xref: /freebsd/sys/vm/swap_pager.c (revision b82d7897595d9b28a2b9861c2e09a943500c28ed)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  */
67 
68 #include <sys/cdefs.h>
69 #include "opt_vm.h"
70 
71 #include <sys/param.h>
72 #include <sys/bio.h>
73 #include <sys/blist.h>
74 #include <sys/buf.h>
75 #include <sys/conf.h>
76 #include <sys/disk.h>
77 #include <sys/disklabel.h>
78 #include <sys/eventhandler.h>
79 #include <sys/fcntl.h>
80 #include <sys/limits.h>
81 #include <sys/lock.h>
82 #include <sys/kernel.h>
83 #include <sys/mount.h>
84 #include <sys/namei.h>
85 #include <sys/malloc.h>
86 #include <sys/pctrie.h>
87 #include <sys/priv.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/resource.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/sbuf.h>
94 #include <sys/sysctl.h>
95 #include <sys/sysproto.h>
96 #include <sys/systm.h>
97 #include <sys/sx.h>
98 #include <sys/unistd.h>
99 #include <sys/user.h>
100 #include <sys/vmmeter.h>
101 #include <sys/vnode.h>
102 
103 #include <security/mac/mac_framework.h>
104 
105 #include <vm/vm.h>
106 #include <vm/pmap.h>
107 #include <vm/vm_map.h>
108 #include <vm/vm_kern.h>
109 #include <vm/vm_object.h>
110 #include <vm/vm_page.h>
111 #include <vm/vm_pager.h>
112 #include <vm/vm_pageout.h>
113 #include <vm/vm_param.h>
114 #include <vm/vm_radix.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118 
119 #include <geom/geom.h>
120 
121 /*
122  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
123  * The 64-page limit is due to the radix code (kern/subr_blist.c).
124  */
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define	MAX_PAGEOUT_CLUSTER	32
127 #endif
128 
129 #if !defined(SWB_NPAGES)
130 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
131 #endif
132 
133 #define	SWAP_META_PAGES		PCTRIE_COUNT
134 
135 /*
136  * A swblk structure maps each page index within a
137  * SWAP_META_PAGES-aligned and sized range to the address of an
138  * on-disk swap block (or SWAPBLK_NONE). The collection of these
139  * mappings for an entire vm object is implemented as a pc-trie.
140  */
141 struct swblk {
142 	vm_pindex_t	p;
143 	daddr_t		d[SWAP_META_PAGES];
144 };
145 
146 /*
147  * A page_range structure records the start address and length of a sequence of
148  * mapped page addresses.
149  */
150 struct page_range {
151 	daddr_t start;
152 	daddr_t num;
153 };
154 
155 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
156 static struct mtx sw_dev_mtx;
157 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
158 static struct swdevt *swdevhd;	/* Allocate from here next */
159 static int nswapdev;		/* Number of swap devices */
160 int swap_pager_avail;
161 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
162 
163 static __exclusive_cache_line u_long swap_reserved;
164 static u_long swap_total;
165 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
166 
167 static SYSCTL_NODE(_vm_stats, OID_AUTO, swap, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
168     "VM swap stats");
169 
170 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
171     &swap_reserved, 0, sysctl_page_shift, "QU",
172     "Amount of swap storage needed to back all allocated anonymous memory.");
173 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
174     &swap_total, 0, sysctl_page_shift, "QU",
175     "Total amount of available swap storage.");
176 
177 int vm_overcommit __read_mostly = 0;
178 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &vm_overcommit, 0,
179     "Configure virtual memory overcommit behavior. See tuning(7) "
180     "for details.");
181 static unsigned long swzone;
182 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
183     "Actual size of swap metadata zone");
184 static unsigned long swap_maxpages;
185 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
186     "Maximum amount of swap supported");
187 
188 static COUNTER_U64_DEFINE_EARLY(swap_free_deferred);
189 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_deferred,
190     CTLFLAG_RD, &swap_free_deferred,
191     "Number of pages that deferred freeing swap space");
192 
193 static COUNTER_U64_DEFINE_EARLY(swap_free_completed);
194 SYSCTL_COUNTER_U64(_vm_stats_swap, OID_AUTO, free_completed,
195     CTLFLAG_RD, &swap_free_completed,
196     "Number of deferred frees completed");
197 
198 static int
sysctl_page_shift(SYSCTL_HANDLER_ARGS)199 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
200 {
201 	uint64_t newval;
202 	u_long value = *(u_long *)arg1;
203 
204 	newval = ((uint64_t)value) << PAGE_SHIFT;
205 	return (sysctl_handle_64(oidp, &newval, 0, req));
206 }
207 
208 static bool
swap_reserve_by_cred_rlimit(u_long pincr,struct ucred * cred,int oc)209 swap_reserve_by_cred_rlimit(u_long pincr, struct ucred *cred, int oc)
210 {
211 	struct uidinfo *uip;
212 	u_long prev;
213 
214 	uip = cred->cr_ruidinfo;
215 
216 	prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
217 	if ((oc & SWAP_RESERVE_RLIMIT_ON) != 0 &&
218 	    prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
219 	    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT) != 0) {
220 		prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
221 		KASSERT(prev >= pincr,
222 		    ("negative vmsize for uid %d\n", uip->ui_uid));
223 		return (false);
224 	}
225 	return (true);
226 }
227 
228 static void
swap_release_by_cred_rlimit(u_long pdecr,struct ucred * cred)229 swap_release_by_cred_rlimit(u_long pdecr, struct ucred *cred)
230 {
231 	struct uidinfo *uip;
232 #ifdef INVARIANTS
233 	u_long prev;
234 #endif
235 
236 	uip = cred->cr_ruidinfo;
237 
238 #ifdef INVARIANTS
239 	prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
240 	KASSERT(prev >= pdecr,
241 	    ("negative vmsize for uid %d\n", uip->ui_uid));
242 #else
243 	atomic_subtract_long(&uip->ui_vmsize, pdecr);
244 #endif
245 }
246 
247 static void
swap_reserve_force_rlimit(u_long pincr,struct ucred * cred)248 swap_reserve_force_rlimit(u_long pincr, struct ucred *cred)
249 {
250 	struct uidinfo *uip;
251 
252 	uip = cred->cr_ruidinfo;
253 	atomic_add_long(&uip->ui_vmsize, pincr);
254 }
255 
256 bool
swap_reserve(vm_ooffset_t incr)257 swap_reserve(vm_ooffset_t incr)
258 {
259 
260 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
261 }
262 
263 bool
swap_reserve_by_cred(vm_ooffset_t incr,struct ucred * cred)264 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
265 {
266 	u_long r, s, prev, pincr;
267 #ifdef RACCT
268 	int error;
269 #endif
270 	int oc;
271 	static int curfail;
272 	static struct timeval lastfail;
273 
274 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK",
275 	    __func__, (uintmax_t)incr));
276 
277 #ifdef RACCT
278 	if (RACCT_ENABLED()) {
279 		PROC_LOCK(curproc);
280 		error = racct_add(curproc, RACCT_SWAP, incr);
281 		PROC_UNLOCK(curproc);
282 		if (error != 0)
283 			return (false);
284 	}
285 #endif
286 
287 	pincr = atop(incr);
288 	prev = atomic_fetchadd_long(&swap_reserved, pincr);
289 	r = prev + pincr;
290 	s = swap_total;
291 	oc = atomic_load_int(&vm_overcommit);
292 	if (r > s && (oc & SWAP_RESERVE_ALLOW_NONWIRED) != 0) {
293 		s += vm_cnt.v_page_count - vm_cnt.v_free_reserved -
294 		    vm_wire_count();
295 	}
296 	if ((oc & SWAP_RESERVE_FORCE_ON) != 0 && r > s &&
297 	    priv_check(curthread, PRIV_VM_SWAP_NOQUOTA) != 0) {
298 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
299 		KASSERT(prev >= pincr,
300 		    ("swap_reserved < incr on overcommit fail"));
301 		goto out_error;
302 	}
303 
304 	if (!swap_reserve_by_cred_rlimit(pincr, cred, oc)) {
305 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
306 		KASSERT(prev >= pincr,
307 		    ("swap_reserved < incr on overcommit fail"));
308 		goto out_error;
309 	}
310 
311 	return (true);
312 
313 out_error:
314 	if (ppsratecheck(&lastfail, &curfail, 1)) {
315 		printf("uid %d, pid %d: swap reservation "
316 		    "for %jd bytes failed\n",
317 		    cred->cr_ruidinfo->ui_uid, curproc->p_pid, incr);
318 	}
319 #ifdef RACCT
320 	if (RACCT_ENABLED()) {
321 		PROC_LOCK(curproc);
322 		racct_sub(curproc, RACCT_SWAP, incr);
323 		PROC_UNLOCK(curproc);
324 	}
325 #endif
326 
327 	return (false);
328 }
329 
330 void
swap_reserve_force(vm_ooffset_t incr)331 swap_reserve_force(vm_ooffset_t incr)
332 {
333 	u_long pincr;
334 
335 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK",
336 	    __func__, (uintmax_t)incr));
337 
338 #ifdef RACCT
339 	if (RACCT_ENABLED()) {
340 		PROC_LOCK(curproc);
341 		racct_add_force(curproc, RACCT_SWAP, incr);
342 		PROC_UNLOCK(curproc);
343 	}
344 #endif
345 	pincr = atop(incr);
346 	atomic_add_long(&swap_reserved, pincr);
347 	swap_reserve_force_rlimit(pincr, curthread->td_ucred);
348 }
349 
350 void
swap_release(vm_ooffset_t decr)351 swap_release(vm_ooffset_t decr)
352 {
353 	struct ucred *cred;
354 
355 	PROC_LOCK(curproc);
356 	cred = curproc->p_ucred;
357 	swap_release_by_cred(decr, cred);
358 	PROC_UNLOCK(curproc);
359 }
360 
361 void
swap_release_by_cred(vm_ooffset_t decr,struct ucred * cred)362 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
363 {
364 	u_long pdecr;
365 #ifdef INVARIANTS
366 	u_long prev;
367 #endif
368 
369 	KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK",
370 	    __func__, (uintmax_t)decr));
371 
372 	pdecr = atop(decr);
373 #ifdef INVARIANTS
374 	prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
375 	KASSERT(prev >= pdecr, ("swap_reserved < decr"));
376 #else
377 	atomic_subtract_long(&swap_reserved, pdecr);
378 #endif
379 
380 	swap_release_by_cred_rlimit(pdecr, cred);
381 #ifdef RACCT
382 	if (racct_enable)
383 		racct_sub_cred(cred, RACCT_SWAP, decr);
384 #endif
385 }
386 
387 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
388 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
389 static struct mtx swbuf_mtx;	/* to sync nsw_wcount_async */
390 static int nsw_wcount_async;	/* limit async write buffers */
391 static int nsw_wcount_async_max;/* assigned maximum			*/
392 int nsw_cluster_max; 		/* maximum VOP I/O allowed		*/
393 
394 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
395 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
396     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
397     "Maximum running async swap ops");
398 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
399 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
400     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
401     "Swap Fragmentation Info");
402 
403 static struct sx sw_alloc_sx;
404 
405 /*
406  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
407  * of searching a named list by hashing it just a little.
408  */
409 
410 #define NOBJLISTS		8
411 
412 #define NOBJLIST(handle)	\
413 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
414 
415 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
416 static uma_zone_t swwbuf_zone;
417 static uma_zone_t swrbuf_zone;
418 static uma_zone_t swblk_zone;
419 static uma_zone_t swpctrie_zone;
420 
421 /*
422  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
423  * calls hooked from other parts of the VM system and do not appear here.
424  * (see vm/swap_pager.h).
425  */
426 static vm_object_t
427 		swap_pager_alloc(void *handle, vm_ooffset_t size,
428 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
429 static void	swap_pager_dealloc(vm_object_t object);
430 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
431     int *);
432 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
433     int *, pgo_getpages_iodone_t, void *);
434 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, int, int *);
435 static boolean_t
436 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
437 static void	swap_pager_init(void);
438 static void	swap_pager_unswapped(vm_page_t);
439 static void	swap_pager_swapoff(struct swdevt *sp);
440 static void	swap_pager_update_writecount(vm_object_t object,
441     vm_offset_t start, vm_offset_t end);
442 static void	swap_pager_release_writecount(vm_object_t object,
443     vm_offset_t start, vm_offset_t end);
444 static void	swap_pager_freespace_pgo(vm_object_t object, vm_pindex_t start,
445     vm_size_t size);
446 
447 const struct pagerops swappagerops = {
448 	.pgo_kvme_type = KVME_TYPE_SWAP,
449 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
450 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object */
451 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object */
452 	.pgo_getpages =	swap_pager_getpages,	/* pagein */
453 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */
454 	.pgo_putpages =	swap_pager_putpages,	/* pageout */
455 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page */
456 	.pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */
457 	.pgo_update_writecount = swap_pager_update_writecount,
458 	.pgo_release_writecount = swap_pager_release_writecount,
459 	.pgo_freespace = swap_pager_freespace_pgo,
460 };
461 
462 /*
463  * swap_*() routines are externally accessible.  swp_*() routines are
464  * internal.
465  */
466 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
467 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
468 
469 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
470     "Maximum size of a swap block in pages");
471 
472 static void	swp_sizecheck(void);
473 static void	swp_pager_async_iodone(struct buf *bp);
474 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
475 static void	swp_pager_free_empty_swblk(vm_object_t, struct swblk *sb);
476 static int	swapongeom(struct vnode *);
477 static int	swaponvp(struct thread *, struct vnode *, u_long);
478 static int	swapoff_one(struct swdevt *sp, struct ucred *cred,
479 		    u_int flags);
480 
481 /*
482  * Swap bitmap functions
483  */
484 static void	swp_pager_freeswapspace(const struct page_range *range);
485 static daddr_t	swp_pager_getswapspace(int *npages);
486 
487 /*
488  * Metadata functions
489  */
490 static daddr_t swp_pager_meta_build(struct pctrie_iter *, vm_object_t object,
491 	vm_pindex_t, daddr_t, bool);
492 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t,
493     vm_size_t *);
494 static void swp_pager_meta_transfer(vm_object_t src, vm_object_t dst,
495     vm_pindex_t pindex, vm_pindex_t count);
496 static void swp_pager_meta_free_all(vm_object_t);
497 static daddr_t swp_pager_meta_lookup(struct pctrie_iter *, vm_pindex_t);
498 
499 static void
swp_pager_init_freerange(struct page_range * range)500 swp_pager_init_freerange(struct page_range *range)
501 {
502 	range->start = SWAPBLK_NONE;
503 	range->num = 0;
504 }
505 
506 static void
swp_pager_update_freerange(struct page_range * range,daddr_t addr)507 swp_pager_update_freerange(struct page_range *range, daddr_t addr)
508 {
509 	if (range->start + range->num == addr) {
510 		range->num++;
511 	} else {
512 		swp_pager_freeswapspace(range);
513 		range->start = addr;
514 		range->num = 1;
515 	}
516 }
517 
518 static void *
swblk_trie_alloc(struct pctrie * ptree)519 swblk_trie_alloc(struct pctrie *ptree)
520 {
521 
522 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
523 	    M_USE_RESERVE : 0)));
524 }
525 
526 static void
swblk_trie_free(struct pctrie * ptree,void * node)527 swblk_trie_free(struct pctrie *ptree, void *node)
528 {
529 
530 	uma_zfree(swpctrie_zone, node);
531 }
532 
533 static int
swblk_start(struct swblk * sb,vm_pindex_t pindex)534 swblk_start(struct swblk *sb, vm_pindex_t pindex)
535 {
536 	return (sb == NULL || sb->p >= pindex ?
