;
2278 	/** @fib_nh_head: nexthops associated with this netdev */
2279 	struct hlist_head	fib_nh_head;
2280 
2281 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2282 	struct vlan_info __rcu	*vlan_info;
2283 #endif
2284 #if IS_ENABLED(CONFIG_NET_DSA)
2285 	struct dsa_port		*dsa_ptr;
2286 #endif
2287 #if IS_ENABLED(CONFIG_TIPC)
2288 	struct tipc_bearer __rcu *tipc_ptr;
2289 #endif
2290 #if IS_ENABLED(CONFIG_ATALK)
2291 	void 			*atalk_ptr;
2292 #endif
2293 #if IS_ENABLED(CONFIG_AX25)
2294 	struct ax25_dev	__rcu	*ax25_ptr;
2295 #endif
2296 #if IS_ENABLED(CONFIG_CFG80211)
2297 	struct wireless_dev	*ieee80211_ptr;
2298 #endif
2299 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2300 	struct wpan_dev		*ieee802154_ptr;
2301 #endif
2302 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2303 	struct mpls_dev __rcu	*mpls_ptr;
2304 #endif
2305 #if IS_ENABLED(CONFIG_MCTP)
2306 	struct mctp_dev __rcu	*mctp_ptr;
2307 #endif
2308 
2309 /*
2310  * Cache lines mostly used on receive path (including eth_type_trans())
2311  */
2312 	/* Interface address info used in eth_type_trans() */
2313 	const unsigned char	*dev_addr;
2314 
2315 	unsigned int		num_rx_queues;
2316 #define GRO_LEGACY_MAX_SIZE	65536u
2317 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2318  * and shinfo->gso_segs is a 16bit field.
2319  */
2320 #define GRO_MAX_SIZE		(8 * 65535u)
2321 	unsigned int		xdp_zc_max_segs;
2322 	struct netdev_queue __rcu *ingress_queue;
2323 #ifdef CONFIG_NETFILTER_INGRESS
2324 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2325 #endif
2326 
2327 	unsigned char		broadcast[MAX_ADDR_LEN];
2328 #ifdef CONFIG_RFS_ACCEL
2329 	struct cpu_rmap		*rx_cpu_rmap;
2330 #endif
2331 	struct hlist_node	index_hlist;
2332 
2333 /*
2334  * Cache lines mostly used on transmit path
2335  */
2336 	unsigned int		num_tx_queues;
2337 	struct Qdisc __rcu	*qdisc;
2338 	unsigned int		tx_queue_len;
2339 	spinlock_t		tx_global_lock;
2340 
2341 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2342 
2343 #ifdef CONFIG_NET_SCHED
2344 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2345 #endif
2346 	/* These may be needed for future network-power-down code. */
2347 	struct timer_list	watchdog_timer;
2348 	int			watchdog_timeo;
2349 
2350 	u32                     proto_down_reason;
2351 
2352 	struct list_head	todo_list;
2353 
2354 #ifdef CONFIG_PCPU_DEV_REFCNT
2355 	int __percpu		*pcpu_refcnt;
2356 #else
2357 	refcount_t		dev_refcnt;
2358 #endif
2359 	struct ref_tracker_dir	refcnt_tracker;
2360 
2361 	struct list_head	link_watch_list;
2362 
2363 	u8 reg_state;
2364 
2365 	bool dismantle;
2366 
2367 	/** @moving_ns: device is changing netns, protected by @lock */
2368 	bool moving_ns;
2369 	/** @rtnl_link_initializing: Device being created, suppress events */
2370 	bool rtnl_link_initializing;
2371 
2372 	bool needs_free_netdev;
2373 	void (*priv_destructor)(struct net_device *dev);
2374 
2375 	/* mid-layer private */
2376 	void				*ml_priv;
2377 	enum netdev_ml_priv_type	ml_priv_type;
2378 
2379 	enum netdev_stat_type		pcpu_stat_type:8;
2380 
2381 #if IS_ENABLED(CONFIG_GARP)
2382 	struct garp_port __rcu	*garp_port;
2383 #endif
2384 #if IS_ENABLED(CONFIG_MRP)
2385 	struct mrp_port __rcu	*mrp_port;
2386 #endif
2387 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2388 	struct dm_hw_stat_delta __rcu *dm_private;
2389 #endif
2390 	struct device		dev;
2391 	const struct attribute_group *sysfs_groups[4];
2392 	const struct attribute_group *sysfs_rx_queue_group;
2393 
2394 	const struct rtnl_link_ops *rtnl_link_ops;
2395 
2396 	const struct netdev_stat_ops *stat_ops;
2397 
2398 	const struct netdev_queue_mgmt_ops *queue_mgmt_ops;
2399 
2400 	/* for setting kernel sock attribute on TCP connection setup */
2401 #define GSO_MAX_SEGS		65535u
2402 #define GSO_LEGACY_MAX_SIZE	65536u
2403 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2404  * and shinfo->gso_segs is a 16bit field.
2405  */
2406 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2407 
2408 #define TSO_LEGACY_MAX_SIZE	65536
2409 #define TSO_MAX_SIZE		UINT_MAX
2410 	unsigned int		tso_max_size;
2411 #define TSO_MAX_SEGS		U16_MAX
2412 	u16			tso_max_segs;
2413 
2414 #ifdef CONFIG_DCB
2415 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2416 #endif
2417 	u8			prio_tc_map[TC_BITMASK + 1];
2418 
2419 #if IS_ENABLED(CONFIG_FCOE)
2420 	unsigned int		fcoe_ddp_xid;
2421 #endif
2422 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2423 	struct netprio_map __rcu *priomap;
2424 #endif
2425 	struct phy_link_topology	*link_topo;
2426 	struct phy_device	*phydev;
2427 	struct sfp_bus		*sfp_bus;
2428 	struct lock_class_key	*qdisc_tx_busylock;
2429 	bool			proto_down;
2430 	bool			threaded;
2431 	bool			irq_affinity_auto;
2432 	bool			rx_cpu_rmap_auto;
2433 
2434 	/* priv_flags_slow, ungrouped to save space */
2435 	unsigned long		see_all_hwtstamp_requests:1;
2436 	unsigned long		change_proto_down:1;
2437 	unsigned long		netns_immutable:1;
2438 	unsigned long		fcoe_mtu:1;
2439 
2440 	struct list_head	net_notifier_list;
2441 
2442 #if IS_ENABLED(CONFIG_MACSEC)
2443 	/* MACsec management functions */
2444 	const struct macsec_ops *macsec_ops;
2445 #endif
2446 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2447 	struct udp_tunnel_nic	*udp_tunnel_nic;
2448 
2449 	/** @cfg: net_device queue-related configuration */
2450 	struct netdev_config	*cfg;
2451 	/**
2452 	 * @cfg_pending: same as @cfg but when device is being actively
2453 	 *	reconfigured includes any changes to the configuration
2454 	 *	requested by the user, but which may or may not be rejected.
2455 	 */
2456 	struct netdev_config	*cfg_pending;
2457 	struct ethtool_netdev_state *ethtool;
2458 
2459 	/* protected by rtnl_lock */
2460 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2461 
2462 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2463 	netdevice_tracker	linkwatch_dev_tracker;
2464 	netdevice_tracker	watchdog_dev_tracker;
2465 	netdevice_tracker	dev_registered_tracker;
2466 	struct rtnl_hw_stats64	*offload_xstats_l3;
2467 
2468 	struct devlink_port	*devlink_port;
2469 
2470 #if IS_ENABLED(CONFIG_DPLL)
2471 	struct dpll_pin	__rcu	*dpll_pin;
2472 #endif
2473 #if IS_ENABLED(CONFIG_PAGE_POOL)
2474 	/** @page_pools: page pools created for this netdevice */
2475 	struct hlist_head	page_pools;
2476 #endif
2477 
2478 	/** @irq_moder: dim parameters used if IS_ENABLED(CONFIG_DIMLIB). */
2479 	struct dim_irq_moder	*irq_moder;
2480 
2481 	u64			max_pacing_offload_horizon;
2482 	struct napi_config	*napi_config;
2483 	unsigned long		gro_flush_timeout;
2484 	u32			napi_defer_hard_irqs;
2485 
2486 	/**
2487 	 * @up: copy of @state's IFF_UP, but safe to read with just @lock.
2488 	 *	May report false negatives while the device is being opened
2489 	 *	or closed (@lock does not protect .ndo_open, or .ndo_close).
2490 	 */
2491 	bool			up;
2492 
2493 	/**
2494 	 * @request_ops_lock: request the core to run all @netdev_ops and
2495 	 * @ethtool_ops under the @lock.
2496 	 */
2497 	bool			request_ops_lock;
2498 
2499 	/**
2500 	 * @lock: netdev-scope lock, protects a small selection of fields.
2501 	 * Should always be taken using netdev_lock() / netdev_unlock() helpers.
2502 	 * Drivers are free to use it for other protection.
2503 	 *
2504 	 * For the drivers that implement shaper or queue API, the scope
2505 	 * of this lock is expanded to cover most ndo/queue/ethtool/sysfs
2506 	 * operations. Drivers may opt-in to this behavior by setting
2507 	 * @request_ops_lock.
2508 	 *
2509 	 * @lock protection mixes with rtnl_lock in multiple ways, fields are
2510 	 * either:
2511 	 *
2512 	 * - simply protected by the instance @lock;
2513 	 *
2514 	 * - double protected - writers hold both locks, readers hold either;
2515 	 *
2516 	 * - ops protected - protected by the lock held around the NDOs
2517 	 *   and other callbacks, that is the instance lock on devices for
2518 	 *   which netdev_need_ops_lock() returns true, otherwise by rtnl_lock;
2519 	 *
2520 	 * - double ops protected - always protected by rtnl_lock but for
2521 	 *   devices for which netdev_need_ops_lock() returns true - also
2522 	 *   the instance lock.
2523 	 *
2524 	 * Simply protects:
2525 	 *	@gro_flush_timeout, @napi_defer_hard_irqs, @napi_list,
2526 	 *	@net_shaper_hierarchy, @reg_state, @threaded
2527 	 *
2528 	 * Double protects:
2529 	 *	@up, @moving_ns, @nd_net, @xdp_features
2530 	 *
2531 	 * Double ops protects:
2532 	 *	@real_num_rx_queues, @real_num_tx_queues
2533 	 *
2534 	 * Also protects some fields in:
2535 	 *	struct napi_struct, struct netdev_queue, struct netdev_rx_queue
2536 	 *
2537 	 * Ordering: take after rtnl_lock.
2538 	 */
2539 	struct mutex		lock;
2540 
2541 #if IS_ENABLED(CONFIG_NET_SHAPER)
2542 	/**
2543 	 * @net_shaper_hierarchy: data tracking the current shaper status
2544 	 *  see include/net/net_shapers.h
2545 	 */
2546 	struct net_shaper_hierarchy *net_shaper_hierarchy;
2547 #endif
2548 
2549 	struct hlist_head neighbours[NEIGH_NR_TABLES];
2550 
2551 	struct hwtstamp_provider __rcu	*hwprov;
2552 
2553 	u8			priv[] ____cacheline_aligned
2554 				       __counted_by(priv_len);
2555 } ____cacheline_aligned;
2556 #define to_net_dev(d) container_of(d, struct net_device, dev)
2557 
2558 /*
2559  * Driver should use this to assign devlink port instance to a netdevice
2560  * before it registers the netdevice. Therefore devlink_port is static
2561  * during the netdev lifetime after it is registered.
