xref: /freebsd/sys/netinet6/nd6.c (revision 0d469d23715d690b863787ebfa51529e1f6a9092)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the project nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	$KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_route.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/eventhandler.h>
41 #include <sys/callout.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mbuf.h>
45 #include <sys/mutex.h>
46 #include <sys/socket.h>
47 #include <sys/sockio.h>
48 #include <sys/time.h>
49 #include <sys/kernel.h>
50 #include <sys/protosw.h>
51 #include <sys/errno.h>
52 #include <sys/syslog.h>
53 #include <sys/rwlock.h>
54 #include <sys/queue.h>
55 #include <sys/sdt.h>
56 #include <sys/sysctl.h>
57 
58 #include <net/if.h>
59 #include <net/if_var.h>
60 #include <net/if_dl.h>
61 #include <net/if_private.h>
62 #include <net/if_types.h>
63 #include <net/route.h>
64 #include <net/route/route_ctl.h>
65 #include <net/route/nhop.h>
66 #include <net/vnet.h>
67 
68 #include <netinet/in.h>
69 #include <netinet/in_kdtrace.h>
70 #include <net/if_llatbl.h>
71 #include <netinet/if_ether.h>
72 #include <netinet6/in6_fib.h>
73 #include <netinet6/in6_var.h>
74 #include <netinet/ip6.h>
75 #include <netinet6/ip6_var.h>
76 #include <netinet6/scope6_var.h>
77 #include <netinet6/nd6.h>
78 #include <netinet6/in6_ifattach.h>
79 #include <netinet/icmp6.h>
80 #include <netinet6/send.h>
81 
82 #include <sys/limits.h>
83 
84 #include <security/mac/mac_framework.h>
85 
86 #define	ND6_PREFIX_WITH_ROUTER(pr)	!LIST_EMPTY(&(pr)->ndpr_advrtrs)
87 
88 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
89 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
90 
91 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery");
92 
93 VNET_DEFINE_STATIC(int, nd6_prune) = 1;
94 #define	V_nd6_prune	VNET(nd6_prune)
95 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_PRUNE, nd6_prune,
96     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_prune), 0,
97     "Frequency in seconds of checks for expired prefixes and routers");
98 
99 VNET_DEFINE_STATIC(int, nd6_delay) = 5;
100 #define	V_nd6_delay	VNET(nd6_delay)
101 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_DELAY, nd6_delay,
102     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_delay), 0,
103     "Delay in seconds before probing for reachability");
104 
105 VNET_DEFINE_STATIC(int, nd6_umaxtries) = 3;
106 #define	V_nd6_umaxtries	VNET(nd6_umaxtries)
107 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_UMAXTRIES, nd6_umaxtries,
108     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_umaxtries), 0,
109     "Number of ICMPv6 NS messages sent during reachability detection");
110 
111 VNET_DEFINE(int, nd6_mmaxtries) = 3;
112 #define	V_nd6_mmaxtries	VNET(nd6_mmaxtries)
113 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MMAXTRIES, nd6_mmaxtries,
114     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_mmaxtries), 0,
115     "Number of ICMPv6 NS messages sent during address resolution");
116 
117 VNET_DEFINE_STATIC(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage
118 							* collection timer */
119 #define	V_nd6_gctimer	VNET(nd6_gctimer)
120 
121 /* preventing too many loops in ND option parsing */
122 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */
123 
124 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 16; /* max pkts cached in unresolved
125 					 * ND entries */
126 #define	V_nd6_maxndopt			VNET(nd6_maxndopt)
127 #define	V_nd6_maxqueuelen		VNET(nd6_maxqueuelen)
128 
129 #ifdef ND6_DEBUG
130 VNET_DEFINE(int, nd6_debug) = 1;
131 #else
132 VNET_DEFINE(int, nd6_debug) = 0;
133 #endif
134 #define	V_nd6_debug	VNET(nd6_debug)
135 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_DEBUG, nd6_debug,
136     CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_debug), 0,
137     "Log NDP debug messages");
138 
139 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh;
140 
141 VNET_DEFINE(struct nd_prhead, nd_prefix);
142 VNET_DEFINE(struct rwlock, nd6_lock);
143 VNET_DEFINE(uint64_t, nd6_list_genid);
144 VNET_DEFINE(struct mtx, nd6_onlink_mtx);
145 
146 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL;
147 #define	V_nd6_recalc_reachtm_interval	VNET(nd6_recalc_reachtm_interval)
148 
149 int	(*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int);
150 
151 static bool nd6_is_new_addr_neighbor(const struct sockaddr_in6 *,
152 	struct ifnet *);
153 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
154 static void nd6_slowtimo(void *);
155 static int regen_tmpaddr(struct in6_ifaddr *);
156 static void nd6_free(struct llentry **, int);
157 static void nd6_free_redirect(const struct llentry *);
158 static void nd6_llinfo_timer(void *);
159 static void nd6_llinfo_settimer_locked(struct llentry *, long);
160 static int nd6_resolve_slow(struct ifnet *, int, int, struct mbuf *,
161     const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **);
162 static int nd6_need_cache(struct ifnet *);
163 
164 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch);
165 #define	V_nd6_slowtimo_ch		VNET(nd6_slowtimo_ch)
166 
167 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch);
168 #define	V_nd6_timer_ch			VNET(nd6_timer_ch)
169 
170 static void
nd6_lle_event(void * arg __unused,struct llentry * lle,int evt)171 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt)
172 {
173 	struct rt_addrinfo rtinfo;
174 	struct sockaddr_in6 dst;
175 	struct sockaddr_dl gw;
176 	struct ifnet *ifp;
177 	int type;
178 	int fibnum;
179 
180 	LLE_WLOCK_ASSERT(lle);
181 
182 	if (lltable_get_af(lle->lle_tbl) != AF_INET6)
183 		return;
184 
185 	switch (evt) {
186 	case LLENTRY_RESOLVED:
187 		type = RTM_ADD;
188 		KASSERT(lle->la_flags & LLE_VALID,
189 		    ("%s: %p resolved but not valid?", __func__, lle));
190 		break;
191 	case LLENTRY_EXPIRED:
192 		type = RTM_DELETE;
193 		break;
194 	default:
195 		return;
196 	}
197 
198 	ifp = lltable_get_ifp(lle->lle_tbl);
199 
200 	bzero(&dst, sizeof(dst));
201 	bzero(&gw, sizeof(gw));
202 	bzero(&rtinfo, sizeof(rtinfo));
203 	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst);
204 	dst.sin6_scope_id = in6_getscopezone(ifp,
205 	    in6_addrscope(&dst.sin6_addr));
206 	gw.sdl_len = sizeof(struct sockaddr_dl);
207 	gw.sdl_family = AF_LINK;
208 	gw.sdl_alen = ifp->if_addrlen;
209 	gw.sdl_index = ifp->if_index;
210 	gw.sdl_type = ifp->if_type;
211 	if (evt == LLENTRY_RESOLVED)
212 		bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen);
213 	rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst;
214 	rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw;
215 	rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY;
216 	fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib;
217 	rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | (
218 	    type == RTM_ADD ? RTF_UP: 0), 0, fibnum);
219 }
220 
221 /*
222  * A handler for interface link layer address change event.
223  */
224 static void
nd6_iflladdr(void * arg __unused,struct ifnet * ifp)225 nd6_iflladdr(void *arg __unused, struct ifnet *ifp)
226 {
227 	/* XXXGL: ??? */
228 	if (ifp->if_inet6 == NULL)
229 		return;
230 
231 	lltable_update_ifaddr(LLTABLE6(ifp));
232 }
233 
234 void
nd6_init(void)235 nd6_init(void)
236 {
237 
238 	mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF);
239 	rw_init(&V_nd6_lock, "nd6 list");
240 
241 	LIST_INIT(&V_nd_prefix);
242 	nd6_defrouter_init();
243 
244 	/* Start timers. */
245 	callout_init(&V_nd6_slowtimo_ch, 1);
246 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
247 	    nd6_slowtimo, curvnet);
248 
249 	callout_init(&V_nd6_timer_ch, 1);
250 	callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet);
251 
252 	nd6_dad_init();
253 	if (IS_DEFAULT_VNET(curvnet)) {
254 		lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event,
255 		    NULL, EVENTHANDLER_PRI_ANY);
256 		iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event,
257 		    nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
258 		ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event,
259 		    nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY);
260 	}
261 }
262 
263 #ifdef VIMAGE
264 void
nd6_destroy(void)265 nd6_destroy(void)
266 {
267 
268 	callout_drain(&V_nd6_slowtimo_ch);
269 	callout_drain(&V_nd6_timer_ch);
270 	if (IS_DEFAULT_VNET(curvnet)) {
271 		EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh);
272 		EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh);
273 		EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh);
274 	}
275 	rw_destroy(&V_nd6_lock);
276 	mtx_destroy(&V_nd6_onlink_mtx);
277 }
278 #endif
279 
280 struct nd_ifinfo *
nd6_ifattach(struct ifnet * ifp)281 nd6_ifattach(struct ifnet *ifp)
282 {
283 	struct nd_ifinfo *nd;
284 
285 	nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO);
286 	nd->initialized = 1;
287 
288 	nd->chlim = IPV6_DEFHLIM;
289 	nd->basereachable = REACHABLE_TIME;
290 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
291 	nd->retrans = RETRANS_TIMER;
292 
293 	nd->flags = ND6_IFF_PERFORMNUD;
294 
295 	/* Set IPv6 disabled on all interfaces but loopback by default. */
296 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
297 		nd->flags |= ND6_IFF_IFDISABLED;
298 
299 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
300 	 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by
301 	 * default regardless of the V_ip6_auto_linklocal configuration to
302 	 * give a reasonable default behavior.
303 	 */
304 	if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE &&
305 	    ifp->if_type != IFT_WIREGUARD) || (ifp->if_flags & IFF_LOOPBACK))
306 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
307 	/*
308 	 * A loopback interface does not need to accept RTADV.
309 	 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by
310 	 * default regardless of the V_ip6_accept_rtadv configuration to
311 	 * prevent the interface from accepting RA messages arrived
312 	 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV.
313 	 */
314 	if (V_ip6_accept_rtadv &&
315 	    !(ifp->if_flags & IFF_LOOPBACK) &&
316 	    (ifp->if_type != IFT_BRIDGE)) {
317 			nd->flags |= ND6_IFF_ACCEPT_RTADV;
318 			/* If we globally accept rtadv, assume IPv6 on. */
319 			nd->flags &= ~ND6_IFF_IFDISABLED;
320 	}
321 	if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK))
322 		nd->flags |= ND6_IFF_NO_RADR;
323 
324 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
325 	nd6_setmtu0(ifp, nd);
326 
327 	/* Configure default value for stable addresses algorithm, skip loopback interface */
328 	if (V_ip6_use_stableaddr && !(ifp->if_flags & IFF_LOOPBACK)) {
329 		nd->flags |= ND6_IFF_STABLEADDR;
330 	}
331 
332 	return nd;
333 }
334 
335 void
nd6_ifdetach(struct ifnet * ifp,struct nd_ifinfo * nd)336 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd)
337 {
338 	struct epoch_tracker et;
339 	struct ifaddr *ifa, *next;
340 
341 	NET_EPOCH_ENTER(et);
342 	CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) {
343 		if (ifa->ifa_addr->sa_family != AF_INET6)
344 			continue;
345 
346 		/* stop DAD processing */
347 		nd6_dad_stop(ifa);
348 	}
349 	NET_EPOCH_EXIT(et);
350 
351 	free(nd, M_IP6NDP);
352 }
353 
354 /*
355  * Reset ND level link MTU. This function is called when the physical MTU
356  * changes, which means we might have to adjust the ND level MTU.
357  */
358 void
nd6_setmtu(struct ifnet * ifp)359 nd6_setmtu(struct ifnet *ifp)
360 {
361 	/* XXXGL: ??? */
362 	if (ifp->if_inet6 == NULL)
363 		return;
364 
365 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
366 }
367 
368 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */
369 void
nd6_setmtu0(struct ifnet * ifp,struct nd_ifinfo * ndi)370 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
371 {
372 	u_int32_t omaxmtu;
373 
374 	omaxmtu = ndi->maxmtu;
375 	ndi->maxmtu = ifp->if_mtu;
376 
377 	/*
378 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
379 	 * undesirable situation.  We thus notify the operator of the change
380 	 * explicitly.  The check for omaxmtu is necessary to restrict the
381 	 * log to the case of changing the MTU, not initializing it.