537 	    0 : pindex % SWAP_META_PAGES);
538 }
539 
540 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
541 
542 static struct swblk *
swblk_lookup(vm_object_t object,vm_pindex_t pindex)543 swblk_lookup(vm_object_t object, vm_pindex_t pindex)
544 {
545 	return (SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
546 	    rounddown(pindex, SWAP_META_PAGES)));
547 }
548 
549 static void
swblk_lookup_remove(vm_object_t object,struct swblk * sb)550 swblk_lookup_remove(vm_object_t object, struct swblk *sb)
551 {
552 	SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
553 }
554 
555 static bool
swblk_is_empty(vm_object_t object)556 swblk_is_empty(vm_object_t object)
557 {
558 	return (pctrie_is_empty(&object->un_pager.swp.swp_blks));
559 }
560 
561 static struct swblk *
swblk_iter_lookup_ge(struct pctrie_iter * blks,vm_pindex_t pindex)562 swblk_iter_lookup_ge(struct pctrie_iter *blks, vm_pindex_t pindex)
563 {
564 	return (SWAP_PCTRIE_ITER_LOOKUP_GE(blks,
565 	    rounddown(pindex, SWAP_META_PAGES)));
566 }
567 
568 static void
swblk_iter_init_only(struct pctrie_iter * blks,vm_object_t object)569 swblk_iter_init_only(struct pctrie_iter *blks, vm_object_t object)
570 {
571 	VM_OBJECT_ASSERT_LOCKED(object);
572 	MPASS((object->flags & OBJ_SWAP) != 0);
573 	pctrie_iter_init(blks, &object->un_pager.swp.swp_blks);
574 }
575 
576 
577 static struct swblk *
swblk_iter_init(struct pctrie_iter * blks,vm_object_t object,vm_pindex_t pindex)578 swblk_iter_init(struct pctrie_iter *blks, vm_object_t object,
579     vm_pindex_t pindex)
580 {
581 	swblk_iter_init_only(blks, object);
582 	return (swblk_iter_lookup_ge(blks, pindex));
583 }
584 
585 static struct swblk *
swblk_iter_reinit(struct pctrie_iter * blks,vm_object_t object,vm_pindex_t pindex)586 swblk_iter_reinit(struct pctrie_iter *blks, vm_object_t object,
587     vm_pindex_t pindex)
588 {
589 	swblk_iter_init_only(blks, object);
590 	return (SWAP_PCTRIE_ITER_LOOKUP(blks,
591 	    rounddown(pindex, SWAP_META_PAGES)));
592 }
593 
594 static struct swblk *
swblk_iter_limit_init(struct pctrie_iter * blks,vm_object_t object,vm_pindex_t pindex,vm_pindex_t limit)595 swblk_iter_limit_init(struct pctrie_iter *blks, vm_object_t object,
596     vm_pindex_t pindex, vm_pindex_t limit)
597 {
598 	VM_OBJECT_ASSERT_LOCKED(object);
599 	MPASS((object->flags & OBJ_SWAP) != 0);
600 	pctrie_iter_limit_init(blks, &object->un_pager.swp.swp_blks, limit);
601 	return (swblk_iter_lookup_ge(blks, pindex));
602 }
603 
604 static struct swblk *
swblk_iter_next(struct pctrie_iter * blks)605 swblk_iter_next(struct pctrie_iter *blks)
606 {
607 	return (SWAP_PCTRIE_ITER_JUMP_GE(blks, SWAP_META_PAGES));
608 }
609 
610 static struct swblk *
swblk_iter_lookup(struct pctrie_iter * blks,vm_pindex_t pindex)611 swblk_iter_lookup(struct pctrie_iter *blks, vm_pindex_t pindex)
612 {
613 	return (SWAP_PCTRIE_ITER_LOOKUP(blks,
614 	    rounddown(pindex, SWAP_META_PAGES)));
615 }
616 
617 static int
swblk_iter_insert(struct pctrie_iter * blks,struct swblk * sb)618 swblk_iter_insert(struct pctrie_iter *blks, struct swblk *sb)
619 {
620 	return (SWAP_PCTRIE_ITER_INSERT(blks, sb));
621 }
622 
623 static void
swblk_iter_remove(struct pctrie_iter * blks)624 swblk_iter_remove(struct pctrie_iter *blks)
625 {
626 	SWAP_PCTRIE_ITER_REMOVE(blks);
627 }
628 
629 /*
630  * SWP_SIZECHECK() -	update swap_pager_full indication
631  *
632  *	update the swap_pager_almost_full indication and warn when we are
633  *	about to run out of swap space, using lowat/hiwat hysteresis.
634  *
635  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
636  *
637  *	No restrictions on call
638  *	This routine may not block.
639  */
640 static void
swp_sizecheck(void)641 swp_sizecheck(void)
642 {
643 
644 	if (swap_pager_avail < nswap_lowat) {
645 		if (swap_pager_almost_full == 0) {
646 			printf("swap_pager: out of swap space\n");
647 			swap_pager_almost_full = 1;
648 		}
649 	} else {
650 		swap_pager_full = 0;
651 		if (swap_pager_avail > nswap_hiwat)
652 			swap_pager_almost_full = 0;
653 	}
654 }
655 
656 /*
657  * SWAP_PAGER_INIT() -	initialize the swap pager!
658  *
659  *	Expected to be started from system init.  NOTE:  This code is run
660  *	before much else so be careful what you depend on.  Most of the VM
661  *	system has yet to be initialized at this point.
662  */
663 static void
swap_pager_init(void)664 swap_pager_init(void)
665 {
666 	/*
667 	 * Initialize object lists
668 	 */
669 	int i;
670 
671 	for (i = 0; i < NOBJLISTS; ++i)
672 		TAILQ_INIT(&swap_pager_object_list[i]);
673 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
674 	sx_init(&sw_alloc_sx, "swspsx");
675 	sx_init(&swdev_syscall_lock, "swsysc");
676 
677 	/*
678 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
679 	 * array, which has maxphys / PAGE_SIZE entries, and our locally
680 	 * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
681 	 * constrained by the swap device interleave stripe size.
682 	 *
683 	 * Initialized early so that GEOM_ELI can see it.
684 	 */
685 	nsw_cluster_max = min(maxphys / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
686 }
687 
688 /*
689  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
690  *
691  *	Expected to be started from pageout process once, prior to entering
692  *	its main loop.
693  */
694 void
swap_pager_swap_init(void)695 swap_pager_swap_init(void)
696 {
697 	unsigned long n, n2;
698 
699 	/*
700 	 * Number of in-transit swap bp operations.  Don't
701 	 * exhaust the pbufs completely.  Make sure we
702 	 * initialize workable values (0 will work for hysteresis
703 	 * but it isn't very efficient).
704 	 *
705 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
706 	 * designed to prevent other I/O from having high latencies due to
707 	 * our pageout I/O.  The value 4 works well for one or two active swap
708 	 * devices but is probably a little low if you have more.  Even so,
709 	 * a higher value would probably generate only a limited improvement
710 	 * with three or four active swap devices since the system does not
711 	 * typically have to pageout at extreme bandwidths.   We will want
712 	 * at least 2 per swap devices, and 4 is a pretty good value if you
713 	 * have one NFS swap device due to the command/ack latency over NFS.
714 	 * So it all works out pretty well.
715 	 *
716 	 * nsw_cluster_max is initialized in swap_pager_init().
717 	 */
718 
719 	nsw_wcount_async = 4;
720 	nsw_wcount_async_max = nsw_wcount_async;
721 	mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
722 
723 	swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
724 	swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
725 
726 	/*
727 	 * Initialize our zone, taking the user's requested size or
728 	 * estimating the number we need based on the number of pages
729 	 * in the system.
730 	 */
731 	n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
732 	    vm_cnt.v_page_count / 2;
733 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
734 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR, 0);
735 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
736 	    NULL, NULL, _Alignof(struct swblk) - 1, 0);
737 	n2 = n;
738 	do {
739 		if (uma_zone_reserve_kva(swblk_zone, n))
740 			break;
741 		/*
742 		 * if the allocation failed, try a zone two thirds the
743 		 * size of the previous attempt.
744 		 */
745 		n -= ((n + 2) / 3);
746 	} while (n > 0);
747 
748 	/*
749 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
750 	 * requested size.  Account for the difference when
751 	 * calculating swap_maxpages.
752 	 */
753 	n = uma_zone_get_max(swblk_zone);
754 
755 	if (n < n2)
756 		printf("Swap blk zone entries changed from %lu to %lu.\n",
757 		    n2, n);
758 	/* absolute maximum we can handle assuming 100% efficiency */
759 	swap_maxpages = n * SWAP_META_PAGES;
760 	swzone = n * sizeof(struct swblk);
761 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
762 		printf("Cannot reserve swap pctrie zone, "
763 		    "reduce kern.maxswzone.\n");
764 }
765 
766 bool
swap_pager_init_object(vm_object_t object,void * handle,struct ucred * cred,vm_ooffset_t size,vm_ooffset_t offset)767 swap_pager_init_object(vm_object_t object, void *handle, struct ucred *cred,
768     vm_ooffset_t size, vm_ooffset_t offset)
769 {
770 	if (cred != NULL) {
771 		if (!swap_reserve_by_cred(size, cred))
772 			return (false);
773 		crhold(cred);
774 	}
775 
776 	object->un_pager.swp.writemappings = 0;
777 	object->handle = handle;
778 	if (cred != NULL) {
779 		object->cred = cred;
780 		object->charge = size;
781 	}
782 	return (true);
783 }
784 
785 static vm_object_t
swap_pager_alloc_init(objtype_t otype,void * handle,struct ucred * cred,vm_ooffset_t size,vm_ooffset_t offset)786 swap_pager_alloc_init(objtype_t otype, void *handle, struct ucred *cred,
787     vm_ooffset_t size, vm_ooffset_t offset)
788 {
789 	vm_object_t object;
790 
791 	/*
792 	 * The un_pager.swp.swp_blks trie is initialized by
793 	 * vm_object_allocate() to ensure the correct order of
794 	 * visibility to other threads.
795 	 */
796 	object = vm_object_allocate(otype, OFF_TO_IDX(offset +
797 	    PAGE_MASK + size));
798 
799 	if (!swap_pager_init_object(object, handle, cred, size, offset)) {
800 		vm_object_deallocate(object);
801 		return (NULL);
802 	}
803 	return (object);
804 }
805 
806 /*
807  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
808  *			its metadata structures.
809  *
810  *	This routine is called from the mmap and fork code to create a new
811  *	OBJT_SWAP object.
812  *
813  *	This routine must ensure that no live duplicate is created for
814  *	the named object request, which is protected against by
815  *	holding the sw_alloc_sx lock in case handle != NULL.
816  */
817 static vm_object_t
swap_pager_alloc(void * handle,vm_ooffset_t size,vm_prot_t prot,vm_ooffset_t offset,struct ucred * cred)818 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
819     vm_ooffset_t offset, struct ucred *cred)
820 {
821 	vm_object_t object;
822 
823 	if (handle != NULL) {
824 		/*
825 		 * Reference existing named region or allocate new one.  There
826 		 * should not be a race here against swp_pager_meta_build()
827 		 * as called from vm_page_remove() in regards to the lookup
828 		 * of the handle.
829 		 */
830 		sx_xlock(&sw_alloc_sx);
831 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
832 		if (object == NULL) {
833 			object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
834 			    size, offset);
835 			if (object != NULL) {
836 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
837 				    object, pager_object_list);
838 			}
839 		}
840 		sx_xunlock(&sw_alloc_sx);
841 	} else {
842 		object = swap_pager_alloc_init(OBJT_SWAP, handle, cred,
843 		    size, offset);
844 	}
845 	return (object);
846 }
847 
848 /*
849  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
850  *
851  *	The swap backing for the object is destroyed.  The code is
852  *	designed such that we can reinstantiate it later, but this
853  *	routine is typically called only when the entire object is
854  *	about to be destroyed.
855  *
856  *	The object must be locked.
857  */
858 static void
swap_pager_dealloc(vm_object_t object)859 swap_pager_dealloc(vm_object_t object)
860 {
861 
862 	VM_OBJECT_ASSERT_WLOCKED(object);
863 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
864 
865 	/*
866 	 * Remove from list right away so lookups will fail if we block for
867 	 * pageout completion.
868 	 */
869 	if ((object->flags & OBJ_ANON) == 0 && object->handle != NULL) {
870 		VM_OBJECT_WUNLOCK(object);
871 		sx_xlock(&sw_alloc_sx);
872 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
873 		    pager_object_list);
874 		sx_xunlock(&sw_alloc_sx);
875 		VM_OBJECT_WLOCK(object);
876 	}
877 
878 	vm_object_pip_wait(object, "swpdea");
879 
880 	/*
881 	 * Free all remaining metadata.  We only bother to free it from
882 	 * the swap meta data.  We do not attempt to free swapblk's still
883 	 * associated with vm_page_t's for this object.  We do not care
884 	 * if paging is still in progress on some objects.
885 	 */
886 	swp_pager_meta_free_all(object);
887 	object->handle = NULL;
888 	object->type = OBJT_DEAD;
889 
890 	/*
891 	 * Release the allocation charge.
892 	 */
893 	if (object->cred != NULL) {
894 		swap_release_by_cred(object->charge, object->cred);
895 		object->charge = 0;
896 		crfree(object->cred);
897 		object->cred = NULL;
898 	}
899 
900 	/*
901 	 * Hide the object from swap_pager_swapoff().
902 	 */
903 	vm_object_clear_flag(object, OBJ_SWAP);
904 }
905 
906 /************************************************************************
907  *			SWAP PAGER BITMAP ROUTINES			*
908  ************************************************************************/
909 
910 /*
911  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
912  *
913  *	Allocate swap for up to the requested number of pages.  The
914  *	starting swap block number (a page index) is returned or
915  *	SWAPBLK_NONE if the allocation failed.
916  *
917  *	Also has the side effect of advising that somebody made a mistake
918  *	when they configured swap and didn't configure enough.
919  *
920  *	This routine may not sleep.
921  *
922  *	We allocate in round-robin fashion from the configured devices.