2562  */
2563 #define SET_NETDEV_DEVLINK_PORT(dev, port)			\
2564 ({								\
2565 	WARN_ON((dev)->reg_state != NETREG_UNINITIALIZED);	\
2566 	((dev)->devlink_port = (port));				\
2567 })
2568 
netif_elide_gro(const struct net_device * dev)2569 static inline bool netif_elide_gro(const struct net_device *dev)
2570 {
2571 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2572 		return true;
2573 	return false;
2574 }
2575 
2576 #define	NETDEV_ALIGN		32
2577 
2578 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2579 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2580 {
2581 	return dev->prio_tc_map[prio & TC_BITMASK];
2582 }
2583 
2584 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2585 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2586 {
2587 	if (tc >= dev->num_tc)
2588 		return -EINVAL;
2589 
2590 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2591 	return 0;
2592 }
2593 
2594 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2595 void netdev_reset_tc(struct net_device *dev);
2596 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2597 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2598 
2599 static inline
netdev_get_num_tc(struct net_device * dev)2600 int netdev_get_num_tc(struct net_device *dev)
2601 {
2602 	return dev->num_tc;
2603 }
2604 
net_prefetch(void * p)2605 static inline void net_prefetch(void *p)
2606 {
2607 	prefetch(p);
2608 #if L1_CACHE_BYTES < 128
2609 	prefetch((u8 *)p + L1_CACHE_BYTES);
2610 #endif
2611 }
2612 
net_prefetchw(void * p)2613 static inline void net_prefetchw(void *p)
2614 {
2615 	prefetchw(p);
2616 #if L1_CACHE_BYTES < 128
2617 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2618 #endif
2619 }
2620 
2621 void netdev_unbind_sb_channel(struct net_device *dev,
2622 			      struct net_device *sb_dev);
2623 int netdev_bind_sb_channel_queue(struct net_device *dev,
2624 				 struct net_device *sb_dev,
2625 				 u8 tc, u16 count, u16 offset);
2626 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2627 static inline int netdev_get_sb_channel(struct net_device *dev)
2628 {
2629 	return max_t(int, -dev->num_tc, 0);
2630 }
2631 
2632 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2633 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2634 					 unsigned int index)
2635 {
2636 	DEBUG_NET_WARN_ON_ONCE(index >= dev->num_tx_queues);
2637 	return &dev->_tx[index];
2638 }
2639 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2640 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2641 						    const struct sk_buff *skb)
2642 {
2643 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2644 }
2645 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2646 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2647 					    void (*f)(struct net_device *,
2648 						      struct netdev_queue *,
2649 						      void *),
2650 					    void *arg)
2651 {
2652 	unsigned int i;
2653 
2654 	for (i = 0; i < dev->num_tx_queues; i++)
2655 		f(dev, &dev->_tx[i], arg);
2656 }
2657 
2658 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2659 		     struct net_device *sb_dev);
2660 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2661 					 struct sk_buff *skb,
2662 					 struct net_device *sb_dev);
2663 
2664 /* returns the headroom that the master device needs to take in account
2665  * when forwarding to this dev
2666  */
netdev_get_fwd_headroom(struct net_device * dev)2667 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2668 {
2669 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2670 }
2671 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2672 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2673 {
2674 	if (dev->netdev_ops->ndo_set_rx_headroom)
2675 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2676 }
2677 
2678 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2679 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2680 {
2681 	netdev_set_rx_headroom(dev, -1);
2682 }
2683 
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2684 static inline void *netdev_get_ml_priv(struct net_device *dev,
2685 				       enum netdev_ml_priv_type type)
2686 {
2687 	if (dev->ml_priv_type != type)
2688 		return NULL;
2689 
2690 	return dev->ml_priv;
2691 }
2692 
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2693 static inline void netdev_set_ml_priv(struct net_device *dev,
2694 				      void *ml_priv,
2695 				      enum netdev_ml_priv_type type)
2696 {
2697 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2698 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2699 	     dev->ml_priv_type, type);
2700 	WARN(!dev->ml_priv_type && dev->ml_priv,
2701 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2702 
2703 	dev->ml_priv = ml_priv;
2704 	dev->ml_priv_type = type;
2705 }
2706 
2707 /*
2708  * Net namespace inlines
2709  */
2710 static inline
dev_net(const struct net_device * dev)2711 struct net *dev_net(const struct net_device *dev)
2712 {
2713 	return read_pnet(&dev->nd_net);
2714 }
2715 
2716 static inline
dev_net_rcu(const struct net_device * dev)2717 struct net *dev_net_rcu(const struct net_device *dev)
2718 {
2719 	return read_pnet_rcu(&dev->nd_net);
2720 }
2721 
2722 static inline
dev_net_set(struct net_device * dev,struct net * net)2723 void dev_net_set(struct net_device *dev, struct net *net)
2724 {
2725 	write_pnet(&dev->nd_net, net);
2726 }
2727 
2728 /**
2729  *	netdev_priv - access network device private data
2730  *	@dev: network device
2731  *
2732  * Get network device private data
2733  */
netdev_priv(const struct net_device * dev)2734 static inline void *netdev_priv(const struct net_device *dev)
2735 {
2736 	return (void *)dev->priv;
2737 }
2738 
2739 /* Set the sysfs physical device reference for the network logical device
2740  * if set prior to registration will cause a symlink during initialization.
2741  */
2742 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2743 
2744 /* Set the sysfs device type for the network logical device to allow
2745  * fine-grained identification of different network device types. For
2746  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2747  */
2748 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2749 
2750 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
2751 			  enum netdev_queue_type type,
2752 			  struct napi_struct *napi);
2753 
netdev_lock(struct net_device * dev)2754 static inline void netdev_lock(struct net_device *dev)
2755 {
2756 	mutex_lock(&dev->lock);
2757 }
2758 
netdev_unlock(struct net_device * dev)2759 static inline void netdev_unlock(struct net_device *dev)
2760 {
2761 	mutex_unlock(&dev->lock);
2762 }
2763 /* Additional netdev_lock()-related helpers are in net/netdev_lock.h */
2764 
2765 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq);
2766 
netif_napi_set_irq(struct napi_struct * napi,int irq)2767 static inline void netif_napi_set_irq(struct napi_struct *napi, int irq)
2768 {
2769 	netdev_lock(napi->dev);
2770 	netif_napi_set_irq_locked(napi, irq);
2771 	netdev_unlock(napi->dev);
2772 }
2773 
2774 /* Default NAPI poll() weight
2775  * Device drivers are strongly advised to not use bigger value
2776  */
2777 #define NAPI_POLL_WEIGHT 64
2778 
2779 void netif_napi_add_weight_locked(struct net_device *dev,
2780 				  struct napi_struct *napi,
2781 				  int (*poll)(struct napi_struct *, int),
2782 				  int weight);
2783 
2784 static inline void
netif_napi_add_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2785 netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2786 		      int (*poll)(struct napi_struct *, int), int weight)
2787 {
2788 	netdev_lock(dev);
2789 	netif_napi_add_weight_locked(dev, napi, poll, weight);
2790 	netdev_unlock(dev);
2791 }
2792 
2793 /**
2794  * netif_napi_add() - initialize a NAPI context
2795  * @dev:  network device
2796  * @napi: NAPI context
2797  * @poll: polling function
2798  *
2799  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2800  * *any* of the other NAPI-related functions.
2801  */
2802 static inline void
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2803 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2804 	       int (*poll)(struct napi_struct *, int))
2805 {
2806 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2807 }
2808 
2809 static inline void
netif_napi_add_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2810 netif_napi_add_locked(struct net_device *dev, struct napi_struct *napi,
2811 		      int (*poll)(struct napi_struct *, int))
2812 {
2813 	netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT);
2814 }
2815 
2816 static inline void
netif_napi_add_tx_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2817 netif_napi_add_tx_weight(struct net_device *dev,
2818 			 struct napi_struct *napi,
2819 			 int (*poll)(struct napi_struct *, int),
2820 			 int weight)
2821 {
2822 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2823 	netif_napi_add_weight(dev, napi, poll, weight);
2824 }
2825 
2826 static inline void
netif_napi_add_config_locked(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int index)2827 netif_napi_add_config_locked(struct net_device *dev, struct napi_struct *napi,
2828 			     int (*poll)(struct napi_struct *, int), int index)
2829 {
2830 	napi->index = index;
2831 	napi->config = &dev->napi_config[index];
2832 	netif_napi_add_weight_locked(dev, napi, poll, NAPI_POLL_WEIGHT);
2833 }
2834 
2835 /**
2836  * netif_napi_add_config - initialize a NAPI context with persistent config
2837  * @dev: network device
2838  * @napi: NAPI context
2839  * @poll: polling function
2840  * @index: the NAPI index
2841  */
2842 static inline void
netif_napi_add_config(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int index)2843 netif_napi_add_config(struct net_device *dev, struct napi_struct *napi,
2844 		      int (*poll)(struct napi_struct *, int), int index)
2845 {
2846 	netdev_lock(dev);
2847 	netif_napi_add_config_locked(dev, napi, poll, index);
2848 	netdev_unlock(dev);
2849 }
2850 
2851 /**
2852  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2853  * @dev:  network device
2854  * @napi: NAPI context
2855  * @poll: polling function
2856  *
2857  * This variant of netif_napi_add() should be used from drivers using NAPI
2858  * to exclusively poll a TX queue.
2859  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2860  */
netif_napi_add_tx(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2861 static inline void netif_napi_add_tx(struct net_device *dev,
2862 				     struct napi_struct *napi,
2863 				     int (*poll)(struct napi_struct *, int))
2864 {
2865 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2866 }
2867 
2868 void __netif_napi_del_locked(struct napi_struct *napi);
2869 
2870 /**
2871  *  __netif_napi_del - remove a NAPI context
2872  *  @napi: NAPI context
2873  *
2874  * Warning: caller must observe RCU grace period before freeing memory
2875  * containing @napi. Drivers might want to call this helper to combine
2876  * all the needed RCU grace periods into a single one.
2877  */
__netif_napi_del(struct napi_struct * napi)2878 static inline void __netif_napi_del(struct napi_struct *napi)
2879 {
2880 	netdev_lock(napi->dev);
2881 	__netif_napi_del_locked(napi);
2882 	netdev_unlock(napi->dev);
2883 }
2884 
netif_napi_del_locked(struct napi_struct * napi)2885 static inline void netif_napi_del_locked(struct napi_struct *napi)
2886 {
2887 	__netif_napi_del_locked(napi);
2888 	synchronize_net();
2889 }
2890 
2891 /**
2892  *  netif_napi_del - remove a NAPI context
2893  *  @napi: NAPI context
2894  *
2895  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2896  */
netif_napi_del(struct napi_struct * napi)2897 static inline void netif_napi_del(struct napi_struct *napi)
2898 {
2899 	__netif_napi_del(napi);
2900 	synchronize_net();
2901 }
2902 
2903 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs);
2904 void netif_set_affinity_auto(struct net_device *dev);
2905 
2906 struct packet_type {
2907 	__be16			type;	/* This is really htons(ether_type). */
2908 	bool			ignore_outgoing;
2909 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2910 	netdevice_tracker	dev_tracker;
2911 	int			(*func) (struct sk_buff *,
2912 					 struct net_device *,
2913 					 struct packet_type *,
2914 					 struct net_device *);
2915 	void			(*list_func) (struct list_head *,
2916 					      struct packet_type *,
2917 					      struct net_device *);
2918 	bool			(*id_match)(struct packet_type *ptype,
2919 					    struct sock *sk);
2920 	struct net		*af_packet_net;
2921 	void			*af_packet_priv;
2922 	struct list_head	list;
2923 };
2924 
2925 struct offload_callbacks {
2926 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2927 						netdev_features_t features);
2928 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2929 						struct sk_buff *skb);
2930 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2931 };
2932 
2933 struct packet_offload {
2934 	__be16			 type;	/* This is really htons(ether_type). */
2935 	u16			 priority;
2936 	struct offload_callbacks callbacks;
2937 	struct list_head	 list;
2938 };
2939 
2940 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2941 struct pcpu_sw_netstats {
2942 	u64_stats_t		rx_packets;
2943 	u64_stats_t		rx_bytes;
2944 	u64_stats_t		tx_packets;
2945 	u64_stats_t		tx_bytes;
2946 	struct u64_stats_sync   syncp;
2947 } __aligned(4 * sizeof(u64));
2948 
2949 struct pcpu_dstats {
2950 	u64_stats_t		rx_packets;
2951 	u64_stats_t		rx_bytes;
2952 	u64_stats_t		tx_packets;
2953 	u64_stats_t		tx_bytes;
2954 	u64_stats_t		rx_drops;
2955 	u64_stats_t		tx_drops;
2956 	struct u64_stats_sync	syncp;
2957 } __aligned(8 * sizeof(u64));
2958 
2959 struct pcpu_lstats {
2960 	u64_stats_t packets;
2961 	u64_stats_t bytes;
2962 	struct u64_stats_sync syncp;
2963 } __aligned(2 * sizeof(u64));
2964 
2965 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2966 
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2967 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2968 {
2969 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2970 
2971 	u64_stats_update_begin(&tstats->syncp);
2972 	u64_stats_add(&tstats->rx_bytes, len);
2973 	u64_stats_inc(&tstats->rx_packets);
2974 	u64_stats_update_end(&tstats->syncp);
2975 }
2976 
dev_sw_netstats_tx_add(struct net_device * dev,unsigned int packets,unsigned int len)2977 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2978 					  unsigned int packets,
2979 					  unsigned int len)
2980 {
2981 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2982 
2983 	u64_stats_update_begin(&tstats->syncp);
2984 	u64_stats_add(&tstats->tx_bytes, len);
2985 	u64_stats_add(&tstats->tx_packets, packets);
2986 	u64_stats_update_end(&tstats->syncp);
2987 }
2988 
dev_lstats_add(struct net_device * dev,unsigned int len)2989 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2990 {
2991 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2992 
2993 	u64_stats_update_begin(&lstats->syncp);
2994 	u64_stats_add(&lstats->bytes, len);
2995 	u64_stats_inc(&lstats->packets);
2996 	u64_stats_update_end(&lstats->syncp);
2997 }
2998 
dev_dstats_rx_add(struct net_device * dev,unsigned int len)2999 static inline void dev_dstats_rx_add(struct net_device *dev,
3000 				     unsigned int len)
3001 {
3002 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3003 
3004 	u64_stats_update_begin(&dstats->syncp);
3005 	u64_stats_inc(&dstats->rx_packets);
3006 	u64_stats_add(&dstats->rx_bytes, len);
3007 	u64_stats_update_end(&dstats->syncp);
3008 }
3009 
dev_dstats_rx_dropped(struct net_device * dev)3010 static inline void dev_dstats_rx_dropped(struct net_device *dev)
3011 {
3012 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3013 
3014 	u64_stats_update_begin(&dstats->syncp);
3015 	u64_stats_inc(&dstats->rx_drops);
3016 	u64_stats_update_end(&dstats->syncp);
3017 }
3018 
dev_dstats_tx_add(struct net_device * dev,unsigned int len)3019 static inline void dev_dstats_tx_add(struct net_device *dev,
3020 				     unsigned int len)
3021 {
3022 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3023 
3024 	u64_stats_update_begin(&dstats->syncp);
3025 	u64_stats_inc(&dstats->tx_packets);
3026 	u64_stats_add(&dstats->tx_bytes, len);
3027 	u64_stats_update_end(&dstats->syncp);
3028 }
3029 
dev_dstats_tx_dropped(struct net_device * dev)3030 static inline void dev_dstats_tx_dropped(struct net_device *dev)
3031 {
3032 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
3033 
3034 	u64_stats_update_begin(&dstats->syncp);
3035 	u64_stats_inc(&dstats->tx_drops);
3036 	u64_stats_update_end(&dstats->syncp);
3037 }
3038 
3039 #define __netdev_alloc_pcpu_stats(type, gfp)				\
3040 ({									\
3041 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
3042 	if (pcpu_stats)	{						\
3043 		int __cpu;						\
3044 		for_each_possible_cpu(__cpu) {				\
3045 			typeof(type) *stat;				\
3046 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
3047 			u64_stats_init(&stat->syncp);			\
3048 		}							\
3049 	}								\
3050 	pcpu_stats;							\
3051 })
3052 
3053 #define netdev_alloc_pcpu_stats(type)					\
3054 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
3055 
3056 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
3057 ({									\
3058 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
3059 	if (pcpu_stats) {						\
3060 		int __cpu;						\
3061 		for_each_possible_cpu(__cpu) {				\
3062 			typeof(type) *stat;				\
3063 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
3064 			u64_stats_init(&stat->syncp);			\
3065 		}							\
3066 	}								\
3067 	pcpu_stats;							\
3068 })
3069 
3070 enum netdev_lag_tx_type {
3071 	NETDEV_LAG_TX_TYPE_UNKNOWN,
3072 	NETDEV_LAG_TX_TYPE_RANDOM,
3073 	NETDEV_LAG_TX_TYPE_BROADCAST,
3074 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
3075 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
3076 	NETDEV_LAG_TX_TYPE_HASH,
3077 };
3078 
3079 enum netdev_lag_hash {
3080 	NETDEV_LAG_HASH_NONE,
3081 	NETDEV_LAG_HASH_L2,
3082 	NETDEV_LAG_HASH_L34,
3083 	NETDEV_LAG_HASH_L23,
3084 	NETDEV_LAG_HASH_E23,
3085 	NETDEV_LAG_HASH_E34,
3086 	NETDEV_LAG_HASH_VLAN_SRCMAC,
3087 	NETDEV_LAG_HASH_UNKNOWN,
3088 };
3089 
3090 struct netdev_lag_upper_info {
3091 	enum netdev_lag_tx_type tx_type;
3092 	enum netdev_lag_hash hash_type;
3093 };
3094 
3095 struct netdev_lag_lower_state_info {
3096 	u8 link_up : 1,
3097 	   tx_enabled : 1;
3098 };
3099 
3100 #include <linux/notifier.h>
3101 
3102 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
3103  * and the rtnetlink notification exclusion list in rtnetlink_event() when
3104  * adding new types.
