1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020 Intel Corporation
4 */
5
6 #include <asm/set_memory.h>
7 #include <asm/smp.h>
8 #include <linux/types.h>
9 #include <linux/stop_machine.h>
10
11 #include <drm/drm_managed.h>
12 #include <drm/intel/i915_drm.h>
13 #include <drm/intel/intel-gtt.h>
14
15 #include "gem/i915_gem_lmem.h"
16
17 #include "intel_context.h"
18 #include "intel_ggtt_gmch.h"
19 #include "intel_gpu_commands.h"
20 #include "intel_gt.h"
21 #include "intel_gt_regs.h"
22 #include "intel_pci_config.h"
23 #include "intel_ring.h"
24 #include "i915_drv.h"
25 #include "i915_pci.h"
26 #include "i915_reg.h"
27 #include "i915_request.h"
28 #include "i915_scatterlist.h"
29 #include "i915_utils.h"
30 #include "i915_vgpu.h"
31
32 #include "intel_gtt.h"
33 #include "gen8_ppgtt.h"
34 #include "intel_engine_pm.h"
35
i915_ggtt_color_adjust(const struct drm_mm_node * node,unsigned long color,u64 * start,u64 * end)36 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
37 unsigned long color,
38 u64 *start,
39 u64 *end)
40 {
41 if (i915_node_color_differs(node, color))
42 *start += I915_GTT_PAGE_SIZE;
43
44 /*
45 * Also leave a space between the unallocated reserved node after the
46 * GTT and any objects within the GTT, i.e. we use the color adjustment
47 * to insert a guard page to prevent prefetches crossing over the
48 * GTT boundary.
49 */
50 node = list_next_entry(node, node_list);
51 if (node->color != color)
52 *end -= I915_GTT_PAGE_SIZE;
53 }
54
ggtt_init_hw(struct i915_ggtt * ggtt)55 static int ggtt_init_hw(struct i915_ggtt *ggtt)
56 {
57 struct drm_i915_private *i915 = ggtt->vm.i915;
58
59 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
60
61 ggtt->vm.is_ggtt = true;
62
63 /* Only VLV supports read-only GGTT mappings */
64 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
65
66 if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
67 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
68
69 if (ggtt->mappable_end) {
70 if (!io_mapping_init_wc(&ggtt->iomap,
71 ggtt->gmadr.start,
72 ggtt->mappable_end)) {
73 ggtt->vm.cleanup(&ggtt->vm);
74 return -EIO;
75 }
76
77 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
78 ggtt->mappable_end);
79 }
80
81 intel_ggtt_init_fences(ggtt);
82
83 return 0;
84 }
85
86 /**
87 * i915_ggtt_init_hw - Initialize GGTT hardware
88 * @i915: i915 device
89 */
i915_ggtt_init_hw(struct drm_i915_private * i915)90 int i915_ggtt_init_hw(struct drm_i915_private *i915)
91 {
92 int ret;
93
94 /*
95 * Note that we use page colouring to enforce a guard page at the
96 * end of the address space. This is required as the CS may prefetch
97 * beyond the end of the batch buffer, across the page boundary,
98 * and beyond the end of the GTT if we do not provide a guard.
99 */
100 ret = ggtt_init_hw(to_gt(i915)->ggtt);
101 if (ret)
102 return ret;
103
104 return 0;
105 }
106
107 /**
108 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
109 * @vm: The VM to suspend the mappings for
110 * @evict_all: Evict all VMAs
111 *
112 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
113 * DPT page table.
114 */
i915_ggtt_suspend_vm(struct i915_address_space * vm,bool evict_all)115 void i915_ggtt_suspend_vm(struct i915_address_space *vm, bool evict_all)
116 {
117 struct i915_vma *vma, *vn;
118 int save_skip_rewrite;
119
120 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
121
122 retry:
123 i915_gem_drain_freed_objects(vm->i915);
124
125 mutex_lock(&vm->mutex);
126
127 /*
128 * Skip rewriting PTE on VMA unbind.
129 * FIXME: Use an argument to i915_vma_unbind() instead?
130 */
131 save_skip_rewrite = vm->skip_pte_rewrite;
132 vm->skip_pte_rewrite = true;
133
134 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
135 struct drm_i915_gem_object *obj = vma->obj;
136
137 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
138
139 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
140 continue;
141
142 /* unlikely to race when GPU is idle, so no worry about slowpath.. */
143 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
144 /*
145 * No dead objects should appear here, GPU should be
146 * completely idle, and userspace suspended
147 */
148 i915_gem_object_get(obj);
149
150 mutex_unlock(&vm->mutex);
151
152 i915_gem_object_lock(obj, NULL);
153 GEM_WARN_ON(i915_vma_unbind(vma));
154 i915_gem_object_unlock(obj);
155 i915_gem_object_put(obj);
156
157 vm->skip_pte_rewrite = save_skip_rewrite;
158 goto retry;
159 }
160
161 if (evict_all || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
162 i915_vma_wait_for_bind(vma);
163
164 __i915_vma_evict(vma, false);
165 drm_mm_remove_node(&vma->node);
166 }
167
168 i915_gem_object_unlock(obj);
169 }
170
171 vm->clear_range(vm, 0, vm->total);
172
173 vm->skip_pte_rewrite = save_skip_rewrite;
174
175 mutex_unlock(&vm->mutex);
176
177 drm_WARN_ON(&vm->i915->drm, evict_all && !list_empty(&vm->bound_list));
178 }
179
i915_ggtt_suspend(struct i915_ggtt * ggtt)180 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
181 {
182 struct intel_gt *gt;
183
184 i915_ggtt_suspend_vm(&ggtt->vm, false);
185 ggtt->invalidate(ggtt);
186
187 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
188 intel_gt_check_and_clear_faults(gt);
189 }
190
gen6_ggtt_invalidate(struct i915_ggtt * ggtt)191 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
192 {
193 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
194
195 spin_lock_irq(&uncore->lock);
196 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
197 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
198 spin_unlock_irq(&uncore->lock);
199 }
200
needs_wc_ggtt_mapping(struct drm_i915_private * i915)201 static bool needs_wc_ggtt_mapping(struct drm_i915_private *i915)
202 {
203 /*
204 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
205 * will be dropped. For WC mappings in general we have 64 byte burst
206 * writes when the WC buffer is flushed, so we can't use it, but have to
207 * resort to an uncached mapping. The WC issue is easily caught by the
208 * readback check when writing GTT PTE entries.