923  */
924 static daddr_t
swp_pager_getswapspace(int * io_npages)925 swp_pager_getswapspace(int *io_npages)
926 {
927 	daddr_t blk;
928 	struct swdevt *sp;
929 	int mpages, npages;
930 
931 	KASSERT(*io_npages >= 1,
932 	    ("%s: npages not positive", __func__));
933 	blk = SWAPBLK_NONE;
934 	mpages = *io_npages;
935 	npages = imin(BLIST_MAX_ALLOC, mpages);
936 	mtx_lock(&sw_dev_mtx);
937 	sp = swdevhd;
938 	while (!TAILQ_EMPTY(&swtailq)) {
939 		if (sp == NULL)
940 			sp = TAILQ_FIRST(&swtailq);
941 		if ((sp->sw_flags & SW_CLOSING) == 0)
942 			blk = blist_alloc(sp->sw_blist, &npages, mpages);
943 		if (blk != SWAPBLK_NONE)
944 			break;
945 		sp = TAILQ_NEXT(sp, sw_list);
946 		if (swdevhd == sp) {
947 			if (npages == 1)
948 				break;
949 			mpages = npages - 1;
950 			npages >>= 1;
951 		}
952 	}
953 	if (blk != SWAPBLK_NONE) {
954 		*io_npages = npages;
955 		blk += sp->sw_first;
956 		sp->sw_used += npages;
957 		swap_pager_avail -= npages;
958 		swp_sizecheck();
959 		swdevhd = TAILQ_NEXT(sp, sw_list);
960 	} else {
961 		if (swap_pager_full != 2) {
962 			printf("swp_pager_getswapspace(%d): failed\n",
963 			    *io_npages);
964 			swap_pager_full = 2;
965 			swap_pager_almost_full = 1;
966 		}
967 		swdevhd = NULL;
968 	}
969 	mtx_unlock(&sw_dev_mtx);
970 	return (blk);
971 }
972 
973 static bool
swp_pager_isondev(daddr_t blk,struct swdevt * sp)974 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
975 {
976 
977 	return (blk >= sp->sw_first && blk < sp->sw_end);
978 }
979 
980 static void
swp_pager_strategy(struct buf * bp)981 swp_pager_strategy(struct buf *bp)
982 {
983 	struct swdevt *sp;
984 
985 	mtx_lock(&sw_dev_mtx);
986 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
987 		if (swp_pager_isondev(bp->b_blkno, sp)) {
988 			mtx_unlock(&sw_dev_mtx);
989 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
990 			    unmapped_buf_allowed) {
991 				bp->b_data = unmapped_buf;
992 				bp->b_offset = 0;
993 			} else {
994 				pmap_qenter((vm_offset_t)bp->b_data,
995 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
996 			}
997 			sp->sw_strategy(bp, sp);
998 			return;
999 		}
1000 	}
1001 	panic("Swapdev not found");
1002 }
1003 
1004 /*
1005  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
1006  *
1007  *	This routine returns the specified swap blocks back to the bitmap.
1008  *
1009  *	This routine may not sleep.
1010  */
1011 static void
swp_pager_freeswapspace(const struct page_range * range)1012 swp_pager_freeswapspace(const struct page_range *range)
1013 {
1014 	daddr_t blk, npages;
1015 	struct swdevt *sp;
1016 
1017 	blk = range->start;
1018 	npages = range->num;
1019 	if (npages == 0)
1020 		return;
1021 	mtx_lock(&sw_dev_mtx);
1022 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
1023 		if (swp_pager_isondev(blk, sp)) {
1024 			sp->sw_used -= npages;
1025 			/*
1026 			 * If we are attempting to stop swapping on
1027 			 * this device, we don't want to mark any
1028 			 * blocks free lest they be reused.
1029 			 */
1030 			if ((sp->sw_flags & SW_CLOSING) == 0) {
1031 				blist_free(sp->sw_blist, blk - sp->sw_first,
1032 				    npages);
1033 				swap_pager_avail += npages;
1034 				swp_sizecheck();
1035 			}
1036 			mtx_unlock(&sw_dev_mtx);
1037 			return;
1038 		}
1039 	}
1040 	panic("Swapdev not found");
1041 }
1042 
1043 /*
1044  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
1045  */
1046 static int
sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)1047 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
1048 {
1049 	struct sbuf sbuf;
1050 	struct swdevt *sp;
1051 	const char *devname;
1052 	int error;
1053 
1054 	error = sysctl_wire_old_buffer(req, 0);
1055 	if (error != 0)
1056 		return (error);
1057 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
1058 	mtx_lock(&sw_dev_mtx);
1059 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
1060 		if (vn_isdisk(sp->sw_vp))
1061 			devname = devtoname(sp->sw_vp->v_rdev);
1062 		else
1063 			devname = "[file]";
1064 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
1065 		blist_stats(sp->sw_blist, &sbuf);
1066 	}
1067 	mtx_unlock(&sw_dev_mtx);
1068 	error = sbuf_finish(&sbuf);
1069 	sbuf_delete(&sbuf);
1070 	return (error);
1071 }
1072 
1073 /*
1074  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
1075  *				range within an object.
1076  *
1077  *	This routine removes swapblk assignments from swap metadata.
1078  *
1079  *	The external callers of this routine typically have already destroyed
1080  *	or renamed vm_page_t's associated with this range in the object so
1081  *	we should be ok.
1082  *
1083  *	The object must be locked.
1084  */
1085 void
swap_pager_freespace(vm_object_t object,vm_pindex_t start,vm_size_t size,vm_size_t * freed)1086 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size,
1087     vm_size_t *freed)
1088 {
1089 	MPASS((object->flags & OBJ_SWAP) != 0);
1090 
1091 	swp_pager_meta_free(object, start, size, freed);
1092 }
1093 
1094 static void
swap_pager_freespace_pgo(vm_object_t object,vm_pindex_t start,vm_size_t size)1095 swap_pager_freespace_pgo(vm_object_t object, vm_pindex_t start, vm_size_t size)
1096 {
1097 	MPASS((object->flags & OBJ_SWAP) != 0);
1098 
1099 	swp_pager_meta_free(object, start, size, NULL);
1100 }
1101 
1102 /*
1103  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
1104  *
1105  *	Assigns swap blocks to the specified range within the object.  The
1106  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
1107  *
1108  *	Returns 0 on success, -1 on failure.
1109  */
1110 int
swap_pager_reserve(vm_object_t object,vm_pindex_t start,vm_pindex_t size)1111 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_pindex_t size)
1112 {
1113 	struct pctrie_iter blks;
1114 	struct page_range range;
1115 	daddr_t addr, blk;
1116 	vm_pindex_t i, j;
1117 	int n;
1118 
1119 	swp_pager_init_freerange(&range);
1120 	VM_OBJECT_WLOCK(object);
1121 	swblk_iter_init_only(&blks, object);
1122 	for (i = 0; i < size; i += n) {
1123 		n = MIN(size - i, INT_MAX);
1124 		blk = swp_pager_getswapspace(&n);
1125 		if (blk == SWAPBLK_NONE) {
1126 			swp_pager_meta_free(object, start, i, NULL);
1127 			VM_OBJECT_WUNLOCK(object);
1128 			return (-1);
1129 		}
1130 		for (j = 0; j < n; ++j) {
1131 			addr = swp_pager_meta_build(&blks, object,
1132 			    start + i + j, blk + j, false);
1133 			if (addr != SWAPBLK_NONE)
1134 				swp_pager_update_freerange(&range, addr);
1135 		}
1136 	}
1137 	swp_pager_freeswapspace(&range);
1138 	VM_OBJECT_WUNLOCK(object);
1139 	return (0);
1140 }
1141 
1142 /*
1143  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
1144  *			and destroy the source.
1145  *
1146  *	Copy any valid swapblks from the source to the destination.  In
1147  *	cases where both the source and destination have a valid swapblk,
1148  *	we keep the destination's.
1149  *
1150  *	This routine is allowed to sleep.  It may sleep allocating metadata
1151  *	indirectly through swp_pager_meta_build().
1152  *
1153  *	The source object contains no vm_page_t's (which is just as well)
1154  *
1155  *	The source and destination objects must be locked.
1156  *	Both object locks may temporarily be released.
1157  */
1158 void
swap_pager_copy(vm_object_t srcobject,vm_object_t dstobject,vm_pindex_t offset,int destroysource)1159 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
1160     vm_pindex_t offset, int destroysource)
1161 {
1162 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
1163 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
1164 
1165 	/*
1166 	 * If destroysource is set, we remove the source object from the
1167 	 * swap_pager internal queue now.
1168 	 */
1169 	if (destroysource && (srcobject->flags & OBJ_ANON) == 0 &&
1170 	    srcobject->handle != NULL) {
1171 		VM_OBJECT_WUNLOCK(srcobject);
1172 		VM_OBJECT_WUNLOCK(dstobject);
1173 		sx_xlock(&sw_alloc_sx);
1174 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
1175 		    pager_object_list);
1176 		sx_xunlock(&sw_alloc_sx);
1177 		VM_OBJECT_WLOCK(dstobject);
1178 		VM_OBJECT_WLOCK(srcobject);
1179 	}
1180 
1181 	/*
1182 	 * Transfer source to destination.
1183 	 */
1184 	swp_pager_meta_transfer(srcobject, dstobject, offset, dstobject->size);
1185 
1186 	/*
1187 	 * Free left over swap blocks in source.
1188 	 */
1189 	if (destroysource)
1190 		swp_pager_meta_free_all(srcobject);
1191 }
1192 
1193 /*
1194  * SWP_PAGER_HASPAGE_ITER() -	determine if we have good backing store for
1195  *				the requested page, accessed with the given
1196  *				iterator.
1197  *
1198  *	We determine whether good backing store exists for the requested
1199  *	page and return TRUE if it does, FALSE if it doesn't.
1200  *
1201  *	If TRUE, we also try to determine how much valid, contiguous backing
1202  *	store exists before and after the requested page.
1203  */
1204 static boolean_t
swp_pager_haspage_iter(struct pctrie_iter * blks,vm_pindex_t pindex,int * before,int * after)1205 swp_pager_haspage_iter(struct pctrie_iter *blks, vm_pindex_t pindex,
1206     int *before, int *after)
1207 {
1208 	daddr_t blk, blk0;
1209 	int i;
1210 
1211 	/*
1212 	 * do we have good backing store at the requested index ?
1213 	 */
1214 	blk0 = swp_pager_meta_lookup(blks, pindex);
1215 	if (blk0 == SWAPBLK_NONE) {
1216 		if (before)
1217 			*before = 0;
1218 		if (after)
1219 			*after = 0;
1220 		return (FALSE);
1221 	}
1222 
1223 	/*
1224 	 * find backwards-looking contiguous good backing store
1225 	 */
1226 	if (before != NULL) {
1227 		for (i = 1; i < SWB_NPAGES; i++) {
1228 			if (i > pindex)
1229 				break;
1230 			blk = swp_pager_meta_lookup(blks, pindex - i);
1231 			if (blk != blk0 - i)
1232 				break;
1233 		}
1234 		*before = i - 1;
1235 	}
1236 
1237 	/*
1238 	 * find forward-looking contiguous good backing store
1239 	 */
1240 	if (after != NULL) {
1241 		for (i = 1; i < SWB_NPAGES; i++) {
1242 			blk = swp_pager_meta_lookup(blks, pindex + i);
1243 			if (blk != blk0 + i)
1244 				break;
1245 		}
1246 		*after = i - 1;
1247 	}
1248 	return (TRUE);
1249 }
1250 
1251 /*
1252  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1253  *				the requested page, in the given object.
1254  *
1255  *	We determine whether good backing store exists for the requested
1256  *	page and return TRUE if it does, FALSE if it doesn't.
1257  *
1258  *	If TRUE, we also try to determine how much valid, contiguous backing
1259  *	store exists before and after the requested page.
1260  */
1261 static boolean_t
swap_pager_haspage(vm_object_t object,vm_pindex_t pindex,int * before,int * after)1262 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1263     int *after)
1264 {
1265 	struct pctrie_iter blks;
1266 
1267 	swblk_iter_init_only(&blks, object);
1268 	return (swp_pager_haspage_iter(&blks, pindex, before, after));
1269 }
1270 
1271 static void
swap_pager_unswapped_acct(vm_page_t m)1272 swap_pager_unswapped_acct(vm_page_t m)
1273 {
1274 	KASSERT((m->object->flags & OBJ_SWAP) != 0,
1275 	    ("Free object not swappable"));
1276 	if ((m->a.flags & PGA_SWAP_FREE) != 0)
1277 		counter_u64_add(swap_free_completed, 1);
1278 	vm_page_aflag_clear(m, PGA_SWAP_FREE | PGA_SWAP_SPACE);
1279 
1280 	/*
1281 	 * The meta data only exists if the object is OBJT_SWAP
1282 	 * and even then might not be allocated yet.
1283 	 */
1284 }
1285 
1286 /*
1287  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1288  *
1289  *	This removes any associated swap backing store, whether valid or
1290  *	not, from the page.
1291  *
1292  *	This routine is typically called when a page is made dirty, at
1293  *	which point any associated swap can be freed.  MADV_FREE also
1294  *	calls us in a special-case situation
1295  *
1296  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1297  *	should make the page dirty before calling this routine.  This routine
1298  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1299  *	depends on it.
1300  *
1301  *	This routine may not sleep.
1302  *
1303  *	The object containing the page may be locked.
1304  */
1305 static void
swap_pager_unswapped(vm_page_t m)1306 swap_pager_unswapped(vm_page_t m)
1307 {
1308 	struct page_range range;
1309 	struct swblk *sb;
1310 	vm_object_t obj;
1311 
1312 	/*
1313 	 * Handle enqueing deferred frees first.  If we do not have the
1314 	 * object lock we wait for the page daemon to clear the space.
1315 	 */
1316 	obj = m->object;
1317 	if (!VM_OBJECT_WOWNED(obj)) {
1318 		VM_PAGE_OBJECT_BUSY_ASSERT(m);
1319 		/*
1320 		 * The caller is responsible for synchronization but we
1321 		 * will harmlessly handle races.  This is typically provided
1322 		 * by only calling unswapped() when a page transitions from
1323 		 * clean to dirty.
1324 		 */
1325 		if ((m->a.flags & (PGA_SWAP_SPACE | PGA_SWAP_FREE)) ==
1326 		    PGA_SWAP_SPACE) {
1327 			vm_page_aflag_set(m, PGA_SWAP_FREE);
1328 			counter_u64_add(swap_free_deferred, 1);
1329 		}
1330 		return;
1331 	}
1332 	swap_pager_unswapped_acct(m);
1333 
1334 	sb = swblk_lookup(m->object, m->pindex);
1335 	if (sb == NULL)
1336 		return;
1337 	range.start = sb->d[m->pindex % SWAP_META_PAGES];
1338 	if (range.start == SWAPBLK_NONE)
1339 		return;
1340 	range.num = 1;
1341 	swp_pager_freeswapspace(&range);
1342 	sb->d[m->pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
1343 	swp_pager_free_empty_swblk(m->object, sb);
1344 }
1345 
1346 /*
1347  * swap_pager_getpages_locked() - bring pages in from swap
1348  *
1349  *	Attempt to page in the pages in array "ma" of length "count".  The
1350  *	caller may optionally specify that additional pages preceding and
1351  *	succeeding the specified range be paged in.  The number of such pages
1352  *	is returned in the "a_rbehind" and "a_rahead" parameters, and they will
1353  *	be in the inactive queue upon return.
1354  *
1355  *	The pages in "ma" must be busied and will remain busied upon return.
1356  */
1357 static int
swap_pager_getpages_locked(struct pctrie_iter * blks,vm_object_t object,vm_page_t * ma,int count,int * a_rbehind,int * a_rahead,struct buf * bp)1358 swap_pager_getpages_locked(struct pctrie_iter *blks, vm_object_t object,
1359     vm_page_t *ma, int count, int *a_rbehind, int *a_rahead, struct buf *bp)
1360 {
1361 	vm_pindex_t pindex;
1362 	int rahead, rbehind;
1363 
1364 	VM_OBJECT_ASSERT_WLOCKED(object);
1365 
1366 	KASSERT((object->flags & OBJ_SWAP) != 0,
1367 	    ("%s: object not swappable", __func__));
1368 	pindex = ma[0]->pindex;
1369 	if (!swp_pager_haspage_iter(blks, pindex, &rbehind, &rahead)) {
1370 		VM_OBJECT_WUNLOCK(object);
1371 		uma_zfree(swrbuf_zone, bp);
1372 		return (VM_PAGER_FAIL);
1373 	}
1374 
1375 	KASSERT(count - 1 <= rahead,
1376 	    ("page count %d extends beyond swap block", count));
1377 
1378 	/*
1379 	 * Do not transfer any pages other than those that are xbusied
1380 	 * when running during a split or collapse operation.  This
1381 	 * prevents clustering from re-creating pages which are being
1382 	 * moved into another object.