3105  */
3106 enum netdev_cmd {
3107 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
3108 	NETDEV_DOWN,
3109 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
3110 				   detected a hardware crash and restarted
3111 				   - we can use this eg to kick tcp sessions
3112 				   once done */
3113 	NETDEV_CHANGE,		/* Notify device state change */
3114 	NETDEV_REGISTER,
3115 	NETDEV_UNREGISTER,
3116 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
3117 	NETDEV_CHANGEADDR,	/* notify after the address change */
3118 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
3119 	NETDEV_GOING_DOWN,
3120 	NETDEV_CHANGENAME,
3121 	NETDEV_FEAT_CHANGE,
3122 	NETDEV_BONDING_FAILOVER,
3123 	NETDEV_PRE_UP,
3124 	NETDEV_PRE_TYPE_CHANGE,
3125 	NETDEV_POST_TYPE_CHANGE,
3126 	NETDEV_POST_INIT,
3127 	NETDEV_PRE_UNINIT,
3128 	NETDEV_RELEASE,
3129 	NETDEV_NOTIFY_PEERS,
3130 	NETDEV_JOIN,
3131 	NETDEV_CHANGEUPPER,
3132 	NETDEV_RESEND_IGMP,
3133 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
3134 	NETDEV_CHANGEINFODATA,
3135 	NETDEV_BONDING_INFO,
3136 	NETDEV_PRECHANGEUPPER,
3137 	NETDEV_CHANGELOWERSTATE,
3138 	NETDEV_UDP_TUNNEL_PUSH_INFO,
3139 	NETDEV_UDP_TUNNEL_DROP_INFO,
3140 	NETDEV_CHANGE_TX_QUEUE_LEN,
3141 	NETDEV_CVLAN_FILTER_PUSH_INFO,
3142 	NETDEV_CVLAN_FILTER_DROP_INFO,
3143 	NETDEV_SVLAN_FILTER_PUSH_INFO,
3144 	NETDEV_SVLAN_FILTER_DROP_INFO,
3145 	NETDEV_OFFLOAD_XSTATS_ENABLE,
3146 	NETDEV_OFFLOAD_XSTATS_DISABLE,
3147 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
3148 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
3149 	NETDEV_XDP_FEAT_CHANGE,
3150 };
3151 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
3152 
3153 int register_netdevice_notifier(struct notifier_block *nb);
3154 int unregister_netdevice_notifier(struct notifier_block *nb);
3155 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
3156 int unregister_netdevice_notifier_net(struct net *net,
3157 				      struct notifier_block *nb);
3158 int register_netdevice_notifier_dev_net(struct net_device *dev,
3159 					struct notifier_block *nb,
3160 					struct netdev_net_notifier *nn);
3161 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
3162 					  struct notifier_block *nb,
3163 					  struct netdev_net_notifier *nn);
3164 
3165 struct netdev_notifier_info {
3166 	struct net_device	*dev;
3167 	struct netlink_ext_ack	*extack;
3168 };
3169 
3170 struct netdev_notifier_info_ext {
3171 	struct netdev_notifier_info info; /* must be first */
3172 	union {
3173 		u32 mtu;
3174 	} ext;
3175 };
3176 
3177 struct netdev_notifier_change_info {
3178 	struct netdev_notifier_info info; /* must be first */
3179 	unsigned int flags_changed;
3180 };
3181 
3182 struct netdev_notifier_changeupper_info {
3183 	struct netdev_notifier_info info; /* must be first */
3184 	struct net_device *upper_dev; /* new upper dev */
3185 	bool master; /* is upper dev master */
3186 	bool linking; /* is the notification for link or unlink */
3187 	void *upper_info; /* upper dev info */
3188 };
3189 
3190 struct netdev_notifier_changelowerstate_info {
3191 	struct netdev_notifier_info info; /* must be first */
3192 	void *lower_state_info; /* is lower dev state */
3193 };
3194 
3195 struct netdev_notifier_pre_changeaddr_info {
3196 	struct netdev_notifier_info info; /* must be first */
3197 	const unsigned char *dev_addr;
3198 };
3199 
3200 enum netdev_offload_xstats_type {
3201 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
3202 };
3203 
3204 struct netdev_notifier_offload_xstats_info {
3205 	struct netdev_notifier_info info; /* must be first */
3206 	enum netdev_offload_xstats_type type;
3207 
3208 	union {
3209 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
3210 		struct netdev_notifier_offload_xstats_rd *report_delta;
3211 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
3212 		struct netdev_notifier_offload_xstats_ru *report_used;
3213 	};
3214 };
3215 
3216 int netdev_offload_xstats_enable(struct net_device *dev,
3217 				 enum netdev_offload_xstats_type type,
3218 				 struct netlink_ext_ack *extack);
3219 int netdev_offload_xstats_disable(struct net_device *dev,
3220 				  enum netdev_offload_xstats_type type);
3221 bool netdev_offload_xstats_enabled(const struct net_device *dev,
3222 				   enum netdev_offload_xstats_type type);
3223 int netdev_offload_xstats_get(struct net_device *dev,
3224 			      enum netdev_offload_xstats_type type,
3225 			      struct rtnl_hw_stats64 *stats, bool *used,
3226 			      struct netlink_ext_ack *extack);
3227 void
3228 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
3229 				   const struct rtnl_hw_stats64 *stats);
3230 void
3231 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
3232 void netdev_offload_xstats_push_delta(struct net_device *dev,
3233 				      enum netdev_offload_xstats_type type,
3234 				      const struct rtnl_hw_stats64 *stats);
3235 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)3236 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
3237 					     struct net_device *dev)
3238 {
3239 	info->dev = dev;
3240 	info->extack = NULL;
3241 }
3242 
3243 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)3244 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
3245 {
3246 	return info->dev;
3247 }
3248 
3249 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)3250 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
3251 {
3252 	return info->extack;
3253 }
3254 
3255 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
3256 int call_netdevice_notifiers_info(unsigned long val,
3257 				  struct netdev_notifier_info *info);
3258 
3259 #define for_each_netdev(net, d)		\
3260 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
3261 #define for_each_netdev_reverse(net, d)	\
3262 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
3263 #define for_each_netdev_rcu(net, d)		\
3264 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
3265 #define for_each_netdev_safe(net, d, n)	\
3266 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
3267 #define for_each_netdev_continue(net, d)		\
3268 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
3269 #define for_each_netdev_continue_reverse(net, d)		\
3270 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
3271 						     dev_list)
3272 #define for_each_netdev_continue_rcu(net, d)		\
3273 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
3274 #define for_each_netdev_in_bond_rcu(bond, slave)	\
3275 		for_each_netdev_rcu(dev_net_rcu(bond), slave)	\
3276 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
3277 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
3278 
3279 #define for_each_netdev_dump(net, d, ifindex)				\
3280 	for (; (d = xa_find(&(net)->dev_by_index, &ifindex,		\
3281 			    ULONG_MAX, XA_PRESENT)); ifindex++)
3282 
next_net_device(struct net_device * dev)3283 static inline struct net_device *next_net_device(struct net_device *dev)
3284 {
3285 	struct list_head *lh;
3286 	struct net *net;
3287 
3288 	net = dev_net(dev);
3289 	lh = dev->dev_list.next;
3290 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3291 }
3292 
next_net_device_rcu(struct net_device * dev)3293 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
3294 {
3295 	struct list_head *lh;
3296 	struct net *net;
3297 
3298 	net = dev_net(dev);
3299 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
3300 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3301 }
3302 
first_net_device(struct net * net)3303 static inline struct net_device *first_net_device(struct net *net)
3304 {
3305 	return list_empty(&net->dev_base_head) ? NULL :
3306 		net_device_entry(net->dev_base_head.next);
3307 }
3308 
first_net_device_rcu(struct net * net)3309 static inline struct net_device *first_net_device_rcu(struct net *net)
3310 {
3311 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
3312 
3313 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
3314 }
3315 
3316 int netdev_boot_setup_check(struct net_device *dev);
3317 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
3318 				   const char *hwaddr);
3319 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
3320 				       const char *hwaddr);
3321 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
3322 void dev_add_pack(struct packet_type *pt);
3323 void dev_remove_pack(struct packet_type *pt);
3324 void __dev_remove_pack(struct packet_type *pt);
3325 void dev_add_offload(struct packet_offload *po);
3326 void dev_remove_offload(struct packet_offload *po);
3327 
3328 int dev_get_iflink(const struct net_device *dev);
3329 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
3330 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
3331 			  struct net_device_path_stack *stack);
3332 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
3333 				      unsigned short mask);
3334 struct net_device *dev_get_by_name(struct net *net, const char *name);
3335 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
3336 struct net_device *__dev_get_by_name(struct net *net, const char *name);
3337 bool netdev_name_in_use(struct net *net, const char *name);
3338 int dev_alloc_name(struct net_device *dev, const char *name);
3339 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack);
3340 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3341 void netif_close(struct net_device *dev);
3342 void dev_close(struct net_device *dev);
3343 void dev_close_many(struct list_head *head, bool unlink);
3344 void netif_disable_lro(struct net_device *dev);
3345 void dev_disable_lro(struct net_device *dev);
3346 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3347 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3348 		     struct net_device *sb_dev);
3349 
3350 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3351 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3352 
dev_queue_xmit(struct sk_buff * skb)3353 static inline int dev_queue_xmit(struct sk_buff *skb)
3354 {
3355 	return __dev_queue_xmit(skb, NULL);
3356 }
3357 
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3358 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3359 				       struct net_device *sb_dev)
3360 {
3361 	return __dev_queue_xmit(skb, sb_dev);
3362 }
3363 
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3364 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3365 {
3366 	int ret;
3367 
3368 	ret = __dev_direct_xmit(skb, queue_id);
3369 	if (!dev_xmit_complete(ret))
3370 		kfree_skb(skb);
3371 	return ret;
3372 }
3373 
3374 int register_netdevice(struct net_device *dev);
3375 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3376 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)3377 static inline void unregister_netdevice(struct net_device *dev)
3378 {
3379 	unregister_netdevice_queue(dev, NULL);
3380 }
3381 
3382 int netdev_refcnt_read(const struct net_device *dev);
3383 void free_netdev(struct net_device *dev);
3384 
3385 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3386 					 struct sk_buff *skb,
3387 					 bool all_slaves);
3388 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3389 					    struct sock *sk);
3390 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3391 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3392 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
3393 				       netdevice_tracker *tracker, gfp_t gfp);
3394 struct net_device *netdev_get_by_name(struct net *net, const char *name,
3395 				      netdevice_tracker *tracker, gfp_t gfp);
3396 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3397 void netdev_copy_name(struct net_device *dev, char *name);
3398 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3399 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3400 				  unsigned short type,
3401 				  const void *daddr, const void *saddr,
3402 				  unsigned int len)
3403 {
3404 	if (!dev->header_ops || !dev->header_ops->create)
3405 		return 0;
3406 
3407 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3408 }
3409 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3410 static inline int dev_parse_header(const struct sk_buff *skb,
3411 				   unsigned char *haddr)
3412 {
3413 	const struct net_device *dev = skb->dev;
3414 
3415 	if (!dev->header_ops || !dev->header_ops->parse)
3416 		return 0;
3417 	return dev->header_ops->parse(skb, haddr);
3418 }
3419 
dev_parse_header_protocol(const struct sk_buff * skb)3420 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3421 {
3422 	const struct net_device *dev = skb->dev;
3423 
3424 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3425 		return 0;
3426 	return dev->header_ops->parse_protocol(skb);
3427 }
3428 
3429 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3430 static inline bool dev_validate_header(const struct net_device *dev,
3431 				       char *ll_header, int len)
3432 {
3433 	if (likely(len >= dev->hard_header_len))
3434 		return true;
3435 	if (len < dev->min_header_len)
3436 		return false;
3437 
3438 	if (capable(CAP_SYS_RAWIO)) {
3439 		memset(ll_header + len, 0, dev->hard_header_len - len);
3440 		return true;
3441 	}
3442 
3443 	if (dev->header_ops && dev->header_ops->validate)
3444 		return dev->header_ops->validate(ll_header, len);
3445 
3446 	return false;
3447 }
3448 
dev_has_header(const struct net_device * dev)3449 static inline bool dev_has_header(const struct net_device *dev)
3450 {
3451 	return dev->header_ops && dev->header_ops->create;
3452 }
3453 
3454 /*
3455  * Incoming packets are placed on per-CPU queues
3456  */
3457 struct softnet_data {
3458 	struct list_head	poll_list;
3459 	struct sk_buff_head	process_queue;
3460 	local_lock_t		process_queue_bh_lock;
3461 
3462 	/* stats */
3463 	unsigned int		processed;
3464 	unsigned int		time_squeeze;
3465 #ifdef CONFIG_RPS
3466 	struct softnet_data	*rps_ipi_list;
3467 #endif
3468 
3469 	unsigned int		received_rps;
3470 	bool			in_net_rx_action;
3471 	bool			in_napi_threaded_poll;
3472 
3473 #ifdef CONFIG_NET_FLOW_LIMIT
3474 	struct sd_flow_limit __rcu *flow_limit;
3475 #endif
3476 	struct Qdisc		*output_queue;
3477 	struct Qdisc		**output_queue_tailp;
3478 	struct sk_buff		*completion_queue;
3479 #ifdef CONFIG_XFRM_OFFLOAD
3480 	struct sk_buff_head	xfrm_backlog;
3481 #endif
3482 	/* written and read only by owning cpu: */
3483 	struct netdev_xmit xmit;
3484 #ifdef CONFIG_RPS
3485 	/* input_queue_head should be written by cpu owning this struct,
3486 	 * and only read by other cpus. Worth using a cache line.