209 */
210 if (!IS_GEN9_LP(i915) && GRAPHICS_VER(i915) < 11)
211 return true;
212
213 return false;
214 }
215
gen8_ggtt_invalidate(struct i915_ggtt * ggtt)216 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
217 {
218 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
219
220 /*
221 * Note that as an uncached mmio write, this will flush the
222 * WCB of the writes into the GGTT before it triggers the invalidate.
223 *
224 * Only perform this when GGTT is mapped as WC, see ggtt_probe_common().
225 */
226 if (needs_wc_ggtt_mapping(ggtt->vm.i915))
227 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6,
228 GFX_FLSH_CNTL_EN);
229 }
230
guc_ggtt_ct_invalidate(struct intel_gt * gt)231 static void guc_ggtt_ct_invalidate(struct intel_gt *gt)
232 {
233 struct intel_uncore *uncore = gt->uncore;
234 intel_wakeref_t wakeref;
235
236 with_intel_runtime_pm_if_active(uncore->rpm, wakeref)
237 intel_guc_invalidate_tlb_guc(gt_to_guc(gt));
238 }
239
guc_ggtt_invalidate(struct i915_ggtt * ggtt)240 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
241 {
242 struct drm_i915_private *i915 = ggtt->vm.i915;
243 struct intel_gt *gt;
244
245 gen8_ggtt_invalidate(ggtt);
246
247 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) {
248 if (intel_guc_tlb_invalidation_is_available(gt_to_guc(gt)))
249 guc_ggtt_ct_invalidate(gt);
250 else if (GRAPHICS_VER(i915) >= 12)
251 intel_uncore_write_fw(gt->uncore,
252 GEN12_GUC_TLB_INV_CR,
253 GEN12_GUC_TLB_INV_CR_INVALIDATE);
254 else
255 intel_uncore_write_fw(gt->uncore,
256 GEN8_GTCR, GEN8_GTCR_INVALIDATE);
257 }
258 }
259
mtl_ggtt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)260 static u64 mtl_ggtt_pte_encode(dma_addr_t addr,
261 unsigned int pat_index,
262 u32 flags)
263 {
264 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
265
266 WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK);
267
268 if (flags & PTE_LM)
269 pte |= GEN12_GGTT_PTE_LM;
270
271 if (pat_index & BIT(0))
272 pte |= MTL_GGTT_PTE_PAT0;
273
274 if (pat_index & BIT(1))
275 pte |= MTL_GGTT_PTE_PAT1;
276
277 return pte;
278 }
279
gen8_ggtt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)280 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
281 unsigned int pat_index,
282 u32 flags)
283 {
284 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
285
286 if (flags & PTE_LM)
287 pte |= GEN12_GGTT_PTE_LM;
288
289 return pte;
290 }
291
should_update_ggtt_with_bind(struct i915_ggtt * ggtt)292 static bool should_update_ggtt_with_bind(struct i915_ggtt *ggtt)
293 {
294 struct intel_gt *gt = ggtt->vm.gt;
295
296 return intel_gt_is_bind_context_ready(gt);
297 }
298
gen8_ggtt_bind_get_ce(struct i915_ggtt * ggtt,intel_wakeref_t * wakeref)299 static struct intel_context *gen8_ggtt_bind_get_ce(struct i915_ggtt *ggtt, intel_wakeref_t *wakeref)
300 {
301 struct intel_context *ce;
302 struct intel_gt *gt = ggtt->vm.gt;
303
304 if (intel_gt_is_wedged(gt))
305 return NULL;
306
307 ce = gt->engine[BCS0]->bind_context;
308 GEM_BUG_ON(!ce);
309
310 /*
311 * If the GT is not awake already at this stage then fallback
312 * to pci based GGTT update otherwise __intel_wakeref_get_first()
313 * would conflict with fs_reclaim trying to allocate memory while
314 * doing rpm_resume().
315 */
316 *wakeref = intel_gt_pm_get_if_awake(gt);
317 if (!*wakeref)
318 return NULL;
319
320 intel_engine_pm_get(ce->engine);
321
322 return ce;
323 }
324
gen8_ggtt_bind_put_ce(struct intel_context * ce,intel_wakeref_t wakeref)325 static void gen8_ggtt_bind_put_ce(struct intel_context *ce, intel_wakeref_t wakeref)
326 {
327 intel_engine_pm_put(ce->engine);
328 intel_gt_pm_put(ce->engine->gt, wakeref);
329 }
330
gen8_ggtt_bind_ptes(struct i915_ggtt * ggtt,u32 offset,struct sg_table * pages,u32 num_entries,const gen8_pte_t pte)331 static bool gen8_ggtt_bind_ptes(struct i915_ggtt *ggtt, u32 offset,
332 struct sg_table *pages, u32 num_entries,
333 const gen8_pte_t pte)
334 {
335 struct i915_sched_attr attr = {};
336 struct intel_gt *gt = ggtt->vm.gt;
337 const gen8_pte_t scratch_pte = ggtt->vm.scratch[0]->encode;
338 struct sgt_iter iter;
339 struct i915_request *rq;
340 struct intel_context *ce;
341 intel_wakeref_t wakeref;
342 u32 *cs;
343
344 if (!num_entries)
345 return true;
346
347 ce = gen8_ggtt_bind_get_ce(ggtt, &wakeref);
348 if (!ce)
349 return false;
350
351 if (pages)
352 iter = __sgt_iter(pages->sgl, true);
353
354 while (num_entries) {
355 int count = 0;
356 dma_addr_t addr;
357 /*
358 * MI_UPDATE_GTT can update 512 entries in a single command but
359 * that end up with engine reset, 511 works.
