xref: /linux/drivers/gpu/drm/i915/gt/intel_ggtt.c (revision 2c1ed907520c50326b8f604907a8478b27881a2e)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10 
11 #include <drm/drm_managed.h>
12 #include <drm/intel/i915_drm.h>
13 #include <drm/intel/intel-gtt.h>
14 
15 #include "gem/i915_gem_lmem.h"
16 
17 #include "intel_context.h"
18 #include "intel_ggtt_gmch.h"
19 #include "intel_gpu_commands.h"
20 #include "intel_gt.h"
21 #include "intel_gt_regs.h"
22 #include "intel_pci_config.h"
23 #include "intel_ring.h"
24 #include "i915_drv.h"
25 #include "i915_pci.h"
26 #include "i915_reg.h"
27 #include "i915_request.h"
28 #include "i915_scatterlist.h"
29 #include "i915_utils.h"
30 #include "i915_vgpu.h"
31 
32 #include "intel_gtt.h"
33 #include "gen8_ppgtt.h"
34 #include "intel_engine_pm.h"
35 
i915_ggtt_color_adjust(const struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)36 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
37 				   unsigned long color,
38 				   u64 *start,
39 				   u64 *end)
40 {
41 	if (i915_node_color_differs(node, color))
42 		*start += I915_GTT_PAGE_SIZE;
43 
44 	/*
45 	 * Also leave a space between the unallocated reserved node after the
46 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
47 	 * to insert a guard page to prevent prefetches crossing over the
48 	 * GTT boundary.
49 	 */
50 	node = list_next_entry(node, node_list);
51 	if (node->color != color)
52 		*end -= I915_GTT_PAGE_SIZE;
53 }
54 
ggtt_init_hw(struct i915_ggtt * ggtt)55 static int ggtt_init_hw(struct i915_ggtt *ggtt)
56 {
57 	struct drm_i915_private *i915 = ggtt->vm.i915;
58 
59 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
60 
61 	ggtt->vm.is_ggtt = true;
62 
63 	/* Only VLV supports read-only GGTT mappings */
64 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
65 
66 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
67 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
68 
69 	if (ggtt->mappable_end) {
70 		if (!io_mapping_init_wc(&ggtt->iomap,
71 					ggtt->gmadr.start,
72 					ggtt->mappable_end)) {
73 			ggtt->vm.cleanup(&ggtt->vm);
74 			return -EIO;
75 		}
76 
77 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
78 					      ggtt->mappable_end);
79 	}
80 
81 	intel_ggtt_init_fences(ggtt);
82 
83 	return 0;
84 }
85 
86 /**
87  * i915_ggtt_init_hw - Initialize GGTT hardware
88  * @i915: i915 device
89  */
i915_ggtt_init_hw(struct drm_i915_private * i915)90 int i915_ggtt_init_hw(struct drm_i915_private *i915)
91 {
92 	int ret;
93 
94 	/*
95 	 * Note that we use page colouring to enforce a guard page at the
96 	 * end of the address space. This is required as the CS may prefetch
97 	 * beyond the end of the batch buffer, across the page boundary,
98 	 * and beyond the end of the GTT if we do not provide a guard.
99 	 */
100 	ret = ggtt_init_hw(to_gt(i915)->ggtt);
101 	if (ret)
102 		return ret;
103 
104 	return 0;
105 }
106 
107 /**
108  * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
109  * @vm: The VM to suspend the mappings for
110  * @evict_all: Evict all VMAs
111  *
112  * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
113  * DPT page table.
114  */
i915_ggtt_suspend_vm(struct i915_address_space * vm,bool evict_all)115 void i915_ggtt_suspend_vm(struct i915_address_space *vm, bool evict_all)
116 {
117 	struct i915_vma *vma, *vn;
118 	int save_skip_rewrite;
119 
120 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
121 
122 retry:
123 	i915_gem_drain_freed_objects(vm->i915);
124 
125 	mutex_lock(&vm->mutex);
126 
127 	/*
128 	 * Skip rewriting PTE on VMA unbind.
129 	 * FIXME: Use an argument to i915_vma_unbind() instead?
130 	 */
131 	save_skip_rewrite = vm->skip_pte_rewrite;
132 	vm->skip_pte_rewrite = true;
133 
134 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
135 		struct drm_i915_gem_object *obj = vma->obj;
136 
137 		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
138 
139 		if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
140 			continue;
141 
142 		/* unlikely to race when GPU is idle, so no worry about slowpath.. */
143 		if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
144 			/*
145 			 * No dead objects should appear here, GPU should be
146 			 * completely idle, and userspace suspended
147 			 */
148 			i915_gem_object_get(obj);
149 
150 			mutex_unlock(&vm->mutex);
151 
152 			i915_gem_object_lock(obj, NULL);
153 			GEM_WARN_ON(i915_vma_unbind(vma));
154 			i915_gem_object_unlock(obj);
155 			i915_gem_object_put(obj);
156 
157 			vm->skip_pte_rewrite = save_skip_rewrite;
158 			goto retry;
159 		}
160 
161 		if (evict_all || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
162 			i915_vma_wait_for_bind(vma);
163 
164 			__i915_vma_evict(vma, false);
165 			drm_mm_remove_node(&vma->node);
166 		}
167 
168 		i915_gem_object_unlock(obj);
169 	}
170 
171 	vm->clear_range(vm, 0, vm->total);
172 
173 	vm->skip_pte_rewrite = save_skip_rewrite;
174 
175 	mutex_unlock(&vm->mutex);
176 
177 	drm_WARN_ON(&vm->i915->drm, evict_all && !list_empty(&vm->bound_list));
178 }
179 
i915_ggtt_suspend(struct i915_ggtt * ggtt)180 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
181 {
182 	struct intel_gt *gt;
183 
184 	i915_ggtt_suspend_vm(&ggtt->vm, false);
185 	ggtt->invalidate(ggtt);
186 
187 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
188 		intel_gt_check_and_clear_faults(gt);
189 }
190 
gen6_ggtt_invalidate(struct i915_ggtt * ggtt)191 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
192 {
193 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
194 
195 	spin_lock_irq(&uncore->lock);
196 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
197 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
198 	spin_unlock_irq(&uncore->lock);
199 }
200 
needs_wc_ggtt_mapping(struct drm_i915_private * i915)201 static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915)
202 {
203 	/*
204 	 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
205 	 * will be dropped. For WC mappings in general we have 64 byte burst
206 	 * writes when the WC buffer is flushed, so we can't use it, but have to
207 	 * resort to an uncached mapping. The WC issue is easily caught by the
208 	 * readback check when writing GTT PTE entries.
