xref: /freebsd/sys/kern/vfs_cache.c (revision f1f230439fa48581f40a57f095627f667a9713c3)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1989, 1993, 1995
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Poul-Henning Kamp of the FreeBSD Project.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include "opt_ddb.h"
36 #include "opt_ktrace.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/capsicum.h>
41 #include <sys/counter.h>
42 #include <sys/filedesc.h>
43 #include <sys/fnv_hash.h>
44 #include <sys/inotify.h>
45 #include <sys/kernel.h>
46 #include <sys/ktr.h>
47 #include <sys/lock.h>
48 #include <sys/malloc.h>
49 #include <sys/fcntl.h>
50 #include <sys/jail.h>
51 #include <sys/mount.h>
52 #include <sys/namei.h>
53 #include <sys/proc.h>
54 #include <sys/seqc.h>
55 #include <sys/sdt.h>
56 #include <sys/smr.h>
57 #include <sys/smp.h>
58 #include <sys/syscallsubr.h>
59 #include <sys/sysctl.h>
60 #include <sys/sysproto.h>
61 #include <sys/vnode.h>
62 #include <ck_queue.h>
63 #ifdef KTRACE
64 #include <sys/ktrace.h>
65 #endif
66 #ifdef INVARIANTS
67 #include <machine/_inttypes.h>
68 #endif
69 
70 #include <security/audit/audit.h>
71 #include <security/mac/mac_framework.h>
72 
73 #ifdef DDB
74 #include <ddb/ddb.h>
75 #endif
76 
77 #include <vm/uma.h>
78 
79 /*
80  * High level overview of name caching in the VFS layer.
81  *
82  * Originally caching was implemented as part of UFS, later extracted to allow
83  * use by other filesystems. A decision was made to make it optional and
84  * completely detached from the rest of the kernel, which comes with limitations
85  * outlined near the end of this comment block.
86  *
87  * This fundamental choice needs to be revisited. In the meantime, the current
88  * state is described below. Significance of all notable routines is explained
89  * in comments placed above their implementation. Scattered thoroughout the
90  * file are TODO comments indicating shortcomings which can be fixed without
91  * reworking everything (most of the fixes will likely be reusable). Various
92  * details are omitted from this explanation to not clutter the overview, they
93  * have to be checked by reading the code and associated commentary.
94  *
95  * Keep in mind that it's individual path components which are cached, not full
96  * paths. That is, for a fully cached path "foo/bar/baz" there are 3 entries,
97  * one for each name.
98  *
99  * I. Data organization
100  *
101  * Entries are described by "struct namecache" objects and stored in a hash
102  * table. See cache_get_hash for more information.
103  *
104  * "struct vnode" contains pointers to source entries (names which can be found
105  * when traversing through said vnode), destination entries (names of that
106  * vnode (see "Limitations" for a breakdown on the subject) and a pointer to
107  * the parent vnode.
108  *
109  * The (directory vnode; name) tuple reliably determines the target entry if
110  * it exists.
111  *
112  * Since there are no small locks at this time (all are 32 bytes in size on
113  * LP64), the code works around the problem by introducing lock arrays to
114  * protect hash buckets and vnode lists.
115  *
116  * II. Filesystem integration
117  *
118  * Filesystems participating in name caching do the following:
119  * - set vop_lookup routine to vfs_cache_lookup
120  * - set vop_cachedlookup to whatever can perform the lookup if the above fails
121  * - if they support lockless lookup (see below), vop_fplookup_vexec and
122  *   vop_fplookup_symlink are set along with the MNTK_FPLOOKUP flag on the
123  *   mount point
124  * - call cache_purge or cache_vop_* routines to eliminate stale entries as
125  *   applicable
126  * - call cache_enter to add entries depending on the MAKEENTRY flag
127  *
128  * With the above in mind, there are 2 entry points when doing lookups:
129  * - ... -> namei -> cache_fplookup -- this is the default
130  * - ... -> VOP_LOOKUP -> vfs_cache_lookup -- normally only called by namei
131  *   should the above fail
132  *
133  * Example code flow how an entry is added:
134  * ... -> namei -> cache_fplookup -> cache_fplookup_noentry -> VOP_LOOKUP ->
135  * vfs_cache_lookup -> VOP_CACHEDLOOKUP -> ufs_lookup_ino -> cache_enter
136  *
137  * III. Performance considerations
138  *
139  * For lockless case forward lookup avoids any writes to shared areas apart
140  * from the terminal path component. In other words non-modifying lookups of
141  * different files don't suffer any scalability problems in the namecache.
142  * Looking up the same file is limited by VFS and goes beyond the scope of this
143  * file.
144  *
145  * At least on amd64 the single-threaded bottleneck for long paths is hashing
146  * (see cache_get_hash). There are cases where the code issues acquire fence
147  * multiple times, they can be combined on architectures which suffer from it.
148  *
149  * For locked case each encountered vnode has to be referenced and locked in
150  * order to be handed out to the caller (normally that's namei). This
151  * introduces significant hit single-threaded and serialization multi-threaded.
152  *
153  * Reverse lookup (e.g., "getcwd") fully scales provided it is fully cached --
154  * avoids any writes to shared areas to any components.
155  *
156  * Unrelated insertions are partially serialized on updating the global entry
157  * counter and possibly serialized on colliding bucket or vnode locks.
158  *
159  * IV. Observability
160  *
161  * Note not everything has an explicit dtrace probe nor it should have, thus
162  * some of the one-liners below depend on implementation details.
163  *
164  * Examples:
165  *
166  * # Check what lookups failed to be handled in a lockless manner. Column 1 is
167  * # line number, column 2 is status code (see cache_fpl_status)
168  * dtrace -n 'vfs:fplookup:lookup:done { @[arg1, arg2] = count(); }'
169  *
170  * # Lengths of names added by binary name
171  * dtrace -n 'fbt::cache_enter_time:entry { @[execname] = quantize(args[2]->cn_namelen); }'
172  *
173  * # Same as above but only those which exceed 64 characters
174  * dtrace -n 'fbt::cache_enter_time:entry /args[2]->cn_namelen > 64/ { @[execname] = quantize(args[2]->cn_namelen); }'
175  *
176  * # Who is performing lookups with spurious slashes (e.g., "foo//bar") and what
177  * # path is it
178  * dtrace -n 'fbt::cache_fplookup_skip_slashes:entry { @[execname, stringof(args[0]->cnp->cn_pnbuf)] = count(); }'
179  *
180  * V. Limitations and implementation defects
181  *
182  * - since it is possible there is no entry for an open file, tools like
183  *   "procstat" may fail to resolve fd -> vnode -> path to anything
184  * - even if a filesystem adds an entry, it may get purged (e.g., due to memory
185  *   shortage) in which case the above problem applies
186  * - hardlinks are not tracked, thus if a vnode is reachable in more than one
187  *   way, resolving a name may return a different path than the one used to
188  *   open it (even if said path is still valid)
189  * - by default entries are not added for newly created files
190  * - adding an entry may need to evict negative entry first, which happens in 2
191  *   distinct places (evicting on lookup, adding in a later VOP) making it
192  *   impossible to simply reuse it
193  * - there is a simple scheme to evict negative entries as the cache is approaching
194  *   its capacity, but it is very unclear if doing so is a good idea to begin with
195  * - vnodes are subject to being recycled even if target inode is left in memory,
196  *   which loses the name cache entries when it perhaps should not. in case of tmpfs
197  *   names get duplicated -- kept by filesystem itself and namecache separately
198  * - struct namecache has a fixed size and comes in 2 variants, often wasting
199  *   space.  now hard to replace with malloc due to dependence on SMR, which
200  *   requires UMA zones to opt in
201  * - lack of better integration with the kernel also turns nullfs into a layered
202  *   filesystem instead of something which can take advantage of caching
203  *
204  * Appendix A: where is the time lost, expanding on paragraph III
205  *
206  * While some care went into optimizing lookups, there is still plenty of
207  * performance left on the table, most notably from single-threaded standpoint.
208  * Below is a woefully incomplete list of changes which can help.  Ideas are
209  * mostly sketched out, no claim is made all kinks or prerequisites are laid
210  * out.
211  *
212  * Note there is performance lost all over VFS.
213  *
214  * === SMR-only lookup
215  *
216  * For commonly used ops like stat(2), when the terminal vnode *is* cached,
217  * lockless lookup could refrain from refing/locking the found vnode and
218  * instead return while within the SMR section. Then a call to, say,
219  * vop_stat_smr could do the work (or fail with EAGAIN), finally the result
220  * would be validated with seqc not changing. This would be faster
221  * single-threaded as it dodges atomics and would provide full scalability for
222  * multicore uses. This would *not* work for open(2) or other calls which need
223  * the vnode to hang around for the long haul, but would work for aforementioned
224  * stat(2) but also access(2), readlink(2), realpathat(2) and probably more.
225  *
226  * === hotpatching for sdt probes
227  *
228  * They result in *tons* of branches all over with rather regrettable codegen
229  * at times. Removing sdt probes altogether gives over 2% boost in lookup rate.
230  * Reworking the code to patch itself at runtime with asm goto would solve it.
231  * asm goto is fully supported by gcc and clang.
232  *
233  * === copyinstr
234  *
235  * On all architectures it operates one byte at a time, while it could be
236  * word-sized instead thanks to the Mycroft trick.
237  *
238  * API itself is rather pessimal for path lookup, accepting arbitrary sizes and
239  * *optionally* filling in the length parameter.
240  *
241  * Instead a new routine (copyinpath?) could be introduced, demanding a buffer
242  * size which is a multiply of the word (and never zero), with the length
243  * always returned. On top of it the routine could be allowed to transform the
244  * buffer in arbitrary ways, most notably writing past the found length (not to
245  * be confused with writing past buffer size) -- this would allow word-sized
246  * movs while checking for '\0' later.
247  *
248  * === detour through namei
249  *
250  * Currently one suffers being called from namei, which then has to check if
251  * things worked out locklessly. Instead the lockless lookup could be the
252  * actual entry point which calls what is currently namei as a fallback.
253  *
254  * === avoidable branches in cache_can_fplookup
255  *
256  * The cache_fast_lookup_enabled flag check could be hotpatchable (in fact if
257  * this is off, none of fplookup code should execute).
258  *
259  * Both audit and capsicum branches can be combined into one, but it requires
260  * paying off a lot of tech debt first.
261  *
262  * ni_startdir could be indicated with a flag in cn_flags, eliminating the
263  * branch.
264  *
265  * === mount stacks
266  *
267  * Crossing a mount requires checking if perhaps something is mounted on top.
268  * Instead, an additional entry could be added to struct mount with a pointer
269  * to the final mount on the stack. This would be recalculated on each
270  * mount/unmount.
271  *
272  * === root vnodes
273  *
274  * It could become part of the API contract to *always* have a rootvnode set in
275  * mnt_rootvnode. Such vnodes are annotated with VV_ROOT and vnlru would have
276  * to be modified to always skip them.
277  *
278  * === inactive on v_usecount reaching 0
279  *
280  * VOP_NEED_INACTIVE should not exist. Filesystems would indicate need for such
281  * processing with a bit in usecount.
282  *
283  * === v_holdcnt
284  *
285  * Hold count should probably get eliminated, but one can argue it is a useful
286  * feature. Even if so, handling of v_usecount could be decoupled from it --
287  * vnlru et al would consider the vnode not-freeable if has either hold or
288  * usecount on it.
289  *
290  * This would eliminate 2 atomics.
291  */
292 
293 static SYSCTL_NODE(_vfs, OID_AUTO, cache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
294     "Name cache");
295 
296 SDT_PROVIDER_DECLARE(vfs);
297 SDT_PROBE_DEFINE3(vfs, namecache, enter, done, "struct vnode *", "char *",
298     "struct vnode *");
299 SDT_PROBE_DEFINE3(vfs, namecache, enter, duplicate, "struct vnode *", "char *",
300     "struct vnode *");
301 SDT_PROBE_DEFINE2(vfs, namecache, enter_negative, done, "struct vnode *",
302     "char *");
303 SDT_PROBE_DEFINE2(vfs, namecache, fullpath_smr, hit, "struct vnode *",
304     "const char *");
305 SDT_PROBE_DEFINE4(vfs, namecache, fullpath_smr, miss, "struct vnode *",
306     "struct namecache *", "int", "int");
307 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, entry, "struct vnode *");
308 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, hit, "struct vnode *",
309     "char *", "struct vnode *");
310 SDT_PROBE_DEFINE1(vfs, namecache, fullpath, miss, "struct vnode *");
311 SDT_PROBE_DEFINE3(vfs, namecache, fullpath, return, "int",
312     "struct vnode *", "char *");
313 SDT_PROBE_DEFINE3(vfs, namecache, lookup, hit, "struct vnode *", "char *",
314     "struct vnode *");
315 SDT_PROBE_DEFINE2(vfs, namecache, lookup, hit__negative,
316     "struct vnode *", "char *");
317 SDT_PROBE_DEFINE2(vfs, namecache, lookup, miss, "struct vnode *",
318     "char *");
319 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, hit, "struct vnode *",
320     "struct componentname *");
321 SDT_PROBE_DEFINE2(vfs, namecache, removecnp, miss, "struct vnode *",
322     "struct componentname *");
323 SDT_PROBE_DEFINE3(vfs, namecache, purge, done, "struct vnode *", "size_t", "size_t");
324 SDT_PROBE_DEFINE1(vfs, namecache, purge, batch, "int");
325 SDT_PROBE_DEFINE1(vfs, namecache, purge_negative, done, "struct vnode *");
326 SDT_PROBE_DEFINE1(vfs, namecache, purgevfs, done, "struct mount *");
327 SDT_PROBE_DEFINE3(vfs, namecache, zap, done, "struct vnode *", "char *",
328     "struct vnode *");
329 SDT_PROBE_DEFINE2(vfs, namecache, zap_negative, done, "struct vnode *",
330     "char *");
331 SDT_PROBE_DEFINE2(vfs, namecache, evict_negative, done, "struct vnode *",
332     "char *");
333 SDT_PROBE_DEFINE1(vfs, namecache, symlink, alloc__fail, "size_t");
334 
335 SDT_PROBE_DEFINE3(vfs, fplookup, lookup, done, "struct nameidata", "int", "bool");
336 SDT_PROBE_DECLARE(vfs, namei, lookup, entry);
337 SDT_PROBE_DECLARE(vfs, namei, lookup, return);
338 
339 static char __read_frequently cache_fast_lookup_enabled = true;
340 
341 /*
342  * This structure describes the elements in the cache of recent
343  * names looked up by namei.
344  */
345 struct negstate {
346 	u_char neg_flag;
347 	u_char neg_hit;
348 };
349 _Static_assert(sizeof(struct negstate) <= sizeof(struct vnode *),
350     "the state must fit in a union with a pointer without growing it");
351 
352 struct	namecache {
353 	LIST_ENTRY(namecache) nc_src;	/* source vnode list */
354 	TAILQ_ENTRY(namecache) nc_dst;	/* destination vnode list */
355 	CK_SLIST_ENTRY(namecache) nc_hash;/* hash chain */
356 	struct	vnode *nc_dvp;		/* vnode of parent of name */
357 	union {
358 		struct	vnode *nu_vp;	/* vnode the name refers to */
359 		struct	negstate nu_neg;/* negative entry state */
360 	} n_un;
361 	u_char	nc_flag;		/* flag bits */
362 	u_char	nc_nlen;		/* length of name */
363 	char	nc_name[];		/* segment name + nul */
364 };
365 
366 /*
367  * struct namecache_ts repeats struct namecache layout up to the
368  * nc_nlen member.
369  * struct namecache_ts is used in place of struct namecache when time(s) need
370  * to be stored.  The nc_dotdottime field is used when a cache entry is mapping
371  * both a non-dotdot directory name plus dotdot for the directory's
372  * parent.
373  *
374  * See below for alignment requirement.
375  */
376 struct	namecache_ts {
377 	struct	timespec nc_time;	/* timespec provided by fs */
378 	struct	timespec nc_dotdottime;	/* dotdot timespec provided by fs */
379 	int	nc_ticks;		/* ticks value when entry was added */
380 	int	nc_pad;
381 	struct namecache nc_nc;
382 };
383 
384 TAILQ_HEAD(cache_freebatch, namecache);
385 
386 /*
387  * At least mips n32 performs 64-bit accesses to timespec as found
388  * in namecache_ts and requires them to be aligned. Since others
389  * may be in the same spot suffer a little bit and enforce the
390  * alignment for everyone. Note this is a nop for 64-bit platforms.
391  */
392 #define CACHE_ZONE_ALIGNMENT	UMA_ALIGNOF(time_t)
393 
394 /*
395  * TODO: the initial value of CACHE_PATH_CUTOFF was inherited from the
396  * 4.4 BSD codebase. Later on struct namecache was tweaked to become
397  * smaller and the value was bumped to retain the total size, but it
398  * was never re-evaluated for suitability. A simple test counting
399  * lengths during package building shows that the value of 45 covers
400  * about 86% of all added entries, reaching 99% at 65.
401  *
402  * Regardless of the above, use of dedicated zones instead of malloc may be
403  * inducing additional waste. This may be hard to address as said zones are
404  * tied to VFS SMR. Even if retaining them, the current split should be
405  * re-evaluated.
406  */
407 #ifdef __LP64__
408 #define	CACHE_PATH_CUTOFF	45
409 #define	CACHE_LARGE_PAD		6
410 #else
411 #define	CACHE_PATH_CUTOFF	41
412 #define	CACHE_LARGE_PAD		2
413 #endif
414 
415 #define CACHE_ZONE_SMALL_SIZE		(offsetof(struct namecache, nc_name) + CACHE_PATH_CUTOFF + 1)
416 #define CACHE_ZONE_SMALL_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_SMALL_SIZE)
417 #define CACHE_ZONE_LARGE_SIZE		(offsetof(struct namecache, nc_name) + NAME_MAX + 1 + CACHE_LARGE_PAD)
418 #define CACHE_ZONE_LARGE_TS_SIZE	(offsetof(struct namecache_ts, nc_nc) + CACHE_ZONE_LARGE_SIZE)
419 
420 _Static_assert((CACHE_ZONE_SMALL_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
421 _Static_assert((CACHE_ZONE_SMALL_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
422 _Static_assert((CACHE_ZONE_LARGE_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
423 _Static_assert((CACHE_ZONE_LARGE_TS_SIZE % (CACHE_ZONE_ALIGNMENT + 1)) == 0, "bad zone size");
424 
425 #define	nc_vp		n_un.nu_vp
426 #define	nc_neg		n_un.nu_neg
427 
428 /*
429  * Flags in namecache.nc_flag
430  */
431 #define NCF_WHITE	0x01
432 #define NCF_ISDOTDOT	0x02
433 #define	NCF_TS		0x04
434 #define	NCF_DTS		0x08
435 #define	NCF_DVDROP	0x10
436 #define	NCF_NEGATIVE	0x20
437 #define	NCF_INVALID	0x40
438 #define	NCF_WIP		0x80
439 
440 /*
441  * Flags in negstate.neg_flag
442  */
443 #define NEG_HOT		0x01
444 
445 static bool	cache_neg_evict_cond(u_long lnumcache);
446 
447 /*
448  * Mark an entry as invalid.
449  *
450  * This is called before it starts getting deconstructed.
451  */
452 static void
cache_ncp_invalidate(struct namecache * ncp)453 cache_ncp_invalidate(struct namecache *ncp)
454 {
455 
456 	KASSERT((ncp->nc_flag & NCF_INVALID) == 0,
457 	    ("%s: entry %p already invalid", __func__, ncp));
458 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_INVALID);
459 	atomic_thread_fence_rel();
460 }
461 
462 /*
463  * Does this entry match the given directory and name?
464  */
465 static bool
cache_ncp_match(struct namecache * ncp,struct vnode * dvp,struct componentname * cnp)466 cache_ncp_match(struct namecache *ncp, struct vnode *dvp,
467     struct componentname *cnp)
468 {
469 	return (ncp->nc_dvp == dvp &&
470 	    ncp->nc_nlen == cnp->cn_namelen &&
471 	    bcmp(ncp->nc_name, cnp->cn_nameptr, cnp->cn_namelen) == 0);
472 }
473 
474 /*
475  * Check whether the entry can be safely used.
476  *
477  * All places which elide locks are supposed to call this after they are
478  * done with reading from an entry.
479  */
480 #define cache_ncp_canuse(ncp)	({					\
481 	struct namecache *_ncp = (ncp);					\
482 	u_char _nc_flag;						\
483 									\
484 	atomic_thread_fence_acq();					\
485 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
486 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP)) == 0);	\
487 })
488 
489 /*
490  * Like the above but also checks NCF_WHITE.
491  */
492 #define cache_fpl_neg_ncp_canuse(ncp)	({				\
493 	struct namecache *_ncp = (ncp);					\
494 	u_char _nc_flag;						\
495 									\
496 	atomic_thread_fence_acq();					\
497 	_nc_flag = atomic_load_char(&_ncp->nc_flag);			\
498 	__predict_true((_nc_flag & (NCF_INVALID | NCF_WIP | NCF_WHITE)) == 0);	\
499 })
500 
501 VFS_SMR_DECLARE;
502 
503 static SYSCTL_NODE(_vfs_cache, OID_AUTO, param, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
504     "Name cache parameters");
505 
506 static u_int __read_mostly	ncsize; /* the size as computed on creation or resizing */
507 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, size, CTLFLAG_RD, &ncsize, 0,
508     "Total namecache capacity");
509 
510 u_int ncsizefactor = 2;
511 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, sizefactor, CTLFLAG_RW, &ncsizefactor, 0,
512     "Size factor for namecache");
513 
514 static u_long __read_mostly	ncnegfactor = 5; /* ratio of negative entries */
515 SYSCTL_ULONG(_vfs_cache_param, OID_AUTO, negfactor, CTLFLAG_RW, &ncnegfactor, 0,
516     "Ratio of negative namecache entries");
517 
518 /*
519  * Negative entry % of namecache capacity above which automatic eviction is allowed.
520  *
521  * Check cache_neg_evict_cond for details.
522  */
523 static u_int ncnegminpct = 3;
524 
525 static u_int __read_mostly     neg_min; /* the above recomputed against ncsize */
526 SYSCTL_UINT(_vfs_cache_param, OID_AUTO, negmin, CTLFLAG_RD, &neg_min, 0,
527     "Negative entry count above which automatic eviction is allowed");
528 
529 /*
530  * Structures associated with name caching.
531  */
532 #define NCHHASH(hash) \
533 	(&nchashtbl[(hash) & nchash])
534 static __read_mostly CK_SLIST_HEAD(nchashhead, namecache) *nchashtbl;/* Hash Table */
535 static u_long __read_mostly	nchash;			/* size of hash table */
536 SYSCTL_ULONG(_debug, OID_AUTO, nchash, CTLFLAG_RD, &nchash, 0,
537     "Size of namecache hash table");
538 static u_long __exclusive_cache_line	numneg;	/* number of negative entries allocated */
539 static u_long __exclusive_cache_line	numcache;/* number of cache entries allocated */
540 
541 struct nchstats	nchstats;		/* cache effectiveness statistics */
542 
543 static u_int __exclusive_cache_line neg_cycle;
544 
545 #define ncneghash	3
546 #define	numneglists	(ncneghash + 1)
547 
548 struct neglist {
549 	struct mtx		nl_evict_lock;
550 	struct mtx		nl_lock __aligned(CACHE_LINE_SIZE);
551 	TAILQ_HEAD(, namecache) nl_list;
552 	TAILQ_HEAD(, namecache) nl_hotlist;
553 	u_long			nl_hotnum;
554 } __aligned(CACHE_LINE_SIZE);
555 
556 static struct neglist neglists[numneglists];
557 
558 static inline struct neglist *
NCP2NEGLIST(struct namecache * ncp)559 NCP2NEGLIST(struct namecache *ncp)
560 {
561 
562 	return (&neglists[(((uintptr_t)(ncp) >> 8) & ncneghash)]);
563 }
564 
565 static inline struct negstate *
NCP2NEGSTATE(struct namecache * ncp)566 NCP2NEGSTATE(struct namecache *ncp)
567 {
568 
569 	MPASS(atomic_load_char(&ncp->nc_flag) & NCF_NEGATIVE);
570 	return (&ncp->nc_neg);
571 }
572 
573 #define	numbucketlocks (ncbuckethash + 1)
574 static u_int __read_mostly  ncbuckethash;
575 static struct mtx_padalign __read_mostly  *bucketlocks;
576 #define	HASH2BUCKETLOCK(hash) \
577 	((struct mtx *)(&bucketlocks[((hash) & ncbuckethash)]))
578 
579 #define	numvnodelocks (ncvnodehash + 1)
580 static u_int __read_mostly  ncvnodehash;
581 static struct mtx __read_mostly *vnodelocks;
582 static inline struct mtx *
VP2VNODELOCK(struct vnode * vp)583 VP2VNODELOCK(struct vnode *vp)
584 {
585 
586 	return (&vnodelocks[(((uintptr_t)(vp) >> 8) & ncvnodehash)]);
587 }
588 
589 /*
590  * Search the hash table for a namecache entry.  Either the corresponding bucket
591  * must be locked, or the caller must be in an SMR read section.
592  */
593 static struct namecache *
cache_ncp_find(struct vnode * dvp,struct componentname * cnp,uint32_t hash)594 cache_ncp_find(struct vnode *dvp, struct componentname *cnp, uint32_t hash)
595 {
596 	struct namecache *ncp;
597 
598 	KASSERT(mtx_owned(HASH2BUCKETLOCK(hash)) || VFS_SMR_ENTERED(),
599 	    ("%s: hash %u not locked", __func__, hash));
600 	CK_SLIST_FOREACH(ncp, NCHHASH(hash), nc_hash) {
601 		if (cache_ncp_match(ncp, dvp, cnp))
602 			break;
603 	}
604 	return (ncp);
605 }
606 
607 static void
cache_out_ts(struct namecache * ncp,struct timespec * tsp,int * ticksp)608 cache_out_ts(struct namecache *ncp, struct timespec *tsp, int *ticksp)
609 {
610 	struct namecache_ts *ncp_ts;
611 
612 	KASSERT((ncp->nc_flag & NCF_TS) != 0 ||
613 	    (tsp == NULL && ticksp == NULL),
614 	    ("No NCF_TS"));
615 
616 	if (tsp == NULL)
617 		return;
618 
619 	ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
620 	*tsp = ncp_ts->nc_time;
621 	*ticksp = ncp_ts->nc_ticks;
622 }
623 
624 #ifdef DEBUG_CACHE
625 static int __read_mostly	doingcache = 1;	/* 1 => enable the cache */
626 SYSCTL_INT(_debug, OID_AUTO, vfscache, CTLFLAG_RW, &doingcache, 0,
627     "VFS namecache enabled");
628 #endif
629 
630 /* Export size information to userland */
631 SYSCTL_SIZEOF_STRUCT(namecache);
632 
633 /*
634  * The new name cache statistics
635  */
636 static SYSCTL_NODE(_vfs_cache, OID_AUTO, stats, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
637     "Name cache statistics");
638 
639 #define STATNODE_ULONG(name, varname, descr)					\
640 	SYSCTL_ULONG(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
641 #define STATNODE_COUNTER(name, varname, descr)					\
642 	static COUNTER_U64_DEFINE_EARLY(varname);				\
643 	SYSCTL_COUNTER_U64(_vfs_cache_stats, OID_AUTO, name, CTLFLAG_RD, &varname, \
644 	    descr);
645 STATNODE_ULONG(neg, numneg, "Number of negative cache entries");
646 STATNODE_ULONG(count, numcache, "Number of cache entries");
647 STATNODE_COUNTER(heldvnodes, numcachehv, "Number of namecache entries with vnodes held");
648 STATNODE_COUNTER(drops, numdrops, "Number of dropped entries due to reaching the limit");
649 STATNODE_COUNTER(miss, nummiss, "Number of cache misses");
650 STATNODE_COUNTER(misszap, nummisszap, "Number of cache misses we do not want to cache");
651 STATNODE_COUNTER(poszaps, numposzaps,
652     "Number of cache hits (positive) we do not want to cache");
653 STATNODE_COUNTER(poshits, numposhits, "Number of cache hits (positive)");
654 STATNODE_COUNTER(negzaps, numnegzaps,
655     "Number of cache hits (negative) we do not want to cache");
656 STATNODE_COUNTER(neghits, numneghits, "Number of cache hits (negative)");
657 /* These count for vn_getcwd(), too. */
658 STATNODE_COUNTER(fullpathcalls, numfullpathcalls, "Number of fullpath search calls");
659 STATNODE_COUNTER(fullpathfail2, numfullpathfail2,
660     "Number of fullpath search errors (VOP_VPTOCNP failures)");
661 STATNODE_COUNTER(fullpathfail4, numfullpathfail4, "Number of fullpath search errors (ENOMEM)");
662 STATNODE_COUNTER(fullpathfound, numfullpathfound, "Number of successful fullpath calls");
663 STATNODE_COUNTER(symlinktoobig, symlinktoobig, "Number of times symlink did not fit the cache");
664 
665 /*
666  * Debug or developer statistics.
667  */
668 static SYSCTL_NODE(_vfs_cache, OID_AUTO, debug, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
669     "Name cache debugging");
670 #define DEBUGNODE_ULONG(name, varname, descr)					\
671 	SYSCTL_ULONG(_vfs_cache_debug, OID_AUTO, name, CTLFLAG_RD, &varname, 0, descr);
672 static u_long zap_bucket_relock_success;
673 DEBUGNODE_ULONG(zap_bucket_relock_success, zap_bucket_relock_success,
674     "Number of successful removals after relocking");
675 static u_long zap_bucket_fail;
676 DEBUGNODE_ULONG(zap_bucket_fail, zap_bucket_fail, "");
677 static u_long zap_bucket_fail2;
678 DEBUGNODE_ULONG(zap_bucket_fail2, zap_bucket_fail2, "");
679 static u_long cache_lock_vnodes_cel_3_failures;
680 DEBUGNODE_ULONG(vnodes_cel_3_failures, cache_lock_vnodes_cel_3_failures,
681     "Number of times 3-way vnode locking failed");
682 
683 static void cache_zap_locked(struct namecache *ncp);
684 static int vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
685     char **retbuf, size_t *buflen, size_t addend);
686 static int vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf,
687     char **retbuf, size_t *buflen);
688 static int vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf,
689     char **retbuf, size_t *len, size_t addend);
690 
691 static MALLOC_DEFINE(M_VFSCACHE, "vfscache", "VFS name cache entries");
692 
693 static inline void
cache_assert_vlp_locked(struct mtx * vlp)694 cache_assert_vlp_locked(struct mtx *vlp)
695 {
696 
697 	if (vlp != NULL)
698 		mtx_assert(vlp, MA_OWNED);
699 }
700 
701 static inline void
cache_assert_vnode_locked(struct vnode * vp)702 cache_assert_vnode_locked(struct vnode *vp)
703 {
704 	struct mtx *vlp;
705 
706 	vlp = VP2VNODELOCK(vp);
707 	cache_assert_vlp_locked(vlp);
708 }
709 
710 /*
711  * Directory vnodes with entries are held for two reasons:
712  * 1. make them less of a target for reclamation in vnlru
713  * 2. suffer smaller performance penalty in locked lookup as requeieing is avoided
714  *
715  * It will be feasible to stop doing it altogether if all filesystems start
716  * supporting lockless lookup.
717  */
718 static void
cache_hold_vnode(struct vnode * vp)719 cache_hold_vnode(struct vnode *vp)
720 {
721 
722 	cache_assert_vnode_locked(vp);
723 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
724 	vhold(vp);
725 	counter_u64_add(numcachehv, 1);
726 }
727 
728 static void
cache_drop_vnode(struct vnode * vp)729 cache_drop_vnode(struct vnode *vp)
730 {
731 
732 	/*
733 	 * Called after all locks are dropped, meaning we can't assert
734 	 * on the state of v_cache_src.
735 	 */
736 	vdrop(vp);
737 	counter_u64_add(numcachehv, -1);
738 }
739 
740 /*
741  * UMA zones.
