xref: /linux/net/core/xdp.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* net/core/xdp.c
3  *
4  * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
5  */
6 #include <linux/bpf.h>
7 #include <linux/btf.h>
8 #include <linux/btf_ids.h>
9 #include <linux/filter.h>
10 #include <linux/types.h>
11 #include <linux/mm.h>
12 #include <linux/netdevice.h>
13 #include <linux/slab.h>
14 #include <linux/idr.h>
15 #include <linux/rhashtable.h>
16 #include <linux/bug.h>
17 #include <net/page_pool/helpers.h>
18 
19 #include <net/hotdata.h>
20 #include <net/xdp.h>
21 #include <net/xdp_priv.h> /* struct xdp_mem_allocator */
22 #include <trace/events/xdp.h>
23 #include <net/xdp_sock_drv.h>
24 
25 #define REG_STATE_NEW		0x0
26 #define REG_STATE_REGISTERED	0x1
27 #define REG_STATE_UNREGISTERED	0x2
28 #define REG_STATE_UNUSED	0x3
29 
30 static DEFINE_IDA(mem_id_pool);
31 static DEFINE_MUTEX(mem_id_lock);
32 #define MEM_ID_MAX 0xFFFE
33 #define MEM_ID_MIN 1
34 static int mem_id_next = MEM_ID_MIN;
35 
36 static bool mem_id_init; /* false */
37 static struct rhashtable *mem_id_ht;
38 
xdp_mem_id_hashfn(const void * data,u32 len,u32 seed)39 static u32 xdp_mem_id_hashfn(const void *data, u32 len, u32 seed)
40 {
41 	const u32 *k = data;
42 	const u32 key = *k;
43 
44 	BUILD_BUG_ON(sizeof_field(struct xdp_mem_allocator, mem.id)
45 		     != sizeof(u32));
46 
47 	/* Use cyclic increasing ID as direct hash key */
48 	return key;
49 }
50 
xdp_mem_id_cmp(struct rhashtable_compare_arg * arg,const void * ptr)51 static int xdp_mem_id_cmp(struct rhashtable_compare_arg *arg,
52 			  const void *ptr)
53 {
54 	const struct xdp_mem_allocator *xa = ptr;
55 	u32 mem_id = *(u32 *)arg->key;
56 
57 	return xa->mem.id != mem_id;
58 }
59 
60 static const struct rhashtable_params mem_id_rht_params = {
61 	.nelem_hint = 64,
62 	.head_offset = offsetof(struct xdp_mem_allocator, node),
63 	.key_offset  = offsetof(struct xdp_mem_allocator, mem.id),
64 	.key_len = sizeof_field(struct xdp_mem_allocator, mem.id),
65 	.max_size = MEM_ID_MAX,
66 	.min_size = 8,
67 	.automatic_shrinking = true,
68 	.hashfn    = xdp_mem_id_hashfn,
69 	.obj_cmpfn = xdp_mem_id_cmp,
70 };
71 
__xdp_mem_allocator_rcu_free(struct rcu_head * rcu)72 static void __xdp_mem_allocator_rcu_free(struct rcu_head *rcu)
73 {
74 	struct xdp_mem_allocator *xa;
75 
76 	xa = container_of(rcu, struct xdp_mem_allocator, rcu);
77 
78 	/* Allow this ID to be reused */
79 	ida_free(&mem_id_pool, xa->mem.id);
80 
81 	kfree(xa);
82 }
83 
mem_xa_remove(struct xdp_mem_allocator * xa)84 static void mem_xa_remove(struct xdp_mem_allocator *xa)
85 {
86 	trace_mem_disconnect(xa);
87 
88 	if (!rhashtable_remove_fast(mem_id_ht, &xa->node, mem_id_rht_params))
89 		call_rcu(&xa->rcu, __xdp_mem_allocator_rcu_free);
90 }
91 
mem_allocator_disconnect(void * allocator)92 static void mem_allocator_disconnect(void *allocator)
93 {
94 	struct xdp_mem_allocator *xa;
95 	struct rhashtable_iter iter;
96 
97 	mutex_lock(&mem_id_lock);
98 
99 	rhashtable_walk_enter(mem_id_ht, &iter);
100 	do {
101 		rhashtable_walk_start(&iter);
102 
103 		while ((xa = rhashtable_walk_next(&iter)) && !IS_ERR(xa)) {
104 			if (xa->allocator == allocator)
105 				mem_xa_remove(xa);
106 		}
107 
108 		rhashtable_walk_stop(&iter);
109 
110 	} while (xa == ERR_PTR(-EAGAIN));
111 	rhashtable_walk_exit(&iter);
112 
113 	mutex_unlock(&mem_id_lock);
114 }
115 
xdp_unreg_mem_model(struct xdp_mem_info * mem)116 void xdp_unreg_mem_model(struct xdp_mem_info *mem)
117 {
118 	struct xdp_mem_allocator *xa;
119 	int type = mem->type;