209 	 */
210 	if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11)
211 		return true;
212 
213 	return false;
214 }
215 
gen8_ggtt_invalidate(struct i915_ggtt * ggtt)216 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
217 {
218 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
219 
220 	/*
221 	 * Note that as an uncached mmio write, this will flush the
222 	 * WCB of the writes into the GGTT before it triggers the invalidate.
223 	 *
224 	 * Only perform this when GGTT is mapped as WC, see ggtt_probe_common().
225 	 */
226 	if (needs_wc_ggtt_mapping(ggtt->vm.i915))
227 		intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6,
228 				      GFX_FLSH_CNTL_EN);
229 }
230 
guc_ggtt_ct_invalidate(struct intel_gt * gt)231 static void guc_ggtt_ct_invalidate(struct intel_gt *gt)
232 {
233 	struct intel_uncore *uncore = gt->uncore;
234 	intel_wakeref_t wakeref;
235 
236 	with_intel_runtime_pm_if_active(uncore->rpm, wakeref)
237 		intel_guc_invalidate_tlb_guc(gt_to_guc(gt));
238 }
239 
guc_ggtt_invalidate(struct i915_ggtt * ggtt)240 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
241 {
242 	struct drm_i915_private *i915 = ggtt->vm.i915;
243 	struct intel_gt *gt;
244 
245 	gen8_ggtt_invalidate(ggtt);
246 
247 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) {
248 		if (intel_guc_tlb_invalidation_is_available(gt_to_guc(gt)))
249 			guc_ggtt_ct_invalidate(gt);
250 		else if (GRAPHICS_VER(i915) >= 12)
251 			intel_uncore_write_fw(gt->uncore,
252 					      GEN12_GUC_TLB_INV_CR,
253 					      GEN12_GUC_TLB_INV_CR_INVALIDATE);
254 		else
255 			intel_uncore_write_fw(gt->uncore,
256 					      GEN8_GTCR, GEN8_GTCR_INVALIDATE);
257 	}
258 }
259 
mtl_ggtt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)260 static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
261 			       unsigned int pat_index,
262 			       u32 flags)
263 {
264 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
265 
266 	WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
267 
268 	if (flags & PTE_LM)
269 		pte |= GEN12_GGTT_PTE_LM;
270 
271 	if (pat_index & BIT(0))
272 		pte |= MTL_GGTT_PTE_PAT0;
273 
274 	if (pat_index & BIT(1))
275 		pte |= MTL_GGTT_PTE_PAT1;
276 
277 	return pte;
278 }
279 
gen8_ggtt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)280 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
281 			 unsigned int pat_index,
282 			 u32 flags)
283 {
284 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
285 
286 	if (flags & PTE_LM)
287 		pte |= GEN12_GGTT_PTE_LM;
288 
289 	return pte;
290 }
291 
should_update_ggtt_with_bind(struct i915_ggtt * ggtt)292 static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt)
293 {
294 	struct intel_gt *gt = ggtt->vm.gt;
295 
296 	return intel_gt_is_bind_context_ready(gt);
297 }
298 
gen8_ggtt_bind_get_ce(struct i915_ggtt * ggtt,intel_wakeref_t * wakeref)299 static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt, intel_wakeref_t *wakeref)
300 {
301 	struct intel_context *ce;
302 	struct intel_gt *gt = ggtt->vm.gt;
303 
304 	if (intel_gt_is_wedged(gt))
305 		return NULL;
306 
307 	ce = gt->engine[BCS0]->bind_context;
308 	GEM_BUG_ON(!ce);
309 
310 	/*
311 	 * If the GT is not awake already at this stage then fallback
312 	 * to pci based GGTT update otherwise __intel_wakeref_get_first()
313 	 * would conflict with fs_reclaim trying to allocate memory while
314 	 * doing rpm_resume().
315 	 */
316 	*wakeref = intel_gt_pm_get_if_awake(gt);
317 	if (!*wakeref)
318 		return NULL;
319 
320 	intel_engine_pm_get(ce->engine);
321 
322 	return ce;
323 }
324 
gen8_ggtt_bind_put_ce(struct intel_context * ce,intel_wakeref_t wakeref)325 static void gen8_ggtt_bind_put_ce(struct intel_context *ce, intel_wakeref_t wakeref)
326 {
327 	intel_engine_pm_put(ce->engine);
328 	intel_gt_pm_put(ce->engine->gt, wakeref);
329 }
330 
gen8_ggtt_bind_ptes(struct i915_ggtt * ggtt,u32 offset,struct sg_table * pages,u32 num_entries,const gen8_pte_t pte)331 static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset,
332 				struct sg_table *pages, u32 num_entries,
333 				const gen8_pte_t pte)
334 {
335 	struct i915_sched_attr attr = {};
336 	struct intel_gt *gt = ggtt->vm.gt;
337 	const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode;
338 	struct sgt_iter iter;
339 	struct i915_request *rq;
340 	struct intel_context *ce;
341 	intel_wakeref_t wakeref;
342 	u32 *cs;
343 
344 	if (!num_entries)
345 		return true;
346 
347 	ce = gen8_ggtt_bind_get_ce(ggtt, &wakeref);
348 	if (!ce)
349 		return false;
350 
351 	if (pages)
352 		iter = __sgt_iter(pages->sgl, true);
353 
354 	while (num_entries) {
355 		int count = 0;
356 		dma_addr_t addr;
357 		/*
358 		 * MI_UPDATE_GTT can update 512 entries in a single command but
359 		 * that end up with engine reset, 511 works.