742  */
743 static uma_zone_t __read_mostly cache_zone_small;
744 static uma_zone_t __read_mostly cache_zone_small_ts;
745 static uma_zone_t __read_mostly cache_zone_large;
746 static uma_zone_t __read_mostly cache_zone_large_ts;
747 
748 char *
cache_symlink_alloc(size_t size,int flags)749 cache_symlink_alloc(size_t size, int flags)
750 {
751 
752 	if (size < CACHE_ZONE_SMALL_SIZE) {
753 		return (uma_zalloc_smr(cache_zone_small, flags));
754 	}
755 	if (size < CACHE_ZONE_LARGE_SIZE) {
756 		return (uma_zalloc_smr(cache_zone_large, flags));
757 	}
758 	counter_u64_add(symlinktoobig, 1);
759 	SDT_PROBE1(vfs, namecache, symlink, alloc__fail, size);
760 	return (NULL);
761 }
762 
763 void
cache_symlink_free(char * string,size_t size)764 cache_symlink_free(char *string, size_t size)
765 {
766 
767 	MPASS(string != NULL);
768 	KASSERT(size < CACHE_ZONE_LARGE_SIZE,
769 	    ("%s: size %zu too big", __func__, size));
770 
771 	if (size < CACHE_ZONE_SMALL_SIZE) {
772 		uma_zfree_smr(cache_zone_small, string);
773 		return;
774 	}
775 	if (size < CACHE_ZONE_LARGE_SIZE) {
776 		uma_zfree_smr(cache_zone_large, string);
777 		return;
778 	}
779 	__assert_unreachable();
780 }
781 
782 static struct namecache *
cache_alloc_uma(int len,bool ts)783 cache_alloc_uma(int len, bool ts)
784 {
785 	struct namecache_ts *ncp_ts;
786 	struct namecache *ncp;
787 
788 	if (__predict_false(ts)) {
789 		if (len <= CACHE_PATH_CUTOFF)
790 			ncp_ts = uma_zalloc_smr(cache_zone_small_ts, M_WAITOK);
791 		else
792 			ncp_ts = uma_zalloc_smr(cache_zone_large_ts, M_WAITOK);
793 		ncp = &ncp_ts->nc_nc;
794 	} else {
795 		if (len <= CACHE_PATH_CUTOFF)
796 			ncp = uma_zalloc_smr(cache_zone_small, M_WAITOK);
797 		else
798 			ncp = uma_zalloc_smr(cache_zone_large, M_WAITOK);
799 	}
800 	return (ncp);
801 }
802 
803 static void
cache_free_uma(struct namecache * ncp)804 cache_free_uma(struct namecache *ncp)
805 {
806 	struct namecache_ts *ncp_ts;
807 
808 	if (__predict_false(ncp->nc_flag & NCF_TS)) {
809 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
810 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
811 			uma_zfree_smr(cache_zone_small_ts, ncp_ts);
812 		else
813 			uma_zfree_smr(cache_zone_large_ts, ncp_ts);
814 	} else {
815 		if (ncp->nc_nlen <= CACHE_PATH_CUTOFF)
816 			uma_zfree_smr(cache_zone_small, ncp);
817 		else
818 			uma_zfree_smr(cache_zone_large, ncp);
819 	}
820 }
821 
822 static struct namecache *
cache_alloc(int len,bool ts)823 cache_alloc(int len, bool ts)
824 {
825 	u_long lnumcache;
826 
827 	/*
828 	 * Avoid blowout in namecache entries.
829 	 *
830 	 * Bugs:
831 	 * 1. filesystems may end up trying to add an already existing entry
832 	 * (for example this can happen after a cache miss during concurrent
833 	 * lookup), in which case we will call cache_neg_evict despite not
834 	 * adding anything.
835 	 * 2. the routine may fail to free anything and no provisions are made
836 	 * to make it try harder (see the inside for failure modes)
837 	 * 3. it only ever looks at negative entries.
838 	 */
839 	lnumcache = atomic_fetchadd_long(&numcache, 1) + 1;
840 	if (cache_neg_evict_cond(lnumcache)) {
841 		lnumcache = atomic_load_long(&numcache);
842 	}
843 	if (__predict_false(lnumcache >= ncsize)) {
844 		atomic_subtract_long(&numcache, 1);
845 		counter_u64_add(numdrops, 1);
846 		return (NULL);
847 	}
848 	return (cache_alloc_uma(len, ts));
849 }
850 
851 static void
cache_free(struct namecache * ncp)852 cache_free(struct namecache *ncp)
853 {
854 
855 	MPASS(ncp != NULL);
856 	if ((ncp->nc_flag & NCF_DVDROP) != 0) {
857 		cache_drop_vnode(ncp->nc_dvp);
858 	}
859 	cache_free_uma(ncp);
860 	atomic_subtract_long(&numcache, 1);
861 }
862 
863 static void
cache_free_batch(struct cache_freebatch * batch)864 cache_free_batch(struct cache_freebatch *batch)
865 {
866 	struct namecache *ncp, *nnp;
867 	int i;
868 
869 	i = 0;
870 	if (TAILQ_EMPTY(batch))
871 		goto out;
872 	TAILQ_FOREACH_SAFE(ncp, batch, nc_dst, nnp) {
873 		if ((ncp->nc_flag & NCF_DVDROP) != 0) {
874 			cache_drop_vnode(ncp->nc_dvp);
875 		}
876 		cache_free_uma(ncp);
877 		i++;
878 	}
879 	atomic_subtract_long(&numcache, i);
880 out:
881 	SDT_PROBE1(vfs, namecache, purge, batch, i);
882 }
883 
884 /*
885  * Hashing.
886  *
887  * The code was made to use FNV in 2001 and this choice needs to be revisited.
888  *
889  * Short summary of the difficulty:
890  * The longest name which can be inserted is NAME_MAX characters in length (or
891  * 255 at the time of writing this comment), while majority of names used in
892  * practice are significantly shorter (mostly below 10). More importantly
893  * majority of lookups performed find names are even shorter than that.
894  *
895  * This poses a problem where hashes which do better than FNV past word size
896  * (or so) tend to come with additional overhead when finalizing the result,
897  * making them noticeably slower for the most commonly used range.
898  *
899  * Consider a path like: /usr/obj/usr/src/sys/amd64/GENERIC/vnode_if.c
900  *
901  * When looking it up the most time consuming part by a large margin (at least
902  * on amd64) is hashing.  Replacing FNV with something which pessimizes short
903  * input would make the slowest part stand out even more.
904  */
905 
906 /*
907  * TODO: With the value stored we can do better than computing the hash based
908  * on the address.
909  */
910 static void
cache_prehash(struct vnode * vp)911 cache_prehash(struct vnode *vp)
912 {
913 
914 	vp->v_nchash = fnv_32_buf(&vp, sizeof(vp), FNV1_32_INIT);
915 }
916 
917 static uint32_t
cache_get_hash(char * name,u_char len,struct vnode * dvp)918 cache_get_hash(char *name, u_char len, struct vnode *dvp)
919 {
920 
921 	return (fnv_32_buf(name, len, dvp->v_nchash));
922 }
923 
924 static uint32_t
cache_get_hash_iter_start(struct vnode * dvp)925 cache_get_hash_iter_start(struct vnode *dvp)
926 {
927 
928 	return (dvp->v_nchash);
929 }
930 
931 static uint32_t
cache_get_hash_iter(char c,uint32_t hash)932 cache_get_hash_iter(char c, uint32_t hash)
933 {
934 
935 	return (fnv_32_buf(&c, 1, hash));
936 }
937 
938 static uint32_t
cache_get_hash_iter_finish(uint32_t hash)939 cache_get_hash_iter_finish(uint32_t hash)
940 {
941 
942 	return (hash);
943 }
944 
945 static inline struct nchashhead *
NCP2BUCKET(struct namecache * ncp)946 NCP2BUCKET(struct namecache *ncp)
947 {
948 	uint32_t hash;
949 
950 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
951 	return (NCHHASH(hash));
952 }
953 
954 static inline struct mtx *
NCP2BUCKETLOCK(struct namecache * ncp)955 NCP2BUCKETLOCK(struct namecache *ncp)
956 {
957 	uint32_t hash;
958 
959 	hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen, ncp->nc_dvp);
960 	return (HASH2BUCKETLOCK(hash));
961 }
962 
963 #ifdef INVARIANTS
964 static void
cache_assert_bucket_locked(struct namecache * ncp)965 cache_assert_bucket_locked(struct namecache *ncp)
966 {
967 	struct mtx *blp;
968 
969 	blp = NCP2BUCKETLOCK(ncp);
970 	mtx_assert(blp, MA_OWNED);
971 }
972 
973 static void
cache_assert_bucket_unlocked(struct namecache * ncp)974 cache_assert_bucket_unlocked(struct namecache *ncp)
975 {
976 	struct mtx *blp;
977 
978 	blp = NCP2BUCKETLOCK(ncp);
979 	mtx_assert(blp, MA_NOTOWNED);
980 }
981 #else
982 #define cache_assert_bucket_locked(x) do { } while (0)
983 #define cache_assert_bucket_unlocked(x) do { } while (0)
984 #endif
985 
986 #define cache_sort_vnodes(x, y)	_cache_sort_vnodes((void **)(x), (void **)(y))
987 static void
_cache_sort_vnodes(void ** p1,void ** p2)988 _cache_sort_vnodes(void **p1, void **p2)
989 {
990 	void *tmp;
991 
992 	MPASS(*p1 != NULL || *p2 != NULL);
993 
994 	if (*p1 > *p2) {
995 		tmp = *p2;
996 		*p2 = *p1;
997 		*p1 = tmp;
998 	}
999 }
1000 
1001 static void
cache_lock_all_buckets(void)1002 cache_lock_all_buckets(void)
1003 {
1004 	u_int i;
1005 
1006 	for (i = 0; i < numbucketlocks; i++)
1007 		mtx_lock(&bucketlocks[i]);
1008 }
1009 
1010 static void
cache_unlock_all_buckets(void)1011 cache_unlock_all_buckets(void)
1012 {
1013 	u_int i;
1014 
1015 	for (i = 0; i < numbucketlocks; i++)
1016 		mtx_unlock(&bucketlocks[i]);
1017 }
1018 
1019 static void
cache_lock_all_vnodes(void)1020 cache_lock_all_vnodes(void)
1021 {
1022 	u_int i;
1023 
1024 	for (i = 0; i < numvnodelocks; i++)
1025 		mtx_lock(&vnodelocks[i]);
1026 }
1027 
1028 static void
cache_unlock_all_vnodes(void)1029 cache_unlock_all_vnodes(void)
1030 {
1031 	u_int i;
1032 
1033 	for (i = 0; i < numvnodelocks; i++)
1034 		mtx_unlock(&vnodelocks[i]);
1035 }
1036 
1037 static int
cache_trylock_vnodes(struct mtx * vlp1,struct mtx * vlp2)1038 cache_trylock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1039 {
1040 
1041 	cache_sort_vnodes(&vlp1, &vlp2);
1042 
1043 	if (vlp1 != NULL) {
1044 		if (!mtx_trylock(vlp1))
1045 			return (EAGAIN);
1046 	}
1047 	if (!mtx_trylock(vlp2)) {
1048 		if (vlp1 != NULL)
1049 			mtx_unlock(vlp1);
1050 		return (EAGAIN);
1051 	}
1052 
1053 	return (0);
1054 }
1055 
1056 static void
cache_lock_vnodes(struct mtx * vlp1,struct mtx * vlp2)1057 cache_lock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1058 {
1059 
1060 	MPASS(vlp1 != NULL || vlp2 != NULL);
1061 	MPASS(vlp1 <= vlp2);
1062 
1063 	if (vlp1 != NULL)
1064 		mtx_lock(vlp1);
1065 	if (vlp2 != NULL)
1066 		mtx_lock(vlp2);
1067 }
1068 
1069 static void
cache_unlock_vnodes(struct mtx * vlp1,struct mtx * vlp2)1070 cache_unlock_vnodes(struct mtx *vlp1, struct mtx *vlp2)
1071 {
1072 
1073 	MPASS(vlp1 != NULL || vlp2 != NULL);
1074 
1075 	if (vlp1 != NULL)
1076 		mtx_unlock(vlp1);
1077 	if (vlp2 != NULL)
1078 		mtx_unlock(vlp2);
1079 }
1080 
1081 static int
sysctl_nchstats(SYSCTL_HANDLER_ARGS)1082 sysctl_nchstats(SYSCTL_HANDLER_ARGS)
1083 {
1084 	struct nchstats snap;
1085 
1086 	if (req->oldptr == NULL)
1087 		return (SYSCTL_OUT(req, 0, sizeof(snap)));
1088 
1089 	snap = nchstats;
1090 	snap.ncs_goodhits = counter_u64_fetch(numposhits);
1091 	snap.ncs_neghits = counter_u64_fetch(numneghits);
1092 	snap.ncs_badhits = counter_u64_fetch(numposzaps) +
1093 	    counter_u64_fetch(numnegzaps);
1094 	snap.ncs_miss = counter_u64_fetch(nummisszap) +
1095 	    counter_u64_fetch(nummiss);
1096 
1097 	return (SYSCTL_OUT(req, &snap, sizeof(snap)));
1098 }
1099 SYSCTL_PROC(_vfs_cache, OID_AUTO, nchstats, CTLTYPE_OPAQUE | CTLFLAG_RD |
1100     CTLFLAG_MPSAFE, 0, 0, sysctl_nchstats, "LU",
1101     "VFS cache effectiveness statistics");
1102 
1103 static int
sysctl_hitpct(SYSCTL_HANDLER_ARGS)1104 sysctl_hitpct(SYSCTL_HANDLER_ARGS)
1105 {
1106 	long poshits, neghits, miss, total;
1107 	long pct;
1108 
1109 	poshits = counter_u64_fetch(numposhits);
1110 	neghits = counter_u64_fetch(numneghits);
1111 	miss = counter_u64_fetch(nummiss);
1112 	total = poshits + neghits + miss;
1113 
1114 	pct = 0;
1115 	if (total != 0)
1116 		pct = ((poshits + neghits) * 100) / total;
1117 	return (sysctl_handle_int(oidp, 0, pct, req));
1118 }
1119 SYSCTL_PROC(_vfs_cache_stats, OID_AUTO, hitpct,
1120     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_hitpct,
1121     "I", "Percentage of hits");
1122 
1123 static void
cache_recalc_neg_min(void)1124 cache_recalc_neg_min(void)
1125 {
1126 
1127 	neg_min = (ncsize * ncnegminpct) / 100;
1128 }
1129 
1130 static int
sysctl_negminpct(SYSCTL_HANDLER_ARGS)1131 sysctl_negminpct(SYSCTL_HANDLER_ARGS)
1132 {
1133 	u_int val;
1134 	int error;
1135 
1136 	val = ncnegminpct;
1137 	error = sysctl_handle_int(oidp, &val, 0, req);
1138 	if (error != 0 || req->newptr == NULL)
1139 		return (error);
1140 
1141 	if (val == ncnegminpct)
1142 		return (0);
1143 	if (val < 0 || val > 99)
1144 		return (EINVAL);
1145 	ncnegminpct = val;
1146 	cache_recalc_neg_min();
1147 	return (0);
1148 }
1149 
1150 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, negminpct,
1151     CTLTYPE_INT | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0, sysctl_negminpct,
1152     "I", "Negative entry \% of namecache capacity above which automatic eviction is allowed");
1153 
1154 #ifdef DEBUG_CACHE
1155 /*
1156  * Grab an atomic snapshot of the name cache hash chain lengths
1157  */
1158 static SYSCTL_NODE(_debug, OID_AUTO, hashstat,
1159     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
1160     "hash table stats");
1161 
1162 static int
sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)1163 sysctl_debug_hashstat_rawnchash(SYSCTL_HANDLER_ARGS)
1164 {
1165 	struct nchashhead *ncpp;
1166 	struct namecache *ncp;
1167 	int i, error, n_nchash, *cntbuf;
1168 
1169 retry:
1170 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1171 	if (req->oldptr == NULL)
1172 		return SYSCTL_OUT(req, 0, n_nchash * sizeof(int));
1173 	cntbuf = malloc(n_nchash * sizeof(int), M_TEMP, M_ZERO | M_WAITOK);
1174 	cache_lock_all_buckets();
1175 	if (n_nchash != nchash + 1) {
1176 		cache_unlock_all_buckets();
1177 		free(cntbuf, M_TEMP);
1178 		goto retry;
1179 	}
1180 	/* Scan hash tables counting entries */
1181 	for (ncpp = nchashtbl, i = 0; i < n_nchash; ncpp++, i++)
1182 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash)
1183 			cntbuf[i]++;
1184 	cache_unlock_all_buckets();
1185 	for (error = 0, i = 0; i < n_nchash; i++)
1186 		if ((error = SYSCTL_OUT(req, &cntbuf[i], sizeof(int))) != 0)
1187 			break;
1188 	free(cntbuf, M_TEMP);
1189 	return (error);
1190 }
1191 SYSCTL_PROC(_debug_hashstat, OID_AUTO, rawnchash, CTLTYPE_INT|CTLFLAG_RD|
1192     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_rawnchash, "S,int",
1193     "nchash chain lengths");
1194 
1195 static int
sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)1196 sysctl_debug_hashstat_nchash(SYSCTL_HANDLER_ARGS)
1197 {
1198 	int error;
1199 	struct nchashhead *ncpp;
1200 	struct namecache *ncp;
1201 	int n_nchash;
1202 	int count, maxlength, used, pct;
1203 
1204 	if (!req->oldptr)
1205 		return SYSCTL_OUT(req, 0, 4 * sizeof(int));
1206 
1207 	cache_lock_all_buckets();
1208 	n_nchash = nchash + 1;	/* nchash is max index, not count */
1209 	used = 0;
1210 	maxlength = 0;
1211 
1212 	/* Scan hash tables for applicable entries */
1213 	for (ncpp = nchashtbl; n_nchash > 0; n_nchash--, ncpp++) {
1214 		count = 0;
1215 		CK_SLIST_FOREACH(ncp, ncpp, nc_hash) {
1216 			count++;
1217 		}
1218 		if (count)
1219 			used++;
1220 		if (maxlength < count)
1221 			maxlength = count;
1222 	}
1223 	n_nchash = nchash + 1;
1224 	cache_unlock_all_buckets();
1225 	pct = (used * 100) / (n_nchash / 100);
1226 	error = SYSCTL_OUT(req, &n_nchash, sizeof(n_nchash));
1227 	if (error)
1228 		return (error);
1229 	error = SYSCTL_OUT(req, &used, sizeof(used));
1230 	if (error)
1231 		return (error);
1232 	error = SYSCTL_OUT(req, &maxlength, sizeof(maxlength));
1233 	if (error)
1234 		return (error);
1235 	error = SYSCTL_OUT(req, &pct, sizeof(pct));
1236 	if (error)
1237 		return (error);
1238 	return (0);
1239 }
1240 SYSCTL_PROC(_debug_hashstat, OID_AUTO, nchash, CTLTYPE_INT|CTLFLAG_RD|
1241     CTLFLAG_MPSAFE, 0, 0, sysctl_debug_hashstat_nchash, "I",
1242     "nchash statistics (number of total/used buckets, maximum chain length, usage percentage)");
1243 #endif
1244 
1245 /*
1246  * Negative entries management
1247  *
1248  * Various workloads create plenty of negative entries and barely use them
1249  * afterwards. Moreover malicious users can keep performing bogus lookups
1250  * adding even more entries. For example "make tinderbox" as of writing this
1251  * comment ends up with 2.6M namecache entries in total, 1.2M of which are
1252  * negative.
1253  *
1254  * As such, a rather aggressive eviction method is needed. The currently
1255  * employed method is a placeholder.
1256  *
1257  * Entries are split over numneglists separate lists, each of which is further
1258  * split into hot and cold entries. Entries get promoted after getting a hit.
1259  * Eviction happens on addition of new entry.
1260  */
1261 static SYSCTL_NODE(_vfs_cache, OID_AUTO, neg, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1262     "Name cache negative entry statistics");
1263 
1264 SYSCTL_ULONG(_vfs_cache_neg, OID_AUTO, count, CTLFLAG_RD, &numneg, 0,
1265     "Number of negative cache entries");
1266 
1267 static COUNTER_U64_DEFINE_EARLY(neg_created);
1268 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, created, CTLFLAG_RD, &neg_created,
1269     "Number of created negative entries");
1270 
1271 static COUNTER_U64_DEFINE_EARLY(neg_evicted);
1272 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evicted, CTLFLAG_RD, &neg_evicted,
1273     "Number of evicted negative entries");
1274 
1275 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_empty);
1276 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_empty, CTLFLAG_RD,
1277     &neg_evict_skipped_empty,
1278     "Number of times evicting failed due to lack of entries");
1279 
1280 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_missed);
1281 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_missed, CTLFLAG_RD,
1282     &neg_evict_skipped_missed,
1283     "Number of times evicting failed due to target entry disappearing");
1284 
1285 static COUNTER_U64_DEFINE_EARLY(neg_evict_skipped_contended);
1286 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, evict_skipped_contended, CTLFLAG_RD,
1287     &neg_evict_skipped_contended,
1288     "Number of times evicting failed due to contention");
1289 
1290 SYSCTL_COUNTER_U64(_vfs_cache_neg, OID_AUTO, hits, CTLFLAG_RD, &numneghits,
1291     "Number of cache hits (negative)");
1292 
1293 static int
sysctl_neg_hot(SYSCTL_HANDLER_ARGS)1294 sysctl_neg_hot(SYSCTL_HANDLER_ARGS)
1295 {
1296 	int i, out;
1297 
1298 	out = 0;
1299 	for (i = 0; i < numneglists; i++)
1300 		out += neglists[i].nl_hotnum;
1301 
1302 	return (SYSCTL_OUT(req, &out, sizeof(out)));
1303 }
1304 SYSCTL_PROC(_vfs_cache_neg, OID_AUTO, hot, CTLTYPE_INT | CTLFLAG_RD |
1305     CTLFLAG_MPSAFE, 0, 0, sysctl_neg_hot, "I",
1306     "Number of hot negative entries");
1307 
1308 static void
cache_neg_init(struct namecache * ncp)1309 cache_neg_init(struct namecache *ncp)
1310 {
1311 	struct negstate *ns;
1312 
1313 	ncp->nc_flag |= NCF_NEGATIVE;
1314 	ns = NCP2NEGSTATE(ncp);
1315 	ns->neg_flag = 0;
1316 	ns->neg_hit = 0;
1317 	counter_u64_add(neg_created, 1);
1318 }
1319 
1320 #define CACHE_NEG_PROMOTION_THRESH 2
1321 
1322 static bool
cache_neg_hit_prep(struct namecache * ncp)1323 cache_neg_hit_prep(struct namecache *ncp)
1324 {
1325 	struct negstate *ns;
1326 	u_char n;
1327 
1328 	ns = NCP2NEGSTATE(ncp);
1329 	n = atomic_load_char(&ns->neg_hit);
1330 	for (;;) {
1331 		if (n >= CACHE_NEG_PROMOTION_THRESH)
1332 			return (false);
1333 		if (atomic_fcmpset_8(&ns->neg_hit, &n, n + 1))
1334 			break;
1335 	}
1336 	return (n + 1 == CACHE_NEG_PROMOTION_THRESH);
1337 }
1338 
1339 /*
1340  * Nothing to do here but it is provided for completeness as some
1341  * cache_neg_hit_prep callers may end up returning without even
1342  * trying to promote.
1343  */
1344 #define cache_neg_hit_abort(ncp)	do { } while (0)
1345 
1346 static void
cache_neg_hit_finish(struct namecache * ncp)1347 cache_neg_hit_finish(struct namecache *ncp)
1348 {
1349 
1350 	SDT_PROBE2(vfs, namecache, lookup, hit__negative, ncp->nc_dvp, ncp->nc_name);
1351 	counter_u64_add(numneghits, 1);
1352 }
1353 
1354 /*
1355  * Move a negative entry to the hot list.
1356  */
1357 static void
cache_neg_promote_locked(struct namecache * ncp)1358 cache_neg_promote_locked(struct namecache *ncp)
1359 {
1360 	struct neglist *nl;
1361 	struct negstate *ns;
1362 
1363 	ns = NCP2NEGSTATE(ncp);
1364 	nl = NCP2NEGLIST(ncp);
1365 	mtx_assert(&nl->nl_lock, MA_OWNED);
1366 	if ((ns->neg_flag & NEG_HOT) == 0) {
1367 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1368 		TAILQ_INSERT_TAIL(&nl->nl_hotlist, ncp, nc_dst);
1369 		nl->nl_hotnum++;
1370 		ns->neg_flag |= NEG_HOT;
1371 	}
1372 }
1373 
1374 /*
1375  * Move a hot negative entry to the cold list.
1376  */
1377 static void
cache_neg_demote_locked(struct namecache * ncp)1378 cache_neg_demote_locked(struct namecache *ncp)
1379 {
1380 	struct neglist *nl;
1381 	struct negstate *ns;
1382 
1383 	ns = NCP2NEGSTATE(ncp);
1384 	nl = NCP2NEGLIST(ncp);
1385 	mtx_assert(&nl->nl_lock, MA_OWNED);
1386 	MPASS(ns->neg_flag & NEG_HOT);
1387 	TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1388 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1389 	nl->nl_hotnum--;
1390 	ns->neg_flag &= ~NEG_HOT;
1391 	atomic_store_char(&ns->neg_hit, 0);
1392 }
1393 
1394 /*
1395  * Move a negative entry to the hot list if it matches the lookup.
1396  *
1397  * We have to take locks, but they may be contended and in the worst
1398  * case we may need to go off CPU. We don't want to spin within the
1399  * smr section and we can't block with it. Exiting the section means
1400  * the found entry could have been evicted. We are going to look it
1401  * up again.
1402  */
1403 static bool
cache_neg_promote_cond(struct vnode * dvp,struct componentname * cnp,struct namecache * oncp,uint32_t hash)1404 cache_neg_promote_cond(struct vnode *dvp, struct componentname *cnp,
1405     struct namecache *oncp, uint32_t hash)
1406 {
1407 	struct namecache *ncp;
1408 	struct neglist *nl;
1409 	u_char nc_flag;
1410 
1411 	nl = NCP2NEGLIST(oncp);
1412 
1413 	mtx_lock(&nl->nl_lock);
1414 	/*
1415 	 * For hash iteration.
1416 	 */
1417 	vfs_smr_enter();
1418 
1419 	/*
1420 	 * Avoid all surprises by only succeeding if we got the same entry and
1421 	 * bailing completely otherwise.
1422 	 * XXX There are no provisions to keep the vnode around, meaning we may
1423 	 * end up promoting a negative entry for a *new* vnode and returning
1424 	 * ENOENT on its account. This is the error we want to return anyway
1425 	 * and promotion is harmless.
1426 	 *
1427 	 * In particular at this point there can be a new ncp which matches the
1428 	 * search but hashes to a different neglist.
1429 	 */
1430 	CK_SLIST_FOREACH(ncp, (NCHHASH(hash)), nc_hash) {
1431 		if (ncp == oncp)
1432 			break;
1433 	}
1434 
1435 	/*
1436 	 * No match to begin with.
1437 	 */
1438 	if (__predict_false(ncp == NULL)) {
1439 		goto out_abort;
1440 	}
1441 
1442 	/*
1443 	 * The newly found entry may be something different...
1444 	 */
1445 	if (!cache_ncp_match(ncp, dvp, cnp)) {
1446 		goto out_abort;
1447 	}
1448 
1449 	/*
1450 	 * ... and not even negative.
1451 	 */
1452 	nc_flag = atomic_load_char(&ncp->nc_flag);
1453 	if ((nc_flag & NCF_NEGATIVE) == 0) {
1454 		goto out_abort;
1455 	}
1456 
1457 	if (!cache_ncp_canuse(ncp)) {
1458 		goto out_abort;
1459 	}
1460 
1461 	cache_neg_promote_locked(ncp);
1462 	cache_neg_hit_finish(ncp);
1463 	vfs_smr_exit();
1464 	mtx_unlock(&nl->nl_lock);
1465 	return (true);
1466 out_abort:
1467 	vfs_smr_exit();
1468 	mtx_unlock(&nl->nl_lock);
1469 	return (false);
1470 }
1471 
1472 static void
cache_neg_promote(struct namecache * ncp)1473 cache_neg_promote(struct namecache *ncp)
1474 {
1475 	struct neglist *nl;
1476 
1477 	nl = NCP2NEGLIST(ncp);
1478 	mtx_lock(&nl->nl_lock);
1479 	cache_neg_promote_locked(ncp);
1480 	mtx_unlock(&nl->nl_lock);
1481 }
1482 
1483 static void
cache_neg_insert(struct namecache * ncp)1484 cache_neg_insert(struct namecache *ncp)
1485 {
1486 	struct neglist *nl;
1487 
1488 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1489 	cache_assert_bucket_locked(ncp);
1490 	nl = NCP2NEGLIST(ncp);
1491 	mtx_lock(&nl->nl_lock);
1492 	TAILQ_INSERT_TAIL(&nl->nl_list, ncp, nc_dst);
1493 	mtx_unlock(&nl->nl_lock);
1494 	atomic_add_long(&numneg, 1);
1495 }
1496 
1497 static void
cache_neg_remove(struct namecache * ncp)1498 cache_neg_remove(struct namecache *ncp)
1499 {
1500 	struct neglist *nl;
1501 	struct negstate *ns;
1502 
1503 	cache_assert_bucket_locked(ncp);
1504 	nl = NCP2NEGLIST(ncp);
1505 	ns = NCP2NEGSTATE(ncp);
1506 	mtx_lock(&nl->nl_lock);
1507 	if ((ns->neg_flag & NEG_HOT) != 0) {
1508 		TAILQ_REMOVE(&nl->nl_hotlist, ncp, nc_dst);
1509 		nl->nl_hotnum--;
1510 	} else {
1511 		TAILQ_REMOVE(&nl->nl_list, ncp, nc_dst);
1512 	}
1513 	mtx_unlock(&nl->nl_lock);
1514 	atomic_subtract_long(&numneg, 1);
1515 }
1516 
1517 static struct neglist *
cache_neg_evict_select_list(void)1518 cache_neg_evict_select_list(void)
1519 {
1520 	struct neglist *nl;
1521 	u_int c;
1522 
1523 	c = atomic_fetchadd_int(&neg_cycle, 1) + 1;
1524 	nl = &neglists[c % numneglists];
1525 	if (!mtx_trylock(&nl->nl_evict_lock)) {
1526 		counter_u64_add(neg_evict_skipped_contended, 1);
1527 		return (NULL);
1528 	}
1529 	return (nl);
1530 }
1531 
1532 static struct namecache *
cache_neg_evict_select_entry(struct neglist * nl)1533 cache_neg_evict_select_entry(struct neglist *nl)
1534 {
1535 	struct namecache *ncp, *lncp;
1536 	struct negstate *ns, *lns;
1537 	int i;
1538 
1539 	mtx_assert(&nl->nl_evict_lock, MA_OWNED);
1540 	mtx_assert(&nl->nl_lock, MA_OWNED);
1541 	ncp = TAILQ_FIRST(&nl->nl_list);
1542 	if (ncp == NULL)
1543 		return (NULL);
1544 	lncp = ncp;
1545 	lns = NCP2NEGSTATE(lncp);
1546 	for (i = 1; i < 4; i++) {
1547 		ncp = TAILQ_NEXT(ncp, nc_dst);
1548 		if (ncp == NULL)
1549 			break;
1550 		ns = NCP2NEGSTATE(ncp);
1551 		if (ns->neg_hit < lns->neg_hit) {
1552 			lncp = ncp;
1553 			lns = ns;
1554 		}
1555 	}
1556 	return (lncp);
1557 }
1558 
1559 static bool
cache_neg_evict(void)1560 cache_neg_evict(void)
1561 {
1562 	struct namecache *ncp, *ncp2;
1563 	struct neglist *nl;
1564 	struct vnode *dvp;
1565 	struct mtx *dvlp;
1566 	struct mtx *blp;
1567 	uint32_t hash;
1568 	u_char nlen;
1569 	bool evicted;
1570 
1571 	nl = cache_neg_evict_select_list();
1572 	if (nl == NULL) {
1573 		return (false);
1574 	}
1575 
1576 	mtx_lock(&nl->nl_lock);
1577 	ncp = TAILQ_FIRST(&nl->nl_hotlist);
1578 	if (ncp != NULL) {
1579 		cache_neg_demote_locked(ncp);
1580 	}
1581 	ncp = cache_neg_evict_select_entry(nl);
1582 	if (ncp == NULL) {
1583 		counter_u64_add(neg_evict_skipped_empty, 1);
1584 		mtx_unlock(&nl->nl_lock);
1585 		mtx_unlock(&nl->nl_evict_lock);
1586 		return (false);
1587 	}
1588 	nlen = ncp->nc_nlen;
1589 	dvp = ncp->nc_dvp;
1590 	hash = cache_get_hash(ncp->nc_name, nlen, dvp);
1591 	dvlp = VP2VNODELOCK(dvp);
1592 	blp = HASH2BUCKETLOCK(hash);
1593 	mtx_unlock(&nl->nl_lock);
1594 	mtx_unlock(&nl->nl_evict_lock);
1595 	mtx_lock(dvlp);
1596 	mtx_lock(blp);
1597 	/*
1598 	 * Note that since all locks were dropped above, the entry may be
1599 	 * gone or reallocated to be something else.