3487 	 */
3488 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3489 
3490 	/* Elements below can be accessed between CPUs for RPS/RFS */
3491 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3492 	struct softnet_data	*rps_ipi_next;
3493 	unsigned int		cpu;
3494 	unsigned int		input_queue_tail;
3495 #endif
3496 	struct sk_buff_head	input_pkt_queue;
3497 	struct napi_struct	backlog;
3498 
3499 	atomic_t		dropped ____cacheline_aligned_in_smp;
3500 
3501 	/* Another possibly contended cache line */
3502 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3503 	int			defer_count;
3504 	int			defer_ipi_scheduled;
3505 	struct sk_buff		*defer_list;
3506 	call_single_data_t	defer_csd;
3507 };
3508 
3509 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3510 
3511 struct page_pool_bh {
3512 	struct page_pool *pool;
3513 	local_lock_t bh_lock;
3514 };
3515 DECLARE_PER_CPU(struct page_pool_bh, system_page_pool);
3516 
3517 #ifndef CONFIG_PREEMPT_RT
dev_recursion_level(void)3518 static inline int dev_recursion_level(void)
3519 {
3520 	return this_cpu_read(softnet_data.xmit.recursion);
3521 }
3522 #else
dev_recursion_level(void)3523 static inline int dev_recursion_level(void)
3524 {
3525 	return current->net_xmit.recursion;
3526 }
3527 
3528 #endif
3529 
3530 void __netif_schedule(struct Qdisc *q);
3531 void netif_schedule_queue(struct netdev_queue *txq);
3532 
netif_tx_schedule_all(struct net_device * dev)3533 static inline void netif_tx_schedule_all(struct net_device *dev)
3534 {
3535 	unsigned int i;
3536 
3537 	for (i = 0; i < dev->num_tx_queues; i++)
3538 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3539 }
3540 
netif_tx_start_queue(struct netdev_queue * dev_queue)3541 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3542 {
3543 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3544 }
3545 
3546 /**
3547  *	netif_start_queue - allow transmit
3548  *	@dev: network device
3549  *
3550  *	Allow upper layers to call the device hard_start_xmit routine.
3551  */
netif_start_queue(struct net_device * dev)3552 static inline void netif_start_queue(struct net_device *dev)
3553 {
3554 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3555 }
3556 
netif_tx_start_all_queues(struct net_device * dev)3557 static inline void netif_tx_start_all_queues(struct net_device *dev)
3558 {
3559 	unsigned int i;
3560 
3561 	for (i = 0; i < dev->num_tx_queues; i++) {
3562 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3563 		netif_tx_start_queue(txq);
3564 	}
3565 }
3566 
3567 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3568 
3569 /**
3570  *	netif_wake_queue - restart transmit
3571  *	@dev: network device
3572  *
3573  *	Allow upper layers to call the device hard_start_xmit routine.
3574  *	Used for flow control when transmit resources are available.
3575  */
netif_wake_queue(struct net_device * dev)3576 static inline void netif_wake_queue(struct net_device *dev)
3577 {
3578 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3579 }
3580 
netif_tx_wake_all_queues(struct net_device * dev)3581 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3582 {
3583 	unsigned int i;
3584 
3585 	for (i = 0; i < dev->num_tx_queues; i++) {
3586 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3587 		netif_tx_wake_queue(txq);
3588 	}
3589 }
3590 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3591 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3592 {
3593 	/* Paired with READ_ONCE() from dev_watchdog() */
3594 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3595 
3596 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3597 	smp_mb__before_atomic();
3598 
3599 	/* Must be an atomic op see netif_txq_try_stop() */
3600 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3601 }
3602 
3603 /**
3604  *	netif_stop_queue - stop transmitted packets
3605  *	@dev: network device
3606  *
3607  *	Stop upper layers calling the device hard_start_xmit routine.
3608  *	Used for flow control when transmit resources are unavailable.
3609  */
netif_stop_queue(struct net_device * dev)3610 static inline void netif_stop_queue(struct net_device *dev)
3611 {
3612 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3613 }
3614 
3615 void netif_tx_stop_all_queues(struct net_device *dev);
3616 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3617 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3618 {
3619 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3620 }
3621 
3622 /**
3623  *	netif_queue_stopped - test if transmit queue is flowblocked
3624  *	@dev: network device
3625  *
3626  *	Test if transmit queue on device is currently unable to send.
3627  */
netif_queue_stopped(const struct net_device * dev)3628 static inline bool netif_queue_stopped(const struct net_device *dev)
3629 {
3630 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3631 }
3632 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3633 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3634 {
3635 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3636 }
3637 
3638 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3639 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3640 {
3641 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3642 }
3643 
3644 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3645 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3646 {
3647 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3648 }
3649 
3650 /**
3651  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3652  *	@dev_queue: pointer to transmit queue
3653  *	@min_limit: dql minimum limit
3654  *
3655  * Forces xmit_more() to return true until the minimum threshold
3656  * defined by @min_limit is reached (or until the tx queue is
3657  * empty). Warning: to be use with care, misuse will impact the
3658  * latency.
3659  */
netdev_queue_set_dql_min_limit(struct netdev_queue * dev_queue,unsigned int min_limit)3660 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3661 						  unsigned int min_limit)
3662 {
3663 #ifdef CONFIG_BQL
3664 	dev_queue->dql.min_limit = min_limit;
3665 #endif
3666 }
3667 
netdev_queue_dql_avail(const struct netdev_queue * txq)3668 static inline int netdev_queue_dql_avail(const struct netdev_queue *txq)
3669 {
3670 #ifdef CONFIG_BQL
3671 	/* Non-BQL migrated drivers will return 0, too. */
3672 	return dql_avail(&txq->dql);
3673 #else
3674 	return 0;
3675 #endif
3676 }
3677 
3678 /**
3679  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3680  *	@dev_queue: pointer to transmit queue
3681  *
3682  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3683  * to give appropriate hint to the CPU.
3684  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3685 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3686 {
3687 #ifdef CONFIG_BQL
3688 	prefetchw(&dev_queue->dql.num_queued);
3689 #endif
3690 }
3691 
3692 /**
3693  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3694  *	@dev_queue: pointer to transmit queue
3695  *
3696  * BQL enabled drivers might use this helper in their TX completion path,
3697  * to give appropriate hint to the CPU.
3698  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3699 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3700 {
3701 #ifdef CONFIG_BQL
3702 	prefetchw(&dev_queue->dql.limit);
3703 #endif
3704 }
3705 
3706 /**
3707  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3708  *	@dev_queue: network device queue
3709  *	@bytes: number of bytes queued to the device queue
3710  *
3711  *	Report the number of bytes queued for sending/completion to the network
3712  *	device hardware queue. @bytes should be a good approximation and should
3713  *	exactly match netdev_completed_queue() @bytes.
3714  *	This is typically called once per packet, from ndo_start_xmit().
3715  */
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3716 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3717 					unsigned int bytes)
3718 {
3719 #ifdef CONFIG_BQL
3720 	dql_queued(&dev_queue->dql, bytes);
3721 
3722 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3723 		return;
3724 
3725 	/* Paired with READ_ONCE() from dev_watchdog() */
3726 	WRITE_ONCE(dev_queue->trans_start, jiffies);
3727 
3728 	/* This barrier is paired with smp_mb() from dev_watchdog() */
3729 	smp_mb__before_atomic();
3730 
3731 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3732 
3733 	/*
3734 	 * The XOFF flag must be set before checking the dql_avail below,
3735 	 * because in netdev_tx_completed_queue we update the dql_completed
3736 	 * before checking the XOFF flag.
3737 	 */
3738 	smp_mb__after_atomic();
3739 
3740 	/* check again in case another CPU has just made room avail */
3741 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3742 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3743 #endif
3744 }
3745 
3746 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3747  * that they should not test BQL status themselves.
3748  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3749  * skb of a batch.
3750  * Returns true if the doorbell must be used to kick the NIC.
3751  */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3752 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3753 					  unsigned int bytes,
3754 					  bool xmit_more)
3755 {
3756 	if (xmit_more) {
3757 #ifdef CONFIG_BQL
3758 		dql_queued(&dev_queue->dql, bytes);
3759 #endif
3760 		return netif_tx_queue_stopped(dev_queue);
3761 	}
3762 	netdev_tx_sent_queue(dev_queue, bytes);
3763 	return true;
3764 }
3765 
3766 /**
3767  *	netdev_sent_queue - report the number of bytes queued to hardware
3768  *	@dev: network device
3769  *	@bytes: number of bytes queued to the hardware device queue
3770  *
3771  *	Report the number of bytes queued for sending/completion to the network
3772  *	device hardware queue#0. @bytes should be a good approximation and should
3773  *	exactly match netdev_completed_queue() @bytes.
3774  *	This is typically called once per packet, from ndo_start_xmit().
3775  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3776 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3777 {
3778 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3779 }
3780 
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3781 static inline bool __netdev_sent_queue(struct net_device *dev,
3782 				       unsigned int bytes,
3783 				       bool xmit_more)
3784 {
3785 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3786 				      xmit_more);
3787 }
3788 
3789 /**
3790  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3791  *	@dev_queue: network device queue
3792  *	@pkts: number of packets (currently ignored)
3793  *	@bytes: number of bytes dequeued from the device queue
3794  *
3795  *	Must be called at most once per TX completion round (and not per
3796  *	individual packet), so that BQL can adjust its limits appropriately.
3797  */
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3798 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3799 					     unsigned int pkts, unsigned int bytes)
3800 {
3801 #ifdef CONFIG_BQL
3802 	if (unlikely(!bytes))
3803 		return;
3804 
3805 	dql_completed(&dev_queue->dql, bytes);
3806 
3807 	/*
3808 	 * Without the memory barrier there is a small possibility that
3809 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3810 	 * be stopped forever
3811 	 */
3812 	smp_mb(); /* NOTE: netdev_txq_completed_mb() assumes this exists */
3813 
3814 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3815 		return;
3816 
3817 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3818 		netif_schedule_queue(dev_queue);
3819 #endif
3820 }
3821 
3822 /**
3823  * 	netdev_completed_queue - report bytes and packets completed by device
3824  * 	@dev: network device
3825  * 	@pkts: actual number of packets sent over the medium
3826  * 	@bytes: actual number of bytes sent over the medium
3827  *
3828  * 	Report the number of bytes and packets transmitted by the network device
3829  * 	hardware queue over the physical medium, @bytes must exactly match the
3830  * 	@bytes amount passed to netdev_sent_queue()
3831  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3832 static inline void netdev_completed_queue(struct net_device *dev,
3833 					  unsigned int pkts, unsigned int bytes)
3834 {
3835 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3836 }
3837 
netdev_tx_reset_queue(struct netdev_queue * q)3838 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3839 {
3840 #ifdef CONFIG_BQL
3841 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3842 	dql_reset(&q->dql);
3843 #endif
3844 }
3845 
3846 /**
3847  * netdev_tx_reset_subqueue - reset the BQL stats and state of a netdev queue
3848  * @dev: network device
3849  * @qid: stack index of the queue to reset
3850  */
netdev_tx_reset_subqueue(const struct net_device * dev,u32 qid)3851 static inline void netdev_tx_reset_subqueue(const struct net_device *dev,
3852 					    u32 qid)
3853 {
3854 	netdev_tx_reset_queue(netdev_get_tx_queue(dev, qid));
3855 }
3856 
3857 /**
3858  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3859  * 	@dev_queue: network device
3860  *
3861  * 	Reset the bytes and packet count of a network device and clear the
3862  * 	software flow control OFF bit for this network device
3863  */
netdev_reset_queue(struct net_device * dev_queue)3864 static inline void netdev_reset_queue(struct net_device *dev_queue)
3865 {
3866 	netdev_tx_reset_subqueue(dev_queue, 0);
3867 }
3868 
3869 /**
3870  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3871  * 	@dev: network device
3872  * 	@queue_index: given tx queue index
3873  *
3874  * 	Returns 0 if given tx queue index >= number of device tx queues,
3875  * 	otherwise returns the originally passed tx queue index.
3876  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3877 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3878 {
3879 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3880 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3881 				     dev->name, queue_index,
3882 				     dev->real_num_tx_queues);
3883 		return 0;
3884 	}
3885 
3886 	return queue_index;
3887 }
3888 
3889 /**
3890  *	netif_running - test if up
3891  *	@dev: network device
3892  *
3893  *	Test if the device has been brought up.
