xref: /linux/include/linux/mtd/nand.h (revision 2471d2b3b2b88802a66e9ff97b32387e1e233470)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  *  Copyright 2017 - Free Electrons
4  *
5  *  Authors:
6  *	Boris Brezillon <boris.brezillon@free-electrons.com>
7  *	Peter Pan <peterpandong@micron.com>
8  */
9 
10 #ifndef __LINUX_MTD_NAND_H
11 #define __LINUX_MTD_NAND_H
12 
13 #include <linux/mtd/mtd.h>
14 
15 struct nand_device;
16 
17 /**
18  * struct nand_memory_organization - Memory organization structure
19  * @bits_per_cell: number of bits per NAND cell
20  * @pagesize: page size
21  * @oobsize: OOB area size
22  * @pages_per_eraseblock: number of pages per eraseblock
23  * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
24  * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN
25  * @planes_per_lun: number of planes per LUN
26  * @luns_per_target: number of LUN per target (target is a synonym for die)
27  * @ntargets: total number of targets exposed by the NAND device
28  */
29 struct nand_memory_organization {
30 	unsigned int bits_per_cell;
31 	unsigned int pagesize;
32 	unsigned int oobsize;
33 	unsigned int pages_per_eraseblock;
34 	unsigned int eraseblocks_per_lun;
35 	unsigned int max_bad_eraseblocks_per_lun;
36 	unsigned int planes_per_lun;
37 	unsigned int luns_per_target;
38 	unsigned int ntargets;
39 };
40 
41 #define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt)	\
42 	{							\
43 		.bits_per_cell = (bpc),				\
44 		.pagesize = (ps),				\
45 		.oobsize = (os),				\
46 		.pages_per_eraseblock = (ppe),			\
47 		.eraseblocks_per_lun = (epl),			\
48 		.max_bad_eraseblocks_per_lun = (mbb),		\
49 		.planes_per_lun = (ppl),			\
50 		.luns_per_target = (lpt),			\
51 		.ntargets = (nt),				\
52 	}
53 
54 /**
55  * struct nand_row_converter - Information needed to convert an absolute offset
56  *			       into a row address
57  * @lun_addr_shift: position of the LUN identifier in the row address
58  * @eraseblock_addr_shift: position of the eraseblock identifier in the row
59  *			   address
60  */
61 struct nand_row_converter {
62 	unsigned int lun_addr_shift;
63 	unsigned int eraseblock_addr_shift;
64 };
65 
66 /**
67  * struct nand_pos - NAND position object
68  * @target: the NAND target/die
69  * @lun: the LUN identifier
70  * @plane: the plane within the LUN
71  * @eraseblock: the eraseblock within the LUN
72  * @page: the page within the LUN
73  *
74  * These information are usually used by specific sub-layers to select the
75  * appropriate target/die and generate a row address to pass to the device.
76  */
77 struct nand_pos {
78 	unsigned int target;
79 	unsigned int lun;
80 	unsigned int plane;
81 	unsigned int eraseblock;
82 	unsigned int page;
83 };
84 
85 /**
86  * enum nand_page_io_req_type - Direction of an I/O request
87  * @NAND_PAGE_READ: from the chip, to the controller
88  * @NAND_PAGE_WRITE: from the controller, to the chip
89  */
90 enum nand_page_io_req_type {
91 	NAND_PAGE_READ = 0,
92 	NAND_PAGE_WRITE,
93 };
94 
95 /**
96  * struct nand_page_io_req - NAND I/O request object
97  * @type: the type of page I/O: read or write
98  * @pos: the position this I/O request is targeting
99  * @dataoffs: the offset within the page
100  * @datalen: number of data bytes to read from/write to this page
101  * @databuf: buffer to store data in or get data from
102  * @ooboffs: the OOB offset within the page
103  * @ooblen: the number of OOB bytes to read from/write to this page
104  * @oobbuf: buffer to store OOB data in or get OOB data from
105  * @mode: one of the %MTD_OPS_XXX mode
106  * @continuous: no need to start over the operation at the end of each page, the
107  * NAND device will automatically prepare the next one
108  *
109  * This object is used to pass per-page I/O requests to NAND sub-layers. This
110  * way all useful information are already formatted in a useful way and
111  * specific NAND layers can focus on translating these information into
112  * specific commands/operations.