1600 	 */
1601 	CK_SLIST_FOREACH(ncp2, (NCHHASH(hash)), nc_hash) {
1602 		if (ncp2 == ncp && ncp2->nc_dvp == dvp &&
1603 		    ncp2->nc_nlen == nlen && (ncp2->nc_flag & NCF_NEGATIVE) != 0)
1604 			break;
1605 	}
1606 	if (ncp2 == NULL) {
1607 		counter_u64_add(neg_evict_skipped_missed, 1);
1608 		ncp = NULL;
1609 		evicted = false;
1610 	} else {
1611 		MPASS(dvlp == VP2VNODELOCK(ncp->nc_dvp));
1612 		MPASS(blp == NCP2BUCKETLOCK(ncp));
1613 		SDT_PROBE2(vfs, namecache, evict_negative, done, ncp->nc_dvp,
1614 		    ncp->nc_name);
1615 		cache_zap_locked(ncp);
1616 		counter_u64_add(neg_evicted, 1);
1617 		evicted = true;
1618 	}
1619 	mtx_unlock(blp);
1620 	mtx_unlock(dvlp);
1621 	if (ncp != NULL)
1622 		cache_free(ncp);
1623 	return (evicted);
1624 }
1625 
1626 /*
1627  * Maybe evict a negative entry to create more room.
1628  *
1629  * The ncnegfactor parameter limits what fraction of the total count
1630  * can comprise of negative entries. However, if the cache is just
1631  * warming up this leads to excessive evictions.  As such, ncnegminpct
1632  * (recomputed to neg_min) dictates whether the above should be
1633  * applied.
1634  *
1635  * Try evicting if the cache is close to full capacity regardless of
1636  * other considerations.
1637  */
1638 static bool
cache_neg_evict_cond(u_long lnumcache)1639 cache_neg_evict_cond(u_long lnumcache)
1640 {
1641 	u_long lnumneg;
1642 
1643 	if (ncsize - 1000 < lnumcache)
1644 		goto out_evict;
1645 	lnumneg = atomic_load_long(&numneg);
1646 	if (lnumneg < neg_min)
1647 		return (false);
1648 	if (lnumneg * ncnegfactor < lnumcache)
1649 		return (false);
1650 out_evict:
1651 	return (cache_neg_evict());
1652 }
1653 
1654 /*
1655  * cache_zap_locked():
1656  *
1657  *   Removes a namecache entry from cache, whether it contains an actual
1658  *   pointer to a vnode or if it is just a negative cache entry.
1659  */
1660 static void
cache_zap_locked(struct namecache * ncp)1661 cache_zap_locked(struct namecache *ncp)
1662 {
1663 	struct nchashhead *ncpp;
1664 	struct vnode *dvp, *vp;
1665 
1666 	dvp = ncp->nc_dvp;
1667 	vp = ncp->nc_vp;
1668 
1669 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1670 		cache_assert_vnode_locked(vp);
1671 	cache_assert_vnode_locked(dvp);
1672 	cache_assert_bucket_locked(ncp);
1673 
1674 	cache_ncp_invalidate(ncp);
1675 
1676 	ncpp = NCP2BUCKET(ncp);
1677 	CK_SLIST_REMOVE(ncpp, ncp, namecache, nc_hash);
1678 	if (!(ncp->nc_flag & NCF_NEGATIVE)) {
1679 		SDT_PROBE3(vfs, namecache, zap, done, dvp, ncp->nc_name, vp);
1680 		TAILQ_REMOVE(&vp->v_cache_dst, ncp, nc_dst);
1681 		if (ncp == vp->v_cache_dd) {
1682 			atomic_store_ptr(&vp->v_cache_dd, NULL);
1683 		}
1684 	} else {
1685 		SDT_PROBE2(vfs, namecache, zap_negative, done, dvp, ncp->nc_name);
1686 		cache_neg_remove(ncp);
1687 	}
1688 	if (ncp->nc_flag & NCF_ISDOTDOT) {
1689 		if (ncp == dvp->v_cache_dd) {
1690 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1691 		}
1692 	} else {
1693 		LIST_REMOVE(ncp, nc_src);
1694 		if (LIST_EMPTY(&dvp->v_cache_src)) {
1695 			ncp->nc_flag |= NCF_DVDROP;
1696 		}
1697 	}
1698 }
1699 
1700 static void
cache_zap_negative_locked_vnode_kl(struct namecache * ncp,struct vnode * vp)1701 cache_zap_negative_locked_vnode_kl(struct namecache *ncp, struct vnode *vp)
1702 {
1703 	struct mtx *blp;
1704 
1705 	MPASS(ncp->nc_dvp == vp);
1706 	MPASS(ncp->nc_flag & NCF_NEGATIVE);
1707 	cache_assert_vnode_locked(vp);
1708 
1709 	blp = NCP2BUCKETLOCK(ncp);
1710 	mtx_lock(blp);
1711 	cache_zap_locked(ncp);
1712 	mtx_unlock(blp);
1713 }
1714 
1715 static bool
cache_zap_locked_vnode_kl2(struct namecache * ncp,struct vnode * vp,struct mtx ** vlpp)1716 cache_zap_locked_vnode_kl2(struct namecache *ncp, struct vnode *vp,
1717     struct mtx **vlpp)
1718 {
1719 	struct mtx *pvlp, *vlp1, *vlp2, *to_unlock;
1720 	struct mtx *blp;
1721 
1722 	MPASS(vp == ncp->nc_dvp || vp == ncp->nc_vp);
1723 	cache_assert_vnode_locked(vp);
1724 
1725 	if (ncp->nc_flag & NCF_NEGATIVE) {
1726 		if (*vlpp != NULL) {
1727 			mtx_unlock(*vlpp);
1728 			*vlpp = NULL;
1729 		}
1730 		cache_zap_negative_locked_vnode_kl(ncp, vp);
1731 		return (true);
1732 	}
1733 
1734 	pvlp = VP2VNODELOCK(vp);
1735 	blp = NCP2BUCKETLOCK(ncp);
1736 	vlp1 = VP2VNODELOCK(ncp->nc_dvp);
1737 	vlp2 = VP2VNODELOCK(ncp->nc_vp);
1738 
1739 	if (*vlpp == vlp1 || *vlpp == vlp2) {
1740 		to_unlock = *vlpp;
1741 		*vlpp = NULL;
1742 	} else {
1743 		if (*vlpp != NULL) {
1744 			mtx_unlock(*vlpp);
1745 			*vlpp = NULL;
1746 		}
1747 		cache_sort_vnodes(&vlp1, &vlp2);
1748 		if (vlp1 == pvlp) {
1749 			mtx_lock(vlp2);
1750 			to_unlock = vlp2;
1751 		} else {
1752 			if (!mtx_trylock(vlp1))
1753 				goto out_relock;
1754 			to_unlock = vlp1;
1755 		}
1756 	}
1757 	mtx_lock(blp);
1758 	cache_zap_locked(ncp);
1759 	mtx_unlock(blp);
1760 	if (to_unlock != NULL)
1761 		mtx_unlock(to_unlock);
1762 	return (true);
1763 
1764 out_relock:
1765 	mtx_unlock(vlp2);
1766 	mtx_lock(vlp1);
1767 	mtx_lock(vlp2);
1768 	MPASS(*vlpp == NULL);
1769 	*vlpp = vlp1;
1770 	return (false);
1771 }
1772 
1773 /*
1774  * If trylocking failed we can get here. We know enough to take all needed locks
1775  * in the right order and re-lookup the entry.
1776  */
1777 static int
cache_zap_unlocked_bucket(struct namecache * ncp,struct componentname * cnp,struct vnode * dvp,struct mtx * dvlp,struct mtx * vlp,uint32_t hash,struct mtx * blp)1778 cache_zap_unlocked_bucket(struct namecache *ncp, struct componentname *cnp,
1779     struct vnode *dvp, struct mtx *dvlp, struct mtx *vlp, uint32_t hash,
1780     struct mtx *blp)
1781 {
1782 	struct namecache *rncp;
1783 	struct mtx *rvlp;
1784 
1785 	cache_assert_bucket_unlocked(ncp);
1786 
1787 	cache_sort_vnodes(&dvlp, &vlp);
1788 	cache_lock_vnodes(dvlp, vlp);
1789 	mtx_lock(blp);
1790 	CK_SLIST_FOREACH(rncp, (NCHHASH(hash)), nc_hash) {
1791 		if (rncp == ncp && cache_ncp_match(rncp, dvp, cnp))
1792 			break;
1793 	}
1794 	if (rncp == NULL)
1795 		goto out_mismatch;
1796 
1797 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1798 		rvlp = VP2VNODELOCK(rncp->nc_vp);
1799 	else
1800 		rvlp = NULL;
1801 	if (rvlp != vlp)
1802 		goto out_mismatch;
1803 
1804 	cache_zap_locked(rncp);
1805 	mtx_unlock(blp);
1806 	cache_unlock_vnodes(dvlp, vlp);
1807 	atomic_add_long(&zap_bucket_relock_success, 1);
1808 	return (0);
1809 
1810 out_mismatch:
1811 	mtx_unlock(blp);
1812 	cache_unlock_vnodes(dvlp, vlp);
1813 	return (EAGAIN);
1814 }
1815 
1816 static int __noinline
cache_zap_locked_bucket(struct namecache * ncp,struct componentname * cnp,uint32_t hash,struct mtx * blp)1817 cache_zap_locked_bucket(struct namecache *ncp, struct componentname *cnp,
1818     uint32_t hash, struct mtx *blp)
1819 {
1820 	struct mtx *dvlp, *vlp;
1821 	struct vnode *dvp;
1822 
1823 	cache_assert_bucket_locked(ncp);
1824 
1825 	dvlp = VP2VNODELOCK(ncp->nc_dvp);
1826 	vlp = NULL;
1827 	if (!(ncp->nc_flag & NCF_NEGATIVE))
1828 		vlp = VP2VNODELOCK(ncp->nc_vp);
1829 	if (cache_trylock_vnodes(dvlp, vlp) == 0) {
1830 		cache_zap_locked(ncp);
1831 		mtx_unlock(blp);
1832 		cache_unlock_vnodes(dvlp, vlp);
1833 		return (0);
1834 	}
1835 
1836 	dvp = ncp->nc_dvp;
1837 	mtx_unlock(blp);
1838 	return (cache_zap_unlocked_bucket(ncp, cnp, dvp, dvlp, vlp, hash, blp));
1839 }
1840 
1841 static __noinline int
cache_remove_cnp(struct vnode * dvp,struct componentname * cnp)1842 cache_remove_cnp(struct vnode *dvp, struct componentname *cnp)
1843 {
1844 	struct namecache *ncp;
1845 	struct mtx *blp;
1846 	struct mtx *dvlp, *dvlp2;
1847 	uint32_t hash;
1848 	int error;
1849 
1850 	if (cnp->cn_namelen == 2 &&
1851 	    cnp->cn_nameptr[0] == '.' && cnp->cn_nameptr[1] == '.') {
1852 		dvlp = VP2VNODELOCK(dvp);
1853 		dvlp2 = NULL;
1854 		mtx_lock(dvlp);
1855 retry_dotdot:
1856 		ncp = dvp->v_cache_dd;
1857 		if (ncp == NULL) {
1858 			mtx_unlock(dvlp);
1859 			if (dvlp2 != NULL)
1860 				mtx_unlock(dvlp2);
1861 			SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1862 			return (0);
1863 		}
1864 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1865 			if (!cache_zap_locked_vnode_kl2(ncp, dvp, &dvlp2))
1866 				goto retry_dotdot;
1867 			MPASS(dvp->v_cache_dd == NULL);
1868 			mtx_unlock(dvlp);
1869 			if (dvlp2 != NULL)
1870 				mtx_unlock(dvlp2);
1871 			cache_free(ncp);
1872 		} else {
1873 			atomic_store_ptr(&dvp->v_cache_dd, NULL);
1874 			mtx_unlock(dvlp);
1875 			if (dvlp2 != NULL)
1876 				mtx_unlock(dvlp2);
1877 		}
1878 		SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1879 		return (1);
1880 	}
1881 
1882 	/*
1883 	 * XXX note that access here is completely unlocked with no provisions
1884 	 * to keep the hash allocated. If one is sufficiently unlucky a
1885 	 * parallel cache resize can reallocate the hash, unmap backing pages
1886 	 * and cause the empty check below to fault.
1887 	 *
1888 	 * Fixing this has epsilon priority, but can be done with no overhead
1889 	 * for this codepath with sufficient effort.
1890 	 */
1891 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
1892 	blp = HASH2BUCKETLOCK(hash);
1893 retry:
1894 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
1895 		goto out_no_entry;
1896 
1897 	mtx_lock(blp);
1898 	ncp = cache_ncp_find(dvp, cnp, hash);
1899 	if (ncp == NULL) {
1900 		mtx_unlock(blp);
1901 		goto out_no_entry;
1902 	}
1903 
1904 	error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
1905 	if (__predict_false(error != 0)) {
1906 		atomic_add_long(&zap_bucket_fail, 1);
1907 		goto retry;
1908 	}
1909 	counter_u64_add(numposzaps, 1);
1910 	SDT_PROBE2(vfs, namecache, removecnp, hit, dvp, cnp);
1911 	cache_free(ncp);
1912 	return (1);
1913 out_no_entry:
1914 	counter_u64_add(nummisszap, 1);
1915 	SDT_PROBE2(vfs, namecache, removecnp, miss, dvp, cnp);
1916 	return (0);
1917 }
1918 
1919 static int __noinline
cache_lookup_dot(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)1920 cache_lookup_dot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1921     struct timespec *tsp, int *ticksp)
1922 {
1923 	int ltype;
1924 
1925 	*vpp = dvp;
1926 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ".", *vpp);
1927 	if (tsp != NULL)
1928 		timespecclear(tsp);
1929 	if (ticksp != NULL)
1930 		*ticksp = ticks;
1931 	vrefact(*vpp);
1932 	/*
1933 	 * When we lookup "." we still can be asked to lock it
1934 	 * differently...
1935 	 */
1936 	ltype = cnp->cn_lkflags & LK_TYPE_MASK;
1937 	if (ltype != VOP_ISLOCKED(*vpp)) {
1938 		if (ltype == LK_EXCLUSIVE) {
1939 			vn_lock(*vpp, LK_UPGRADE | LK_RETRY);
1940 			if (VN_IS_DOOMED((*vpp))) {
1941 				/* forced unmount */
1942 				vrele(*vpp);
1943 				*vpp = NULL;
1944 				return (ENOENT);
1945 			}
1946 		} else
1947 			vn_lock(*vpp, LK_DOWNGRADE | LK_RETRY);
1948 	}
1949 	return (-1);
1950 }
1951 
1952 static int __noinline
cache_lookup_dotdot(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)1953 cache_lookup_dotdot(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
1954     struct timespec *tsp, int *ticksp)
1955 {
1956 	struct namecache_ts *ncp_ts;
1957 	struct namecache *ncp;
1958 	struct mtx *dvlp;
1959 	enum vgetstate vs;
1960 	int error, ltype;
1961 	bool whiteout;
1962 
1963 	MPASS((cnp->cn_flags & ISDOTDOT) != 0);
1964 
1965 	if ((cnp->cn_flags & MAKEENTRY) == 0) {
1966 		cache_remove_cnp(dvp, cnp);
1967 		return (0);
1968 	}
1969 
1970 retry:
1971 	dvlp = VP2VNODELOCK(dvp);
1972 	mtx_lock(dvlp);
1973 	ncp = dvp->v_cache_dd;
1974 	if (ncp == NULL) {
1975 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, "..");
1976 		mtx_unlock(dvlp);
1977 		return (0);
1978 	}
1979 	if ((ncp->nc_flag & NCF_ISDOTDOT) != 0) {
1980 		if (ncp->nc_flag & NCF_NEGATIVE)
1981 			*vpp = NULL;
1982 		else
1983 			*vpp = ncp->nc_vp;
1984 	} else
1985 		*vpp = ncp->nc_dvp;
1986 	if (*vpp == NULL)
1987 		goto negative_success;
1988 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, "..", *vpp);
1989 	cache_out_ts(ncp, tsp, ticksp);
1990 	if ((ncp->nc_flag & (NCF_ISDOTDOT | NCF_DTS)) ==
1991 	    NCF_DTS && tsp != NULL) {
1992 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
1993 		*tsp = ncp_ts->nc_dotdottime;
1994 	}
1995 
1996 	MPASS(dvp != *vpp);
1997 	ltype = VOP_ISLOCKED(dvp);
1998 	VOP_UNLOCK(dvp);
1999 	vs = vget_prep(*vpp);
2000 	mtx_unlock(dvlp);
2001 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2002 	vn_lock(dvp, ltype | LK_RETRY);
2003 	if (VN_IS_DOOMED(dvp)) {
2004 		if (error == 0)
2005 			vput(*vpp);
2006 		*vpp = NULL;
2007 		return (ENOENT);
2008 	}
2009 	if (error) {
2010 		*vpp = NULL;
2011 		goto retry;
2012 	}
2013 	return (-1);
2014 negative_success:
2015 	if (__predict_false(cnp->cn_nameiop == CREATE)) {
2016 		if (cnp->cn_flags & ISLASTCN) {
2017 			counter_u64_add(numnegzaps, 1);
2018 			cache_zap_negative_locked_vnode_kl(ncp, dvp);
2019 			mtx_unlock(dvlp);
2020 			cache_free(ncp);
2021 			return (0);
2022 		}
2023 	}
2024 
2025 	whiteout = (ncp->nc_flag & NCF_WHITE);
2026 	cache_out_ts(ncp, tsp, ticksp);
2027 	if (cache_neg_hit_prep(ncp))
2028 		cache_neg_promote(ncp);
2029 	else
2030 		cache_neg_hit_finish(ncp);
2031 	mtx_unlock(dvlp);
2032 	if (whiteout)
2033 		cnp->cn_flags |= ISWHITEOUT;
2034 	return (ENOENT);
2035 }
2036 
2037 /**
2038  * Lookup a name in the name cache
2039  *
2040  * # Arguments
2041  *
2042  * - dvp:	Parent directory in which to search.
2043  * - vpp:	Return argument.  Will contain desired vnode on cache hit.
2044  * - cnp:	Parameters of the name search.  The most interesting bits of
2045  *   		the cn_flags field have the following meanings:
2046  *   	- MAKEENTRY:	If clear, free an entry from the cache rather than look
2047  *   			it up.
2048  *   	- ISDOTDOT:	Must be set if and only if cn_nameptr == ".."
2049  * - tsp:	Return storage for cache timestamp.  On a successful (positive
2050  *   		or negative) lookup, tsp will be filled with any timespec that
2051  *   		was stored when this cache entry was created.  However, it will
2052  *   		be clear for "." entries.
2053  * - ticks:	Return storage for alternate cache timestamp.  On a successful
2054  *   		(positive or negative) lookup, it will contain the ticks value
2055  *   		that was current when the cache entry was created, unless cnp
2056  *   		was ".".
2057  *
2058  * Either both tsp and ticks have to be provided or neither of them.
2059  *
2060  * # Returns
2061  *
2062  * - -1:	A positive cache hit.  vpp will contain the desired vnode.
2063  * - ENOENT:	A negative cache hit, or dvp was recycled out from under us due
2064  *		to a forced unmount.  vpp will not be modified.  If the entry
2065  *		is a whiteout, then the ISWHITEOUT flag will be set in
2066  *		cnp->cn_flags.
2067  * - 0:		A cache miss.  vpp will not be modified.
2068  *
2069  * # Locking
2070  *
2071  * On a cache hit, vpp will be returned locked and ref'd.  If we're looking up
2072  * .., dvp is unlocked.  If we're looking up . an extra ref is taken, but the
2073  * lock is not recursively acquired.
2074  */
2075 static int __noinline
cache_lookup_fallback(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)2076 cache_lookup_fallback(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2077     struct timespec *tsp, int *ticksp)
2078 {
2079 	struct namecache *ncp;
2080 	struct mtx *blp;
2081 	uint32_t hash;
2082 	enum vgetstate vs;
2083 	int error;
2084 	bool whiteout;
2085 
2086 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2087 	MPASS((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) != 0);
2088 
2089 retry:
2090 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2091 	blp = HASH2BUCKETLOCK(hash);
2092 	mtx_lock(blp);
2093 
2094 	ncp = cache_ncp_find(dvp, cnp, hash);
2095 	if (__predict_false(ncp == NULL)) {
2096 		mtx_unlock(blp);
2097 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2098 		counter_u64_add(nummiss, 1);
2099 		return (0);
2100 	}
2101 
2102 	if (ncp->nc_flag & NCF_NEGATIVE)
2103 		goto negative_success;
2104 
2105 	counter_u64_add(numposhits, 1);
2106 	*vpp = ncp->nc_vp;
2107 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2108 	cache_out_ts(ncp, tsp, ticksp);
2109 	MPASS(dvp != *vpp);
2110 	vs = vget_prep(*vpp);
2111 	mtx_unlock(blp);
2112 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2113 	if (error) {
2114 		*vpp = NULL;
2115 		goto retry;
2116 	}
2117 	return (-1);
2118 negative_success:
2119 	/*
2120 	 * We don't get here with regular lookup apart from corner cases.
2121 	 */
2122 	if (__predict_true(cnp->cn_nameiop == CREATE)) {
2123 		if (cnp->cn_flags & ISLASTCN) {
2124 			counter_u64_add(numnegzaps, 1);
2125 			error = cache_zap_locked_bucket(ncp, cnp, hash, blp);
2126 			if (__predict_false(error != 0)) {
2127 				atomic_add_long(&zap_bucket_fail2, 1);
2128 				goto retry;
2129 			}
2130 			cache_free(ncp);
2131 			return (0);
2132 		}
2133 	}
2134 
2135 	whiteout = (ncp->nc_flag & NCF_WHITE);
2136 	cache_out_ts(ncp, tsp, ticksp);
2137 	if (cache_neg_hit_prep(ncp))
2138 		cache_neg_promote(ncp);
2139 	else
2140 		cache_neg_hit_finish(ncp);
2141 	mtx_unlock(blp);
2142 	if (whiteout)
2143 		cnp->cn_flags |= ISWHITEOUT;
2144 	return (ENOENT);
2145 }
2146 
2147 int
cache_lookup(struct vnode * dvp,struct vnode ** vpp,struct componentname * cnp,struct timespec * tsp,int * ticksp)2148 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
2149     struct timespec *tsp, int *ticksp)
2150 {
2151 	struct namecache *ncp;
2152 	uint32_t hash;
2153 	enum vgetstate vs;
2154 	int error;
2155 	bool whiteout, neg_promote;
2156 	u_short nc_flag;
2157 
2158 	MPASS((tsp == NULL && ticksp == NULL) || (tsp != NULL && ticksp != NULL));
2159 
2160 #ifdef DEBUG_CACHE
2161 	if (__predict_false(!doingcache)) {
2162 		cnp->cn_flags &= ~MAKEENTRY;
2163 		return (0);
2164 	}
2165 #endif
2166 
2167 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2168 		if (cnp->cn_namelen == 1)
2169 			return (cache_lookup_dot(dvp, vpp, cnp, tsp, ticksp));
2170 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.')
2171 			return (cache_lookup_dotdot(dvp, vpp, cnp, tsp, ticksp));
2172 	}
2173 
2174 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
2175 
2176 	if ((cnp->cn_flags & (MAKEENTRY | NC_KEEPPOSENTRY)) == 0) {
2177 		cache_remove_cnp(dvp, cnp);
2178 		return (0);
2179 	}
2180 
2181 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
2182 	vfs_smr_enter();
2183 
2184 	ncp = cache_ncp_find(dvp, cnp, hash);
2185 	if (__predict_false(ncp == NULL)) {
2186 		vfs_smr_exit();
2187 		SDT_PROBE2(vfs, namecache, lookup, miss, dvp, cnp->cn_nameptr);
2188 		counter_u64_add(nummiss, 1);
2189 		return (0);
2190 	}
2191 
2192 	nc_flag = atomic_load_char(&ncp->nc_flag);
2193 	if (nc_flag & NCF_NEGATIVE)
2194 		goto negative_success;
2195 
2196 	counter_u64_add(numposhits, 1);
2197 	*vpp = ncp->nc_vp;
2198 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, *vpp);
2199 	cache_out_ts(ncp, tsp, ticksp);
2200 	MPASS(dvp != *vpp);
2201 	if (!cache_ncp_canuse(ncp)) {
2202 		vfs_smr_exit();
2203 		*vpp = NULL;
2204 		goto out_fallback;
2205 	}
2206 	vs = vget_prep_smr(*vpp);
2207 	vfs_smr_exit();
2208 	if (__predict_false(vs == VGET_NONE)) {
2209 		*vpp = NULL;
2210 		goto out_fallback;
2211 	}
2212 	error = vget_finish(*vpp, cnp->cn_lkflags, vs);
2213 	if (error) {
2214 		*vpp = NULL;
2215 		goto out_fallback;
2216 	}
2217 	return (-1);
2218 negative_success:
2219 	if (cnp->cn_nameiop == CREATE) {
2220 		if (cnp->cn_flags & ISLASTCN) {
2221 			vfs_smr_exit();
2222 			goto out_fallback;
2223 		}
2224 	}
2225 
2226 	cache_out_ts(ncp, tsp, ticksp);
2227 	whiteout = (atomic_load_char(&ncp->nc_flag) & NCF_WHITE);
2228 	neg_promote = cache_neg_hit_prep(ncp);
2229 	if (!cache_ncp_canuse(ncp)) {
2230 		cache_neg_hit_abort(ncp);
2231 		vfs_smr_exit();
2232 		goto out_fallback;
2233 	}
2234 	if (neg_promote) {
2235 		vfs_smr_exit();
2236 		if (!cache_neg_promote_cond(dvp, cnp, ncp, hash))
2237 			goto out_fallback;
2238 	} else {
2239 		cache_neg_hit_finish(ncp);
2240 		vfs_smr_exit();
2241 	}
2242 	if (whiteout)
2243 		cnp->cn_flags |= ISWHITEOUT;
2244 	return (ENOENT);
2245 out_fallback:
2246 	return (cache_lookup_fallback(dvp, vpp, cnp, tsp, ticksp));
2247 }
2248 
2249 struct celockstate {
2250 	struct mtx *vlp[3];
2251 	struct mtx *blp[2];
2252 };
2253 CTASSERT((nitems(((struct celockstate *)0)->vlp) == 3));
2254 CTASSERT((nitems(((struct celockstate *)0)->blp) == 2));
2255 
2256 static inline void
cache_celockstate_init(struct celockstate * cel)2257 cache_celockstate_init(struct celockstate *cel)
2258 {
2259 
2260 	bzero(cel, sizeof(*cel));
2261 }
2262 
2263 static void
cache_lock_vnodes_cel(struct celockstate * cel,struct vnode * vp,struct vnode * dvp)2264 cache_lock_vnodes_cel(struct celockstate *cel, struct vnode *vp,
2265     struct vnode *dvp)
2266 {
2267 	struct mtx *vlp1, *vlp2;
2268 
2269 	MPASS(cel->vlp[0] == NULL);
2270 	MPASS(cel->vlp[1] == NULL);
2271 	MPASS(cel->vlp[2] == NULL);
2272 
2273 	MPASS(vp != NULL || dvp != NULL);
2274 
2275 	vlp1 = VP2VNODELOCK(vp);
2276 	vlp2 = VP2VNODELOCK(dvp);
2277 	cache_sort_vnodes(&vlp1, &vlp2);
2278 
2279 	if (vlp1 != NULL) {
2280 		mtx_lock(vlp1);
2281 		cel->vlp[0] = vlp1;
2282 	}
2283 	mtx_lock(vlp2);
2284 	cel->vlp[1] = vlp2;
2285 }
2286 
2287 static void
cache_unlock_vnodes_cel(struct celockstate * cel)2288 cache_unlock_vnodes_cel(struct celockstate *cel)
2289 {
2290 
2291 	MPASS(cel->vlp[0] != NULL || cel->vlp[1] != NULL);
2292 
2293 	if (cel->vlp[0] != NULL)
2294 		mtx_unlock(cel->vlp[0]);
2295 	if (cel->vlp[1] != NULL)
2296 		mtx_unlock(cel->vlp[1]);
2297 	if (cel->vlp[2] != NULL)
2298 		mtx_unlock(cel->vlp[2]);
2299 }
2300 
2301 static bool
cache_lock_vnodes_cel_3(struct celockstate * cel,struct vnode * vp)2302 cache_lock_vnodes_cel_3(struct celockstate *cel, struct vnode *vp)
2303 {
2304 	struct mtx *vlp;
2305 	bool ret;
2306 
2307 	cache_assert_vlp_locked(cel->vlp[0]);
2308 	cache_assert_vlp_locked(cel->vlp[1]);
2309 	MPASS(cel->vlp[2] == NULL);
2310 
2311 	MPASS(vp != NULL);
2312 	vlp = VP2VNODELOCK(vp);
2313 
2314 	ret = true;
2315 	if (vlp >= cel->vlp[1]) {
2316 		mtx_lock(vlp);
2317 	} else {
2318 		if (mtx_trylock(vlp))
2319 			goto out;
2320 		cache_unlock_vnodes_cel(cel);
2321 		atomic_add_long(&cache_lock_vnodes_cel_3_failures, 1);
2322 		if (vlp < cel->vlp[0]) {
2323 			mtx_lock(vlp);
2324 			mtx_lock(cel->vlp[0]);
2325 			mtx_lock(cel->vlp[1]);
2326 		} else {
2327 			if (cel->vlp[0] != NULL)
2328 				mtx_lock(cel->vlp[0]);
2329 			mtx_lock(vlp);
2330 			mtx_lock(cel->vlp[1]);
2331 		}
2332 		ret = false;
2333 	}
2334 out:
2335 	cel->vlp[2] = vlp;
2336 	return (ret);
2337 }
2338 
2339 static void
cache_lock_buckets_cel(struct celockstate * cel,struct mtx * blp1,struct mtx * blp2)2340 cache_lock_buckets_cel(struct celockstate *cel, struct mtx *blp1,
2341     struct mtx *blp2)
2342 {
2343 
2344 	MPASS(cel->blp[0] == NULL);
2345 	MPASS(cel->blp[1] == NULL);
2346 
2347 	cache_sort_vnodes(&blp1, &blp2);
2348 
2349 	if (blp1 != NULL) {
2350 		mtx_lock(blp1);
2351 		cel->blp[0] = blp1;
2352 	}
2353 	mtx_lock(blp2);
2354 	cel->blp[1] = blp2;
2355 }
2356 
2357 static void
cache_unlock_buckets_cel(struct celockstate * cel)2358 cache_unlock_buckets_cel(struct celockstate *cel)
2359 {
2360 
2361 	if (cel->blp[0] != NULL)
2362 		mtx_unlock(cel->blp[0]);
2363 	mtx_unlock(cel->blp[1]);
2364 }
2365 
2366 /*
2367  * Lock part of the cache affected by the insertion.
2368  *
2369  * This means vnodelocks for dvp, vp and the relevant bucketlock.
2370  * However, insertion can result in removal of an old entry. In this
2371  * case we have an additional vnode and bucketlock pair to lock.
2372  *
2373  * That is, in the worst case we have to lock 3 vnodes and 2 bucketlocks, while
2374  * preserving the locking order (smaller address first).
2375  */
2376 static void
cache_enter_lock(struct celockstate * cel,struct vnode * dvp,struct vnode * vp,uint32_t hash)2377 cache_enter_lock(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2378     uint32_t hash)
2379 {
2380 	struct namecache *ncp;
2381 	struct mtx *blps[2];
2382 	u_char nc_flag;
2383 
2384 	blps[0] = HASH2BUCKETLOCK(hash);
2385 	for (;;) {
2386 		blps[1] = NULL;
2387 		cache_lock_vnodes_cel(cel, dvp, vp);
2388 		if (vp == NULL || vp->v_type != VDIR)
2389 			break;
2390 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
2391 		if (ncp == NULL)
2392 			break;
2393 		nc_flag = atomic_load_char(&ncp->nc_flag);
2394 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2395 			break;
2396 		MPASS(ncp->nc_dvp == vp);
2397 		blps[1] = NCP2BUCKETLOCK(ncp);
2398 		if ((nc_flag & NCF_NEGATIVE) != 0)
2399 			break;
2400 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2401 			break;
2402 		/*
2403 		 * All vnodes got re-locked. Re-validate the state and if
2404 		 * nothing changed we are done. Otherwise restart.