1383 	 */
1384 	if ((object->flags & (OBJ_SPLIT | OBJ_DEAD)) != 0) {
1385 		rahead = count - 1;
1386 		rbehind = 0;
1387 	}
1388 	/* Clip readbehind/ahead ranges to exclude already resident pages. */
1389 	rbehind = a_rbehind != NULL ? imin(*a_rbehind, rbehind) : 0;
1390 	rahead = a_rahead != NULL ? imin(*a_rahead, rahead - count + 1) : 0;
1391 	/* Allocate pages. */
1392 	vm_object_prepare_buf_pages(object, bp->b_pages, count, &rbehind,
1393 	    &rahead, ma);
1394 	bp->b_npages = rbehind + count + rahead;
1395 	for (int i = 0; i < bp->b_npages; i++)
1396 		bp->b_pages[i]->oflags |= VPO_SWAPINPROG;
1397 	bp->b_blkno = swp_pager_meta_lookup(blks, pindex - rbehind);
1398 	KASSERT(bp->b_blkno != SWAPBLK_NONE,
1399 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1400 
1401 	vm_object_pip_add(object, bp->b_npages);
1402 	VM_OBJECT_WUNLOCK(object);
1403 	MPASS((bp->b_flags & B_MAXPHYS) != 0);
1404 
1405 	/* Report back actual behind/ahead read. */
1406 	if (a_rbehind != NULL)
1407 		*a_rbehind = rbehind;
1408 	if (a_rahead != NULL)
1409 		*a_rahead = rahead;
1410 
1411 	bp->b_flags |= B_PAGING;
1412 	bp->b_iocmd = BIO_READ;
1413 	bp->b_iodone = swp_pager_async_iodone;
1414 	bp->b_rcred = crhold(thread0.td_ucred);
1415 	bp->b_wcred = crhold(thread0.td_ucred);
1416 	bp->b_bufsize = bp->b_bcount = ptoa(bp->b_npages);
1417 	bp->b_pgbefore = rbehind;
1418 	bp->b_pgafter = rahead;
1419 
1420 	VM_CNT_INC(v_swapin);
1421 	VM_CNT_ADD(v_swappgsin, bp->b_npages);
1422 
1423 	/*
1424 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1425 	 * this point because we automatically release it on completion.
1426 	 * Instead, we look at the one page we are interested in which we
1427 	 * still hold a lock on even through the I/O completion.
1428 	 *
1429 	 * The other pages in our ma[] array are also released on completion,
1430 	 * so we cannot assume they are valid anymore either.
1431 	 *
1432 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1433 	 */
1434 	BUF_KERNPROC(bp);
1435 	swp_pager_strategy(bp);
1436 
1437 	/*
1438 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1439 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1440 	 * is set in the metadata for each page in the request.
1441 	 */
1442 	VM_OBJECT_WLOCK(object);
1443 	/* This could be implemented more efficiently with aflags */
1444 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1445 		ma[0]->oflags |= VPO_SWAPSLEEP;
1446 		VM_CNT_INC(v_intrans);
1447 		if (VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1448 		    "swread", hz * 20)) {
1449 			printf(
1450 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1451 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1452 		}
1453 	}
1454 	VM_OBJECT_WUNLOCK(object);
1455 
1456 	/*
1457 	 * If we had an unrecoverable read error pages will not be valid.
1458 	 */
1459 	for (int i = 0; i < count; i++)
1460 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1461 			return (VM_PAGER_ERROR);
1462 
1463 	return (VM_PAGER_OK);
1464 
1465 	/*
1466 	 * A final note: in a low swap situation, we cannot deallocate swap
1467 	 * and mark a page dirty here because the caller is likely to mark
1468 	 * the page clean when we return, causing the page to possibly revert
1469 	 * to all-zero's later.
1470 	 */
1471 }
1472 
1473 static int
swap_pager_getpages(vm_object_t object,vm_page_t * ma,int count,int * rbehind,int * rahead)1474 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count,
1475     int *rbehind, int *rahead)
1476 {
1477 	struct buf *bp;
1478 	struct pctrie_iter blks;
1479 
1480 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1481 	VM_OBJECT_WLOCK(object);
1482 	swblk_iter_init_only(&blks, object);
1483 	return (swap_pager_getpages_locked(&blks, object, ma, count, rbehind,
1484 	    rahead, bp));
1485 }
1486 
1487 /*
1488  * 	swap_pager_getpages_async():
1489  *
1490  *	Right now this is emulation of asynchronous operation on top of
1491  *	swap_pager_getpages().
1492  */
1493 static int
swap_pager_getpages_async(vm_object_t object,vm_page_t * ma,int count,int * rbehind,int * rahead,pgo_getpages_iodone_t iodone,void * arg)1494 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1495     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1496 {
1497 	int r, error;
1498 
1499 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1500 	switch (r) {
1501 	case VM_PAGER_OK:
1502 		error = 0;
1503 		break;
1504 	case VM_PAGER_ERROR:
1505 		error = EIO;
1506 		break;
1507 	case VM_PAGER_FAIL:
1508 		error = EINVAL;
1509 		break;
1510 	default:
1511 		panic("unhandled swap_pager_getpages() error %d", r);
1512 	}
1513 	(iodone)(arg, ma, count, error);
1514 
1515 	return (r);
1516 }
1517 
1518 /*
1519  *	swap_pager_putpages:
1520  *
1521  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1522  *
1523  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1524  *	vm_page reservation system coupled with properly written VFS devices
1525  *	should ensure that no low-memory deadlock occurs.  This is an area
1526  *	which needs work.
1527  *
1528  *	The parent has N vm_object_pip_add() references prior to
1529  *	calling us and will remove references for rtvals[] that are
1530  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1531  *	completion.
1532  *
1533  *	The parent has soft-busy'd the pages it passes us and will unbusy
1534  *	those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1535  *	We need to unbusy the rest on I/O completion.
1536  */
1537 static void
swap_pager_putpages(vm_object_t object,vm_page_t * ma,int count,int flags,int * rtvals)1538 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1539     int flags, int *rtvals)
1540 {
1541 	struct pctrie_iter blks;
1542 	struct page_range range;
1543 	struct buf *bp;
1544 	daddr_t addr, blk;
1545 	vm_page_t mreq;
1546 	int i, j, n;
1547 	bool async;
1548 
1549 	KASSERT(count == 0 || ma[0]->object == object,
1550 	    ("%s: object mismatch %p/%p",
1551 	    __func__, object, ma[0]->object));
1552 
1553 	VM_OBJECT_WUNLOCK(object);
1554 	async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1555 	swp_pager_init_freerange(&range);
1556 
1557 	/*
1558 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1559 	 * The page is left dirty until the pageout operation completes
1560 	 * successfully.
1561 	 */
1562 	for (i = 0; i < count; i += n) {
1563 		/* Maximum I/O size is limited by maximum swap block size. */
1564 		n = min(count - i, nsw_cluster_max);
1565 
1566 		if (async) {
1567 			mtx_lock(&swbuf_mtx);
1568 			while (nsw_wcount_async == 0)
1569 				msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1570 				    "swbufa", 0);
1571 			nsw_wcount_async--;
1572 			mtx_unlock(&swbuf_mtx);
1573 		}
1574 
1575 		/* Get a block of swap of size up to size n. */
1576 		blk = swp_pager_getswapspace(&n);
1577 		if (blk == SWAPBLK_NONE) {
1578 			mtx_lock(&swbuf_mtx);
1579 			if (++nsw_wcount_async == 1)
1580 				wakeup(&nsw_wcount_async);
1581 			mtx_unlock(&swbuf_mtx);
1582 			for (j = 0; j < n; ++j)
1583 				rtvals[i + j] = VM_PAGER_FAIL;
1584 			continue;
1585 		}
1586 		VM_OBJECT_WLOCK(object);
1587 		swblk_iter_init_only(&blks, object);
1588 		for (j = 0; j < n; ++j) {
1589 			mreq = ma[i + j];
1590 			vm_page_aflag_clear(mreq, PGA_SWAP_FREE);
1591 			KASSERT(mreq->object == object,
1592 			    ("%s: object mismatch %p/%p",
1593 			    __func__, mreq->object, object));
1594 			addr = swp_pager_meta_build(&blks, object,
1595 			    mreq->pindex, blk + j, false);
1596 			if (addr != SWAPBLK_NONE)
1597 				swp_pager_update_freerange(&range, addr);
1598 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1599 			mreq->oflags |= VPO_SWAPINPROG;
1600 		}
1601 		VM_OBJECT_WUNLOCK(object);
1602 
1603 		bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1604 		MPASS((bp->b_flags & B_MAXPHYS) != 0);
1605 		if (async)
1606 			bp->b_flags |= B_ASYNC;
1607 		bp->b_flags |= B_PAGING;
1608 		bp->b_iocmd = BIO_WRITE;
1609 
1610 		bp->b_rcred = crhold(thread0.td_ucred);
1611 		bp->b_wcred = crhold(thread0.td_ucred);
1612 		bp->b_bcount = PAGE_SIZE * n;
1613 		bp->b_bufsize = PAGE_SIZE * n;
1614 		bp->b_blkno = blk;
1615 		for (j = 0; j < n; j++)
1616 			bp->b_pages[j] = ma[i + j];
1617 		bp->b_npages = n;
1618 
1619 		/*
1620 		 * Must set dirty range for NFS to work.
1621 		 */
1622 		bp->b_dirtyoff = 0;
1623 		bp->b_dirtyend = bp->b_bcount;
1624 
1625 		VM_CNT_INC(v_swapout);
1626 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1627 
1628 		/*
1629 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1630 		 * can call the async completion routine at the end of a
1631 		 * synchronous I/O operation.  Otherwise, our caller would
1632 		 * perform duplicate unbusy and wakeup operations on the page
1633 		 * and object, respectively.
1634 		 */
1635 		for (j = 0; j < n; j++)
1636 			rtvals[i + j] = VM_PAGER_PEND;
1637 
1638 		/*
1639 		 * asynchronous
1640 		 *
1641 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1642 		 */
1643 		if (async) {
1644 			bp->b_iodone = swp_pager_async_iodone;
1645 			BUF_KERNPROC(bp);
1646 			swp_pager_strategy(bp);
1647 			continue;
1648 		}
1649 
1650 		/*
1651 		 * synchronous
1652 		 *
1653 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1654 		 */
1655 		bp->b_iodone = bdone;
1656 		swp_pager_strategy(bp);
1657 
1658 		/*
1659 		 * Wait for the sync I/O to complete.
1660 		 */
1661 		bwait(bp, PVM, "swwrt");
1662 
1663 		/*
1664 		 * Now that we are through with the bp, we can call the
1665 		 * normal async completion, which frees everything up.
1666 		 */
1667 		swp_pager_async_iodone(bp);
1668 	}
1669 	swp_pager_freeswapspace(&range);
1670 	VM_OBJECT_WLOCK(object);
1671 }
1672 
1673 /*
1674  *	swp_pager_async_iodone:
1675  *
1676  *	Completion routine for asynchronous reads and writes from/to swap.
1677  *	Also called manually by synchronous code to finish up a bp.
1678  *
1679  *	This routine may not sleep.
1680  */
1681 static void
swp_pager_async_iodone(struct buf * bp)1682 swp_pager_async_iodone(struct buf *bp)
1683 {
1684 	int i;
1685 	vm_object_t object = NULL;
1686 
1687 	/*
1688 	 * Report error - unless we ran out of memory, in which case
1689 	 * we've already logged it in swapgeom_strategy().
1690 	 */
1691 	if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1692 		printf(
1693 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1694 			"size %ld, error %d\n",
1695 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1696 		    (long)bp->b_blkno,
1697 		    (long)bp->b_bcount,
1698 		    bp->b_error
1699 		);
1700 	}
1701 
1702 	/*
1703 	 * remove the mapping for kernel virtual
1704 	 */
1705 	if (buf_mapped(bp))
1706 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1707 	else
1708 		bp->b_data = bp->b_kvabase;
1709 
1710 	if (bp->b_npages) {
1711 		object = bp->b_pages[0]->object;
1712 		VM_OBJECT_WLOCK(object);
1713 	}
1714 
1715 	/*
1716 	 * cleanup pages.  If an error occurs writing to swap, we are in
1717 	 * very serious trouble.  If it happens to be a disk error, though,
1718 	 * we may be able to recover by reassigning the swap later on.  So
1719 	 * in this case we remove the m->swapblk assignment for the page
1720 	 * but do not free it in the rlist.  The errornous block(s) are thus
1721 	 * never reallocated as swap.  Redirty the page and continue.
1722 	 */
1723 	for (i = 0; i < bp->b_npages; ++i) {
1724 		vm_page_t m = bp->b_pages[i];
1725 
1726 		m->oflags &= ~VPO_SWAPINPROG;
1727 		if (m->oflags & VPO_SWAPSLEEP) {
1728 			m->oflags &= ~VPO_SWAPSLEEP;
1729 			wakeup(&object->handle);
1730 		}
1731 
1732 		/* We always have space after I/O, successful or not. */
1733 		vm_page_aflag_set(m, PGA_SWAP_SPACE);
1734 
1735 		if (bp->b_ioflags & BIO_ERROR) {
1736 			/*
1737 			 * If an error occurs I'd love to throw the swapblk
1738 			 * away without freeing it back to swapspace, so it
1739 			 * can never be used again.  But I can't from an
1740 			 * interrupt.
1741 			 */
1742 			if (bp->b_iocmd == BIO_READ) {
1743 				/*
1744 				 * NOTE: for reads, m->dirty will probably
1745 				 * be overridden by the original caller of
1746 				 * getpages so don't play cute tricks here.
1747 				 */
1748 				vm_page_invalid(m);
1749 				if (i < bp->b_pgbefore ||
1750 				    i >= bp->b_npages - bp->b_pgafter)
1751 					vm_page_free_invalid(m);
1752 			} else {
1753 				/*
1754 				 * If a write error occurs, reactivate page
1755 				 * so it doesn't clog the inactive list,
1756 				 * then finish the I/O.
1757 				 */
1758 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1759 
1760 				/* PQ_UNSWAPPABLE? */
1761 				vm_page_activate(m);
1762 				vm_page_sunbusy(m);
1763 			}
1764 		} else if (bp->b_iocmd == BIO_READ) {
1765 			/*
1766 			 * NOTE: for reads, m->dirty will probably be
1767 			 * overridden by the original caller of getpages so
1768 			 * we cannot set them in order to free the underlying
1769 			 * swap in a low-swap situation.  I don't think we'd
1770 			 * want to do that anyway, but it was an optimization
1771 			 * that existed in the old swapper for a time before
1772 			 * it got ripped out due to precisely this problem.
1773 			 */
1774 			KASSERT(!pmap_page_is_mapped(m),
1775 			    ("swp_pager_async_iodone: page %p is mapped", m));
1776 			KASSERT(m->dirty == 0,
1777 			    ("swp_pager_async_iodone: page %p is dirty", m));
1778 
1779 			vm_page_valid(m);
1780 			if (i < bp->b_pgbefore ||
1781 			    i >= bp->b_npages - bp->b_pgafter)
1782 				vm_page_readahead_finish(m);
1783 		} else {
1784 			/*
1785 			 * For write success, clear the dirty
1786 			 * status, then finish the I/O ( which decrements the
1787 			 * busy count and possibly wakes waiter's up ).
1788 			 * A page is only written to swap after a period of
1789 			 * inactivity.  Therefore, we do not expect it to be
1790 			 * reused.