360 		 */
361 		u32 n_ptes = min_t(u32, 511, num_entries);
362 
363 		if (mutex_lock_interruptible(&ce->timeline->mutex))
364 			goto put_ce;
365 
366 		intel_context_enter(ce);
367 		rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC);
368 		intel_context_exit(ce);
369 		if (IS_ERR(rq)) {
370 			GT_TRACE(gt, "Failed to get bind request\n");
371 			mutex_unlock(&ce->timeline->mutex);
372 			goto put_ce;
373 		}
374 
375 		cs = intel_ring_begin(rq, 2 * n_ptes + 2);
376 		if (IS_ERR(cs)) {
377 			GT_TRACE(gt, "Failed to ring space for GGTT bind\n");
378 			i915_request_set_error_once(rq, PTR_ERR(cs));
379 			/* once a request is created, it must be queued */
380 			goto queue_err_rq;
381 		}
382 
383 		*cs++ = MI_UPDATE_GTT | (2 * n_ptes);
384 		*cs++ = offset << 12;
385 
386 		if (pages) {
387 			for_each_sgt_daddr_next(addr, iter) {
388 				if (count == n_ptes)
389 					break;
390 				*cs++ = lower_32_bits(pte | addr);
391 				*cs++ = upper_32_bits(pte | addr);
392 				count++;
393 			}
394 			/* fill remaining with scratch pte, if any */
395 			if (count < n_ptes) {
396 				memset64((u64 *)cs, scratch_pte,
397 					 n_ptes - count);
398 				cs += (n_ptes - count) * 2;
399 			}
400 		} else {
401 			memset64((u64 *)cs, pte, n_ptes);
402 			cs += n_ptes * 2;
403 		}
404 
405 		intel_ring_advance(rq, cs);
406 queue_err_rq:
407 		i915_request_get(rq);
408 		__i915_request_commit(rq);
409 		__i915_request_queue(rq, &attr);
410 
411 		mutex_unlock(&ce->timeline->mutex);
412 		/* This will break if the request is complete or after engine reset */
413 		i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
414 		if (rq->fence.error)
415 			goto err_rq;
416 
417 		i915_request_put(rq);
418 
419 		num_entries -= n_ptes;
420 		offset += n_ptes;
421 	}
422 
423 	gen8_ggtt_bind_put_ce(ce, wakeref);
424 	return true;
425 
426 err_rq:
427 	i915_request_put(rq);
428 put_ce:
429 	gen8_ggtt_bind_put_ce(ce, wakeref);
430 	return false;
431 }
432 
gen8_set_pte(void __iomem * addr,gen8_pte_t pte)433 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
434 {
435 	writeq(pte, addr);
436 }
437 
gen8_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)438 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
439 				  dma_addr_t addr,
440 				  u64 offset,
441 				  unsigned int pat_index,
442 				  u32 flags)
443 {
444 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
445 	gen8_pte_t __iomem *pte =
446 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
447 
448 	gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
449 
450 	ggtt->invalidate(ggtt);
451 }
452 
gen8_ggtt_insert_page_bind(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)453 static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm,
454 				       dma_addr_t addr, u64 offset,
455 				       unsigned int pat_index, u32 flags)
456 {
457 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
458 	gen8_pte_t pte;
459 
460 	pte = ggtt->vm.pte_encode(addr, pat_index, flags);
461 	if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
462 	    gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte))
463 		return ggtt->invalidate(ggtt);
464 
465 	gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags);
466 }
467 
gen8_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)468 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
469 				     struct i915_vma_resource *vma_res,
470 				     unsigned int pat_index,
471 				     u32 flags)
472 {
473 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
474 	const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
475 	gen8_pte_t __iomem *gte;
476 	gen8_pte_t __iomem *end;
477 	struct sgt_iter iter;
478 	dma_addr_t addr;
479 
480 	/*
481 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
482 	 * not to allow the user to override access to a read only page.
483 	 */
484 
485 	gte = (gen8_pte_t __iomem *)ggtt->gsm;
486 	gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
487 	end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
488 	while (gte < end)
489 		gen8_set_pte(gte++, vm->scratch[0]->encode);
490 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
491 
492 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
493 		gen8_set_pte(gte++, pte_encode | addr);
494 	GEM_BUG_ON(gte > end);
495 
496 	/* Fill the allocated but "unused" space beyond the end of the buffer */
497 	while (gte < end)
498 		gen8_set_pte(gte++, vm->scratch[0]->encode);
499 
500 	/*
501 	 * We want to flush the TLBs only after we're certain all the PTE
502 	 * updates have finished.
503 	 */
504 	ggtt->invalidate(ggtt);
505 }
506 
__gen8_ggtt_insert_entries_bind(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)507 static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
508 					    struct i915_vma_resource *vma_res,
509 					    unsigned int pat_index, u32 flags)
510 {
511 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
512 	gen8_pte_t scratch_pte = vm->scratch[0]->encode;
513 	gen8_pte_t pte_encode;
514 	u64 start, end;
515 
516 	pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
517 	start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
518 	end = start + vma_res->guard / I915_GTT_PAGE_SIZE;
519 	if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
520 		goto err;
521 
522 	start = end;
523 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
524 	if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages,
525 	      vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode))
526 		goto err;
527 
528 	start += vma_res->node_size / I915_GTT_PAGE_SIZE;
529 	if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
530 		goto err;
531 
532 	return true;
533 
534 err:
535 	return false;
536 }
537 
gen8_ggtt_insert_entries_bind(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)538 static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
539 					  struct i915_vma_resource *vma_res,
540 					  unsigned int pat_index, u32 flags)
541 {
542 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
543 
544 	if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
545 	    __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags))
546 		return ggtt->invalidate(ggtt);
547 
548 	gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags);
549 }
550 
gen8_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)551 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
552 				  u64 start, u64 length)
553 {
554 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
555 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
556 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
557 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
558 	gen8_pte_t __iomem *gtt_base =
559 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
560 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
561 	int i;
562 
563 	if (WARN(num_entries > max_entries,
564 		 "First entry = %d; Num entries = %d (max=%d)\n",
565 		 first_entry, num_entries, max_entries))
566 		num_entries = max_entries;
567 
568 	for (i = 0; i < num_entries; i++)
569 		gen8_set_pte(&gtt_base[i], scratch_pte);
570 }
571 
gen8_ggtt_scratch_range_bind(struct i915_address_space * vm,u64 start,u64 length)572 static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm,
573 					 u64 start, u64 length)
574 {
575 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
576 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
577 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
578 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
579 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
580 
581 	if (WARN(num_entries > max_entries,
582 		 "First entry = %d; Num entries = %d (max=%d)\n",
583 		 first_entry, num_entries, max_entries))
584 		num_entries = max_entries;
585 
586 	if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry,
587 	     NULL, num_entries, scratch_pte))
588 		return ggtt->invalidate(ggtt);
589 
590 	gen8_ggtt_clear_range(vm, start, length);
591 }
592 
gen6_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)593 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
594 				  dma_addr_t addr,
595 				  u64 offset,
596 				  unsigned int pat_index,
597 				  u32 flags)
598 {
599 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
600 	gen6_pte_t __iomem *pte =
601 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
602 
603 	iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
604 
605 	ggtt->invalidate(ggtt);
606 }
607 
608 /*
609  * Binds an object into the global gtt with the specified cache level.