2405 		 */
2406 		if (ncp == vp->v_cache_dd &&
2407 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2408 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2409 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2410 			break;
2411 		cache_unlock_vnodes_cel(cel);
2412 		cel->vlp[0] = NULL;
2413 		cel->vlp[1] = NULL;
2414 		cel->vlp[2] = NULL;
2415 	}
2416 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2417 }
2418 
2419 static void
cache_enter_lock_dd(struct celockstate * cel,struct vnode * dvp,struct vnode * vp,uint32_t hash)2420 cache_enter_lock_dd(struct celockstate *cel, struct vnode *dvp, struct vnode *vp,
2421     uint32_t hash)
2422 {
2423 	struct namecache *ncp;
2424 	struct mtx *blps[2];
2425 	u_char nc_flag;
2426 
2427 	blps[0] = HASH2BUCKETLOCK(hash);
2428 	for (;;) {
2429 		blps[1] = NULL;
2430 		cache_lock_vnodes_cel(cel, dvp, vp);
2431 		ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
2432 		if (ncp == NULL)
2433 			break;
2434 		nc_flag = atomic_load_char(&ncp->nc_flag);
2435 		if ((nc_flag & NCF_ISDOTDOT) == 0)
2436 			break;
2437 		MPASS(ncp->nc_dvp == dvp);
2438 		blps[1] = NCP2BUCKETLOCK(ncp);
2439 		if ((nc_flag & NCF_NEGATIVE) != 0)
2440 			break;
2441 		if (cache_lock_vnodes_cel_3(cel, ncp->nc_vp))
2442 			break;
2443 		if (ncp == dvp->v_cache_dd &&
2444 		    (ncp->nc_flag & NCF_ISDOTDOT) != 0 &&
2445 		    blps[1] == NCP2BUCKETLOCK(ncp) &&
2446 		    VP2VNODELOCK(ncp->nc_vp) == cel->vlp[2])
2447 			break;
2448 		cache_unlock_vnodes_cel(cel);
2449 		cel->vlp[0] = NULL;
2450 		cel->vlp[1] = NULL;
2451 		cel->vlp[2] = NULL;
2452 	}
2453 	cache_lock_buckets_cel(cel, blps[0], blps[1]);
2454 }
2455 
2456 static void
cache_enter_unlock(struct celockstate * cel)2457 cache_enter_unlock(struct celockstate *cel)
2458 {
2459 
2460 	cache_unlock_buckets_cel(cel);
2461 	cache_unlock_vnodes_cel(cel);
2462 }
2463 
2464 static void __noinline
cache_enter_dotdot_prep(struct vnode * dvp,struct vnode * vp,struct componentname * cnp)2465 cache_enter_dotdot_prep(struct vnode *dvp, struct vnode *vp,
2466     struct componentname *cnp)
2467 {
2468 	struct celockstate cel;
2469 	struct namecache *ncp;
2470 	uint32_t hash;
2471 	int len;
2472 
2473 	if (atomic_load_ptr(&dvp->v_cache_dd) == NULL)
2474 		return;
2475 	len = cnp->cn_namelen;
2476 	cache_celockstate_init(&cel);
2477 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2478 	cache_enter_lock_dd(&cel, dvp, vp, hash);
2479 	ncp = dvp->v_cache_dd;
2480 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT)) {
2481 		KASSERT(ncp->nc_dvp == dvp, ("wrong isdotdot parent"));
2482 		cache_zap_locked(ncp);
2483 	} else {
2484 		ncp = NULL;
2485 	}
2486 	atomic_store_ptr(&dvp->v_cache_dd, NULL);
2487 	cache_enter_unlock(&cel);
2488 	if (ncp != NULL)
2489 		cache_free(ncp);
2490 }
2491 
2492 /*
2493  * Add an entry to the cache.
2494  */
2495 void
cache_enter_time(struct vnode * dvp,struct vnode * vp,struct componentname * cnp,struct timespec * tsp,struct timespec * dtsp)2496 cache_enter_time(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2497     struct timespec *tsp, struct timespec *dtsp)
2498 {
2499 	struct celockstate cel;
2500 	struct namecache *ncp, *n2, *ndd;
2501 	struct namecache_ts *ncp_ts;
2502 	uint32_t hash;
2503 	int flag;
2504 	int len;
2505 
2506 	KASSERT(cnp->cn_namelen <= NAME_MAX,
2507 	    ("%s: passed len %ld exceeds NAME_MAX (%d)", __func__, cnp->cn_namelen,
2508 	    NAME_MAX));
2509 	VNPASS(!VN_IS_DOOMED(dvp), dvp);
2510 	VNPASS(dvp->v_type != VNON, dvp);
2511 	if (vp != NULL) {
2512 		VNPASS(!VN_IS_DOOMED(vp), vp);
2513 		VNPASS(vp->v_type != VNON, vp);
2514 	}
2515 	if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.') {
2516 		KASSERT(dvp == vp,
2517 		    ("%s: different vnodes for dot entry (%p; %p)\n", __func__,
2518 		    dvp, vp));
2519 	} else {
2520 		KASSERT(dvp != vp,
2521 		    ("%s: same vnode for non-dot entry [%s] (%p)\n", __func__,
2522 		    cnp->cn_nameptr, dvp));
2523 	}
2524 
2525 #ifdef DEBUG_CACHE
2526 	if (__predict_false(!doingcache))
2527 		return;
2528 #endif
2529 
2530 	flag = 0;
2531 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
2532 		if (cnp->cn_namelen == 1)
2533 			return;
2534 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
2535 			cache_enter_dotdot_prep(dvp, vp, cnp);
2536 			flag = NCF_ISDOTDOT;
2537 		}
2538 	}
2539 
2540 	ncp = cache_alloc(cnp->cn_namelen, tsp != NULL);
2541 	if (ncp == NULL)
2542 		return;
2543 
2544 	cache_celockstate_init(&cel);
2545 	ndd = NULL;
2546 	ncp_ts = NULL;
2547 
2548 	/*
2549 	 * Calculate the hash key and setup as much of the new
2550 	 * namecache entry as possible before acquiring the lock.
2551 	 */
2552 	ncp->nc_flag = flag | NCF_WIP;
2553 	ncp->nc_vp = vp;
2554 	if (vp == NULL)
2555 		cache_neg_init(ncp);
2556 	ncp->nc_dvp = dvp;
2557 	if (tsp != NULL) {
2558 		ncp_ts = __containerof(ncp, struct namecache_ts, nc_nc);
2559 		ncp_ts->nc_time = *tsp;
2560 		ncp_ts->nc_ticks = ticks;
2561 		ncp_ts->nc_nc.nc_flag |= NCF_TS;
2562 		if (dtsp != NULL) {
2563 			ncp_ts->nc_dotdottime = *dtsp;
2564 			ncp_ts->nc_nc.nc_flag |= NCF_DTS;
2565 		}
2566 	}
2567 	len = ncp->nc_nlen = cnp->cn_namelen;
2568 	hash = cache_get_hash(cnp->cn_nameptr, len, dvp);
2569 	memcpy(ncp->nc_name, cnp->cn_nameptr, len);
2570 	ncp->nc_name[len] = '\0';
2571 	cache_enter_lock(&cel, dvp, vp, hash);
2572 
2573 	/*
2574 	 * See if this vnode or negative entry is already in the cache
2575 	 * with this name.  This can happen with concurrent lookups of
2576 	 * the same path name.
2577 	 */
2578 	n2 = cache_ncp_find(dvp, cnp, hash);
2579 	if (n2 != NULL) {
2580 		MPASS(cache_ncp_canuse(n2));
2581 		if ((n2->nc_flag & NCF_NEGATIVE) != 0)
2582 			KASSERT(vp == NULL,
2583 			    ("%s: found entry pointing to a different vnode "
2584 			    "(%p != %p); name [%s]",
2585 			    __func__, NULL, vp, cnp->cn_nameptr));
2586 		else
2587 			KASSERT(n2->nc_vp == vp,
2588 			    ("%s: found entry pointing to a different vnode "
2589 			    "(%p != %p); name [%s]",
2590 			    __func__, n2->nc_vp, vp, cnp->cn_nameptr));
2591 		/*
2592 		 * Entries are supposed to be immutable unless in the
2593 		 * process of getting destroyed. Accommodating for
2594 		 * changing timestamps is possible but not worth it.
2595 		 * This should be harmless in terms of correctness, in
2596 		 * the worst case resulting in an earlier expiration.
2597 		 * Alternatively, the found entry can be replaced
2598 		 * altogether.
2599 		 */
2600 		MPASS((n2->nc_flag & (NCF_TS | NCF_DTS)) ==
2601 		    (ncp->nc_flag & (NCF_TS | NCF_DTS)));
2602 #if 0
2603 		if (tsp != NULL) {
2604 			KASSERT((n2->nc_flag & NCF_TS) != 0,
2605 			    ("no NCF_TS"));
2606 			n2_ts = __containerof(n2, struct namecache_ts, nc_nc);
2607 			n2_ts->nc_time = ncp_ts->nc_time;
2608 			n2_ts->nc_ticks = ncp_ts->nc_ticks;
2609 			if (dtsp != NULL) {
2610 				n2_ts->nc_dotdottime = ncp_ts->nc_dotdottime;
2611 				n2_ts->nc_nc.nc_flag |= NCF_DTS;
2612 			}
2613 		}
2614 #endif
2615 		SDT_PROBE3(vfs, namecache, enter, duplicate, dvp, ncp->nc_name,
2616 		    vp);
2617 		goto out_unlock_free;
2618 	}
2619 
2620 	if (flag == NCF_ISDOTDOT) {
2621 		/*
2622 		 * See if we are trying to add .. entry, but some other lookup
2623 		 * has populated v_cache_dd pointer already.
2624 		 */
2625 		if (dvp->v_cache_dd != NULL)
2626 			goto out_unlock_free;
2627 		KASSERT(vp == NULL || vp->v_type == VDIR,
2628 		    ("wrong vnode type %p", vp));
2629 		atomic_thread_fence_rel();
2630 		atomic_store_ptr(&dvp->v_cache_dd, ncp);
2631 	} else if (vp != NULL) {
2632 		/*
2633 		 * Take the slow path in INOTIFY().  This flag will be lazily
2634 		 * cleared by cache_vop_inotify() once all directories referring
2635 		 * to vp are unwatched.
2636 		 */
2637 		if (__predict_false((vn_irflag_read(dvp) & VIRF_INOTIFY) != 0))
2638 			vn_irflag_set_cond(vp, VIRF_INOTIFY_PARENT);
2639 
2640 		/*
2641 		 * For this case, the cache entry maps both the
2642 		 * directory name in it and the name ".." for the
2643 		 * directory's parent.
2644 		 */
2645 		if ((ndd = vp->v_cache_dd) != NULL) {
2646 			if ((ndd->nc_flag & NCF_ISDOTDOT) != 0)
2647 				cache_zap_locked(ndd);
2648 			else
2649 				ndd = NULL;
2650 		}
2651 		atomic_thread_fence_rel();
2652 		atomic_store_ptr(&vp->v_cache_dd, ncp);
2653 	}
2654 
2655 	if (flag != NCF_ISDOTDOT) {
2656 		if (LIST_EMPTY(&dvp->v_cache_src)) {
2657 			cache_hold_vnode(dvp);
2658 		}
2659 		LIST_INSERT_HEAD(&dvp->v_cache_src, ncp, nc_src);
2660 	}
2661 
2662 	/*
2663 	 * If the entry is "negative", we place it into the
2664 	 * "negative" cache queue, otherwise, we place it into the
2665 	 * destination vnode's cache entries queue.
2666 	 */
2667 	if (vp != NULL) {
2668 		TAILQ_INSERT_HEAD(&vp->v_cache_dst, ncp, nc_dst);
2669 		SDT_PROBE3(vfs, namecache, enter, done, dvp, ncp->nc_name,
2670 		    vp);
2671 	} else {
2672 		if (cnp->cn_flags & ISWHITEOUT)
2673 			atomic_store_char(&ncp->nc_flag, ncp->nc_flag | NCF_WHITE);
2674 		cache_neg_insert(ncp);
2675 		SDT_PROBE2(vfs, namecache, enter_negative, done, dvp,
2676 		    ncp->nc_name);
2677 	}
2678 
2679 	/*
2680 	 * Insert the new namecache entry into the appropriate chain
2681 	 * within the cache entries table.
2682 	 */
2683 	CK_SLIST_INSERT_HEAD(NCHHASH(hash), ncp, nc_hash);
2684 
2685 	atomic_thread_fence_rel();
2686 	/*
2687 	 * Mark the entry as fully constructed.
2688 	 * It is immutable past this point until its removal.
2689 	 */
2690 	atomic_store_char(&ncp->nc_flag, ncp->nc_flag & ~NCF_WIP);
2691 
2692 	cache_enter_unlock(&cel);
2693 	if (ndd != NULL)
2694 		cache_free(ndd);
2695 	return;
2696 out_unlock_free:
2697 	cache_enter_unlock(&cel);
2698 	cache_free(ncp);
2699 	return;
2700 }
2701 
2702 /*
2703  * A variant of the above accepting flags.
2704  *
2705  * - VFS_CACHE_DROPOLD -- if a conflicting entry is found, drop it.
2706  *
2707  * TODO: this routine is a hack. It blindly removes the old entry, even if it
2708  * happens to match and it is doing it in an inefficient manner. It was added
2709  * to accommodate NFS which runs into a case where the target for a given name
2710  * may change from under it. Note this does nothing to solve the following
2711  * race: 2 callers of cache_enter_time_flags pass a different target vnode for
2712  * the same [dvp, cnp]. It may be argued that code doing this is broken.
2713  */
2714 void
cache_enter_time_flags(struct vnode * dvp,struct vnode * vp,struct componentname * cnp,struct timespec * tsp,struct timespec * dtsp,int flags)2715 cache_enter_time_flags(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2716     struct timespec *tsp, struct timespec *dtsp, int flags)
2717 {
2718 
2719 	MPASS((flags & ~(VFS_CACHE_DROPOLD)) == 0);
2720 
2721 	if (flags & VFS_CACHE_DROPOLD)
2722 		cache_remove_cnp(dvp, cnp);
2723 	cache_enter_time(dvp, vp, cnp, tsp, dtsp);
2724 }
2725 
2726 static u_long
cache_roundup_2(u_long val)2727 cache_roundup_2(u_long val)
2728 {
2729 	u_long res;
2730 
2731 	for (res = 1; res <= val; res <<= 1)
2732 		continue;
2733 
2734 	return (res);
2735 }
2736 
2737 static struct nchashhead *
nchinittbl(u_long elements,u_long * hashmask)2738 nchinittbl(u_long elements, u_long *hashmask)
2739 {
2740 	struct nchashhead *hashtbl;
2741 	u_long hashsize, i;
2742 
2743 	hashsize = cache_roundup_2(elements) / 2;
2744 
2745 	hashtbl = malloc(hashsize * sizeof(*hashtbl), M_VFSCACHE, M_WAITOK);
2746 	for (i = 0; i < hashsize; i++)
2747 		CK_SLIST_INIT(&hashtbl[i]);
2748 	*hashmask = hashsize - 1;
2749 	return (hashtbl);
2750 }
2751 
2752 static void
ncfreetbl(struct nchashhead * hashtbl)2753 ncfreetbl(struct nchashhead *hashtbl)
2754 {
2755 
2756 	free(hashtbl, M_VFSCACHE);
2757 }
2758 
2759 /*
2760  * Name cache initialization, from vfs_init() when we are booting
2761  */
2762 static void
nchinit(void * dummy __unused)2763 nchinit(void *dummy __unused)
2764 {
2765 	u_int i;
2766 
2767 	cache_zone_small = uma_zcreate("S VFS Cache", CACHE_ZONE_SMALL_SIZE,
2768 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2769 	cache_zone_small_ts = uma_zcreate("STS VFS Cache", CACHE_ZONE_SMALL_TS_SIZE,
2770 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2771 	cache_zone_large = uma_zcreate("L VFS Cache", CACHE_ZONE_LARGE_SIZE,
2772 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2773 	cache_zone_large_ts = uma_zcreate("LTS VFS Cache", CACHE_ZONE_LARGE_TS_SIZE,
2774 	    NULL, NULL, NULL, NULL, CACHE_ZONE_ALIGNMENT, UMA_ZONE_ZINIT);
2775 
2776 	VFS_SMR_ZONE_SET(cache_zone_small);
2777 	VFS_SMR_ZONE_SET(cache_zone_small_ts);
2778 	VFS_SMR_ZONE_SET(cache_zone_large);
2779 	VFS_SMR_ZONE_SET(cache_zone_large_ts);
2780 
2781 	ncsize = desiredvnodes * ncsizefactor;
2782 	cache_recalc_neg_min();
2783 	nchashtbl = nchinittbl(ncsize, &nchash);
2784 	ncbuckethash = cache_roundup_2(mp_ncpus * mp_ncpus) - 1;
2785 	if (ncbuckethash < 7) /* arbitrarily chosen to avoid having one lock */
2786 		ncbuckethash = 7;
2787 	if (ncbuckethash > nchash)
2788 		ncbuckethash = nchash;
2789 	bucketlocks = malloc(sizeof(*bucketlocks) * numbucketlocks, M_VFSCACHE,
2790 	    M_WAITOK | M_ZERO);
2791 	for (i = 0; i < numbucketlocks; i++)
2792 		mtx_init(&bucketlocks[i], "ncbuc", NULL, MTX_DUPOK | MTX_RECURSE);
2793 	ncvnodehash = ncbuckethash;
2794 	vnodelocks = malloc(sizeof(*vnodelocks) * numvnodelocks, M_VFSCACHE,
2795 	    M_WAITOK | M_ZERO);
2796 	for (i = 0; i < numvnodelocks; i++)
2797 		mtx_init(&vnodelocks[i], "ncvn", NULL, MTX_DUPOK | MTX_RECURSE);
2798 
2799 	for (i = 0; i < numneglists; i++) {
2800 		mtx_init(&neglists[i].nl_evict_lock, "ncnege", NULL, MTX_DEF);
2801 		mtx_init(&neglists[i].nl_lock, "ncnegl", NULL, MTX_DEF);
2802 		TAILQ_INIT(&neglists[i].nl_list);
2803 		TAILQ_INIT(&neglists[i].nl_hotlist);
2804 	}
2805 }
2806 SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_SECOND, nchinit, NULL);
2807 
2808 void
cache_vnode_init(struct vnode * vp)2809 cache_vnode_init(struct vnode *vp)
2810 {
2811 
2812 	LIST_INIT(&vp->v_cache_src);
2813 	TAILQ_INIT(&vp->v_cache_dst);
2814 	vp->v_cache_dd = NULL;
2815 	cache_prehash(vp);
2816 }
2817 
2818 /*
2819  * Induce transient cache misses for lockless operation in cache_lookup() by
2820  * using a temporary hash table.
2821  *
2822  * This will force a fs lookup.
2823  *
2824  * Synchronisation is done in 2 steps, calling vfs_smr_synchronize each time
2825  * to observe all CPUs not performing the lookup.
2826  */
2827 static void
cache_changesize_set_temp(struct nchashhead * temptbl,u_long temphash)2828 cache_changesize_set_temp(struct nchashhead *temptbl, u_long temphash)
2829 {
2830 
2831 	MPASS(temphash < nchash);
2832 	/*
2833 	 * Change the size. The new size is smaller and can safely be used
2834 	 * against the existing table. All lookups which now hash wrong will
2835 	 * result in a cache miss, which all callers are supposed to know how
2836 	 * to handle.
2837 	 */
2838 	atomic_store_long(&nchash, temphash);
2839 	atomic_thread_fence_rel();
2840 	vfs_smr_synchronize();
2841 	/*
2842 	 * At this point everyone sees the updated hash value, but they still
2843 	 * see the old table.
2844 	 */
2845 	atomic_store_ptr(&nchashtbl, temptbl);
2846 	atomic_thread_fence_rel();
2847 	vfs_smr_synchronize();
2848 	/*
2849 	 * At this point everyone sees the updated table pointer and size pair.
2850 	 */
2851 }
2852 
2853 /*
2854  * Set the new hash table.
2855  *
2856  * Similarly to cache_changesize_set_temp(), this has to synchronize against
2857  * lockless operation in cache_lookup().
2858  */
2859 static void
cache_changesize_set_new(struct nchashhead * new_tbl,u_long new_hash)2860 cache_changesize_set_new(struct nchashhead *new_tbl, u_long new_hash)
2861 {
2862 
2863 	MPASS(nchash < new_hash);
2864 	/*
2865 	 * Change the pointer first. This wont result in out of bounds access
2866 	 * since the temporary table is guaranteed to be smaller.
2867 	 */
2868 	atomic_store_ptr(&nchashtbl, new_tbl);
2869 	atomic_thread_fence_rel();
2870 	vfs_smr_synchronize();
2871 	/*
2872 	 * At this point everyone sees the updated pointer value, but they
2873 	 * still see the old size.
2874 	 */
2875 	atomic_store_long(&nchash, new_hash);
2876 	atomic_thread_fence_rel();
2877 	vfs_smr_synchronize();
2878 	/*
2879 	 * At this point everyone sees the updated table pointer and size pair.
2880 	 */
2881 }
2882 
2883 void
cache_changesize(u_long newmaxvnodes)2884 cache_changesize(u_long newmaxvnodes)
2885 {
2886 	struct nchashhead *new_nchashtbl, *old_nchashtbl, *temptbl;
2887 	u_long new_nchash, old_nchash, temphash;
2888 	struct namecache *ncp;
2889 	uint32_t hash;
2890 	u_long newncsize;
2891 	u_long i;
2892 
2893 	newncsize = newmaxvnodes * ncsizefactor;
2894 	newmaxvnodes = cache_roundup_2(newmaxvnodes * 2);
2895 	if (newmaxvnodes < numbucketlocks)
2896 		newmaxvnodes = numbucketlocks;
2897 
2898 	new_nchashtbl = nchinittbl(newmaxvnodes, &new_nchash);
2899 	/* If same hash table size, nothing to do */
2900 	if (nchash == new_nchash) {
2901 		ncfreetbl(new_nchashtbl);
2902 		return;
2903 	}
2904 
2905 	temptbl = nchinittbl(1, &temphash);
2906 
2907 	/*
2908 	 * Move everything from the old hash table to the new table.
2909 	 * None of the namecache entries in the table can be removed
2910 	 * because to do so, they have to be removed from the hash table.
2911 	 */
2912 	cache_lock_all_vnodes();
2913 	cache_lock_all_buckets();
2914 	old_nchashtbl = nchashtbl;
2915 	old_nchash = nchash;
2916 	cache_changesize_set_temp(temptbl, temphash);
2917 	for (i = 0; i <= old_nchash; i++) {
2918 		while ((ncp = CK_SLIST_FIRST(&old_nchashtbl[i])) != NULL) {
2919 			hash = cache_get_hash(ncp->nc_name, ncp->nc_nlen,
2920 			    ncp->nc_dvp);
2921 			CK_SLIST_REMOVE(&old_nchashtbl[i], ncp, namecache, nc_hash);
2922 			CK_SLIST_INSERT_HEAD(&new_nchashtbl[hash & new_nchash], ncp, nc_hash);
2923 		}
2924 	}
2925 	ncsize = newncsize;
2926 	cache_recalc_neg_min();
2927 	cache_changesize_set_new(new_nchashtbl, new_nchash);
2928 	cache_unlock_all_buckets();
2929 	cache_unlock_all_vnodes();
2930 	ncfreetbl(old_nchashtbl);
2931 	ncfreetbl(temptbl);
2932 }
2933 
2934 /*
2935  * Remove all entries from and to a particular vnode.
2936  */
2937 static void
cache_purge_impl(struct vnode * vp)2938 cache_purge_impl(struct vnode *vp)
2939 {
2940 	struct cache_freebatch batch;
2941 	struct namecache *ncp;
2942 	struct mtx *vlp, *vlp2;
2943 
2944 	TAILQ_INIT(&batch);
2945 	vlp = VP2VNODELOCK(vp);
2946 	vlp2 = NULL;
2947 	mtx_lock(vlp);
2948 retry:
2949 	while (!LIST_EMPTY(&vp->v_cache_src)) {
2950 		ncp = LIST_FIRST(&vp->v_cache_src);
2951 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2952 			goto retry;
2953 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2954 	}
2955 	while (!TAILQ_EMPTY(&vp->v_cache_dst)) {
2956 		ncp = TAILQ_FIRST(&vp->v_cache_dst);
2957 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2958 			goto retry;
2959 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2960 	}
2961 	ncp = vp->v_cache_dd;
2962 	if (ncp != NULL) {
2963 		KASSERT(ncp->nc_flag & NCF_ISDOTDOT,
2964 		   ("lost dotdot link"));
2965 		if (!cache_zap_locked_vnode_kl2(ncp, vp, &vlp2))
2966 			goto retry;
2967 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
2968 	}
2969 	KASSERT(vp->v_cache_dd == NULL, ("incomplete purge"));
2970 	mtx_unlock(vlp);
2971 	if (vlp2 != NULL)
2972 		mtx_unlock(vlp2);
2973 	cache_free_batch(&batch);
2974 }
2975 
2976 /*
2977  * Opportunistic check to see if there is anything to do.
2978  */
2979 static bool
cache_has_entries(struct vnode * vp)2980 cache_has_entries(struct vnode *vp)
2981 {
2982 
2983 	if (LIST_EMPTY(&vp->v_cache_src) && TAILQ_EMPTY(&vp->v_cache_dst) &&
2984 	    atomic_load_ptr(&vp->v_cache_dd) == NULL)
2985 		return (false);
2986 	return (true);
2987 }
2988 
2989 void
cache_purge(struct vnode * vp)2990 cache_purge(struct vnode *vp)
2991 {
2992 
2993 	SDT_PROBE1(vfs, namecache, purge, done, vp);
2994 	if (!cache_has_entries(vp))
2995 		return;
2996 	cache_purge_impl(vp);
2997 }
2998 
2999 /*
3000  * Only to be used by vgone.
3001  */
3002 void
cache_purge_vgone(struct vnode * vp)3003 cache_purge_vgone(struct vnode *vp)
3004 {
3005 	struct mtx *vlp;
3006 
3007 	VNPASS(VN_IS_DOOMED(vp), vp);
3008 	if (cache_has_entries(vp)) {
3009 		cache_purge_impl(vp);
3010 		return;
3011 	}
3012 
3013 	/*
3014 	 * Serialize against a potential thread doing cache_purge.
3015 	 */
3016 	vlp = VP2VNODELOCK(vp);
3017 	mtx_wait_unlocked(vlp);
3018 	if (cache_has_entries(vp)) {
3019 		cache_purge_impl(vp);
3020 		return;
3021 	}
3022 	return;
3023 }
3024 
3025 /*
3026  * Remove all negative entries for a particular directory vnode.
3027  */
3028 void
cache_purge_negative(struct vnode * vp)3029 cache_purge_negative(struct vnode *vp)
3030 {
3031 	struct cache_freebatch batch;
3032 	struct namecache *ncp, *nnp;
3033 	struct mtx *vlp;
3034 
3035 	SDT_PROBE1(vfs, namecache, purge_negative, done, vp);
3036 	if (LIST_EMPTY(&vp->v_cache_src))
3037 		return;
3038 	TAILQ_INIT(&batch);
3039 	vlp = VP2VNODELOCK(vp);
3040 	mtx_lock(vlp);
3041 	LIST_FOREACH_SAFE(ncp, &vp->v_cache_src, nc_src, nnp) {
3042 		if (!(ncp->nc_flag & NCF_NEGATIVE))
3043 			continue;
3044 		cache_zap_negative_locked_vnode_kl(ncp, vp);
3045 		TAILQ_INSERT_TAIL(&batch, ncp, nc_dst);
3046 	}
3047 	mtx_unlock(vlp);
3048 	cache_free_batch(&batch);
3049 }
3050 
3051 /*
3052  * Entry points for modifying VOP operations.
3053  */
3054 void
cache_vop_rename(struct vnode * fdvp,struct vnode * fvp,struct vnode * tdvp,struct vnode * tvp,struct componentname * fcnp,struct componentname * tcnp)3055 cache_vop_rename(struct vnode *fdvp, struct vnode *fvp, struct vnode *tdvp,
3056     struct vnode *tvp, struct componentname *fcnp, struct componentname *tcnp)
3057 {
3058 
3059 	ASSERT_VOP_IN_SEQC(fdvp);
3060 	ASSERT_VOP_IN_SEQC(fvp);
3061 	ASSERT_VOP_IN_SEQC(tdvp);
3062 	if (tvp != NULL)
3063 		ASSERT_VOP_IN_SEQC(tvp);
3064 
3065 	cache_purge(fvp);
3066 	if (tvp != NULL) {
3067 		cache_purge(tvp);
3068 		KASSERT(!cache_remove_cnp(tdvp, tcnp),
3069 		    ("%s: lingering negative entry", __func__));
3070 	} else {
3071 		cache_remove_cnp(tdvp, tcnp);
3072 	}
3073 
3074 	/*
3075 	 * TODO
3076 	 *
3077 	 * Historically renaming was always purging all revelang entries,
3078 	 * but that's quite wasteful. In particular turns out that in many cases
3079 	 * the target file is immediately accessed after rename, inducing a cache
3080 	 * miss.
3081 	 *
3082 	 * Recode this to reduce relocking and reuse the existing entry (if any)
3083 	 * instead of just removing it above and allocating a new one here.
3084 	 */
3085 	cache_enter(tdvp, fvp, tcnp);
3086 }
3087 
3088 void
cache_vop_rmdir(struct vnode * dvp,struct vnode * vp)3089 cache_vop_rmdir(struct vnode *dvp, struct vnode *vp)
3090 {
3091 
3092 	ASSERT_VOP_IN_SEQC(dvp);
3093 	ASSERT_VOP_IN_SEQC(vp);
3094 	cache_purge(vp);
3095 }
3096 
3097 #ifdef INVARIANTS
3098 /*
3099  * Validate that if an entry exists it matches.
3100  */
3101 void
cache_validate(struct vnode * dvp,struct vnode * vp,struct componentname * cnp)3102 cache_validate(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
3103 {
3104 	struct namecache *ncp;
3105 	struct mtx *blp;
3106 	uint32_t hash;
3107 
3108 	hash = cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp);
3109 	if (CK_SLIST_EMPTY(NCHHASH(hash)))
3110 		return;
3111 	blp = HASH2BUCKETLOCK(hash);
3112 	mtx_lock(blp);
3113 	ncp = cache_ncp_find(dvp, cnp, hash);
3114 	if (ncp != NULL && ncp->nc_vp != vp) {
3115 		panic("%s: mismatch (%p != %p); ncp %p [%s] dvp %p\n",
3116 		    __func__, vp, ncp->nc_vp, ncp, ncp->nc_name, ncp->nc_dvp);
3117 	}
3118 	mtx_unlock(blp);
3119 }
3120 
3121 void
cache_assert_no_entries(struct vnode * vp)3122 cache_assert_no_entries(struct vnode *vp)
3123 {
3124 
3125 	VNPASS(TAILQ_EMPTY(&vp->v_cache_dst), vp);
3126 	VNPASS(LIST_EMPTY(&vp->v_cache_src), vp);
3127 	VNPASS(vp->v_cache_dd == NULL, vp);
3128 }
3129 #endif
3130 
3131 /*
3132  * Flush all entries referencing a particular filesystem.
3133  */
3134 void
cache_purgevfs(struct mount * mp)3135 cache_purgevfs(struct mount *mp)
3136 {
3137 	struct vnode *vp, *mvp;
3138 	size_t visited __sdt_used, purged __sdt_used;
3139 
3140 	visited = purged = 0;
3141 	/*
3142 	 * Somewhat wasteful iteration over all vnodes. Would be better to
3143 	 * support filtering and avoid the interlock to begin with.
3144 	 */
3145 	MNT_VNODE_FOREACH_ALL(vp, mp, mvp) {
3146 		visited++;
3147 		if (!cache_has_entries(vp)) {
3148 			VI_UNLOCK(vp);
3149 			continue;
3150 		}
3151 		vholdl(vp);
3152 		VI_UNLOCK(vp);
3153 		cache_purge(vp);
3154 		purged++;
3155 		vdrop(vp);
3156 	}
3157 
3158 	SDT_PROBE3(vfs, namecache, purgevfs, done, mp, visited, purged);
3159 }
3160 
3161 /*
3162  * Perform canonical checks and cache lookup and pass on to filesystem
3163  * through the vop_cachedlookup only if needed.