382 	 */
383 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
384 		log(LOG_NOTICE, "nd6_setmtu0: "
385 		    "new link MTU on %s (%lu) is too small for IPv6\n",
386 		    if_name(ifp), (unsigned long)ndi->maxmtu);
387 	}
388 }
389 
390 void
nd6_option_init(void * opt,int icmp6len,union nd_opts * ndopts)391 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
392 {
393 
394 	bzero(ndopts, sizeof(*ndopts));
395 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
396 	ndopts->nd_opts_last
397 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
398 
399 	if (icmp6len == 0) {
400 		ndopts->nd_opts_done = 1;
401 		ndopts->nd_opts_search = NULL;
402 	}
403 }
404 
405 /*
406  * Take one ND option.
407  */
408 struct nd_opt_hdr *
nd6_option(union nd_opts * ndopts)409 nd6_option(union nd_opts *ndopts)
410 {
411 	struct nd_opt_hdr *nd_opt;
412 	int olen;
413 
414 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
415 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
416 	    __func__));
417 	if (ndopts->nd_opts_search == NULL)
418 		return NULL;
419 	if (ndopts->nd_opts_done)
420 		return NULL;
421 
422 	nd_opt = ndopts->nd_opts_search;
423 
424 	/* make sure nd_opt_len is inside the buffer */
425 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
426 		bzero(ndopts, sizeof(*ndopts));
427 		return NULL;
428 	}
429 
430 	olen = nd_opt->nd_opt_len << 3;
431 	if (olen == 0) {
432 		/*
433 		 * Message validation requires that all included
434 		 * options have a length that is greater than zero.
435 		 */
436 		bzero(ndopts, sizeof(*ndopts));
437 		return NULL;
438 	}
439 
440 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
441 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
442 		/* option overruns the end of buffer, invalid */
443 		bzero(ndopts, sizeof(*ndopts));
444 		return NULL;
445 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
446 		/* reached the end of options chain */
447 		ndopts->nd_opts_done = 1;
448 		ndopts->nd_opts_search = NULL;
449 	}
450 	return nd_opt;
451 }
452 
453 /*
454  * Parse multiple ND options.
455  * This function is much easier to use, for ND routines that do not need
456  * multiple options of the same type.
457  */
458 int
nd6_options(union nd_opts * ndopts)459 nd6_options(union nd_opts *ndopts)
460 {
461 	struct nd_opt_hdr *nd_opt;
462 	int i = 0;
463 
464 	KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__));
465 	KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts",
466 	    __func__));
467 	if (ndopts->nd_opts_search == NULL)
468 		return 0;
469 
470 	while (1) {
471 		nd_opt = nd6_option(ndopts);
472 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
473 			/*
474 			 * Message validation requires that all included
475 			 * options have a length that is greater than zero.
476 			 */
477 			ICMP6STAT_INC(icp6s_nd_badopt);
478 			bzero(ndopts, sizeof(*ndopts));
479 			return -1;
480 		}
481 
482 		if (nd_opt == NULL)
483 			goto skip1;
484 
485 		switch (nd_opt->nd_opt_type) {
486 		case ND_OPT_SOURCE_LINKADDR:
487 		case ND_OPT_TARGET_LINKADDR:
488 		case ND_OPT_MTU:
489 		case ND_OPT_REDIRECTED_HEADER:
490 		case ND_OPT_NONCE:
491 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
492 				nd6log((LOG_INFO,
493 				    "duplicated ND6 option found (type=%d)\n",
494 				    nd_opt->nd_opt_type));
495 				/* XXX bark? */
496 			} else {
497 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
498 					= nd_opt;
499 			}
500 			break;
501 		case ND_OPT_PREFIX_INFORMATION:
502 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
503 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
504 					= nd_opt;
505 			}
506 			ndopts->nd_opts_pi_end =
507 				(struct nd_opt_prefix_info *)nd_opt;
508 			break;
509 		/* What about ND_OPT_ROUTE_INFO? RFC 4191 */
510 		case ND_OPT_RDNSS:	/* RFC 6106 */
511 		case ND_OPT_DNSSL:	/* RFC 6106 */
512 			/*
513 			 * Silently ignore options we know and do not care about
514 			 * in the kernel.
515 			 */
516 			break;
517 		default:
518 			/*
519 			 * Unknown options must be silently ignored,
520 			 * to accommodate future extension to the protocol.
521 			 */
522 			nd6log((LOG_DEBUG,
523 			    "nd6_options: unsupported option %d - "
524 			    "option ignored\n", nd_opt->nd_opt_type));
525 		}
526 
527 skip1:
528 		i++;
529 		if (i > V_nd6_maxndopt) {
530 			ICMP6STAT_INC(icp6s_nd_toomanyopt);
531 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
532 			break;
533 		}
534 
535 		if (ndopts->nd_opts_done)
536 			break;
537 	}
538 
539 	return 0;
540 }
541 
542 /*
543  * ND6 timer routine to handle ND6 entries
544  */
545 static void
nd6_llinfo_settimer_locked(struct llentry * ln,long tick)546 nd6_llinfo_settimer_locked(struct llentry *ln, long tick)
547 {
548 	int canceled;
549 
550 	LLE_WLOCK_ASSERT(ln);
551 
552 	/* Do not schedule timers for child LLEs. */
553 	if (ln->la_flags & LLE_CHILD)
554 		return;
555 
556 	if (tick < 0) {
557 		ln->la_expire = 0;
558 		ln->ln_ntick = 0;
559 		canceled = callout_stop(&ln->lle_timer);
560 	} else {
561 		ln->la_expire = time_uptime + tick / hz;
562 		LLE_ADDREF(ln);
563 		if (tick > INT_MAX) {
564 			ln->ln_ntick = tick - INT_MAX;
565 			canceled = callout_reset(&ln->lle_timer, INT_MAX,
566 			    nd6_llinfo_timer, ln);
567 		} else {
568 			ln->ln_ntick = 0;
569 			canceled = callout_reset(&ln->lle_timer, tick,
570 			    nd6_llinfo_timer, ln);
571 		}
572 	}
573 	if (canceled > 0)
574 		LLE_REMREF(ln);
575 }
576 
577 /*
578  * Gets source address of the first packet in hold queue
579  * and stores it in @src.
580  * Returns pointer to @src (if hold queue is not empty) or NULL.
581  *
582  * Set noinline to be dtrace-friendly
583  */
584 static __noinline struct in6_addr *
nd6_llinfo_get_holdsrc(struct llentry * ln,struct in6_addr * src)585 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
586 {
587 	struct ip6_hdr hdr;
588 	struct mbuf *m;
589 
590 	if (ln->la_hold == NULL)
591 		return (NULL);
592 
593 	/*
594 	 * assume every packet in la_hold has the same IP header
595 	 */
596 	m = ln->la_hold;
597 	if (sizeof(hdr) > m->m_len)
598 		return (NULL);
599 
600 	m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr);
601 	*src = hdr.ip6_src;
602 
603 	return (src);
604 }
605 
606 /*
607  * Checks if we need to switch from STALE state.
608  *
609  * RFC 4861 requires switching from STALE to DELAY state
610  * on first packet matching entry, waiting V_nd6_delay and
611  * transition to PROBE state (if upper layer confirmation was
612  * not received).
613  *
614  * This code performs a bit differently:
615  * On packet hit we don't change state (but desired state
616  * can be guessed by control plane). However, after V_nd6_delay
617  * seconds code will transition to PROBE state (so DELAY state
618  * is kinda skipped in most situations).
619  *
620  * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so
621  * we perform the following upon entering STALE state:
622  *
623  * 1) Arm timer to run each V_nd6_delay seconds to make sure that
624  * if packet was transmitted at the start of given interval, we
625  * would be able to switch to PROBE state in V_nd6_delay seconds
626  * as user expects.
627  *
628  * 2) Reschedule timer until original V_nd6_gctimer expires keeping
629  * lle in STALE state (remaining timer value stored in lle_remtime).
630  *
631  * 3) Reschedule timer if packet was transmitted less that V_nd6_delay
632  * seconds ago.
633  *
634  * Returns non-zero value if the entry is still STALE (storing
635  * the next timer interval in @pdelay).
636  *
637  * Returns zero value if original timer expired or we need to switch to
638  * PROBE (store that in @do_switch variable).
639  */
640 static int
nd6_is_stale(struct llentry * lle,long * pdelay,int * do_switch)641 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch)
642 {
643 	int nd_delay, nd_gctimer;
644 	time_t lle_hittime;
645 	long delay;
646 
647 	*do_switch = 0;
648 	nd_gctimer = V_nd6_gctimer;
649 	nd_delay = V_nd6_delay;
650 
651 	lle_hittime = llentry_get_hittime(lle);
652 
653 	if (lle_hittime == 0) {
654 		/*
655 		 * Datapath feedback has been requested upon entering
656 		 * STALE state. No packets has been passed using this lle.
657 		 * Ask for the timer reschedule and keep STALE state.
658 		 */
659 		delay = (long)(MIN(nd_gctimer, nd_delay));
660 		delay *= hz;
661 		if (lle->lle_remtime > delay)
662 			lle->lle_remtime -= delay;
663 		else {
664 			delay = lle->lle_remtime;
665 			lle->lle_remtime = 0;
666 		}
667 
668 		if (delay == 0) {
669 			/*
670 			 * The original ng6_gctime timeout ended,
671 			 * no more rescheduling.
672 			 */
673 			return (0);
674 		}
675 
676 		*pdelay = delay;
677 		return (1);
678 	}
679 
680 	/*
681 	 * Packet received. Verify timestamp
682 	 */
683 	delay = (long)(time_uptime - lle_hittime);
684 	if (delay < nd_delay) {
685 		/*
686 		 * V_nd6_delay still not passed since the first
687 		 * hit in STALE state.
688 		 * Reschedule timer and return.
689 		 */
690 		*pdelay = (long)(nd_delay - delay) * hz;
691 		return (1);
692 	}
693 
694 	/* Request switching to probe */
695 	*do_switch = 1;
696 	return (0);
697 }
698 
699 /*
700  * Switch @lle state to new state optionally arming timers.
701  *
702  * Set noinline to be dtrace-friendly
703  */
704 __noinline void
nd6_llinfo_setstate(struct llentry * lle,int newstate)705 nd6_llinfo_setstate(struct llentry *lle, int newstate)
706 {
707 	struct ifnet *ifp;
708 	int nd_gctimer, nd_delay;
709 	long delay, remtime;
710 
711 	delay = 0;
712 	remtime = 0;
713 
714 	switch (newstate) {
715 	case ND6_LLINFO_INCOMPLETE:
716 		ifp = lle->lle_tbl->llt_ifp;
717 		delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000;
718 		break;
719 	case ND6_LLINFO_REACHABLE:
720 		if (!ND6_LLINFO_PERMANENT(lle)) {
721 			ifp = lle->lle_tbl->llt_ifp;
722 			delay = (long)ND_IFINFO(ifp)->reachable * hz;
723 		}
724 		break;
725 	case ND6_LLINFO_STALE:
726 
727 		llentry_request_feedback(lle);
728 		nd_delay = V_nd6_delay;
729 		nd_gctimer = V_nd6_gctimer;
730 
731 		delay = (long)(MIN(nd_gctimer, nd_delay)) * hz;
732 		remtime = (long)nd_gctimer * hz - delay;
733 		break;
734 	case ND6_LLINFO_DELAY:
735 		lle->la_asked = 0;
736 		delay = (long)V_nd6_delay * hz;
737 		break;
738 	}
739 
740 	if (delay > 0)
741 		nd6_llinfo_settimer_locked(lle, delay);
742 
743 	lle->lle_remtime = remtime;
744 	lle->ln_state = newstate;
745 }
746 
747 /*
748  * Timer-dependent part of nd state machine.