360 */
361 u32 n_ptes = min_t(u32, 511, num_entries);
362
363 if (mutex_lock_interruptible(&ce->timeline->mutex))
364 goto put_ce;
365
366 intel_context_enter(ce);
367 rq = __i915_request_create(ce, GFP_NOWAIT | GFP_ATOMIC);
368 intel_context_exit(ce);
369 if (IS_ERR(rq)) {
370 GT_TRACE(gt, "Failed to get bind request\n");
371 mutex_unlock(&ce->timeline->mutex);
372 goto put_ce;
373 }
374
375 cs = intel_ring_begin(rq, 2 * n_ptes + 2);
376 if (IS_ERR(cs)) {
377 GT_TRACE(gt, "Failed to ring space for GGTT bind\n");
378 i915_request_set_error_once(rq, PTR_ERR(cs));
379 /* once a request is created, it must be queued */
380 goto queue_err_rq;
381 }
382
383 *cs++ = MI_UPDATE_GTT | (2 * n_ptes);
384 *cs++ = offset << 12;
385
386 if (pages) {
387 for_each_sgt_daddr_next(addr, iter) {
388 if (count == n_ptes)
389 break;
390 *cs++ = lower_32_bits(pte | addr);
391 *cs++ = upper_32_bits(pte | addr);
392 count++;
393 }
394 /* fill remaining with scratch pte, if any */
395 if (count < n_ptes) {
396 memset64((u64 *)cs, scratch_pte,
397 n_ptes - count);
398 cs += (n_ptes - count) * 2;
399 }
400 } else {
401 memset64((u64 *)cs, pte, n_ptes);
402 cs += n_ptes * 2;
403 }
404
405 intel_ring_advance(rq, cs);
406 queue_err_rq:
407 i915_request_get(rq);
408 __i915_request_commit(rq);
409 __i915_request_queue(rq, &attr);
410
411 mutex_unlock(&ce->timeline->mutex);
412 /* This will break if the request is complete or after engine reset */
413 i915_request_wait(rq, 0, MAX_SCHEDULE_TIMEOUT);
414 if (rq->fence.error)
415 goto err_rq;
416
417 i915_request_put(rq);
418
419 num_entries -= n_ptes;
420 offset += n_ptes;
421 }
422
423 gen8_ggtt_bind_put_ce(ce, wakeref);
424 return true;
425
426 err_rq:
427 i915_request_put(rq);
428 put_ce:
429 gen8_ggtt_bind_put_ce(ce, wakeref);
430 return false;
431 }
432
gen8_set_pte(void __iomem * addr,gen8_pte_t pte)433 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
434 {
435 writeq(pte, addr);
436 }
437
gen8_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)438 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
439 dma_addr_t addr,
440 u64 offset,
441 unsigned int pat_index,
442 u32 flags)
443 {
444 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
445 gen8_pte_t __iomem *pte =
446 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
447
448 gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags));
449
450 ggtt->invalidate(ggtt);
451 }
452
gen8_ggtt_insert_page_bind(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)453 static void gen8_ggtt_insert_page_bind(struct i915_address_space *vm,
454 dma_addr_t addr, u64 offset,
455 unsigned int pat_index, u32 flags)
456 {
457 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
458 gen8_pte_t pte;
459
460 pte = ggtt->vm.pte_encode(addr, pat_index, flags);
461 if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
462 gen8_ggtt_bind_ptes(ggtt, offset, NULL, 1, pte))
463 return ggtt->invalidate(ggtt);
464
465 gen8_ggtt_insert_page(vm, addr, offset, pat_index, flags);
466 }
467
gen8_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)468 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
469 struct i915_vma_resource *vma_res,
470 unsigned int pat_index,
471 u32 flags)
472 {
473 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
474 const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
475 gen8_pte_t __iomem *gte;
476 gen8_pte_t __iomem *end;
477 struct sgt_iter iter;
478 dma_addr_t addr;
479
480 /*
481 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
482 * not to allow the user to override access to a read only page.
483 */
484
485 gte = (gen8_pte_t __iomem *)ggtt->gsm;
486 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
487 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
488 while (gte < end)
489 gen8_set_pte(gte++, vm->scratch[0]->encode);
490 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
491
492 for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
493 gen8_set_pte(gte++, pte_encode | addr);
494 GEM_BUG_ON(gte > end);
495
496 /* Fill the allocated but "unused" space beyond the end of the buffer */
497 while (gte < end)
498 gen8_set_pte(gte++, vm->scratch[0]->encode);
499
500 /*
501 * We want to flush the TLBs only after we're certain all the PTE
502 * updates have finished.
503 */
504 ggtt->invalidate(ggtt);
505 }
506
__gen8_ggtt_insert_entries_bind(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)507 static bool __gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
508 struct i915_vma_resource *vma_res,
509 unsigned int pat_index, u32 flags)
510 {
511 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
512 gen8_pte_t scratch_pte = vm->scratch[0]->encode;
513 gen8_pte_t pte_encode;
514 u64 start, end;
515
516 pte_encode = ggtt->vm.pte_encode(0, pat_index, flags);
517 start = (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
518 end = start + vma_res->guard / I915_GTT_PAGE_SIZE;
519 if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
520 goto err;
521
522 start = end;
523 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
524 if (!gen8_ggtt_bind_ptes(ggtt, start, vma_res->bi.pages,
525 vma_res->node_size / I915_GTT_PAGE_SIZE, pte_encode))
526 goto err;
527
528 start += vma_res->node_size / I915_GTT_PAGE_SIZE;
529 if (!gen8_ggtt_bind_ptes(ggtt, start, NULL, end - start, scratch_pte))
530 goto err;
531
532 return true;
533
534 err:
535 return false;
536 }
537
gen8_ggtt_insert_entries_bind(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)538 static void gen8_ggtt_insert_entries_bind(struct i915_address_space *vm,
539 struct i915_vma_resource *vma_res,
540 unsigned int pat_index, u32 flags)
541 {
542 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
543
544 if (should_update_ggtt_with_bind(i915_vm_to_ggtt(vm)) &&
545 __gen8_ggtt_insert_entries_bind(vm, vma_res, pat_index, flags))
546 return ggtt->invalidate(ggtt);
547
548 gen8_ggtt_insert_entries(vm, vma_res, pat_index, flags);
549 }
550
gen8_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)551 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
552 u64 start, u64 length)
553 {
554 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
555 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
556 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
557 const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
558 gen8_pte_t __iomem *gtt_base =
559 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
560 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
561 int i;
562
563 if (WARN(num_entries > max_entries,
564 "First entry = %d; Num entries = %d (max=%d)\n",
565 first_entry, num_entries, max_entries))
566 num_entries = max_entries;
567
568 for (i = 0; i < num_entries; i++)
569 gen8_set_pte(>t_base[i], scratch_pte);
570 }
571
gen8_ggtt_scratch_range_bind(struct i915_address_space * vm,u64 start,u64 length)572 static void gen8_ggtt_scratch_range_bind(struct i915_address_space *vm,
573 u64 start, u64 length)
574 {
575 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
576 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
577 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
578 const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
579 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
580
581 if (WARN(num_entries > max_entries,
582 "First entry = %d; Num entries = %d (max=%d)\n",
583 first_entry, num_entries, max_entries))
584 num_entries = max_entries;
585
586 if (should_update_ggtt_with_bind(ggtt) && gen8_ggtt_bind_ptes(ggtt, first_entry,
587 NULL, num_entries, scratch_pte))
588 return ggtt->invalidate(ggtt);
589
590 gen8_ggtt_clear_range(vm, start, length);
591 }
592
gen6_ggtt_insert_page(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 flags)593 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
594 dma_addr_t addr,
595 u64 offset,
596 unsigned int pat_index,
597 u32 flags)
598 {
599 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
600 gen6_pte_t __iomem *pte =
601 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
602
603 iowrite32(vm->pte_encode(addr, pat_index, flags), pte);
604
605 ggtt->invalidate(ggtt);
606 }
607
608 /*
609 * Binds an object into the global gtt with the specified cache level.