113  */
114 struct nand_page_io_req {
115 	enum nand_page_io_req_type type;
116 	struct nand_pos pos;
117 	unsigned int dataoffs;
118 	unsigned int datalen;
119 	union {
120 		const void *out;
121 		void *in;
122 	} databuf;
123 	unsigned int ooboffs;
124 	unsigned int ooblen;
125 	union {
126 		const void *out;
127 		void *in;
128 	} oobbuf;
129 	int mode;
130 	bool continuous;
131 };
132 
133 const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void);
134 const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void);
135 const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void);
136 
137 /**
138  * enum nand_ecc_engine_type - NAND ECC engine type
139  * @NAND_ECC_ENGINE_TYPE_INVALID: Invalid value
140  * @NAND_ECC_ENGINE_TYPE_NONE: No ECC correction
141  * @NAND_ECC_ENGINE_TYPE_SOFT: Software ECC correction
142  * @NAND_ECC_ENGINE_TYPE_ON_HOST: On host hardware ECC correction
143  * @NAND_ECC_ENGINE_TYPE_ON_DIE: On chip hardware ECC correction
144  */
145 enum nand_ecc_engine_type {
146 	NAND_ECC_ENGINE_TYPE_INVALID,
147 	NAND_ECC_ENGINE_TYPE_NONE,
148 	NAND_ECC_ENGINE_TYPE_SOFT,
149 	NAND_ECC_ENGINE_TYPE_ON_HOST,
150 	NAND_ECC_ENGINE_TYPE_ON_DIE,
151 };
152 
153 /**
154  * enum nand_ecc_placement - NAND ECC bytes placement
155  * @NAND_ECC_PLACEMENT_UNKNOWN: The actual position of the ECC bytes is unknown
156  * @NAND_ECC_PLACEMENT_OOB: The ECC bytes are located in the OOB area
157  * @NAND_ECC_PLACEMENT_INTERLEAVED: Syndrome layout, there are ECC bytes
158  *                                  interleaved with regular data in the main
159  *                                  area
160  */
161 enum nand_ecc_placement {
162 	NAND_ECC_PLACEMENT_UNKNOWN,
163 	NAND_ECC_PLACEMENT_OOB,
164 	NAND_ECC_PLACEMENT_INTERLEAVED,
165 };
166 
167 /**
168  * enum nand_ecc_algo - NAND ECC algorithm
169  * @NAND_ECC_ALGO_UNKNOWN: Unknown algorithm
170  * @NAND_ECC_ALGO_HAMMING: Hamming algorithm
171  * @NAND_ECC_ALGO_BCH: Bose-Chaudhuri-Hocquenghem algorithm
172  * @NAND_ECC_ALGO_RS: Reed-Solomon algorithm
173  */
174 enum nand_ecc_algo {
175 	NAND_ECC_ALGO_UNKNOWN,
176 	NAND_ECC_ALGO_HAMMING,
177 	NAND_ECC_ALGO_BCH,
178 	NAND_ECC_ALGO_RS,
179 };
180 
181 /**
182  * struct nand_ecc_props - NAND ECC properties
183  * @engine_type: ECC engine type
184  * @placement: OOB placement (if relevant)
185  * @algo: ECC algorithm (if relevant)
186  * @strength: ECC strength
187  * @step_size: Number of bytes per step
188  * @flags: Misc properties
189  */
190 struct nand_ecc_props {
191 	enum nand_ecc_engine_type engine_type;
192 	enum nand_ecc_placement placement;
193 	enum nand_ecc_algo algo;
194 	unsigned int strength;
195 	unsigned int step_size;
196 	unsigned int flags;
197 };
198 
199 #define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
200 
201 /* NAND ECC misc flags */
202 #define NAND_ECC_MAXIMIZE_STRENGTH BIT(0)
203 
204 /**
205  * struct nand_bbt - bad block table object
206  * @cache: in memory BBT cache
207  */
208 struct nand_bbt {
209 	unsigned long *cache;
210 };
211 
212 /**
213  * struct nand_ops - NAND operations
214  * @erase: erase a specific block. No need to check if the block is bad before
215  *	   erasing, this has been taken care of by the generic NAND layer
216  * @markbad: mark a specific block bad. No need to check if the block is
217  *	     already marked bad, this has been taken care of by the generic
218  *	     NAND layer. This method should just write the BBM (Bad Block
219  *	     Marker) so that future call to struct_nand_ops->isbad() return
220  *	     true
221  * @isbad: check whether a block is bad or not. This method should just read
222  *	   the BBM and return whether the block is bad or not based on what it
223  *	   reads
224  *
225  * These are all low level operations that should be implemented by specialized
226  * NAND layers (SPI NAND, raw NAND, ...).
227  */
228 struct nand_ops {
229 	int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
230 	int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
231 	bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
232 };
233 
234 /**
235  * struct nand_ecc_context - Context for the ECC engine
236  * @conf: basic ECC engine parameters
237  * @nsteps: number of ECC steps
238  * @total: total number of bytes used for storing ECC codes, this is used by
239  *         generic OOB layouts
240  * @priv: ECC engine driver private data
241  */
242 struct nand_ecc_context {
243 	struct nand_ecc_props conf;
244 	unsigned int nsteps;
245 	unsigned int total;
246 	void *priv;
247 };
248 
249 /**
250  * struct nand_ecc_engine_ops - ECC engine operations
251  * @init_ctx: given a desired user configuration for the pointed NAND device,
252  *            requests the ECC engine driver to setup a configuration with
253  *            values it supports.
254  * @cleanup_ctx: clean the context initialized by @init_ctx.
255  * @prepare_io_req: is called before reading/writing a page to prepare the I/O
256  *                  request to be performed with ECC correction.