120 	int id = mem->id;
121 
122 	/* Reset mem info to defaults */
123 	mem->id = 0;
124 	mem->type = 0;
125 
126 	if (id == 0)
127 		return;
128 
129 	if (type == MEM_TYPE_PAGE_POOL) {
130 		xa = rhashtable_lookup_fast(mem_id_ht, &id, mem_id_rht_params);
131 		page_pool_destroy(xa->page_pool);
132 	}
133 }
134 EXPORT_SYMBOL_GPL(xdp_unreg_mem_model);
135 
xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info * xdp_rxq)136 void xdp_rxq_info_unreg_mem_model(struct xdp_rxq_info *xdp_rxq)
137 {
138 	if (xdp_rxq->reg_state != REG_STATE_REGISTERED) {
139 		WARN(1, "Missing register, driver bug");
140 		return;
141 	}
142 
143 	xdp_unreg_mem_model(&xdp_rxq->mem);
144 }
145 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg_mem_model);
146 
xdp_rxq_info_unreg(struct xdp_rxq_info * xdp_rxq)147 void xdp_rxq_info_unreg(struct xdp_rxq_info *xdp_rxq)
148 {
149 	/* Simplify driver cleanup code paths, allow unreg "unused" */
150 	if (xdp_rxq->reg_state == REG_STATE_UNUSED)
151 		return;
152 
153 	xdp_rxq_info_unreg_mem_model(xdp_rxq);
154 
155 	xdp_rxq->reg_state = REG_STATE_UNREGISTERED;
156 	xdp_rxq->dev = NULL;
157 }
158 EXPORT_SYMBOL_GPL(xdp_rxq_info_unreg);
159 
xdp_rxq_info_init(struct xdp_rxq_info * xdp_rxq)160 static void xdp_rxq_info_init(struct xdp_rxq_info *xdp_rxq)
161 {
162 	memset(xdp_rxq, 0, sizeof(*xdp_rxq));
163 }
164 
165 /* Returns 0 on success, negative on failure */
__xdp_rxq_info_reg(struct xdp_rxq_info * xdp_rxq,struct net_device * dev,u32 queue_index,unsigned int napi_id,u32 frag_size)166 int __xdp_rxq_info_reg(struct xdp_rxq_info *xdp_rxq,
167 		       struct net_device *dev, u32 queue_index,
168 		       unsigned int napi_id, u32 frag_size)
169 {
170 	if (!dev) {
171 		WARN(1, "Missing net_device from driver");
172 		return -ENODEV;
173 	}
174 
175 	if (xdp_rxq->reg_state == REG_STATE_UNUSED) {
176 		WARN(1, "Driver promised not to register this");
177 		return -EINVAL;
178 	}
179 
180 	if (xdp_rxq->reg_state == REG_STATE_REGISTERED) {
181 		WARN(1, "Missing unregister, handled but fix driver");
182 		xdp_rxq_info_unreg(xdp_rxq);
183 	}
184 
185 	/* State either UNREGISTERED or NEW */
186 	xdp_rxq_info_init(xdp_rxq);
187 	xdp_rxq->dev = dev;
188 	xdp_rxq->queue_index = queue_index;
189 	xdp_rxq->frag_size = frag_size;
190 
191 	xdp_rxq->reg_state = REG_STATE_REGISTERED;
192 	return 0;
193 }
194 EXPORT_SYMBOL_GPL(__xdp_rxq_info_reg);
195 
xdp_rxq_info_unused(struct xdp_rxq_info * xdp_rxq)196 void xdp_rxq_info_unused(struct xdp_rxq_info *xdp_rxq)
197 {
198 	xdp_rxq->reg_state = REG_STATE_UNUSED;
199 }
200 EXPORT_SYMBOL_GPL(xdp_rxq_info_unused);
201 
xdp_rxq_info_is_reg(struct xdp_rxq_info * xdp_rxq)202 bool xdp_rxq_info_is_reg(struct xdp_rxq_info *xdp_rxq)
203 {
204 	return (xdp_rxq->reg_state == REG_STATE_REGISTERED);
205 }
206 EXPORT_SYMBOL_GPL(xdp_rxq_info_is_reg);
207 
__mem_id_init_hash_table(void)208 static int __mem_id_init_hash_table(void)
209 {
210 	struct rhashtable *rht;
211 	int ret;
212 
213 	if (unlikely(mem_id_init))
214 		return 0;
215 
216 	rht = kzalloc(sizeof(*rht), GFP_KERNEL);
217 	if (!rht)
218 		return -ENOMEM;
219 
220 	ret = rhashtable_init(rht, &mem_id_rht_params);
221 	if (ret < 0) {
222 		kfree(rht);
223 		return ret;
224 	}
225 	mem_id_ht = rht;
226 	smp_mb(); /* mutex lock should provide enough pairing */
227 	mem_id_init = true;
228 
229 	return 0;
230 }
231 
232 /* Allocate a cyclic ID that maps to allocator pointer.
233  * See: https://www.kernel.org/doc/html/latest/core-api/idr.html
234  *
235  * Caller must lock mem_id_lock.