749  *
750  * Set noinline to be dtrace-friendly
751  */
752 static __noinline void
nd6_llinfo_timer(void * arg)753 nd6_llinfo_timer(void *arg)
754 {
755 	struct epoch_tracker et;
756 	struct llentry *ln;
757 	struct in6_addr *dst, *pdst, *psrc, src;
758 	struct ifnet *ifp;
759 	struct nd_ifinfo *ndi;
760 	int do_switch, send_ns;
761 	long delay;
762 
763 	KASSERT(arg != NULL, ("%s: arg NULL", __func__));
764 	ln = (struct llentry *)arg;
765 	ifp = lltable_get_ifp(ln->lle_tbl);
766 	CURVNET_SET(ifp->if_vnet);
767 
768 	ND6_RLOCK();
769 	LLE_WLOCK(ln);
770 	if (callout_pending(&ln->lle_timer)) {
771 		/*
772 		 * Here we are a bit odd here in the treatment of
773 		 * active/pending. If the pending bit is set, it got
774 		 * rescheduled before I ran. The active
775 		 * bit we ignore, since if it was stopped
776 		 * in ll_tablefree() and was currently running
777 		 * it would have return 0 so the code would
778 		 * not have deleted it since the callout could
779 		 * not be stopped so we want to go through
780 		 * with the delete here now. If the callout
781 		 * was restarted, the pending bit will be back on and
782 		 * we just want to bail since the callout_reset would
783 		 * return 1 and our reference would have been removed
784 		 * by nd6_llinfo_settimer_locked above since canceled
785 		 * would have been 1.
786 		 */
787 		LLE_WUNLOCK(ln);
788 		ND6_RUNLOCK();
789 		CURVNET_RESTORE();
790 		return;
791 	}
792 	NET_EPOCH_ENTER(et);
793 	ndi = ND_IFINFO(ifp);
794 	send_ns = 0;
795 	dst = &ln->r_l3addr.addr6;
796 	pdst = dst;
797 
798 	if (ln->ln_ntick > 0) {
799 		if (ln->ln_ntick > INT_MAX) {
800 			ln->ln_ntick -= INT_MAX;
801 			nd6_llinfo_settimer_locked(ln, INT_MAX);
802 		} else {
803 			ln->ln_ntick = 0;
804 			nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
805 		}
806 		goto done;
807 	}
808 
809 	if (ln->la_flags & LLE_STATIC) {
810 		goto done;
811 	}
812 
813 	if (ln->la_flags & LLE_DELETED) {
814 		nd6_free(&ln, 0);
815 		goto done;
816 	}
817 
818 	switch (ln->ln_state) {
819 	case ND6_LLINFO_INCOMPLETE:
820 		if (ln->la_asked < V_nd6_mmaxtries) {
821 			ln->la_asked++;
822 			send_ns = 1;
823 			/* Send NS to multicast address */
824 			pdst = NULL;
825 		} else {
826 			struct mbuf *m;
827 
828 			ICMP6STAT_ADD(icp6s_dropped, ln->la_numheld);
829 
830 			m = ln->la_hold;
831 			if (m != NULL) {
832 				/*
833 				 * assuming every packet in la_hold has the
834 				 * same IP header.  Send error after unlock.
835 				 */
836 				ln->la_hold = m->m_nextpkt;
837 				m->m_nextpkt = NULL;
838 				ln->la_numheld--;
839 			}
840 			nd6_free(&ln, 0);
841 			if (m != NULL) {
842 				struct mbuf *n = m;
843 
844 				/*
845 				 * if there are any ummapped mbufs, we
846 				 * must free them, rather than using
847 				 * them for an ICMP, as they cannot be
848 				 * checksummed.
849 				 */
850 				while ((n = n->m_next) != NULL) {
851 					if (n->m_flags & M_EXTPG)
852 						break;
853 				}
854 				if (n != NULL) {
855 					m_freem(m);
856 					m = NULL;
857 				} else {
858 					icmp6_error2(m, ICMP6_DST_UNREACH,
859 					    ICMP6_DST_UNREACH_ADDR, 0, ifp);
860 				}
861 			}
862 		}
863 		break;
864 	case ND6_LLINFO_REACHABLE:
865 		if (!ND6_LLINFO_PERMANENT(ln))
866 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
867 		break;
868 
869 	case ND6_LLINFO_STALE:
870 		if (nd6_is_stale(ln, &delay, &do_switch) != 0) {
871 			/*
872 			 * No packet has used this entry and GC timeout
873 			 * has not been passed. Reschedule timer and
874 			 * return.
875 			 */
876 			nd6_llinfo_settimer_locked(ln, delay);
877 			break;
878 		}
879 
880 		if (do_switch == 0) {
881 			/*
882 			 * GC timer has ended and entry hasn't been used.
883 			 * Run Garbage collector (RFC 4861, 5.3)
884 			 */
885 			if (!ND6_LLINFO_PERMANENT(ln))
886 				nd6_free(&ln, 1);
887 			break;
888 		}
889 
890 		/* Entry has been used AND delay timer has ended. */
891 
892 		/* FALLTHROUGH */
893 
894 	case ND6_LLINFO_DELAY:
895 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
896 			/* We need NUD */
897 			ln->la_asked = 1;
898 			nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE);
899 			send_ns = 1;
900 		} else
901 			nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */
902 		break;
903 	case ND6_LLINFO_PROBE:
904 		if (ln->la_asked < V_nd6_umaxtries) {
905 			ln->la_asked++;
906 			send_ns = 1;
907 		} else {
908 			nd6_free(&ln, 0);
909 		}
910 		break;
911 	default:
912 		panic("%s: paths in a dark night can be confusing: %d",
913 		    __func__, ln->ln_state);
914 	}
915 done:
916 	if (ln != NULL)
917 		ND6_RUNLOCK();
918 	if (send_ns != 0) {
919 		nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
920 		psrc = nd6_llinfo_get_holdsrc(ln, &src);
921 		LLE_FREE_LOCKED(ln);
922 		ln = NULL;
923 		nd6_ns_output(ifp, psrc, pdst, dst, NULL);
924 	}
925 
926 	if (ln != NULL)
927 		LLE_FREE_LOCKED(ln);
928 	NET_EPOCH_EXIT(et);
929 	CURVNET_RESTORE();
930 }
931 
932 /*
933  * ND6 timer routine to expire default route list and prefix list
934  */
935 void
nd6_timer(void * arg)936 nd6_timer(void *arg)
937 {
938 	CURVNET_SET((struct vnet *) arg);
939 	struct epoch_tracker et;
940 	struct nd_prhead prl;
941 	struct nd_prefix *pr, *npr;
942 	struct ifnet *ifp;
943 	struct in6_ifaddr *ia6, *nia6;
944 	uint64_t genid;
945 
946 	LIST_INIT(&prl);
947 
948 	NET_EPOCH_ENTER(et);
949 	nd6_defrouter_timer();
950 
951 	/*
952 	 * expire interface addresses.
953 	 * in the past the loop was inside prefix expiry processing.
954 	 * However, from a stricter speci-confrmance standpoint, we should
955 	 * rather separate address lifetimes and prefix lifetimes.
956 	 *
957 	 * XXXRW: in6_ifaddrhead locking.
958 	 */
959   addrloop:
960 	CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) {
961 		/* check address lifetime */
962 		if (IFA6_IS_INVALID(ia6)) {
963 			int regen = 0;
964 
965 			/*
966 			 * If the expiring address is temporary, try
967 			 * regenerating a new one.  This would be useful when
968 			 * we suspended a laptop PC, then turned it on after a
969 			 * period that could invalidate all temporary
970 			 * addresses.  Although we may have to restart the
971 			 * loop (see below), it must be after purging the
972 			 * address.  Otherwise, we'd see an infinite loop of
973 			 * regeneration.
974 			 */
975 			if (V_ip6_use_tempaddr &&
976 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
977 				if (regen_tmpaddr(ia6) == 0)
978 					regen = 1;
979 			}
980 
981 			in6_purgeaddr(&ia6->ia_ifa);
982 
983 			if (regen)
984 				goto addrloop; /* XXX: see below */
985 		} else if (IFA6_IS_DEPRECATED(ia6)) {
986 			int oldflags = ia6->ia6_flags;
987 
988 			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
989 
990 			/*
991 			 * If a temporary address has just become deprecated,
992 			 * regenerate a new one if possible.
993 			 */
994 			if (V_ip6_use_tempaddr &&
995 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
996 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
997 				if (regen_tmpaddr(ia6) == 0) {
998 					/*
999 					 * A new temporary address is
1000 					 * generated.
1001 					 * XXX: this means the address chain
1002 					 * has changed while we are still in
1003 					 * the loop.  Although the change
1004 					 * would not cause disaster (because
1005 					 * it's not a deletion, but an
1006 					 * addition,) we'd rather restart the
1007 					 * loop just for safety.  Or does this
1008 					 * significantly reduce performance??
1009 					 */
1010 					goto addrloop;
1011 				}
1012 			}
1013 		} else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) {
1014 			/*
1015 			 * Schedule DAD for a tentative address.  This happens
1016 			 * if the interface was down or not running
1017 			 * when the address was configured.
1018 			 */
1019 			int delay;
1020 
1021 			delay = arc4random() %
1022 			    (MAX_RTR_SOLICITATION_DELAY * hz);
1023 			nd6_dad_start((struct ifaddr *)ia6, delay);
1024 		} else {
1025 			/*
1026 			 * Check status of the interface.  If it is down,
1027 			 * mark the address as tentative for future DAD.
1028 			 */
1029 			ifp = ia6->ia_ifp;
1030 			if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 &&
1031 			    ((ifp->if_flags & IFF_UP) == 0 ||
1032 			    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ||
1033 			    (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){
1034 				ia6->ia6_flags &= ~IN6_IFF_DUPLICATED;
1035 				ia6->ia6_flags |= IN6_IFF_TENTATIVE;
1036 			}
1037 
1038 			/*
1039 			 * A new RA might have made a deprecated address
1040 			 * preferred.
1041 			 */
1042 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
1043 		}
1044 	}
1045 	NET_EPOCH_EXIT(et);
1046 
1047 	ND6_WLOCK();
1048 restart:
1049 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1050 		/*
1051 		 * Expire prefixes. Since the pltime is only used for
1052 		 * autoconfigured addresses, pltime processing for prefixes is
1053 		 * not necessary.
1054 		 *
1055 		 * Only unlink after all derived addresses have expired. This
1056 		 * may not occur until two hours after the prefix has expired
1057 		 * per RFC 4862. If the prefix expires before its derived
1058 		 * addresses, mark it off-link. This will be done automatically
1059 		 * after unlinking if no address references remain.
1060 		 */
1061 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME ||
1062 		    time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime)
1063 			continue;
1064 
1065 		if (pr->ndpr_addrcnt == 0) {
1066 			nd6_prefix_unlink(pr, &prl);
1067 			continue;
1068 		}
1069 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) {
1070 			genid = V_nd6_list_genid;
1071 			nd6_prefix_ref(pr);
1072 			ND6_WUNLOCK();
1073 			ND6_ONLINK_LOCK();
1074 			(void)nd6_prefix_offlink(pr);
1075 			ND6_ONLINK_UNLOCK();
1076 			ND6_WLOCK();
1077 			nd6_prefix_rele(pr);
1078 			if (genid != V_nd6_list_genid)
1079 				goto restart;
1080 		}
1081 	}
1082 	ND6_WUNLOCK();
1083 
1084 	while ((pr = LIST_FIRST(&prl)) != NULL) {
1085 		LIST_REMOVE(pr, ndpr_entry);
1086 		nd6_prefix_del(pr);
1087 	}
1088 
1089 	callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz,
1090 	    nd6_timer, curvnet);
1091 
1092 	CURVNET_RESTORE();
1093 }
1094 
1095 /*
1096  * ia6 - deprecated/invalidated temporary address
1097  */
1098 static int
regen_tmpaddr(struct in6_ifaddr * ia6)1099 regen_tmpaddr(struct in6_ifaddr *ia6)
1100 {
1101 	struct ifaddr *ifa;
1102 	struct ifnet *ifp;
1103 	struct in6_ifaddr *public_ifa6 = NULL;
1104 
1105 	NET_EPOCH_ASSERT();
1106 
1107 	ifp = ia6->ia_ifa.ifa_ifp;
1108 	CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1109 		struct in6_ifaddr *it6;
1110 
1111 		if (ifa->ifa_addr->sa_family != AF_INET6)
1112 			continue;
1113 
1114 		it6 = (struct in6_ifaddr *)ifa;
1115 
1116 		/* ignore no autoconf addresses. */
1117 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1118 			continue;
1119 
1120 		/* ignore autoconf addresses with different prefixes. */
1121 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
1122 			continue;
1123 
1124 		/*
1125 		 * Now we are looking at an autoconf address with the same
1126 		 * prefix as ours.  If the address is temporary and is still
1127 		 * preferred, do not create another one.  It would be rare, but
1128 		 * could happen, for example, when we resume a laptop PC after
1129 		 * a long period.