610  * The object will be accessible to the GPU via commands whose operands
611  * reference offsets within the global GTT as well as accessible by the GPU
612  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
613  */
gen6_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)614 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
615 				     struct i915_vma_resource *vma_res,
616 				     unsigned int pat_index,
617 				     u32 flags)
618 {
619 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
620 	gen6_pte_t __iomem *gte;
621 	gen6_pte_t __iomem *end;
622 	struct sgt_iter iter;
623 	dma_addr_t addr;
624 
625 	gte = (gen6_pte_t __iomem *)ggtt->gsm;
626 	gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
627 
628 	end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
629 	while (gte < end)
630 		iowrite32(vm->scratch[0]->encode, gte++);
631 	end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
632 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
633 		iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
634 	GEM_BUG_ON(gte > end);
635 
636 	/* Fill the allocated but "unused" space beyond the end of the buffer */
637 	while (gte < end)
638 		iowrite32(vm->scratch[0]->encode, gte++);
639 
640 	/*
641 	 * We want to flush the TLBs only after we're certain all the PTE
642 	 * updates have finished.
643 	 */
644 	ggtt->invalidate(ggtt);
645 }
646 
nop_clear_range(struct i915_address_space * vm,u64 start,u64 length)647 static void nop_clear_range(struct i915_address_space *vm,
648 			    u64 start, u64 length)
649 {
650 }
651 
bxt_vtd_ggtt_wa(struct i915_address_space * vm)652 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
653 {
654 	/*
655 	 * Make sure the internal GAM fifo has been cleared of all GTT
656 	 * writes before exiting stop_machine(). This guarantees that
657 	 * any aperture accesses waiting to start in another process
658 	 * cannot back up behind the GTT writes causing a hang.
659 	 * The register can be any arbitrary GAM register.
660 	 */
661 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
662 }
663 
664 struct insert_page {
665 	struct i915_address_space *vm;
666 	dma_addr_t addr;
667 	u64 offset;
668 	unsigned int pat_index;
669 };
670 
bxt_vtd_ggtt_insert_page__cb(void * _arg)671 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
672 {
673 	struct insert_page *arg = _arg;
674 
675 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
676 			      arg->pat_index, 0);
677 	bxt_vtd_ggtt_wa(arg->vm);
678 
679 	return 0;
680 }
681 
bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 unused)682 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
683 					  dma_addr_t addr,
684 					  u64 offset,
685 					  unsigned int pat_index,
686 					  u32 unused)
687 {
688 	struct insert_page arg = { vm, addr, offset, pat_index };
689 
690 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
691 }
692 
693 struct insert_entries {
694 	struct i915_address_space *vm;
695 	struct i915_vma_resource *vma_res;
696 	unsigned int pat_index;
697 	u32 flags;
698 };
699 
bxt_vtd_ggtt_insert_entries__cb(void * _arg)700 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
701 {
702 	struct insert_entries *arg = _arg;
703 
704 	gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
705 				 arg->pat_index, arg->flags);
706 	bxt_vtd_ggtt_wa(arg->vm);
707 
708 	return 0;
709 }
710 
bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)711 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
712 					     struct i915_vma_resource *vma_res,
713 					     unsigned int pat_index,
714 					     u32 flags)
715 {
716 	struct insert_entries arg = { vm, vma_res, pat_index, flags };
717 
718 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
719 }
720 
gen6_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)721 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
722 				  u64 start, u64 length)
723 {
724 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
725 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
726 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
727 	gen6_pte_t scratch_pte, __iomem *gtt_base =
728 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
729 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
730 	int i;
731 
732 	if (WARN(num_entries > max_entries,
733 		 "First entry = %d; Num entries = %d (max=%d)\n",
734 		 first_entry, num_entries, max_entries))
735 		num_entries = max_entries;
736 
737 	scratch_pte = vm->scratch[0]->encode;
738 	for (i = 0; i < num_entries; i++)
739 		iowrite32(scratch_pte, &gtt_base[i]);
740 }
741 
intel_ggtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)742 void intel_ggtt_bind_vma(struct i915_address_space *vm,
743 			 struct i915_vm_pt_stash *stash,
744 			 struct i915_vma_resource *vma_res,
745 			 unsigned int pat_index,
746 			 u32 flags)
747 {
748 	u32 pte_flags;
749 
750 	if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
751 		return;
752 
753 	vma_res->bound_flags |= flags;
754 
755 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
756 	pte_flags = 0;
757 	if (vma_res->bi.readonly)
758 		pte_flags |= PTE_READ_ONLY;
759 	if (vma_res->bi.lmem)
760 		pte_flags |= PTE_LM;
761 
762 	vm->insert_entries(vm, vma_res, pat_index, pte_flags);
763 	vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
764 }
765 
intel_ggtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)766 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
767 			   struct i915_vma_resource *vma_res)
768 {
769 	vm->clear_range(vm, vma_res->start, vma_res->vma_size);
770 }
771 
772 /*
773  * Reserve the top of the GuC address space for firmware images. Addresses
774  * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
775  * which makes for a suitable range to hold GuC/HuC firmware images if the
776  * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
777  * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
778  * of the same size anyway, which is far more than needed, to keep the logic
779  * in uc_fw_ggtt_offset() simple.
780  */
781 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
782 
ggtt_reserve_guc_top(struct i915_ggtt * ggtt)783 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
784 {
785 	u64 offset;
786 	int ret;
787 
788 	if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
789 		return 0;
790 
791 	GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
792 	offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
793 
794 	ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
795 				   GUC_TOP_RESERVE_SIZE, offset,
796 				   I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
797 	if (ret)
798 		drm_dbg(&ggtt->vm.i915->drm,
799 			"Failed to reserve top of GGTT for GuC\n");
800 
801 	return ret;
802 }
803 
ggtt_release_guc_top(struct i915_ggtt * ggtt)804 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
805 {
806 	if (drm_mm_node_allocated(&ggtt->uc_fw))
807 		drm_mm_remove_node(&ggtt->uc_fw);
808 }
809 
cleanup_init_ggtt(struct i915_ggtt * ggtt)810 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
811 {
812 	ggtt_release_guc_top(ggtt);
813 	if (drm_mm_node_allocated(&ggtt->error_capture))
814 		drm_mm_remove_node(&ggtt->error_capture);
815 	mutex_destroy(&ggtt->error_mutex);
816 }
817 
init_ggtt(struct i915_ggtt * ggtt)818 static int init_ggtt(struct i915_ggtt *ggtt)
819 {
820 	/*
821 	 * Let GEM Manage all of the aperture.
822 	 *
823 	 * However, leave one page at the end still bound to the scratch page.