236  */
__mem_id_cyclic_get(gfp_t gfp)237 static int __mem_id_cyclic_get(gfp_t gfp)
238 {
239 	int retries = 1;
240 	int id;
241 
242 again:
243 	id = ida_alloc_range(&mem_id_pool, mem_id_next, MEM_ID_MAX - 1, gfp);
244 	if (id < 0) {
245 		if (id == -ENOSPC) {
246 			/* Cyclic allocator, reset next id */
247 			if (retries--) {
248 				mem_id_next = MEM_ID_MIN;
249 				goto again;
250 			}
251 		}
252 		return id; /* errno */
253 	}
254 	mem_id_next = id + 1;
255 
256 	return id;
257 }
258 
__is_supported_mem_type(enum xdp_mem_type type)259 static bool __is_supported_mem_type(enum xdp_mem_type type)
260 {
261 	if (type == MEM_TYPE_PAGE_POOL)
262 		return is_page_pool_compiled_in();
263 
264 	if (type >= MEM_TYPE_MAX)
265 		return false;
266 
267 	return true;
268 }
269 
__xdp_reg_mem_model(struct xdp_mem_info * mem,enum xdp_mem_type type,void * allocator)270 static struct xdp_mem_allocator *__xdp_reg_mem_model(struct xdp_mem_info *mem,
271 						     enum xdp_mem_type type,
272 						     void *allocator)
273 {
274 	struct xdp_mem_allocator *xdp_alloc;
275 	gfp_t gfp = GFP_KERNEL;
276 	int id, errno, ret;
277 	void *ptr;
278 
279 	if (!__is_supported_mem_type(type))
280 		return ERR_PTR(-EOPNOTSUPP);
281 
282 	mem->type = type;
283 
284 	if (!allocator) {
285 		if (type == MEM_TYPE_PAGE_POOL)
286 			return ERR_PTR(-EINVAL); /* Setup time check page_pool req */
287 		return NULL;
288 	}
289 
290 	/* Delay init of rhashtable to save memory if feature isn't used */
291 	if (!mem_id_init) {
292 		mutex_lock(&mem_id_lock);
293 		ret = __mem_id_init_hash_table();
294 		mutex_unlock(&mem_id_lock);
295 		if (ret < 0)
296 			return ERR_PTR(ret);
297 	}
298 
299 	xdp_alloc = kzalloc(sizeof(*xdp_alloc), gfp);
300 	if (!xdp_alloc)
301 		return ERR_PTR(-ENOMEM);
302 
303 	mutex_lock(&mem_id_lock);
304 	id = __mem_id_cyclic_get(gfp);
305 	if (id < 0) {
306 		errno = id;
307 		goto err;
308 	}
309 	mem->id = id;
310 	xdp_alloc->mem = *mem;
311 	xdp_alloc->allocator = allocator;
312 
313 	/* Insert allocator into ID lookup table */
314 	ptr = rhashtable_insert_slow(mem_id_ht, &id, &xdp_alloc->node);
315 	if (IS_ERR(ptr)) {
316 		ida_free(&mem_id_pool, mem->id);
317 		mem->id = 0;
318 		errno = PTR_ERR(ptr);
319 		goto err;
320 	}
321 
322 	if (type == MEM_TYPE_PAGE_POOL)
323 		page_pool_use_xdp_mem(allocator, mem_allocator_disconnect, mem);
324 
325 	mutex_unlock(&mem_id_lock);
326 
327 	return xdp_alloc;
328 err:
329 	mutex_unlock(&mem_id_lock);
330 	kfree(xdp_alloc);
331 	return ERR_PTR(errno);
332 }
333 
xdp_reg_mem_model(struct xdp_mem_info * mem,enum xdp_mem_type type,void * allocator)334 int xdp_reg_mem_model(struct xdp_mem_info *mem,
335 		      enum xdp_mem_type type, void *allocator)
336 {
337 	struct xdp_mem_allocator *xdp_alloc;
338 
339 	xdp_alloc = __xdp_reg_mem_model(mem, type, allocator);
340 	if (IS_ERR(xdp_alloc))
341 		return PTR_ERR(xdp_alloc);
342 	return 0;
343 }
344 EXPORT_SYMBOL_GPL(xdp_reg_mem_model);
345 
xdp_rxq_info_reg_mem_model(struct xdp_rxq_info * xdp_rxq,enum xdp_mem_type type,void * allocator)346 int xdp_rxq_info_reg_mem_model(struct xdp_rxq_info *xdp_rxq,
347 			       enum xdp_mem_type type, void *allocator)
348 {
349 	struct xdp_mem_allocator *xdp_alloc;
350 
351 	if (xdp_rxq->reg_state != REG_STATE_REGISTERED) {
352 		WARN(1, "Missing register, driver bug");
353 		return -EFAULT;
354 	}
355 
356 	xdp_alloc = __xdp_reg_mem_model(&xdp_rxq->mem, type, allocator);
357 	if (IS_ERR(xdp_alloc))
358 		return PTR_ERR(xdp_alloc);
359 
360 	if (type == MEM_TYPE_XSK_BUFF_POOL && allocator)
361 		xsk_pool_set_rxq_info(allocator, xdp_rxq);
362 
363 	if (trace_mem_connect_enabled() && xdp_alloc)
364 		trace_mem_connect(xdp_alloc, xdp_rxq);
365 	return 0;
366 }
367 
368 EXPORT_SYMBOL_GPL(xdp_rxq_info_reg_mem_model);
369 
370 /**
371  * xdp_reg_page_pool - register &page_pool as a memory provider for XDP
372  * @pool: &page_pool to register
373  *
374  * Can be used to register pools manually without connecting to any XDP RxQ
375  * info, so that the XDP layer will be aware of them. Then, they can be
376  * attached to an RxQ info manually via xdp_rxq_info_attach_page_pool().
377  *
378  * Return: %0 on success, -errno on error.
379  */
xdp_reg_page_pool(struct page_pool * pool)380 int xdp_reg_page_pool(struct page_pool *pool)
381 {
382 	struct xdp_mem_info mem;
383 
384 	return xdp_reg_mem_model(&mem, MEM_TYPE_PAGE_POOL, pool);
385 }
386 EXPORT_SYMBOL_GPL(xdp_reg_page_pool);
387 
388 /**
389  * xdp_unreg_page_pool - unregister &page_pool from the memory providers list
390  * @pool: &page_pool to unregister
391  *
392  * A shorthand for manual unregistering page pools. If the pool was previously
393  * attached to an RxQ info, it must be detached first.
394  */
xdp_unreg_page_pool(const struct page_pool * pool)395 void xdp_unreg_page_pool(const struct page_pool *pool)
396 {
397 	struct xdp_mem_info mem = {
398 		.type	= MEM_TYPE_PAGE_POOL,
399 		.id	= pool->xdp_mem_id,
400 	};
401 
402 	xdp_unreg_mem_model(&mem);
403 }
404 EXPORT_SYMBOL_GPL(xdp_unreg_page_pool);
405 
406 /**
407  * xdp_rxq_info_attach_page_pool - attach registered pool to RxQ info
408  * @xdp_rxq: XDP RxQ info to attach the pool to
409  * @pool: pool to attach
410  *
411  * If the pool was registered manually, this function must be called instead
412  * of xdp_rxq_info_reg_mem_model() to connect it to the RxQ info.