1130 		 */
1131 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
1132 		    !IFA6_IS_DEPRECATED(it6)) {
1133 			public_ifa6 = NULL;
1134 			break;
1135 		}
1136 
1137 		/*
1138 		 * This is a public autoconf address that has the same prefix
1139 		 * as ours.  If it is preferred, keep it.  We can't break the
1140 		 * loop here, because there may be a still-preferred temporary
1141 		 * address with the prefix.
1142 		 */
1143 		if (!IFA6_IS_DEPRECATED(it6))
1144 			public_ifa6 = it6;
1145 	}
1146 	if (public_ifa6 != NULL)
1147 		ifa_ref(&public_ifa6->ia_ifa);
1148 
1149 	if (public_ifa6 != NULL) {
1150 		int e;
1151 
1152 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
1153 			ifa_free(&public_ifa6->ia_ifa);
1154 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
1155 			    " tmp addr,errno=%d\n", e);
1156 			return (-1);
1157 		}
1158 		ifa_free(&public_ifa6->ia_ifa);
1159 		return (0);
1160 	}
1161 
1162 	return (-1);
1163 }
1164 
1165 /*
1166  * Remove prefix and default router list entries corresponding to ifp. Neighbor
1167  * cache entries are freed in in6_domifdetach().
1168  */
1169 void
nd6_purge(struct ifnet * ifp)1170 nd6_purge(struct ifnet *ifp)
1171 {
1172 	struct nd_prhead prl;
1173 	struct nd_prefix *pr, *npr;
1174 
1175 	LIST_INIT(&prl);
1176 
1177 	/* Purge default router list entries toward ifp. */
1178 	nd6_defrouter_purge(ifp);
1179 
1180 	ND6_WLOCK();
1181 	/*
1182 	 * Remove prefixes on ifp. We should have already removed addresses on
1183 	 * this interface, so no addresses should be referencing these prefixes.
1184 	 */
1185 	LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) {
1186 		if (pr->ndpr_ifp == ifp)
1187 			nd6_prefix_unlink(pr, &prl);
1188 	}
1189 	ND6_WUNLOCK();
1190 
1191 	/* Delete the unlinked prefix objects. */
1192 	while ((pr = LIST_FIRST(&prl)) != NULL) {
1193 		LIST_REMOVE(pr, ndpr_entry);
1194 		nd6_prefix_del(pr);
1195 	}
1196 
1197 	/* cancel default outgoing interface setting */
1198 	if (V_nd6_defifindex == ifp->if_index)
1199 		nd6_setdefaultiface(0);
1200 
1201 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1202 		/* Refresh default router list. */
1203 		defrouter_select_fib(ifp->if_fib);
1204 	}
1205 }
1206 
1207 /*
1208  * the caller acquires and releases the lock on the lltbls
1209  * Returns the llentry locked
1210  */
1211 struct llentry *
nd6_lookup(const struct in6_addr * addr6,int flags,struct ifnet * ifp)1212 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1213 {
1214 	struct sockaddr_in6 sin6;
1215 	struct llentry *ln;
1216 
1217 	bzero(&sin6, sizeof(sin6));
1218 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1219 	sin6.sin6_family = AF_INET6;
1220 	sin6.sin6_addr = *addr6;
1221 
1222 	LLTABLE_RLOCK_ASSERT(LLTABLE6(ifp));
1223 
1224 	ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6);
1225 
1226 	return (ln);
1227 }
1228 
1229 static struct llentry *
nd6_alloc(const struct in6_addr * addr6,int flags,struct ifnet * ifp)1230 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp)
1231 {
1232 	struct sockaddr_in6 sin6;
1233 	struct llentry *ln;
1234 
1235 	bzero(&sin6, sizeof(sin6));
1236 	sin6.sin6_len = sizeof(struct sockaddr_in6);
1237 	sin6.sin6_family = AF_INET6;
1238 	sin6.sin6_addr = *addr6;
1239 
1240 	ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6);
1241 	if (ln != NULL)
1242 		ln->ln_state = ND6_LLINFO_NOSTATE;
1243 
1244 	return (ln);
1245 }
1246 
1247 /*
1248  * Test whether a given IPv6 address can be a neighbor.
1249  */
1250 static bool
nd6_is_new_addr_neighbor(const struct sockaddr_in6 * addr,struct ifnet * ifp)1251 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1252 {
1253 
1254 	/*
1255 	 * A link-local address is always a neighbor.
1256 	 * XXX: a link does not necessarily specify a single interface.
1257 	 */
1258 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1259 		struct sockaddr_in6 sin6_copy;
1260 		u_int32_t zone;
1261 
1262 		/*
1263 		 * We need sin6_copy since sa6_recoverscope() may modify the
1264 		 * content (XXX).
1265 		 */
1266 		sin6_copy = *addr;
1267 		if (sa6_recoverscope(&sin6_copy))
1268 			return (0); /* XXX: should be impossible */
1269 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1270 			return (0);
1271 		if (sin6_copy.sin6_scope_id == zone)
1272 			return (1);
1273 		else
1274 			return (0);
1275 	}
1276 	/* Checking global unicast */
1277 
1278 	/* If an address is directly reachable, it is a neigbor */
1279 	struct nhop_object *nh;
1280 	nh = fib6_lookup(ifp->if_fib, &addr->sin6_addr, 0, NHR_NONE, 0);
1281 	if (nh != NULL && nh->nh_aifp == ifp && (nh->nh_flags & NHF_GATEWAY) == 0)
1282 		return (true);
1283 
1284 	/*
1285 	 * Check prefixes with desired on-link state, as some may be not
1286 	 * installed in the routing table.
1287 	 */
1288 	bool matched = false;
1289 	struct nd_prefix *pr;
1290 	ND6_RLOCK();
1291 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
1292 		if (pr->ndpr_ifp != ifp)
1293 			continue;
1294 		if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0)
1295 			continue;
1296 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1297 		    &addr->sin6_addr, &pr->ndpr_mask)) {
1298 			matched = true;
1299 			break;
1300 		}
1301 	}
1302 	ND6_RUNLOCK();
1303 	if (matched)
1304 		return (true);
1305 
1306 	/*
1307 	 * If the address is assigned on the node of the other side of
1308 	 * a p2p interface, the address should be a neighbor.
1309 	 */
1310 	if (ifp->if_flags & IFF_POINTOPOINT) {
1311 		struct ifaddr *ifa;
1312 
1313 		CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1314 			if (ifa->ifa_addr->sa_family != addr->sin6_family)
1315 				continue;
1316 			if (ifa->ifa_dstaddr != NULL &&
1317 			    sa_equal(addr, ifa->ifa_dstaddr)) {
1318 				return (true);
1319 			}
1320 		}
1321 	}
1322 
1323 	/*
1324 	 * If the default router list is empty, all addresses are regarded
1325 	 * as on-link, and thus, as a neighbor.
1326 	 */
1327 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1328 	    nd6_defrouter_list_empty() &&
1329 	    V_nd6_defifindex == ifp->if_index) {
1330 		return (1);
1331 	}
1332 
1333 	return (0);
1334 }
1335 
1336 /*
1337  * Detect if a given IPv6 address identifies a neighbor on a given link.
1338  * XXX: should take care of the destination of a p2p link?
1339  */
1340 int
nd6_is_addr_neighbor(const struct sockaddr_in6 * addr,struct ifnet * ifp)1341 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1342 {
1343 	struct llentry *lle;
1344 	int rc = 0;
1345 
1346 	NET_EPOCH_ASSERT();
1347 
1348 	if (nd6_is_new_addr_neighbor(addr, ifp))
1349 		return (1);
1350 
1351 	/*
1352 	 * Even if the address matches none of our addresses, it might be
1353 	 * in the neighbor cache.
1354 	 */
1355 	if ((lle = nd6_lookup(&addr->sin6_addr, LLE_SF(AF_INET6, 0), ifp)) != NULL) {
1356 		LLE_RUNLOCK(lle);
1357 		rc = 1;
1358 	}
1359 	return (rc);
1360 }
1361 
1362 static __noinline void
nd6_free_children(struct llentry * lle)1363 nd6_free_children(struct llentry *lle)
1364 {
1365 	struct llentry *child_lle;
1366 
1367 	NET_EPOCH_ASSERT();
1368 	LLE_WLOCK_ASSERT(lle);
1369 
1370 	while ((child_lle = CK_SLIST_FIRST(&lle->lle_children)) != NULL) {
1371 		LLE_WLOCK(child_lle);
1372 		lltable_unlink_child_entry(child_lle);
1373 		llentry_free(child_lle);
1374 	}
1375 }
1376 
1377 /*
1378  * Tries to update @lle address/prepend data with new @lladdr.
1379  *
1380  * Returns true on success.
1381  * In any case, @lle is returned wlocked.
1382  */
1383 static __noinline bool
nd6_try_set_entry_addr_locked(struct ifnet * ifp,struct llentry * lle,char * lladdr)1384 nd6_try_set_entry_addr_locked(struct ifnet *ifp, struct llentry *lle, char *lladdr)
1385 {
1386 	u_char buf[LLE_MAX_LINKHDR];
1387 	int fam, off;
1388 	size_t sz;
1389 
1390 	sz = sizeof(buf);
1391 	if (lltable_calc_llheader(ifp, AF_INET6, lladdr, buf, &sz, &off) != 0)
1392 		return (false);
1393 
1394 	/* Update data */
1395 	lltable_set_entry_addr(ifp, lle, buf, sz, off);
1396 
1397 	struct llentry *child_lle;
1398 	CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) {
1399 		LLE_WLOCK(child_lle);
1400 		fam = child_lle->r_family;
1401 		sz = sizeof(buf);
1402 		if (lltable_calc_llheader(ifp, fam, lladdr, buf, &sz, &off) == 0) {
1403 			/* success */
1404 			lltable_set_entry_addr(ifp, child_lle, buf, sz, off);
1405 			child_lle->ln_state = ND6_LLINFO_REACHABLE;
1406 		}
1407 		LLE_WUNLOCK(child_lle);
1408 	}
1409 
1410 	return (true);
1411 }
1412 
1413 bool
nd6_try_set_entry_addr(struct ifnet * ifp,struct llentry * lle,char * lladdr)1414 nd6_try_set_entry_addr(struct ifnet *ifp, struct llentry *lle, char *lladdr)
1415 {
1416 	NET_EPOCH_ASSERT();
1417 	LLE_WLOCK_ASSERT(lle);
1418 
1419 	if (!lltable_trylock(lle))
1420 		return (false);
1421 	bool ret = nd6_try_set_entry_addr_locked(ifp, lle, lladdr);
1422 	LLTABLE_UNLOCK(lle->lle_tbl);
1423 
1424 	return (ret);
1425 }
1426 
1427 /*
1428  * Free an nd6 llinfo entry.
1429  * Since the function would cause significant changes in the kernel, DO NOT
1430  * make it global, unless you have a strong reason for the change, and are sure
1431  * that the change is safe.
1432  *
1433  * Set noinline to be dtrace-friendly
1434  */
1435 static __noinline void
nd6_free(struct llentry ** lnp,int gc)1436 nd6_free(struct llentry **lnp, int gc)
1437 {
1438 	struct ifnet *ifp;
1439 	struct llentry *ln;
1440 	struct nd_defrouter *dr;
1441 
1442 	ln = *lnp;
1443 	*lnp = NULL;
1444 
1445 	LLE_WLOCK_ASSERT(ln);
1446 	ND6_RLOCK_ASSERT();
1447 
1448 	KASSERT((ln->la_flags & LLE_CHILD) == 0, ("child lle"));
1449 
1450 	ifp = lltable_get_ifp(ln->lle_tbl);
1451 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0)
1452 		dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp);
1453 	else
1454 		dr = NULL;
1455 	ND6_RUNLOCK();
1456 
1457 	if ((ln->la_flags & LLE_DELETED) == 0)
1458 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED);
1459 
1460 	/*
1461 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1462 	 * even though it is not harmful, it was not really necessary.