3894  */
netif_running(const struct net_device * dev)3895 static inline bool netif_running(const struct net_device *dev)
3896 {
3897 	return test_bit(__LINK_STATE_START, &dev->state);
3898 }
3899 
3900 /*
3901  * Routines to manage the subqueues on a device.  We only need start,
3902  * stop, and a check if it's stopped.  All other device management is
3903  * done at the overall netdevice level.
3904  * Also test the device if we're multiqueue.
3905  */
3906 
3907 /**
3908  *	netif_start_subqueue - allow sending packets on subqueue
3909  *	@dev: network device
3910  *	@queue_index: sub queue index
3911  *
3912  * Start individual transmit queue of a device with multiple transmit queues.
3913  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3914 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3915 {
3916 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3917 
3918 	netif_tx_start_queue(txq);
3919 }
3920 
3921 /**
3922  *	netif_stop_subqueue - stop sending packets on subqueue
3923  *	@dev: network device
3924  *	@queue_index: sub queue index
3925  *
3926  * Stop individual transmit queue of a device with multiple transmit queues.
3927  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3928 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3929 {
3930 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3931 	netif_tx_stop_queue(txq);
3932 }
3933 
3934 /**
3935  *	__netif_subqueue_stopped - test status of subqueue
3936  *	@dev: network device
3937  *	@queue_index: sub queue index
3938  *
3939  * Check individual transmit queue of a device with multiple transmit queues.
3940  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3941 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3942 					    u16 queue_index)
3943 {
3944 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3945 
3946 	return netif_tx_queue_stopped(txq);
3947 }
3948 
3949 /**
3950  *	netif_subqueue_stopped - test status of subqueue
3951  *	@dev: network device
3952  *	@skb: sub queue buffer pointer
3953  *
3954  * Check individual transmit queue of a device with multiple transmit queues.
3955  */
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3956 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3957 					  struct sk_buff *skb)
3958 {
3959 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3960 }
3961 
3962 /**
3963  *	netif_wake_subqueue - allow sending packets on subqueue
3964  *	@dev: network device
3965  *	@queue_index: sub queue index
3966  *
3967  * Resume individual transmit queue of a device with multiple transmit queues.
3968  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3969 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3970 {
3971 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3972 
3973 	netif_tx_wake_queue(txq);
3974 }
3975 
3976 #ifdef CONFIG_XPS
3977 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3978 			u16 index);
3979 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3980 			  u16 index, enum xps_map_type type);
3981 
3982 /**
3983  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3984  *	@j: CPU/Rx queue index
3985  *	@mask: bitmask of all cpus/rx queues
3986  *	@nr_bits: number of bits in the bitmask
3987  *
3988  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3989  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3990 static inline bool netif_attr_test_mask(unsigned long j,
3991 					const unsigned long *mask,
3992 					unsigned int nr_bits)
3993 {
3994 	cpu_max_bits_warn(j, nr_bits);
3995 	return test_bit(j, mask);
3996 }
3997 
3998 /**
3999  *	netif_attr_test_online - Test for online CPU/Rx queue
4000  *	@j: CPU/Rx queue index
4001  *	@online_mask: bitmask for CPUs/Rx queues that are online
4002  *	@nr_bits: number of bits in the bitmask
4003  *
4004  * Returns: true if a CPU/Rx queue is online.
4005  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)4006 static inline bool netif_attr_test_online(unsigned long j,
4007 					  const unsigned long *online_mask,
4008 					  unsigned int nr_bits)
4009 {
4010 	cpu_max_bits_warn(j, nr_bits);
4011 
4012 	if (online_mask)
4013 		return test_bit(j, online_mask);
4014 
4015 	return (j < nr_bits);
4016 }
4017 
4018 /**
4019  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
4020  *	@n: CPU/Rx queue index
4021  *	@srcp: the cpumask/Rx queue mask pointer
4022  *	@nr_bits: number of bits in the bitmask
4023  *
4024  * Returns: next (after n) CPU/Rx queue index in the mask;
4025  * >= nr_bits if no further CPUs/Rx queues set.
4026  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)4027 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
4028 					       unsigned int nr_bits)
4029 {
4030 	/* -1 is a legal arg here. */
4031 	if (n != -1)
4032 		cpu_max_bits_warn(n, nr_bits);
4033 
4034 	if (srcp)
4035 		return find_next_bit(srcp, nr_bits, n + 1);
4036 
4037 	return n + 1;
4038 }
4039 
4040 /**
4041  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
4042  *	@n: CPU/Rx queue index
4043  *	@src1p: the first CPUs/Rx queues mask pointer
4044  *	@src2p: the second CPUs/Rx queues mask pointer
4045  *	@nr_bits: number of bits in the bitmask
4046  *
4047  * Returns: next (after n) CPU/Rx queue index set in both masks;
4048  * >= nr_bits if no further CPUs/Rx queues set in both.
4049  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)4050 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
4051 					  const unsigned long *src2p,
4052 					  unsigned int nr_bits)
4053 {
4054 	/* -1 is a legal arg here. */
4055 	if (n != -1)
4056 		cpu_max_bits_warn(n, nr_bits);
4057 
4058 	if (src1p && src2p)
4059 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
4060 	else if (src1p)
4061 		return find_next_bit(src1p, nr_bits, n + 1);
4062 	else if (src2p)
4063 		return find_next_bit(src2p, nr_bits, n + 1);
4064 
4065 	return n + 1;
4066 }
4067 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)4068 static inline int netif_set_xps_queue(struct net_device *dev,
4069 				      const struct cpumask *mask,
4070 				      u16 index)
4071 {
4072 	return 0;
4073 }
4074 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)4075 static inline int __netif_set_xps_queue(struct net_device *dev,
4076 					const unsigned long *mask,
4077 					u16 index, enum xps_map_type type)
4078 {
4079 	return 0;
4080 }
4081 #endif
4082 
4083 /**
4084  *	netif_is_multiqueue - test if device has multiple transmit queues
4085  *	@dev: network device
4086  *
4087  * Check if device has multiple transmit queues
4088  */
netif_is_multiqueue(const struct net_device * dev)4089 static inline bool netif_is_multiqueue(const struct net_device *dev)
4090 {
4091 	return dev->num_tx_queues > 1;
4092 }
4093 
4094 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
4095 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
4096 int netif_set_real_num_queues(struct net_device *dev,
4097 			      unsigned int txq, unsigned int rxq);
4098 
4099 int netif_get_num_default_rss_queues(void);
4100 
4101 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason);
4102 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason);
4103 
4104 /*
4105  * It is not allowed to call kfree_skb() or consume_skb() from hardware
4106  * interrupt context or with hardware interrupts being disabled.
4107  * (in_hardirq() || irqs_disabled())
4108  *
4109  * We provide four helpers that can be used in following contexts :
4110  *
4111  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
4112  *  replacing kfree_skb(skb)
4113  *
4114  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
4115  *  Typically used in place of consume_skb(skb) in TX completion path
4116  *
4117  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
4118  *  replacing kfree_skb(skb)
4119  *
4120  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
4121  *  and consumed a packet. Used in place of consume_skb(skb)
4122  */
dev_kfree_skb_irq(struct sk_buff * skb)4123 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
4124 {
4125 	dev_kfree_skb_irq_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4126 }
4127 
dev_consume_skb_irq(struct sk_buff * skb)4128 static inline void dev_consume_skb_irq(struct sk_buff *skb)
4129 {
4130 	dev_kfree_skb_irq_reason(skb, SKB_CONSUMED);
4131 }
4132 
dev_kfree_skb_any(struct sk_buff * skb)4133 static inline void dev_kfree_skb_any(struct sk_buff *skb)
4134 {
4135 	dev_kfree_skb_any_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
4136 }
4137 
dev_consume_skb_any(struct sk_buff * skb)4138 static inline void dev_consume_skb_any(struct sk_buff *skb)
4139 {
4140 	dev_kfree_skb_any_reason(skb, SKB_CONSUMED);
4141 }
4142 
4143 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4144 			     const struct bpf_prog *xdp_prog);
4145 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog);
4146 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb);
4147 int netif_rx(struct sk_buff *skb);
4148 int __netif_rx(struct sk_buff *skb);
4149 
4150 int netif_receive_skb(struct sk_buff *skb);
4151 int netif_receive_skb_core(struct sk_buff *skb);
4152 void netif_receive_skb_list_internal(struct list_head *head);
4153 void netif_receive_skb_list(struct list_head *head);
4154 gro_result_t gro_receive_skb(struct gro_node *gro, struct sk_buff *skb);
4155 
napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)4156 static inline gro_result_t napi_gro_receive(struct napi_struct *napi,
4157 					    struct sk_buff *skb)
4158 {
4159 	return gro_receive_skb(&napi->gro, skb);
4160 }
4161 
4162 struct sk_buff *napi_get_frags(struct napi_struct *napi);
4163 gro_result_t napi_gro_frags(struct napi_struct *napi);
4164 
napi_free_frags(struct napi_struct * napi)4165 static inline void napi_free_frags(struct napi_struct *napi)
4166 {
4167 	kfree_skb(napi->skb);
4168 	napi->skb = NULL;
4169 }
4170 
4171 bool netdev_is_rx_handler_busy(struct net_device *dev);
4172 int netdev_rx_handler_register(struct net_device *dev,
4173 			       rx_handler_func_t *rx_handler,
4174 			       void *rx_handler_data);
4175 void netdev_rx_handler_unregister(struct net_device *dev);
4176 
4177 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)4178 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
4179 {
4180 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
4181 }
4182 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
4183 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
4184 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
4185 		void __user *data, bool *need_copyout);
4186 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
4187 int dev_eth_ioctl(struct net_device *dev,
4188 		  struct ifreq *ifr, unsigned int cmd);
4189 int generic_hwtstamp_get_lower(struct net_device *dev,
4190 			       struct kernel_hwtstamp_config *kernel_cfg);
4191 int generic_hwtstamp_set_lower(struct net_device *dev,
4192 			       struct kernel_hwtstamp_config *kernel_cfg,
4193 			       struct netlink_ext_ack *extack);
4194 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
4195 unsigned int dev_get_flags(const struct net_device *);
4196 int __dev_change_flags(struct net_device *dev, unsigned int flags,
4197 		       struct netlink_ext_ack *extack);
4198 int netif_change_flags(struct net_device *dev, unsigned int flags,
4199 		       struct netlink_ext_ack *extack);
4200 int dev_change_flags(struct net_device *dev, unsigned int flags,
4201 		     struct netlink_ext_ack *extack);
4202 int netif_set_alias(struct net_device *dev, const char *alias, size_t len);
4203 int dev_set_alias(struct net_device *, const char *, size_t);
4204 int dev_get_alias(const struct net_device *, char *, size_t);
4205 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
4206 			       const char *pat, int new_ifindex,
4207 			       struct netlink_ext_ack *extack);
4208 int dev_change_net_namespace(struct net_device *dev, struct net *net,
4209 			     const char *pat);
4210 int __dev_set_mtu(struct net_device *, int);
4211 int netif_set_mtu(struct net_device *dev, int new_mtu);
4212 int dev_set_mtu(struct net_device *, int);
4213 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
4214 			      struct netlink_ext_ack *extack);
4215 int netif_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
4216 			  struct netlink_ext_ack *extack);
4217 int dev_set_mac_address(struct net_device *dev, struct sockaddr_storage *ss,
4218 			struct netlink_ext_ack *extack);
4219 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr_storage *ss,
4220 			     struct netlink_ext_ack *extack);
4221 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
4222 int dev_get_port_parent_id(struct net_device *dev,
4223 			   struct netdev_phys_item_id *ppid, bool recurse);
4224 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
4225 
4226 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
4227 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
4228 				    struct netdev_queue *txq, int *ret);
4229 
4230 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
4231 u8 dev_xdp_prog_count(struct net_device *dev);
4232 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4233 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf);
4234 u8 dev_xdp_sb_prog_count(struct net_device *dev);
4235 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
4236 
4237 u32 dev_get_min_mp_channel_count(const struct net_device *dev);
4238 
4239 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4240 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
4241 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
4242 bool is_skb_forwardable(const struct net_device *dev,
4243 			const struct sk_buff *skb);
4244 
__is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb,const bool check_mtu)4245 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
4246 						 const struct sk_buff *skb,
4247 						 const bool check_mtu)
4248 {
4249 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
4250 	unsigned int len;
4251 
4252 	if (!(dev->flags & IFF_UP))
4253 		return false;
4254 
4255 	if (!check_mtu)
4256 		return true;
4257 
4258 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
4259 	if (skb->len <= len)
4260 		return true;
4261 
4262 	/* if TSO is enabled, we don't care about the length as the packet
4263 	 * could be forwarded without being segmented before
4264 	 */
4265 	if (skb_is_gso(skb))
4266 		return true;
4267 
4268 	return false;
4269 }
4270 
4271 void netdev_core_stats_inc(struct net_device *dev, u32 offset);
4272 
4273 #define DEV_CORE_STATS_INC(FIELD)						\
4274 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
4275 {										\
4276 	netdev_core_stats_inc(dev,						\
4277 			offsetof(struct net_device_core_stats, FIELD));		\
4278 }
4279 DEV_CORE_STATS_INC(rx_dropped)
DEV_CORE_STATS_INC(tx_dropped)4280 DEV_CORE_STATS_INC(tx_dropped)
4281 DEV_CORE_STATS_INC(rx_nohandler)
4282 DEV_CORE_STATS_INC(rx_otherhost_dropped)
4283 #undef DEV_CORE_STATS_INC
4284 
4285 static __always_inline int ____dev_forward_skb(struct net_device *dev,
4286 					       struct sk_buff *skb,
4287 					       const bool check_mtu)
4288 {
4289 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
4290 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
4291 		dev_core_stats_rx_dropped_inc(dev);
4292 		kfree_skb(skb);
4293 		return NET_RX_DROP;
4294 	}
4295 
4296 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
4297 	skb->priority = 0;
4298 	return 0;
4299 }
4300 
4301 bool dev_nit_active_rcu(const struct net_device *dev);
dev_nit_active(const struct net_device * dev)4302 static inline bool dev_nit_active(const struct net_device *dev)
4303 {
4304 	bool ret;
4305 
4306 	rcu_read_lock();
4307 	ret = dev_nit_active_rcu(dev);
4308 	rcu_read_unlock();
4309 	return ret;
4310 }
4311 
4312 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
4313 
__dev_put(struct net_device * dev)4314 static inline void __dev_put(struct net_device *dev)
4315 {
4316 	if (dev) {
4317 #ifdef CONFIG_PCPU_DEV_REFCNT
4318 		this_cpu_dec(*dev->pcpu_refcnt);
4319 #else
4320 		refcount_dec(&dev->dev_refcnt);
4321 #endif
4322 	}
4323 }
4324 
__dev_hold(struct net_device * dev)4325 static inline void __dev_hold(struct net_device *dev)
4326 {
4327 	if (dev) {
4328 #ifdef CONFIG_PCPU_DEV_REFCNT
4329 		this_cpu_inc(*dev->pcpu_refcnt);
4330 #else
4331 		refcount_inc(&dev->dev_refcnt);
4332 #endif
4333 	}
4334 }
4335 
__netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4336 static inline void __netdev_tracker_alloc(struct net_device *dev,
4337 					  netdevice_tracker *tracker,
4338 					  gfp_t gfp)
4339 {
4340 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4341 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4342 #endif
4343 }
4344 
4345 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4346  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4347  */
netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4348 static inline void netdev_tracker_alloc(struct net_device *dev,
4349 					netdevice_tracker *tracker, gfp_t gfp)
4350 {
4351 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4352 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4353 	__netdev_tracker_alloc(dev, tracker, gfp);
4354 #endif
4355 }
4356 
netdev_tracker_free(struct net_device * dev,netdevice_tracker * tracker)4357 static inline void netdev_tracker_free(struct net_device *dev,
4358 				       netdevice_tracker *tracker)
4359 {
4360 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4361 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4362 #endif
4363 }
4364 
netdev_hold(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4365 static inline void netdev_hold(struct net_device *dev,
4366 			       netdevice_tracker *tracker, gfp_t gfp)
4367 {
4368 	if (dev) {
4369 		__dev_hold(dev);
4370 		__netdev_tracker_alloc(dev, tracker, gfp);
4371 	}
4372 }
4373 
netdev_put(struct net_device * dev,netdevice_tracker * tracker)4374 static inline void netdev_put(struct net_device *dev,
4375 			      netdevice_tracker *tracker)
4376 {
4377 	if (dev) {
4378 		netdev_tracker_free(dev, tracker);
4379 		__dev_put(dev);
4380 	}
4381 }
4382 
4383 /**
4384  *	dev_hold - get reference to device
4385  *	@dev: network device
4386  *
4387  * Hold reference to device to keep it from being freed.