413  */
xdp_rxq_info_attach_page_pool(struct xdp_rxq_info * xdp_rxq,const struct page_pool * pool)414 void xdp_rxq_info_attach_page_pool(struct xdp_rxq_info *xdp_rxq,
415 				   const struct page_pool *pool)
416 {
417 	struct xdp_mem_info mem = {
418 		.type	= MEM_TYPE_PAGE_POOL,
419 		.id	= pool->xdp_mem_id,
420 	};
421 
422 	xdp_rxq_info_attach_mem_model(xdp_rxq, &mem);
423 }
424 EXPORT_SYMBOL_GPL(xdp_rxq_info_attach_page_pool);
425 
426 /* XDP RX runs under NAPI protection, and in different delivery error
427  * scenarios (e.g. queue full), it is possible to return the xdp_frame
428  * while still leveraging this protection.  The @napi_direct boolean
429  * is used for those calls sites.  Thus, allowing for faster recycling
430  * of xdp_frames/pages in those cases.
431  */
__xdp_return(netmem_ref netmem,enum xdp_mem_type mem_type,bool napi_direct,struct xdp_buff * xdp)432 void __xdp_return(netmem_ref netmem, enum xdp_mem_type mem_type,
433 		  bool napi_direct, struct xdp_buff *xdp)
434 {
435 	switch (mem_type) {
436 	case MEM_TYPE_PAGE_POOL:
437 		netmem = netmem_compound_head(netmem);
438 		if (napi_direct && xdp_return_frame_no_direct())
439 			napi_direct = false;
440 		/* No need to check ((page->pp_magic & ~0x3UL) == PP_SIGNATURE)
441 		 * as mem->type knows this a page_pool page
442 		 */
443 		page_pool_put_full_netmem(netmem_get_pp(netmem), netmem,
444 					  napi_direct);
445 		break;
446 	case MEM_TYPE_PAGE_SHARED:
447 		page_frag_free(__netmem_address(netmem));
448 		break;
449 	case MEM_TYPE_PAGE_ORDER0:
450 		put_page(__netmem_to_page(netmem));
451 		break;
452 	case MEM_TYPE_XSK_BUFF_POOL:
453 		/* NB! Only valid from an xdp_buff! */
454 		xsk_buff_free(xdp);
455 		break;
456 	default:
457 		/* Not possible, checked in xdp_rxq_info_reg_mem_model() */
458 		WARN(1, "Incorrect XDP memory type (%d) usage", mem_type);
459 		break;
460 	}
461 }
462 
xdp_return_frame(struct xdp_frame * xdpf)463 void xdp_return_frame(struct xdp_frame *xdpf)
464 {
465 	struct skb_shared_info *sinfo;
466 
467 	if (likely(!xdp_frame_has_frags(xdpf)))
468 		goto out;
469 
470 	sinfo = xdp_get_shared_info_from_frame(xdpf);
471 	for (u32 i = 0; i < sinfo->nr_frags; i++)
472 		__xdp_return(skb_frag_netmem(&sinfo->frags[i]), xdpf->mem_type,
473 			     false, NULL);
474 
475 out:
476 	__xdp_return(virt_to_netmem(xdpf->data), xdpf->mem_type, false, NULL);
477 }
478 EXPORT_SYMBOL_GPL(xdp_return_frame);
479 
xdp_return_frame_rx_napi(struct xdp_frame * xdpf)480 void xdp_return_frame_rx_napi(struct xdp_frame *xdpf)
481 {
482 	struct skb_shared_info *sinfo;
483 
484 	if (likely(!xdp_frame_has_frags(xdpf)))
485 		goto out;
486 
487 	sinfo = xdp_get_shared_info_from_frame(xdpf);
488 	for (u32 i = 0; i < sinfo->nr_frags; i++)
489 		__xdp_return(skb_frag_netmem(&sinfo->frags[i]), xdpf->mem_type,
490 			     true, NULL);
491 
492 out:
493 	__xdp_return(virt_to_netmem(xdpf->data), xdpf->mem_type, true, NULL);
494 }
495 EXPORT_SYMBOL_GPL(xdp_return_frame_rx_napi);
496 
497 /* XDP bulk APIs introduce a defer/flush mechanism to return
498  * pages belonging to the same xdp_mem_allocator object
499  * (identified via the mem.id field) in bulk to optimize
500  * I-cache and D-cache.
501  * The bulk queue size is set to 16 to be aligned to how
502  * XDP_REDIRECT bulking works. The bulk is flushed when
503  * it is full or when mem.id changes.
504  * xdp_frame_bulk is usually stored/allocated on the function
505  * call-stack to avoid locking penalties.