3164  */
3165 
3166 int
vfs_cache_lookup(struct vop_lookup_args * ap)3167 vfs_cache_lookup(struct vop_lookup_args *ap)
3168 {
3169 	struct vnode *dvp;
3170 	int error;
3171 	struct vnode **vpp = ap->a_vpp;
3172 	struct componentname *cnp = ap->a_cnp;
3173 	int flags = cnp->cn_flags;
3174 
3175 	*vpp = NULL;
3176 	dvp = ap->a_dvp;
3177 
3178 	if (dvp->v_type != VDIR)
3179 		return (ENOTDIR);
3180 
3181 	if ((flags & ISLASTCN) && (dvp->v_mount->mnt_flag & MNT_RDONLY) &&
3182 	    (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME))
3183 		return (EROFS);
3184 
3185 	error = vn_dir_check_exec(dvp, cnp);
3186 	if (error != 0)
3187 		return (error);
3188 
3189 	error = cache_lookup(dvp, vpp, cnp, NULL, NULL);
3190 	if (error == 0)
3191 		return (VOP_CACHEDLOOKUP(dvp, vpp, cnp));
3192 	if (error == -1)
3193 		return (0);
3194 	return (error);
3195 }
3196 
3197 /* Implementation of the getcwd syscall. */
3198 int
sys___getcwd(struct thread * td,struct __getcwd_args * uap)3199 sys___getcwd(struct thread *td, struct __getcwd_args *uap)
3200 {
3201 	char *buf, *retbuf;
3202 	size_t buflen;
3203 	int error;
3204 
3205 	buflen = uap->buflen;
3206 	if (__predict_false(buflen < 2))
3207 		return (EINVAL);
3208 	if (buflen > MAXPATHLEN)
3209 		buflen = MAXPATHLEN;
3210 
3211 	buf = uma_zalloc(namei_zone, M_WAITOK);
3212 	error = vn_getcwd(buf, &retbuf, &buflen);
3213 	if (error == 0)
3214 		error = copyout(retbuf, uap->buf, buflen);
3215 	uma_zfree(namei_zone, buf);
3216 	return (error);
3217 }
3218 
3219 int
vn_getcwd(char * buf,char ** retbuf,size_t * buflen)3220 vn_getcwd(char *buf, char **retbuf, size_t *buflen)
3221 {
3222 	struct pwd *pwd;
3223 	int error;
3224 
3225 	vfs_smr_enter();
3226 	pwd = pwd_get_smr();
3227 	error = vn_fullpath_any_smr(pwd->pwd_cdir, pwd->pwd_rdir, buf, retbuf,
3228 	    buflen, 0);
3229 	VFS_SMR_ASSERT_NOT_ENTERED();
3230 	if (error < 0) {
3231 		pwd = pwd_hold(curthread);
3232 		error = vn_fullpath_any(pwd->pwd_cdir, pwd->pwd_rdir, buf,
3233 		    retbuf, buflen);
3234 		pwd_drop(pwd);
3235 	}
3236 
3237 #ifdef KTRACE
3238 	if (KTRPOINT(curthread, KTR_NAMEI) && error == 0)
3239 		ktrnamei(*retbuf);
3240 #endif
3241 	return (error);
3242 }
3243 
3244 /*
3245  * Canonicalize a path by walking it forward and back.
3246  *
3247  * BUGS:
3248  * - Nothing guarantees the integrity of the entire chain. Consider the case
3249  *   where the path "foo/bar/baz/qux" is passed, but "bar" is moved out of
3250  *   "foo" into "quux" during the backwards walk. The result will be
3251  *   "quux/bar/baz/qux", which could not have been obtained by an incremental
3252  *   walk in userspace. Moreover, the path we return is inaccessible if the
3253  *   calling thread lacks permission to traverse "quux".
3254  */
3255 static int
kern___realpathat(struct thread * td,int fd,const char * path,char * buf,size_t size,int flags,enum uio_seg pathseg)3256 kern___realpathat(struct thread *td, int fd, const char *path, char *buf,
3257     size_t size, int flags, enum uio_seg pathseg)
3258 {
3259 	struct nameidata nd;
3260 	char *retbuf, *freebuf;
3261 	int error;
3262 
3263 	if (flags != 0)
3264 		return (EINVAL);
3265 	NDINIT_ATRIGHTS(&nd, LOOKUP, FOLLOW | WANTPARENT | AUDITVNODE1,
3266 	    pathseg, path, fd, &cap_fstat_rights);
3267 	if ((error = namei(&nd)) != 0)
3268 		return (error);
3269 
3270 	if (nd.ni_vp->v_type == VREG && nd.ni_dvp->v_type != VDIR &&
3271 	    (nd.ni_vp->v_vflag & VV_ROOT) != 0) {
3272 		struct vnode *covered_vp;
3273 
3274 		/*
3275 		 * This happens if vp is a file mount. The call to
3276 		 * vn_fullpath_hardlink can panic if path resolution can't be
3277 		 * handled without the directory.
3278 		 *
3279 		 * To resolve this, we find the vnode which was mounted on -
3280 		 * this should have a unique global path since we disallow
3281 		 * mounting on linked files.
3282 		 */
3283 		error = vn_lock(nd.ni_vp, LK_SHARED);
3284 		if (error != 0)
3285 			goto out;
3286 		covered_vp = nd.ni_vp->v_mount->mnt_vnodecovered;
3287 		vref(covered_vp);
3288 		VOP_UNLOCK(nd.ni_vp);
3289 		error = vn_fullpath(covered_vp, &retbuf, &freebuf);
3290 		vrele(covered_vp);
3291 	} else {
3292 		error = vn_fullpath_hardlink(nd.ni_vp, nd.ni_dvp,
3293 		    nd.ni_cnd.cn_nameptr, nd.ni_cnd.cn_namelen, &retbuf,
3294 		    &freebuf, &size);
3295 	}
3296 	if (error == 0) {
3297 		size_t len;
3298 
3299 		len = strlen(retbuf) + 1;
3300 		if (size < len)
3301 			error = ENAMETOOLONG;
3302 		else if (pathseg == UIO_USERSPACE)
3303 			error = copyout(retbuf, buf, len);
3304 		else
3305 			memcpy(buf, retbuf, len);
3306 		free(freebuf, M_TEMP);
3307 	}
3308 out:
3309 	vrele(nd.ni_vp);
3310 	vrele(nd.ni_dvp);
3311 	NDFREE_PNBUF(&nd);
3312 	return (error);
3313 }
3314 
3315 int
sys___realpathat(struct thread * td,struct __realpathat_args * uap)3316 sys___realpathat(struct thread *td, struct __realpathat_args *uap)
3317 {
3318 
3319 	return (kern___realpathat(td, uap->fd, uap->path, uap->buf, uap->size,
3320 	    uap->flags, UIO_USERSPACE));
3321 }
3322 
3323 /*
3324  * Retrieve the full filesystem path that correspond to a vnode from the name
3325  * cache (if available)
3326  */
3327 int
vn_fullpath(struct vnode * vp,char ** retbuf,char ** freebuf)3328 vn_fullpath(struct vnode *vp, char **retbuf, char **freebuf)
3329 {
3330 	struct pwd *pwd;
3331 	char *buf;
3332 	size_t buflen;
3333 	int error;
3334 
3335 	if (__predict_false(vp == NULL))
3336 		return (EINVAL);
3337 
3338 	buflen = MAXPATHLEN;
3339 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3340 	vfs_smr_enter();
3341 	pwd = pwd_get_smr();
3342 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, &buflen, 0);
3343 	VFS_SMR_ASSERT_NOT_ENTERED();
3344 	if (error < 0) {
3345 		pwd = pwd_hold(curthread);
3346 		error = vn_fullpath_any(vp, pwd->pwd_rdir, buf, retbuf, &buflen);
3347 		pwd_drop(pwd);
3348 	}
3349 	if (error == 0)
3350 		*freebuf = buf;
3351 	else
3352 		free(buf, M_TEMP);
3353 	return (error);
3354 }
3355 
3356 /*
3357  * This function is similar to vn_fullpath, but it attempts to lookup the
3358  * pathname relative to the global root mount point.  This is required for the
3359  * auditing sub-system, as audited pathnames must be absolute, relative to the
3360  * global root mount point.
3361  */
3362 int
vn_fullpath_global(struct vnode * vp,char ** retbuf,char ** freebuf)3363 vn_fullpath_global(struct vnode *vp, char **retbuf, char **freebuf)
3364 {
3365 	char *buf;
3366 	size_t buflen;
3367 	int error;
3368 
3369 	if (__predict_false(vp == NULL))
3370 		return (EINVAL);
3371 	buflen = MAXPATHLEN;
3372 	buf = malloc(buflen, M_TEMP, M_WAITOK);
3373 	vfs_smr_enter();
3374 	error = vn_fullpath_any_smr(vp, rootvnode, buf, retbuf, &buflen, 0);
3375 	VFS_SMR_ASSERT_NOT_ENTERED();
3376 	if (error < 0) {
3377 		error = vn_fullpath_any(vp, rootvnode, buf, retbuf, &buflen);
3378 	}
3379 	if (error == 0)
3380 		*freebuf = buf;
3381 	else
3382 		free(buf, M_TEMP);
3383 	return (error);
3384 }
3385 
3386 static struct namecache *
vn_dd_from_dst(struct vnode * vp)3387 vn_dd_from_dst(struct vnode *vp)
3388 {
3389 	struct namecache *ncp;
3390 
3391 	cache_assert_vnode_locked(vp);
3392 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
3393 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3394 			return (ncp);
3395 	}
3396 	return (NULL);
3397 }
3398 
3399 int
vn_vptocnp(struct vnode ** vp,char * buf,size_t * buflen)3400 vn_vptocnp(struct vnode **vp, char *buf, size_t *buflen)
3401 {
3402 	struct vnode *dvp;
3403 	struct namecache *ncp;
3404 	struct mtx *vlp;
3405 	int error;
3406 
3407 	vlp = VP2VNODELOCK(*vp);
3408 	mtx_lock(vlp);
3409 	ncp = (*vp)->v_cache_dd;
3410 	if (ncp != NULL && (ncp->nc_flag & NCF_ISDOTDOT) == 0) {
3411 		KASSERT(ncp == vn_dd_from_dst(*vp),
3412 		    ("%s: mismatch for dd entry (%p != %p)", __func__,
3413 		    ncp, vn_dd_from_dst(*vp)));
3414 	} else {
3415 		ncp = vn_dd_from_dst(*vp);
3416 	}
3417 	if (ncp != NULL) {
3418 		if (*buflen < ncp->nc_nlen) {
3419 			mtx_unlock(vlp);
3420 			vrele(*vp);
3421 			counter_u64_add(numfullpathfail4, 1);
3422 			error = ENOMEM;
3423 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3424 			    vp, NULL);
3425 			return (error);
3426 		}
3427 		*buflen -= ncp->nc_nlen;
3428 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3429 		SDT_PROBE3(vfs, namecache, fullpath, hit, ncp->nc_dvp,
3430 		    ncp->nc_name, vp);
3431 		dvp = *vp;
3432 		*vp = ncp->nc_dvp;
3433 		vref(*vp);
3434 		mtx_unlock(vlp);
3435 		vrele(dvp);
3436 		return (0);
3437 	}
3438 	SDT_PROBE1(vfs, namecache, fullpath, miss, vp);
3439 
3440 	mtx_unlock(vlp);
3441 	vn_lock(*vp, LK_SHARED | LK_RETRY);
3442 	error = VOP_VPTOCNP(*vp, &dvp, buf, buflen);
3443 	vput(*vp);
3444 	if (error) {
3445 		counter_u64_add(numfullpathfail2, 1);
3446 		SDT_PROBE3(vfs, namecache, fullpath, return,  error, vp, NULL);
3447 		return (error);
3448 	}
3449 
3450 	*vp = dvp;
3451 	if (VN_IS_DOOMED(dvp)) {
3452 		/* forced unmount */
3453 		vrele(dvp);
3454 		error = ENOENT;
3455 		SDT_PROBE3(vfs, namecache, fullpath, return, error, vp, NULL);
3456 		return (error);
3457 	}
3458 	/*
3459 	 * *vp has its use count incremented still.
3460 	 */
3461 
3462 	return (0);
3463 }
3464 
3465 /*
3466  * Resolve a directory to a pathname.
3467  *
3468  * The name of the directory can always be found in the namecache or fetched
3469  * from the filesystem. There is also guaranteed to be only one parent, meaning
3470  * we can just follow vnodes up until we find the root.
3471  *
3472  * The vnode must be referenced.
3473  */
3474 static int
vn_fullpath_dir(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * len,size_t addend)3475 vn_fullpath_dir(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3476     size_t *len, size_t addend)
3477 {
3478 #ifdef KDTRACE_HOOKS
3479 	struct vnode *startvp = vp;
3480 #endif
3481 	struct vnode *vp1;
3482 	size_t buflen;
3483 	int error;
3484 	bool slash_prefixed;
3485 
3486 	VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3487 	VNPASS(vp->v_usecount > 0, vp);
3488 
3489 	buflen = *len;
3490 
3491 	slash_prefixed = true;
3492 	if (addend == 0) {
3493 		MPASS(*len >= 2);
3494 		buflen--;
3495 		buf[buflen] = '\0';
3496 		slash_prefixed = false;
3497 	}
3498 
3499 	error = 0;
3500 
3501 	SDT_PROBE1(vfs, namecache, fullpath, entry, vp);
3502 	counter_u64_add(numfullpathcalls, 1);
3503 	while (vp != rdir && vp != rootvnode) {
3504 		/*
3505 		 * The vp vnode must be already fully constructed,
3506 		 * since it is either found in namecache or obtained
3507 		 * from VOP_VPTOCNP().  We may test for VV_ROOT safely
3508 		 * without obtaining the vnode lock.
3509 		 */
3510 		if ((vp->v_vflag & VV_ROOT) != 0) {
3511 			vn_lock(vp, LK_RETRY | LK_SHARED);
3512 
3513 			/*
3514 			 * With the vnode locked, check for races with
3515 			 * unmount, forced or not.  Note that we
3516 			 * already verified that vp is not equal to
3517 			 * the root vnode, which means that
3518 			 * mnt_vnodecovered can be NULL only for the
3519 			 * case of unmount.
3520 			 */
3521 			if (VN_IS_DOOMED(vp) ||
3522 			    (vp1 = vp->v_mount->mnt_vnodecovered) == NULL ||
3523 			    vp1->v_mountedhere != vp->v_mount) {
3524 				vput(vp);
3525 				error = ENOENT;
3526 				SDT_PROBE3(vfs, namecache, fullpath, return,
3527 				    error, vp, NULL);
3528 				break;
3529 			}
3530 
3531 			vref(vp1);
3532 			vput(vp);
3533 			vp = vp1;
3534 			continue;
3535 		}
3536 		VNPASS(vp->v_type == VDIR || VN_IS_DOOMED(vp), vp);
3537 		error = vn_vptocnp(&vp, buf, &buflen);
3538 		if (error)
3539 			break;
3540 		if (buflen == 0) {
3541 			vrele(vp);
3542 			error = ENOMEM;
3543 			SDT_PROBE3(vfs, namecache, fullpath, return, error,
3544 			    startvp, NULL);
3545 			break;
3546 		}
3547 		buf[--buflen] = '/';
3548 		slash_prefixed = true;
3549 	}
3550 	if (error)
3551 		return (error);
3552 	if (!slash_prefixed) {
3553 		if (buflen == 0) {
3554 			vrele(vp);
3555 			counter_u64_add(numfullpathfail4, 1);
3556 			SDT_PROBE3(vfs, namecache, fullpath, return, ENOMEM,
3557 			    startvp, NULL);
3558 			return (ENOMEM);
3559 		}
3560 		buf[--buflen] = '/';
3561 	}
3562 	counter_u64_add(numfullpathfound, 1);
3563 	vrele(vp);
3564 
3565 	*retbuf = buf + buflen;
3566 	SDT_PROBE3(vfs, namecache, fullpath, return, 0, startvp, *retbuf);
3567 	*len -= buflen;
3568 	*len += addend;
3569 	return (0);
3570 }
3571 
3572 /*
3573  * Resolve an arbitrary vnode to a pathname.
3574  *
3575  * Note 2 caveats:
3576  * - hardlinks are not tracked, thus if the vnode is not a directory this can
3577  *   resolve to a different path than the one used to find it
3578  * - namecache is not mandatory, meaning names are not guaranteed to be added
3579  *   (in which case resolving fails)
3580  */
3581 static void __inline
cache_rev_failed_impl(int * reason,int line)3582 cache_rev_failed_impl(int *reason, int line)
3583 {
3584 
3585 	*reason = line;
3586 }
3587 #define cache_rev_failed(var)	cache_rev_failed_impl((var), __LINE__)
3588 
3589 static int
vn_fullpath_any_smr(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * buflen,size_t addend)3590 vn_fullpath_any_smr(struct vnode *vp, struct vnode *rdir, char *buf,
3591     char **retbuf, size_t *buflen, size_t addend)
3592 {
3593 #ifdef KDTRACE_HOOKS
3594 	struct vnode *startvp = vp;
3595 #endif
3596 	struct vnode *tvp;
3597 	struct mount *mp;
3598 	struct namecache *ncp;
3599 	size_t orig_buflen;
3600 	int reason;
3601 	int error;
3602 #ifdef KDTRACE_HOOKS
3603 	int i;
3604 #endif
3605 	seqc_t vp_seqc, tvp_seqc;
3606 	u_char nc_flag;
3607 
3608 	VFS_SMR_ASSERT_ENTERED();
3609 
3610 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
3611 		vfs_smr_exit();
3612 		return (-1);
3613 	}
3614 
3615 	orig_buflen = *buflen;
3616 
3617 	if (addend == 0) {
3618 		MPASS(*buflen >= 2);
3619 		*buflen -= 1;
3620 		buf[*buflen] = '\0';
3621 	}
3622 
3623 	if (vp == rdir || vp == rootvnode) {
3624 		if (addend == 0) {
3625 			*buflen -= 1;
3626 			buf[*buflen] = '/';
3627 		}
3628 		goto out_ok;
3629 	}
3630 
3631 #ifdef KDTRACE_HOOKS
3632 	i = 0;
3633 #endif
3634 	error = -1;
3635 	ncp = NULL; /* for sdt probe down below */
3636 	vp_seqc = vn_seqc_read_any(vp);
3637 	if (seqc_in_modify(vp_seqc)) {
3638 		cache_rev_failed(&reason);
3639 		goto out_abort;
3640 	}
3641 
3642 	for (;;) {
3643 #ifdef KDTRACE_HOOKS
3644 		i++;
3645 #endif
3646 		if ((vp->v_vflag & VV_ROOT) != 0) {
3647 			mp = atomic_load_ptr(&vp->v_mount);
3648 			if (mp == NULL) {
3649 				cache_rev_failed(&reason);
3650 				goto out_abort;
3651 			}
3652 			tvp = atomic_load_ptr(&mp->mnt_vnodecovered);
3653 			tvp_seqc = vn_seqc_read_any(tvp);
3654 			if (seqc_in_modify(tvp_seqc)) {
3655 				cache_rev_failed(&reason);
3656 				goto out_abort;
3657 			}
3658 			if (!vn_seqc_consistent(vp, vp_seqc)) {
3659 				cache_rev_failed(&reason);
3660 				goto out_abort;
3661 			}
3662 			vp = tvp;
3663 			vp_seqc = tvp_seqc;
3664 			continue;
3665 		}
3666 		ncp = atomic_load_consume_ptr(&vp->v_cache_dd);
3667 		if (ncp == NULL) {
3668 			cache_rev_failed(&reason);
3669 			goto out_abort;
3670 		}
3671 		nc_flag = atomic_load_char(&ncp->nc_flag);
3672 		if ((nc_flag & NCF_ISDOTDOT) != 0) {
3673 			cache_rev_failed(&reason);
3674 			goto out_abort;
3675 		}
3676 		if (ncp->nc_nlen >= *buflen) {
3677 			cache_rev_failed(&reason);
3678 			error = ENOMEM;
3679 			goto out_abort;
3680 		}
3681 		*buflen -= ncp->nc_nlen;
3682 		memcpy(buf + *buflen, ncp->nc_name, ncp->nc_nlen);
3683 		*buflen -= 1;
3684 		buf[*buflen] = '/';
3685 		tvp = ncp->nc_dvp;
3686 		tvp_seqc = vn_seqc_read_any(tvp);
3687 		if (seqc_in_modify(tvp_seqc)) {
3688 			cache_rev_failed(&reason);
3689 			goto out_abort;
3690 		}
3691 		if (!vn_seqc_consistent(vp, vp_seqc)) {
3692 			cache_rev_failed(&reason);
3693 			goto out_abort;
3694 		}
3695 		/*
3696 		 * Acquire fence provided by vn_seqc_read_any above.
3697 		 */
3698 		if (__predict_false(atomic_load_ptr(&vp->v_cache_dd) != ncp)) {
3699 			cache_rev_failed(&reason);
3700 			goto out_abort;
3701 		}
3702 		if (!cache_ncp_canuse(ncp)) {
3703 			cache_rev_failed(&reason);
3704 			goto out_abort;
3705 		}
3706 		vp = tvp;
3707 		vp_seqc = tvp_seqc;
3708 		if (vp == rdir || vp == rootvnode)
3709 			break;
3710 	}
3711 out_ok:
3712 	vfs_smr_exit();
3713 	*retbuf = buf + *buflen;
3714 	*buflen = orig_buflen - *buflen + addend;
3715 	SDT_PROBE2(vfs, namecache, fullpath_smr, hit, startvp, *retbuf);
3716 	return (0);
3717 
3718 out_abort:
3719 	*buflen = orig_buflen;
3720 	SDT_PROBE4(vfs, namecache, fullpath_smr, miss, startvp, ncp, reason, i);
3721 	vfs_smr_exit();
3722 	return (error);
3723 }
3724 
3725 static int
vn_fullpath_any(struct vnode * vp,struct vnode * rdir,char * buf,char ** retbuf,size_t * buflen)3726 vn_fullpath_any(struct vnode *vp, struct vnode *rdir, char *buf, char **retbuf,
3727     size_t *buflen)
3728 {
3729 	size_t orig_buflen, addend;
3730 	int error;
3731 
3732 	if (*buflen < 2)
3733 		return (EINVAL);
3734 
3735 	orig_buflen = *buflen;
3736 
3737 	vref(vp);
3738 	addend = 0;
3739 	if (vp->v_type != VDIR) {
3740 		*buflen -= 1;
3741 		buf[*buflen] = '\0';
3742 		error = vn_vptocnp(&vp, buf, buflen);
3743 		if (error)
3744 			return (error);
3745 		if (*buflen == 0) {
3746 			vrele(vp);
3747 			return (ENOMEM);
3748 		}
3749 		*buflen -= 1;
3750 		buf[*buflen] = '/';
3751 		addend = orig_buflen - *buflen;
3752 	}
3753 
3754 	return (vn_fullpath_dir(vp, rdir, buf, retbuf, buflen, addend));
3755 }
3756 
3757 /*
3758  * Resolve an arbitrary vnode to a pathname (taking care of hardlinks).
3759  *
3760  * Since the namecache does not track hardlinks, the caller is expected to
3761  * first look up the target vnode with WANTPARENT flag passed to namei to get
3762  * dvp and vp.
3763  *
3764  * Then we have 2 cases:
3765  * - if the found vnode is a directory, the path can be constructed just by
3766  *   following names up the chain
3767  * - otherwise we populate the buffer with the saved name and start resolving
3768  *   from the parent
3769  */
3770 int
vn_fullpath_hardlink(struct vnode * vp,struct vnode * dvp,const char * hrdl_name,size_t hrdl_name_length,char ** retbuf,char ** freebuf,size_t * buflen)3771 vn_fullpath_hardlink(struct vnode *vp, struct vnode *dvp,
3772     const char *hrdl_name, size_t hrdl_name_length,
3773     char **retbuf, char **freebuf, size_t *buflen)
3774 {
3775 	char *buf, *tmpbuf;
3776 	struct pwd *pwd;
3777 	size_t addend;
3778 	int error;
3779 	__enum_uint8(vtype) type;
3780 
3781 	if (*buflen < 2)
3782 		return (EINVAL);
3783 	if (*buflen > MAXPATHLEN)
3784 		*buflen = MAXPATHLEN;
3785 
3786 	buf = malloc(*buflen, M_TEMP, M_WAITOK);
3787 
3788 	addend = 0;
3789 
3790 	/*
3791 	 * Check for VBAD to work around the vp_crossmp bug in lookup().
3792 	 *
3793 	 * For example consider tmpfs on /tmp and realpath /tmp. ni_vp will be
3794 	 * set to mount point's root vnode while ni_dvp will be vp_crossmp.
3795 	 * If the type is VDIR (like in this very case) we can skip looking
3796 	 * at ni_dvp in the first place. However, since vnodes get passed here
3797 	 * unlocked the target may transition to doomed state (type == VBAD)
3798 	 * before we get to evaluate the condition. If this happens, we will
3799 	 * populate part of the buffer and descend to vn_fullpath_dir with
3800 	 * vp == vp_crossmp. Prevent the problem by checking for VBAD.
3801 	 */
3802 	type = atomic_load_8(&vp->v_type);
3803 	if (type == VBAD) {
3804 		error = ENOENT;
3805 		goto out_bad;
3806 	}
3807 	if (type != VDIR) {
3808 		addend = hrdl_name_length + 2;
3809 		if (*buflen < addend) {
3810 			error = ENOMEM;
3811 			goto out_bad;
3812 		}
3813 		*buflen -= addend;
3814 		tmpbuf = buf + *buflen;
3815 		tmpbuf[0] = '/';
3816 		memcpy(&tmpbuf[1], hrdl_name, hrdl_name_length);
3817 		tmpbuf[addend - 1] = '\0';
3818 		vp = dvp;
3819 	}
3820 
3821 	vfs_smr_enter();
3822 	pwd = pwd_get_smr();
3823 	error = vn_fullpath_any_smr(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3824 	    addend);
3825 	VFS_SMR_ASSERT_NOT_ENTERED();
3826 	if (error < 0) {
3827 		pwd = pwd_hold(curthread);
3828 		vref(vp);
3829 		error = vn_fullpath_dir(vp, pwd->pwd_rdir, buf, retbuf, buflen,
3830 		    addend);
3831 		pwd_drop(pwd);
3832 	}
3833 	if (error != 0)
3834 		goto out_bad;
3835 
3836 	*freebuf = buf;
3837 
3838 	return (0);
3839 out_bad:
3840 	free(buf, M_TEMP);
3841 	return (error);
3842 }
3843 
3844 struct vnode *
vn_dir_dd_ino(struct vnode * vp)3845 vn_dir_dd_ino(struct vnode *vp)
3846 {
3847 	struct namecache *ncp;
3848 	struct vnode *ddvp;
3849 	struct mtx *vlp;
3850 	enum vgetstate vs;
3851 
3852 	ASSERT_VOP_LOCKED(vp, "vn_dir_dd_ino");
3853 	vlp = VP2VNODELOCK(vp);
3854 	mtx_lock(vlp);
3855 	TAILQ_FOREACH(ncp, &(vp->v_cache_dst), nc_dst) {
3856 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
3857 			continue;
3858 		ddvp = ncp->nc_dvp;
3859 		vs = vget_prep(ddvp);
3860 		mtx_unlock(vlp);
3861 		if (vget_finish(ddvp, LK_SHARED | LK_NOWAIT, vs))
3862 			return (NULL);
3863 		return (ddvp);
3864 	}
3865 	mtx_unlock(vlp);
3866 	return (NULL);
3867 }
3868 
3869 int
vn_commname(struct vnode * vp,char * buf,u_int buflen)3870 vn_commname(struct vnode *vp, char *buf, u_int buflen)
3871 {
3872 	struct namecache *ncp;
3873 	struct mtx *vlp;
3874 	int l;
3875 
3876 	vlp = VP2VNODELOCK(vp);
3877 	mtx_lock(vlp);
3878 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst)
3879 		if ((ncp->nc_flag & NCF_ISDOTDOT) == 0)
3880 			break;
3881 	if (ncp == NULL) {
3882 		mtx_unlock(vlp);
3883 		return (ENOENT);
3884 	}
3885 	l = min(ncp->nc_nlen, buflen - 1);
3886 	memcpy(buf, ncp->nc_name, l);
3887 	mtx_unlock(vlp);
3888 	buf[l] = '\0';
3889 	return (0);
3890 }
3891 
3892 /*
3893  * This function updates path string to vnode's full global path
3894  * and checks the size of the new path string against the pathlen argument.
3895  *
3896  * Requires a locked, referenced vnode.
3897  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3898  *
3899  * If vp is a directory, the call to vn_fullpath_global() always succeeds
3900  * because it falls back to the ".." lookup if the namecache lookup fails.
3901  */
3902 int
vn_path_to_global_path(struct thread * td,struct vnode * vp,char * path,u_int pathlen)3903 vn_path_to_global_path(struct thread *td, struct vnode *vp, char *path,
3904     u_int pathlen)
3905 {
3906 	struct nameidata nd;
3907 	struct vnode *vp1;
3908 	char *rpath, *fbuf;
3909 	int error;
3910 
3911 	ASSERT_VOP_ELOCKED(vp, __func__);
3912 
3913 	/* Construct global filesystem path from vp. */
3914 	VOP_UNLOCK(vp);
3915 	error = vn_fullpath_global(vp, &rpath, &fbuf);
3916 
3917 	if (error != 0) {
3918 		vrele(vp);
3919 		return (error);
3920 	}
3921 
3922 	if (strlen(rpath) >= pathlen) {
3923 		vrele(vp);
3924 		error = ENAMETOOLONG;
3925 		goto out;
3926 	}
3927 
3928 	/*
3929 	 * Re-lookup the vnode by path to detect a possible rename.
3930 	 * As a side effect, the vnode is relocked.
3931 	 * If vnode was renamed, return ENOENT.
3932 	 */
3933 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
3934 	error = namei(&nd);
3935 	if (error != 0) {
3936 		vrele(vp);
3937 		goto out;
3938 	}
3939 	NDFREE_PNBUF(&nd);
3940 	vp1 = nd.ni_vp;
3941 	vrele(vp);
3942 	if (vp1 == vp)
3943 		strcpy(path, rpath);
3944 	else {
3945 		vput(vp1);
3946 		error = ENOENT;
3947 	}
3948 
3949 out:
3950 	free(fbuf, M_TEMP);
3951 	return (error);
3952 }
3953 
3954 /*
3955  * This is similar to vn_path_to_global_path but allows for regular
3956  * files which may not be present in the cache.
3957  *
3958  * Requires a locked, referenced vnode.
3959  * Vnode is re-locked on success or ENODEV, otherwise unlocked.
3960  */
3961 int
vn_path_to_global_path_hardlink(struct thread * td,struct vnode * vp,struct vnode * dvp,char * path,u_int pathlen,const char * leaf_name,size_t leaf_length)3962 vn_path_to_global_path_hardlink(struct thread *td, struct vnode *vp,
3963     struct vnode *dvp, char *path, u_int pathlen, const char *leaf_name,
3964     size_t leaf_length)
3965 {
3966 	struct nameidata nd;
3967 	struct vnode *vp1;
3968 	char *rpath, *fbuf;
3969 	size_t len;
3970 	int error;
3971 
3972 	ASSERT_VOP_ELOCKED(vp, __func__);
3973 
3974 	/*
3975 	 * Construct global filesystem path from dvp, vp and leaf
3976 	 * name.
3977 	 */
3978 	VOP_UNLOCK(vp);
3979 	len = pathlen;
3980 	error = vn_fullpath_hardlink(vp, dvp, leaf_name, leaf_length,
3981 	    &rpath, &fbuf, &len);
3982 
3983 	if (error != 0) {
3984 		vrele(vp);
3985 		return (error);
3986 	}
3987 
3988 	if (strlen(rpath) >= pathlen) {
3989 		vrele(vp);
3990 		error = ENAMETOOLONG;
3991 		goto out;
3992 	}
3993 
3994 	/*
3995 	 * Re-lookup the vnode by path to detect a possible rename.
3996 	 * As a side effect, the vnode is relocked.
3997 	 * If vnode was renamed, return ENOENT.
3998 	 */
3999 	NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | AUDITVNODE1, UIO_SYSSPACE, path);
4000 	error = namei(&nd);
4001 	if (error != 0) {
4002 		vrele(vp);
4003 		goto out;
4004 	}
4005 	NDFREE_PNBUF(&nd);
4006 	vp1 = nd.ni_vp;
4007 	vrele(vp);
4008 	if (vp1 == vp)
4009 		strcpy(path, rpath);
4010 	else {
4011 		vput(vp1);
4012 		error = ENOENT;
4013 	}
4014 
4015 out:
4016 	free(fbuf, M_TEMP);
4017 	return (error);
4018 }
4019 
4020 void
cache_vop_inotify(struct vnode * vp,int event,uint32_t cookie)4021 cache_vop_inotify(struct vnode *vp, int event, uint32_t cookie)
4022 {
4023 	struct mtx *vlp;
4024 	struct namecache *ncp;
4025 	int isdir;
4026 	bool logged, self;
4027 
4028 	isdir = vp->v_type == VDIR ? IN_ISDIR : 0;
4029 	self = (vn_irflag_read(vp) & VIRF_INOTIFY) != 0 &&
4030 	    (vp->v_type != VDIR || (event & ~_IN_DIR_EVENTS) != 0);
4031 
4032 	if (self) {
4033 		int selfevent;
4034 
4035 		if (event == _IN_ATTRIB_LINKCOUNT)
4036 			selfevent = IN_ATTRIB;
4037 		else
4038 			selfevent = event;
4039 		inotify_log(vp, NULL, 0, selfevent | isdir, cookie);
4040 	}
4041 	if ((event & IN_ALL_EVENTS) == 0)
4042 		return;
4043 
4044 	logged = false;
4045 	vlp = VP2VNODELOCK(vp);
4046 	mtx_lock(vlp);
4047 	TAILQ_FOREACH(ncp, &vp->v_cache_dst, nc_dst) {
4048 		if ((ncp->nc_flag & NCF_ISDOTDOT) != 0)
4049 			continue;
4050 		if ((vn_irflag_read(ncp->nc_dvp) & VIRF_INOTIFY) != 0) {
4051 			/*
4052 			 * XXX-MJ if the vnode has two links in the same
4053 			 * dir, we'll log the same event twice.