1791 			 */
1792 			KASSERT(!pmap_page_is_write_mapped(m),
1793 			    ("swp_pager_async_iodone: page %p is not write"
1794 			    " protected", m));
1795 			vm_page_undirty(m);
1796 			vm_page_deactivate_noreuse(m);
1797 			vm_page_sunbusy(m);
1798 		}
1799 	}
1800 
1801 	/*
1802 	 * adjust pip.  NOTE: the original parent may still have its own
1803 	 * pip refs on the object.
1804 	 */
1805 	if (object != NULL) {
1806 		vm_object_pip_wakeupn(object, bp->b_npages);
1807 		VM_OBJECT_WUNLOCK(object);
1808 	}
1809 
1810 	/*
1811 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1812 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1813 	 * trigger a KASSERT in relpbuf().
1814 	 */
1815 	if (bp->b_vp) {
1816 		    bp->b_vp = NULL;
1817 		    bp->b_bufobj = NULL;
1818 	}
1819 	/*
1820 	 * release the physical I/O buffer
1821 	 */
1822 	if (bp->b_flags & B_ASYNC) {
1823 		mtx_lock(&swbuf_mtx);
1824 		if (++nsw_wcount_async == 1)
1825 			wakeup(&nsw_wcount_async);
1826 		mtx_unlock(&swbuf_mtx);
1827 	}
1828 	uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1829 }
1830 
1831 int
swap_pager_nswapdev(void)1832 swap_pager_nswapdev(void)
1833 {
1834 
1835 	return (nswapdev);
1836 }
1837 
1838 static void
swp_pager_force_dirty(struct page_range * range,vm_page_t m,daddr_t * blk)1839 swp_pager_force_dirty(struct page_range *range, vm_page_t m, daddr_t *blk)
1840 {
1841 	vm_page_dirty(m);
1842 	swap_pager_unswapped_acct(m);
1843 	swp_pager_update_freerange(range, *blk);
1844 	*blk = SWAPBLK_NONE;
1845 	vm_page_launder(m);
1846 }
1847 
1848 u_long
swap_pager_swapped_pages(vm_object_t object)1849 swap_pager_swapped_pages(vm_object_t object)
1850 {
1851 	struct pctrie_iter blks;
1852 	struct swblk *sb;
1853 	u_long res;
1854 	int i;
1855 
1856 	VM_OBJECT_ASSERT_LOCKED(object);
1857 
1858 	if (swblk_is_empty(object))
1859 		return (0);
1860 
1861 	res = 0;
1862 	for (sb = swblk_iter_init(&blks, object, 0); sb != NULL;
1863 	    sb = swblk_iter_next(&blks)) {
1864 		for (i = 0; i < SWAP_META_PAGES; i++) {
1865 			if (sb->d[i] != SWAPBLK_NONE)
1866 				res++;
1867 		}
1868 	}
1869 	return (res);
1870 }
1871 
1872 /*
1873  *	swap_pager_swapoff_object:
1874  *
1875  *	Page in all of the pages that have been paged out for an object
1876  *	to a swap device.
1877  */
1878 static void
swap_pager_swapoff_object(struct swdevt * sp,vm_object_t object,struct buf ** bp)1879 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object,
1880     struct buf **bp)
1881 {
1882 	struct pctrie_iter blks, pages;
1883 	struct page_range range;
1884 	struct swblk *sb;
1885 	vm_page_t m;
1886 	int i, rahead, rv;
1887 	bool sb_empty;
1888 
1889 	VM_OBJECT_ASSERT_WLOCKED(object);
1890 	KASSERT((object->flags & OBJ_SWAP) != 0,
1891 	    ("%s: Object not swappable", __func__));
1892 	KASSERT((object->flags & OBJ_DEAD) == 0,
1893 	    ("%s: Object already dead", __func__));
1894 	KASSERT((sp->sw_flags & SW_CLOSING) != 0,
1895 	    ("%s: Device not blocking further allocations", __func__));
1896 
1897 	vm_page_iter_init(&pages, object);
1898 	swp_pager_init_freerange(&range);
1899 	sb = swblk_iter_init(&blks, object, 0);
1900 	while (sb != NULL) {
1901 		sb_empty = true;
1902 		for (i = 0; i < SWAP_META_PAGES; i++) {
1903 			/* Skip an invalid block. */
1904 			if (sb->d[i] == SWAPBLK_NONE)
1905 				continue;
1906 			/* Skip a block not of this device. */
1907 			if (!swp_pager_isondev(sb->d[i], sp)) {
1908 				sb_empty = false;
1909 				continue;
1910 			}
1911 
1912 			/*
1913 			 * Look for a page corresponding to this block. If the
1914 			 * found page has pending operations, sleep and restart
1915 			 * the scan.
1916 			 */
1917 			m = vm_radix_iter_lookup(&pages, blks.index + i);
1918 			if (m != NULL && (m->oflags & VPO_SWAPINPROG) != 0) {
1919 				m->oflags |= VPO_SWAPSLEEP;
1920 				VM_OBJECT_SLEEP(object, &object->handle, PSWP,
1921 				    "swpoff", 0);
1922 				break;
1923 			}
1924 
1925 			/*
1926 			 * If the found page is valid, mark it dirty and free
1927 			 * the swap block.
1928 			 */
1929 			if (m != NULL && vm_page_all_valid(m)) {
1930 				swp_pager_force_dirty(&range, m, &sb->d[i]);
1931 				continue;
1932 			}
1933 			/* Is there a page we can acquire or allocate? */
1934 			if (m != NULL) {
1935 				if (!vm_page_busy_acquire(m, VM_ALLOC_WAITFAIL))
1936 					break;
1937 			} else {
1938 				m = vm_radix_iter_lookup_le(&pages,
1939 				    blks.index + i);
1940 				m = vm_page_alloc_after(object, blks.index + i,
1941 				    VM_ALLOC_NORMAL | VM_ALLOC_WAITFAIL, m);
1942 				if (m == NULL)
1943 					break;
1944 			}
1945 
1946 			/* Get the page from swap, and restart the scan. */
1947 			vm_object_pip_add(object, 1);
1948 			rahead = SWAP_META_PAGES;
1949 			rv = swap_pager_getpages_locked(&blks, object, &m, 1,
1950 			    NULL, &rahead, *bp);
1951 			if (rv != VM_PAGER_OK)
1952 				panic("%s: read from swap failed: %d",
1953 				    __func__, rv);
1954 			*bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1955 			VM_OBJECT_WLOCK(object);
1956 			vm_object_pip_wakeupn(object, 1);
1957 			KASSERT(vm_page_all_valid(m),
1958 			    ("%s: Page %p not all valid", __func__, m));
1959 			vm_page_deactivate_noreuse(m);
1960 			vm_page_xunbusy(m);
1961 			break;
1962 		}
1963 		if (i < SWAP_META_PAGES) {
1964 			/*
1965 			 * The object lock has been released and regained.
1966 			 * Perhaps the object is now dead.
1967 			 */
1968 			if ((object->flags & OBJ_DEAD) != 0) {
1969 				/*
1970 				 * Make sure that pending writes finish before
1971 				 * returning.
1972 				 */
1973 				vm_object_pip_wait(object, "swpoff");
1974 				swp_pager_meta_free_all(object);
1975 				break;
1976 			}
1977 
1978 			/*
1979 			 * The swapblk could have been freed, so reset the pages
1980 			 * iterator and search again for the first swblk at or
1981 			 * after blks.index.
1982 			 */
1983 			pctrie_iter_reset(&pages);
1984 			sb = swblk_iter_init(&blks, object, blks.index);
1985 			continue;
1986 		}
1987 		if (sb_empty) {
1988 			swblk_iter_remove(&blks);
1989 			uma_zfree(swblk_zone, sb);
1990 		}
1991 
1992 		/*
1993 		 * It is safe to advance to the next block.  No allocations
1994 		 * before blk.index have happened, even with the lock released,
1995 		 * because allocations on this device are blocked.
1996 		 */
1997 		sb = swblk_iter_next(&blks);
1998 	}
1999 	swp_pager_freeswapspace(&range);
2000 }
2001 
2002 /*
2003  *	swap_pager_swapoff:
2004  *
2005  *	Page in all of the pages that have been paged out to the
2006  *	given device.  The corresponding blocks in the bitmap must be
2007  *	marked as allocated and the device must be flagged SW_CLOSING.
2008  *	There may be no processes swapped out to the device.
2009  *
2010  *	This routine may block.
2011  */
2012 static void
swap_pager_swapoff(struct swdevt * sp)2013 swap_pager_swapoff(struct swdevt *sp)
2014 {
2015 	vm_object_t object;
2016 	struct buf *bp;
2017 	int retries;
2018 
2019 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2020 
2021 	retries = 0;
2022 full_rescan:
2023 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
2024 	mtx_lock(&vm_object_list_mtx);
2025 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
2026 		if ((object->flags & OBJ_SWAP) == 0)
2027 			continue;
2028 		mtx_unlock(&vm_object_list_mtx);
2029 		/* Depends on type-stability. */
2030 		VM_OBJECT_WLOCK(object);
2031 
2032 		/*
2033 		 * Dead objects are eventually terminated on their own.
2034 		 */
2035 		if ((object->flags & OBJ_DEAD) != 0)
2036 			goto next_obj;
2037 
2038 		/*
2039 		 * Sync with fences placed after pctrie
2040 		 * initialization.  We must not access pctrie below
2041 		 * unless we checked that our object is swap and not
2042 		 * dead.
2043 		 */
2044 		atomic_thread_fence_acq();
2045 		if ((object->flags & OBJ_SWAP) == 0)
2046 			goto next_obj;
2047 
2048 		swap_pager_swapoff_object(sp, object, &bp);
2049 next_obj:
2050 		VM_OBJECT_WUNLOCK(object);
2051 		mtx_lock(&vm_object_list_mtx);
2052 	}
2053 	mtx_unlock(&vm_object_list_mtx);
2054 	uma_zfree(swrbuf_zone, bp);
2055 
2056 	if (sp->sw_used) {
2057 		/*
2058 		 * Objects may be locked or paging to the device being
2059 		 * removed, so we will miss their pages and need to
2060 		 * make another pass.  We have marked this device as
2061 		 * SW_CLOSING, so the activity should finish soon.
2062 		 */
2063 		retries++;
2064 		if (retries > 100) {
2065 			panic("swapoff: failed to locate %d swap blocks",
2066 			    sp->sw_used);
2067 		}
2068 		pause("swpoff", hz / 20);
2069 		goto full_rescan;
2070 	}
2071 	EVENTHANDLER_INVOKE(swapoff, sp);
2072 }
2073 
2074 /************************************************************************
2075  *				SWAP META DATA 				*
2076  ************************************************************************
2077  *
2078  *	These routines manipulate the swap metadata stored in the
2079  *	OBJT_SWAP object.
2080  *
2081  *	Swap metadata is implemented with a global hash and not directly
2082  *	linked into the object.  Instead the object simply contains
2083  *	appropriate tracking counters.
2084  */
2085 
2086 /*
2087  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
2088  */
2089 static bool
swp_pager_swblk_empty(struct swblk * sb,int start,int limit)2090 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
2091 {
2092 	int i;
2093 
2094 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
2095 	for (i = start; i < limit; i++) {
2096 		if (sb->d[i] != SWAPBLK_NONE)
2097 			return (false);
2098 	}
2099 	return (true);
2100 }
2101 
2102 /*
2103  * SWP_PAGER_FREE_EMPTY_SWBLK() - frees if a block is free
2104  *
2105  *  Nothing is done if the block is still in use.
2106  */
2107 static void
swp_pager_free_empty_swblk(vm_object_t object,struct swblk * sb)2108 swp_pager_free_empty_swblk(vm_object_t object, struct swblk *sb)
2109 {
2110 
2111 	if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2112 		swblk_lookup_remove(object, sb);
2113 		uma_zfree(swblk_zone, sb);
2114 	}
2115 }
2116 
2117 /*
2118  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
2119  *
2120  *	Try to add the specified swapblk to the object's swap metadata.  If
2121  *	nowait_noreplace is set, add the specified swapblk only if there is no
2122  *	previously assigned swapblk at pindex.  If the swapblk is invalid, and
2123  *	replaces a valid swapblk, empty swap metadata is freed.  If memory
2124  *	allocation fails, and nowait_noreplace is set, return the specified
2125  *	swapblk immediately to indicate failure; otherwise, wait and retry until
2126  *	memory allocation succeeds.  Return the previously assigned swapblk, if
2127  *	any.
2128  */
2129 static daddr_t
swp_pager_meta_build(struct pctrie_iter * blks,vm_object_t object,vm_pindex_t pindex,daddr_t swapblk,bool nowait_noreplace)2130 swp_pager_meta_build(struct pctrie_iter *blks, vm_object_t object,
2131     vm_pindex_t pindex, daddr_t swapblk, bool nowait_noreplace)
2132 {
2133 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
2134 	struct swblk *sb, *sb1;
2135 	vm_pindex_t modpi;
2136 	daddr_t prev_swapblk;
2137 	int error, i;
2138 
2139 	VM_OBJECT_ASSERT_WLOCKED(object);
2140 
2141 	sb = swblk_iter_lookup(blks, pindex);
2142 	if (sb == NULL) {
2143 		if (swapblk == SWAPBLK_NONE)
2144 			return (SWAPBLK_NONE);
2145 		for (;;) {
2146 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
2147 			    pageproc ? M_USE_RESERVE : 0));
2148 			if (sb != NULL) {
2149 				sb->p = rounddown(pindex, SWAP_META_PAGES);
2150 				for (i = 0; i < SWAP_META_PAGES; i++)
2151 					sb->d[i] = SWAPBLK_NONE;
2152 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2153 				    1, 0))
2154 					printf("swblk zone ok\n");
2155 				break;
2156 			}
2157 			if (nowait_noreplace)
2158 				return (swapblk);
2159 			VM_OBJECT_WUNLOCK(object);
2160 			if (uma_zone_exhausted(swblk_zone)) {
2161 				if (atomic_cmpset_int(&swblk_zone_exhausted,
2162 				    0, 1))
2163 					printf("swap blk zone exhausted, "
2164 					    "increase kern.maxswzone\n");
2165 				vm_pageout_oom(VM_OOM_SWAPZ);
2166 				pause("swzonxb", 10);
2167 			} else
2168 				uma_zwait(swblk_zone);
2169 			VM_OBJECT_WLOCK(object);
2170 			sb = swblk_iter_reinit(blks, object, pindex);
2171 			if (sb != NULL)
2172 				/*
2173 				 * Somebody swapped out a nearby page,
2174 				 * allocating swblk at the pindex index,
2175 				 * while we dropped the object lock.
2176 				 */
2177 				goto allocated;
2178 		}
2179 		for (;;) {
2180 			error = swblk_iter_insert(blks, sb);
2181 			if (error == 0) {
2182 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2183 				    1, 0))
2184 					printf("swpctrie zone ok\n");
2185 				break;
2186 			}
2187 			if (nowait_noreplace) {
2188 				uma_zfree(swblk_zone, sb);
2189 				return (swapblk);
2190 			}
2191 			VM_OBJECT_WUNLOCK(object);
2192 			if (uma_zone_exhausted(swpctrie_zone)) {
2193 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
2194 				    0, 1))
2195 					printf("swap pctrie zone exhausted, "
2196 					    "increase kern.maxswzone\n");
2197 				vm_pageout_oom(VM_OOM_SWAPZ);
2198 				pause("swzonxp", 10);
2199 			} else
2200 				uma_zwait(swpctrie_zone);
2201 			VM_OBJECT_WLOCK(object);
2202 			sb1 = swblk_iter_reinit(blks, object, pindex);
2203 			if (sb1 != NULL) {
2204 				uma_zfree(swblk_zone, sb);
2205 				sb = sb1;
2206 				goto allocated;
2207 			}
2208 		}
2209 	}
2210 allocated:
2211 	MPASS(sb->p == rounddown(pindex, SWAP_META_PAGES));
2212 
2213 	modpi = pindex % SWAP_META_PAGES;
2214 	/* Return prior contents of metadata. */
2215 	prev_swapblk = sb->d[modpi];
2216 	if (!nowait_noreplace || prev_swapblk == SWAPBLK_NONE) {
2217 		/* Enter block into metadata. */
2218 		sb->d[modpi] = swapblk;
2219 
2220 		/*
2221 		 * Free the swblk if we end up with the empty page run.