506  */
507 
508 /* Must be called with rcu_read_lock held */
xdp_return_frame_bulk(struct xdp_frame * xdpf,struct xdp_frame_bulk * bq)509 void xdp_return_frame_bulk(struct xdp_frame *xdpf,
510 			   struct xdp_frame_bulk *bq)
511 {
512 	if (xdpf->mem_type != MEM_TYPE_PAGE_POOL) {
513 		xdp_return_frame(xdpf);
514 		return;
515 	}
516 
517 	if (bq->count == XDP_BULK_QUEUE_SIZE)
518 		xdp_flush_frame_bulk(bq);
519 
520 	if (unlikely(xdp_frame_has_frags(xdpf))) {
521 		struct skb_shared_info *sinfo;
522 		int i;
523 
524 		sinfo = xdp_get_shared_info_from_frame(xdpf);
525 		for (i = 0; i < sinfo->nr_frags; i++) {
526 			skb_frag_t *frag = &sinfo->frags[i];
527 
528 			bq->q[bq->count++] = skb_frag_netmem(frag);
529 			if (bq->count == XDP_BULK_QUEUE_SIZE)
530 				xdp_flush_frame_bulk(bq);
531 		}
532 	}
533 	bq->q[bq->count++] = virt_to_netmem(xdpf->data);
534 }
535 EXPORT_SYMBOL_GPL(xdp_return_frame_bulk);
536 
537 /**
538  * xdp_return_frag -- free one XDP frag or decrement its refcount
539  * @netmem: network memory reference to release
540  * @xdp: &xdp_buff to release the frag for
541  */
xdp_return_frag(netmem_ref netmem,const struct xdp_buff * xdp)542 void xdp_return_frag(netmem_ref netmem, const struct xdp_buff *xdp)
543 {
544 	__xdp_return(netmem, xdp->rxq->mem.type, true, NULL);
545 }
546 EXPORT_SYMBOL_GPL(xdp_return_frag);
547 
xdp_return_buff(struct xdp_buff * xdp)548 void xdp_return_buff(struct xdp_buff *xdp)
549 {
550 	struct skb_shared_info *sinfo;
551 
552 	if (likely(!xdp_buff_has_frags(xdp)))
553 		goto out;
554 
555 	sinfo = xdp_get_shared_info_from_buff(xdp);
556 	for (u32 i = 0; i < sinfo->nr_frags; i++)
557 		__xdp_return(skb_frag_netmem(&sinfo->frags[i]),
558 			     xdp->rxq->mem.type, true, xdp);
559 
560 out:
561 	__xdp_return(virt_to_netmem(xdp->data), xdp->rxq->mem.type, true, xdp);
562 }
563 EXPORT_SYMBOL_GPL(xdp_return_buff);
564 
xdp_attachment_setup(struct xdp_attachment_info * info,struct netdev_bpf * bpf)565 void xdp_attachment_setup(struct xdp_attachment_info *info,
566 			  struct netdev_bpf *bpf)
567 {
568 	if (info->prog)
569 		bpf_prog_put(info->prog);
570 	info->prog = bpf->prog;
571 	info->flags = bpf->flags;
572 }
573 EXPORT_SYMBOL_GPL(xdp_attachment_setup);
574 
xdp_convert_zc_to_xdp_frame(struct xdp_buff * xdp)575 struct xdp_frame *xdp_convert_zc_to_xdp_frame(struct xdp_buff *xdp)
576 {
577 	unsigned int metasize, totsize;
578 	void *addr, *data_to_copy;
579 	struct xdp_frame *xdpf;
580 	struct page *page;
581 
582 	/* Clone into a MEM_TYPE_PAGE_ORDER0 xdp_frame. */
583 	metasize = xdp_data_meta_unsupported(xdp) ? 0 :
584 		   xdp->data - xdp->data_meta;
585 	totsize = xdp->data_end - xdp->data + metasize;
586 
587 	if (sizeof(*xdpf) + totsize > PAGE_SIZE)
588 		return NULL;
589 
590 	page = dev_alloc_page();
591 	if (!page)
592 		return NULL;
593 
594 	addr = page_to_virt(page);
595 	xdpf = addr;
596 	memset(xdpf, 0, sizeof(*xdpf));
597 
598 	addr += sizeof(*xdpf);
599 	data_to_copy = metasize ? xdp->data_meta : xdp->data;
600 	memcpy(addr, data_to_copy, totsize);
601 
602 	xdpf->data = addr + metasize;
603 	xdpf->len = totsize - metasize;
604 	xdpf->headroom = 0;
605 	xdpf->metasize = metasize;
606 	xdpf->frame_sz = PAGE_SIZE;
607 	xdpf->mem_type = MEM_TYPE_PAGE_ORDER0;
608 
609 	xsk_buff_free(xdp);
610 	return xdpf;
611 }
612 EXPORT_SYMBOL_GPL(xdp_convert_zc_to_xdp_frame);
613 
614 /* Used by XDP_WARN macro, to avoid inlining WARN() in fast-path */
xdp_warn(const char * msg,const char * func,const int line)615 void xdp_warn(const char *msg, const char *func, const int line)
616 {
617 	WARN(1, "XDP_WARN: %s(line:%d): %s\n", func, line, msg);
618 };
619 EXPORT_SYMBOL_GPL(xdp_warn);
620 
xdp_alloc_skb_bulk(void ** skbs,int n_skb,gfp_t gfp)621 int xdp_alloc_skb_bulk(void **skbs, int n_skb, gfp_t gfp)
622 {
623 	n_skb = kmem_cache_alloc_bulk(net_hotdata.skbuff_cache, gfp, n_skb, skbs);
624 	if (unlikely(!n_skb))
625 		return -ENOMEM;
626 
627 	return 0;
628 }
629 EXPORT_SYMBOL_GPL(xdp_alloc_skb_bulk);
630 
631 /**
632  * xdp_build_skb_from_buff - create an skb from &xdp_buff
633  * @xdp: &xdp_buff to convert to an skb
634  *
635  * Perform common operations to create a new skb to pass up the stack from
636  * &xdp_buff: allocate an skb head from the NAPI percpu cache, initialize
637  * skb data pointers and offsets, set the recycle bit if the buff is
638  * PP-backed, Rx queue index, protocol and update frags info.
639  *
640  * Return: new &sk_buff on success, %NULL on error.