824 	 * There are a number of places where the hardware apparently prefetches
825 	 * past the end of the object, and we've seen multiple hangs with the
826 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
827 	 * aperture.  One page should be enough to keep any prefetching inside
828 	 * of the aperture.
829 	 */
830 	unsigned long hole_start, hole_end;
831 	struct drm_mm_node *entry;
832 	int ret;
833 
834 	/*
835 	 * GuC requires all resources that we're sharing with it to be placed in
836 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
837 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
838 	 * why.
839 	 */
840 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
841 			       intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
842 
843 	ret = intel_vgt_balloon(ggtt);
844 	if (ret)
845 		return ret;
846 
847 	mutex_init(&ggtt->error_mutex);
848 	if (ggtt->mappable_end) {
849 		/*
850 		 * Reserve a mappable slot for our lockless error capture.
851 		 *
852 		 * We strongly prefer taking address 0x0 in order to protect
853 		 * other critical buffers against accidental overwrites,
854 		 * as writing to address 0 is a very common mistake.
855 		 *
856 		 * Since 0 may already be in use by the system (e.g. the BIOS
857 		 * framebuffer), we let the reservation fail quietly and hope
858 		 * 0 remains reserved always.
859 		 *
860 		 * If we fail to reserve 0, and then fail to find any space
861 		 * for an error-capture, remain silent. We can afford not
862 		 * to reserve an error_capture node as we have fallback
863 		 * paths, and we trust that 0 will remain reserved. However,
864 		 * the only likely reason for failure to insert is a driver
865 		 * bug, which we expect to cause other failures...
866 		 *
867 		 * Since CPU can perform speculative reads on error capture
868 		 * (write-combining allows it) add scratch page after error
869 		 * capture to avoid DMAR errors.
870 		 */
871 		ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
872 		ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
873 		if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
874 			drm_mm_insert_node_in_range(&ggtt->vm.mm,
875 						    &ggtt->error_capture,
876 						    ggtt->error_capture.size, 0,
877 						    ggtt->error_capture.color,
878 						    0, ggtt->mappable_end,
879 						    DRM_MM_INSERT_LOW);
880 	}
881 	if (drm_mm_node_allocated(&ggtt->error_capture)) {
882 		u64 start = ggtt->error_capture.start;
883 		u64 size = ggtt->error_capture.size;
884 
885 		ggtt->vm.scratch_range(&ggtt->vm, start, size);
886 		drm_dbg(&ggtt->vm.i915->drm,
887 			"Reserved GGTT:[%llx, %llx] for use by error capture\n",
888 			start, start + size);
889 	}
890 
891 	/*
892 	 * The upper portion of the GuC address space has a sizeable hole
893 	 * (several MB) that is inaccessible by GuC. Reserve this range within
894 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
895 	 */
896 	ret = ggtt_reserve_guc_top(ggtt);
897 	if (ret)
898 		goto err;
899 
900 	/* Clear any non-preallocated blocks */
901 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
902 		drm_dbg(&ggtt->vm.i915->drm,
903 			"clearing unused GTT space: [%lx, %lx]\n",
904 			hole_start, hole_end);
905 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
906 				     hole_end - hole_start);
907 	}
908 
909 	/* And finally clear the reserved guard page */
910 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
911 
912 	return 0;
913 
914 err:
915 	cleanup_init_ggtt(ggtt);
916 	return ret;
917 }
918 
aliasing_gtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)919 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
920 				  struct i915_vm_pt_stash *stash,
921 				  struct i915_vma_resource *vma_res,
922 				  unsigned int pat_index,
923 				  u32 flags)
924 {
925 	u32 pte_flags;
926 
927 	/* Currently applicable only to VLV */
928 	pte_flags = 0;
929 	if (vma_res->bi.readonly)
930 		pte_flags |= PTE_READ_ONLY;
931 
932 	if (flags & I915_VMA_LOCAL_BIND)
933 		ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
934 			       stash, vma_res, pat_index, flags);
935 
936 	if (flags & I915_VMA_GLOBAL_BIND)
937 		vm->insert_entries(vm, vma_res, pat_index, pte_flags);
938 
939 	vma_res->bound_flags |= flags;
940 }
941 
aliasing_gtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)942 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
943 				    struct i915_vma_resource *vma_res)
944 {
945 	if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
946 		vm->clear_range(vm, vma_res->start, vma_res->vma_size);
947 
948 	if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
949 		ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
950 }
951 
init_aliasing_ppgtt(struct i915_ggtt * ggtt)952 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
953 {
954 	struct i915_vm_pt_stash stash = {};
955 	struct i915_ppgtt *ppgtt;
956 	int err;
957 
958 	ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
959 	if (IS_ERR(ppgtt))
960 		return PTR_ERR(ppgtt);
961 
962 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
963 		err = -ENODEV;
964 		goto err_ppgtt;
965 	}
966 
967 	err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
968 	if (err)
969 		goto err_ppgtt;
970 
971 	i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
972 	err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
973 	i915_gem_object_unlock(ppgtt->vm.scratch[0]);
974 	if (err)
975 		goto err_stash;
976 
977 	/*
978 	 * Note we only pre-allocate as far as the end of the global
979 	 * GTT. On 48b / 4-level page-tables, the difference is very,
980 	 * very significant! We have to preallocate as GVT/vgpu does
981 	 * not like the page directory disappearing.