257  * @finish_io_req: is called after reading/writing a page to terminate the I/O
258  *                 request and ensure proper ECC correction.
259  */
260 struct nand_ecc_engine_ops {
261 	int (*init_ctx)(struct nand_device *nand);
262 	void (*cleanup_ctx)(struct nand_device *nand);
263 	int (*prepare_io_req)(struct nand_device *nand,
264 			      struct nand_page_io_req *req);
265 	int (*finish_io_req)(struct nand_device *nand,
266 			     struct nand_page_io_req *req);
267 };
268 
269 /**
270  * enum nand_ecc_engine_integration - How the NAND ECC engine is integrated
271  * @NAND_ECC_ENGINE_INTEGRATION_INVALID: Invalid value
272  * @NAND_ECC_ENGINE_INTEGRATION_PIPELINED: Pipelined engine, performs on-the-fly
273  *                                         correction, does not need to copy
274  *                                         data around
275  * @NAND_ECC_ENGINE_INTEGRATION_EXTERNAL: External engine, needs to bring the
276  *                                        data into its own area before use
277  */
278 enum nand_ecc_engine_integration {
279 	NAND_ECC_ENGINE_INTEGRATION_INVALID,
280 	NAND_ECC_ENGINE_INTEGRATION_PIPELINED,
281 	NAND_ECC_ENGINE_INTEGRATION_EXTERNAL,
282 };
283 
284 /**
285  * struct nand_ecc_engine - ECC engine abstraction for NAND devices
286  * @dev: Host device
287  * @node: Private field for registration time
288  * @ops: ECC engine operations
289  * @integration: How the engine is integrated with the host
290  *               (only relevant on %NAND_ECC_ENGINE_TYPE_ON_HOST engines)
291  * @priv: Private data
292  */
293 struct nand_ecc_engine {
294 	struct device *dev;
295 	struct list_head node;
296 	struct nand_ecc_engine_ops *ops;
297 	enum nand_ecc_engine_integration integration;
298 	void *priv;
299 };
300 
301 void of_get_nand_ecc_user_config(struct nand_device *nand);
302 int nand_ecc_init_ctx(struct nand_device *nand);
303 void nand_ecc_cleanup_ctx(struct nand_device *nand);
304 int nand_ecc_prepare_io_req(struct nand_device *nand,
305 			    struct nand_page_io_req *req);
306 int nand_ecc_finish_io_req(struct nand_device *nand,
307 			   struct nand_page_io_req *req);
308 bool nand_ecc_is_strong_enough(struct nand_device *nand);
309 
310 #if IS_REACHABLE(CONFIG_MTD_NAND_CORE)
311 int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine);
312 int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine);
313 #else
314 static inline int
315 nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine)
316 {
317 	return -ENOTSUPP;
318 }
319 static inline int
320 nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine)
321 {
322 	return -ENOTSUPP;
323 }
324 #endif
325 
326 struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand);
327 struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand);
328 struct nand_ecc_engine *nand_ecc_get_on_host_hw_engine(struct nand_device *nand);
329 void nand_ecc_put_on_host_hw_engine(struct nand_device *nand);
330 struct device *nand_ecc_get_engine_dev(struct device *host);
331 
332 #if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING)
333 struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void);
334 #else
335 static inline struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void)
336 {
337 	return NULL;
338 }
339 #endif /* CONFIG_MTD_NAND_ECC_SW_HAMMING */
340 
341 #if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)
342 struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void);
343 #else
344 static inline struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void)
345 {
346 	return NULL;
347 }
348 #endif /* CONFIG_MTD_NAND_ECC_SW_BCH */
349 
350 /**
351  * struct nand_ecc_req_tweak_ctx - Help for automatically tweaking requests
352  * @orig_req: Pointer to the original IO request
353  * @nand: Related NAND device, to have access to its memory organization
354  * @page_buffer_size: Real size of the page buffer to use (can be set by the
355  *                    user before the tweaking mechanism initialization)
356  * @oob_buffer_size: Real size of the OOB buffer to use (can be set by the
357  *                   user before the tweaking mechanism initialization)
358  * @spare_databuf: Data bounce buffer
359  * @spare_oobbuf: OOB bounce buffer
360  * @bounce_data: Flag indicating a data bounce buffer is used
361  * @bounce_oob: Flag indicating an OOB bounce buffer is used
362  */
363 struct nand_ecc_req_tweak_ctx {
364 	struct nand_page_io_req orig_req;
365 	struct nand_device *nand;
366 	unsigned int page_buffer_size;
367 	unsigned int oob_buffer_size;
368 	void *spare_databuf;
369 	void *spare_oobbuf;
370 	bool bounce_data;
371 	bool bounce_oob;
372 };
373 
374 int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx,
375 			       struct nand_device *nand);
376 void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx);
377 void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
378 			struct nand_page_io_req *req);
379 void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx,
380 			  struct nand_page_io_req *req);
381 
382 /**
383  * struct nand_ecc - Information relative to the ECC
384  * @defaults: Default values, depend on the underlying subsystem
385  * @requirements: ECC requirements from the NAND chip perspective
386  * @user_conf: User desires in terms of ECC parameters
387  * @ctx: ECC context for the ECC engine, derived from the device @requirements
388  *       the @user_conf and the @defaults
389  * @ondie_engine: On-die ECC engine reference, if any
390  * @engine: ECC engine actually bound
391  */
392 struct nand_ecc {
393 	struct nand_ecc_props defaults;
394 	struct nand_ecc_props requirements;
395 	struct nand_ecc_props user_conf;
396 	struct nand_ecc_context ctx;
397 	struct nand_ecc_engine *ondie_engine;
398 	struct nand_ecc_engine *engine;
399 };
400 
401 /**
402  * struct nand_device - NAND device
403  * @mtd: MTD instance attached to the NAND device
404  * @memorg: memory layout
405  * @ecc: NAND ECC object attached to the NAND device
406  * @rowconv: position to row address converter
407  * @bbt: bad block table info
408  * @ops: NAND operations attached to the NAND device
409  *
410  * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
411  * should declare their own NAND object embedding a nand_device struct (that's
412  * how inheritance is done).