641  */
xdp_build_skb_from_buff(const struct xdp_buff * xdp)642 struct sk_buff *xdp_build_skb_from_buff(const struct xdp_buff *xdp)
643 {
644 	const struct xdp_rxq_info *rxq = xdp->rxq;
645 	const struct skb_shared_info *sinfo;
646 	struct sk_buff *skb;
647 	u32 nr_frags = 0;
648 	int metalen;
649 
650 	if (unlikely(xdp_buff_has_frags(xdp))) {
651 		sinfo = xdp_get_shared_info_from_buff(xdp);
652 		nr_frags = sinfo->nr_frags;
653 	}
654 
655 	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
656 	if (unlikely(!skb))
657 		return NULL;
658 
659 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
660 	__skb_put(skb, xdp->data_end - xdp->data);
661 
662 	metalen = xdp->data - xdp->data_meta;
663 	if (metalen > 0)
664 		skb_metadata_set(skb, metalen);
665 
666 	if (rxq->mem.type == MEM_TYPE_PAGE_POOL)
667 		skb_mark_for_recycle(skb);
668 
669 	skb_record_rx_queue(skb, rxq->queue_index);
670 
671 	if (unlikely(nr_frags)) {
672 		u32 tsize;
673 
674 		tsize = sinfo->xdp_frags_truesize ? : nr_frags * xdp->frame_sz;
675 		xdp_update_skb_shared_info(skb, nr_frags,
676 					   sinfo->xdp_frags_size, tsize,
677 					   xdp_buff_is_frag_pfmemalloc(xdp));
678 	}
679 
680 	skb->protocol = eth_type_trans(skb, rxq->dev);
681 
682 	return skb;
683 }
684 EXPORT_SYMBOL_GPL(xdp_build_skb_from_buff);
685 
686 /**
687  * xdp_copy_frags_from_zc - copy frags from XSk buff to skb
688  * @skb: skb to copy frags to
689  * @xdp: XSk &xdp_buff from which the frags will be copied
690  * @pp: &page_pool backing page allocation, if available
691  *
692  * Copy all frags from XSk &xdp_buff to the skb to pass it up the stack.
693  * Allocate a new buffer for each frag, copy it and attach to the skb.
694  *
695  * Return: true on success, false on netmem allocation fail.
696  */
xdp_copy_frags_from_zc(struct sk_buff * skb,const struct xdp_buff * xdp,struct page_pool * pp)697 static noinline bool xdp_copy_frags_from_zc(struct sk_buff *skb,
698 					    const struct xdp_buff *xdp,
699 					    struct page_pool *pp)
700 {
701 	struct skb_shared_info *sinfo = skb_shinfo(skb);
702 	const struct skb_shared_info *xinfo;
703 	u32 nr_frags, tsize = 0;
704 	bool pfmemalloc = false;
705 
706 	xinfo = xdp_get_shared_info_from_buff(xdp);
707 	nr_frags = xinfo->nr_frags;
708 
709 	for (u32 i = 0; i < nr_frags; i++) {
710 		u32 len = skb_frag_size(&xinfo->frags[i]);
711 		u32 offset, truesize = len;
712 		netmem_ref netmem;
713 
714 		netmem = page_pool_dev_alloc_netmem(pp, &offset, &truesize);
715 		if (unlikely(!netmem)) {
716 			sinfo->nr_frags = i;
717 			return false;
718 		}
719 
720 		memcpy(__netmem_address(netmem),
721 		       __netmem_address(xinfo->frags[i].netmem),
722 		       LARGEST_ALIGN(len));
723 		__skb_fill_netmem_desc_noacc(sinfo, i, netmem, offset, len);
724 
725 		tsize += truesize;
726 		pfmemalloc |= netmem_is_pfmemalloc(netmem);
727 	}
728 
729 	xdp_update_skb_shared_info(skb, nr_frags, xinfo->xdp_frags_size,
730 				   tsize, pfmemalloc);
731 
732 	return true;
733 }
734 
735 /**
736  * xdp_build_skb_from_zc - create an skb from XSk &xdp_buff
737  * @xdp: source XSk buff
738  *
739  * Similar to xdp_build_skb_from_buff(), but for XSk frames. Allocate an skb
740  * head, new buffer for the head, copy the data and initialize the skb fields.
741  * If there are frags, allocate new buffers for them and copy.
742  * Buffers are allocated from the system percpu pools to try recycling them.
743  * If new skb was built successfully, @xdp is returned to XSk pool's freelist.
744  * On error, it remains untouched and the caller must take care of this.
745  *
746  * Return: new &sk_buff on success, %NULL on error.
747  */
xdp_build_skb_from_zc(struct xdp_buff * xdp)748 struct sk_buff *xdp_build_skb_from_zc(struct xdp_buff *xdp)
749 {
750 	struct page_pool *pp = this_cpu_read(system_page_pool);
751 	const struct xdp_rxq_info *rxq = xdp->rxq;
752 	u32 len = xdp->data_end - xdp->data_meta;
753 	u32 truesize = xdp->frame_sz;
754 	struct sk_buff *skb;
755 	int metalen;
756 	void *data;
757 
758 	if (!IS_ENABLED(CONFIG_PAGE_POOL))
759 		return NULL;
760 
761 	data = page_pool_dev_alloc_va(pp, &truesize);
762 	if (unlikely(!data))
763 		return NULL;
764 
765 	skb = napi_build_skb(data, truesize);
766 	if (unlikely(!skb)) {
767 		page_pool_free_va(pp, data, true);
768 		return NULL;
769 	}
770 
771 	skb_mark_for_recycle(skb);
772 	skb_reserve(skb, xdp->data_meta - xdp->data_hard_start);
773 
774 	memcpy(__skb_put(skb, len), xdp->data_meta, LARGEST_ALIGN(len));
775 
776 	metalen = xdp->data - xdp->data_meta;
777 	if (metalen > 0) {
778 		skb_metadata_set(skb, metalen);
779 		__skb_pull(skb, metalen);
780 	}
781 
782 	skb_record_rx_queue(skb, rxq->queue_index);
783 
784 	if (unlikely(xdp_buff_has_frags(xdp)) &&
785 	    unlikely(!xdp_copy_frags_from_zc(skb, xdp, pp))) {
786 		napi_consume_skb(skb, true);
787 		return NULL;
788 	}
789 
790 	xsk_buff_free(xdp);
791 
792 	skb->protocol = eth_type_trans(skb, rxq->dev);
793 
794 	return skb;
795 }
796 EXPORT_SYMBOL_GPL(xdp_build_skb_from_zc);
797 
__xdp_build_skb_from_frame(struct xdp_frame * xdpf,struct sk_buff * skb,struct net_device * dev)798 struct sk_buff *__xdp_build_skb_from_frame(struct xdp_frame *xdpf,
799 					   struct sk_buff *skb,
800 					   struct net_device *dev)
801 {
802 	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
803 	unsigned int headroom, frame_size;
804 	void *hard_start;
805 	u8 nr_frags;
806 
807 	/* xdp frags frame */
808 	if (unlikely(xdp_frame_has_frags(xdpf)))
809 		nr_frags = sinfo->nr_frags;
810 
811 	/* Part of headroom was reserved to xdpf */
812 	headroom = sizeof(*xdpf) + xdpf->headroom;
813 
814 	/* Memory size backing xdp_frame data already have reserved
815 	 * room for build_skb to place skb_shared_info in tailroom.