1463 	 */
1464 
1465 	/* cancel timer */
1466 	nd6_llinfo_settimer_locked(ln, -1);
1467 
1468 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
1469 		if (dr != NULL && dr->expire &&
1470 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
1471 			/*
1472 			 * If the reason for the deletion is just garbage
1473 			 * collection, and the neighbor is an active default
1474 			 * router, do not delete it.  Instead, reset the GC
1475 			 * timer using the router's lifetime.
1476 			 * Simply deleting the entry would affect default
1477 			 * router selection, which is not necessarily a good
1478 			 * thing, especially when we're using router preference
1479 			 * values.
1480 			 * XXX: the check for ln_state would be redundant,
1481 			 *      but we intentionally keep it just in case.
1482 			 */
1483 			if (dr->expire > time_uptime)
1484 				nd6_llinfo_settimer_locked(ln,
1485 				    (dr->expire - time_uptime) * hz);
1486 			else
1487 				nd6_llinfo_settimer_locked(ln,
1488 				    (long)V_nd6_gctimer * hz);
1489 
1490 			LLE_REMREF(ln);
1491 			LLE_WUNLOCK(ln);
1492 			defrouter_rele(dr);
1493 			return;
1494 		}
1495 
1496 		if (dr) {
1497 			/*
1498 			 * Unreachability of a router might affect the default
1499 			 * router selection and on-link detection of advertised
1500 			 * prefixes.
1501 			 */
1502 
1503 			/*
1504 			 * Temporarily fake the state to choose a new default
1505 			 * router and to perform on-link determination of
1506 			 * prefixes correctly.
1507 			 * Below the state will be set correctly,
1508 			 * or the entry itself will be deleted.
1509 			 */
1510 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
1511 		}
1512 
1513 		if (ln->ln_router || dr) {
1514 			/*
1515 			 * We need to unlock to avoid a LOR with rt6_flush() with the
1516 			 * rnh and for the calls to pfxlist_onlink_check() and
1517 			 * defrouter_select_fib() in the block further down for calls
1518 			 * into nd6_lookup().  We still hold a ref.
1519 			 */
1520 			LLE_WUNLOCK(ln);
1521 
1522 			/*
1523 			 * rt6_flush must be called whether or not the neighbor
1524 			 * is in the Default Router List.
1525 			 * See a corresponding comment in nd6_na_input().
1526 			 */
1527 			rt6_flush(&ln->r_l3addr.addr6, ifp);
1528 		}
1529 
1530 		if (dr) {
1531 			/*
1532 			 * Since defrouter_select_fib() does not affect the
1533 			 * on-link determination and MIP6 needs the check
1534 			 * before the default router selection, we perform
1535 			 * the check now.
1536 			 */
1537 			pfxlist_onlink_check();
1538 
1539 			/*
1540 			 * Refresh default router list.
1541 			 */
1542 			defrouter_select_fib(dr->ifp->if_fib);
1543 		}
1544 
1545 		/*
1546 		 * If this entry was added by an on-link redirect, remove the
1547 		 * corresponding host route.
1548 		 */
1549 		if (ln->la_flags & LLE_REDIRECT)
1550 			nd6_free_redirect(ln);
1551 
1552 		if (ln->ln_router || dr)
1553 			LLE_WLOCK(ln);
1554 	}
1555 
1556 	/*
1557 	 * Save to unlock. We still hold an extra reference and will not
1558 	 * free(9) in llentry_free() if someone else holds one as well.
1559 	 */
1560 	LLE_WUNLOCK(ln);
1561 	LLTABLE_LOCK(ln->lle_tbl);
1562 	LLE_WLOCK(ln);
1563 	/* Guard against race with other llentry_free(). */
1564 	if (ln->la_flags & LLE_LINKED) {
1565 		/* Remove callout reference */
1566 		LLE_REMREF(ln);
1567 		lltable_unlink_entry(ln->lle_tbl, ln);
1568 	}
1569 	LLTABLE_UNLOCK(ln->lle_tbl);
1570 
1571 	nd6_free_children(ln);
1572 
1573 	llentry_free(ln);
1574 	if (dr != NULL)
1575 		defrouter_rele(dr);
1576 }
1577 
1578 static int
nd6_isdynrte(const struct rtentry * rt,const struct nhop_object * nh,void * xap)1579 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap)
1580 {
1581 
1582 	if (nh->nh_flags & NHF_REDIRECT)
1583 		return (1);
1584 
1585 	return (0);
1586 }
1587 
1588 /*
1589  * Remove the rtentry for the given llentry,
1590  * both of which were installed by a redirect.
1591  */
1592 static void
nd6_free_redirect(const struct llentry * ln)1593 nd6_free_redirect(const struct llentry *ln)
1594 {
1595 	int fibnum;
1596 	struct sockaddr_in6 sin6;
1597 	struct rib_cmd_info rc;
1598 	struct epoch_tracker et;
1599 
1600 	lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6);
1601 
1602 	NET_EPOCH_ENTER(et);
1603 	for (fibnum = 0; fibnum < rt_numfibs; fibnum++)
1604 		rib_del_route_px(fibnum, (struct sockaddr *)&sin6, 128,
1605 		    nd6_isdynrte, NULL, 0, &rc);
1606 	NET_EPOCH_EXIT(et);
1607 }
1608 
1609 /*
1610  * Updates status of the default router route.
1611  */
1612 static void
check_release_defrouter(const struct rib_cmd_info * rc,void * _cbdata)1613 check_release_defrouter(const struct rib_cmd_info *rc, void *_cbdata)
1614 {
1615 	struct nd_defrouter *dr;
1616 	struct nhop_object *nh;
1617 
1618 	nh = rc->rc_nh_old;
1619 	if (rc->rc_cmd == RTM_DELETE && (nh->nh_flags & NHF_DEFAULT) != 0) {
1620 		dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp);
1621 		if (dr != NULL) {
1622 			dr->installed = 0;
1623 			defrouter_rele(dr);
1624 		}
1625 	}
1626 }
1627 
1628 void
nd6_subscription_cb(struct rib_head * rnh,struct rib_cmd_info * rc,void * arg)1629 nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg)
1630 {
1631 #ifdef ROUTE_MPATH
1632 	rib_decompose_notification(rc, check_release_defrouter, NULL);
1633 	if (rc->rc_cmd == RTM_DELETE && !NH_IS_NHGRP(rc->rc_nh_old))
1634 		check_release_defrouter(rc, NULL);
1635 #else
1636 	check_release_defrouter(rc, NULL);
1637 #endif
1638 }
1639 
1640 int
nd6_ioctl(u_long cmd,caddr_t data,struct ifnet * ifp)1641 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp)
1642 {
1643 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1644 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1645 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1646 	struct epoch_tracker et;
1647 	int error = 0;
1648 
1649 	/* XXXGL: ??? */
1650 	if (ifp->if_inet6 == NULL)
1651 		return (EPFNOSUPPORT);
1652 	switch (cmd) {
1653 	case OSIOCGIFINFO_IN6:
1654 #define ND	ndi->ndi
1655 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
1656 		bzero(&ND, sizeof(ND));
1657 		ND.linkmtu = IN6_LINKMTU(ifp);
1658 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1659 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
1660 		ND.reachable = ND_IFINFO(ifp)->reachable;
1661 		ND.retrans = ND_IFINFO(ifp)->retrans;
1662 		ND.flags = ND_IFINFO(ifp)->flags;
1663 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
1664 		ND.chlim = ND_IFINFO(ifp)->chlim;
1665 		break;
1666 	case SIOCGIFINFO_IN6:
1667 		ND = *ND_IFINFO(ifp);
1668 		break;
1669 	case SIOCSIFINFO_IN6:
1670 		/*
1671 		 * used to change host variables from userland.
1672 		 * intended for a use on router to reflect RA configurations.
1673 		 */
1674 		/* 0 means 'unspecified' */
1675 		if (ND.linkmtu != 0) {
1676 			if (ND.linkmtu < IPV6_MMTU ||
1677 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
1678 				error = EINVAL;
1679 				break;
1680 			}
1681 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1682 		}
1683 
1684 		if (ND.basereachable != 0) {
1685 			int obasereachable = ND_IFINFO(ifp)->basereachable;
1686 
1687 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
1688 			if (ND.basereachable != obasereachable)
1689 				ND_IFINFO(ifp)->reachable =
1690 				    ND_COMPUTE_RTIME(ND.basereachable);
1691 		}
1692 		if (ND.retrans != 0)
1693 			ND_IFINFO(ifp)->retrans = ND.retrans;
1694 		if (ND.chlim != 0)
1695 			ND_IFINFO(ifp)->chlim = ND.chlim;
1696 		/* FALLTHROUGH */
1697 	case SIOCSIFINFO_FLAGS:
1698 	{
1699 		struct ifaddr *ifa;
1700 		struct in6_ifaddr *ia;
1701 
1702 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1703 		    !(ND.flags & ND6_IFF_IFDISABLED)) {
1704 			/* ifdisabled 1->0 transision */
1705 
1706 			/*
1707 			 * If the interface is marked as ND6_IFF_IFDISABLED and
1708 			 * has an link-local address with IN6_IFF_DUPLICATED,
1709 			 * do not clear ND6_IFF_IFDISABLED.
1710 			 * See RFC 4862, Section 5.4.5.
1711 			 */
1712 			NET_EPOCH_ENTER(et);
1713 			CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
1714 				if (ifa->ifa_addr->sa_family != AF_INET6)
1715 					continue;
1716 				ia = (struct in6_ifaddr *)ifa;
1717 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1718 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1719 					break;
1720 			}
1721 			NET_EPOCH_EXIT(et);
1722 
1723 			if (ifa != NULL) {
1724 				/* LLA is duplicated. */
1725 				ND.flags |= ND6_IFF_IFDISABLED;
1726 				log(LOG_ERR, "Cannot enable an interface"
1727 				    " with a link-local address marked"
1728 				    " duplicate.\n");
1729 			} else {
1730 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1731 				if (ifp->if_flags & IFF_UP)
1732 					in6_if_up(ifp);
1733 			}
1734 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1735 			    (ND.flags & ND6_IFF_IFDISABLED)) {
1736 			/* ifdisabled 0->1 transision */
1737 			/* Mark all IPv6 address as tentative. */
1738 
1739 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1740 			if (V_ip6_dad_count > 0 &&
1741 			    (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) {
1742 				NET_EPOCH_ENTER(et);
1743 				CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
1744 				    ifa_link) {
1745 					if (ifa->ifa_addr->sa_family !=
1746 					    AF_INET6)
1747 						continue;
1748 					ia = (struct in6_ifaddr *)ifa;
1749 					ia->ia6_flags |= IN6_IFF_TENTATIVE;
1750 				}
1751 				NET_EPOCH_EXIT(et);
1752 			}
1753 		}
1754 
1755 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1756 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1757 				/* auto_linklocal 0->1 transision */
1758 
1759 				/* If no link-local address on ifp, configure */
1760 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1761 				in6_ifattach(ifp, NULL);
1762 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1763 			    ifp->if_flags & IFF_UP) {
1764 				/*
1765 				 * When the IF already has
1766 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1767 				 * address is assigned, and IFF_UP, try to
1768 				 * assign one.