413  * struct_nand_device->memorg and struct_nand_device->ecc.requirements should
414  * be filled at device detection time to reflect the NAND device
415  * capabilities/requirements. Once this is done nanddev_init() can be called.
416  * It will take care of converting NAND information into MTD ones, which means
417  * the specialized NAND layers should never manually tweak
418  * struct_nand_device->mtd except for the ->_read/write() hooks.
419  */
420 struct nand_device {
421 	struct mtd_info mtd;
422 	struct nand_memory_organization memorg;
423 	struct nand_ecc ecc;
424 	struct nand_row_converter rowconv;
425 	struct nand_bbt bbt;
426 	const struct nand_ops *ops;
427 };
428 
429 /**
430  * struct nand_io_iter - NAND I/O iterator
431  * @req: current I/O request
432  * @oobbytes_per_page: maximum number of OOB bytes per page
433  * @dataleft: remaining number of data bytes to read/write
434  * @oobleft: remaining number of OOB bytes to read/write
435  *
436  * Can be used by specialized NAND layers to iterate over all pages covered
437  * by an MTD I/O request, which should greatly simplifies the boiler-plate
438  * code needed to read/write data from/to a NAND device.
439  */
440 struct nand_io_iter {
441 	struct nand_page_io_req req;
442 	unsigned int oobbytes_per_page;
443 	unsigned int dataleft;
444 	unsigned int oobleft;
445 };
446 
447 /**
448  * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
449  * @mtd: MTD instance
450  *
451  * Return: the NAND device embedding @mtd.
452  */
453 static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
454 {
455 	return container_of(mtd, struct nand_device, mtd);
456 }
457 
458 /**
459  * nanddev_to_mtd() - Get the MTD device attached to a NAND device
460  * @nand: NAND device
461  *
462  * Return: the MTD device embedded in @nand.
463  */
464 static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
465 {
466 	return &nand->mtd;
467 }
468 
469 /*
470  * nanddev_bits_per_cell() - Get the number of bits per cell
471  * @nand: NAND device
472  *
473  * Return: the number of bits per cell.
474  */
475 static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
476 {
477 	return nand->memorg.bits_per_cell;
478 }
479 
480 /**
481  * nanddev_page_size() - Get NAND page size
482  * @nand: NAND device
483  *
484  * Return: the page size.
485  */
486 static inline size_t nanddev_page_size(const struct nand_device *nand)
487 {
488 	return nand->memorg.pagesize;
489 }
490 
491 /**
492  * nanddev_per_page_oobsize() - Get NAND OOB size
493  * @nand: NAND device
494  *
495  * Return: the OOB size.
496  */
497 static inline unsigned int
498 nanddev_per_page_oobsize(const struct nand_device *nand)
499 {
500 	return nand->memorg.oobsize;
501 }
502 
503 /**
504  * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
505  * @nand: NAND device
506  *
507  * Return: the number of pages per eraseblock.
508  */
509 static inline unsigned int
510 nanddev_pages_per_eraseblock(const struct nand_device *nand)
511 {
512 	return nand->memorg.pages_per_eraseblock;
513 }
514 
515 /**
516  * nanddev_pages_per_target() - Get the number of pages per target
517  * @nand: NAND device
518  *
519  * Return: the number of pages per target.
520  */
521 static inline unsigned int
522 nanddev_pages_per_target(const struct nand_device *nand)
523 {
524 	return nand->memorg.pages_per_eraseblock *
525 	       nand->memorg.eraseblocks_per_lun *
526 	       nand->memorg.luns_per_target;
527 }
528 
529 /**
530  * nanddev_per_page_oobsize() - Get NAND erase block size
531  * @nand: NAND device
532  *
533  * Return: the eraseblock size.
534  */
535 static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
536 {
537 	return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
538 }
539 
540 /**
541  * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
542  * @nand: NAND device
543  *
544  * Return: the number of eraseblocks per LUN.