2222 		 */
2223 		if (swapblk == SWAPBLK_NONE &&
2224 		    swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2225 			swblk_iter_remove(blks);
2226 			uma_zfree(swblk_zone, sb);
2227 		}
2228 	}
2229 	return (prev_swapblk);
2230 }
2231 
2232 /*
2233  * SWP_PAGER_META_TRANSFER() - transfer a range of blocks in the srcobject's
2234  * swap metadata into dstobject.
2235  *
2236  *	Blocks in src that correspond to holes in dst are transferred.  Blocks
2237  *	in src that correspond to blocks in dst are freed.
2238  */
2239 static void
swp_pager_meta_transfer(vm_object_t srcobject,vm_object_t dstobject,vm_pindex_t pindex,vm_pindex_t count)2240 swp_pager_meta_transfer(vm_object_t srcobject, vm_object_t dstobject,
2241     vm_pindex_t pindex, vm_pindex_t count)
2242 {
2243 	struct pctrie_iter dstblks, srcblks;
2244 	struct page_range range;
2245 	struct swblk *sb;
2246 	daddr_t blk, d[SWAP_META_PAGES];
2247 	vm_pindex_t last;
2248 	int d_mask, i, limit, start;
2249 	_Static_assert(8 * sizeof(d_mask) >= SWAP_META_PAGES,
2250 	    "d_mask not big enough");
2251 
2252 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
2253 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
2254 
2255 	if (count == 0 || swblk_is_empty(srcobject))
2256 		return;
2257 
2258 	swp_pager_init_freerange(&range);
2259 	d_mask = 0;
2260 	last = pindex + count;
2261 	swblk_iter_init_only(&dstblks, dstobject);
2262 	for (sb = swblk_iter_limit_init(&srcblks, srcobject, pindex, last),
2263 	    start = swblk_start(sb, pindex);
2264 	    sb != NULL; sb = swblk_iter_next(&srcblks), start = 0) {
2265 		limit = MIN(last - srcblks.index, SWAP_META_PAGES);
2266 		for (i = start; i < limit; i++) {
2267 			if (sb->d[i] == SWAPBLK_NONE)
2268 				continue;
2269 			blk = swp_pager_meta_build(&dstblks, dstobject,
2270 			    srcblks.index + i - pindex, sb->d[i], true);
2271 			if (blk == sb->d[i]) {
2272 				/*
2273 				 * Failed memory allocation stopped transfer;
2274 				 * save this block for transfer with lock
2275 				 * released.
2276 				 */
2277 				d[i] = blk;
2278 				d_mask |= 1 << i;
2279 			} else if (blk != SWAPBLK_NONE) {
2280 				/* Dst has a block at pindex, so free block. */
2281 				swp_pager_update_freerange(&range, sb->d[i]);
2282 			}
2283 			sb->d[i] = SWAPBLK_NONE;
2284 		}
2285 		if (swp_pager_swblk_empty(sb, 0, start) &&
2286 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2287 			swblk_iter_remove(&srcblks);
2288 			uma_zfree(swblk_zone, sb);
2289 		}
2290 		if (d_mask != 0) {
2291 			/* Finish block transfer, with the lock released. */
2292 			VM_OBJECT_WUNLOCK(srcobject);
2293 			do {
2294 				i = ffs(d_mask) - 1;
2295 				swp_pager_meta_build(&dstblks, dstobject,
2296 				    srcblks.index + i - pindex, d[i], false);
2297 				d_mask &= ~(1 << i);
2298 			} while (d_mask != 0);
2299 			VM_OBJECT_WLOCK(srcobject);
2300 
2301 			/*
2302 			 * While the lock was not held, the iterator path could
2303 			 * have become stale, so discard it.
2304 			 */
2305 			pctrie_iter_reset(&srcblks);
2306 		}
2307 	}
2308 	swp_pager_freeswapspace(&range);
2309 }
2310 
2311 /*
2312  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
2313  *
2314  *	Return freed swap blocks to the swap bitmap, and free emptied swblk
2315  *	metadata.  With 'freed' set, provide a count of freed blocks that were
2316  *	not associated with valid resident pages.
2317  */
2318 static void
swp_pager_meta_free(vm_object_t object,vm_pindex_t pindex,vm_pindex_t count,vm_size_t * freed)2319 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count,
2320     vm_size_t *freed)
2321 {
2322 	struct pctrie_iter blks, pages;
2323 	struct page_range range;
2324 	struct swblk *sb;
2325 	vm_page_t m;
2326 	vm_pindex_t last;
2327 	vm_size_t fc;
2328 	int i, limit, start;
2329 
2330 	VM_OBJECT_ASSERT_WLOCKED(object);
2331 
2332 	fc = 0;
2333 	if (count == 0 || swblk_is_empty(object))
2334 		goto out;
2335 
2336 	swp_pager_init_freerange(&range);
2337 	vm_page_iter_init(&pages, object);
2338 	last = pindex + count;
2339 	for (sb = swblk_iter_limit_init(&blks, object, pindex, last),
2340 	    start = swblk_start(sb, pindex);
2341 	    sb != NULL; sb = swblk_iter_next(&blks), start = 0) {
2342 		limit = MIN(last - blks.index, SWAP_META_PAGES);
2343 		for (i = start; i < limit; i++) {
2344 			if (sb->d[i] == SWAPBLK_NONE)
2345 				continue;
2346 			swp_pager_update_freerange(&range, sb->d[i]);
2347 			if (freed != NULL) {
2348 				m = vm_radix_iter_lookup(&pages, blks.index + i);
2349 				if (m == NULL || vm_page_none_valid(m))
2350 					fc++;
2351 			}
2352 			sb->d[i] = SWAPBLK_NONE;
2353 		}
2354 		if (swp_pager_swblk_empty(sb, 0, start) &&
2355 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2356 			swblk_iter_remove(&blks);
2357 			uma_zfree(swblk_zone, sb);
2358 		}
2359 	}
2360 	swp_pager_freeswapspace(&range);
2361 out:
2362 	if (freed != NULL)
2363 		*freed = fc;
2364 }
2365 
2366 static void
swp_pager_meta_free_block(struct swblk * sb,void * rangev)2367 swp_pager_meta_free_block(struct swblk *sb, void *rangev)
2368 {
2369 	struct page_range *range = rangev;
2370 
2371 	for (int i = 0; i < SWAP_META_PAGES; i++) {
2372 		if (sb->d[i] != SWAPBLK_NONE)
2373 			swp_pager_update_freerange(range, sb->d[i]);
2374 	}
2375 	uma_zfree(swblk_zone, sb);
2376 }
2377 
2378 /*
2379  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2380  *
2381  *	This routine locates and destroys all swap metadata associated with
2382  *	an object.
2383  */
2384 static void
swp_pager_meta_free_all(vm_object_t object)2385 swp_pager_meta_free_all(vm_object_t object)
2386 {
2387 	struct page_range range;
2388 
2389 	VM_OBJECT_ASSERT_WLOCKED(object);
2390 
2391 	swp_pager_init_freerange(&range);
2392 	SWAP_PCTRIE_RECLAIM_CALLBACK(&object->un_pager.swp.swp_blks,
2393 	    swp_pager_meta_free_block, &range);
2394 	swp_pager_freeswapspace(&range);
2395 }
2396 
2397 /*
2398  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2399  *
2400  *	This routine is capable of looking up, or removing swapblk
2401  *	assignments in the swap meta data.  It returns the swapblk being
2402  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2403  *
2404  *	When acting on a busy resident page and paging is in progress, we
2405  *	have to wait until paging is complete but otherwise can act on the
2406  *	busy page.
2407  */
2408 static daddr_t
swp_pager_meta_lookup(struct pctrie_iter * blks,vm_pindex_t pindex)2409 swp_pager_meta_lookup(struct pctrie_iter *blks, vm_pindex_t pindex)
2410 {
2411 	struct swblk *sb;
2412 
2413 	sb = swblk_iter_lookup(blks, pindex);
2414 	if (sb == NULL)
2415 		return (SWAPBLK_NONE);
2416 	return (sb->d[pindex % SWAP_META_PAGES]);
2417 }
2418 
2419 /*
2420  * Returns the least page index which is greater than or equal to the parameter
2421  * pindex and for which there is a swap block allocated.  Returns OBJ_MAX_SIZE
2422  * if are no allocated swap blocks for the object after the requested pindex.
2423  */
2424 static vm_pindex_t
swap_pager_iter_find_least(struct pctrie_iter * blks,vm_pindex_t pindex)2425 swap_pager_iter_find_least(struct pctrie_iter *blks, vm_pindex_t pindex)
2426 {
2427 	struct swblk *sb;
2428 	int i;
2429 
2430 	if ((sb = swblk_iter_lookup_ge(blks, pindex)) == NULL)
2431 		return (OBJ_MAX_SIZE);
2432 	if (blks->index < pindex) {
2433 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2434 			if (sb->d[i] != SWAPBLK_NONE)
2435 				return (blks->index + i);
2436 		}
2437 		if ((sb = swblk_iter_next(blks)) == NULL)
2438 			return (OBJ_MAX_SIZE);
2439 	}
2440 	for (i = 0; i < SWAP_META_PAGES; i++) {
2441 		if (sb->d[i] != SWAPBLK_NONE)
2442 			return (blks->index + i);
2443 	}
2444 
2445 	/*
2446 	 * We get here if a swblk is present in the trie but it
2447 	 * doesn't map any blocks.
2448 	 */
2449 	MPASS(0);
2450 	return (OBJ_MAX_SIZE);
2451 }
2452 
2453 /*
2454  * Find the first index >= pindex that has either a valid page or a swap
2455  * block.
2456  */
2457 vm_pindex_t
swap_pager_seek_data(vm_object_t object,vm_pindex_t pindex)2458 swap_pager_seek_data(vm_object_t object, vm_pindex_t pindex)
2459 {
2460 	struct pctrie_iter blks, pages;
2461 	vm_page_t m;
2462 	vm_pindex_t swap_index;
2463 
2464 	VM_OBJECT_ASSERT_RLOCKED(object);
2465 	vm_page_iter_init(&pages, object);
2466 	m = vm_radix_iter_lookup_ge(&pages, pindex);
2467 	if (m != NULL && pages.index == pindex && vm_page_any_valid(m))
2468 		return (pages.index);
2469 	swblk_iter_init_only(&blks, object);
2470 	swap_index = swap_pager_iter_find_least(&blks, pindex);
2471 	if (swap_index == pindex)
2472 		return (swap_index);
2473 
2474 	/*
2475 	 * Find the first resident page after m, before swap_index.
2476 	 */
2477 	while (m != NULL && pages.index < swap_index) {
2478 		if (vm_page_any_valid(m))
2479 			return (pages.index);
2480 		m = vm_radix_iter_step(&pages);
2481 	}
2482 	if (swap_index == OBJ_MAX_SIZE)
2483 		swap_index = object->size;
2484 	return (swap_index);
2485 }
2486 
2487 /*
2488  * Find the first index >= pindex that has neither a valid page nor a swap
2489  * block.
2490  */
2491 vm_pindex_t
swap_pager_seek_hole(vm_object_t object,vm_pindex_t pindex)2492 swap_pager_seek_hole(vm_object_t object, vm_pindex_t pindex)
2493 {
2494 	struct pctrie_iter blks, pages;
2495 	struct swblk *sb;
2496 	vm_page_t m;
2497 
2498 	VM_OBJECT_ASSERT_RLOCKED(object);
2499 	vm_page_iter_init(&pages, object);
2500 	swblk_iter_init_only(&blks, object);
2501 	while (((m = vm_radix_iter_lookup(&pages, pindex)) != NULL &&
2502 	    vm_page_any_valid(m)) ||
2503 	    ((sb = swblk_iter_lookup(&blks, pindex)) != NULL &&
2504 	    sb->d[pindex % SWAP_META_PAGES] != SWAPBLK_NONE))
2505 		pindex++;
2506 	return (pindex);
2507 }
2508 
2509 /*
2510  * Is every page in the backing object or swap shadowed in the parent, and
2511  * unbusy and valid in swap?
2512  */
2513 bool
swap_pager_scan_all_shadowed(vm_object_t object)2514 swap_pager_scan_all_shadowed(vm_object_t object)
2515 {
2516 	struct pctrie_iter backing_blks, backing_pages, blks, pages;
2517 	vm_object_t backing_object;
2518 	vm_page_t p, pp;
2519 	vm_pindex_t backing_offset_index, new_pindex, pi, pi_ubound, ps, pv;
2520 
2521 	VM_OBJECT_ASSERT_WLOCKED(object);
2522 	VM_OBJECT_ASSERT_WLOCKED(object->backing_object);
2523 
2524 	backing_object = object->backing_object;
2525 
2526 	if ((backing_object->flags & OBJ_ANON) == 0)
2527 		return (false);
2528 
2529 	KASSERT((object->flags & OBJ_ANON) != 0,
2530 	    ("Shadow object is not anonymous"));
2531 	backing_offset_index = OFF_TO_IDX(object->backing_object_offset);
2532 	pi_ubound = MIN(backing_object->size,
2533 	    backing_offset_index + object->size);
2534 	vm_page_iter_init(&pages, object);
2535 	vm_page_iter_init(&backing_pages, backing_object);
2536 	swblk_iter_init_only(&blks, object);
2537 	swblk_iter_init_only(&backing_blks, backing_object);
2538 
2539 	/*
2540 	 * Only check pages inside the parent object's range and inside the
2541 	 * parent object's mapping of the backing object.
2542 	 */
2543 	pv = ps = pi = backing_offset_index - 1;
2544 	for (;;) {
2545 		if (pi == pv) {
2546 			p = vm_radix_iter_lookup_ge(&backing_pages, pv + 1);
2547 			pv = p != NULL ? p->pindex : backing_object->size;
2548 		}
2549 		if (pi == ps)
2550 			ps = swap_pager_iter_find_least(&backing_blks, ps + 1);
2551 		pi = MIN(pv, ps);
2552 		if (pi >= pi_ubound)
2553 			break;
2554 
2555 		if (pi == pv) {
2556 			/*
2557 			 * If the backing object page is busy a grandparent or
2558 			 * older page may still be undergoing CoW.  It is not
2559 			 * safe to collapse the backing object until it is
2560 			 * quiesced.
2561 			 */
2562 			if (vm_page_tryxbusy(p) == 0)
2563 				return (false);
2564 
2565 			/*
2566 			 * We raced with the fault handler that left newly
2567 			 * allocated invalid page on the object queue and
2568 			 * retried.
2569 			 */
2570 			if (!vm_page_all_valid(p))
2571 				break;
2572 
2573 			/*
2574 			 * Busy of p disallows fault handler to validate parent
2575 			 * page (pp, below).
2576 			 */
2577 		}
2578 
2579 		/*
2580 		 * See if the parent has the page or if the parent's object
2581 		 * pager has the page.  If the parent has the page but the page
2582 		 * is not valid, the parent's object pager must have the page.