4054 			 */
4055 			inotify_log(ncp->nc_dvp, ncp->nc_name, ncp->nc_nlen,
4056 			    event | isdir, cookie);
4057 			logged = true;
4058 		}
4059 	}
4060 	if (!logged && (vn_irflag_read(vp) & VIRF_INOTIFY_PARENT) != 0) {
4061 		/*
4062 		 * We didn't find a watched directory that contains this vnode,
4063 		 * so stop calling VOP_INOTIFY for operations on the vnode.
4064 		 */
4065 		vn_irflag_unset(vp, VIRF_INOTIFY_PARENT);
4066 	}
4067 	mtx_unlock(vlp);
4068 }
4069 
4070 #ifdef DDB
4071 static void
db_print_vpath(struct vnode * vp)4072 db_print_vpath(struct vnode *vp)
4073 {
4074 
4075 	while (vp != NULL) {
4076 		db_printf("%p: ", vp);
4077 		if (vp == rootvnode) {
4078 			db_printf("/");
4079 			vp = NULL;
4080 		} else {
4081 			if (vp->v_vflag & VV_ROOT) {
4082 				db_printf("<mount point>");
4083 				vp = vp->v_mount->mnt_vnodecovered;
4084 			} else {
4085 				struct namecache *ncp;
4086 				char *ncn;
4087 				int i;
4088 
4089 				ncp = TAILQ_FIRST(&vp->v_cache_dst);
4090 				if (ncp != NULL) {
4091 					ncn = ncp->nc_name;
4092 					for (i = 0; i < ncp->nc_nlen; i++)
4093 						db_printf("%c", *ncn++);
4094 					vp = ncp->nc_dvp;
4095 				} else {
4096 					vp = NULL;
4097 				}
4098 			}
4099 		}
4100 		db_printf("\n");
4101 	}
4102 
4103 	return;
4104 }
4105 
DB_SHOW_COMMAND(vpath,db_show_vpath)4106 DB_SHOW_COMMAND(vpath, db_show_vpath)
4107 {
4108 	struct vnode *vp;
4109 
4110 	if (!have_addr) {
4111 		db_printf("usage: show vpath <struct vnode *>\n");
4112 		return;
4113 	}
4114 
4115 	vp = (struct vnode *)addr;
4116 	db_print_vpath(vp);
4117 }
4118 
4119 #endif
4120 
4121 static int cache_fast_lookup = 1;
4122 
4123 #define CACHE_FPL_FAILED	-2020
4124 
4125 static int
cache_vop_bad_vexec(struct vop_fplookup_vexec_args * v)4126 cache_vop_bad_vexec(struct vop_fplookup_vexec_args *v)
4127 {
4128 	vn_printf(v->a_vp, "no proper vop_fplookup_vexec\n");
4129 	panic("no proper vop_fplookup_vexec");
4130 }
4131 
4132 static int
cache_vop_bad_symlink(struct vop_fplookup_symlink_args * v)4133 cache_vop_bad_symlink(struct vop_fplookup_symlink_args *v)
4134 {
4135 	vn_printf(v->a_vp, "no proper vop_fplookup_symlink\n");
4136 	panic("no proper vop_fplookup_symlink");
4137 }
4138 
4139 void
cache_vop_vector_register(struct vop_vector * v)4140 cache_vop_vector_register(struct vop_vector *v)
4141 {
4142 	size_t ops;
4143 
4144 	ops = 0;
4145 	if (v->vop_fplookup_vexec != NULL) {
4146 		ops++;
4147 	}
4148 	if (v->vop_fplookup_symlink != NULL) {
4149 		ops++;
4150 	}
4151 
4152 	if (ops == 2) {
4153 		return;
4154 	}
4155 
4156 	if (ops == 0) {
4157 		v->vop_fplookup_vexec = cache_vop_bad_vexec;
4158 		v->vop_fplookup_symlink = cache_vop_bad_symlink;
4159 		return;
4160 	}
4161 
4162 	printf("%s: invalid vop vector %p -- either all or none fplookup vops "
4163 	    "need to be provided",  __func__, v);
4164 	if (v->vop_fplookup_vexec == NULL) {
4165 		printf("%s: missing vop_fplookup_vexec\n", __func__);
4166 	}
4167 	if (v->vop_fplookup_symlink == NULL) {
4168 		printf("%s: missing vop_fplookup_symlink\n", __func__);
4169 	}
4170 	panic("bad vop vector %p", v);
4171 }
4172 
4173 #ifdef INVARIANTS
4174 void
cache_validate_vop_vector(struct mount * mp,struct vop_vector * vops)4175 cache_validate_vop_vector(struct mount *mp, struct vop_vector *vops)
4176 {
4177 	if (mp == NULL)
4178 		return;
4179 
4180 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
4181 		return;
4182 
4183 	if (vops->vop_fplookup_vexec == NULL ||
4184 	    vops->vop_fplookup_vexec == cache_vop_bad_vexec)
4185 		panic("bad vop_fplookup_vexec on vector %p for filesystem %s",
4186 		    vops, mp->mnt_vfc->vfc_name);
4187 
4188 	if (vops->vop_fplookup_symlink == NULL ||
4189 	    vops->vop_fplookup_symlink == cache_vop_bad_symlink)
4190 		panic("bad vop_fplookup_symlink on vector %p for filesystem %s",
4191 		    vops, mp->mnt_vfc->vfc_name);
4192 }
4193 #endif
4194 
4195 void
cache_fast_lookup_enabled_recalc(void)4196 cache_fast_lookup_enabled_recalc(void)
4197 {
4198 	int lookup_flag;
4199 	int mac_on;
4200 
4201 #ifdef MAC
4202 	mac_on = mac_vnode_check_lookup_enabled();
4203 	mac_on |= mac_vnode_check_readlink_enabled();
4204 #else
4205 	mac_on = 0;
4206 #endif
4207 
4208 	lookup_flag = atomic_load_int(&cache_fast_lookup);
4209 	if (lookup_flag && !mac_on) {
4210 		atomic_store_char(&cache_fast_lookup_enabled, true);
4211 	} else {
4212 		atomic_store_char(&cache_fast_lookup_enabled, false);
4213 	}
4214 }
4215 
4216 static int
syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)4217 syscal_vfs_cache_fast_lookup(SYSCTL_HANDLER_ARGS)
4218 {
4219 	int error, old;
4220 
4221 	old = atomic_load_int(&cache_fast_lookup);
4222 	error = sysctl_handle_int(oidp, arg1, arg2, req);
4223 	if (error == 0 && req->newptr && old != atomic_load_int(&cache_fast_lookup))
4224 		cache_fast_lookup_enabled_recalc();
4225 	return (error);
4226 }
4227 SYSCTL_PROC(_vfs_cache_param, OID_AUTO, fast_lookup, CTLTYPE_INT|CTLFLAG_RW|CTLFLAG_MPSAFE,
4228     &cache_fast_lookup, 0, syscal_vfs_cache_fast_lookup, "IU", "");
4229 
4230 /*
4231  * Components of nameidata (or objects it can point to) which may
4232  * need restoring in case fast path lookup fails.
4233  */
4234 struct nameidata_outer {
4235 	size_t ni_pathlen;
4236 	uint64_t cn_flags;
4237 };
4238 
4239 struct nameidata_saved {
4240 #ifdef INVARIANTS
4241 	char *cn_nameptr;
4242 	size_t ni_pathlen;
4243 #endif
4244 };
4245 
4246 #ifdef INVARIANTS
4247 struct cache_fpl_debug {
4248 	size_t ni_pathlen;
4249 };
4250 #endif
4251 
4252 struct cache_fpl {
4253 	struct nameidata *ndp;
4254 	struct componentname *cnp;
4255 	char *nulchar;
4256 	struct vnode *dvp;
4257 	struct vnode *tvp;
4258 	seqc_t dvp_seqc;
4259 	seqc_t tvp_seqc;
4260 	uint32_t hash;
4261 	struct nameidata_saved snd;
4262 	struct nameidata_outer snd_outer;
4263 	int line;
4264 	enum cache_fpl_status status:8;
4265 	bool in_smr;
4266 	bool fsearch;
4267 	struct pwd **pwd;
4268 #ifdef INVARIANTS
4269 	struct cache_fpl_debug debug;
4270 #endif
4271 };
4272 
4273 static bool cache_fplookup_mp_supported(struct mount *mp);
4274 static bool cache_fplookup_is_mp(struct cache_fpl *fpl);
4275 static int cache_fplookup_cross_mount(struct cache_fpl *fpl);
4276 static int cache_fplookup_partial_setup(struct cache_fpl *fpl);
4277 static int cache_fplookup_skip_slashes(struct cache_fpl *fpl);
4278 static int cache_fplookup_trailingslash(struct cache_fpl *fpl);
4279 static void cache_fpl_pathlen_dec(struct cache_fpl *fpl);
4280 static void cache_fpl_pathlen_inc(struct cache_fpl *fpl);
4281 static void cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n);
4282 static void cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n);
4283 
4284 static void
cache_fpl_cleanup_cnp(struct componentname * cnp)4285 cache_fpl_cleanup_cnp(struct componentname *cnp)
4286 {
4287 
4288 	uma_zfree(namei_zone, cnp->cn_pnbuf);
4289 	cnp->cn_pnbuf = NULL;
4290 	cnp->cn_nameptr = NULL;
4291 }
4292 
4293 static struct vnode *
cache_fpl_handle_root(struct cache_fpl * fpl)4294 cache_fpl_handle_root(struct cache_fpl *fpl)
4295 {
4296 	struct nameidata *ndp;
4297 	struct componentname *cnp;
4298 
4299 	ndp = fpl->ndp;
4300 	cnp = fpl->cnp;
4301 
4302 	MPASS(*(cnp->cn_nameptr) == '/');
4303 	cnp->cn_nameptr++;
4304 	cache_fpl_pathlen_dec(fpl);
4305 
4306 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4307 		do {
4308 			cnp->cn_nameptr++;
4309 			cache_fpl_pathlen_dec(fpl);
4310 		} while (*(cnp->cn_nameptr) == '/');
4311 	}
4312 
4313 	return (ndp->ni_rootdir);
4314 }
4315 
4316 static void
cache_fpl_checkpoint_outer(struct cache_fpl * fpl)4317 cache_fpl_checkpoint_outer(struct cache_fpl *fpl)
4318 {
4319 
4320 	fpl->snd_outer.ni_pathlen = fpl->ndp->ni_pathlen;
4321 	fpl->snd_outer.cn_flags = fpl->ndp->ni_cnd.cn_flags;
4322 }
4323 
4324 static void
cache_fpl_checkpoint(struct cache_fpl * fpl)4325 cache_fpl_checkpoint(struct cache_fpl *fpl)
4326 {
4327 
4328 #ifdef INVARIANTS
4329 	fpl->snd.cn_nameptr = fpl->ndp->ni_cnd.cn_nameptr;
4330 	fpl->snd.ni_pathlen = fpl->debug.ni_pathlen;
4331 #endif
4332 }
4333 
4334 static void
cache_fpl_restore_partial(struct cache_fpl * fpl)4335 cache_fpl_restore_partial(struct cache_fpl *fpl)
4336 {
4337 
4338 	fpl->ndp->ni_cnd.cn_flags = fpl->snd_outer.cn_flags;
4339 #ifdef INVARIANTS
4340 	fpl->debug.ni_pathlen = fpl->snd.ni_pathlen;
4341 #endif
4342 }
4343 
4344 static void
cache_fpl_restore_abort(struct cache_fpl * fpl)4345 cache_fpl_restore_abort(struct cache_fpl *fpl)
4346 {
4347 
4348 	cache_fpl_restore_partial(fpl);
4349 	/*
4350 	 * It is 0 on entry by API contract.
4351 	 */
4352 	fpl->ndp->ni_resflags = 0;
4353 	fpl->ndp->ni_cnd.cn_nameptr = fpl->ndp->ni_cnd.cn_pnbuf;
4354 	fpl->ndp->ni_pathlen = fpl->snd_outer.ni_pathlen;
4355 }
4356 
4357 #ifdef INVARIANTS
4358 #define cache_fpl_smr_assert_entered(fpl) ({			\
4359 	struct cache_fpl *_fpl = (fpl);				\
4360 	MPASS(_fpl->in_smr == true);				\
4361 	VFS_SMR_ASSERT_ENTERED();				\
4362 })
4363 #define cache_fpl_smr_assert_not_entered(fpl) ({		\
4364 	struct cache_fpl *_fpl = (fpl);				\
4365 	MPASS(_fpl->in_smr == false);				\
4366 	VFS_SMR_ASSERT_NOT_ENTERED();				\
4367 })
4368 static void
cache_fpl_assert_status(struct cache_fpl * fpl)4369 cache_fpl_assert_status(struct cache_fpl *fpl)
4370 {
4371 
4372 	switch (fpl->status) {
4373 	case CACHE_FPL_STATUS_UNSET:
4374 		__assert_unreachable();
4375 		break;
4376 	case CACHE_FPL_STATUS_DESTROYED:
4377 	case CACHE_FPL_STATUS_ABORTED:
4378 	case CACHE_FPL_STATUS_PARTIAL:
4379 	case CACHE_FPL_STATUS_HANDLED:
4380 		break;
4381 	}
4382 }
4383 #else
4384 #define cache_fpl_smr_assert_entered(fpl) do { } while (0)
4385 #define cache_fpl_smr_assert_not_entered(fpl) do { } while (0)
4386 #define cache_fpl_assert_status(fpl) do { } while (0)
4387 #endif
4388 
4389 #define cache_fpl_smr_enter_initial(fpl) ({			\
4390 	struct cache_fpl *_fpl = (fpl);				\
4391 	vfs_smr_enter();					\
4392 	_fpl->in_smr = true;					\
4393 })
4394 
4395 #define cache_fpl_smr_enter(fpl) ({				\
4396 	struct cache_fpl *_fpl = (fpl);				\
4397 	MPASS(_fpl->in_smr == false);				\
4398 	vfs_smr_enter();					\
4399 	_fpl->in_smr = true;					\
4400 })
4401 
4402 #define cache_fpl_smr_exit(fpl) ({				\
4403 	struct cache_fpl *_fpl = (fpl);				\
4404 	MPASS(_fpl->in_smr == true);				\
4405 	vfs_smr_exit();						\
4406 	_fpl->in_smr = false;					\
4407 })
4408 
4409 static int
cache_fpl_aborted_early_impl(struct cache_fpl * fpl,int line)4410 cache_fpl_aborted_early_impl(struct cache_fpl *fpl, int line)
4411 {
4412 
4413 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4414 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4415 		    ("%s: converting to abort from %d at %d, set at %d\n",
4416 		    __func__, fpl->status, line, fpl->line));
4417 	}
4418 	cache_fpl_smr_assert_not_entered(fpl);
4419 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4420 	fpl->line = line;
4421 	return (CACHE_FPL_FAILED);
4422 }
4423 
4424 #define cache_fpl_aborted_early(x)	cache_fpl_aborted_early_impl((x), __LINE__)
4425 
4426 static int __noinline
cache_fpl_aborted_impl(struct cache_fpl * fpl,int line)4427 cache_fpl_aborted_impl(struct cache_fpl *fpl, int line)
4428 {
4429 	struct nameidata *ndp;
4430 	struct componentname *cnp;
4431 
4432 	ndp = fpl->ndp;
4433 	cnp = fpl->cnp;
4434 
4435 	if (fpl->status != CACHE_FPL_STATUS_UNSET) {
4436 		KASSERT(fpl->status == CACHE_FPL_STATUS_PARTIAL,
4437 		    ("%s: converting to abort from %d at %d, set at %d\n",
4438 		    __func__, fpl->status, line, fpl->line));
4439 	}
4440 	fpl->status = CACHE_FPL_STATUS_ABORTED;
4441 	fpl->line = line;
4442 	if (fpl->in_smr)
4443 		cache_fpl_smr_exit(fpl);
4444 	cache_fpl_restore_abort(fpl);
4445 	/*
4446 	 * Resolving symlinks overwrites data passed by the caller.
4447 	 * Let namei know.
4448 	 */
4449 	if (ndp->ni_loopcnt > 0) {
4450 		fpl->status = CACHE_FPL_STATUS_DESTROYED;
4451 		cache_fpl_cleanup_cnp(cnp);
4452 	}
4453 	return (CACHE_FPL_FAILED);
4454 }
4455 
4456 #define cache_fpl_aborted(x)	cache_fpl_aborted_impl((x), __LINE__)
4457 
4458 static int __noinline
cache_fpl_partial_impl(struct cache_fpl * fpl,int line)4459 cache_fpl_partial_impl(struct cache_fpl *fpl, int line)
4460 {
4461 
4462 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4463 	    ("%s: setting to partial at %d, but already set to %d at %d\n",
4464 	    __func__, line, fpl->status, fpl->line));
4465 	cache_fpl_smr_assert_entered(fpl);
4466 	fpl->status = CACHE_FPL_STATUS_PARTIAL;
4467 	fpl->line = line;
4468 	return (cache_fplookup_partial_setup(fpl));
4469 }
4470 
4471 #define cache_fpl_partial(x)	cache_fpl_partial_impl((x), __LINE__)
4472 
4473 static int
cache_fpl_handled_impl(struct cache_fpl * fpl,int line)4474 cache_fpl_handled_impl(struct cache_fpl *fpl, int line)
4475 {
4476 
4477 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4478 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4479 	    __func__, line, fpl->status, fpl->line));
4480 	cache_fpl_smr_assert_not_entered(fpl);
4481 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4482 	fpl->line = line;
4483 	return (0);
4484 }
4485 
4486 #define cache_fpl_handled(x)	cache_fpl_handled_impl((x), __LINE__)
4487 
4488 static int
cache_fpl_handled_error_impl(struct cache_fpl * fpl,int error,int line)4489 cache_fpl_handled_error_impl(struct cache_fpl *fpl, int error, int line)
4490 {
4491 
4492 	KASSERT(fpl->status == CACHE_FPL_STATUS_UNSET,
4493 	    ("%s: setting to handled at %d, but already set to %d at %d\n",
4494 	    __func__, line, fpl->status, fpl->line));
4495 	MPASS(error != 0);
4496 	MPASS(error != CACHE_FPL_FAILED);
4497 	cache_fpl_smr_assert_not_entered(fpl);
4498 	fpl->status = CACHE_FPL_STATUS_HANDLED;
4499 	fpl->line = line;
4500 	fpl->dvp = NULL;
4501 	fpl->tvp = NULL;
4502 	return (error);
4503 }
4504 
4505 #define cache_fpl_handled_error(x, e)	cache_fpl_handled_error_impl((x), (e), __LINE__)
4506 
4507 static bool
cache_fpl_terminated(struct cache_fpl * fpl)4508 cache_fpl_terminated(struct cache_fpl *fpl)
4509 {
4510 
4511 	return (fpl->status != CACHE_FPL_STATUS_UNSET);
4512 }
4513 
4514 #define CACHE_FPL_SUPPORTED_CN_FLAGS \
4515 	(NC_NOMAKEENTRY | NC_KEEPPOSENTRY | LOCKLEAF | LOCKPARENT | WANTPARENT | \
4516 	 FAILIFEXISTS | FOLLOW | EMPTYPATH | LOCKSHARED | ISRESTARTED | WILLBEDIR | \
4517 	 ISOPEN | NOMACCHECK | AUDITVNODE1 | AUDITVNODE2 | NOCAPCHECK | OPENREAD | \
4518 	 OPENWRITE | WANTIOCTLCAPS | NAMEILOOKUP)
4519 
4520 #define CACHE_FPL_INTERNAL_CN_FLAGS \
4521 	(ISDOTDOT | MAKEENTRY | ISLASTCN)
4522 
4523 _Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
4524     "supported and internal flags overlap");
4525 
4526 static bool
cache_fpl_islastcn(struct nameidata * ndp)4527 cache_fpl_islastcn(struct nameidata *ndp)
4528 {
4529 
4530 	return (*ndp->ni_next == 0);
4531 }
4532 
4533 static bool
cache_fpl_istrailingslash(struct cache_fpl * fpl)4534 cache_fpl_istrailingslash(struct cache_fpl *fpl)
4535 {
4536 
4537 	MPASS(fpl->nulchar > fpl->cnp->cn_pnbuf);
4538 	return (*(fpl->nulchar - 1) == '/');
4539 }
4540 
4541 static bool
cache_fpl_isdotdot(struct componentname * cnp)4542 cache_fpl_isdotdot(struct componentname *cnp)
4543 {
4544 
4545 	if (cnp->cn_namelen == 2 &&
4546 	    cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
4547 		return (true);
4548 	return (false);
4549 }
4550 
4551 static bool
cache_can_fplookup(struct cache_fpl * fpl)4552 cache_can_fplookup(struct cache_fpl *fpl)
4553 {
4554 	struct nameidata *ndp;
4555 	struct componentname *cnp;
4556 	struct thread *td;
4557 
4558 	ndp = fpl->ndp;
4559 	cnp = fpl->cnp;
4560 	td = curthread;
4561 
4562 	if (!atomic_load_char(&cache_fast_lookup_enabled)) {
4563 		cache_fpl_aborted_early(fpl);
4564 		return (false);
4565 	}
4566 	if ((cnp->cn_flags & ~CACHE_FPL_SUPPORTED_CN_FLAGS) != 0) {
4567 		cache_fpl_aborted_early(fpl);
4568 		return (false);
4569 	}
4570 	if (IN_CAPABILITY_MODE(td) || CAP_TRACING(td)) {
4571 		cache_fpl_aborted_early(fpl);
4572 		return (false);
4573 	}
4574 	if (AUDITING_TD(td)) {
4575 		cache_fpl_aborted_early(fpl);
4576 		return (false);
4577 	}
4578 	if (ndp->ni_startdir != NULL) {
4579 		cache_fpl_aborted_early(fpl);
4580 		return (false);
4581 	}
4582 	return (true);
4583 }
4584 
4585 static int __noinline
cache_fplookup_dirfd(struct cache_fpl * fpl,struct vnode ** vpp)4586 cache_fplookup_dirfd(struct cache_fpl *fpl, struct vnode **vpp)
4587 {
4588 	struct nameidata *ndp;
4589 	struct componentname *cnp;
4590 	int error, flags;
4591 
4592 	ndp = fpl->ndp;
4593 	cnp = fpl->cnp;
4594 
4595 	error = fgetvp_lookup_smr(ndp, vpp, &flags);
4596 	if (__predict_false(error != 0)) {
4597 		return (cache_fpl_aborted(fpl));
4598 	}
4599 	if (__predict_false((flags & O_RESOLVE_BENEATH) != 0)) {
4600 		_Static_assert((CACHE_FPL_SUPPORTED_CN_FLAGS & RBENEATH) == 0,
4601 		    "RBENEATH supported by fplookup");
4602 		cache_fpl_smr_exit(fpl);
4603 		cache_fpl_aborted(fpl);
4604 		return (EOPNOTSUPP);
4605 	}
4606 	fpl->fsearch = (flags & FSEARCH) != 0;
4607 	if ((*vpp)->v_type != VDIR) {
4608 		if (!((cnp->cn_flags & EMPTYPATH) != 0 && cnp->cn_pnbuf[0] == '\0')) {
4609 			cache_fpl_smr_exit(fpl);
4610 			return (cache_fpl_handled_error(fpl, ENOTDIR));
4611 		}
4612 	}
4613 	return (0);
4614 }
4615 
4616 static int __noinline
cache_fplookup_negative_promote(struct cache_fpl * fpl,struct namecache * oncp,uint32_t hash)4617 cache_fplookup_negative_promote(struct cache_fpl *fpl, struct namecache *oncp,
4618     uint32_t hash)
4619 {
4620 	struct componentname *cnp;
4621 	struct vnode *dvp;
4622 
4623 	cnp = fpl->cnp;
4624 	dvp = fpl->dvp;
4625 
4626 	cache_fpl_smr_exit(fpl);
4627 	if (cache_neg_promote_cond(dvp, cnp, oncp, hash))
4628 		return (cache_fpl_handled_error(fpl, ENOENT));
4629 	else
4630 		return (cache_fpl_aborted(fpl));
4631 }
4632 
4633 /*
4634  * The target vnode is not supported, prepare for the slow path to take over.
4635  */
4636 static int __noinline
cache_fplookup_partial_setup(struct cache_fpl * fpl)4637 cache_fplookup_partial_setup(struct cache_fpl *fpl)
4638 {
4639 	struct nameidata *ndp;
4640 	struct componentname *cnp;
4641 	enum vgetstate dvs;
4642 	struct vnode *dvp;
4643 	struct pwd *pwd;
4644 	seqc_t dvp_seqc;
4645 
4646 	ndp = fpl->ndp;
4647 	cnp = fpl->cnp;
4648 	pwd = *(fpl->pwd);
4649 	dvp = fpl->dvp;
4650 	dvp_seqc = fpl->dvp_seqc;
4651 
4652 	if (!pwd_hold_smr(pwd)) {
4653 		return (cache_fpl_aborted(fpl));
4654 	}
4655 
4656 	/*
4657 	 * Note that seqc is checked before the vnode is locked, so by
4658 	 * the time regular lookup gets to it it may have moved.
4659 	 *
4660 	 * Ultimately this does not affect correctness, any lookup errors
4661 	 * are userspace racing with itself. It is guaranteed that any
4662 	 * path which ultimately gets found could also have been found
4663 	 * by regular lookup going all the way in absence of concurrent
4664 	 * modifications.
4665 	 */
4666 	dvs = vget_prep_smr(dvp);
4667 	cache_fpl_smr_exit(fpl);
4668 	if (__predict_false(dvs == VGET_NONE)) {
4669 		pwd_drop(pwd);
4670 		return (cache_fpl_aborted(fpl));
4671 	}
4672 
4673 	vget_finish_ref(dvp, dvs);
4674 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4675 		vrele(dvp);
4676 		pwd_drop(pwd);
4677 		return (cache_fpl_aborted(fpl));
4678 	}
4679 
4680 	cache_fpl_restore_partial(fpl);
4681 #ifdef INVARIANTS
4682 	if (cnp->cn_nameptr != fpl->snd.cn_nameptr) {
4683 		panic("%s: cn_nameptr mismatch (%p != %p) full [%s]\n", __func__,
4684 		    cnp->cn_nameptr, fpl->snd.cn_nameptr, cnp->cn_pnbuf);
4685 	}
4686 #endif
4687 
4688 	ndp->ni_startdir = dvp;
4689 	cnp->cn_flags |= MAKEENTRY;
4690 	if (cache_fpl_islastcn(ndp))
4691 		cnp->cn_flags |= ISLASTCN;
4692 	if (cache_fpl_isdotdot(cnp))
4693 		cnp->cn_flags |= ISDOTDOT;
4694 
4695 	/*
4696 	 * Skip potential extra slashes parsing did not take care of.
4697 	 * cache_fplookup_skip_slashes explains the mechanism.
4698 	 */
4699 	if (__predict_false(*(cnp->cn_nameptr) == '/')) {
4700 		do {
4701 			cnp->cn_nameptr++;
4702 			cache_fpl_pathlen_dec(fpl);
4703 		} while (*(cnp->cn_nameptr) == '/');
4704 	}
4705 
4706 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
4707 #ifdef INVARIANTS
4708 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
4709 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
4710 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
4711 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
4712 	}
4713 #endif
4714 	return (0);
4715 }
4716 
4717 static int
cache_fplookup_final_child(struct cache_fpl * fpl,enum vgetstate tvs)4718 cache_fplookup_final_child(struct cache_fpl *fpl, enum vgetstate tvs)
4719 {
4720 	struct componentname *cnp;
4721 	struct vnode *tvp;
4722 	seqc_t tvp_seqc;
4723 	int error, lkflags;
4724 
4725 	cnp = fpl->cnp;
4726 	tvp = fpl->tvp;
4727 	tvp_seqc = fpl->tvp_seqc;
4728 
4729 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
4730 		lkflags = LK_SHARED;
4731 		if ((cnp->cn_flags & LOCKSHARED) == 0)
4732 			lkflags = LK_EXCLUSIVE;
4733 		error = vget_finish(tvp, lkflags, tvs);
4734 		if (__predict_false(error != 0)) {
4735 			return (cache_fpl_aborted(fpl));
4736 		}
4737 	} else {
4738 		vget_finish_ref(tvp, tvs);
4739 	}
4740 
4741 	if (!vn_seqc_consistent(tvp, tvp_seqc)) {
4742 		if ((cnp->cn_flags & LOCKLEAF) != 0)
4743 			vput(tvp);
4744 		else
4745 			vrele(tvp);
4746 		return (cache_fpl_aborted(fpl));
4747 	}
4748 
4749 	return (cache_fpl_handled(fpl));
4750 }
4751 
4752 /*
4753  * They want to possibly modify the state of the namecache.
4754  */
4755 static int __noinline
cache_fplookup_final_modifying(struct cache_fpl * fpl)4756 cache_fplookup_final_modifying(struct cache_fpl *fpl)
4757 {
4758 	struct nameidata *ndp __diagused;
4759 	struct componentname *cnp;
4760 	enum vgetstate dvs;
4761 	struct vnode *dvp, *tvp;
4762 	struct mount *mp;
4763 	seqc_t dvp_seqc;
4764 	int error;
4765 	bool docache;
4766 
4767 	ndp = fpl->ndp;
4768 	cnp = fpl->cnp;
4769 	dvp = fpl->dvp;
4770 	dvp_seqc = fpl->dvp_seqc;
4771 
4772 	MPASS(*(cnp->cn_nameptr) != '/');
4773 	MPASS(cache_fpl_islastcn(ndp));
4774 	if ((cnp->cn_flags & LOCKPARENT) == 0)
4775 		MPASS((cnp->cn_flags & WANTPARENT) != 0);
4776 	MPASS((cnp->cn_flags & TRAILINGSLASH) == 0);
4777 	MPASS(cnp->cn_nameiop == CREATE || cnp->cn_nameiop == DELETE ||
4778 	    cnp->cn_nameiop == RENAME);
4779 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
4780 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
4781 
4782 	docache = (cnp->cn_flags & NOCACHE) ^ NOCACHE;
4783 	if (cnp->cn_nameiop == DELETE || cnp->cn_nameiop == RENAME)
4784 		docache = false;
4785 
4786 	/*
4787 	 * Regular lookup nulifies the slash, which we don't do here.
4788 	 * Don't take chances with filesystem routines seeing it for
4789 	 * the last entry.
4790 	 */
4791 	if (cache_fpl_istrailingslash(fpl)) {
4792 		return (cache_fpl_partial(fpl));
4793 	}
4794 
4795 	mp = atomic_load_ptr(&dvp->v_mount);
4796 	if (__predict_false(mp == NULL)) {
4797 		return (cache_fpl_aborted(fpl));
4798 	}
4799 
4800 	if (__predict_false(mp->mnt_flag & MNT_RDONLY)) {
4801 		cache_fpl_smr_exit(fpl);
4802 		/*
4803 		 * Original code keeps not checking for CREATE which
4804 		 * might be a bug. For now let the old lookup decide.
4805 		 */
4806 		if (cnp->cn_nameiop == CREATE) {
4807 			return (cache_fpl_aborted(fpl));
4808 		}
4809 		return (cache_fpl_handled_error(fpl, EROFS));
4810 	}
4811 
4812 	if (fpl->tvp != NULL && (cnp->cn_flags & FAILIFEXISTS) != 0) {
4813 		cache_fpl_smr_exit(fpl);
4814 		return (cache_fpl_handled_error(fpl, EEXIST));
4815 	}
4816 
4817 	/*
4818 	 * Secure access to dvp; check cache_fplookup_partial_setup for
4819 	 * reasoning.