1769 				 */
1770 				NET_EPOCH_ENTER(et);
1771 				CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead,
1772 				    ifa_link) {
1773 					if (ifa->ifa_addr->sa_family !=
1774 					    AF_INET6)
1775 						continue;
1776 					ia = (struct in6_ifaddr *)ifa;
1777 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1778 						break;
1779 				}
1780 				NET_EPOCH_EXIT(et);
1781 				if (ifa != NULL)
1782 					/* No LLA is configured. */
1783 					in6_ifattach(ifp, NULL);
1784 			}
1785 		}
1786 		ND_IFINFO(ifp)->flags = ND.flags;
1787 		break;
1788 	}
1789 #undef ND
1790 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
1791 		/* sync kernel routing table with the default router list */
1792 		defrouter_reset();
1793 		defrouter_select_fib(RT_ALL_FIBS);
1794 		break;
1795 	case SIOCSPFXFLUSH_IN6:
1796 	{
1797 		/* flush all the prefix advertised by routers */
1798 		struct in6_ifaddr *ia, *ia_next;
1799 		struct nd_prefix *pr, *next;
1800 		struct nd_prhead prl;
1801 
1802 		LIST_INIT(&prl);
1803 
1804 		ND6_WLOCK();
1805 		LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) {
1806 			if (ND6_PREFIX_WITH_ROUTER(pr))
1807 				nd6_prefix_unlink(pr, &prl);
1808 		}
1809 		ND6_WUNLOCK();
1810 
1811 		while ((pr = LIST_FIRST(&prl)) != NULL) {
1812 			LIST_REMOVE(pr, ndpr_entry);
1813 			/* XXXRW: in6_ifaddrhead locking. */
1814 			CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link,
1815 			    ia_next) {
1816 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1817 					continue;
1818 
1819 				if (ia->ia6_ndpr == pr)
1820 					in6_purgeaddr(&ia->ia_ifa);
1821 			}
1822 			nd6_prefix_del(pr);
1823 		}
1824 		break;
1825 	}
1826 	case SIOCSRTRFLUSH_IN6:
1827 	{
1828 		/* flush all the default routers */
1829 
1830 		defrouter_reset();
1831 		nd6_defrouter_flush_all();
1832 		defrouter_select_fib(RT_ALL_FIBS);
1833 		break;
1834 	}
1835 	case SIOCGNBRINFO_IN6:
1836 	{
1837 		struct llentry *ln;
1838 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1839 
1840 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1841 			return (error);
1842 
1843 		NET_EPOCH_ENTER(et);
1844 		ln = nd6_lookup(&nb_addr, LLE_SF(AF_INET6, 0), ifp);
1845 		NET_EPOCH_EXIT(et);
1846 
1847 		if (ln == NULL) {
1848 			error = EINVAL;
1849 			break;
1850 		}
1851 		nbi->state = ln->ln_state;
1852 		nbi->asked = ln->la_asked;
1853 		nbi->isrouter = ln->ln_router;
1854 		if (ln->la_expire == 0)
1855 			nbi->expire = 0;
1856 		else
1857 			nbi->expire = ln->la_expire + ln->lle_remtime / hz +
1858 			    (time_second - time_uptime);
1859 		LLE_RUNLOCK(ln);
1860 		break;
1861 	}
1862 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1863 		ndif->ifindex = V_nd6_defifindex;
1864 		break;
1865 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
1866 		return (nd6_setdefaultiface(ndif->ifindex));
1867 	}
1868 	return (error);
1869 }
1870 
1871 /*
1872  * Calculates new isRouter value based on provided parameters and
1873  * returns it.
1874  */
1875 static int
nd6_is_router(int type,int code,int is_new,int old_addr,int new_addr,int ln_router)1876 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr,
1877     int ln_router)
1878 {
1879 
1880 	/*
1881 	 * ICMP6 type dependent behavior.
1882 	 *
1883 	 * NS: clear IsRouter if new entry
1884 	 * RS: clear IsRouter
1885 	 * RA: set IsRouter if there's lladdr
1886 	 * redir: clear IsRouter if new entry
1887 	 *
1888 	 * RA case, (1):
1889 	 * The spec says that we must set IsRouter in the following cases:
1890 	 * - If lladdr exist, set IsRouter.  This means (1-5).
1891 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
1892 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1893 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
1894 	 * neighbor cache, this is similar to (6).
1895 	 * This case is rare but we figured that we MUST NOT set IsRouter.
1896 	 *
1897 	 *   is_new  old_addr new_addr 	    NS  RS  RA	redir
1898 	 *							D R
1899 	 *	0	n	n	(1)	c   ?     s
1900 	 *	0	y	n	(2)	c   s     s
1901 	 *	0	n	y	(3)	c   s     s
1902 	 *	0	y	y	(4)	c   s     s
1903 	 *	0	y	y	(5)	c   s     s
1904 	 *	1	--	n	(6) c	c	c s
1905 	 *	1	--	y	(7) c	c   s	c s
1906 	 *
1907 	 *					(c=clear s=set)
1908 	 */
1909 	switch (type & 0xff) {
1910 	case ND_NEIGHBOR_SOLICIT:
1911 		/*
1912 		 * New entry must have is_router flag cleared.
1913 		 */
1914 		if (is_new)					/* (6-7) */
1915 			ln_router = 0;
1916 		break;
1917 	case ND_REDIRECT:
1918 		/*
1919 		 * If the icmp is a redirect to a better router, always set the
1920 		 * is_router flag.  Otherwise, if the entry is newly created,
1921 		 * clear the flag.  [RFC 2461, sec 8.3]
1922 		 */
1923 		if (code == ND_REDIRECT_ROUTER)
1924 			ln_router = 1;
1925 		else {
1926 			if (is_new)				/* (6-7) */
1927 				ln_router = 0;
1928 		}
1929 		break;
1930 	case ND_ROUTER_SOLICIT:
1931 		/*
1932 		 * is_router flag must always be cleared.
1933 		 */
1934 		ln_router = 0;
1935 		break;
1936 	case ND_ROUTER_ADVERT:
1937 		/*
1938 		 * Mark an entry with lladdr as a router.
1939 		 */
1940 		if ((!is_new && (old_addr || new_addr)) ||	/* (2-5) */
1941 		    (is_new && new_addr)) {			/* (7) */
1942 			ln_router = 1;
1943 		}
1944 		break;
1945 	}
1946 
1947 	return (ln_router);
1948 }
1949 
1950 /*
1951  * Create neighbor cache entry and cache link-layer address,
1952  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
1953  *
1954  * type - ICMP6 type
1955  * code - type dependent information
1956  *
1957  */
1958 void
nd6_cache_lladdr(struct ifnet * ifp,struct in6_addr * from,char * lladdr,int lladdrlen,int type,int code)1959 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr,
1960     int lladdrlen, int type, int code)
1961 {
1962 	struct llentry *ln = NULL, *ln_tmp;
1963 	int is_newentry;
1964 	int do_update;
1965 	int olladdr;
1966 	int llchange;
1967 	int flags;
1968 	uint16_t router = 0;
1969 	struct mbuf *chain = NULL;
1970 	u_char linkhdr[LLE_MAX_LINKHDR];
1971 	size_t linkhdrsize;
1972 	int lladdr_off;
1973 
1974 	NET_EPOCH_ASSERT();
1975 
1976 	KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__));
1977 	KASSERT(from != NULL, ("%s: from == NULL", __func__));
1978 
1979 	/* nothing must be updated for unspecified address */
1980 	if (IN6_IS_ADDR_UNSPECIFIED(from))
1981 		return;
1982 
1983 	/*
1984 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
1985 	 * the caller.
1986 	 *
1987 	 * XXX If the link does not have link-layer adderss, what should
1988 	 * we do? (ifp->if_addrlen == 0)
1989 	 * Spec says nothing in sections for RA, RS and NA.  There's small
1990 	 * description on it in NS section (RFC 2461 7.2.3).
1991 	 */
1992 	flags = lladdr ? LLE_EXCLUSIVE : 0;
1993 	ln = nd6_lookup(from, LLE_SF(AF_INET6, flags), ifp);
1994 	is_newentry = 0;
1995 	if (ln == NULL) {
1996 		flags |= LLE_EXCLUSIVE;
1997 		ln = nd6_alloc(from, 0, ifp);
1998 		if (ln == NULL)
1999 			return;
2000 
2001 		/*
2002 		 * Since we already know all the data for the new entry,
2003 		 * fill it before insertion.
2004 		 */
2005 		if (lladdr != NULL) {
2006 			linkhdrsize = sizeof(linkhdr);
2007 			if (lltable_calc_llheader(ifp, AF_INET6, lladdr,
2008 			    linkhdr, &linkhdrsize, &lladdr_off) != 0) {
2009 				lltable_free_entry(LLTABLE6(ifp), ln);
2010 				return;
2011 			}
2012 			lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize,
2013 			    lladdr_off);
2014 		}
2015 
2016 		LLTABLE_LOCK(LLTABLE6(ifp));
2017 		LLE_WLOCK(ln);
2018 		/* Prefer any existing lle over newly-created one */
2019 		ln_tmp = nd6_lookup(from, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp);
2020 		if (ln_tmp == NULL)
2021 			lltable_link_entry(LLTABLE6(ifp), ln);
2022 		LLTABLE_UNLOCK(LLTABLE6(ifp));
2023 		if (ln_tmp == NULL) {
2024 			/* No existing lle, mark as new entry (6,7) */
2025 			is_newentry = 1;
2026 			if (lladdr != NULL) {	/* (7) */
2027 				nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2028 				EVENTHANDLER_INVOKE(lle_event, ln,
2029 				    LLENTRY_RESOLVED);
2030 			}
2031 		} else {
2032 			lltable_free_entry(LLTABLE6(ifp), ln);
2033 			ln = ln_tmp;
2034 			ln_tmp = NULL;
2035 		}
2036 	}
2037 	/* do nothing if static ndp is set */
2038 	if ((ln->la_flags & LLE_STATIC)) {
2039 		if (flags & LLE_EXCLUSIVE)
2040 			LLE_WUNLOCK(ln);
2041 		else
2042 			LLE_RUNLOCK(ln);
2043 		return;
2044 	}
2045 
2046 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
2047 	if (olladdr && lladdr) {
2048 		llchange = bcmp(lladdr, ln->ll_addr,
2049 		    ifp->if_addrlen);
2050 	} else if (!olladdr && lladdr)
2051 		llchange = 1;
2052 	else
2053 		llchange = 0;
2054 
2055 	/*
2056 	 * newentry olladdr  lladdr  llchange	(*=record)
2057 	 *	0	n	n	--	(1)
2058 	 *	0	y	n	--	(2)
2059 	 *	0	n	y	y	(3) * STALE
2060 	 *	0	y	y	n	(4) *
2061 	 *	0	y	y	y	(5) * STALE
2062 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
2063 	 *	1	--	y	--	(7) * STALE
2064 	 */
2065 
2066 	do_update = 0;
2067 	if (is_newentry == 0 && llchange != 0) {
2068 		do_update = 1;	/* (3,5) */
2069 
2070 		/*
2071 		 * Record source link-layer address
2072 		 * XXX is it dependent to ifp->if_type?
2073 		 */
2074 		if (!nd6_try_set_entry_addr(ifp, ln, lladdr)) {
2075 			/* Entry was deleted */
2076 			LLE_WUNLOCK(ln);
2077 			return;
2078 		}
2079 
2080 		nd6_llinfo_setstate(ln, ND6_LLINFO_STALE);
2081 
2082 		EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2083 
2084 		if (ln->la_hold != NULL)
2085 			chain = nd6_grab_holdchain(ln);
2086 	}
2087 
2088 	/* Calculates new router status */
2089 	router = nd6_is_router(type, code, is_newentry, olladdr,
2090 	    lladdr != NULL ? 1 : 0, ln->ln_router);
2091 
2092 	ln->ln_router = router;
2093 	/* Mark non-router redirects with special flag */
2094 	if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER)
2095 		ln->la_flags |= LLE_REDIRECT;
2096 
2097 	if (flags & LLE_EXCLUSIVE)
2098 		LLE_WUNLOCK(ln);
2099 	else
2100 		LLE_RUNLOCK(ln);
2101 
2102 	if (chain != NULL)
2103 		nd6_flush_holdchain(ifp, ln, chain);
2104 	if (do_update)
2105 		nd6_flush_children_holdchain(ifp, ln);
2106 
2107 	/*
2108 	 * When the link-layer address of a router changes, select the
2109 	 * best router again.  In particular, when the neighbor entry is newly
2110 	 * created, it might affect the selection policy.
2111 	 * Question: can we restrict the first condition to the "is_newentry"
2112 	 * case?