610 * The object will be accessible to the GPU via commands whose operands
611 * reference offsets within the global GTT as well as accessible by the GPU
612 * through the GMADR mapped BAR (i915->mm.gtt->gtt).
613 */
gen6_ggtt_insert_entries(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)614 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
615 struct i915_vma_resource *vma_res,
616 unsigned int pat_index,
617 u32 flags)
618 {
619 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
620 gen6_pte_t __iomem *gte;
621 gen6_pte_t __iomem *end;
622 struct sgt_iter iter;
623 dma_addr_t addr;
624
625 gte = (gen6_pte_t __iomem *)ggtt->gsm;
626 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE;
627
628 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE;
629 while (gte < end)
630 iowrite32(vm->scratch[0]->encode, gte++);
631 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE;
632 for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
633 iowrite32(vm->pte_encode(addr, pat_index, flags), gte++);
634 GEM_BUG_ON(gte > end);
635
636 /* Fill the allocated but "unused" space beyond the end of the buffer */
637 while (gte < end)
638 iowrite32(vm->scratch[0]->encode, gte++);
639
640 /*
641 * We want to flush the TLBs only after we're certain all the PTE
642 * updates have finished.
643 */
644 ggtt->invalidate(ggtt);
645 }
646
nop_clear_range(struct i915_address_space * vm,u64 start,u64 length)647 static void nop_clear_range(struct i915_address_space *vm,
648 u64 start, u64 length)
649 {
650 }
651
bxt_vtd_ggtt_wa(struct i915_address_space * vm)652 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
653 {
654 /*
655 * Make sure the internal GAM fifo has been cleared of all GTT
656 * writes before exiting stop_machine(). This guarantees that
657 * any aperture accesses waiting to start in another process
658 * cannot back up behind the GTT writes causing a hang.
659 * The register can be any arbitrary GAM register.
660 */
661 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
662 }
663
664 struct insert_page {
665 struct i915_address_space *vm;
666 dma_addr_t addr;
667 u64 offset;
668 unsigned int pat_index;
669 };
670
bxt_vtd_ggtt_insert_page__cb(void * _arg)671 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
672 {
673 struct insert_page *arg = _arg;
674
675 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset,
676 arg->pat_index, 0);
677 bxt_vtd_ggtt_wa(arg->vm);
678
679 return 0;
680 }
681
bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space * vm,dma_addr_t addr,u64 offset,unsigned int pat_index,u32 unused)682 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
683 dma_addr_t addr,
684 u64 offset,
685 unsigned int pat_index,
686 u32 unused)
687 {
688 struct insert_page arg = { vm, addr, offset, pat_index };
689
690 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
691 }
692
693 struct insert_entries {
694 struct i915_address_space *vm;
695 struct i915_vma_resource *vma_res;
696 unsigned int pat_index;
697 u32 flags;
698 };
699
bxt_vtd_ggtt_insert_entries__cb(void * _arg)700 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
701 {
702 struct insert_entries *arg = _arg;
703
704 gen8_ggtt_insert_entries(arg->vm, arg->vma_res,
705 arg->pat_index, arg->flags);
706 bxt_vtd_ggtt_wa(arg->vm);
707
708 return 0;
709 }
710
bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space * vm,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)711 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
712 struct i915_vma_resource *vma_res,
713 unsigned int pat_index,
714 u32 flags)
715 {
716 struct insert_entries arg = { vm, vma_res, pat_index, flags };
717
718 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
719 }
720
gen6_ggtt_clear_range(struct i915_address_space * vm,u64 start,u64 length)721 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
722 u64 start, u64 length)
723 {
724 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
725 unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
726 unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
727 gen6_pte_t scratch_pte, __iomem *gtt_base =
728 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
729 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
730 int i;
731
732 if (WARN(num_entries > max_entries,
733 "First entry = %d; Num entries = %d (max=%d)\n",
734 first_entry, num_entries, max_entries))
735 num_entries = max_entries;
736
737 scratch_pte = vm->scratch[0]->encode;
738 for (i = 0; i < num_entries; i++)
739 iowrite32(scratch_pte, >t_base[i]);
740 }
741
intel_ggtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)742 void intel_ggtt_bind_vma(struct i915_address_space *vm,
743 struct i915_vm_pt_stash *stash,
744 struct i915_vma_resource *vma_res,
745 unsigned int pat_index,
746 u32 flags)
747 {
748 u32 pte_flags;
749
750 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
751 return;
752
753 vma_res->bound_flags |= flags;
754
755 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */
756 pte_flags = 0;
757 if (vma_res->bi.readonly)
758 pte_flags |= PTE_READ_ONLY;
759 if (vma_res->bi.lmem)
760 pte_flags |= PTE_LM;
761
762 vm->insert_entries(vm, vma_res, pat_index, pte_flags);
763 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
764 }
765
intel_ggtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)766 void intel_ggtt_unbind_vma(struct i915_address_space *vm,
767 struct i915_vma_resource *vma_res)
768 {
769 vm->clear_range(vm, vma_res->start, vma_res->vma_size);
770 }
771
772 /*
773 * Reserve the top of the GuC address space for firmware images. Addresses
774 * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC,
775 * which makes for a suitable range to hold GuC/HuC firmware images if the
776 * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT
777 * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk
778 * of the same size anyway, which is far more than needed, to keep the logic
779 * in uc_fw_ggtt_offset() simple.
780 */
781 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP)
782
ggtt_reserve_guc_top(struct i915_ggtt * ggtt)783 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
784 {
785 u64 offset;
786 int ret;
787
788 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
789 return 0;
790
791 GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE);
792 offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE;
793
794 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw,
795 GUC_TOP_RESERVE_SIZE, offset,
796 I915_COLOR_UNEVICTABLE, PIN_NOEVICT);
797 if (ret)
798 drm_dbg(&ggtt->vm.i915->drm,
799 "Failed to reserve top of GGTT for GuC\n");
800
801 return ret;
802 }
803
ggtt_release_guc_top(struct i915_ggtt * ggtt)804 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
805 {
806 if (drm_mm_node_allocated(&ggtt->uc_fw))
807 drm_mm_remove_node(&ggtt->uc_fw);
808 }
809
cleanup_init_ggtt(struct i915_ggtt * ggtt)810 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
811 {
812 ggtt_release_guc_top(ggtt);
813 if (drm_mm_node_allocated(&ggtt->error_capture))
814 drm_mm_remove_node(&ggtt->error_capture);
815 mutex_destroy(&ggtt->error_mutex);
816 }
817
init_ggtt(struct i915_ggtt * ggtt)818 static int init_ggtt(struct i915_ggtt *ggtt)
819 {
820 /*
821 * Let GEM Manage all of the aperture.