816 	 */
817 	frame_size = xdpf->frame_sz;
818 
819 	hard_start = xdpf->data - headroom;
820 	skb = build_skb_around(skb, hard_start, frame_size);
821 	if (unlikely(!skb))
822 		return NULL;
823 
824 	skb_reserve(skb, headroom);
825 	__skb_put(skb, xdpf->len);
826 	if (xdpf->metasize)
827 		skb_metadata_set(skb, xdpf->metasize);
828 
829 	if (unlikely(xdp_frame_has_frags(xdpf)))
830 		xdp_update_skb_shared_info(skb, nr_frags,
831 					   sinfo->xdp_frags_size,
832 					   nr_frags * xdpf->frame_sz,
833 					   xdp_frame_is_frag_pfmemalloc(xdpf));
834 
835 	/* Essential SKB info: protocol and skb->dev */
836 	skb->protocol = eth_type_trans(skb, dev);
837 
838 	/* Optional SKB info, currently missing:
839 	 * - HW checksum info		(skb->ip_summed)
840 	 * - HW RX hash			(skb_set_hash)
841 	 * - RX ring dev queue index	(skb_record_rx_queue)
842 	 */
843 
844 	if (xdpf->mem_type == MEM_TYPE_PAGE_POOL)
845 		skb_mark_for_recycle(skb);
846 
847 	/* Allow SKB to reuse area used by xdp_frame */
848 	xdp_scrub_frame(xdpf);
849 
850 	return skb;
851 }
852 EXPORT_SYMBOL_GPL(__xdp_build_skb_from_frame);
853 
xdp_build_skb_from_frame(struct xdp_frame * xdpf,struct net_device * dev)854 struct sk_buff *xdp_build_skb_from_frame(struct xdp_frame *xdpf,
855 					 struct net_device *dev)
856 {
857 	struct sk_buff *skb;
858 
859 	skb = kmem_cache_alloc(net_hotdata.skbuff_cache, GFP_ATOMIC);
860 	if (unlikely(!skb))
861 		return NULL;
862 
863 	memset(skb, 0, offsetof(struct sk_buff, tail));
864 
865 	return __xdp_build_skb_from_frame(xdpf, skb, dev);
866 }
867 EXPORT_SYMBOL_GPL(xdp_build_skb_from_frame);
868 
xdpf_clone(struct xdp_frame * xdpf)869 struct xdp_frame *xdpf_clone(struct xdp_frame *xdpf)
870 {
871 	unsigned int headroom, totalsize;
872 	struct xdp_frame *nxdpf;
873 	struct page *page;
874 	void *addr;
875 
876 	headroom = xdpf->headroom + sizeof(*xdpf);
877 	totalsize = headroom + xdpf->len;
878 
879 	if (unlikely(totalsize > PAGE_SIZE))
880 		return NULL;
881 	page = dev_alloc_page();
882 	if (!page)
883 		return NULL;
884 	addr = page_to_virt(page);
885 
886 	memcpy(addr, xdpf, totalsize);
887 
888 	nxdpf = addr;
889 	nxdpf->data = addr + headroom;
890 	nxdpf->frame_sz = PAGE_SIZE;
891 	nxdpf->mem_type = MEM_TYPE_PAGE_ORDER0;
892 
893 	return nxdpf;
894 }
895 
896 __bpf_kfunc_start_defs();
897 
898 /**
899  * bpf_xdp_metadata_rx_timestamp - Read XDP frame RX timestamp.
900  * @ctx: XDP context pointer.
901  * @timestamp: Return value pointer.
902  *
903  * Return:
904  * * Returns 0 on success or ``-errno`` on error.
905  * * ``-EOPNOTSUPP`` : means device driver does not implement kfunc
906  * * ``-ENODATA``    : means no RX-timestamp available for this frame
907  */
bpf_xdp_metadata_rx_timestamp(const struct xdp_md * ctx,u64 * timestamp)908 __bpf_kfunc int bpf_xdp_metadata_rx_timestamp(const struct xdp_md *ctx, u64 *timestamp)
909 {
910 	return -EOPNOTSUPP;
911 }
912 
913 /**
914  * bpf_xdp_metadata_rx_hash - Read XDP frame RX hash.
915  * @ctx: XDP context pointer.
916  * @hash: Return value pointer.
917  * @rss_type: Return value pointer for RSS type.
918  *
919  * The RSS hash type (@rss_type) specifies what portion of packet headers NIC
920  * hardware used when calculating RSS hash value.  The RSS type can be decoded
921  * via &enum xdp_rss_hash_type either matching on individual L3/L4 bits
922  * ``XDP_RSS_L*`` or by combined traditional *RSS Hashing Types*
923  * ``XDP_RSS_TYPE_L*``.
924  *
925  * Return:
926  * * Returns 0 on success or ``-errno`` on error.