4820 	 *
4821 	 * XXX At least UFS requires its lookup routine to be called for
4822 	 * the last path component, which leads to some level of complication
4823 	 * and inefficiency:
4824 	 * - the target routine always locks the target vnode, but our caller
4825 	 *   may not need it locked
4826 	 * - some of the VOP machinery asserts that the parent is locked, which
4827 	 *   once more may be not required
4828 	 *
4829 	 * TODO: add a flag for filesystems which don't need this.
4830 	 */
4831 	dvs = vget_prep_smr(dvp);
4832 	cache_fpl_smr_exit(fpl);
4833 	if (__predict_false(dvs == VGET_NONE)) {
4834 		return (cache_fpl_aborted(fpl));
4835 	}
4836 
4837 	vget_finish_ref(dvp, dvs);
4838 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4839 		vrele(dvp);
4840 		return (cache_fpl_aborted(fpl));
4841 	}
4842 
4843 	error = vn_lock(dvp, LK_EXCLUSIVE);
4844 	if (__predict_false(error != 0)) {
4845 		vrele(dvp);
4846 		return (cache_fpl_aborted(fpl));
4847 	}
4848 
4849 	tvp = NULL;
4850 	cnp->cn_flags |= ISLASTCN;
4851 	if (docache)
4852 		cnp->cn_flags |= MAKEENTRY;
4853 	if (cache_fpl_isdotdot(cnp))
4854 		cnp->cn_flags |= ISDOTDOT;
4855 	cnp->cn_lkflags = LK_EXCLUSIVE;
4856 	error = VOP_LOOKUP(dvp, &tvp, cnp);
4857 	switch (error) {
4858 	case EJUSTRETURN:
4859 	case 0:
4860 		break;
4861 	case ENOTDIR:
4862 	case ENOENT:
4863 		vput(dvp);
4864 		return (cache_fpl_handled_error(fpl, error));
4865 	default:
4866 		vput(dvp);
4867 		return (cache_fpl_aborted(fpl));
4868 	}
4869 
4870 	fpl->tvp = tvp;
4871 
4872 	if (tvp == NULL) {
4873 		MPASS(error == EJUSTRETURN);
4874 		if ((cnp->cn_flags & LOCKPARENT) == 0) {
4875 			VOP_UNLOCK(dvp);
4876 		}
4877 		return (cache_fpl_handled(fpl));
4878 	}
4879 
4880 	/*
4881 	 * There are very hairy corner cases concerning various flag combinations
4882 	 * and locking state. In particular here we only hold one lock instead of
4883 	 * two.
4884 	 *
4885 	 * Skip the complexity as it is of no significance for normal workloads.
4886 	 */
4887 	if (__predict_false(tvp == dvp)) {
4888 		vput(dvp);
4889 		vrele(tvp);
4890 		return (cache_fpl_aborted(fpl));
4891 	}
4892 
4893 	/*
4894 	 * If they want the symlink itself we are fine, but if they want to
4895 	 * follow it regular lookup has to be engaged.
4896 	 */
4897 	if (tvp->v_type == VLNK) {
4898 		if ((cnp->cn_flags & FOLLOW) != 0) {
4899 			vput(dvp);
4900 			vput(tvp);
4901 			return (cache_fpl_aborted(fpl));
4902 		}
4903 	}
4904 
4905 	/*
4906 	 * Since we expect this to be the terminal vnode it should almost never
4907 	 * be a mount point.
4908 	 */
4909 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
4910 		vput(dvp);
4911 		vput(tvp);
4912 		return (cache_fpl_aborted(fpl));
4913 	}
4914 
4915 	if ((cnp->cn_flags & FAILIFEXISTS) != 0) {
4916 		vput(dvp);
4917 		vput(tvp);
4918 		return (cache_fpl_handled_error(fpl, EEXIST));
4919 	}
4920 
4921 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
4922 		VOP_UNLOCK(tvp);
4923 	}
4924 
4925 	if ((cnp->cn_flags & LOCKPARENT) == 0) {
4926 		VOP_UNLOCK(dvp);
4927 	}
4928 
4929 	return (cache_fpl_handled(fpl));
4930 }
4931 
4932 static int __noinline
cache_fplookup_modifying(struct cache_fpl * fpl)4933 cache_fplookup_modifying(struct cache_fpl *fpl)
4934 {
4935 	struct nameidata *ndp;
4936 
4937 	ndp = fpl->ndp;
4938 
4939 	if (!cache_fpl_islastcn(ndp)) {
4940 		return (cache_fpl_partial(fpl));
4941 	}
4942 	return (cache_fplookup_final_modifying(fpl));
4943 }
4944 
4945 static int __noinline
cache_fplookup_final_withparent(struct cache_fpl * fpl)4946 cache_fplookup_final_withparent(struct cache_fpl *fpl)
4947 {
4948 	struct componentname *cnp;
4949 	enum vgetstate dvs, tvs;
4950 	struct vnode *dvp, *tvp;
4951 	seqc_t dvp_seqc;
4952 	int error;
4953 
4954 	cnp = fpl->cnp;
4955 	dvp = fpl->dvp;
4956 	dvp_seqc = fpl->dvp_seqc;
4957 	tvp = fpl->tvp;
4958 
4959 	MPASS((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0);
4960 
4961 	/*
4962 	 * This is less efficient than it can be for simplicity.
4963 	 */
4964 	dvs = vget_prep_smr(dvp);
4965 	if (__predict_false(dvs == VGET_NONE)) {
4966 		return (cache_fpl_aborted(fpl));
4967 	}
4968 	tvs = vget_prep_smr(tvp);
4969 	if (__predict_false(tvs == VGET_NONE)) {
4970 		cache_fpl_smr_exit(fpl);
4971 		vget_abort(dvp, dvs);
4972 		return (cache_fpl_aborted(fpl));
4973 	}
4974 
4975 	cache_fpl_smr_exit(fpl);
4976 
4977 	if ((cnp->cn_flags & LOCKPARENT) != 0) {
4978 		error = vget_finish(dvp, LK_EXCLUSIVE, dvs);
4979 		if (__predict_false(error != 0)) {
4980 			vget_abort(tvp, tvs);
4981 			return (cache_fpl_aborted(fpl));
4982 		}
4983 	} else {
4984 		vget_finish_ref(dvp, dvs);
4985 	}
4986 
4987 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
4988 		vget_abort(tvp, tvs);
4989 		if ((cnp->cn_flags & LOCKPARENT) != 0)
4990 			vput(dvp);
4991 		else
4992 			vrele(dvp);
4993 		return (cache_fpl_aborted(fpl));
4994 	}
4995 
4996 	error = cache_fplookup_final_child(fpl, tvs);
4997 	if (__predict_false(error != 0)) {
4998 		MPASS(fpl->status == CACHE_FPL_STATUS_ABORTED ||
4999 		    fpl->status == CACHE_FPL_STATUS_DESTROYED);
5000 		if ((cnp->cn_flags & LOCKPARENT) != 0)
5001 			vput(dvp);
5002 		else
5003 			vrele(dvp);
5004 		return (error);
5005 	}
5006 
5007 	MPASS(fpl->status == CACHE_FPL_STATUS_HANDLED);
5008 	return (0);
5009 }
5010 
5011 static int
cache_fplookup_final(struct cache_fpl * fpl)5012 cache_fplookup_final(struct cache_fpl *fpl)
5013 {
5014 	struct componentname *cnp;
5015 	enum vgetstate tvs;
5016 	struct vnode *dvp, *tvp;
5017 	seqc_t dvp_seqc;
5018 
5019 	cnp = fpl->cnp;
5020 	dvp = fpl->dvp;
5021 	dvp_seqc = fpl->dvp_seqc;
5022 	tvp = fpl->tvp;
5023 
5024 	MPASS(*(cnp->cn_nameptr) != '/');
5025 
5026 	if (cnp->cn_nameiop != LOOKUP) {
5027 		return (cache_fplookup_final_modifying(fpl));
5028 	}
5029 
5030 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0)
5031 		return (cache_fplookup_final_withparent(fpl));
5032 
5033 	tvs = vget_prep_smr(tvp);
5034 	if (__predict_false(tvs == VGET_NONE)) {
5035 		return (cache_fpl_partial(fpl));
5036 	}
5037 
5038 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5039 		cache_fpl_smr_exit(fpl);
5040 		vget_abort(tvp, tvs);
5041 		return (cache_fpl_aborted(fpl));
5042 	}
5043 
5044 	cache_fpl_smr_exit(fpl);
5045 	return (cache_fplookup_final_child(fpl, tvs));
5046 }
5047 
5048 /*
5049  * Comment from locked lookup:
5050  * Check for degenerate name (e.g. / or "") which is a way of talking about a
5051  * directory, e.g. like "/." or ".".
5052  */
5053 static int __noinline
cache_fplookup_degenerate(struct cache_fpl * fpl)5054 cache_fplookup_degenerate(struct cache_fpl *fpl)
5055 {
5056 	struct componentname *cnp;
5057 	struct vnode *dvp;
5058 	enum vgetstate dvs;
5059 	int error, lkflags;
5060 #ifdef INVARIANTS
5061 	char *cp;
5062 #endif
5063 
5064 	fpl->tvp = fpl->dvp;
5065 	fpl->tvp_seqc = fpl->dvp_seqc;
5066 
5067 	cnp = fpl->cnp;
5068 	dvp = fpl->dvp;
5069 
5070 #ifdef INVARIANTS
5071 	for (cp = cnp->cn_pnbuf; *cp != '\0'; cp++) {
5072 		KASSERT(*cp == '/',
5073 		    ("%s: encountered non-slash; string [%s]\n", __func__,
5074 		    cnp->cn_pnbuf));
5075 	}
5076 #endif
5077 
5078 	if (__predict_false(cnp->cn_nameiop != LOOKUP)) {
5079 		cache_fpl_smr_exit(fpl);
5080 		return (cache_fpl_handled_error(fpl, EISDIR));
5081 	}
5082 
5083 	if ((cnp->cn_flags & (LOCKPARENT|WANTPARENT)) != 0) {
5084 		return (cache_fplookup_final_withparent(fpl));
5085 	}
5086 
5087 	dvs = vget_prep_smr(dvp);
5088 	cache_fpl_smr_exit(fpl);
5089 	if (__predict_false(dvs == VGET_NONE)) {
5090 		return (cache_fpl_aborted(fpl));
5091 	}
5092 
5093 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5094 		lkflags = LK_SHARED;
5095 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5096 			lkflags = LK_EXCLUSIVE;
5097 		error = vget_finish(dvp, lkflags, dvs);
5098 		if (__predict_false(error != 0)) {
5099 			return (cache_fpl_aborted(fpl));
5100 		}
5101 	} else {
5102 		vget_finish_ref(dvp, dvs);
5103 	}
5104 	return (cache_fpl_handled(fpl));
5105 }
5106 
5107 static int __noinline
cache_fplookup_emptypath(struct cache_fpl * fpl)5108 cache_fplookup_emptypath(struct cache_fpl *fpl)
5109 {
5110 	struct nameidata *ndp;
5111 	struct componentname *cnp;
5112 	enum vgetstate tvs;
5113 	struct vnode *tvp;
5114 	int error, lkflags;
5115 
5116 	fpl->tvp = fpl->dvp;
5117 	fpl->tvp_seqc = fpl->dvp_seqc;
5118 
5119 	ndp = fpl->ndp;
5120 	cnp = fpl->cnp;
5121 	tvp = fpl->tvp;
5122 
5123 	MPASS(*cnp->cn_pnbuf == '\0');
5124 
5125 	if (__predict_false((cnp->cn_flags & EMPTYPATH) == 0)) {
5126 		cache_fpl_smr_exit(fpl);
5127 		return (cache_fpl_handled_error(fpl, ENOENT));
5128 	}
5129 
5130 	MPASS((cnp->cn_flags & (LOCKPARENT | WANTPARENT)) == 0);
5131 
5132 	tvs = vget_prep_smr(tvp);
5133 	cache_fpl_smr_exit(fpl);
5134 	if (__predict_false(tvs == VGET_NONE)) {
5135 		return (cache_fpl_aborted(fpl));
5136 	}
5137 
5138 	if ((cnp->cn_flags & LOCKLEAF) != 0) {
5139 		lkflags = LK_SHARED;
5140 		if ((cnp->cn_flags & LOCKSHARED) == 0)
5141 			lkflags = LK_EXCLUSIVE;
5142 		error = vget_finish(tvp, lkflags, tvs);
5143 		if (__predict_false(error != 0)) {
5144 			return (cache_fpl_aborted(fpl));
5145 		}
5146 	} else {
5147 		vget_finish_ref(tvp, tvs);
5148 	}
5149 
5150 	ndp->ni_resflags |= NIRES_EMPTYPATH;
5151 	return (cache_fpl_handled(fpl));
5152 }
5153 
5154 static int __noinline
cache_fplookup_noentry(struct cache_fpl * fpl)5155 cache_fplookup_noentry(struct cache_fpl *fpl)
5156 {
5157 	struct nameidata *ndp;
5158 	struct componentname *cnp;
5159 	enum vgetstate dvs;
5160 	struct vnode *dvp, *tvp;
5161 	seqc_t dvp_seqc;
5162 	int error;
5163 
5164 	ndp = fpl->ndp;
5165 	cnp = fpl->cnp;
5166 	dvp = fpl->dvp;
5167 	dvp_seqc = fpl->dvp_seqc;
5168 
5169 	MPASS((cnp->cn_flags & MAKEENTRY) == 0);
5170 	MPASS((cnp->cn_flags & ISDOTDOT) == 0);
5171 	if (cnp->cn_nameiop == LOOKUP)
5172 		MPASS((cnp->cn_flags & NOCACHE) == 0);
5173 	MPASS(!cache_fpl_isdotdot(cnp));
5174 
5175 	/*
5176 	 * Hack: delayed name len checking.
5177 	 */
5178 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
5179 		cache_fpl_smr_exit(fpl);
5180 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
5181 	}
5182 
5183 	if (cnp->cn_nameptr[0] == '/') {
5184 		return (cache_fplookup_skip_slashes(fpl));
5185 	}
5186 
5187 	if (cnp->cn_pnbuf[0] == '\0') {
5188 		return (cache_fplookup_emptypath(fpl));
5189 	}
5190 
5191 	if (cnp->cn_nameptr[0] == '\0') {
5192 		if (fpl->tvp == NULL) {
5193 			return (cache_fplookup_degenerate(fpl));
5194 		}
5195 		return (cache_fplookup_trailingslash(fpl));
5196 	}
5197 
5198 	if (cnp->cn_nameiop != LOOKUP) {
5199 		fpl->tvp = NULL;
5200 		return (cache_fplookup_modifying(fpl));
5201 	}
5202 
5203 	/*
5204 	 * Only try to fill in the component if it is the last one,
5205 	 * otherwise not only there may be several to handle but the
5206 	 * walk may be complicated.
5207 	 */
5208 	if (!cache_fpl_islastcn(ndp)) {
5209 		return (cache_fpl_partial(fpl));
5210 	}
5211 
5212 	/*
5213 	 * Regular lookup nulifies the slash, which we don't do here.
5214 	 * Don't take chances with filesystem routines seeing it for
5215 	 * the last entry.
5216 	 */
5217 	if (cache_fpl_istrailingslash(fpl)) {
5218 		return (cache_fpl_partial(fpl));
5219 	}
5220 
5221 	/*
5222 	 * Secure access to dvp; check cache_fplookup_partial_setup for
5223 	 * reasoning.
5224 	 */
5225 	dvs = vget_prep_smr(dvp);
5226 	cache_fpl_smr_exit(fpl);
5227 	if (__predict_false(dvs == VGET_NONE)) {
5228 		return (cache_fpl_aborted(fpl));
5229 	}
5230 
5231 	vget_finish_ref(dvp, dvs);
5232 	if (!vn_seqc_consistent(dvp, dvp_seqc)) {
5233 		vrele(dvp);
5234 		return (cache_fpl_aborted(fpl));
5235 	}
5236 
5237 	error = vn_lock(dvp, LK_SHARED);
5238 	if (__predict_false(error != 0)) {
5239 		vrele(dvp);
5240 		return (cache_fpl_aborted(fpl));
5241 	}
5242 
5243 	tvp = NULL;
5244 	/*
5245 	 * TODO: provide variants which don't require locking either vnode.
5246 	 */
5247 	cnp->cn_flags |= ISLASTCN | MAKEENTRY;
5248 	cnp->cn_lkflags = LK_SHARED;
5249 	if ((cnp->cn_flags & LOCKSHARED) == 0) {
5250 		cnp->cn_lkflags = LK_EXCLUSIVE;
5251 	}
5252 	error = VOP_LOOKUP(dvp, &tvp, cnp);
5253 	switch (error) {
5254 	case EJUSTRETURN:
5255 	case 0:
5256 		break;
5257 	case ENOTDIR:
5258 	case ENOENT:
5259 		vput(dvp);
5260 		return (cache_fpl_handled_error(fpl, error));
5261 	default:
5262 		vput(dvp);
5263 		return (cache_fpl_aborted(fpl));
5264 	}
5265 
5266 	fpl->tvp = tvp;
5267 
5268 	if (tvp == NULL) {
5269 		MPASS(error == EJUSTRETURN);
5270 		if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5271 			vput(dvp);
5272 		} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5273 			VOP_UNLOCK(dvp);
5274 		}
5275 		return (cache_fpl_handled(fpl));
5276 	}
5277 
5278 	if (tvp->v_type == VLNK) {
5279 		if ((cnp->cn_flags & FOLLOW) != 0) {
5280 			vput(dvp);
5281 			vput(tvp);
5282 			return (cache_fpl_aborted(fpl));
5283 		}
5284 	}
5285 
5286 	if (__predict_false(cache_fplookup_is_mp(fpl))) {
5287 		vput(dvp);
5288 		vput(tvp);
5289 		return (cache_fpl_aborted(fpl));
5290 	}
5291 
5292 	if ((cnp->cn_flags & LOCKLEAF) == 0) {
5293 		VOP_UNLOCK(tvp);
5294 	}
5295 
5296 	if ((cnp->cn_flags & (WANTPARENT | LOCKPARENT)) == 0) {
5297 		vput(dvp);
5298 	} else if ((cnp->cn_flags & LOCKPARENT) == 0) {
5299 		VOP_UNLOCK(dvp);
5300 	}
5301 	return (cache_fpl_handled(fpl));
5302 }
5303 
5304 static int __noinline
cache_fplookup_dot(struct cache_fpl * fpl)5305 cache_fplookup_dot(struct cache_fpl *fpl)
5306 {
5307 	int error;
5308 
5309 	MPASS(!seqc_in_modify(fpl->dvp_seqc));
5310 
5311 	if (__predict_false(fpl->dvp->v_type != VDIR)) {
5312 		cache_fpl_smr_exit(fpl);
5313 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5314 	}
5315 
5316 	/*
5317 	 * Just re-assign the value. seqc will be checked later for the first
5318 	 * non-dot path component in line and/or before deciding to return the
5319 	 * vnode.
5320 	 */
5321 	fpl->tvp = fpl->dvp;
5322 	fpl->tvp_seqc = fpl->dvp_seqc;
5323 
5324 	SDT_PROBE3(vfs, namecache, lookup, hit, fpl->dvp, ".", fpl->dvp);
5325 
5326 	error = 0;
5327 	if (cache_fplookup_is_mp(fpl)) {
5328 		error = cache_fplookup_cross_mount(fpl);
5329 	}
5330 	return (error);
5331 }
5332 
5333 static int __noinline
cache_fplookup_dotdot(struct cache_fpl * fpl)5334 cache_fplookup_dotdot(struct cache_fpl *fpl)
5335 {
5336 	struct nameidata *ndp;
5337 	struct namecache *ncp;
5338 	struct vnode *dvp;
5339 	u_char nc_flag;
5340 
5341 	ndp = fpl->ndp;
5342 	dvp = fpl->dvp;
5343 
5344 	MPASS(cache_fpl_isdotdot(fpl->cnp));
5345 
5346 	/*
5347 	 * XXX this is racy the same way regular lookup is
5348 	 */
5349 	if (vfs_lookup_isroot(ndp, dvp)) {
5350 		fpl->tvp = dvp;
5351 		fpl->tvp_seqc = vn_seqc_read_any(dvp);
5352 		if (seqc_in_modify(fpl->tvp_seqc)) {
5353 			return (cache_fpl_aborted(fpl));
5354 		}
5355 		return (0);
5356 	}
5357 
5358 	if ((dvp->v_vflag & VV_ROOT) != 0) {
5359 		/*
5360 		 * TODO
5361 		 * The opposite of climb mount is needed here.
5362 		 */
5363 		return (cache_fpl_partial(fpl));
5364 	}
5365 
5366 	if (__predict_false(dvp->v_type != VDIR)) {
5367 		cache_fpl_smr_exit(fpl);
5368 		return (cache_fpl_handled_error(fpl, ENOTDIR));
5369 	}
5370 
5371 	ncp = atomic_load_consume_ptr(&dvp->v_cache_dd);
5372 	if (ncp == NULL) {
5373 		return (cache_fpl_aborted(fpl));
5374 	}
5375 
5376 	nc_flag = atomic_load_char(&ncp->nc_flag);
5377 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
5378 		if ((nc_flag & NCF_NEGATIVE) != 0)
5379 			return (cache_fpl_aborted(fpl));
5380 		fpl->tvp = ncp->nc_vp;
5381 	} else {
5382 		fpl->tvp = ncp->nc_dvp;
5383 	}
5384 
5385 	fpl->tvp_seqc = vn_seqc_read_any(fpl->tvp);
5386 	if (seqc_in_modify(fpl->tvp_seqc)) {
5387 		return (cache_fpl_partial(fpl));
5388 	}
5389 
5390 	/*
5391 	 * Acquire fence provided by vn_seqc_read_any above.
5392 	 */
5393 	if (__predict_false(atomic_load_ptr(&dvp->v_cache_dd) != ncp)) {
5394 		return (cache_fpl_aborted(fpl));
5395 	}
5396 
5397 	if (!cache_ncp_canuse(ncp)) {
5398 		return (cache_fpl_aborted(fpl));
5399 	}
5400 
5401 	return (0);
5402 }
5403 
5404 static int __noinline
cache_fplookup_neg(struct cache_fpl * fpl,struct namecache * ncp,uint32_t hash)5405 cache_fplookup_neg(struct cache_fpl *fpl, struct namecache *ncp, uint32_t hash)
5406 {
5407 	u_char nc_flag __diagused;
5408 	bool neg_promote;
5409 
5410 #ifdef INVARIANTS
5411 	nc_flag = atomic_load_char(&ncp->nc_flag);
5412 	MPASS((nc_flag & NCF_NEGATIVE) != 0);
5413 #endif
5414 	/*
5415 	 * If they want to create an entry we need to replace this one.
5416 	 */
5417 	if (__predict_false(fpl->cnp->cn_nameiop != LOOKUP)) {
5418 		fpl->tvp = NULL;
5419 		return (cache_fplookup_modifying(fpl));
5420 	}
5421 	neg_promote = cache_neg_hit_prep(ncp);
5422 	if (!cache_fpl_neg_ncp_canuse(ncp)) {
5423 		cache_neg_hit_abort(ncp);
5424 		return (cache_fpl_partial(fpl));
5425 	}
5426 	if (neg_promote) {
5427 		return (cache_fplookup_negative_promote(fpl, ncp, hash));
5428 	}
5429 	cache_neg_hit_finish(ncp);
5430 	cache_fpl_smr_exit(fpl);
5431 	return (cache_fpl_handled_error(fpl, ENOENT));
5432 }
5433 
5434 /*
5435  * Resolve a symlink. Called by filesystem-specific routines.
5436  *
5437  * Code flow is:
5438  * ... -> cache_fplookup_symlink -> VOP_FPLOOKUP_SYMLINK -> cache_symlink_resolve
5439  */
5440 int
cache_symlink_resolve(struct cache_fpl * fpl,const char * string,size_t len)5441 cache_symlink_resolve(struct cache_fpl *fpl, const char *string, size_t len)
5442 {
5443 	struct nameidata *ndp;
5444 	struct componentname *cnp;
5445 	size_t adjust;
5446 
5447 	ndp = fpl->ndp;
5448 	cnp = fpl->cnp;
5449 
5450 	if (__predict_false(len == 0)) {
5451 		return (ENOENT);
5452 	}
5453 
5454 	if (__predict_false(len > MAXPATHLEN - 2)) {
5455 		if (cache_fpl_istrailingslash(fpl)) {
5456 			return (EAGAIN);
5457 		}
5458 	}
5459 
5460 	ndp->ni_pathlen = fpl->nulchar - cnp->cn_nameptr - cnp->cn_namelen + 1;
5461 #ifdef INVARIANTS
5462 	if (ndp->ni_pathlen != fpl->debug.ni_pathlen) {
5463 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
5464 		    __func__, ndp->ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
5465 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
5466 	}
5467 #endif
5468 
5469 	if (__predict_false(len + ndp->ni_pathlen > MAXPATHLEN)) {
5470 		return (ENAMETOOLONG);
5471 	}
5472 
5473 	if (__predict_false(ndp->ni_loopcnt++ >= MAXSYMLINKS)) {
5474 		return (ELOOP);
5475 	}
5476 
5477 	adjust = len;
5478 	if (ndp->ni_pathlen > 1) {
5479 		bcopy(ndp->ni_next, cnp->cn_pnbuf + len, ndp->ni_pathlen);
5480 	} else {
5481 		if (cache_fpl_istrailingslash(fpl)) {
5482 			adjust = len + 1;
5483 			cnp->cn_pnbuf[len] = '/';
5484 			cnp->cn_pnbuf[len + 1] = '\0';
5485 		} else {
5486 			cnp->cn_pnbuf[len] = '\0';
5487 		}
5488 	}
5489 	bcopy(string, cnp->cn_pnbuf, len);
5490 
5491 	ndp->ni_pathlen += adjust;
5492 	cache_fpl_pathlen_add(fpl, adjust);
5493 	cnp->cn_nameptr = cnp->cn_pnbuf;
5494 	fpl->nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
5495 	fpl->tvp = NULL;
5496 	return (0);
5497 }
5498 
5499 static int __noinline
cache_fplookup_symlink(struct cache_fpl * fpl)5500 cache_fplookup_symlink(struct cache_fpl *fpl)
5501 {
5502 	struct mount *mp;
5503 	struct nameidata *ndp;
5504 	struct componentname *cnp;
5505 	struct vnode *dvp, *tvp;
5506 	struct pwd *pwd;
5507 	int error;
5508 
5509 	ndp = fpl->ndp;
5510 	cnp = fpl->cnp;
5511 	dvp = fpl->dvp;
5512 	tvp = fpl->tvp;
5513 	pwd = *(fpl->pwd);
5514 
5515 	if (cache_fpl_islastcn(ndp)) {
5516 		if ((cnp->cn_flags & FOLLOW) == 0) {
5517 			return (cache_fplookup_final(fpl));
5518 		}
5519 	}
5520 
5521 	mp = atomic_load_ptr(&dvp->v_mount);
5522 	if (__predict_false(mp == NULL)) {
5523 		return (cache_fpl_aborted(fpl));
5524 	}
5525 
5526 	/*
5527 	 * Note this check races against setting the flag just like regular
5528 	 * lookup.
5529 	 */
5530 	if (__predict_false((mp->mnt_flag & MNT_NOSYMFOLLOW) != 0)) {
5531 		cache_fpl_smr_exit(fpl);
5532 		return (cache_fpl_handled_error(fpl, EACCES));
5533 	}
5534 
5535 	error = VOP_FPLOOKUP_SYMLINK(tvp, fpl);
5536 	if (__predict_false(error != 0)) {
5537 		switch (error) {
5538 		case EAGAIN:
5539 			return (cache_fpl_partial(fpl));
5540 		case ENOENT:
5541 		case ENAMETOOLONG:
5542 		case ELOOP:
5543 			cache_fpl_smr_exit(fpl);
5544 			return (cache_fpl_handled_error(fpl, error));
5545 		default:
5546 			return (cache_fpl_aborted(fpl));
5547 		}
5548 	}
5549 
5550 	if (*(cnp->cn_nameptr) == '/') {
5551 		fpl->dvp = cache_fpl_handle_root(fpl);
5552 		fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
5553 		if (seqc_in_modify(fpl->dvp_seqc)) {
5554 			return (cache_fpl_aborted(fpl));
5555 		}
5556 		/*
5557 		 * The main loop assumes that ->dvp points to a vnode belonging
5558 		 * to a filesystem which can do lockless lookup, but the absolute
5559 		 * symlink can be wandering off to one which does not.
5560 		 */
5561 		mp = atomic_load_ptr(&fpl->dvp->v_mount);
5562 		if (__predict_false(mp == NULL)) {
5563 			return (cache_fpl_aborted(fpl));
5564 		}
5565 		if (!cache_fplookup_mp_supported(mp)) {
5566 			cache_fpl_checkpoint(fpl);
5567 			return (cache_fpl_partial(fpl));
5568 		}
5569 		if (__predict_false(pwd->pwd_adir != pwd->pwd_rdir)) {
5570 			return (cache_fpl_aborted(fpl));
5571 		}
5572 	}
5573 	return (0);
5574 }
5575 
5576 static int
cache_fplookup_next(struct cache_fpl * fpl)5577 cache_fplookup_next(struct cache_fpl *fpl)
5578 {
5579 	struct componentname *cnp;
5580 	struct namecache *ncp;
5581 	struct vnode *dvp, *tvp;
5582 	u_char nc_flag;
5583 	uint32_t hash;
5584 	int error;
5585 
5586 	cnp = fpl->cnp;
5587 	dvp = fpl->dvp;
5588 	hash = fpl->hash;
5589 
5590 	if (__predict_false(cnp->cn_nameptr[0] == '.')) {
5591 		if (cnp->cn_namelen == 1) {
5592 			return (cache_fplookup_dot(fpl));
5593 		}
5594 		if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.') {
5595 			return (cache_fplookup_dotdot(fpl));
5596 		}
5597 	}
5598 
5599 	MPASS(!cache_fpl_isdotdot(cnp));
5600 
5601 	ncp = cache_ncp_find(dvp, cnp, hash);
5602 	if (__predict_false(ncp == NULL)) {
5603 		return (cache_fplookup_noentry(fpl));
5604 	}
5605 
5606 	tvp = atomic_load_ptr(&ncp->nc_vp);
5607 	nc_flag = atomic_load_char(&ncp->nc_flag);
5608 	if ((nc_flag & NCF_NEGATIVE) != 0) {
5609 		return (cache_fplookup_neg(fpl, ncp, hash));
5610 	}
5611 
5612 	if (!cache_ncp_canuse(ncp)) {
5613 		return (cache_fpl_partial(fpl));
5614 	}
5615 
5616 	fpl->tvp = tvp;
5617 	fpl->tvp_seqc = vn_seqc_read_any(tvp);
5618 	if (seqc_in_modify(fpl->tvp_seqc)) {
5619 		return (cache_fpl_partial(fpl));
5620 	}
5621 
5622 	counter_u64_add(numposhits, 1);
5623 	SDT_PROBE3(vfs, namecache, lookup, hit, dvp, ncp->nc_name, tvp);
5624 
5625 	error = 0;
5626 	if (cache_fplookup_is_mp(fpl)) {
5627 		error = cache_fplookup_cross_mount(fpl);
5628 	}
5629 	return (error);
5630 }
5631 
5632 static bool
cache_fplookup_mp_supported(struct mount * mp)5633 cache_fplookup_mp_supported(struct mount *mp)
5634 {
5635 
5636 	MPASS(mp != NULL);
5637 	if ((mp->mnt_kern_flag & MNTK_FPLOOKUP) == 0)
5638 		return (false);
5639 	return (true);
5640 }
5641 
5642 /*
5643  * Walk up the mount stack (if any).
5644  *
5645  * Correctness is provided in the following ways:
5646  * - all vnodes are protected from freeing with SMR
5647  * - struct mount objects are type stable making them always safe to access
5648  * - stability of the particular mount is provided by busying it
5649  * - relationship between the vnode which is mounted on and the mount is
5650  *   verified with the vnode sequence counter after busying
5651  * - association between root vnode of the mount and the mount is protected
5652  *   by busy
5653  *
5654  * From that point on we can read the sequence counter of the root vnode
5655  * and get the next mount on the stack (if any) using the same protection.
5656  *
5657  * By the end of successful walk we are guaranteed the reached state was
5658  * indeed present at least at some point which matches the regular lookup.