822 *
823 * However, leave one page at the end still bound to the scratch page.
824 * There are a number of places where the hardware apparently prefetches
825 * past the end of the object, and we've seen multiple hangs with the
826 * GPU head pointer stuck in a batchbuffer bound at the last page of the
827 * aperture. One page should be enough to keep any prefetching inside
828 * of the aperture.
829 */
830 unsigned long hole_start, hole_end;
831 struct drm_mm_node *entry;
832 int ret;
833
834 /*
835 * GuC requires all resources that we're sharing with it to be placed in
836 * non-WOPCM memory. If GuC is not present or not in use we still need a
837 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
838 * why.
839 */
840 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
841 intel_wopcm_guc_size(&ggtt->vm.gt->wopcm));
842
843 ret = intel_vgt_balloon(ggtt);
844 if (ret)
845 return ret;
846
847 mutex_init(&ggtt->error_mutex);
848 if (ggtt->mappable_end) {
849 /*
850 * Reserve a mappable slot for our lockless error capture.
851 *
852 * We strongly prefer taking address 0x0 in order to protect
853 * other critical buffers against accidental overwrites,
854 * as writing to address 0 is a very common mistake.
855 *
856 * Since 0 may already be in use by the system (e.g. the BIOS
857 * framebuffer), we let the reservation fail quietly and hope
858 * 0 remains reserved always.
859 *
860 * If we fail to reserve 0, and then fail to find any space
861 * for an error-capture, remain silent. We can afford not
862 * to reserve an error_capture node as we have fallback
863 * paths, and we trust that 0 will remain reserved. However,
864 * the only likely reason for failure to insert is a driver
865 * bug, which we expect to cause other failures...
866 *
867 * Since CPU can perform speculative reads on error capture
868 * (write-combining allows it) add scratch page after error
869 * capture to avoid DMAR errors.
870 */
871 ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE;
872 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
873 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
874 drm_mm_insert_node_in_range(&ggtt->vm.mm,
875 &ggtt->error_capture,
876 ggtt->error_capture.size, 0,
877 ggtt->error_capture.color,
878 0, ggtt->mappable_end,
879 DRM_MM_INSERT_LOW);
880 }
881 if (drm_mm_node_allocated(&ggtt->error_capture)) {
882 u64 start = ggtt->error_capture.start;
883 u64 size = ggtt->error_capture.size;
884
885 ggtt->vm.scratch_range(&ggtt->vm, start, size);
886 drm_dbg(&ggtt->vm.i915->drm,
887 "Reserved GGTT:[%llx, %llx] for use by error capture\n",
888 start, start + size);
889 }
890
891 /*
892 * The upper portion of the GuC address space has a sizeable hole
893 * (several MB) that is inaccessible by GuC. Reserve this range within
894 * GGTT as it can comfortably hold GuC/HuC firmware images.
895 */
896 ret = ggtt_reserve_guc_top(ggtt);
897 if (ret)
898 goto err;
899
900 /* Clear any non-preallocated blocks */
901 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
902 drm_dbg(&ggtt->vm.i915->drm,
903 "clearing unused GTT space: [%lx, %lx]\n",
904 hole_start, hole_end);
905 ggtt->vm.clear_range(&ggtt->vm, hole_start,
906 hole_end - hole_start);
907 }
908
909 /* And finally clear the reserved guard page */
910 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
911
912 return 0;
913
914 err:
915 cleanup_init_ggtt(ggtt);
916 return ret;
917 }
918
aliasing_gtt_bind_vma(struct i915_address_space * vm,struct i915_vm_pt_stash * stash,struct i915_vma_resource * vma_res,unsigned int pat_index,u32 flags)919 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
920 struct i915_vm_pt_stash *stash,
921 struct i915_vma_resource *vma_res,
922 unsigned int pat_index,
923 u32 flags)
924 {
925 u32 pte_flags;
926
927 /* Currently applicable only to VLV */
928 pte_flags = 0;
929 if (vma_res->bi.readonly)
930 pte_flags |= PTE_READ_ONLY;
931
932 if (flags & I915_VMA_LOCAL_BIND)
933 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
934 stash, vma_res, pat_index, flags);
935
936 if (flags & I915_VMA_GLOBAL_BIND)
937 vm->insert_entries(vm, vma_res, pat_index, pte_flags);
938
939 vma_res->bound_flags |= flags;
940 }
941
aliasing_gtt_unbind_vma(struct i915_address_space * vm,struct i915_vma_resource * vma_res)942 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
943 struct i915_vma_resource *vma_res)
944 {
945 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
946 vm->clear_range(vm, vma_res->start, vma_res->vma_size);
947
948 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
949 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
950 }
951
init_aliasing_ppgtt(struct i915_ggtt * ggtt)952 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
953 {
954 struct i915_vm_pt_stash stash = {};
955 struct i915_ppgtt *ppgtt;
956 int err;
957
958 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
959 if (IS_ERR(ppgtt))
960 return PTR_ERR(ppgtt);
961
962 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
963 err = -ENODEV;
964 goto err_ppgtt;
965 }
966
967 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
968 if (err)
969 goto err_ppgtt;
970
971 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
972 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
973 i915_gem_object_unlock(ppgtt->vm.scratch[0]);
974 if (err)
975 goto err_stash;
976
977 /*
978 * Note we only pre-allocate as far as the end of the global
979 * GTT. On 48b / 4-level page-tables, the difference is very,
980 * very significant! We have to preallocate as GVT/vgpu does
981 * not like the page directory disappearing.