4388  * Try using netdev_hold() instead.
4389  */
dev_hold(struct net_device * dev)4390 static inline void dev_hold(struct net_device *dev)
4391 {
4392 	netdev_hold(dev, NULL, GFP_ATOMIC);
4393 }
4394 
4395 /**
4396  *	dev_put - release reference to device
4397  *	@dev: network device
4398  *
4399  * Release reference to device to allow it to be freed.
4400  * Try using netdev_put() instead.
4401  */
dev_put(struct net_device * dev)4402 static inline void dev_put(struct net_device *dev)
4403 {
4404 	netdev_put(dev, NULL);
4405 }
4406 
DEFINE_FREE(dev_put,struct net_device *,if (_T)dev_put (_T))4407 DEFINE_FREE(dev_put, struct net_device *, if (_T) dev_put(_T))
4408 
4409 static inline void netdev_ref_replace(struct net_device *odev,
4410 				      struct net_device *ndev,
4411 				      netdevice_tracker *tracker,
4412 				      gfp_t gfp)
4413 {
4414 	if (odev)
4415 		netdev_tracker_free(odev, tracker);
4416 
4417 	__dev_hold(ndev);
4418 	__dev_put(odev);
4419 
4420 	if (ndev)
4421 		__netdev_tracker_alloc(ndev, tracker, gfp);
4422 }
4423 
4424 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4425  * and _off may be called from IRQ context, but it is caller
4426  * who is responsible for serialization of these calls.
4427  *
4428  * The name carrier is inappropriate, these functions should really be
4429  * called netif_lowerlayer_*() because they represent the state of any
4430  * kind of lower layer not just hardware media.
4431  */
4432 void linkwatch_fire_event(struct net_device *dev);
4433 
4434 /**
4435  * linkwatch_sync_dev - sync linkwatch for the given device
4436  * @dev: network device to sync linkwatch for
4437  *
4438  * Sync linkwatch for the given device, removing it from the
4439  * pending work list (if queued).
4440  */
4441 void linkwatch_sync_dev(struct net_device *dev);
4442 void __linkwatch_sync_dev(struct net_device *dev);
4443 
4444 /**
4445  *	netif_carrier_ok - test if carrier present
4446  *	@dev: network device
4447  *
4448  * Check if carrier is present on device
4449  */
netif_carrier_ok(const struct net_device * dev)4450 static inline bool netif_carrier_ok(const struct net_device *dev)
4451 {
4452 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4453 }
4454 
4455 unsigned long dev_trans_start(struct net_device *dev);
4456 
4457 void netdev_watchdog_up(struct net_device *dev);
4458 
4459 void netif_carrier_on(struct net_device *dev);
4460 void netif_carrier_off(struct net_device *dev);
4461 void netif_carrier_event(struct net_device *dev);
4462 
4463 /**
4464  *	netif_dormant_on - mark device as dormant.
4465  *	@dev: network device
4466  *
4467  * Mark device as dormant (as per RFC2863).
4468  *
4469  * The dormant state indicates that the relevant interface is not
4470  * actually in a condition to pass packets (i.e., it is not 'up') but is
4471  * in a "pending" state, waiting for some external event.  For "on-
4472  * demand" interfaces, this new state identifies the situation where the
4473  * interface is waiting for events to place it in the up state.
4474  */
netif_dormant_on(struct net_device * dev)4475 static inline void netif_dormant_on(struct net_device *dev)
4476 {
4477 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4478 		linkwatch_fire_event(dev);
4479 }
4480 
4481 /**
4482  *	netif_dormant_off - set device as not dormant.
4483  *	@dev: network device
4484  *
4485  * Device is not in dormant state.
4486  */
netif_dormant_off(struct net_device * dev)4487 static inline void netif_dormant_off(struct net_device *dev)
4488 {
4489 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4490 		linkwatch_fire_event(dev);
4491 }
4492 
4493 /**
4494  *	netif_dormant - test if device is dormant
4495  *	@dev: network device
4496  *
4497  * Check if device is dormant.
4498  */
netif_dormant(const struct net_device * dev)4499 static inline bool netif_dormant(const struct net_device *dev)
4500 {
4501 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4502 }
4503 
4504 
4505 /**
4506  *	netif_testing_on - mark device as under test.
4507  *	@dev: network device
4508  *
4509  * Mark device as under test (as per RFC2863).
4510  *
4511  * The testing state indicates that some test(s) must be performed on
4512  * the interface. After completion, of the test, the interface state
4513  * will change to up, dormant, or down, as appropriate.
4514  */
netif_testing_on(struct net_device * dev)4515 static inline void netif_testing_on(struct net_device *dev)
4516 {
4517 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4518 		linkwatch_fire_event(dev);
4519 }
4520 
4521 /**
4522  *	netif_testing_off - set device as not under test.
4523  *	@dev: network device
4524  *
4525  * Device is not in testing state.
4526  */
netif_testing_off(struct net_device * dev)4527 static inline void netif_testing_off(struct net_device *dev)
4528 {
4529 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4530 		linkwatch_fire_event(dev);
4531 }
4532 
4533 /**
4534  *	netif_testing - test if device is under test
4535  *	@dev: network device
4536  *
4537  * Check if device is under test
4538  */
netif_testing(const struct net_device * dev)4539 static inline bool netif_testing(const struct net_device *dev)
4540 {
4541 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4542 }
4543 
4544 
4545 /**
4546  *	netif_oper_up - test if device is operational
4547  *	@dev: network device
4548  *
4549  * Check if carrier is operational
4550  */
netif_oper_up(const struct net_device * dev)4551 static inline bool netif_oper_up(const struct net_device *dev)
4552 {
4553 	unsigned int operstate = READ_ONCE(dev->operstate);
4554 
4555 	return	operstate == IF_OPER_UP ||
4556 		operstate == IF_OPER_UNKNOWN /* backward compat */;
4557 }
4558 
4559 /**
4560  *	netif_device_present - is device available or removed
4561  *	@dev: network device
4562  *
4563  * Check if device has not been removed from system.
4564  */
netif_device_present(const struct net_device * dev)4565 static inline bool netif_device_present(const struct net_device *dev)
4566 {
4567 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4568 }
4569 
4570 void netif_device_detach(struct net_device *dev);
4571 
4572 void netif_device_attach(struct net_device *dev);
4573 
4574 /*
4575  * Network interface message level settings
4576  */
4577 
4578 enum {
4579 	NETIF_MSG_DRV_BIT,
4580 	NETIF_MSG_PROBE_BIT,
4581 	NETIF_MSG_LINK_BIT,
4582 	NETIF_MSG_TIMER_BIT,
4583 	NETIF_MSG_IFDOWN_BIT,
4584 	NETIF_MSG_IFUP_BIT,
4585 	NETIF_MSG_RX_ERR_BIT,
4586 	NETIF_MSG_TX_ERR_BIT,
4587 	NETIF_MSG_TX_QUEUED_BIT,
4588 	NETIF_MSG_INTR_BIT,
4589 	NETIF_MSG_TX_DONE_BIT,
4590 	NETIF_MSG_RX_STATUS_BIT,
4591 	NETIF_MSG_PKTDATA_BIT,
4592 	NETIF_MSG_HW_BIT,
4593 	NETIF_MSG_WOL_BIT,
4594 
4595 	/* When you add a new bit above, update netif_msg_class_names array
4596 	 * in net/ethtool/common.c
4597 	 */
4598 	NETIF_MSG_CLASS_COUNT,
4599 };
4600 /* Both ethtool_ops interface and internal driver implementation use u32 */
4601 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4602 
4603 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4604 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4605 
4606 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4607 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4608 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4609 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4610 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4611 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4612 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4613 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4614 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4615 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4616 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4617 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4618 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4619 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4620 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4621 
4622 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4623 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4624 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4625 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4626 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4627 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4628 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4629 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4630 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4631 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4632 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4633 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4634 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4635 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4636 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4637 
netif_msg_init(int debug_value,int default_msg_enable_bits)4638 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4639 {
4640 	/* use default */
4641 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4642 		return default_msg_enable_bits;
4643 	if (debug_value == 0)	/* no output */
4644 		return 0;
4645 	/* set low N bits */
4646 	return (1U << debug_value) - 1;
4647 }
4648 
__netif_tx_lock(struct netdev_queue * txq,int cpu)4649 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4650 {
4651 	spin_lock(&txq->_xmit_lock);
4652 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4653 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4654 }
4655 
__netif_tx_acquire(struct netdev_queue * txq)4656 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4657 {
4658 	__acquire(&txq->_xmit_lock);
4659 	return true;
4660 }
4661 
__netif_tx_release(struct netdev_queue * txq)4662 static inline void __netif_tx_release(struct netdev_queue *txq)
4663 {
4664 	__release(&txq->_xmit_lock);
4665 }
4666 
__netif_tx_lock_bh(struct netdev_queue * txq)4667 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4668 {
4669 	spin_lock_bh(&txq->_xmit_lock);
4670 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4671 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4672 }
4673 
__netif_tx_trylock(struct netdev_queue * txq)4674 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4675 {
4676 	bool ok = spin_trylock(&txq->_xmit_lock);
4677 
4678 	if (likely(ok)) {
4679 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4680 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4681 	}
4682 	return ok;
4683 }
4684 
__netif_tx_unlock(struct netdev_queue * txq)4685 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4686 {
4687 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4688 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4689 	spin_unlock(&txq->_xmit_lock);
4690 }
4691 
__netif_tx_unlock_bh(struct netdev_queue * txq)4692 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4693 {
4694 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4695 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4696 	spin_unlock_bh(&txq->_xmit_lock);
4697 }
4698 
4699 /*
4700  * txq->trans_start can be read locklessly from dev_watchdog()
4701  */
txq_trans_update(const struct net_device * dev,struct netdev_queue * txq)4702 static inline void txq_trans_update(const struct net_device *dev,
4703 				    struct netdev_queue *txq)
4704 {
4705 	if (!dev->lltx)
4706 		WRITE_ONCE(txq->trans_start, jiffies);
4707 }
4708 
txq_trans_cond_update(struct netdev_queue * txq)4709 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4710 {
4711 	unsigned long now = jiffies;
4712 
4713 	if (READ_ONCE(txq->trans_start) != now)
4714 		WRITE_ONCE(txq->trans_start, now);
4715 }
4716 
4717 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4718 static inline void netif_trans_update(struct net_device *dev)
4719 {
4720 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4721 
4722 	txq_trans_cond_update(txq);
4723 }
4724 
4725 /**
4726  *	netif_tx_lock - grab network device transmit lock
4727  *	@dev: network device
4728  *
4729  * Get network device transmit lock
4730  */
4731 void netif_tx_lock(struct net_device *dev);
4732 
netif_tx_lock_bh(struct net_device * dev)4733 static inline void netif_tx_lock_bh(struct net_device *dev)
4734 {
4735 	local_bh_disable();
4736 	netif_tx_lock(dev);
4737 }
4738 
4739 void netif_tx_unlock(struct net_device *dev);
4740 
netif_tx_unlock_bh(struct net_device * dev)4741 static inline void netif_tx_unlock_bh(struct net_device *dev)
4742 {
4743 	netif_tx_unlock(dev);
4744 	local_bh_enable();
4745 }
4746 
4747 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4748 	if (!(dev)->lltx) {				\
4749 		__netif_tx_lock(txq, cpu);		\
4750 	} else {					\
4751 		__netif_tx_acquire(txq);		\
4752 	}						\
4753 }
4754 
4755 #define HARD_TX_TRYLOCK(dev, txq)			\
4756 	(!(dev)->lltx ?					\
4757 		__netif_tx_trylock(txq) :		\
4758 		__netif_tx_acquire(txq))
4759 
4760 #define HARD_TX_UNLOCK(dev, txq) {			\
4761 	if (!(dev)->lltx) {				\
4762 		__netif_tx_unlock(txq);			\
4763 	} else {					\
4764 		__netif_tx_release(txq);		\
4765 	}						\
4766 }
4767 
netif_tx_disable(struct net_device * dev)4768 static inline void netif_tx_disable(struct net_device *dev)
4769 {
4770 	unsigned int i;
4771 	int cpu;
4772 
4773 	local_bh_disable();
4774 	cpu = smp_processor_id();
4775 	spin_lock(&dev->tx_global_lock);
4776 	for (i = 0; i < dev->num_tx_queues; i++) {
4777 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4778 
4779 		__netif_tx_lock(txq, cpu);
4780 		netif_tx_stop_queue(txq);
4781 		__netif_tx_unlock(txq);
4782 	}
4783 	spin_unlock(&dev->tx_global_lock);
4784 	local_bh_enable();
4785 }
4786 
netif_addr_lock(struct net_device * dev)4787 static inline void netif_addr_lock(struct net_device *dev)
4788 {
4789 	unsigned char nest_level = 0;
4790 
4791 #ifdef CONFIG_LOCKDEP
4792 	nest_level = dev->nested_level;
4793 #endif
4794 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4795 }
4796 
netif_addr_lock_bh(struct net_device * dev)4797 static inline void netif_addr_lock_bh(struct net_device *dev)
4798 {
4799 	unsigned char nest_level = 0;
4800 
4801 #ifdef CONFIG_LOCKDEP
4802 	nest_level = dev->nested_level;
4803 #endif
4804 	local_bh_disable();
4805 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4806 }
4807 
netif_addr_unlock(struct net_device * dev)4808 static inline void netif_addr_unlock(struct net_device *dev)
4809 {
4810 	spin_unlock(&dev->addr_list_lock);
4811 }
4812 
netif_addr_unlock_bh(struct net_device * dev)4813 static inline void netif_addr_unlock_bh(struct net_device *dev)
4814 {
4815 	spin_unlock_bh(&dev->addr_list_lock);
4816 }
4817 
4818 /*
4819  * dev_addrs walker. Should be used only for read access. Call with
4820  * rcu_read_lock held.