982 	 */
983 	ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
984 
985 	ggtt->alias = ppgtt;
986 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
987 
988 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
989 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
990 
991 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
992 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
993 
994 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
995 	return 0;
996 
997 err_stash:
998 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
999 err_ppgtt:
1000 	i915_vm_put(&ppgtt->vm);
1001 	return err;
1002 }
1003 
fini_aliasing_ppgtt(struct i915_ggtt * ggtt)1004 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
1005 {
1006 	struct i915_ppgtt *ppgtt;
1007 
1008 	ppgtt = fetch_and_zero(&ggtt->alias);
1009 	if (!ppgtt)
1010 		return;
1011 
1012 	i915_vm_put(&ppgtt->vm);
1013 
1014 	ggtt->vm.vma_ops.bind_vma   = intel_ggtt_bind_vma;
1015 	ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1016 }
1017 
i915_init_ggtt(struct drm_i915_private * i915)1018 int i915_init_ggtt(struct drm_i915_private *i915)
1019 {
1020 	int ret;
1021 
1022 	ret = init_ggtt(to_gt(i915)->ggtt);
1023 	if (ret)
1024 		return ret;
1025 
1026 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
1027 		ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
1028 		if (ret)
1029 			cleanup_init_ggtt(to_gt(i915)->ggtt);
1030 	}
1031 
1032 	return 0;
1033 }
1034 
ggtt_cleanup_hw(struct i915_ggtt * ggtt)1035 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
1036 {
1037 	struct i915_vma *vma, *vn;
1038 
1039 	flush_workqueue(ggtt->vm.i915->wq);
1040 	i915_gem_drain_freed_objects(ggtt->vm.i915);
1041 
1042 	mutex_lock(&ggtt->vm.mutex);
1043 
1044 	ggtt->vm.skip_pte_rewrite = true;
1045 
1046 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
1047 		struct drm_i915_gem_object *obj = vma->obj;
1048 		bool trylock;
1049 
1050 		trylock = i915_gem_object_trylock(obj, NULL);
1051 		WARN_ON(!trylock);
1052 
1053 		WARN_ON(__i915_vma_unbind(vma));
1054 		if (trylock)
1055 			i915_gem_object_unlock(obj);
1056 	}
1057 
1058 	if (drm_mm_node_allocated(&ggtt->error_capture))
1059 		drm_mm_remove_node(&ggtt->error_capture);
1060 	mutex_destroy(&ggtt->error_mutex);
1061 
1062 	ggtt_release_guc_top(ggtt);
1063 	intel_vgt_deballoon(ggtt);
1064 
1065 	ggtt->vm.cleanup(&ggtt->vm);
1066 
1067 	mutex_unlock(&ggtt->vm.mutex);
1068 	i915_address_space_fini(&ggtt->vm);
1069 
1070 	arch_phys_wc_del(ggtt->mtrr);
1071 
1072 	if (ggtt->iomap.size)
1073 		io_mapping_fini(&ggtt->iomap);
1074 }
1075 
1076 /**
1077  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
1078  * @i915: i915 device
1079  */
i915_ggtt_driver_release(struct drm_i915_private * i915)1080 void i915_ggtt_driver_release(struct drm_i915_private *i915)
1081 {
1082 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1083 
1084 	fini_aliasing_ppgtt(ggtt);
1085 
1086 	intel_ggtt_fini_fences(ggtt);
1087 	ggtt_cleanup_hw(ggtt);
1088 }
1089 
1090 /**
1091  * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
1092  * all free objects have been drained.
1093  * @i915: i915 device
1094  */
i915_ggtt_driver_late_release(struct drm_i915_private * i915)1095 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
1096 {
1097 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1098 
1099 	GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
1100 	dma_resv_fini(&ggtt->vm._resv);
1101 }
1102 
gen6_get_total_gtt_size(u16 snb_gmch_ctl)1103 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1104 {
1105 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1106 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1107 	return snb_gmch_ctl << 20;
1108 }
1109 
gen8_get_total_gtt_size(u16 bdw_gmch_ctl)1110 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1111 {
1112 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1113 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1114 	if (bdw_gmch_ctl)
1115 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1116 
1117 #ifdef CONFIG_X86_32
1118 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
1119 	if (bdw_gmch_ctl > 4)
1120 		bdw_gmch_ctl = 4;
1121 #endif
1122 
1123 	return bdw_gmch_ctl << 20;
1124 }
1125 
chv_get_total_gtt_size(u16 gmch_ctrl)1126 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1127 {
1128 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1129 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1130 
1131 	if (gmch_ctrl)
1132 		return 1 << (20 + gmch_ctrl);
1133 
1134 	return 0;
1135 }
1136 
gen6_gttmmadr_size(struct drm_i915_private * i915)1137 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
1138 {
1139 	/*
1140 	 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
1141 	 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
1142 	 */
1143 	GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
1144 	return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
1145 }
1146 
gen6_gttadr_offset(struct drm_i915_private * i915)1147 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
1148 {
1149 	return gen6_gttmmadr_size(i915) / 2;
1150 }
1151 
ggtt_probe_common(struct i915_ggtt * ggtt,u64 size)1152 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
1153 {
1154 	struct drm_i915_private *i915 = ggtt->vm.i915;
1155 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
1156 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1157 	phys_addr_t phys_addr;
1158 	u32 pte_flags;
1159 	int ret;
1160 
1161 	GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
1162 
1163 	if (i915_direct_stolen_access(i915)) {
1164 		drm_dbg(&i915->drm, "Using direct GSM access\n");
1165 		phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK;
1166 	} else {
1167 		phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
1168 	}
1169 
1170 	if (needs_wc_ggtt_mapping(i915))
1171 		ggtt->gsm = ioremap_wc(phys_addr, size);
1172 	else
1173 		ggtt->gsm = ioremap(phys_addr, size);
1174 
1175 	if (!ggtt->gsm) {
1176 		drm_err(&i915->drm, "Failed to map the ggtt page table\n");
1177 		return -ENOMEM;
1178 	}
1179 
1180 	kref_init(&ggtt->vm.resv_ref);
1181 	ret = setup_scratch_page(&ggtt->vm);
1182 	if (ret) {
1183 		drm_err(&i915->drm, "Scratch setup failed\n");
1184 		/* iounmap will also get called at remove, but meh */
1185 		iounmap(ggtt->gsm);
1186 		return ret;
1187 	}
1188 
1189 	pte_flags = 0;
1190 	if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
1191 		pte_flags |= PTE_LM;
1192 
1193 	ggtt->vm.scratch[0]->encode =
1194 		ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
1195 				    i915_gem_get_pat_index(i915,
1196 							   I915_CACHE_NONE),
1197 				    pte_flags);
1198 
1199 	return 0;
1200 }
1201 
gen6_gmch_remove(struct i915_address_space * vm)1202 static void gen6_gmch_remove(struct i915_address_space *vm)
1203 {
1204 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1205 
1206 	iounmap(ggtt->gsm);
1207 	free_scratch(vm);
1208 }
1209 
pci_resource(struct pci_dev * pdev,int bar)1210 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1211 {
1212 	return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1213 			      pci_resource_len(pdev, bar));
1214 }
1215 
gen8_gmch_probe(struct i915_ggtt * ggtt)1216 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1217 {
1218 	struct drm_i915_private *i915 = ggtt->vm.i915;
1219 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1220 	unsigned int size;
1221 	u16 snb_gmch_ctl;
1222 
1223 	if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
1224 		if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1225 			return -ENXIO;
1226 
1227 		ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1228 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
1229 	}
1230 
1231 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1232 	if (IS_CHERRYVIEW(i915))
1233 		size = chv_get_total_gtt_size(snb_gmch_ctl);
1234 	else
1235 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
1236 
1237 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1238 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1239 	ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
1240 
1241 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1242 	ggtt->vm.cleanup = gen6_gmch_remove;
1243 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
1244 	ggtt->vm.clear_range = nop_clear_range;
1245 	ggtt->vm.scratch_range = gen8_ggtt_clear_range;
1246 
1247 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1248 
1249 	/*
1250 	 * Serialize GTT updates with aperture access on BXT if VT-d is on,
1251 	 * and always on CHV.