5659  */
5660 static int __noinline
cache_fplookup_climb_mount(struct cache_fpl * fpl)5661 cache_fplookup_climb_mount(struct cache_fpl *fpl)
5662 {
5663 	struct mount *mp, *prev_mp;
5664 	struct mount_pcpu *mpcpu, *prev_mpcpu;
5665 	struct vnode *vp;
5666 	seqc_t vp_seqc;
5667 
5668 	vp = fpl->tvp;
5669 	vp_seqc = fpl->tvp_seqc;
5670 
5671 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5672 	mp = atomic_load_ptr(&vp->v_mountedhere);
5673 	if (__predict_false(mp == NULL)) {
5674 		return (0);
5675 	}
5676 
5677 	prev_mp = NULL;
5678 	for (;;) {
5679 		if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5680 			if (prev_mp != NULL)
5681 				vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5682 			return (cache_fpl_partial(fpl));
5683 		}
5684 		if (prev_mp != NULL)
5685 			vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5686 		if (!vn_seqc_consistent(vp, vp_seqc)) {
5687 			vfs_op_thread_exit_crit(mp, mpcpu);
5688 			return (cache_fpl_partial(fpl));
5689 		}
5690 		if (!cache_fplookup_mp_supported(mp)) {
5691 			vfs_op_thread_exit_crit(mp, mpcpu);
5692 			return (cache_fpl_partial(fpl));
5693 		}
5694 		vp = atomic_load_ptr(&mp->mnt_rootvnode);
5695 		if (vp == NULL) {
5696 			vfs_op_thread_exit_crit(mp, mpcpu);
5697 			return (cache_fpl_partial(fpl));
5698 		}
5699 		vp_seqc = vn_seqc_read_any(vp);
5700 		if (seqc_in_modify(vp_seqc)) {
5701 			vfs_op_thread_exit_crit(mp, mpcpu);
5702 			return (cache_fpl_partial(fpl));
5703 		}
5704 		prev_mp = mp;
5705 		prev_mpcpu = mpcpu;
5706 		mp = atomic_load_ptr(&vp->v_mountedhere);
5707 		if (mp == NULL)
5708 			break;
5709 	}
5710 
5711 	vfs_op_thread_exit_crit(prev_mp, prev_mpcpu);
5712 	fpl->tvp = vp;
5713 	fpl->tvp_seqc = vp_seqc;
5714 	return (0);
5715 }
5716 
5717 static int __noinline
cache_fplookup_cross_mount(struct cache_fpl * fpl)5718 cache_fplookup_cross_mount(struct cache_fpl *fpl)
5719 {
5720 	struct mount *mp;
5721 	struct mount_pcpu *mpcpu;
5722 	struct vnode *vp;
5723 	seqc_t vp_seqc;
5724 
5725 	vp = fpl->tvp;
5726 	vp_seqc = fpl->tvp_seqc;
5727 
5728 	VNPASS(vp->v_type == VDIR || vp->v_type == VREG || vp->v_type == VBAD, vp);
5729 	mp = atomic_load_ptr(&vp->v_mountedhere);
5730 	if (__predict_false(mp == NULL)) {
5731 		return (0);
5732 	}
5733 
5734 	if (!vfs_op_thread_enter_crit(mp, mpcpu)) {
5735 		return (cache_fpl_partial(fpl));
5736 	}
5737 	if (!vn_seqc_consistent(vp, vp_seqc)) {
5738 		vfs_op_thread_exit_crit(mp, mpcpu);
5739 		return (cache_fpl_partial(fpl));
5740 	}
5741 	if (!cache_fplookup_mp_supported(mp)) {
5742 		vfs_op_thread_exit_crit(mp, mpcpu);
5743 		return (cache_fpl_partial(fpl));
5744 	}
5745 	vp = atomic_load_ptr(&mp->mnt_rootvnode);
5746 	if (__predict_false(vp == NULL)) {
5747 		vfs_op_thread_exit_crit(mp, mpcpu);
5748 		return (cache_fpl_partial(fpl));
5749 	}
5750 	vp_seqc = vn_seqc_read_any(vp);
5751 	vfs_op_thread_exit_crit(mp, mpcpu);
5752 	if (seqc_in_modify(vp_seqc)) {
5753 		return (cache_fpl_partial(fpl));
5754 	}
5755 	mp = atomic_load_ptr(&vp->v_mountedhere);
5756 	if (__predict_false(mp != NULL)) {
5757 		/*
5758 		 * There are possibly more mount points on top.
5759 		 * Normally this does not happen so for simplicity just start
5760 		 * over.
5761 		 */
5762 		return (cache_fplookup_climb_mount(fpl));
5763 	}
5764 
5765 	fpl->tvp = vp;
5766 	fpl->tvp_seqc = vp_seqc;
5767 	return (0);
5768 }
5769 
5770 /*
5771  * Check if a vnode is mounted on.
5772  */
5773 static bool
cache_fplookup_is_mp(struct cache_fpl * fpl)5774 cache_fplookup_is_mp(struct cache_fpl *fpl)
5775 {
5776 	struct vnode *vp;
5777 
5778 	vp = fpl->tvp;
5779 	return ((vn_irflag_read(vp) & VIRF_MOUNTPOINT) != 0);
5780 }
5781 
5782 /*
5783  * Parse the path.
5784  *
5785  * The code was originally copy-pasted from regular lookup and despite
5786  * clean ups leaves performance on the table. Any modifications here
5787  * must take into account that in case off fallback the resulting
5788  * nameidata state has to be compatible with the original.
5789  */
5790 
5791 /*
5792  * Debug ni_pathlen tracking.
5793  */
5794 #ifdef INVARIANTS
5795 static void
cache_fpl_pathlen_add(struct cache_fpl * fpl,size_t n)5796 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5797 {
5798 
5799 	fpl->debug.ni_pathlen += n;
5800 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5801 	    ("%s: pathlen overflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5802 }
5803 
5804 static void
cache_fpl_pathlen_sub(struct cache_fpl * fpl,size_t n)5805 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5806 {
5807 
5808 	fpl->debug.ni_pathlen -= n;
5809 	KASSERT(fpl->debug.ni_pathlen <= PATH_MAX,
5810 	    ("%s: pathlen underflow to %zd\n", __func__, fpl->debug.ni_pathlen));
5811 }
5812 
5813 static void
cache_fpl_pathlen_inc(struct cache_fpl * fpl)5814 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5815 {
5816 
5817 	cache_fpl_pathlen_add(fpl, 1);
5818 }
5819 
5820 static void
cache_fpl_pathlen_dec(struct cache_fpl * fpl)5821 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5822 {
5823 
5824 	cache_fpl_pathlen_sub(fpl, 1);
5825 }
5826 #else
5827 static void
cache_fpl_pathlen_add(struct cache_fpl * fpl,size_t n)5828 cache_fpl_pathlen_add(struct cache_fpl *fpl, size_t n)
5829 {
5830 }
5831 
5832 static void
cache_fpl_pathlen_sub(struct cache_fpl * fpl,size_t n)5833 cache_fpl_pathlen_sub(struct cache_fpl *fpl, size_t n)
5834 {
5835 }
5836 
5837 static void
cache_fpl_pathlen_inc(struct cache_fpl * fpl)5838 cache_fpl_pathlen_inc(struct cache_fpl *fpl)
5839 {
5840 }
5841 
5842 static void
cache_fpl_pathlen_dec(struct cache_fpl * fpl)5843 cache_fpl_pathlen_dec(struct cache_fpl *fpl)
5844 {
5845 }
5846 #endif
5847 
5848 static void
cache_fplookup_parse(struct cache_fpl * fpl)5849 cache_fplookup_parse(struct cache_fpl *fpl)
5850 {
5851 	struct nameidata *ndp;
5852 	struct componentname *cnp;
5853 	struct vnode *dvp;
5854 	char *cp;
5855 	uint32_t hash;
5856 
5857 	ndp = fpl->ndp;
5858 	cnp = fpl->cnp;
5859 	dvp = fpl->dvp;
5860 
5861 	/*
5862 	 * Find the end of this path component, it is either / or nul.
5863 	 *
5864 	 * Store / as a temporary sentinel so that we only have one character
5865 	 * to test for. Pathnames tend to be short so this should not be
5866 	 * resulting in cache misses.
5867 	 *
5868 	 * TODO: fix this to be word-sized.
5869 	 */
5870 	MPASS(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] >= cnp->cn_pnbuf);
5871 	KASSERT(&cnp->cn_nameptr[fpl->debug.ni_pathlen - 1] == fpl->nulchar,
5872 	    ("%s: mismatch between pathlen (%zu) and nulchar (%p != %p), string [%s]\n",
5873 	    __func__, fpl->debug.ni_pathlen, &cnp->cn_nameptr[fpl->debug.ni_pathlen - 1],
5874 	    fpl->nulchar, cnp->cn_pnbuf));
5875 	KASSERT(*fpl->nulchar == '\0',
5876 	    ("%s: expected nul at %p; string [%s]\n", __func__, fpl->nulchar,
5877 	    cnp->cn_pnbuf));
5878 	hash = cache_get_hash_iter_start(dvp);
5879 	*fpl->nulchar = '/';
5880 	for (cp = cnp->cn_nameptr; *cp != '/'; cp++) {
5881 		KASSERT(*cp != '\0',
5882 		    ("%s: encountered unexpected nul; string [%s]\n", __func__,
5883 		    cnp->cn_nameptr));
5884 		hash = cache_get_hash_iter(*cp, hash);
5885 		continue;
5886 	}
5887 	*fpl->nulchar = '\0';
5888 	fpl->hash = cache_get_hash_iter_finish(hash);
5889 
5890 	cnp->cn_namelen = cp - cnp->cn_nameptr;
5891 	cache_fpl_pathlen_sub(fpl, cnp->cn_namelen);
5892 
5893 #ifdef INVARIANTS
5894 	/*
5895 	 * cache_get_hash only accepts lengths up to NAME_MAX. This is fine since
5896 	 * we are going to fail this lookup with ENAMETOOLONG (see below).
5897 	 */
5898 	if (cnp->cn_namelen <= NAME_MAX) {
5899 		if (fpl->hash != cache_get_hash(cnp->cn_nameptr, cnp->cn_namelen, dvp)) {
5900 			panic("%s: mismatched hash for [%s] len %ld", __func__,
5901 			    cnp->cn_nameptr, cnp->cn_namelen);
5902 		}
5903 	}
5904 #endif
5905 
5906 	/*
5907 	 * Hack: we have to check if the found path component's length exceeds
5908 	 * NAME_MAX. However, the condition is very rarely true and check can
5909 	 * be elided in the common case -- if an entry was found in the cache,
5910 	 * then it could not have been too long to begin with.
5911 	 */
5912 	ndp->ni_next = cp;
5913 }
5914 
5915 static void
cache_fplookup_parse_advance(struct cache_fpl * fpl)5916 cache_fplookup_parse_advance(struct cache_fpl *fpl)
5917 {
5918 	struct nameidata *ndp;
5919 	struct componentname *cnp;
5920 
5921 	ndp = fpl->ndp;
5922 	cnp = fpl->cnp;
5923 
5924 	cnp->cn_nameptr = ndp->ni_next;
5925 	KASSERT(*(cnp->cn_nameptr) == '/',
5926 	    ("%s: should have seen slash at %p ; buf %p [%s]\n", __func__,
5927 	    cnp->cn_nameptr, cnp->cn_pnbuf, cnp->cn_pnbuf));
5928 	cnp->cn_nameptr++;
5929 	cache_fpl_pathlen_dec(fpl);
5930 }
5931 
5932 /*
5933  * Skip spurious slashes in a pathname (e.g., "foo///bar") and retry.
5934  *
5935  * Lockless lookup tries to elide checking for spurious slashes and should they
5936  * be present is guaranteed to fail to find an entry. In this case the caller
5937  * must check if the name starts with a slash and call this routine.  It is
5938  * going to fast forward across the spurious slashes and set the state up for
5939  * retry.
5940  */
5941 static int __noinline
cache_fplookup_skip_slashes(struct cache_fpl * fpl)5942 cache_fplookup_skip_slashes(struct cache_fpl *fpl)
5943 {
5944 	struct nameidata *ndp;
5945 	struct componentname *cnp;
5946 
5947 	ndp = fpl->ndp;
5948 	cnp = fpl->cnp;
5949 
5950 	MPASS(*(cnp->cn_nameptr) == '/');
5951 	do {
5952 		cnp->cn_nameptr++;
5953 		cache_fpl_pathlen_dec(fpl);
5954 	} while (*(cnp->cn_nameptr) == '/');
5955 
5956 	/*
5957 	 * Go back to one slash so that cache_fplookup_parse_advance has
5958 	 * something to skip.
5959 	 */
5960 	cnp->cn_nameptr--;
5961 	cache_fpl_pathlen_inc(fpl);
5962 
5963 	/*
5964 	 * cache_fplookup_parse_advance starts from ndp->ni_next
5965 	 */
5966 	ndp->ni_next = cnp->cn_nameptr;
5967 
5968 	/*
5969 	 * See cache_fplookup_dot.
5970 	 */
5971 	fpl->tvp = fpl->dvp;
5972 	fpl->tvp_seqc = fpl->dvp_seqc;
5973 
5974 	return (0);
5975 }
5976 
5977 /*
5978  * Handle trailing slashes (e.g., "foo/").
5979  *
5980  * If a trailing slash is found the terminal vnode must be a directory.
5981  * Regular lookup shortens the path by nulifying the first trailing slash and
5982  * sets the TRAILINGSLASH flag to denote this took place. There are several
5983  * checks on it performed later.
5984  *
5985  * Similarly to spurious slashes, lockless lookup handles this in a speculative
5986  * manner relying on an invariant that a non-directory vnode will get a miss.
5987  * In this case cn_nameptr[0] == '\0' and cn_namelen == 0.
5988  *
5989  * Thus for a path like "foo/bar/" the code unwinds the state back to "bar/"
5990  * and denotes this is the last path component, which avoids looping back.
5991  *
5992  * Only plain lookups are supported for now to restrict corner cases to handle.
5993  */
5994 static int __noinline
cache_fplookup_trailingslash(struct cache_fpl * fpl)5995 cache_fplookup_trailingslash(struct cache_fpl *fpl)
5996 {
5997 #ifdef INVARIANTS
5998 	size_t ni_pathlen;
5999 #endif
6000 	struct nameidata *ndp;
6001 	struct componentname *cnp;
6002 	struct namecache *ncp;
6003 	struct vnode *tvp;
6004 	char *cn_nameptr_orig, *cn_nameptr_slash;
6005 	seqc_t tvp_seqc;
6006 	u_char nc_flag;
6007 
6008 	ndp = fpl->ndp;
6009 	cnp = fpl->cnp;
6010 	tvp = fpl->tvp;
6011 	tvp_seqc = fpl->tvp_seqc;
6012 
6013 	MPASS(fpl->dvp == fpl->tvp);
6014 	KASSERT(cache_fpl_istrailingslash(fpl),
6015 	    ("%s: expected trailing slash at %p; string [%s]\n", __func__, fpl->nulchar - 1,
6016 	    cnp->cn_pnbuf));
6017 	KASSERT(cnp->cn_nameptr[0] == '\0',
6018 	    ("%s: expected nul char at %p; string [%s]\n", __func__, &cnp->cn_nameptr[0],
6019 	    cnp->cn_pnbuf));
6020 	KASSERT(cnp->cn_namelen == 0,
6021 	    ("%s: namelen 0 but got %ld; string [%s]\n", __func__, cnp->cn_namelen,
6022 	    cnp->cn_pnbuf));
6023 	MPASS(cnp->cn_nameptr > cnp->cn_pnbuf);
6024 
6025 	if (cnp->cn_nameiop != LOOKUP) {
6026 		return (cache_fpl_aborted(fpl));
6027 	}
6028 
6029 	if (__predict_false(tvp->v_type != VDIR)) {
6030 		if (!vn_seqc_consistent(tvp, tvp_seqc)) {
6031 			return (cache_fpl_aborted(fpl));
6032 		}
6033 		cache_fpl_smr_exit(fpl);
6034 		return (cache_fpl_handled_error(fpl, ENOTDIR));
6035 	}
6036 
6037 	/*
6038 	 * Denote the last component.
6039 	 */
6040 	ndp->ni_next = &cnp->cn_nameptr[0];
6041 	MPASS(cache_fpl_islastcn(ndp));
6042 
6043 	/*
6044 	 * Unwind trailing slashes.
6045 	 */
6046 	cn_nameptr_orig = cnp->cn_nameptr;
6047 	while (cnp->cn_nameptr >= cnp->cn_pnbuf) {
6048 		cnp->cn_nameptr--;
6049 		if (cnp->cn_nameptr[0] != '/') {
6050 			break;
6051 		}
6052 	}
6053 
6054 	/*
6055 	 * Unwind to the beginning of the path component.
6056 	 *
6057 	 * Note the path may or may not have started with a slash.
6058 	 */
6059 	cn_nameptr_slash = cnp->cn_nameptr;
6060 	while (cnp->cn_nameptr > cnp->cn_pnbuf) {
6061 		cnp->cn_nameptr--;
6062 		if (cnp->cn_nameptr[0] == '/') {
6063 			break;
6064 		}
6065 	}
6066 	if (cnp->cn_nameptr[0] == '/') {
6067 		cnp->cn_nameptr++;
6068 	}
6069 
6070 	cnp->cn_namelen = cn_nameptr_slash - cnp->cn_nameptr + 1;
6071 	cache_fpl_pathlen_add(fpl, cn_nameptr_orig - cnp->cn_nameptr);
6072 	cache_fpl_checkpoint(fpl);
6073 
6074 #ifdef INVARIANTS
6075 	ni_pathlen = fpl->nulchar - cnp->cn_nameptr + 1;
6076 	if (ni_pathlen != fpl->debug.ni_pathlen) {
6077 		panic("%s: mismatch (%zu != %zu) nulchar %p nameptr %p [%s] ; full string [%s]\n",
6078 		    __func__, ni_pathlen, fpl->debug.ni_pathlen, fpl->nulchar,
6079 		    cnp->cn_nameptr, cnp->cn_nameptr, cnp->cn_pnbuf);
6080 	}
6081 #endif
6082 
6083 	/*
6084 	 * If this was a "./" lookup the parent directory is already correct.
6085 	 */
6086 	if (cnp->cn_nameptr[0] == '.' && cnp->cn_namelen == 1) {
6087 		return (0);
6088 	}
6089 
6090 	/*
6091 	 * Otherwise we need to look it up.
6092 	 */
6093 	tvp = fpl->tvp;
6094 	ncp = atomic_load_consume_ptr(&tvp->v_cache_dd);
6095 	if (__predict_false(ncp == NULL)) {
6096 		return (cache_fpl_aborted(fpl));
6097 	}
6098 	nc_flag = atomic_load_char(&ncp->nc_flag);
6099 	if ((nc_flag & NCF_ISDOTDOT) != 0) {
6100 		return (cache_fpl_aborted(fpl));
6101 	}
6102 	fpl->dvp = ncp->nc_dvp;
6103 	fpl->dvp_seqc = vn_seqc_read_any(fpl->dvp);
6104 	if (seqc_in_modify(fpl->dvp_seqc)) {
6105 		return (cache_fpl_aborted(fpl));
6106 	}
6107 	return (0);
6108 }
6109 
6110 /*
6111  * See the API contract for VOP_FPLOOKUP_VEXEC.
6112  */
6113 static int __noinline
cache_fplookup_failed_vexec(struct cache_fpl * fpl,int error)6114 cache_fplookup_failed_vexec(struct cache_fpl *fpl, int error)
6115 {
6116 	struct componentname *cnp;
6117 	struct vnode *dvp;
6118 	seqc_t dvp_seqc;
6119 
6120 	cnp = fpl->cnp;
6121 	dvp = fpl->dvp;
6122 	dvp_seqc = fpl->dvp_seqc;
6123 
6124 	/*
6125 	 * Hack: delayed empty path checking.
6126 	 */
6127 	if (cnp->cn_pnbuf[0] == '\0') {
6128 		return (cache_fplookup_emptypath(fpl));
6129 	}
6130 
6131 	/*
6132 	 * TODO: Due to ignoring trailing slashes lookup will perform a
6133 	 * permission check on the last dir when it should not be doing it.  It
6134 	 * may fail, but said failure should be ignored. It is possible to fix
6135 	 * it up fully without resorting to regular lookup, but for now just
6136 	 * abort.
6137 	 */
6138 	if (cache_fpl_istrailingslash(fpl)) {
6139 		return (cache_fpl_aborted(fpl));
6140 	}
6141 
6142 	/*
6143 	 * Hack: delayed degenerate path checking.
6144 	 */
6145 	if (cnp->cn_nameptr[0] == '\0' && fpl->tvp == NULL) {
6146 		return (cache_fplookup_degenerate(fpl));
6147 	}
6148 
6149 	/*
6150 	 * Hack: delayed name len checking.
6151 	 */
6152 	if (__predict_false(cnp->cn_namelen > NAME_MAX)) {
6153 		cache_fpl_smr_exit(fpl);
6154 		return (cache_fpl_handled_error(fpl, ENAMETOOLONG));
6155 	}
6156 
6157 	/*
6158 	 * Hack: they may be looking up foo/bar, where foo is not a directory.
6159 	 * In such a case we need to return ENOTDIR, but we may happen to get
6160 	 * here with a different error.
6161 	 */
6162 	if (dvp->v_type != VDIR) {
6163 		error = ENOTDIR;
6164 	}
6165 
6166 	/*
6167 	 * Hack: handle O_SEARCH.
6168 	 *
6169 	 * Open Group Base Specifications Issue 7, 2018 edition states:
6170 	 * <quote>
6171 	 * If the access mode of the open file description associated with the
6172 	 * file descriptor is not O_SEARCH, the function shall check whether
6173 	 * directory searches are permitted using the current permissions of
6174 	 * the directory underlying the file descriptor. If the access mode is
6175 	 * O_SEARCH, the function shall not perform the check.
6176 	 * </quote>
6177 	 *
6178 	 * Regular lookup tests for the NOEXECCHECK flag for every path
6179 	 * component to decide whether to do the permission check. However,
6180 	 * since most lookups never have the flag (and when they do it is only
6181 	 * present for the first path component), lockless lookup only acts on
6182 	 * it if there is a permission problem. Here the flag is represented
6183 	 * with a boolean so that we don't have to clear it on the way out.
6184 	 *
6185 	 * For simplicity this always aborts.
6186 	 * TODO: check if this is the first lookup and ignore the permission
6187 	 * problem. Note the flag has to survive fallback (if it happens to be
6188 	 * performed).
6189 	 */
6190 	if (fpl->fsearch) {
6191 		return (cache_fpl_aborted(fpl));
6192 	}
6193 
6194 	switch (error) {
6195 	case EAGAIN:
6196 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6197 			error = cache_fpl_aborted(fpl);
6198 		} else {
6199 			cache_fpl_partial(fpl);
6200 		}
6201 		break;
6202 	default:
6203 		if (!vn_seqc_consistent(dvp, dvp_seqc)) {
6204 			error = cache_fpl_aborted(fpl);
6205 		} else {
6206 			cache_fpl_smr_exit(fpl);
6207 			cache_fpl_handled_error(fpl, error);
6208 		}
6209 		break;
6210 	}
6211 	return (error);
6212 }
6213 
6214 static int
cache_fplookup_impl(struct vnode * dvp,struct cache_fpl * fpl)6215 cache_fplookup_impl(struct vnode *dvp, struct cache_fpl *fpl)
6216 {
6217 	struct nameidata *ndp;
6218 	struct componentname *cnp;
6219 	struct mount *mp;
6220 	int error;
6221 
6222 	ndp = fpl->ndp;
6223 	cnp = fpl->cnp;
6224 
6225 	cache_fpl_checkpoint(fpl);
6226 
6227 	/*
6228 	 * The vnode at hand is almost always stable, skip checking for it.
6229 	 * Worst case this postpones the check towards the end of the iteration
6230 	 * of the main loop.
6231 	 */
6232 	fpl->dvp = dvp;
6233 	fpl->dvp_seqc = vn_seqc_read_notmodify(fpl->dvp);
6234 
6235 	mp = atomic_load_ptr(&dvp->v_mount);
6236 	if (__predict_false(mp == NULL || !cache_fplookup_mp_supported(mp))) {
6237 		return (cache_fpl_aborted(fpl));
6238 	}
6239 
6240 	MPASS(fpl->tvp == NULL);
6241 
6242 	for (;;) {
6243 		cache_fplookup_parse(fpl);
6244 
6245 		error = VOP_FPLOOKUP_VEXEC(fpl->dvp, cnp->cn_cred);
6246 		if (__predict_false(error != 0)) {
6247 			error = cache_fplookup_failed_vexec(fpl, error);
6248 			break;
6249 		}
6250 
6251 		error = cache_fplookup_next(fpl);
6252 		if (__predict_false(cache_fpl_terminated(fpl))) {
6253 			break;
6254 		}
6255 
6256 		VNPASS(!seqc_in_modify(fpl->tvp_seqc), fpl->tvp);
6257 
6258 		if (fpl->tvp->v_type == VLNK) {
6259 			error = cache_fplookup_symlink(fpl);
6260 			if (cache_fpl_terminated(fpl)) {
6261 				break;
6262 			}
6263 		} else {
6264 			if (cache_fpl_islastcn(ndp)) {
6265 				error = cache_fplookup_final(fpl);
6266 				break;
6267 			}
6268 
6269 			if (!vn_seqc_consistent(fpl->dvp, fpl->dvp_seqc)) {
6270 				error = cache_fpl_aborted(fpl);
6271 				break;
6272 			}
6273 
6274 			fpl->dvp = fpl->tvp;
6275 			fpl->dvp_seqc = fpl->tvp_seqc;
6276 			cache_fplookup_parse_advance(fpl);
6277 		}
6278 
6279 		cache_fpl_checkpoint(fpl);
6280 	}
6281 
6282 	return (error);
6283 }
6284 
6285 /*
6286  * Fast path lookup protected with SMR and sequence counters.
6287  *
6288  * Note: all VOP_FPLOOKUP_VEXEC routines have a comment referencing this one.
6289  *
6290  * Filesystems can opt in by setting the MNTK_FPLOOKUP flag and meeting criteria
6291  * outlined below.
6292  *
6293  * Traditional vnode lookup conceptually looks like this:
6294  *
6295  * vn_lock(current);
6296  * for (;;) {
6297  *	next = find();
6298  *	vn_lock(next);
6299  *	vn_unlock(current);
6300  *	current = next;
6301  *	if (last)
6302  *	    break;
6303  * }
6304  * return (current);
6305  *
6306  * Each jump to the next vnode is safe memory-wise and atomic with respect to
6307  * any modifications thanks to holding respective locks.
6308  *
6309  * The same guarantee can be provided with a combination of safe memory
6310  * reclamation and sequence counters instead. If all operations which affect
6311  * the relationship between the current vnode and the one we are looking for
6312  * also modify the counter, we can verify whether all the conditions held as
6313  * we made the jump. This includes things like permissions, mount points etc.
6314  * Counter modification is provided by enclosing relevant places in
6315  * vn_seqc_write_begin()/end() calls.
6316  *
6317  * Thus this translates to:
6318  *
6319  * vfs_smr_enter();
6320  * dvp_seqc = seqc_read_any(dvp);
6321  * if (seqc_in_modify(dvp_seqc)) // someone is altering the vnode
6322  *     abort();
6323  * for (;;) {
6324  * 	tvp = find();
6325  * 	tvp_seqc = seqc_read_any(tvp);
6326  * 	if (seqc_in_modify(tvp_seqc)) // someone is altering the target vnode
6327  * 	    abort();
6328  * 	if (!seqc_consistent(dvp, dvp_seqc) // someone is altering the vnode
6329  * 	    abort();
6330  * 	dvp = tvp; // we know nothing of importance has changed
6331  * 	dvp_seqc = tvp_seqc; // store the counter for the tvp iteration
6332  * 	if (last)
6333  * 	    break;
6334  * }
6335  * vget(); // secure the vnode
6336  * if (!seqc_consistent(tvp, tvp_seqc) // final check
6337  * 	    abort();
6338  * // at this point we know nothing has changed for any parent<->child pair
6339  * // as they were crossed during the lookup, meaning we matched the guarantee
6340  * // of the locked variant
6341  * return (tvp);
6342  *
6343  * The API contract for VOP_FPLOOKUP_VEXEC routines is as follows:
6344  * - they are called while within vfs_smr protection which they must never exit
6345  * - EAGAIN can be returned to denote checking could not be performed, it is
6346  *   always valid to return it
6347  * - if the sequence counter has not changed the result must be valid
6348  * - if the sequence counter has changed both false positives and false negatives
6349  *   are permitted (since the result will be rejected later)
6350  * - for simple cases of unix permission checks vaccess_vexec_smr can be used
6351  *
6352  * Caveats to watch out for:
6353  * - vnodes are passed unlocked and unreferenced with nothing stopping
6354  *   VOP_RECLAIM, in turn meaning that ->v_data can become NULL. It is advised
6355  *   to use atomic_load_ptr to fetch it.
6356  * - the aforementioned object can also get freed, meaning absent other means it
6357  *   should be protected with vfs_smr
6358  * - either safely checking permissions as they are modified or guaranteeing
6359  *   their stability is left to the routine
6360  */
6361 int
cache_fplookup(struct nameidata * ndp,enum cache_fpl_status * status,struct pwd ** pwdp)6362 cache_fplookup(struct nameidata *ndp, enum cache_fpl_status *status,
6363     struct pwd **pwdp)
6364 {
6365 	struct cache_fpl fpl;
6366 	struct pwd *pwd;
6367 	struct vnode *dvp;
6368 	struct componentname *cnp;
6369 	int error;
6370 
6371 	fpl.status = CACHE_FPL_STATUS_UNSET;
6372 	fpl.in_smr = false;
6373 	fpl.ndp = ndp;
6374 	fpl.cnp = cnp = &ndp->ni_cnd;
6375 	MPASS(ndp->ni_lcf == 0);
6376 	KASSERT ((cnp->cn_flags & CACHE_FPL_INTERNAL_CN_FLAGS) == 0,
6377 	    ("%s: internal flags found in cn_flags %" PRIx64, __func__,
6378 	    cnp->cn_flags));
6379 	MPASS(cnp->cn_nameptr == cnp->cn_pnbuf);
6380 	MPASS(ndp->ni_resflags == 0);
6381 
6382 	if (__predict_false(!cache_can_fplookup(&fpl))) {
6383 		*status = fpl.status;
6384 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6385 		return (EOPNOTSUPP);
6386 	}
6387 
6388 	cache_fpl_checkpoint_outer(&fpl);
6389 
6390 	cache_fpl_smr_enter_initial(&fpl);
6391 #ifdef INVARIANTS
6392 	fpl.debug.ni_pathlen = ndp->ni_pathlen;
6393 #endif
6394 	fpl.nulchar = &cnp->cn_nameptr[ndp->ni_pathlen - 1];
6395 	fpl.fsearch = false;
6396 	fpl.tvp = NULL; /* for degenerate path handling */
6397 	fpl.pwd = pwdp;
6398 	pwd = pwd_get_smr();
6399 	*(fpl.pwd) = pwd;
6400 	namei_setup_rootdir(ndp, cnp, pwd);
6401 	ndp->ni_topdir = pwd->pwd_jdir;
6402 
6403 	if (cnp->cn_pnbuf[0] == '/') {
6404 		dvp = cache_fpl_handle_root(&fpl);
6405 		ndp->ni_resflags = NIRES_ABS;
6406 	} else {
6407 		if (ndp->ni_dirfd == AT_FDCWD) {
6408 			dvp = pwd->pwd_cdir;
6409 		} else {
6410 			error = cache_fplookup_dirfd(&fpl, &dvp);
6411 			if (__predict_false(error != 0)) {
6412 				goto out;
6413 			}
6414 		}
6415 	}
6416 
6417 	SDT_PROBE4(vfs, namei, lookup, entry, dvp, cnp->cn_pnbuf, cnp->cn_flags, true);
6418 	error = cache_fplookup_impl(dvp, &fpl);
6419 out:
6420 	cache_fpl_smr_assert_not_entered(&fpl);
6421 	cache_fpl_assert_status(&fpl);
6422 	*status = fpl.status;
6423 	if (SDT_PROBES_ENABLED()) {
6424 		SDT_PROBE3(vfs, fplookup, lookup, done, ndp, fpl.line, fpl.status);
6425 		if (fpl.status == CACHE_FPL_STATUS_HANDLED)
6426 			SDT_PROBE4(vfs, namei, lookup, return, error, ndp->ni_vp, true,
6427 			    ndp);
6428 	}
6429 
6430 	if (__predict_true(fpl.status == CACHE_FPL_STATUS_HANDLED)) {
6431 		MPASS(error != CACHE_FPL_FAILED);
6432 		if (error != 0) {
6433 			cache_fpl_cleanup_cnp(fpl.cnp);
6434 			MPASS(fpl.dvp == NULL);
6435 			MPASS(fpl.tvp == NULL);
6436 		}
6437 		ndp->ni_dvp = fpl.dvp;
6438 		ndp->ni_vp = fpl.tvp;
6439 	}
6440 	return (error);
6441 }
6442