927  * * ``-EOPNOTSUPP`` : means device driver doesn't implement kfunc
928  * * ``-ENODATA``    : means no RX-hash available for this frame
929  */
bpf_xdp_metadata_rx_hash(const struct xdp_md * ctx,u32 * hash,enum xdp_rss_hash_type * rss_type)930 __bpf_kfunc int bpf_xdp_metadata_rx_hash(const struct xdp_md *ctx, u32 *hash,
931 					 enum xdp_rss_hash_type *rss_type)
932 {
933 	return -EOPNOTSUPP;
934 }
935 
936 /**
937  * bpf_xdp_metadata_rx_vlan_tag - Get XDP packet outermost VLAN tag
938  * @ctx: XDP context pointer.
939  * @vlan_proto: Destination pointer for VLAN Tag protocol identifier (TPID).
940  * @vlan_tci: Destination pointer for VLAN TCI (VID + DEI + PCP)
941  *
942  * In case of success, ``vlan_proto`` contains *Tag protocol identifier (TPID)*,
943  * usually ``ETH_P_8021Q`` or ``ETH_P_8021AD``, but some networks can use
944  * custom TPIDs. ``vlan_proto`` is stored in **network byte order (BE)**
945  * and should be used as follows:
946  * ``if (vlan_proto == bpf_htons(ETH_P_8021Q)) do_something();``
947  *
948  * ``vlan_tci`` contains the remaining 16 bits of a VLAN tag.
949  * Driver is expected to provide those in **host byte order (usually LE)**,
950  * so the bpf program should not perform byte conversion.
951  * According to 802.1Q standard, *VLAN TCI (Tag control information)*
952  * is a bit field that contains:
953  * *VLAN identifier (VID)* that can be read with ``vlan_tci & 0xfff``,
954  * *Drop eligible indicator (DEI)* - 1 bit,
955  * *Priority code point (PCP)* - 3 bits.
956  * For detailed meaning of DEI and PCP, please refer to other sources.
957  *
958  * Return:
959  * * Returns 0 on success or ``-errno`` on error.
960  * * ``-EOPNOTSUPP`` : device driver doesn't implement kfunc
961  * * ``-ENODATA``    : VLAN tag was not stripped or is not available
962  */
bpf_xdp_metadata_rx_vlan_tag(const struct xdp_md * ctx,__be16 * vlan_proto,u16 * vlan_tci)963 __bpf_kfunc int bpf_xdp_metadata_rx_vlan_tag(const struct xdp_md *ctx,
964 					     __be16 *vlan_proto, u16 *vlan_tci)
965 {
966 	return -EOPNOTSUPP;
967 }
968 
969 __bpf_kfunc_end_defs();
970 
971 BTF_KFUNCS_START(xdp_metadata_kfunc_ids)
972 #define XDP_METADATA_KFUNC(_, __, name, ___) BTF_ID_FLAGS(func, name, KF_TRUSTED_ARGS)
973 XDP_METADATA_KFUNC_xxx
974 #undef XDP_METADATA_KFUNC
975 BTF_KFUNCS_END(xdp_metadata_kfunc_ids)
976 
977 static const struct btf_kfunc_id_set xdp_metadata_kfunc_set = {
978 	.owner = THIS_MODULE,
979 	.set   = &xdp_metadata_kfunc_ids,
980 };
981 
BTF_ID_LIST(xdp_metadata_kfunc_ids_unsorted)982 BTF_ID_LIST(xdp_metadata_kfunc_ids_unsorted)
983 #define XDP_METADATA_KFUNC(name, _, str, __) BTF_ID(func, str)
984 XDP_METADATA_KFUNC_xxx
985 #undef XDP_METADATA_KFUNC
986 
987 u32 bpf_xdp_metadata_kfunc_id(int id)
988 {
989 	/* xdp_metadata_kfunc_ids is sorted and can't be used */
990 	return xdp_metadata_kfunc_ids_unsorted[id];
991 }
992 
bpf_dev_bound_kfunc_id(u32 btf_id)993 bool bpf_dev_bound_kfunc_id(u32 btf_id)
994 {
995 	return btf_id_set8_contains(&xdp_metadata_kfunc_ids, btf_id);
996 }
997 
xdp_metadata_init(void)998 static int __init xdp_metadata_init(void)
999 {
1000 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_XDP, &xdp_metadata_kfunc_set);
1001 }
1002 late_initcall(xdp_metadata_init);
1003 
xdp_set_features_flag(struct net_device * dev,xdp_features_t val)1004 void xdp_set_features_flag(struct net_device *dev, xdp_features_t val)
1005 {
1006 	val &= NETDEV_XDP_ACT_MASK;
1007 	if (dev->xdp_features == val)
1008 		return;
1009 
1010 	dev->xdp_features = val;
1011 
1012 	if (dev->reg_state == NETREG_REGISTERED)
1013 		call_netdevice_notifiers(NETDEV_XDP_FEAT_CHANGE, dev);
1014 }
1015 EXPORT_SYMBOL_GPL(xdp_set_features_flag);
1016 
xdp_features_set_redirect_target(struct net_device * dev,bool support_sg)1017 void xdp_features_set_redirect_target(struct net_device *dev, bool support_sg)
1018 {
1019 	xdp_features_t val = (dev->xdp_features | NETDEV_XDP_ACT_NDO_XMIT);
1020 
1021 	if (support_sg)
1022 		val |= NETDEV_XDP_ACT_NDO_XMIT_SG;
1023 	xdp_set_features_flag(dev, val);
1024 }
1025 EXPORT_SYMBOL_GPL(xdp_features_set_redirect_target);
1026 
xdp_features_clear_redirect_target(struct net_device * dev)1027 void xdp_features_clear_redirect_target(struct net_device *dev)
1028 {
1029 	xdp_features_t val = dev->xdp_features;
1030 
1031 	val &= ~(NETDEV_XDP_ACT_NDO_XMIT | NETDEV_XDP_ACT_NDO_XMIT_SG);
1032 	xdp_set_features_flag(dev, val);
1033 }
1034 EXPORT_SYMBOL_GPL(xdp_features_clear_redirect_target);
1035