2113 	 * XXX: when we hear an RA from a new router with the link-layer
2114 	 * address option, defrouter_select_fib() is called twice, since
2115 	 * defrtrlist_update called the function as well.  However, I believe
2116 	 * we can compromise the overhead, since it only happens the first
2117 	 * time.
2118 	 * XXX: although defrouter_select_fib() should not have a bad effect
2119 	 * for those are not autoconfigured hosts, we explicitly avoid such
2120 	 * cases for safety.
2121 	 */
2122 	if ((do_update || is_newentry) && router &&
2123 	    ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) {
2124 		/*
2125 		 * guaranteed recursion
2126 		 */
2127 		defrouter_select_fib(ifp->if_fib);
2128 	}
2129 }
2130 
2131 static void
nd6_slowtimo(void * arg)2132 nd6_slowtimo(void *arg)
2133 {
2134 	struct epoch_tracker et;
2135 	CURVNET_SET((struct vnet *) arg);
2136 	struct nd_ifinfo *nd6if;
2137 	struct ifnet *ifp;
2138 
2139 	callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2140 	    nd6_slowtimo, curvnet);
2141 	NET_EPOCH_ENTER(et);
2142 	CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) {
2143 		if (ifp->if_inet6 == NULL)
2144 			continue;
2145 		nd6if = ND_IFINFO(ifp);
2146 		if (nd6if->basereachable && /* already initialized */
2147 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2148 			/*
2149 			 * Since reachable time rarely changes by router
2150 			 * advertisements, we SHOULD insure that a new random
2151 			 * value gets recomputed at least once every few hours.
2152 			 * (RFC 2461, 6.3.4)
2153 			 */
2154 			nd6if->recalctm = V_nd6_recalc_reachtm_interval;
2155 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2156 		}
2157 	}
2158 	NET_EPOCH_EXIT(et);
2159 	CURVNET_RESTORE();
2160 }
2161 
2162 struct mbuf *
nd6_grab_holdchain(struct llentry * ln)2163 nd6_grab_holdchain(struct llentry *ln)
2164 {
2165 	struct mbuf *chain;
2166 
2167 	LLE_WLOCK_ASSERT(ln);
2168 
2169 	chain = ln->la_hold;
2170 	ln->la_hold = NULL;
2171 	ln->la_numheld = 0;
2172 
2173 	if (ln->ln_state == ND6_LLINFO_STALE) {
2174 		/*
2175 		 * The first time we send a packet to a
2176 		 * neighbor whose entry is STALE, we have
2177 		 * to change the state to DELAY and a sets
2178 		 * a timer to expire in DELAY_FIRST_PROBE_TIME
2179 		 * seconds to ensure do neighbor unreachability
2180 		 * detection on expiration.
2181 		 * (RFC 2461 7.3.3)
2182 		 */
2183 		nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY);
2184 	}
2185 
2186 	return (chain);
2187 }
2188 
2189 int
nd6_output_ifp(struct ifnet * ifp,struct ifnet * origifp,struct mbuf * m,struct sockaddr_in6 * dst,struct route * ro)2190 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2191     struct sockaddr_in6 *dst, struct route *ro)
2192 {
2193 	int error;
2194 	int ip6len;
2195 	struct ip6_hdr *ip6;
2196 	struct m_tag *mtag;
2197 
2198 #ifdef MAC
2199 	mac_netinet6_nd6_send(ifp, m);
2200 #endif
2201 
2202 	/*
2203 	 * If called from nd6_ns_output() (NS), nd6_na_output() (NA),
2204 	 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA
2205 	 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND
2206 	 * to be diverted to user space.  When re-injected into the kernel,
2207 	 * send_output() will directly dispatch them to the outgoing interface.
2208 	 */
2209 	if (send_sendso_input_hook != NULL) {
2210 		mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL);
2211 		if (mtag != NULL) {
2212 			ip6 = mtod(m, struct ip6_hdr *);
2213 			ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen);
2214 			/* Use the SEND socket */
2215 			error = send_sendso_input_hook(m, ifp, SND_OUT,
2216 			    ip6len);
2217 			/* -1 == no app on SEND socket */
2218 			if (error == 0 || error != -1)
2219 			    return (error);
2220 		}
2221 	}
2222 
2223 	m_clrprotoflags(m);	/* Avoid confusing lower layers. */
2224 	IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL,
2225 	    mtod(m, struct ip6_hdr *));
2226 
2227 	if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2228 		origifp = ifp;
2229 
2230 	error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro);
2231 	return (error);
2232 }
2233 
2234 /*
2235  * Lookup link headerfor @sa_dst address. Stores found
2236  * data in @desten buffer. Copy of lle ln_flags can be also
2237  * saved in @pflags if @pflags is non-NULL.
2238  *
2239  * If destination LLE does not exists or lle state modification
2240  * is required, call "slow" version.
2241  *
2242  * Return values:
2243  * - 0 on success (address copied to buffer).
2244  * - EWOULDBLOCK (no local error, but address is still unresolved)
2245  * - other errors (alloc failure, etc)
2246  */
2247 int
nd6_resolve(struct ifnet * ifp,int gw_flags,struct mbuf * m,const struct sockaddr * sa_dst,u_char * desten,uint32_t * pflags,struct llentry ** plle)2248 nd6_resolve(struct ifnet *ifp, int gw_flags, struct mbuf *m,
2249     const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags,
2250     struct llentry **plle)
2251 {
2252 	struct llentry *ln = NULL;
2253 	const struct sockaddr_in6 *dst6;
2254 
2255 	NET_EPOCH_ASSERT();
2256 
2257 	if (pflags != NULL)
2258 		*pflags = 0;
2259 
2260 	dst6 = (const struct sockaddr_in6 *)sa_dst;
2261 
2262 	/* discard the packet if IPv6 operation is disabled on the interface */
2263 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2264 		m_freem(m);
2265 		return (ENETDOWN); /* better error? */
2266 	}
2267 
2268 	if (m != NULL && m->m_flags & M_MCAST) {
2269 		switch (ifp->if_type) {
2270 		case IFT_ETHER:
2271 		case IFT_L2VLAN:
2272 		case IFT_BRIDGE:
2273 			ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr,
2274 						 desten);
2275 			return (0);
2276 		default:
2277 			m_freem(m);
2278 			return (EAFNOSUPPORT);
2279 		}
2280 	}
2281 
2282 	int family = gw_flags >> 16;
2283 	int lookup_flags = plle ? LLE_EXCLUSIVE : LLE_UNLOCKED;
2284 	ln = nd6_lookup(&dst6->sin6_addr, LLE_SF(family, lookup_flags), ifp);
2285 	if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) {
2286 		/* Entry found, let's copy lle info */
2287 		bcopy(ln->r_linkdata, desten, ln->r_hdrlen);
2288 		if (pflags != NULL)
2289 			*pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR);
2290 		llentry_provide_feedback(ln);
2291 		if (plle) {
2292 			LLE_ADDREF(ln);
2293 			*plle = ln;
2294 			LLE_WUNLOCK(ln);
2295 		}
2296 		return (0);
2297 	} else if (plle && ln)
2298 		LLE_WUNLOCK(ln);
2299 
2300 	return (nd6_resolve_slow(ifp, family, 0, m, dst6, desten, pflags, plle));
2301 }
2302 
2303 /*
2304  * Finds or creates a new llentry for @addr and @family.
2305  * Returns wlocked llentry or NULL.
2306  *
2307  *
2308  * Child LLEs.
2309  *
2310  * Do not have their own state machine (gets marked as static)
2311  *  settimer bails out for child LLEs just in case.
2312  *
2313  * Locking order: parent lle gets locked first, chen goes the child.
2314  */
2315 static __noinline struct llentry *
nd6_get_llentry(struct ifnet * ifp,const struct in6_addr * addr,int family)2316 nd6_get_llentry(struct ifnet *ifp, const struct in6_addr *addr, int family)
2317 {
2318 	struct llentry *child_lle = NULL;
2319 	struct llentry *lle, *lle_tmp;
2320 
2321 	lle = nd6_alloc(addr, 0, ifp);
2322 	if (lle != NULL && family != AF_INET6) {
2323 		child_lle = nd6_alloc(addr, 0, ifp);
2324 		if (child_lle == NULL) {
2325 			lltable_free_entry(LLTABLE6(ifp), lle);
2326 			return (NULL);
2327 		}
2328 		child_lle->r_family = family;
2329 		child_lle->la_flags |= LLE_CHILD | LLE_STATIC;
2330 		child_lle->ln_state = ND6_LLINFO_INCOMPLETE;
2331 	}
2332 
2333 	if (lle == NULL) {
2334 		char ip6buf[INET6_ADDRSTRLEN];
2335 		log(LOG_DEBUG,
2336 		    "nd6_get_llentry: can't allocate llinfo for %s "
2337 		    "(ln=%p)\n",
2338 		    ip6_sprintf(ip6buf, addr), lle);
2339 		return (NULL);
2340 	}
2341 
2342 	LLTABLE_LOCK(LLTABLE6(ifp));
2343 	LLE_WLOCK(lle);
2344 	/* Prefer any existing entry over newly-created one */
2345 	lle_tmp = nd6_lookup(addr, LLE_SF(AF_INET6, LLE_EXCLUSIVE), ifp);
2346 	if (lle_tmp == NULL)
2347 		lltable_link_entry(LLTABLE6(ifp), lle);
2348 	else {
2349 		lltable_free_entry(LLTABLE6(ifp), lle);
2350 		lle = lle_tmp;
2351 	}
2352 	if (child_lle != NULL) {
2353 		/* Check if child lle for the same family exists */
2354 		lle_tmp = llentry_lookup_family(lle, child_lle->r_family);
2355 		LLE_WLOCK(child_lle);
2356 		if (lle_tmp == NULL) {
2357 			/* Attach */
2358 			lltable_link_child_entry(lle, child_lle);
2359 		} else {
2360 			/* child lle already exists, free newly-created one */
2361 			lltable_free_entry(LLTABLE6(ifp), child_lle);
2362 			LLE_WLOCK(lle_tmp);
2363 			child_lle = lle_tmp;
2364 		}
2365 		LLE_WUNLOCK(lle);
2366 		lle = child_lle;
2367 	}
2368 	LLTABLE_UNLOCK(LLTABLE6(ifp));
2369 	return (lle);
2370 }
2371 
2372 /*
2373  * Do L2 address resolution for @sa_dst address. Stores found
2374  * address in @desten buffer. Copy of lle ln_flags can be also
2375  * saved in @pflags if @pflags is non-NULL.
2376  *
2377  * Heavy version.
2378  * Function assume that destination LLE does not exist,
2379  * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired.
2380  *
2381  * Set noinline to be dtrace-friendly
2382  */
2383 static __noinline int
nd6_resolve_slow(struct ifnet * ifp,int family,int flags,struct mbuf * m,const struct sockaddr_in6 * dst,u_char * desten,uint32_t * pflags,struct llentry ** plle)2384 nd6_resolve_slow(struct ifnet *ifp, int family, int flags, struct mbuf *m,
2385     const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags,
2386     struct llentry **plle)
2387 {
2388 	struct llentry *lle = NULL;
2389 	struct in6_addr *psrc, src;
2390 	int send_ns, ll_len;
2391 	char *lladdr;
2392 
2393 	NET_EPOCH_ASSERT();
2394 
2395 	/*
2396 	 * Address resolution or Neighbor Unreachability Detection
2397 	 * for the next hop.
2398 	 * At this point, the destination of the packet must be a unicast
2399 	 * or an anycast address(i.e. not a multicast).
2400 	 */
2401 	lle = nd6_lookup(&dst->sin6_addr, LLE_SF(family, LLE_EXCLUSIVE), ifp);
2402 	if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
2403 		/*
2404 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2405 		 * the condition below is not very efficient.  But we believe
2406 		 * it is tolerable, because this should be a rare case.
2407 		 */
2408 		lle = nd6_get_llentry(ifp, &dst->sin6_addr, family);
2409 	}
2410 
2411 	if (lle == NULL) {
2412 		m_freem(m);
2413 		return (ENOBUFS);
2414 	}
2415 
2416 	LLE_WLOCK_ASSERT(lle);
2417 
2418 	/*
2419 	 * The first time we send a packet to a neighbor whose entry is
2420 	 * STALE, we have to change the state to DELAY and a sets a timer to
2421 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2422 	 * neighbor unreachability detection on expiration.