982 */
983 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
984
985 ggtt->alias = ppgtt;
986 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
987
988 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma);
989 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
990
991 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma);
992 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
993
994 i915_vm_free_pt_stash(&ppgtt->vm, &stash);
995 return 0;
996
997 err_stash:
998 i915_vm_free_pt_stash(&ppgtt->vm, &stash);
999 err_ppgtt:
1000 i915_vm_put(&ppgtt->vm);
1001 return err;
1002 }
1003
fini_aliasing_ppgtt(struct i915_ggtt * ggtt)1004 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
1005 {
1006 struct i915_ppgtt *ppgtt;
1007
1008 ppgtt = fetch_and_zero(&ggtt->alias);
1009 if (!ppgtt)
1010 return;
1011
1012 i915_vm_put(&ppgtt->vm);
1013
1014 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1015 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1016 }
1017
i915_init_ggtt(struct drm_i915_private * i915)1018 int i915_init_ggtt(struct drm_i915_private *i915)
1019 {
1020 int ret;
1021
1022 ret = init_ggtt(to_gt(i915)->ggtt);
1023 if (ret)
1024 return ret;
1025
1026 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
1027 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
1028 if (ret)
1029 cleanup_init_ggtt(to_gt(i915)->ggtt);
1030 }
1031
1032 return 0;
1033 }
1034
ggtt_cleanup_hw(struct i915_ggtt * ggtt)1035 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
1036 {
1037 struct i915_vma *vma, *vn;
1038
1039 flush_workqueue(ggtt->vm.i915->wq);
1040 i915_gem_drain_freed_objects(ggtt->vm.i915);
1041
1042 mutex_lock(&ggtt->vm.mutex);
1043
1044 ggtt->vm.skip_pte_rewrite = true;
1045
1046 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
1047 struct drm_i915_gem_object *obj = vma->obj;
1048 bool trylock;
1049
1050 trylock = i915_gem_object_trylock(obj, NULL);
1051 WARN_ON(!trylock);
1052
1053 WARN_ON(__i915_vma_unbind(vma));
1054 if (trylock)
1055 i915_gem_object_unlock(obj);
1056 }
1057
1058 if (drm_mm_node_allocated(&ggtt->error_capture))
1059 drm_mm_remove_node(&ggtt->error_capture);
1060 mutex_destroy(&ggtt->error_mutex);
1061
1062 ggtt_release_guc_top(ggtt);
1063 intel_vgt_deballoon(ggtt);
1064
1065 ggtt->vm.cleanup(&ggtt->vm);
1066
1067 mutex_unlock(&ggtt->vm.mutex);
1068 i915_address_space_fini(&ggtt->vm);
1069
1070 arch_phys_wc_del(ggtt->mtrr);
1071
1072 if (ggtt->iomap.size)
1073 io_mapping_fini(&ggtt->iomap);
1074 }
1075
1076 /**
1077 * i915_ggtt_driver_release - Clean up GGTT hardware initialization
1078 * @i915: i915 device
1079 */
i915_ggtt_driver_release(struct drm_i915_private * i915)1080 void i915_ggtt_driver_release(struct drm_i915_private *i915)
1081 {
1082 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1083
1084 fini_aliasing_ppgtt(ggtt);
1085
1086 intel_ggtt_fini_fences(ggtt);
1087 ggtt_cleanup_hw(ggtt);
1088 }
1089
1090 /**
1091 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
1092 * all free objects have been drained.
1093 * @i915: i915 device
1094 */
i915_ggtt_driver_late_release(struct drm_i915_private * i915)1095 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
1096 {
1097 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
1098
1099 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
1100 dma_resv_fini(&ggtt->vm._resv);
1101 }
1102
gen6_get_total_gtt_size(u16 snb_gmch_ctl)1103 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1104 {
1105 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1106 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1107 return snb_gmch_ctl << 20;
1108 }
1109
gen8_get_total_gtt_size(u16 bdw_gmch_ctl)1110 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1111 {
1112 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1113 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1114 if (bdw_gmch_ctl)
1115 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1116
1117 #ifdef CONFIG_X86_32
1118 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
1119 if (bdw_gmch_ctl > 4)
1120 bdw_gmch_ctl = 4;
1121 #endif
1122
1123 return bdw_gmch_ctl << 20;
1124 }
1125
chv_get_total_gtt_size(u16 gmch_ctrl)1126 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
1127 {
1128 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
1129 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
1130
1131 if (gmch_ctrl)
1132 return 1 << (20 + gmch_ctrl);
1133
1134 return 0;
1135 }
1136
gen6_gttmmadr_size(struct drm_i915_private * i915)1137 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
1138 {
1139 /*
1140 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
1141 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
1142 */
1143 GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
1144 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
1145 }
1146
gen6_gttadr_offset(struct drm_i915_private * i915)1147 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
1148 {
1149 return gen6_gttmmadr_size(i915) / 2;
1150 }
1151
ggtt_probe_common(struct i915_ggtt * ggtt,u64 size)1152 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
1153 {
1154 struct drm_i915_private *i915 = ggtt->vm.i915;
1155 struct intel_uncore *uncore = ggtt->vm.gt->uncore;
1156 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1157 phys_addr_t phys_addr;
1158 u32 pte_flags;
1159 int ret;
1160
1161 GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915));
1162
1163 if (i915_direct_stolen_access(i915)) {
1164 drm_dbg(&i915->drm, "Using direct GSM access\n");
1165 phys_addr = intel_uncore_read64(uncore, GEN6_GSMBASE) & GEN11_BDSM_MASK;
1166 } else {
1167 phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915);
1168 }
1169
1170 if (needs_wc_ggtt_mapping(i915))
1171 ggtt->gsm = ioremap_wc(phys_addr, size);
1172 else
1173 ggtt->gsm = ioremap(phys_addr, size);
1174
1175 if (!ggtt->gsm) {
1176 drm_err(&i915->drm, "Failed to map the ggtt page table\n");
1177 return -ENOMEM;
1178 }
1179
1180 kref_init(&ggtt->vm.resv_ref);
1181 ret = setup_scratch_page(&ggtt->vm);
1182 if (ret) {
1183 drm_err(&i915->drm, "Scratch setup failed\n");
1184 /* iounmap will also get called at remove, but meh */
1185 iounmap(ggtt->gsm);
1186 return ret;
1187 }
1188
1189 pte_flags = 0;
1190 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
1191 pte_flags |= PTE_LM;
1192
1193 ggtt->vm.scratch[0]->encode =
1194 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
1195 i915_gem_get_pat_index(i915,
1196 I915_CACHE_NONE),
1197 pte_flags);
1198
1199 return 0;
1200 }
1201
gen6_gmch_remove(struct i915_address_space * vm)1202 static void gen6_gmch_remove(struct i915_address_space *vm)
1203 {
1204 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1205
1206 iounmap(ggtt->gsm);
1207 free_scratch(vm);
1208 }
1209
pci_resource(struct pci_dev * pdev,int bar)1210 static struct resource pci_resource(struct pci_dev *pdev, int bar)
1211 {
1212 return DEFINE_RES_MEM(pci_resource_start(pdev, bar),
1213 pci_resource_len(pdev, bar));
1214 }
1215
gen8_gmch_probe(struct i915_ggtt * ggtt)1216 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
1217 {
1218 struct drm_i915_private *i915 = ggtt->vm.i915;
1219 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1220 unsigned int size;
1221 u16 snb_gmch_ctl;
1222
1223 if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) {
1224 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1225 return -ENXIO;
1226
1227 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1228 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1229 }
1230
1231 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1232 if (IS_CHERRYVIEW(i915))
1233 size = chv_get_total_gtt_size(snb_gmch_ctl);
1234 else
1235 size = gen8_get_total_gtt_size(snb_gmch_ctl);
1236
1237 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1238 ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1239 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
1240
1241 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
1242 ggtt->vm.cleanup = gen6_gmch_remove;
1243 ggtt->vm.insert_page = gen8_ggtt_insert_page;
1244 ggtt->vm.clear_range = nop_clear_range;
1245 ggtt->vm.scratch_range = gen8_ggtt_clear_range;
1246
1247 ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
1248
1249 /*
1250 * Serialize GTT updates with aperture access on BXT if VT-d is on,
1251 * and always on CHV.