545  */
546 static inline unsigned int
547 nanddev_eraseblocks_per_lun(const struct nand_device *nand)
548 {
549 	return nand->memorg.eraseblocks_per_lun;
550 }
551 
552 /**
553  * nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target
554  * @nand: NAND device
555  *
556  * Return: the number of eraseblocks per target.
557  */
558 static inline unsigned int
559 nanddev_eraseblocks_per_target(const struct nand_device *nand)
560 {
561 	return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target;
562 }
563 
564 /**
565  * nanddev_target_size() - Get the total size provided by a single target/die
566  * @nand: NAND device
567  *
568  * Return: the total size exposed by a single target/die in bytes.
569  */
570 static inline u64 nanddev_target_size(const struct nand_device *nand)
571 {
572 	return (u64)nand->memorg.luns_per_target *
573 	       nand->memorg.eraseblocks_per_lun *
574 	       nand->memorg.pages_per_eraseblock *
575 	       nand->memorg.pagesize;
576 }
577 
578 /**
579  * nanddev_ntarget() - Get the total of targets
580  * @nand: NAND device
581  *
582  * Return: the number of targets/dies exposed by @nand.
583  */
584 static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
585 {
586 	return nand->memorg.ntargets;
587 }
588 
589 /**
590  * nanddev_neraseblocks() - Get the total number of eraseblocks
591  * @nand: NAND device
592  *
593  * Return: the total number of eraseblocks exposed by @nand.
594  */
595 static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
596 {
597 	return nand->memorg.ntargets * nand->memorg.luns_per_target *
598 	       nand->memorg.eraseblocks_per_lun;
599 }
600 
601 /**
602  * nanddev_size() - Get NAND size
603  * @nand: NAND device
604  *
605  * Return: the total size (in bytes) exposed by @nand.
606  */
607 static inline u64 nanddev_size(const struct nand_device *nand)
608 {
609 	return nanddev_target_size(nand) * nanddev_ntargets(nand);
610 }
611 
612 /**
613  * nanddev_get_memorg() - Extract memory organization info from a NAND device
614  * @nand: NAND device
615  *
616  * This can be used by the upper layer to fill the memorg info before calling
617  * nanddev_init().
618  *
619  * Return: the memorg object embedded in the NAND device.
620  */
621 static inline struct nand_memory_organization *
622 nanddev_get_memorg(struct nand_device *nand)
623 {
624 	return &nand->memorg;
625 }
626 
627 /**
628  * nanddev_get_ecc_conf() - Extract the ECC configuration from a NAND device
629  * @nand: NAND device
630  */
631 static inline const struct nand_ecc_props *
632 nanddev_get_ecc_conf(struct nand_device *nand)
633 {
634 	return &nand->ecc.ctx.conf;
635 }
636 
637 /**
638  * nanddev_get_ecc_nsteps() - Extract the number of ECC steps
639  * @nand: NAND device
640  */
641 static inline unsigned int
642 nanddev_get_ecc_nsteps(struct nand_device *nand)
643 {
644 	return nand->ecc.ctx.nsteps;
645 }
646 
647 /**
648  * nanddev_get_ecc_bytes_per_step() - Extract the number of ECC bytes per step
649  * @nand: NAND device
650  */
651 static inline unsigned int
652 nanddev_get_ecc_bytes_per_step(struct nand_device *nand)
653 {
654 	return nand->ecc.ctx.total / nand->ecc.ctx.nsteps;
655 }
656 
657 /**
658  * nanddev_get_ecc_requirements() - Extract the ECC requirements from a NAND
659  *                                  device
660  * @nand: NAND device
661  */
662 static inline const struct nand_ecc_props *
663 nanddev_get_ecc_requirements(struct nand_device *nand)
664 {
665 	return &nand->ecc.requirements;
666 }
667 
668 /**
669  * nanddev_set_ecc_requirements() - Assign the ECC requirements of a NAND
670  *                                  device
671  * @nand: NAND device
672  * @reqs: Requirements
673  */
674 static inline void
675 nanddev_set_ecc_requirements(struct nand_device *nand,
676 			     const struct nand_ecc_props *reqs)
677 {
678 	nand->ecc.requirements = *reqs;
679 }
680 
681 int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
682 		 struct module *owner);
683 void nanddev_cleanup(struct nand_device *nand);
684 
685 /**
686  * nanddev_register() - Register a NAND device
687  * @nand: NAND device
688  *
689  * Register a NAND device.
690  * This function is just a wrapper around mtd_device_register()
691  * registering the MTD device embedded in @nand.
692  *
693  * Return: 0 in case of success, a negative error code otherwise.
694  */
695 static inline int nanddev_register(struct nand_device *nand)
696 {
697 	return mtd_device_register(&nand->mtd, NULL, 0);
698 }
699 
700 /**
701  * nanddev_unregister() - Unregister a NAND device
702  * @nand: NAND device
703  *
704  * Unregister a NAND device.
705  * This function is just a wrapper around mtd_device_unregister()
706  * unregistering the MTD device embedded in @nand.