2423 	 * (RFC 2461 7.3.3)
2424 	 */
2425 	if ((!(lle->la_flags & LLE_CHILD)) && (lle->ln_state == ND6_LLINFO_STALE))
2426 		nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY);
2427 
2428 	/*
2429 	 * If the neighbor cache entry has a state other than INCOMPLETE
2430 	 * (i.e. its link-layer address is already resolved), just
2431 	 * send the packet.
2432 	 */
2433 	if (lle->ln_state > ND6_LLINFO_INCOMPLETE) {
2434 		if (flags & LLE_ADDRONLY) {
2435 			lladdr = lle->ll_addr;
2436 			ll_len = ifp->if_addrlen;
2437 		} else {
2438 			lladdr = lle->r_linkdata;
2439 			ll_len = lle->r_hdrlen;
2440 		}
2441 		bcopy(lladdr, desten, ll_len);
2442 		if (pflags != NULL)
2443 			*pflags = lle->la_flags;
2444 		if (plle) {
2445 			LLE_ADDREF(lle);
2446 			*plle = lle;
2447 		}
2448 		LLE_WUNLOCK(lle);
2449 		return (0);
2450 	}
2451 
2452 	/*
2453 	 * There is a neighbor cache entry, but no ethernet address
2454 	 * response yet.  Append this latest packet to the end of the
2455 	 * packet queue in the mbuf.  When it exceeds nd6_maxqueuelen,
2456 	 * the oldest packet in the queue will be removed.
2457 	 */
2458 	if (m != NULL) {
2459 		size_t dropped;
2460 
2461 		dropped = lltable_append_entry_queue(lle, m, V_nd6_maxqueuelen);
2462 		ICMP6STAT_ADD(icp6s_dropped, dropped);
2463 	}
2464 
2465 	/*
2466 	 * If there has been no NS for the neighbor after entering the
2467 	 * INCOMPLETE state, send the first solicitation.
2468 	 * Note that for newly-created lle la_asked will be 0,
2469 	 * so we will transition from ND6_LLINFO_NOSTATE to
2470 	 * ND6_LLINFO_INCOMPLETE state here.
2471 	 */
2472 	psrc = NULL;
2473 	send_ns = 0;
2474 
2475 	/* If we have child lle, switch to the parent to send NS */
2476 	if (lle->la_flags & LLE_CHILD) {
2477 		struct llentry *lle_parent = lle->lle_parent;
2478 		LLE_WUNLOCK(lle);
2479 		lle = lle_parent;
2480 		LLE_WLOCK(lle);
2481 	}
2482 	if (lle->la_asked == 0) {
2483 		lle->la_asked++;
2484 		send_ns = 1;
2485 		psrc = nd6_llinfo_get_holdsrc(lle, &src);
2486 
2487 		nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE);
2488 	}
2489 	LLE_WUNLOCK(lle);
2490 	if (send_ns != 0)
2491 		nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL);
2492 
2493 	return (EWOULDBLOCK);
2494 }
2495 
2496 /*
2497  * Do L2 address resolution for @sa_dst address. Stores found
2498  * address in @desten buffer. Copy of lle ln_flags can be also
2499  * saved in @pflags if @pflags is non-NULL.
2500  *
2501  * Return values:
2502  * - 0 on success (address copied to buffer).
2503  * - EWOULDBLOCK (no local error, but address is still unresolved)
2504  * - other errors (alloc failure, etc)
2505  */
2506 int
nd6_resolve_addr(struct ifnet * ifp,int flags,const struct sockaddr * dst,char * desten,uint32_t * pflags)2507 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst,
2508     char *desten, uint32_t *pflags)
2509 {
2510 	int error;
2511 
2512 	flags |= LLE_ADDRONLY;
2513 	error = nd6_resolve_slow(ifp, AF_INET6, flags, NULL,
2514 	    (const struct sockaddr_in6 *)dst, desten, pflags, NULL);
2515 	return (error);
2516 }
2517 
2518 int
nd6_flush_holdchain(struct ifnet * ifp,struct llentry * lle,struct mbuf * chain)2519 nd6_flush_holdchain(struct ifnet *ifp, struct llentry *lle, struct mbuf *chain)
2520 {
2521 	struct mbuf *m, *m_head;
2522 	struct sockaddr_in6 dst6;
2523 	int error = 0;
2524 
2525 	NET_EPOCH_ASSERT();
2526 
2527 	struct route_in6 ro = {
2528 		.ro_prepend = lle->r_linkdata,
2529 		.ro_plen = lle->r_hdrlen,
2530 	};
2531 
2532 	lltable_fill_sa_entry(lle, (struct sockaddr *)&dst6);
2533 	m_head = chain;
2534 
2535 	while (m_head) {
2536 		m = m_head;
2537 		m_head = m_head->m_nextpkt;
2538 		m->m_nextpkt = NULL;
2539 		error = nd6_output_ifp(ifp, ifp, m, &dst6, (struct route *)&ro);
2540 	}
2541 
2542 	/*
2543 	 * XXX
2544 	 * note that intermediate errors are blindly ignored
2545 	 */
2546 	return (error);
2547 }
2548 
2549 __noinline void
nd6_flush_children_holdchain(struct ifnet * ifp,struct llentry * lle)2550 nd6_flush_children_holdchain(struct ifnet *ifp, struct llentry *lle)
2551 {
2552 	struct llentry *child_lle;
2553 	struct mbuf *chain;
2554 
2555 	NET_EPOCH_ASSERT();
2556 
2557 	CK_SLIST_FOREACH(child_lle, &lle->lle_children, lle_child_next) {
2558 		LLE_WLOCK(child_lle);
2559 		chain = nd6_grab_holdchain(child_lle);
2560 		LLE_WUNLOCK(child_lle);
2561 		nd6_flush_holdchain(ifp, child_lle, chain);
2562 	}
2563 }
2564 
2565 static int
nd6_need_cache(struct ifnet * ifp)2566 nd6_need_cache(struct ifnet *ifp)
2567 {
2568 	/*
2569 	 * XXX: we currently do not make neighbor cache on any interface
2570 	 * other than Ethernet and GIF.
2571 	 *
2572 	 * RFC2893 says:
2573 	 * - unidirectional tunnels needs no ND
2574 	 */
2575 	switch (ifp->if_type) {
2576 	case IFT_ETHER:
2577 	case IFT_IEEE1394:
2578 	case IFT_L2VLAN:
2579 	case IFT_INFINIBAND:
2580 	case IFT_BRIDGE:
2581 	case IFT_PROPVIRTUAL:
2582 		return (1);
2583 	default:
2584 		return (0);
2585 	}
2586 }
2587 
2588 /*
2589  * Add pernament ND6 link-layer record for given
2590  * interface address.
2591  *
2592  * Very similar to IPv4 arp_ifinit(), but:
2593  * 1) IPv6 DAD is performed in different place
2594  * 2) It is called by IPv6 protocol stack in contrast to
2595  * arp_ifinit() which is typically called in SIOCSIFADDR
2596  * driver ioctl handler.
2597  *
2598  */
2599 int
nd6_add_ifa_lle(struct in6_ifaddr * ia)2600 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2601 {
2602 	struct ifnet *ifp;
2603 	struct llentry *ln, *ln_tmp;
2604 	struct sockaddr *dst;
2605 
2606 	ifp = ia->ia_ifa.ifa_ifp;
2607 	if (nd6_need_cache(ifp) == 0)
2608 		return (0);
2609 
2610 	dst = (struct sockaddr *)&ia->ia_addr;
2611 	ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst);
2612 	if (ln == NULL)
2613 		return (ENOBUFS);
2614 
2615 	LLTABLE_LOCK(LLTABLE6(ifp));
2616 	LLE_WLOCK(ln);
2617 	/* Unlink any entry if exists */
2618 	ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_SF(AF_INET6, LLE_EXCLUSIVE), dst);
2619 	if (ln_tmp != NULL)
2620 		lltable_unlink_entry(LLTABLE6(ifp), ln_tmp);
2621 	lltable_link_entry(LLTABLE6(ifp), ln);
2622 	LLTABLE_UNLOCK(LLTABLE6(ifp));
2623 
2624 	if (ln_tmp != NULL)
2625 		EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED);
2626 	EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED);
2627 
2628 	LLE_WUNLOCK(ln);
2629 	if (ln_tmp != NULL)
2630 		llentry_free(ln_tmp);
2631 
2632 	return (0);
2633 }
2634 
2635 /*
2636  * Removes either all lle entries for given @ia, or lle
2637  * corresponding to @ia address.
2638  */
2639 void
nd6_rem_ifa_lle(struct in6_ifaddr * ia,int all)2640 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all)
2641 {
2642 	struct sockaddr_in6 mask, addr;
2643 	struct sockaddr *saddr, *smask;
2644 	struct ifnet *ifp;
2645 
2646 	ifp = ia->ia_ifa.ifa_ifp;
2647 	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2648 	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2649 	saddr = (struct sockaddr *)&addr;
2650 	smask = (struct sockaddr *)&mask;
2651 
2652 	if (all != 0)
2653 		lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC);
2654 	else
2655 		lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr);
2656 }
2657 
2658 static int
nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)2659 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS)
2660 {
2661 	struct in6_prefix p;
2662 	struct sockaddr_in6 s6;
2663 	struct nd_prefix *pr;
2664 	struct nd_pfxrouter *pfr;
2665 	time_t maxexpire;
2666 	int error;
2667 	char ip6buf[INET6_ADDRSTRLEN];
2668 
2669 	if (req->newptr)
2670 		return (EPERM);
2671 
2672 	error = sysctl_wire_old_buffer(req, 0);
2673 	if (error != 0)
2674 		return (error);
2675 
2676 	bzero(&p, sizeof(p));
2677 	p.origin = PR_ORIG_RA;
2678 	bzero(&s6, sizeof(s6));
2679 	s6.sin6_family = AF_INET6;
2680 	s6.sin6_len = sizeof(s6);
2681 
2682 	ND6_RLOCK();
2683 	LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) {
2684 		p.prefix = pr->ndpr_prefix;
2685 		if (sa6_recoverscope(&p.prefix)) {
2686 			log(LOG_ERR, "scope error in prefix list (%s)\n",
2687 			    ip6_sprintf(ip6buf, &p.prefix.sin6_addr));
2688 			/* XXX: press on... */
2689 		}
2690 		p.raflags = pr->ndpr_raf;
2691 		p.prefixlen = pr->ndpr_plen;
2692 		p.vltime = pr->ndpr_vltime;
2693 		p.pltime = pr->ndpr_pltime;
2694 		p.if_index = pr->ndpr_ifp->if_index;
2695 		if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2696 			p.expire = 0;
2697 		else {
2698 			/* XXX: we assume time_t is signed. */
2699 			maxexpire = (-1) &
2700 			    ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1));
2701 			if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate)
2702 				p.expire = pr->ndpr_lastupdate +
2703 				    pr->ndpr_vltime +
2704 				    (time_second - time_uptime);
2705 			else
2706 				p.expire = maxexpire;
2707 		}
2708 		p.refcnt = pr->ndpr_addrcnt;
2709 		p.flags = pr->ndpr_stateflags;
2710 		p.advrtrs = 0;
2711 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2712 			p.advrtrs++;
2713 		error = SYSCTL_OUT(req, &p, sizeof(p));
2714 		if (error != 0)
2715 			break;
2716 		LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2717 			s6.sin6_addr = pfr->router->rtaddr;
2718 			if (sa6_recoverscope(&s6))
2719 				log(LOG_ERR,
2720 				    "scope error in prefix list (%s)\n",
2721 				    ip6_sprintf(ip6buf, &pfr->router->rtaddr));
2722 			error = SYSCTL_OUT(req, &s6, sizeof(s6));
2723 			if (error != 0)
2724 				goto out;
2725 		}
2726 	}
2727 out:
2728 	ND6_RUNLOCK();
2729 	return (error);
2730 }
2731 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist,
2732 	CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE,
2733 	NULL, 0, nd6_sysctl_prlist, "S,in6_prefix",
2734 	"NDP prefix list");
2735 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen,
2736 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, "");
2737 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer,
2738 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), "");
2739