1252 	 */
1253 	if (intel_vm_no_concurrent_access_wa(i915)) {
1254 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1255 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
1256 
1257 		/*
1258 		 * Calling stop_machine() version of GGTT update function
1259 		 * at error capture/reset path will raise lockdep warning.
1260 		 * Allow calling gen8_ggtt_insert_* directly at reset path
1261 		 * which is safe from parallel GGTT updates.
1262 		 */
1263 		ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1264 		ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
1265 
1266 		ggtt->vm.bind_async_flags =
1267 			I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
1268 	}
1269 
1270 	if (i915_ggtt_require_binder(i915)) {
1271 		ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind;
1272 		ggtt->vm.insert_page = gen8_ggtt_insert_page_bind;
1273 		ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind;
1274 		/*
1275 		 * On GPU is hung, we might bind VMAs for error capture.
1276 		 * Fallback to CPU GGTT updates in that case.
1277 		 */
1278 		ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1279 	}
1280 
1281 	if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc))
1282 		ggtt->invalidate = guc_ggtt_invalidate;
1283 	else
1284 		ggtt->invalidate = gen8_ggtt_invalidate;
1285 
1286 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1287 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1288 
1289 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1290 		ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
1291 	else
1292 		ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
1293 
1294 	return ggtt_probe_common(ggtt, size);
1295 }
1296 
1297 /*
1298  * For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
1299  * so the switch-case statements in these PTE encode functions are still valid.
1300  * See translation table LEGACY_CACHELEVEL.
1301  */
snb_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1302 static u64 snb_pte_encode(dma_addr_t addr,
1303 			  unsigned int pat_index,
1304 			  u32 flags)
1305 {
1306 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1307 
1308 	switch (pat_index) {
1309 	case I915_CACHE_L3_LLC:
1310 	case I915_CACHE_LLC:
1311 		pte |= GEN6_PTE_CACHE_LLC;
1312 		break;
1313 	case I915_CACHE_NONE:
1314 		pte |= GEN6_PTE_UNCACHED;
1315 		break;
1316 	default:
1317 		MISSING_CASE(pat_index);
1318 	}
1319 
1320 	return pte;
1321 }
1322 
ivb_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1323 static u64 ivb_pte_encode(dma_addr_t addr,
1324 			  unsigned int pat_index,
1325 			  u32 flags)
1326 {
1327 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1328 
1329 	switch (pat_index) {
1330 	case I915_CACHE_L3_LLC:
1331 		pte |= GEN7_PTE_CACHE_L3_LLC;
1332 		break;
1333 	case I915_CACHE_LLC:
1334 		pte |= GEN6_PTE_CACHE_LLC;
1335 		break;
1336 	case I915_CACHE_NONE:
1337 		pte |= GEN6_PTE_UNCACHED;
1338 		break;
1339 	default:
1340 		MISSING_CASE(pat_index);
1341 	}
1342 
1343 	return pte;
1344 }
1345 
byt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1346 static u64 byt_pte_encode(dma_addr_t addr,
1347 			  unsigned int pat_index,
1348 			  u32 flags)
1349 {
1350 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1351 
1352 	if (!(flags & PTE_READ_ONLY))
1353 		pte |= BYT_PTE_WRITEABLE;
1354 
1355 	if (pat_index != I915_CACHE_NONE)
1356 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1357 
1358 	return pte;
1359 }
1360 
hsw_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1361 static u64 hsw_pte_encode(dma_addr_t addr,
1362 			  unsigned int pat_index,
1363 			  u32 flags)
1364 {
1365 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1366 
1367 	if (pat_index != I915_CACHE_NONE)
1368 		pte |= HSW_WB_LLC_AGE3;
1369 
1370 	return pte;
1371 }
1372 
iris_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1373 static u64 iris_pte_encode(dma_addr_t addr,
1374 			   unsigned int pat_index,
1375 			   u32 flags)
1376 {
1377 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1378 
1379 	switch (pat_index) {
1380 	case I915_CACHE_NONE:
1381 		break;
1382 	case I915_CACHE_WT:
1383 		pte |= HSW_WT_ELLC_LLC_AGE3;
1384 		break;
1385 	default:
1386 		pte |= HSW_WB_ELLC_LLC_AGE3;
1387 		break;
1388 	}
1389 
1390 	return pte;
1391 }
1392 
gen6_gmch_probe(struct i915_ggtt * ggtt)1393 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1394 {
1395 	struct drm_i915_private *i915 = ggtt->vm.i915;
1396 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1397 	unsigned int size;
1398 	u16 snb_gmch_ctl;
1399 
1400 	if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1401 		return -ENXIO;
1402 
1403 	ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1404 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
1405 
1406 	/*
1407 	 * 64/512MB is the current min/max we actually know of, but this is
1408 	 * just a coarse sanity check.