707  *
708  * Return: 0 in case of success, a negative error code otherwise.
709  */
710 static inline int nanddev_unregister(struct nand_device *nand)
711 {
712 	return mtd_device_unregister(&nand->mtd);
713 }
714 
715 /**
716  * nanddev_set_of_node() - Attach a DT node to a NAND device
717  * @nand: NAND device
718  * @np: DT node
719  *
720  * Attach a DT node to a NAND device.
721  */
722 static inline void nanddev_set_of_node(struct nand_device *nand,
723 				       struct device_node *np)
724 {
725 	mtd_set_of_node(&nand->mtd, np);
726 }
727 
728 /**
729  * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
730  * @nand: NAND device
731  *
732  * Return: the DT node attached to @nand.
733  */
734 static inline struct device_node *nanddev_get_of_node(struct nand_device *nand)
735 {
736 	return mtd_get_of_node(&nand->mtd);
737 }
738 
739 /**
740  * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
741  * @nand: NAND device
742  * @offs: absolute NAND offset (usually passed by the MTD layer)
743  * @pos: a NAND position object to fill in
744  *
745  * Converts @offs into a nand_pos representation.
746  *
747  * Return: the offset within the NAND page pointed by @pos.
748  */
749 static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
750 					       loff_t offs,
751 					       struct nand_pos *pos)
752 {
753 	unsigned int pageoffs;
754 	u64 tmp = offs;
755 
756 	pageoffs = do_div(tmp, nand->memorg.pagesize);
757 	pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
758 	pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
759 	pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
760 	pos->lun = do_div(tmp, nand->memorg.luns_per_target);
761 	pos->target = tmp;
762 
763 	return pageoffs;
764 }
765 
766 /**
767  * nanddev_pos_cmp() - Compare two NAND positions
768  * @a: First NAND position
769  * @b: Second NAND position
770  *
771  * Compares two NAND positions.
772  *
773  * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
774  */
775 static inline int nanddev_pos_cmp(const struct nand_pos *a,
776 				  const struct nand_pos *b)
777 {
778 	if (a->target != b->target)
779 		return a->target < b->target ? -1 : 1;
780 
781 	if (a->lun != b->lun)
782 		return a->lun < b->lun ? -1 : 1;
783 
784 	if (a->eraseblock != b->eraseblock)
785 		return a->eraseblock < b->eraseblock ? -1 : 1;
786 
787 	if (a->page != b->page)
788 		return a->page < b->page ? -1 : 1;
789 
790 	return 0;
791 }
792 
793 /**
794  * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
795  * @nand: NAND device
796  * @pos: the NAND position to convert
797  *
798  * Converts @pos NAND position into an absolute offset.
799  *
800  * Return: the absolute offset. Note that @pos points to the beginning of a
801  *	   page, if one wants to point to a specific offset within this page
802  *	   the returned offset has to be adjusted manually.
803  */
804 static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
805 					 const struct nand_pos *pos)
806 {
807 	unsigned int npages;
808 
809 	npages = pos->page +
810 		 ((pos->eraseblock +
811 		   (pos->lun +
812 		    (pos->target * nand->memorg.luns_per_target)) *
813 		   nand->memorg.eraseblocks_per_lun) *
814 		  nand->memorg.pages_per_eraseblock);
815 
816 	return (loff_t)npages * nand->memorg.pagesize;
817 }
818 
819 /**
820  * nanddev_pos_to_row() - Extract a row address from a NAND position
821  * @nand: NAND device
822  * @pos: the position to convert
823  *
824  * Converts a NAND position into a row address that can then be passed to the
825  * device.
826  *
827  * Return: the row address extracted from @pos.
828  */
829 static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
830 					      const struct nand_pos *pos)
831 {
832 	return (pos->lun << nand->rowconv.lun_addr_shift) |
833 	       (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
834 	       pos->page;
835 }
836 
837 /**
838  * nanddev_pos_next_target() - Move a position to the next target/die
839  * @nand: NAND device
840  * @pos: the position to update
841  *
842  * Updates @pos to point to the start of the next target/die. Useful when you
843  * want to iterate over all targets/dies of a NAND device.
844  */
845 static inline void nanddev_pos_next_target(struct nand_device *nand,
846 					   struct nand_pos *pos)
847 {
848 	pos->page = 0;
849 	pos->plane = 0;
850 	pos->eraseblock = 0;
851 	pos->lun = 0;
852 	pos->target++;
853 }
854 
855 /**
856  * nanddev_pos_next_lun() - Move a position to the next LUN
857  * @nand: NAND device
858  * @pos: the position to update
859  *
860  * Updates @pos to point to the start of the next LUN. Useful when you want to
861  * iterate over all LUNs of a NAND device.