4821  */
4822 #define for_each_dev_addr(dev, ha) \
4823 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4824 
4825 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4826 
4827 void ether_setup(struct net_device *dev);
4828 
4829 /* Allocate dummy net_device */
4830 struct net_device *alloc_netdev_dummy(int sizeof_priv);
4831 
4832 /* Support for loadable net-drivers */
4833 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4834 				    unsigned char name_assign_type,
4835 				    void (*setup)(struct net_device *),
4836 				    unsigned int txqs, unsigned int rxqs);
4837 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4838 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4839 
4840 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4841 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4842 			 count)
4843 
4844 int register_netdev(struct net_device *dev);
4845 void unregister_netdev(struct net_device *dev);
4846 
4847 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4848 
4849 /* General hardware address lists handling functions */
4850 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4851 		   struct netdev_hw_addr_list *from_list, int addr_len);
4852 int __hw_addr_sync_multiple(struct netdev_hw_addr_list *to_list,
4853 			    struct netdev_hw_addr_list *from_list,
4854 			    int addr_len);
4855 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4856 		      struct netdev_hw_addr_list *from_list, int addr_len);
4857 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4858 		       struct net_device *dev,
4859 		       int (*sync)(struct net_device *, const unsigned char *),
4860 		       int (*unsync)(struct net_device *,
4861 				     const unsigned char *));
4862 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4863 			   struct net_device *dev,
4864 			   int (*sync)(struct net_device *,
4865 				       const unsigned char *, int),
4866 			   int (*unsync)(struct net_device *,
4867 					 const unsigned char *, int));
4868 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4869 			      struct net_device *dev,
4870 			      int (*unsync)(struct net_device *,
4871 					    const unsigned char *, int));
4872 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4873 			  struct net_device *dev,
4874 			  int (*unsync)(struct net_device *,
4875 					const unsigned char *));
4876 void __hw_addr_init(struct netdev_hw_addr_list *list);
4877 
4878 /* Functions used for device addresses handling */
4879 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4880 		  const void *addr, size_t len);
4881 
4882 static inline void
__dev_addr_set(struct net_device * dev,const void * addr,size_t len)4883 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4884 {
4885 	dev_addr_mod(dev, 0, addr, len);
4886 }
4887 
dev_addr_set(struct net_device * dev,const u8 * addr)4888 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4889 {
4890 	__dev_addr_set(dev, addr, dev->addr_len);
4891 }
4892 
4893 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4894 		 unsigned char addr_type);
4895 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4896 		 unsigned char addr_type);
4897 
4898 /* Functions used for unicast addresses handling */
4899 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4900 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4901 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4902 int dev_uc_sync(struct net_device *to, struct net_device *from);
4903 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4904 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4905 void dev_uc_flush(struct net_device *dev);
4906 void dev_uc_init(struct net_device *dev);
4907 
4908 /**
4909  *  __dev_uc_sync - Synchronize device's unicast list
4910  *  @dev:  device to sync
4911  *  @sync: function to call if address should be added
4912  *  @unsync: function to call if address should be removed
4913  *
4914  *  Add newly added addresses to the interface, and release
4915  *  addresses that have been deleted.
4916  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4917 static inline int __dev_uc_sync(struct net_device *dev,
4918 				int (*sync)(struct net_device *,
4919 					    const unsigned char *),
4920 				int (*unsync)(struct net_device *,
4921 					      const unsigned char *))
4922 {
4923 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4924 }
4925 
4926 /**
4927  *  __dev_uc_unsync - Remove synchronized addresses from device
4928  *  @dev:  device to sync
4929  *  @unsync: function to call if address should be removed
4930  *
4931  *  Remove all addresses that were added to the device by dev_uc_sync().
4932  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4933 static inline void __dev_uc_unsync(struct net_device *dev,
4934 				   int (*unsync)(struct net_device *,
4935 						 const unsigned char *))
4936 {
4937 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4938 }
4939 
4940 /* Functions used for multicast addresses handling */
4941 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4942 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4943 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4944 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4945 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4946 int dev_mc_sync(struct net_device *to, struct net_device *from);
4947 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4948 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4949 void dev_mc_flush(struct net_device *dev);
4950 void dev_mc_init(struct net_device *dev);
4951 
4952 /**
4953  *  __dev_mc_sync - Synchronize device's multicast list
4954  *  @dev:  device to sync
4955  *  @sync: function to call if address should be added
4956  *  @unsync: function to call if address should be removed
4957  *
4958  *  Add newly added addresses to the interface, and release
4959  *  addresses that have been deleted.
4960  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4961 static inline int __dev_mc_sync(struct net_device *dev,
4962 				int (*sync)(struct net_device *,
4963 					    const unsigned char *),
4964 				int (*unsync)(struct net_device *,
4965 					      const unsigned char *))
4966 {
4967 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4968 }
4969 
4970 /**
4971  *  __dev_mc_unsync - Remove synchronized addresses from device
4972  *  @dev:  device to sync
4973  *  @unsync: function to call if address should be removed
4974  *
4975  *  Remove all addresses that were added to the device by dev_mc_sync().
4976  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4977 static inline void __dev_mc_unsync(struct net_device *dev,
4978 				   int (*unsync)(struct net_device *,
4979 						 const unsigned char *))
4980 {
4981 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4982 }
4983 
4984 /* Functions used for secondary unicast and multicast support */
4985 void dev_set_rx_mode(struct net_device *dev);
4986 int netif_set_promiscuity(struct net_device *dev, int inc);
4987 int dev_set_promiscuity(struct net_device *dev, int inc);
4988 int netif_set_allmulti(struct net_device *dev, int inc, bool notify);
4989 int dev_set_allmulti(struct net_device *dev, int inc);
4990 void netif_state_change(struct net_device *dev);
4991 void netdev_state_change(struct net_device *dev);
4992 void __netdev_notify_peers(struct net_device *dev);
4993 void netdev_notify_peers(struct net_device *dev);
4994 void netdev_features_change(struct net_device *dev);
4995 /* Load a device via the kmod */
4996 void dev_load(struct net *net, const char *name);
4997 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4998 					struct rtnl_link_stats64 *storage);
4999 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5000 			     const struct net_device_stats *netdev_stats);
5001 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
5002 			   const struct pcpu_sw_netstats __percpu *netstats);
5003 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
5004 
5005 enum {
5006 	NESTED_SYNC_IMM_BIT,
5007 	NESTED_SYNC_TODO_BIT,
5008 };
5009 
5010 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
5011 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
5012 
5013 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
5014 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
5015 
5016 struct netdev_nested_priv {
5017 	unsigned char flags;
5018 	void *data;
5019 };
5020 
5021 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
5022 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5023 						     struct list_head **iter);
5024 
5025 /* iterate through upper list, must be called under RCU read lock */
5026 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
5027 	for (iter = &(dev)->adj_list.upper, \
5028 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
5029 	     updev; \
5030 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
5031 
5032 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5033 				  int (*fn)(struct net_device *upper_dev,
5034 					    struct netdev_nested_priv *priv),
5035 				  struct netdev_nested_priv *priv);
5036 
5037 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5038 				  struct net_device *upper_dev);
5039 
5040 bool netdev_has_any_upper_dev(struct net_device *dev);
5041 
5042 void *netdev_lower_get_next_private(struct net_device *dev,
5043 				    struct list_head **iter);
5044 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5045 					struct list_head **iter);
5046 
5047 #define netdev_for_each_lower_private(dev, priv, iter) \
5048 	for (iter = (dev)->adj_list.lower.next, \
5049 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
5050 	     priv; \
5051 	     priv = netdev_lower_get_next_private(dev, &(iter)))
5052 
5053 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
5054 	for (iter = &(dev)->adj_list.lower, \
5055 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
5056 	     priv; \
5057 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
5058 
5059 void *netdev_lower_get_next(struct net_device *dev,
5060 				struct list_head **iter);
5061 
5062 #define netdev_for_each_lower_dev(dev, ldev, iter) \
5063 	for (iter = (dev)->adj_list.lower.next, \
5064 	     ldev = netdev_lower_get_next(dev, &(iter)); \
5065 	     ldev; \
5066 	     ldev = netdev_lower_get_next(dev, &(iter)))
5067 
5068 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5069 					     struct list_head **iter);
5070 int netdev_walk_all_lower_dev(struct net_device *dev,
5071 			      int (*fn)(struct net_device *lower_dev,
5072 					struct netdev_nested_priv *priv),
5073 			      struct netdev_nested_priv *priv);
5074 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5075 				  int (*fn)(struct net_device *lower_dev,
5076 					    struct netdev_nested_priv *priv),
5077 				  struct netdev_nested_priv *priv);
5078 
5079 void *netdev_adjacent_get_private(struct list_head *adj_list);
5080 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
5081 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
5082 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
5083 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
5084 			  struct netlink_ext_ack *extack);
5085 int netdev_master_upper_dev_link(struct net_device *dev,
5086 				 struct net_device *upper_dev,
5087 				 void *upper_priv, void *upper_info,
5088 				 struct netlink_ext_ack *extack);
5089 void netdev_upper_dev_unlink(struct net_device *dev,
5090 			     struct net_device *upper_dev);
5091 int netdev_adjacent_change_prepare(struct net_device *old_dev,
5092 				   struct net_device *new_dev,
5093 				   struct net_device *dev,
5094 				   struct netlink_ext_ack *extack);
5095 void netdev_adjacent_change_commit(struct net_device *old_dev,
5096 				   struct net_device *new_dev,
5097 				   struct net_device *dev);
5098 void netdev_adjacent_change_abort(struct net_device *old_dev,
5099 				  struct net_device *new_dev,
5100 				  struct net_device *dev);
5101 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
5102 void *netdev_lower_dev_get_private(struct net_device *dev,
5103 				   struct net_device *lower_dev);
5104 void netdev_lower_state_changed(struct net_device *lower_dev,
5105 				void *lower_state_info);
5106 
5107 /* RSS keys are 40 or 52 bytes long */
5108 #define NETDEV_RSS_KEY_LEN 52
5109 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
5110 void netdev_rss_key_fill(void *buffer, size_t len);
5111 
5112 int skb_checksum_help(struct sk_buff *skb);
5113 int skb_crc32c_csum_help(struct sk_buff *skb);
5114 int skb_csum_hwoffload_help(struct sk_buff *skb,
5115 			    const netdev_features_t features);
5116 
5117 struct netdev_bonding_info {
5118 	ifslave	slave;
5119 	ifbond	master;
5120 };
5121 
5122 struct netdev_notifier_bonding_info {
5123 	struct netdev_notifier_info info; /* must be first */
5124 	struct netdev_bonding_info  bonding_info;
5125 };
5126 
5127 void netdev_bonding_info_change(struct net_device *dev,
5128 				struct netdev_bonding_info *bonding_info);
5129 
5130 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
5131 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
5132 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)5133 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
5134 				  const void *data)
5135 {
5136 }
5137 #endif
5138 
5139 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
5140 
can_checksum_protocol(netdev_features_t features,__be16 protocol)5141 static inline bool can_checksum_protocol(netdev_features_t features,
5142 					 __be16 protocol)
5143 {
5144 	if (protocol == htons(ETH_P_FCOE))
5145 		return !!(features & NETIF_F_FCOE_CRC);
5146 
5147 	/* Assume this is an IP checksum (not SCTP CRC) */
5148 
5149 	if (features & NETIF_F_HW_CSUM) {
5150 		/* Can checksum everything */
5151 		return true;
5152 	}
5153 
5154 	switch (protocol) {
5155 	case htons(ETH_P_IP):
5156 		return !!(features & NETIF_F_IP_CSUM);
5157 	case htons(ETH_P_IPV6):
5158 		return !!(features & NETIF_F_IPV6_CSUM);
5159 	default:
5160 		return false;
5161 	}
5162 }
5163 
5164 #ifdef CONFIG_BUG
5165 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
5166 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)5167 static inline void netdev_rx_csum_fault(struct net_device *dev,
5168 					struct sk_buff *skb)
5169 {
5170 }
5171 #endif
5172 /* rx skb timestamps */
5173 void net_enable_timestamp(void);
5174 void net_disable_timestamp(void);
5175 
netdev_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)5176 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
5177 					const struct skb_shared_hwtstamps *hwtstamps,
5178 					bool cycles)
5179 {
5180 	const struct net_device_ops *ops = dev->netdev_ops;
5181 
5182 	if (ops->ndo_get_tstamp)
5183 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
5184 
5185 	return hwtstamps->hwtstamp;
5186 }
5187 
5188 #ifndef CONFIG_PREEMPT_RT
netdev_xmit_set_more(bool more)5189 static inline void netdev_xmit_set_more(bool more)
5190 {
5191 	__this_cpu_write(softnet_data.xmit.more, more);
5192 }
5193 
netdev_xmit_more(void)5194 static inline bool netdev_xmit_more(void)
5195 {
5196 	return __this_cpu_read(softnet_data.xmit.more);
5197 }
5198 #else
netdev_xmit_set_more(bool more)5199 static inline void netdev_xmit_set_more(bool more)
5200 {
5201 	current->net_xmit.more = more;
5202 }
5203 
netdev_xmit_more(void)5204 static inline bool netdev_xmit_more(void)
5205 {
5206 	return current->net_xmit.more;
5207 }
5208 #endif
5209 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)5210 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
5211 					      struct sk_buff *skb, struct net_device *dev,
5212 					      bool more)
5213 {
5214 	netdev_xmit_set_more(more);
5215 	return ops->ndo_start_xmit(skb, dev);
5216 }
5217 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)5218 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
5219 					    struct netdev_queue *txq, bool more)
5220 {
5221 	const struct net_device_ops *ops = dev->netdev_ops;
5222 	netdev_tx_t rc;
5223 
5224 	rc = __netdev_start_xmit(ops, skb, dev, more);
5225 	if (rc == NETDEV_TX_OK)
5226 		txq_trans_update(dev, txq);
5227 
5228 	return rc;
5229 }
5230 
5231 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
5232 				const void *ns);
5233 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
5234 				 const void *ns);
5235 
5236 extern const struct kobj_ns_type_operations net_ns_type_operations;
5237 
5238 const char *netdev_drivername(const struct net_device *dev);
5239 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)5240 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
5241 							  netdev_features_t f2)
5242 {
5243 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
5244 		if (f1 & NETIF_F_HW_CSUM)
5245 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5246 		else
5247 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5248 	}
5249 
5250 	return f1 & f2;
5251 }
5252 
netdev_get_wanted_features(struct net_device * dev)5253 static inline netdev_features_t netdev_get_wanted_features(
5254 	struct net_device *dev)
5255 {
5256 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
5257 }
5258 netdev_features_t netdev_increment_features(netdev_features_t all,
5259 	netdev_features_t one, netdev_features_t mask);
5260 
5261 /* Allow TSO being used on stacked device :
5262  * Performing the GSO segmentation before last device
5263  * is a performance improvement.