1252 */
1253 if (intel_vm_no_concurrent_access_wa(i915)) {
1254 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
1255 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
1256
1257 /*
1258 * Calling stop_machine() version of GGTT update function
1259 * at error capture/reset path will raise lockdep warning.
1260 * Allow calling gen8_ggtt_insert_* directly at reset path
1261 * which is safe from parallel GGTT updates.
1262 */
1263 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1264 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries;
1265
1266 ggtt->vm.bind_async_flags =
1267 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
1268 }
1269
1270 if (i915_ggtt_require_binder(i915)) {
1271 ggtt->vm.scratch_range = gen8_ggtt_scratch_range_bind;
1272 ggtt->vm.insert_page = gen8_ggtt_insert_page_bind;
1273 ggtt->vm.insert_entries = gen8_ggtt_insert_entries_bind;
1274 /*
1275 * On GPU is hung, we might bind VMAs for error capture.
1276 * Fallback to CPU GGTT updates in that case.
1277 */
1278 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page;
1279 }
1280
1281 if (intel_uc_wants_guc_submission(&ggtt->vm.gt->uc))
1282 ggtt->invalidate = guc_ggtt_invalidate;
1283 else
1284 ggtt->invalidate = gen8_ggtt_invalidate;
1285
1286 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1287 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1288
1289 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1290 ggtt->vm.pte_encode = mtl_ggtt_pte_encode;
1291 else
1292 ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
1293
1294 return ggtt_probe_common(ggtt, size);
1295 }
1296
1297 /*
1298 * For pre-gen8 platforms pat_index is the same as enum i915_cache_level,
1299 * so the switch-case statements in these PTE encode functions are still valid.
1300 * See translation table LEGACY_CACHELEVEL.
1301 */
snb_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1302 static u64 snb_pte_encode(dma_addr_t addr,
1303 unsigned int pat_index,
1304 u32 flags)
1305 {
1306 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1307
1308 switch (pat_index) {
1309 case I915_CACHE_L3_LLC:
1310 case I915_CACHE_LLC:
1311 pte |= GEN6_PTE_CACHE_LLC;
1312 break;
1313 case I915_CACHE_NONE:
1314 pte |= GEN6_PTE_UNCACHED;
1315 break;
1316 default:
1317 MISSING_CASE(pat_index);
1318 }
1319
1320 return pte;
1321 }
1322
ivb_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1323 static u64 ivb_pte_encode(dma_addr_t addr,
1324 unsigned int pat_index,
1325 u32 flags)
1326 {
1327 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1328
1329 switch (pat_index) {
1330 case I915_CACHE_L3_LLC:
1331 pte |= GEN7_PTE_CACHE_L3_LLC;
1332 break;
1333 case I915_CACHE_LLC:
1334 pte |= GEN6_PTE_CACHE_LLC;
1335 break;
1336 case I915_CACHE_NONE:
1337 pte |= GEN6_PTE_UNCACHED;
1338 break;
1339 default:
1340 MISSING_CASE(pat_index);
1341 }
1342
1343 return pte;
1344 }
1345
byt_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1346 static u64 byt_pte_encode(dma_addr_t addr,
1347 unsigned int pat_index,
1348 u32 flags)
1349 {
1350 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1351
1352 if (!(flags & PTE_READ_ONLY))
1353 pte |= BYT_PTE_WRITEABLE;
1354
1355 if (pat_index != I915_CACHE_NONE)
1356 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1357
1358 return pte;
1359 }
1360
hsw_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1361 static u64 hsw_pte_encode(dma_addr_t addr,
1362 unsigned int pat_index,
1363 u32 flags)
1364 {
1365 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1366
1367 if (pat_index != I915_CACHE_NONE)
1368 pte |= HSW_WB_LLC_AGE3;
1369
1370 return pte;
1371 }
1372
iris_pte_encode(dma_addr_t addr,unsigned int pat_index,u32 flags)1373 static u64 iris_pte_encode(dma_addr_t addr,
1374 unsigned int pat_index,
1375 u32 flags)
1376 {
1377 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1378
1379 switch (pat_index) {
1380 case I915_CACHE_NONE:
1381 break;
1382 case I915_CACHE_WT:
1383 pte |= HSW_WT_ELLC_LLC_AGE3;
1384 break;
1385 default:
1386 pte |= HSW_WB_ELLC_LLC_AGE3;
1387 break;
1388 }
1389
1390 return pte;
1391 }
1392
gen6_gmch_probe(struct i915_ggtt * ggtt)1393 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1394 {
1395 struct drm_i915_private *i915 = ggtt->vm.i915;
1396 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1397 unsigned int size;
1398 u16 snb_gmch_ctl;
1399
1400 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR))
1401 return -ENXIO;
1402
1403 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR);
1404 ggtt->mappable_end = resource_size(&ggtt->gmadr);
1405
1406 /*
1407 * 64/512MB is the current min/max we actually know of, but this is
1408 * just a coarse sanity check.