862  */
863 static inline void nanddev_pos_next_lun(struct nand_device *nand,
864 					struct nand_pos *pos)
865 {
866 	if (pos->lun >= nand->memorg.luns_per_target - 1)
867 		return nanddev_pos_next_target(nand, pos);
868 
869 	pos->lun++;
870 	pos->page = 0;
871 	pos->plane = 0;
872 	pos->eraseblock = 0;
873 }
874 
875 /**
876  * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
877  * @nand: NAND device
878  * @pos: the position to update
879  *
880  * Updates @pos to point to the start of the next eraseblock. Useful when you
881  * want to iterate over all eraseblocks of a NAND device.
882  */
883 static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
884 					       struct nand_pos *pos)
885 {
886 	if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
887 		return nanddev_pos_next_lun(nand, pos);
888 
889 	pos->eraseblock++;
890 	pos->page = 0;
891 	pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
892 }
893 
894 /**
895  * nanddev_pos_next_page() - Move a position to the next page
896  * @nand: NAND device
897  * @pos: the position to update
898  *
899  * Updates @pos to point to the start of the next page. Useful when you want to
900  * iterate over all pages of a NAND device.
901  */
902 static inline void nanddev_pos_next_page(struct nand_device *nand,
903 					 struct nand_pos *pos)
904 {
905 	if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
906 		return nanddev_pos_next_eraseblock(nand, pos);
907 
908 	pos->page++;
909 }
910 
911 /**
912  * nand_io_page_iter_init - Initialize a NAND I/O iterator
913  * @nand: NAND device
914  * @offs: absolute offset
915  * @req: MTD request
916  * @iter: NAND I/O iterator
917  *
918  * Initializes a NAND iterator based on the information passed by the MTD
919  * layer for page jumps.
920  */
921 static inline void nanddev_io_page_iter_init(struct nand_device *nand,
922 					     enum nand_page_io_req_type reqtype,
923 					     loff_t offs, struct mtd_oob_ops *req,
924 					     struct nand_io_iter *iter)
925 {
926 	struct mtd_info *mtd = nanddev_to_mtd(nand);
927 
928 	iter->req.type = reqtype;
929 	iter->req.mode = req->mode;
930 	iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
931 	iter->req.ooboffs = req->ooboffs;
932 	iter->oobbytes_per_page = mtd_oobavail(mtd, req);
933 	iter->dataleft = req->len;
934 	iter->oobleft = req->ooblen;
935 	iter->req.databuf.in = req->datbuf;
936 	iter->req.datalen = min_t(unsigned int,
937 				  nand->memorg.pagesize - iter->req.dataoffs,
938 				  iter->dataleft);
939 	iter->req.oobbuf.in = req->oobbuf;
940 	iter->req.ooblen = min_t(unsigned int,
941 				 iter->oobbytes_per_page - iter->req.ooboffs,
942 				 iter->oobleft);
943 	iter->req.continuous = false;
944 }
945 
946 /**
947  * nand_io_block_iter_init - Initialize a NAND I/O iterator
948  * @nand: NAND device
949  * @offs: absolute offset
950  * @req: MTD request
951  * @iter: NAND I/O iterator
952  *
953  * Initializes a NAND iterator based on the information passed by the MTD
954  * layer for block jumps (no OOB)
955  *
956  * In practice only reads may leverage this iterator.
957  */
958 static inline void nanddev_io_block_iter_init(struct nand_device *nand,
959 					      enum nand_page_io_req_type reqtype,
960 					      loff_t offs, struct mtd_oob_ops *req,
961 					      struct nand_io_iter *iter)
962 {
963 	unsigned int offs_in_eb;
964 
965 	iter->req.type = reqtype;
966 	iter->req.mode = req->mode;
967 	iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
968 	iter->req.ooboffs = 0;
969 	iter->oobbytes_per_page = 0;
970 	iter->dataleft = req->len;
971 	iter->oobleft = 0;
972 	iter->req.databuf.in = req->datbuf;
973 	offs_in_eb = (nand->memorg.pagesize * iter->req.pos.page) + iter->req.dataoffs;
974 	iter->req.datalen = min_t(unsigned int,
975 				  nanddev_eraseblock_size(nand) - offs_in_eb,
976 				  iter->dataleft);
977 	iter->req.oobbuf.in = NULL;
978 	iter->req.ooblen = 0;
979 	iter->req.continuous = true;
980 }
981 
982 /**
983  * nand_io_iter_next_page - Move to the next page
984  * @nand: NAND device
985  * @iter: NAND I/O iterator
986  *
987  * Updates the @iter to point to the next page.
988  */
989 static inline void nanddev_io_iter_next_page(struct nand_device *nand,
990 					     struct nand_io_iter *iter)
991 {
992 	nanddev_pos_next_page(nand, &iter->req.pos);
993 	iter->dataleft -= iter->req.datalen;
994 	iter->req.databuf.in += iter->req.datalen;
995 	iter->oobleft -= iter->req.ooblen;
996 	iter->req.oobbuf.in += iter->req.ooblen;
997 	iter->req.dataoffs = 0;
998 	iter->req.ooboffs = 0;
999 	iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
1000 				  iter->dataleft);
1001 	iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
1002 				 iter->oobleft);
1003 }
1004 
1005 /**
1006  * nand_io_iter_next_block - Move to the next block
1007  * @nand: NAND device
1008  * @iter: NAND I/O iterator
1009  *
1010  * Updates the @iter to point to the next block.