1409 	 */
1410 	if (ggtt->mappable_end < (64 << 20) ||
1411 	    ggtt->mappable_end > (512 << 20)) {
1412 		drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1413 			&ggtt->mappable_end);
1414 		return -ENXIO;
1415 	}
1416 
1417 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1418 
1419 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
1420 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1421 
1422 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1423 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1424 
1425 	ggtt->vm.clear_range = nop_clear_range;
1426 	if (!HAS_FULL_PPGTT(i915))
1427 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
1428 	ggtt->vm.scratch_range = gen6_ggtt_clear_range;
1429 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
1430 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1431 	ggtt->vm.cleanup = gen6_gmch_remove;
1432 
1433 	ggtt->invalidate = gen6_ggtt_invalidate;
1434 
1435 	if (HAS_EDRAM(i915))
1436 		ggtt->vm.pte_encode = iris_pte_encode;
1437 	else if (IS_HASWELL(i915))
1438 		ggtt->vm.pte_encode = hsw_pte_encode;
1439 	else if (IS_VALLEYVIEW(i915))
1440 		ggtt->vm.pte_encode = byt_pte_encode;
1441 	else if (GRAPHICS_VER(i915) >= 7)
1442 		ggtt->vm.pte_encode = ivb_pte_encode;
1443 	else
1444 		ggtt->vm.pte_encode = snb_pte_encode;
1445 
1446 	ggtt->vm.vma_ops.bind_vma    = intel_ggtt_bind_vma;
1447 	ggtt->vm.vma_ops.unbind_vma  = intel_ggtt_unbind_vma;
1448 
1449 	return ggtt_probe_common(ggtt, size);
1450 }
1451 
ggtt_probe_hw(struct i915_ggtt * ggtt,struct intel_gt * gt)1452 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1453 {
1454 	struct drm_i915_private *i915 = gt->i915;
1455 	int ret;
1456 
1457 	ggtt->vm.gt = gt;
1458 	ggtt->vm.i915 = i915;
1459 	ggtt->vm.dma = i915->drm.dev;
1460 	dma_resv_init(&ggtt->vm._resv);
1461 
1462 	if (GRAPHICS_VER(i915) >= 8)
1463 		ret = gen8_gmch_probe(ggtt);
1464 	else if (GRAPHICS_VER(i915) >= 6)
1465 		ret = gen6_gmch_probe(ggtt);
1466 	else
1467 		ret = intel_ggtt_gmch_probe(ggtt);
1468 
1469 	if (ret) {
1470 		dma_resv_fini(&ggtt->vm._resv);
1471 		return ret;
1472 	}
1473 
1474 	if ((ggtt->vm.total - 1) >> 32) {
1475 		drm_err(&i915->drm,
1476 			"We never expected a Global GTT with more than 32bits"
1477 			" of address space! Found %lldM!\n",
1478 			ggtt->vm.total >> 20);
1479 		ggtt->vm.total = 1ULL << 32;
1480 		ggtt->mappable_end =
1481 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1482 	}
1483 
1484 	if (ggtt->mappable_end > ggtt->vm.total) {
1485 		drm_err(&i915->drm,
1486 			"mappable aperture extends past end of GGTT,"
1487 			" aperture=%pa, total=%llx\n",
1488 			&ggtt->mappable_end, ggtt->vm.total);
1489 		ggtt->mappable_end = ggtt->vm.total;
1490 	}
1491 
1492 	/* GMADR is the PCI mmio aperture into the global GTT. */
1493 	drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1494 	drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1495 		(u64)ggtt->mappable_end >> 20);
1496 	drm_dbg(&i915->drm, "DSM size = %lluM\n",
1497 		(u64)resource_size(&intel_graphics_stolen_res) >> 20);
1498 
1499 	return 0;
1500 }
1501 
1502 /**
1503  * i915_ggtt_probe_hw - Probe GGTT hardware location
1504  * @i915: i915 device
1505  */
i915_ggtt_probe_hw(struct drm_i915_private * i915)1506 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1507 {
1508 	struct intel_gt *gt;
1509 	int ret, i;
1510 
1511 	for_each_gt(gt, i915, i) {
1512 		ret = intel_gt_assign_ggtt(gt);
1513 		if (ret)
1514 			return ret;
1515 	}
1516 
1517 	ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1518 	if (ret)
1519 		return ret;
1520 
1521 	if (i915_vtd_active(i915))
1522 		drm_info(&i915->drm, "VT-d active for gfx access\n");
1523 
1524 	return 0;
1525 }
1526 
i915_ggtt_create(struct drm_i915_private * i915)1527 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
1528 {
1529 	struct i915_ggtt *ggtt;
1530 
1531 	ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
1532 	if (!ggtt)
1533 		return ERR_PTR(-ENOMEM);
1534 
1535 	INIT_LIST_HEAD(&ggtt->gt_list);
1536 
1537 	return ggtt;
1538 }
1539 
i915_ggtt_enable_hw(struct drm_i915_private * i915)1540 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1541 {
1542 	if (GRAPHICS_VER(i915) < 6)
1543 		return intel_ggtt_gmch_enable_hw(i915);
1544 
1545 	return 0;
1546 }
1547 
1548 /**
1549  * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1550  * @vm: The VM to restore the mappings for
1551  * @all_evicted: Were all VMAs expected to be evicted on suspend?
1552  *
1553  * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1554  * DPT page table.
1555  *
1556  * Returns %true if restoring the mapping for any object that was in a write
1557  * domain before suspend.
1558  */
i915_ggtt_resume_vm(struct i915_address_space * vm,bool all_evicted)1559 bool i915_ggtt_resume_vm(struct i915_address_space *vm, bool all_evicted)
1560 {
1561 	struct i915_vma *vma;
1562 	bool write_domain_objs = false;
1563 
1564 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1565 
1566 	if (all_evicted) {
1567 		drm_WARN_ON(&vm->i915->drm, !list_empty(&vm->bound_list));
1568 		return false;
1569 	}
1570 
1571 	/* First fill our portion of the GTT with scratch pages */
1572 	vm->clear_range(vm, 0, vm->total);
1573 
1574 	/* clflush objects bound into the GGTT and rebind them. */
1575 	list_for_each_entry(vma, &vm->bound_list, vm_link) {
1576 		struct drm_i915_gem_object *obj = vma->obj;
1577 		unsigned int was_bound =
1578 			atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1579 
1580 		GEM_BUG_ON(!was_bound);
1581 
1582 		/*
1583 		 * Clear the bound flags of the vma resource to allow
1584 		 * ptes to be repopulated.
1585 		 */
1586 		vma->resource->bound_flags = 0;
1587 		vma->ops->bind_vma(vm, NULL, vma->resource,
1588 				   obj ? obj->pat_index :
1589 					 i915_gem_get_pat_index(vm->i915,
1590 								I915_CACHE_NONE),
1591 				   was_bound);
1592 
1593 		if (obj) { /* only used during resume => exclusive access */
1594 			write_domain_objs |= fetch_and_zero(&obj->write_domain);
1595 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1596 		}
1597 	}
1598 
1599 	return write_domain_objs;
1600 }
1601 
i915_ggtt_resume(struct i915_ggtt * ggtt)1602 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1603 {
1604 	struct intel_gt *gt;
1605 	bool flush;
1606 
1607 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1608 		intel_gt_check_and_clear_faults(gt);
1609 
1610 	flush = i915_ggtt_resume_vm(&ggtt->vm, false);
1611 
1612 	if (drm_mm_node_allocated(&ggtt->error_capture))
1613 		ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
1614 				       ggtt->error_capture.size);
1615 
1616 	list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1617 		intel_uc_resume_mappings(&gt->uc);
1618 
1619 	ggtt->invalidate(ggtt);
1620 
1621 	if (flush)
1622 		wbinvd_on_all_cpus();
1623 
1624 	intel_ggtt_restore_fences(ggtt);
1625 }
1626