2583 		 *
2584 		 * If this fails, the parent does not completely shadow the
2585 		 * object and we might as well give up now.
2586 		 */
2587 		new_pindex = pi - backing_offset_index;
2588 		pp = vm_radix_iter_lookup(&pages, new_pindex);
2589 
2590 		/*
2591 		 * The valid check here is stable due to object lock being
2592 		 * required to clear valid and initiate paging.
2593 		 */
2594 		if ((pp == NULL || vm_page_none_valid(pp)) &&
2595 		    !swp_pager_haspage_iter(&blks, new_pindex, NULL,
2596 		    NULL))
2597 			break;
2598 		if (pi == pv)
2599 			vm_page_xunbusy(p);
2600 	}
2601 	if (pi < pi_ubound) {
2602 		if (pi == pv)
2603 			vm_page_xunbusy(p);
2604 		return (false);
2605 	}
2606 	return (true);
2607 }
2608 
2609 /*
2610  * System call swapon(name) enables swapping on device name,
2611  * which must be in the swdevsw.  Return EBUSY
2612  * if already swapping on this device.
2613  */
2614 #ifndef _SYS_SYSPROTO_H_
2615 struct swapon_args {
2616 	char *name;
2617 };
2618 #endif
2619 
2620 int
sys_swapon(struct thread * td,struct swapon_args * uap)2621 sys_swapon(struct thread *td, struct swapon_args *uap)
2622 {
2623 	struct vattr attr;
2624 	struct vnode *vp;
2625 	struct nameidata nd;
2626 	int error;
2627 
2628 	error = priv_check(td, PRIV_SWAPON);
2629 	if (error)
2630 		return (error);
2631 
2632 	sx_xlock(&swdev_syscall_lock);
2633 
2634 	/*
2635 	 * Swap metadata may not fit in the KVM if we have physical
2636 	 * memory of >1GB.
2637 	 */
2638 	if (swblk_zone == NULL) {
2639 		error = ENOMEM;
2640 		goto done;
2641 	}
2642 
2643 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | LOCKLEAF | AUDITVNODE1,
2644 	    UIO_USERSPACE, uap->name);
2645 	error = namei(&nd);
2646 	if (error)
2647 		goto done;
2648 
2649 	NDFREE_PNBUF(&nd);
2650 	vp = nd.ni_vp;
2651 
2652 	if (vn_isdisk_error(vp, &error)) {
2653 		error = swapongeom(vp);
2654 	} else if (vp->v_type == VREG &&
2655 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2656 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2657 		/*
2658 		 * Allow direct swapping to NFS regular files in the same
2659 		 * way that nfs_mountroot() sets up diskless swapping.
2660 		 */
2661 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2662 	}
2663 
2664 	if (error != 0)
2665 		vput(vp);
2666 	else
2667 		VOP_UNLOCK(vp);
2668 done:
2669 	sx_xunlock(&swdev_syscall_lock);
2670 	return (error);
2671 }
2672 
2673 /*
2674  * Check that the total amount of swap currently configured does not
2675  * exceed half the theoretical maximum.  If it does, print a warning
2676  * message.
2677  */
2678 static void
swapon_check_swzone(void)2679 swapon_check_swzone(void)
2680 {
2681 
2682 	/* recommend using no more than half that amount */
2683 	if (swap_total > swap_maxpages / 2) {
2684 		printf("warning: total configured swap (%lu pages) "
2685 		    "exceeds maximum recommended amount (%lu pages).\n",
2686 		    swap_total, swap_maxpages / 2);
2687 		printf("warning: increase kern.maxswzone "
2688 		    "or reduce amount of swap.\n");
2689 	}
2690 }
2691 
2692 static void
swaponsomething(struct vnode * vp,void * id,u_long nblks,sw_strategy_t * strategy,sw_close_t * close,dev_t dev,int flags)2693 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2694     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2695 {
2696 	struct swdevt *sp, *tsp;
2697 	daddr_t dvbase;
2698 
2699 	/*
2700 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2701 	 * First chop nblks off to page-align it, then convert.
2702 	 *
2703 	 * sw->sw_nblks is in page-sized chunks now too.
2704 	 */
2705 	nblks &= ~(ctodb(1) - 1);
2706 	nblks = dbtoc(nblks);
2707 
2708 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2709 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2710 	sp->sw_vp = vp;
2711 	sp->sw_id = id;
2712 	sp->sw_dev = dev;
2713 	sp->sw_nblks = nblks;
2714 	sp->sw_used = 0;
2715 	sp->sw_strategy = strategy;
2716 	sp->sw_close = close;
2717 	sp->sw_flags = flags;
2718 
2719 	/*
2720 	 * Do not free the first blocks in order to avoid overwriting
2721 	 * any bsd label at the front of the partition
2722 	 */
2723 	blist_free(sp->sw_blist, howmany(BBSIZE, PAGE_SIZE),
2724 	    nblks - howmany(BBSIZE, PAGE_SIZE));
2725 
2726 	dvbase = 0;
2727 	mtx_lock(&sw_dev_mtx);
2728 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2729 		if (tsp->sw_end >= dvbase) {
2730 			/*
2731 			 * We put one uncovered page between the devices
2732 			 * in order to definitively prevent any cross-device
2733 			 * I/O requests
2734 			 */
2735 			dvbase = tsp->sw_end + 1;
2736 		}
2737 	}
2738 	sp->sw_first = dvbase;
2739 	sp->sw_end = dvbase + nblks;
2740 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2741 	nswapdev++;
2742 	swap_pager_avail += nblks - howmany(BBSIZE, PAGE_SIZE);
2743 	swap_total += nblks;
2744 	swapon_check_swzone();
2745 	swp_sizecheck();
2746 	mtx_unlock(&sw_dev_mtx);
2747 	EVENTHANDLER_INVOKE(swapon, sp);
2748 }
2749 
2750 /*
2751  * SYSCALL: swapoff(devname)
2752  *
2753  * Disable swapping on the given device.
2754  *
2755  * XXX: Badly designed system call: it should use a device index
2756  * rather than filename as specification.  We keep sw_vp around
2757  * only to make this work.
2758  */
2759 static int
kern_swapoff(struct thread * td,const char * name,enum uio_seg name_seg,u_int flags)2760 kern_swapoff(struct thread *td, const char *name, enum uio_seg name_seg,
2761     u_int flags)
2762 {
2763 	struct vnode *vp;
2764 	struct nameidata nd;
2765 	struct swdevt *sp;
2766 	int error;
2767 
2768 	error = priv_check(td, PRIV_SWAPOFF);
2769 	if (error != 0)
2770 		return (error);
2771 	if ((flags & ~(SWAPOFF_FORCE)) != 0)
2772 		return (EINVAL);
2773 
2774 	sx_xlock(&swdev_syscall_lock);
2775 
2776 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, name_seg, name);
2777 	error = namei(&nd);
2778 	if (error)
2779 		goto done;
2780 	NDFREE_PNBUF(&nd);
2781 	vp = nd.ni_vp;
2782 
2783 	mtx_lock(&sw_dev_mtx);
2784 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2785 		if (sp->sw_vp == vp)
2786 			break;
2787 	}
2788 	mtx_unlock(&sw_dev_mtx);
2789 	if (sp == NULL) {
2790 		error = EINVAL;
2791 		goto done;
2792 	}
2793 	error = swapoff_one(sp, td->td_ucred, flags);
2794 done:
2795 	sx_xunlock(&swdev_syscall_lock);
2796 	return (error);
2797 }
2798 
2799 
2800 #ifdef COMPAT_FREEBSD13
2801 int
freebsd13_swapoff(struct thread * td,struct freebsd13_swapoff_args * uap)2802 freebsd13_swapoff(struct thread *td, struct freebsd13_swapoff_args *uap)
2803 {
2804 	return (kern_swapoff(td, uap->name, UIO_USERSPACE, 0));
2805 }
2806 #endif
2807 
2808 int
sys_swapoff(struct thread * td,struct swapoff_args * uap)2809 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2810 {
2811 	return (kern_swapoff(td, uap->name, UIO_USERSPACE, uap->flags));
2812 }
2813 
2814 static int
swapoff_one(struct swdevt * sp,struct ucred * cred,u_int flags)2815 swapoff_one(struct swdevt *sp, struct ucred *cred, u_int flags)
2816 {
2817 	u_long nblks;
2818 #ifdef MAC
2819 	int error;
2820 #endif
2821 
2822 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2823 #ifdef MAC
2824 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2825 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2826 	(void) VOP_UNLOCK(sp->sw_vp);
2827 	if (error != 0)
2828 		return (error);
2829 #endif
2830 	nblks = sp->sw_nblks;
2831 
2832 	/*
2833 	 * We can turn off this swap device safely only if the
2834 	 * available virtual memory in the system will fit the amount
2835 	 * of data we will have to page back in, plus an epsilon so
2836 	 * the system doesn't become critically low on swap space.
2837 	 * The vm_free_count() part does not account e.g. for clean
2838 	 * pages that can be immediately reclaimed without paging, so
2839 	 * this is a very rough estimation.
2840 	 *
2841 	 * On the other hand, not turning swap off on swapoff_all()
2842 	 * means that we can lose swap data when filesystems go away,
2843 	 * which is arguably worse.
2844 	 */
2845 	if ((flags & SWAPOFF_FORCE) == 0 &&
2846 	    vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2847 		return (ENOMEM);
2848 
2849 	/*
2850 	 * Prevent further allocations on this device.
2851 	 */
2852 	mtx_lock(&sw_dev_mtx);
2853 	sp->sw_flags |= SW_CLOSING;
2854 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2855 	swap_total -= nblks;
2856 	mtx_unlock(&sw_dev_mtx);
2857 
2858 	/*
2859 	 * Page in the contents of the device and close it.
2860 	 */
2861 	swap_pager_swapoff(sp);
2862 
2863 	sp->sw_close(curthread, sp);
2864 	mtx_lock(&sw_dev_mtx);
2865 	sp->sw_id = NULL;
2866 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2867 	nswapdev--;
2868 	if (nswapdev == 0) {
2869 		swap_pager_full = 2;
2870 		swap_pager_almost_full = 1;
2871 	}
2872 	if (swdevhd == sp)
2873 		swdevhd = NULL;
2874 	mtx_unlock(&sw_dev_mtx);
2875 	blist_destroy(sp->sw_blist);
2876 	free(sp, M_VMPGDATA);
2877 	return (0);
2878 }
2879 
2880 void
swapoff_all(void)2881 swapoff_all(void)
2882 {
2883 	struct swdevt *sp, *spt;
2884 	const char *devname;
2885 	int error;
2886 
2887 	sx_xlock(&swdev_syscall_lock);
2888 
2889 	mtx_lock(&sw_dev_mtx);
2890 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2891 		mtx_unlock(&sw_dev_mtx);
2892 		if (vn_isdisk(sp->sw_vp))
2893 			devname = devtoname(sp->sw_vp->v_rdev);
2894 		else
2895 			devname = "[file]";
2896 		error = swapoff_one(sp, thread0.td_ucred, SWAPOFF_FORCE);
2897 		if (error != 0) {
2898 			printf("Cannot remove swap device %s (error=%d), "
2899 			    "skipping.\n", devname, error);
2900 		} else if (bootverbose) {
2901 			printf("Swap device %s removed.\n", devname);
2902 		}
2903 		mtx_lock(&sw_dev_mtx);
2904 	}
2905 	mtx_unlock(&sw_dev_mtx);
2906 
2907 	sx_xunlock(&swdev_syscall_lock);
2908 }
2909 
2910 void
swap_pager_status(int * total,int * used)2911 swap_pager_status(int *total, int *used)
2912 {
2913 
2914 	*total = swap_total;
2915 	*used = swap_total - swap_pager_avail -
2916 	    nswapdev * howmany(BBSIZE, PAGE_SIZE);
2917 }
2918 
2919 int
swap_dev_info(int name,struct xswdev * xs,char * devname,size_t len)2920 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2921 {
2922 	struct swdevt *sp;
2923 	const char *tmp_devname;
2924 	int error, n;
2925 
2926 	n = 0;
2927 	error = ENOENT;
2928 	mtx_lock(&sw_dev_mtx);
2929 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2930 		if (n != name) {
2931 			n++;
2932 			continue;
2933 		}
2934 		xs->xsw_version = XSWDEV_VERSION;
2935 		xs->xsw_dev = sp->sw_dev;
2936 		xs->xsw_flags = sp->sw_flags;
2937 		xs->xsw_nblks = sp->sw_nblks;
2938 		xs->xsw_used = sp->sw_used;
2939 		if (devname != NULL) {
2940 			if (vn_isdisk(sp->sw_vp))
2941 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2942 			else
2943 				tmp_devname = "[file]";
2944 			strncpy(devname, tmp_devname, len);
2945 		}
2946 		error = 0;
2947 		break;
2948 	}
2949 	mtx_unlock(&sw_dev_mtx);
2950 	return (error);
2951 }
2952 
2953 #if defined(COMPAT_FREEBSD11)
2954 #define XSWDEV_VERSION_11	1
2955 struct xswdev11 {
2956 	u_int	xsw_version;
2957 	uint32_t xsw_dev;
2958 	int	xsw_flags;
2959 	int	xsw_nblks;
2960 	int     xsw_used;
2961 };
2962 #endif
2963 
2964 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2965 struct xswdev32 {
2966 	u_int	xsw_version;
2967 	u_int	xsw_dev1, xsw_dev2;
2968 	int	xsw_flags;
2969 	int	xsw_nblks;
2970 	int     xsw_used;
2971 };
2972 #endif
2973 
2974 static int
sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)2975 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2976 {
2977 	struct xswdev xs;
2978 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2979 	struct xswdev32 xs32;
2980 #endif
2981 #if defined(COMPAT_FREEBSD11)
2982 	struct xswdev11 xs11;
2983 #endif
2984 	int error;
2985 
2986 	if (arg2 != 1)			/* name length */
2987 		return (EINVAL);
2988 
2989 	memset(&xs, 0, sizeof(xs));
2990 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2991 	if (error != 0)
2992 		return (error);
2993 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2994 	if (req->oldlen == sizeof(xs32)) {
2995 		memset(&xs32, 0, sizeof(xs32));
2996 		xs32.xsw_version = XSWDEV_VERSION;
2997 		xs32.xsw_dev1 = xs.xsw_dev;
2998 		xs32.xsw_dev2 = xs.xsw_dev >> 32;
2999 		xs32.xsw_flags = xs.xsw_flags;
3000 		xs32.xsw_nblks = xs.xsw_nblks;
3001 		xs32.xsw_used = xs.xsw_used;
3002 		error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
3003 		return (error);
3004 	}
3005 #endif
3006 #if defined(COMPAT_FREEBSD11)
3007 	if (req->oldlen == sizeof(xs11)) {
3008 		memset(&xs11, 0, sizeof(xs11));
3009 		xs11.xsw_version = XSWDEV_VERSION_11;
3010 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
3011 		xs11.xsw_flags = xs.xsw_flags;
3012 		xs11.xsw_nblks = xs.xsw_nblks;
3013 		xs11.xsw_used = xs.xsw_used;
3014 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
3015 		return (error);
3016 	}
3017 #endif
3018 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
3019 	return (error);
3020 }
3021 
3022 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
3023     "Number of swap devices");
3024 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
3025     sysctl_vm_swap_info,
3026     "Swap statistics by device");
3027 
3028 /*
3029  * Count the approximate swap usage in pages for a vmspace.  The
3030  * shadowed or not yet copied on write swap blocks are not accounted.
3031  * The map must be locked.