1409 */
1410 if (ggtt->mappable_end < (64 << 20) ||
1411 ggtt->mappable_end > (512 << 20)) {
1412 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1413 &ggtt->mappable_end);
1414 return -ENXIO;
1415 }
1416
1417 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1418
1419 size = gen6_get_total_gtt_size(snb_gmch_ctl);
1420 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1421
1422 ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1423 ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1424
1425 ggtt->vm.clear_range = nop_clear_range;
1426 if (!HAS_FULL_PPGTT(i915))
1427 ggtt->vm.clear_range = gen6_ggtt_clear_range;
1428 ggtt->vm.scratch_range = gen6_ggtt_clear_range;
1429 ggtt->vm.insert_page = gen6_ggtt_insert_page;
1430 ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1431 ggtt->vm.cleanup = gen6_gmch_remove;
1432
1433 ggtt->invalidate = gen6_ggtt_invalidate;
1434
1435 if (HAS_EDRAM(i915))
1436 ggtt->vm.pte_encode = iris_pte_encode;
1437 else if (IS_HASWELL(i915))
1438 ggtt->vm.pte_encode = hsw_pte_encode;
1439 else if (IS_VALLEYVIEW(i915))
1440 ggtt->vm.pte_encode = byt_pte_encode;
1441 else if (GRAPHICS_VER(i915) >= 7)
1442 ggtt->vm.pte_encode = ivb_pte_encode;
1443 else
1444 ggtt->vm.pte_encode = snb_pte_encode;
1445
1446 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma;
1447 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma;
1448
1449 return ggtt_probe_common(ggtt, size);
1450 }
1451
ggtt_probe_hw(struct i915_ggtt * ggtt,struct intel_gt * gt)1452 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1453 {
1454 struct drm_i915_private *i915 = gt->i915;
1455 int ret;
1456
1457 ggtt->vm.gt = gt;
1458 ggtt->vm.i915 = i915;
1459 ggtt->vm.dma = i915->drm.dev;
1460 dma_resv_init(&ggtt->vm._resv);
1461
1462 if (GRAPHICS_VER(i915) >= 8)
1463 ret = gen8_gmch_probe(ggtt);
1464 else if (GRAPHICS_VER(i915) >= 6)
1465 ret = gen6_gmch_probe(ggtt);
1466 else
1467 ret = intel_ggtt_gmch_probe(ggtt);
1468
1469 if (ret) {
1470 dma_resv_fini(&ggtt->vm._resv);
1471 return ret;
1472 }
1473
1474 if ((ggtt->vm.total - 1) >> 32) {
1475 drm_err(&i915->drm,
1476 "We never expected a Global GTT with more than 32bits"
1477 " of address space! Found %lldM!\n",
1478 ggtt->vm.total >> 20);
1479 ggtt->vm.total = 1ULL << 32;
1480 ggtt->mappable_end =
1481 min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1482 }
1483
1484 if (ggtt->mappable_end > ggtt->vm.total) {
1485 drm_err(&i915->drm,
1486 "mappable aperture extends past end of GGTT,"
1487 " aperture=%pa, total=%llx\n",
1488 &ggtt->mappable_end, ggtt->vm.total);
1489 ggtt->mappable_end = ggtt->vm.total;
1490 }
1491
1492 /* GMADR is the PCI mmio aperture into the global GTT. */
1493 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1494 drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1495 (u64)ggtt->mappable_end >> 20);
1496 drm_dbg(&i915->drm, "DSM size = %lluM\n",
1497 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
1498
1499 return 0;
1500 }
1501
1502 /**
1503 * i915_ggtt_probe_hw - Probe GGTT hardware location
1504 * @i915: i915 device
1505 */
i915_ggtt_probe_hw(struct drm_i915_private * i915)1506 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1507 {
1508 struct intel_gt *gt;
1509 int ret, i;
1510
1511 for_each_gt(gt, i915, i) {
1512 ret = intel_gt_assign_ggtt(gt);
1513 if (ret)
1514 return ret;
1515 }
1516
1517 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1518 if (ret)
1519 return ret;
1520
1521 if (i915_vtd_active(i915))
1522 drm_info(&i915->drm, "VT-d active for gfx access\n");
1523
1524 return 0;
1525 }
1526
i915_ggtt_create(struct drm_i915_private * i915)1527 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915)
1528 {
1529 struct i915_ggtt *ggtt;
1530
1531 ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL);
1532 if (!ggtt)
1533 return ERR_PTR(-ENOMEM);
1534
1535 INIT_LIST_HEAD(&ggtt->gt_list);
1536
1537 return ggtt;
1538 }
1539
i915_ggtt_enable_hw(struct drm_i915_private * i915)1540 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1541 {
1542 if (GRAPHICS_VER(i915) < 6)
1543 return intel_ggtt_gmch_enable_hw(i915);
1544
1545 return 0;
1546 }
1547
1548 /**
1549 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1550 * @vm: The VM to restore the mappings for
1551 * @all_evicted: Were all VMAs expected to be evicted on suspend?
1552 *
1553 * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1554 * DPT page table.
1555 *
1556 * Returns %true if restoring the mapping for any object that was in a write
1557 * domain before suspend.
1558 */
i915_ggtt_resume_vm(struct i915_address_space * vm,bool all_evicted)1559 bool i915_ggtt_resume_vm(struct i915_address_space *vm, bool all_evicted)
1560 {
1561 struct i915_vma *vma;
1562 bool write_domain_objs = false;
1563
1564 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1565
1566 if (all_evicted) {
1567 drm_WARN_ON(&vm->i915->drm, !list_empty(&vm->bound_list));
1568 return false;
1569 }
1570
1571 /* First fill our portion of the GTT with scratch pages */
1572 vm->clear_range(vm, 0, vm->total);
1573
1574 /* clflush objects bound into the GGTT and rebind them. */
1575 list_for_each_entry(vma, &vm->bound_list, vm_link) {
1576 struct drm_i915_gem_object *obj = vma->obj;
1577 unsigned int was_bound =
1578 atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1579
1580 GEM_BUG_ON(!was_bound);
1581
1582 /*
1583 * Clear the bound flags of the vma resource to allow
1584 * ptes to be repopulated.
1585 */
1586 vma->resource->bound_flags = 0;
1587 vma->ops->bind_vma(vm, NULL, vma->resource,
1588 obj ? obj->pat_index :
1589 i915_gem_get_pat_index(vm->i915,
1590 I915_CACHE_NONE),
1591 was_bound);
1592
1593 if (obj) { /* only used during resume => exclusive access */
1594 write_domain_objs |= fetch_and_zero(&obj->write_domain);
1595 obj->read_domains |= I915_GEM_DOMAIN_GTT;
1596 }
1597 }
1598
1599 return write_domain_objs;
1600 }
1601
i915_ggtt_resume(struct i915_ggtt * ggtt)1602 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1603 {
1604 struct intel_gt *gt;
1605 bool flush;
1606
1607 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1608 intel_gt_check_and_clear_faults(gt);
1609
1610 flush = i915_ggtt_resume_vm(&ggtt->vm, false);
1611
1612 if (drm_mm_node_allocated(&ggtt->error_capture))
1613 ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start,
1614 ggtt->error_capture.size);
1615
1616 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1617 intel_uc_resume_mappings(>->uc);
1618
1619 ggtt->invalidate(ggtt);
1620
1621 if (flush)
1622 wbinvd_on_all_cpus();
1623
1624 intel_ggtt_restore_fences(ggtt);
1625 }
1626