5264  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)5265 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
5266 							netdev_features_t mask)
5267 {
5268 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
5269 }
5270 
5271 int __netdev_update_features(struct net_device *dev);
5272 void netdev_update_features(struct net_device *dev);
5273 void netdev_change_features(struct net_device *dev);
5274 
5275 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5276 					struct net_device *dev);
5277 
5278 netdev_features_t passthru_features_check(struct sk_buff *skb,
5279 					  struct net_device *dev,
5280 					  netdev_features_t features);
5281 netdev_features_t netif_skb_features(struct sk_buff *skb);
5282 void skb_warn_bad_offload(const struct sk_buff *skb);
5283 
net_gso_ok(netdev_features_t features,int gso_type)5284 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
5285 {
5286 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
5287 
5288 	/* check flags correspondence */
5289 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
5290 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
5291 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
5292 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
5293 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
5294 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
5295 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
5296 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
5297 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
5298 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
5299 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
5300 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
5301 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
5302 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
5303 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
5304 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
5305 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
5306 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
5307 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
5308 	BUILD_BUG_ON(SKB_GSO_TCP_ACCECN !=
5309 		     (NETIF_F_GSO_ACCECN >> NETIF_F_GSO_SHIFT));
5310 
5311 	return (features & feature) == feature;
5312 }
5313 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)5314 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
5315 {
5316 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
5317 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
5318 }
5319 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)5320 static inline bool netif_needs_gso(struct sk_buff *skb,
5321 				   netdev_features_t features)
5322 {
5323 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
5324 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
5325 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
5326 }
5327 
5328 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
5329 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
5330 void netif_inherit_tso_max(struct net_device *to,
5331 			   const struct net_device *from);
5332 
5333 static inline unsigned int
netif_get_gro_max_size(const struct net_device * dev,const struct sk_buff * skb)5334 netif_get_gro_max_size(const struct net_device *dev, const struct sk_buff *skb)
5335 {
5336 	/* pairs with WRITE_ONCE() in netif_set_gro(_ipv4)_max_size() */
5337 	return skb->protocol == htons(ETH_P_IPV6) ?
5338 	       READ_ONCE(dev->gro_max_size) :
5339 	       READ_ONCE(dev->gro_ipv4_max_size);
5340 }
5341 
5342 static inline unsigned int
netif_get_gso_max_size(const struct net_device * dev,const struct sk_buff * skb)5343 netif_get_gso_max_size(const struct net_device *dev, const struct sk_buff *skb)
5344 {
5345 	/* pairs with WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
5346 	return skb->protocol == htons(ETH_P_IPV6) ?
5347 	       READ_ONCE(dev->gso_max_size) :
5348 	       READ_ONCE(dev->gso_ipv4_max_size);
5349 }
5350 
netif_is_macsec(const struct net_device * dev)5351 static inline bool netif_is_macsec(const struct net_device *dev)
5352 {
5353 	return dev->priv_flags & IFF_MACSEC;
5354 }
5355 
netif_is_macvlan(const struct net_device * dev)5356 static inline bool netif_is_macvlan(const struct net_device *dev)
5357 {
5358 	return dev->priv_flags & IFF_MACVLAN;
5359 }
5360 
netif_is_macvlan_port(const struct net_device * dev)5361 static inline bool netif_is_macvlan_port(const struct net_device *dev)
5362 {
5363 	return dev->priv_flags & IFF_MACVLAN_PORT;
5364 }
5365 
netif_is_bond_master(const struct net_device * dev)5366 static inline bool netif_is_bond_master(const struct net_device *dev)
5367 {
5368 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
5369 }
5370 
netif_is_bond_slave(const struct net_device * dev)5371 static inline bool netif_is_bond_slave(const struct net_device *dev)
5372 {
5373 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5374 }
5375 
netif_supports_nofcs(struct net_device * dev)5376 static inline bool netif_supports_nofcs(struct net_device *dev)
5377 {
5378 	return dev->priv_flags & IFF_SUPP_NOFCS;
5379 }
5380 
netif_has_l3_rx_handler(const struct net_device * dev)5381 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5382 {
5383 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5384 }
5385 
netif_is_l3_master(const struct net_device * dev)5386 static inline bool netif_is_l3_master(const struct net_device *dev)
5387 {
5388 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5389 }
5390 
netif_is_l3_slave(const struct net_device * dev)5391 static inline bool netif_is_l3_slave(const struct net_device *dev)
5392 {
5393 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5394 }
5395 
dev_sdif(const struct net_device * dev)5396 static inline int dev_sdif(const struct net_device *dev)
5397 {
5398 #ifdef CONFIG_NET_L3_MASTER_DEV
5399 	if (netif_is_l3_slave(dev))
5400 		return dev->ifindex;
5401 #endif
5402 	return 0;
5403 }
5404 
netif_is_bridge_master(const struct net_device * dev)5405 static inline bool netif_is_bridge_master(const struct net_device *dev)
5406 {
5407 	return dev->priv_flags & IFF_EBRIDGE;
5408 }
5409 
netif_is_bridge_port(const struct net_device * dev)5410 static inline bool netif_is_bridge_port(const struct net_device *dev)
5411 {
5412 	return dev->priv_flags & IFF_BRIDGE_PORT;
5413 }
5414 
netif_is_ovs_master(const struct net_device * dev)5415 static inline bool netif_is_ovs_master(const struct net_device *dev)
5416 {
5417 	return dev->priv_flags & IFF_OPENVSWITCH;
5418 }
5419 
netif_is_ovs_port(const struct net_device * dev)5420 static inline bool netif_is_ovs_port(const struct net_device *dev)
5421 {
5422 	return dev->priv_flags & IFF_OVS_DATAPATH;
5423 }
5424 
netif_is_any_bridge_master(const struct net_device * dev)5425 static inline bool netif_is_any_bridge_master(const struct net_device *dev)
5426 {
5427 	return netif_is_bridge_master(dev) || netif_is_ovs_master(dev);
5428 }
5429 
netif_is_any_bridge_port(const struct net_device * dev)5430 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5431 {
5432 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5433 }
5434 
netif_is_team_master(const struct net_device * dev)5435 static inline bool netif_is_team_master(const struct net_device *dev)
5436 {
5437 	return dev->priv_flags & IFF_TEAM;
5438 }
5439 
netif_is_team_port(const struct net_device * dev)5440 static inline bool netif_is_team_port(const struct net_device *dev)
5441 {
5442 	return dev->priv_flags & IFF_TEAM_PORT;
5443 }
5444 
netif_is_lag_master(const struct net_device * dev)5445 static inline bool netif_is_lag_master(const struct net_device *dev)
5446 {
5447 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5448 }
5449 
netif_is_lag_port(const struct net_device * dev)5450 static inline bool netif_is_lag_port(const struct net_device *dev)
5451 {
5452 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5453 }
5454 
netif_is_rxfh_configured(const struct net_device * dev)5455 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5456 {
5457 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5458 }
5459 
netif_is_failover(const struct net_device * dev)5460 static inline bool netif_is_failover(const struct net_device *dev)
5461 {
5462 	return dev->priv_flags & IFF_FAILOVER;
5463 }
5464 
netif_is_failover_slave(const struct net_device * dev)5465 static inline bool netif_is_failover_slave(const struct net_device *dev)
5466 {
5467 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5468 }
5469 
5470 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5471 static inline void netif_keep_dst(struct net_device *dev)
5472 {
5473 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5474 }
5475 
5476 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5477 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5478 {
5479 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5480 	return netif_is_macsec(dev);
5481 }
5482 
5483 extern struct pernet_operations __net_initdata loopback_net_ops;
5484 
5485 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5486 
5487 /* netdev_printk helpers, similar to dev_printk */
5488 
netdev_name(const struct net_device * dev)5489 static inline const char *netdev_name(const struct net_device *dev)
5490 {
5491 	if (!dev->name[0] || strchr(dev->name, '%'))
5492 		return "(unnamed net_device)";
5493 	return dev->name;
5494 }
5495 
netdev_reg_state(const struct net_device * dev)5496 static inline const char *netdev_reg_state(const struct net_device *dev)
5497 {
5498 	u8 reg_state = READ_ONCE(dev->reg_state);
5499 
5500 	switch (reg_state) {
5501 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5502 	case NETREG_REGISTERED: return "";
5503 	case NETREG_UNREGISTERING: return " (unregistering)";
5504 	case NETREG_UNREGISTERED: return " (unregistered)";
5505 	case NETREG_RELEASED: return " (released)";
5506 	case NETREG_DUMMY: return " (dummy)";
5507 	}
5508 
5509 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, reg_state);
5510 	return " (unknown)";
5511 }
5512 
5513 #define MODULE_ALIAS_NETDEV(device) \
5514 	MODULE_ALIAS("netdev-" device)
5515 
5516 /*
5517  * netdev_WARN() acts like dev_printk(), but with the key difference
5518  * of using a WARN/WARN_ON to get the message out, including the
5519  * file/line information and a backtrace.
5520  */
5521 #define netdev_WARN(dev, format, args...)			\
5522 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5523 	     netdev_reg_state(dev), ##args)
5524 
5525 #define netdev_WARN_ONCE(dev, format, args...)				\
5526 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5527 		  netdev_reg_state(dev), ##args)
5528 
5529 /*
5530  *	The list of packet types we will receive (as opposed to discard)
5531  *	and the routines to invoke.
5532  *
5533  *	Why 16. Because with 16 the only overlap we get on a hash of the
5534  *	low nibble of the protocol value is RARP/SNAP/X.25.
5535  *
5536  *		0800	IP
5537  *		0001	802.3
5538  *		0002	AX.25
5539  *		0004	802.2
5540  *		8035	RARP
5541  *		0005	SNAP
5542  *		0805	X.25
5543  *		0806	ARP
5544  *		8137	IPX
5545  *		0009	Localtalk
5546  *		86DD	IPv6
5547  */
5548 #define PTYPE_HASH_SIZE	(16)
5549 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5550 
5551 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5552 
5553 extern struct net_device *blackhole_netdev;
5554 
5555 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5556 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5557 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5558 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5559 #define DEV_STATS_READ(DEV, FIELD) atomic_long_read(&(DEV)->stats.__##FIELD)
5560 
5561 #endif	/* _LINUX_NETDEVICE_H */
5562