3032  */
3033 long
vmspace_swap_count(struct vmspace * vmspace)3034 vmspace_swap_count(struct vmspace *vmspace)
3035 {
3036 	struct pctrie_iter blks;
3037 	vm_map_t map;
3038 	vm_map_entry_t cur;
3039 	vm_object_t object;
3040 	struct swblk *sb;
3041 	vm_pindex_t e, pi;
3042 	long count;
3043 	int i, limit, start;
3044 
3045 	map = &vmspace->vm_map;
3046 	count = 0;
3047 
3048 	VM_MAP_ENTRY_FOREACH(cur, map) {
3049 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3050 			continue;
3051 		object = cur->object.vm_object;
3052 		if (object == NULL || (object->flags & OBJ_SWAP) == 0)
3053 			continue;
3054 		VM_OBJECT_RLOCK(object);
3055 		if ((object->flags & OBJ_SWAP) == 0)
3056 			goto unlock;
3057 		pi = OFF_TO_IDX(cur->offset);
3058 		e = pi + OFF_TO_IDX(cur->end - cur->start);
3059 		for (sb = swblk_iter_limit_init(&blks, object, pi, e),
3060 		    start = swblk_start(sb, pi);
3061 		    sb != NULL; sb = swblk_iter_next(&blks), start = 0) {
3062 			limit = MIN(e - blks.index, SWAP_META_PAGES);
3063 			for (i = start; i < limit; i++) {
3064 				if (sb->d[i] != SWAPBLK_NONE)
3065 					count++;
3066 			}
3067 		}
3068 unlock:
3069 		VM_OBJECT_RUNLOCK(object);
3070 	}
3071 	return (count);
3072 }
3073 
3074 /*
3075  * GEOM backend
3076  *
3077  * Swapping onto disk devices.
3078  *
3079  */
3080 
3081 static g_orphan_t swapgeom_orphan;
3082 
3083 static struct g_class g_swap_class = {
3084 	.name = "SWAP",
3085 	.version = G_VERSION,
3086 	.orphan = swapgeom_orphan,
3087 };
3088 
3089 DECLARE_GEOM_CLASS(g_swap_class, g_class);
3090 
3091 static void
swapgeom_close_ev(void * arg,int flags)3092 swapgeom_close_ev(void *arg, int flags)
3093 {
3094 	struct g_consumer *cp;
3095 
3096 	cp = arg;
3097 	g_access(cp, -1, -1, 0);
3098 	g_detach(cp);
3099 	g_destroy_consumer(cp);
3100 }
3101 
3102 /*
3103  * Add a reference to the g_consumer for an inflight transaction.
3104  */
3105 static void
swapgeom_acquire(struct g_consumer * cp)3106 swapgeom_acquire(struct g_consumer *cp)
3107 {
3108 
3109 	mtx_assert(&sw_dev_mtx, MA_OWNED);
3110 	cp->index++;
3111 }
3112 
3113 /*
3114  * Remove a reference from the g_consumer.  Post a close event if all
3115  * references go away, since the function might be called from the
3116  * biodone context.
3117  */
3118 static void
swapgeom_release(struct g_consumer * cp,struct swdevt * sp)3119 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
3120 {
3121 
3122 	mtx_assert(&sw_dev_mtx, MA_OWNED);
3123 	cp->index--;
3124 	if (cp->index == 0) {
3125 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
3126 			sp->sw_id = NULL;
3127 	}
3128 }
3129 
3130 static void
swapgeom_done(struct bio * bp2)3131 swapgeom_done(struct bio *bp2)
3132 {
3133 	struct swdevt *sp;
3134 	struct buf *bp;
3135 	struct g_consumer *cp;
3136 
3137 	bp = bp2->bio_caller2;
3138 	cp = bp2->bio_from;
3139 	bp->b_ioflags = bp2->bio_flags;
3140 	if (bp2->bio_error)
3141 		bp->b_ioflags |= BIO_ERROR;
3142 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
3143 	bp->b_error = bp2->bio_error;
3144 	bp->b_caller1 = NULL;
3145 	bufdone(bp);
3146 	sp = bp2->bio_caller1;
3147 	mtx_lock(&sw_dev_mtx);
3148 	swapgeom_release(cp, sp);
3149 	mtx_unlock(&sw_dev_mtx);
3150 	g_destroy_bio(bp2);
3151 }
3152 
3153 static void
swapgeom_strategy(struct buf * bp,struct swdevt * sp)3154 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
3155 {
3156 	struct bio *bio;
3157 	struct g_consumer *cp;
3158 
3159 	mtx_lock(&sw_dev_mtx);
3160 	cp = sp->sw_id;
3161 	if (cp == NULL) {
3162 		mtx_unlock(&sw_dev_mtx);
3163 		bp->b_error = ENXIO;
3164 		bp->b_ioflags |= BIO_ERROR;
3165 		bufdone(bp);
3166 		return;
3167 	}
3168 	swapgeom_acquire(cp);
3169 	mtx_unlock(&sw_dev_mtx);
3170 	if (bp->b_iocmd == BIO_WRITE)
3171 		bio = g_new_bio();
3172 	else
3173 		bio = g_alloc_bio();
3174 	if (bio == NULL) {
3175 		mtx_lock(&sw_dev_mtx);
3176 		swapgeom_release(cp, sp);
3177 		mtx_unlock(&sw_dev_mtx);
3178 		bp->b_error = ENOMEM;
3179 		bp->b_ioflags |= BIO_ERROR;
3180 		printf("swap_pager: cannot allocate bio\n");
3181 		bufdone(bp);
3182 		return;
3183 	}
3184 
3185 	bp->b_caller1 = bio;
3186 	bio->bio_caller1 = sp;
3187 	bio->bio_caller2 = bp;
3188 	bio->bio_cmd = bp->b_iocmd;
3189 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
3190 	bio->bio_length = bp->b_bcount;
3191 	bio->bio_done = swapgeom_done;
3192 	bio->bio_flags |= BIO_SWAP;
3193 	if (!buf_mapped(bp)) {
3194 		bio->bio_ma = bp->b_pages;
3195 		bio->bio_data = unmapped_buf;
3196 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
3197 		bio->bio_ma_n = bp->b_npages;
3198 		bio->bio_flags |= BIO_UNMAPPED;
3199 	} else {
3200 		bio->bio_data = bp->b_data;
3201 		bio->bio_ma = NULL;
3202 	}
3203 	g_io_request(bio, cp);
3204 	return;
3205 }
3206 
3207 static void
swapgeom_orphan(struct g_consumer * cp)3208 swapgeom_orphan(struct g_consumer *cp)
3209 {
3210 	struct swdevt *sp;
3211 	int destroy;
3212 
3213 	mtx_lock(&sw_dev_mtx);
3214 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
3215 		if (sp->sw_id == cp) {
3216 			sp->sw_flags |= SW_CLOSING;
3217 			break;
3218 		}
3219 	}
3220 	/*
3221 	 * Drop reference we were created with. Do directly since we're in a
3222 	 * special context where we don't have to queue the call to
3223 	 * swapgeom_close_ev().
3224 	 */
3225 	cp->index--;
3226 	destroy = ((sp != NULL) && (cp->index == 0));
3227 	if (destroy)
3228 		sp->sw_id = NULL;
3229 	mtx_unlock(&sw_dev_mtx);
3230 	if (destroy)
3231 		swapgeom_close_ev(cp, 0);
3232 }
3233 
3234 static void
swapgeom_close(struct thread * td,struct swdevt * sw)3235 swapgeom_close(struct thread *td, struct swdevt *sw)
3236 {
3237 	struct g_consumer *cp;
3238 
3239 	mtx_lock(&sw_dev_mtx);
3240 	cp = sw->sw_id;
3241 	sw->sw_id = NULL;
3242 	mtx_unlock(&sw_dev_mtx);
3243 
3244 	/*
3245 	 * swapgeom_close() may be called from the biodone context,
3246 	 * where we cannot perform topology changes.  Delegate the
3247 	 * work to the events thread.
3248 	 */
3249 	if (cp != NULL)
3250 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
3251 }
3252 
3253 static int
swapongeom_locked(struct cdev * dev,struct vnode * vp)3254 swapongeom_locked(struct cdev *dev, struct vnode *vp)
3255 {
3256 	struct g_provider *pp;
3257 	struct g_consumer *cp;
3258 	static struct g_geom *gp;
3259 	struct swdevt *sp;
3260 	u_long nblks;
3261 	int error;
3262 
3263 	pp = g_dev_getprovider(dev);
3264 	if (pp == NULL)
3265 		return (ENODEV);
3266 	mtx_lock(&sw_dev_mtx);
3267 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
3268 		cp = sp->sw_id;
3269 		if (cp != NULL && cp->provider == pp) {
3270 			mtx_unlock(&sw_dev_mtx);
3271 			return (EBUSY);
3272 		}
3273 	}
3274 	mtx_unlock(&sw_dev_mtx);
3275 	if (gp == NULL)
3276 		gp = g_new_geomf(&g_swap_class, "swap");
3277 	cp = g_new_consumer(gp);
3278 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
3279 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
3280 	g_attach(cp, pp);
3281 	/*
3282 	 * XXX: Every time you think you can improve the margin for
3283 	 * footshooting, somebody depends on the ability to do so:
3284 	 * savecore(8) wants to write to our swapdev so we cannot
3285 	 * set an exclusive count :-(
3286 	 */
3287 	error = g_access(cp, 1, 1, 0);
3288 	if (error != 0) {
3289 		g_detach(cp);
3290 		g_destroy_consumer(cp);
3291 		return (error);
3292 	}
3293 	nblks = pp->mediasize / DEV_BSIZE;
3294 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
3295 	    swapgeom_close, dev2udev(dev),
3296 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
3297 	return (0);
3298 }
3299 
3300 static int
swapongeom(struct vnode * vp)3301 swapongeom(struct vnode *vp)
3302 {
3303 	int error;
3304 
3305 	ASSERT_VOP_ELOCKED(vp, "swapongeom");
3306 	if (vp->v_type != VCHR || VN_IS_DOOMED(vp)) {
3307 		error = ENOENT;
3308 	} else {
3309 		g_topology_lock();
3310 		error = swapongeom_locked(vp->v_rdev, vp);
3311 		g_topology_unlock();
3312 	}
3313 	return (error);
3314 }
3315 
3316 /*
3317  * VNODE backend
3318  *
3319  * This is used mainly for network filesystem (read: probably only tested
3320  * with NFS) swapfiles.
3321  *
3322  */
3323 
3324 static void
swapdev_strategy(struct buf * bp,struct swdevt * sp)3325 swapdev_strategy(struct buf *bp, struct swdevt *sp)
3326 {
3327 	struct vnode *vp2;
3328 
3329 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
3330 
3331 	vp2 = sp->sw_id;
3332 	vhold(vp2);
3333 	if (bp->b_iocmd == BIO_WRITE) {
3334 		vn_lock(vp2, LK_EXCLUSIVE | LK_RETRY);
3335 		if (bp->b_bufobj)
3336 			bufobj_wdrop(bp->b_bufobj);
3337 		bufobj_wref(&vp2->v_bufobj);
3338 	} else {
3339 		vn_lock(vp2, LK_SHARED | LK_RETRY);
3340 	}
3341 	if (bp->b_bufobj != &vp2->v_bufobj)
3342 		bp->b_bufobj = &vp2->v_bufobj;
3343 	bp->b_vp = vp2;
3344 	bp->b_iooffset = dbtob(bp->b_blkno);
3345 	bstrategy(bp);
3346 	VOP_UNLOCK(vp2);
3347 }
3348 
3349 static void
swapdev_close(struct thread * td,struct swdevt * sp)3350 swapdev_close(struct thread *td, struct swdevt *sp)
3351 {
3352 	struct vnode *vp;
3353 
3354 	vp = sp->sw_vp;
3355 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
3356 	VOP_CLOSE(vp, FREAD | FWRITE, td->td_ucred, td);
3357 	vput(vp);
3358 }
3359 
3360 static int
swaponvp(struct thread * td,struct vnode * vp,u_long nblks)3361 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
3362 {
3363 	struct swdevt *sp;
3364 	int error;
3365 
3366 	ASSERT_VOP_ELOCKED(vp, "swaponvp");
3367 	if (nblks == 0)
3368 		return (ENXIO);
3369 	mtx_lock(&sw_dev_mtx);
3370 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
3371 		if (sp->sw_id == vp) {
3372 			mtx_unlock(&sw_dev_mtx);
3373 			return (EBUSY);
3374 		}
3375 	}
3376 	mtx_unlock(&sw_dev_mtx);
3377 
3378 #ifdef MAC
3379 	error = mac_system_check_swapon(td->td_ucred, vp);
3380 	if (error == 0)
3381 #endif
3382 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
3383 	if (error != 0)
3384 		return (error);
3385 
3386 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
3387 	    NODEV, 0);
3388 	return (0);
3389 }
3390 
3391 static int
sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)3392 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
3393 {
3394 	int error, new, n;
3395 
3396 	new = nsw_wcount_async_max;
3397 	error = sysctl_handle_int(oidp, &new, 0, req);
3398 	if (error != 0 || req->newptr == NULL)
3399 		return (error);
3400 
3401 	if (new > nswbuf / 2 || new < 1)
3402 		return (EINVAL);
3403 
3404 	mtx_lock(&swbuf_mtx);
3405 	while (nsw_wcount_async_max != new) {
3406 		/*
3407 		 * Adjust difference.  If the current async count is too low,
3408 		 * we will need to sqeeze our update slowly in.  Sleep with a
3409 		 * higher priority than getpbuf() to finish faster.
3410 		 */
3411 		n = new - nsw_wcount_async_max;
3412 		if (nsw_wcount_async + n >= 0) {
3413 			nsw_wcount_async += n;
3414 			nsw_wcount_async_max += n;
3415 			wakeup(&nsw_wcount_async);
3416 		} else {
3417 			nsw_wcount_async_max -= nsw_wcount_async;
3418 			nsw_wcount_async = 0;
3419 			msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
3420 			    "swpsysctl", 0);
3421 		}
3422 	}
3423 	mtx_unlock(&swbuf_mtx);
3424 
3425 	return (0);
3426 }
3427 
3428 static void
swap_pager_update_writecount(vm_object_t object,vm_offset_t start,vm_offset_t end)3429 swap_pager_update_writecount(vm_object_t object, vm_offset_t start,
3430     vm_offset_t end)
3431 {
3432 
3433 	VM_OBJECT_WLOCK(object);
3434 	KASSERT((object->flags & OBJ_ANON) == 0,
3435 	    ("Splittable object with writecount"));
3436 	object->un_pager.swp.writemappings += (vm_ooffset_t)end - start;
3437 	VM_OBJECT_WUNLOCK(object);
3438 }
3439 
3440 static void
swap_pager_release_writecount(vm_object_t object,vm_offset_t start,vm_offset_t end)3441 swap_pager_release_writecount(vm_object_t object, vm_offset_t start,
3442     vm_offset_t end)
3443 {
3444 
3445 	VM_OBJECT_WLOCK(object);
3446 	KASSERT((object->flags & OBJ_ANON) == 0,
3447 	    ("Splittable object with writecount"));
3448 	KASSERT(object->un_pager.swp.writemappings >= (vm_ooffset_t)end - start,
3449 	    ("swap obj %p writecount %jx dec %jx", object,
3450 	    (uintmax_t)object->un_pager.swp.writemappings,
3451 	    (uintmax_t)((vm_ooffset_t)end - start)));
3452 	object->un_pager.swp.writemappings -= (vm_ooffset_t)end - start;
3453 	VM_OBJECT_WUNLOCK(object);
3454 }
3455