1011  * No OOB handling available.
1012  */
1013 static inline void nanddev_io_iter_next_block(struct nand_device *nand,
1014 					      struct nand_io_iter *iter)
1015 {
1016 	nanddev_pos_next_eraseblock(nand, &iter->req.pos);
1017 	iter->dataleft -= iter->req.datalen;
1018 	iter->req.databuf.in += iter->req.datalen;
1019 	iter->req.dataoffs = 0;
1020 	iter->req.datalen = min_t(unsigned int, nanddev_eraseblock_size(nand),
1021 				  iter->dataleft);
1022 }
1023 
1024 /**
1025  * nand_io_iter_end - Should end iteration or not
1026  * @nand: NAND device
1027  * @iter: NAND I/O iterator
1028  *
1029  * Check whether @iter has reached the end of the NAND portion it was asked to
1030  * iterate on or not.
1031  *
1032  * Return: true if @iter has reached the end of the iteration request, false
1033  *	   otherwise.
1034  */
1035 static inline bool nanddev_io_iter_end(struct nand_device *nand,
1036 				       const struct nand_io_iter *iter)
1037 {
1038 	if (iter->dataleft || iter->oobleft)
1039 		return false;
1040 
1041 	return true;
1042 }
1043 
1044 /**
1045  * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
1046  *			   request
1047  * @nand: NAND device
1048  * @start: start address to read/write from
1049  * @req: MTD I/O request
1050  * @iter: NAND I/O iterator
1051  *
1052  * Should be used for iterating over pages that are contained in an MTD request.
1053  */
1054 #define nanddev_io_for_each_page(nand, type, start, req, iter)		\
1055 	for (nanddev_io_page_iter_init(nand, type, start, req, iter);	\
1056 	     !nanddev_io_iter_end(nand, iter);				\
1057 	     nanddev_io_iter_next_page(nand, iter))
1058 
1059 /**
1060  * nand_io_for_each_block - Iterate over all NAND pages contained in an MTD I/O
1061  *			    request, one block at a time
1062  * @nand: NAND device
1063  * @start: start address to read/write from
1064  * @req: MTD I/O request
1065  * @iter: NAND I/O iterator
1066  *
1067  * Should be used for iterating over blocks that are contained in an MTD request.
1068  */
1069 #define nanddev_io_for_each_block(nand, type, start, req, iter)		\
1070 	for (nanddev_io_block_iter_init(nand, type, start, req, iter);	\
1071 	     !nanddev_io_iter_end(nand, iter);				\
1072 	     nanddev_io_iter_next_block(nand, iter))
1073 
1074 bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
1075 bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
1076 int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
1077 
1078 /* ECC related functions */
1079 int nanddev_ecc_engine_init(struct nand_device *nand);
1080 void nanddev_ecc_engine_cleanup(struct nand_device *nand);
1081 
1082 static inline void *nand_to_ecc_ctx(struct nand_device *nand)
1083 {
1084 	return nand->ecc.ctx.priv;
1085 }
1086 
1087 /* BBT related functions */
1088 enum nand_bbt_block_status {
1089 	NAND_BBT_BLOCK_STATUS_UNKNOWN,
1090 	NAND_BBT_BLOCK_GOOD,
1091 	NAND_BBT_BLOCK_WORN,
1092 	NAND_BBT_BLOCK_RESERVED,
1093 	NAND_BBT_BLOCK_FACTORY_BAD,
1094 	NAND_BBT_BLOCK_NUM_STATUS,
1095 };
1096 
1097 int nanddev_bbt_init(struct nand_device *nand);
1098 void nanddev_bbt_cleanup(struct nand_device *nand);
1099 int nanddev_bbt_update(struct nand_device *nand);
1100 int nanddev_bbt_get_block_status(const struct nand_device *nand,
1101 				 unsigned int entry);
1102 int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
1103 				 enum nand_bbt_block_status status);
1104 int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
1105 
1106 /**
1107  * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
1108  * @nand: NAND device
1109  * @pos: the NAND position we want to get BBT entry for
1110  *
1111  * Return the BBT entry used to store information about the eraseblock pointed
1112  * by @pos.
1113  *
1114  * Return: the BBT entry storing information about eraseblock pointed by @pos.
1115  */
1116 static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
1117 						    const struct nand_pos *pos)
1118 {
1119 	return pos->eraseblock +
1120 	       ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
1121 		nand->memorg.eraseblocks_per_lun);
1122 }
1123 
1124 /**
1125  * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
1126  * @nand: NAND device
1127  *
1128  * Return: true if the BBT has been initialized, false otherwise.
1129  */
1130 static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
1131 {
1132 	return !!nand->bbt.cache;
1133 }
1134 
1135 /* MTD -> NAND helper functions. */
1136 int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
1137 int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len);
1138 
1139 #endif /* __LINUX_MTD_NAND_H */
1140