1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Linux Driver for Mylex DAC960/AcceleRAID/eXtremeRAID PCI RAID Controllers
4 *
5 * This driver supports the newer, SCSI-based firmware interface only.
6 *
7 * Copyright 2017 Hannes Reinecke, SUSE Linux GmbH <hare@suse.com>
8 *
9 * Based on the original DAC960 driver, which has
10 * Copyright 1998-2001 by Leonard N. Zubkoff <lnz@dandelion.com>
11 * Portions Copyright 2002 by Mylex (An IBM Business Unit)
12 */
13
14 #include <linux/module.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 #include <linux/interrupt.h>
18 #include <linux/pci.h>
19 #include <linux/raid_class.h>
20 #include <linux/unaligned.h>
21 #include <scsi/scsi.h>
22 #include <scsi/scsi_host.h>
23 #include <scsi/scsi_device.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_tcq.h>
26 #include "myrs.h"
27
28 static struct raid_template *myrs_raid_template;
29
30 static struct myrs_devstate_name_entry {
31 enum myrs_devstate state;
32 char *name;
33 } myrs_devstate_name_list[] = {
34 { MYRS_DEVICE_UNCONFIGURED, "Unconfigured" },
35 { MYRS_DEVICE_ONLINE, "Online" },
36 { MYRS_DEVICE_REBUILD, "Rebuild" },
37 { MYRS_DEVICE_MISSING, "Missing" },
38 { MYRS_DEVICE_SUSPECTED_CRITICAL, "SuspectedCritical" },
39 { MYRS_DEVICE_OFFLINE, "Offline" },
40 { MYRS_DEVICE_CRITICAL, "Critical" },
41 { MYRS_DEVICE_SUSPECTED_DEAD, "SuspectedDead" },
42 { MYRS_DEVICE_COMMANDED_OFFLINE, "CommandedOffline" },
43 { MYRS_DEVICE_STANDBY, "Standby" },
44 { MYRS_DEVICE_INVALID_STATE, "Invalid" },
45 };
46
myrs_devstate_name(enum myrs_devstate state)47 static char *myrs_devstate_name(enum myrs_devstate state)
48 {
49 struct myrs_devstate_name_entry *entry = myrs_devstate_name_list;
50 int i;
51
52 for (i = 0; i < ARRAY_SIZE(myrs_devstate_name_list); i++) {
53 if (entry[i].state == state)
54 return entry[i].name;
55 }
56 return NULL;
57 }
58
59 static struct myrs_raid_level_name_entry {
60 enum myrs_raid_level level;
61 char *name;
62 } myrs_raid_level_name_list[] = {
63 { MYRS_RAID_LEVEL0, "RAID0" },
64 { MYRS_RAID_LEVEL1, "RAID1" },
65 { MYRS_RAID_LEVEL3, "RAID3 right asymmetric parity" },
66 { MYRS_RAID_LEVEL5, "RAID5 right asymmetric parity" },
67 { MYRS_RAID_LEVEL6, "RAID6" },
68 { MYRS_RAID_JBOD, "JBOD" },
69 { MYRS_RAID_NEWSPAN, "New Mylex SPAN" },
70 { MYRS_RAID_LEVEL3F, "RAID3 fixed parity" },
71 { MYRS_RAID_LEVEL3L, "RAID3 left symmetric parity" },
72 { MYRS_RAID_SPAN, "Mylex SPAN" },
73 { MYRS_RAID_LEVEL5L, "RAID5 left symmetric parity" },
74 { MYRS_RAID_LEVELE, "RAIDE (concatenation)" },
75 { MYRS_RAID_PHYSICAL, "Physical device" },
76 };
77
myrs_raid_level_name(enum myrs_raid_level level)78 static char *myrs_raid_level_name(enum myrs_raid_level level)
79 {
80 struct myrs_raid_level_name_entry *entry = myrs_raid_level_name_list;
81 int i;
82
83 for (i = 0; i < ARRAY_SIZE(myrs_raid_level_name_list); i++) {
84 if (entry[i].level == level)
85 return entry[i].name;
86 }
87 return NULL;
88 }
89
90 /*
91 * myrs_reset_cmd - clears critical fields in struct myrs_cmdblk
92 */
myrs_reset_cmd(struct myrs_cmdblk * cmd_blk)93 static inline void myrs_reset_cmd(struct myrs_cmdblk *cmd_blk)
94 {
95 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
96
97 memset(mbox, 0, sizeof(union myrs_cmd_mbox));
98 cmd_blk->status = 0;
99 }
100
101 /*
102 * myrs_qcmd - queues Command for DAC960 V2 Series Controllers.
103 */
myrs_qcmd(struct myrs_hba * cs,struct myrs_cmdblk * cmd_blk)104 static void myrs_qcmd(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk)
105 {
106 void __iomem *base = cs->io_base;
107 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
108 union myrs_cmd_mbox *next_mbox = cs->next_cmd_mbox;
109
110 cs->write_cmd_mbox(next_mbox, mbox);
111
112 if (cs->prev_cmd_mbox1->words[0] == 0 ||
113 cs->prev_cmd_mbox2->words[0] == 0)
114 cs->get_cmd_mbox(base);
115
116 cs->prev_cmd_mbox2 = cs->prev_cmd_mbox1;
117 cs->prev_cmd_mbox1 = next_mbox;
118
119 if (++next_mbox > cs->last_cmd_mbox)
120 next_mbox = cs->first_cmd_mbox;
121
122 cs->next_cmd_mbox = next_mbox;
123 }
124
125 /*
126 * myrs_exec_cmd - executes V2 Command and waits for completion.
127 */
myrs_exec_cmd(struct myrs_hba * cs,struct myrs_cmdblk * cmd_blk)128 static void myrs_exec_cmd(struct myrs_hba *cs,
129 struct myrs_cmdblk *cmd_blk)
130 {
131 DECLARE_COMPLETION_ONSTACK(complete);
132 unsigned long flags;
133
134 cmd_blk->complete = &complete;
135 spin_lock_irqsave(&cs->queue_lock, flags);
136 myrs_qcmd(cs, cmd_blk);
137 spin_unlock_irqrestore(&cs->queue_lock, flags);
138
139 wait_for_completion(&complete);
140 }
141
142 /*
143 * myrs_report_progress - prints progress message
144 */
myrs_report_progress(struct myrs_hba * cs,unsigned short ldev_num,unsigned char * msg,unsigned long blocks,unsigned long size)145 static void myrs_report_progress(struct myrs_hba *cs, unsigned short ldev_num,
146 unsigned char *msg, unsigned long blocks,
147 unsigned long size)
148 {
149 shost_printk(KERN_INFO, cs->host,
150 "Logical Drive %d: %s in Progress: %d%% completed\n",
151 ldev_num, msg,
152 (100 * (int)(blocks >> 7)) / (int)(size >> 7));
153 }
154
155 /*
156 * myrs_get_ctlr_info - executes a Controller Information IOCTL Command
157 */
myrs_get_ctlr_info(struct myrs_hba * cs)158 static unsigned char myrs_get_ctlr_info(struct myrs_hba *cs)
159 {
160 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
161 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
162 dma_addr_t ctlr_info_addr;
163 union myrs_sgl *sgl;
164 unsigned char status;
165 unsigned short ldev_present, ldev_critical, ldev_offline;
166
167 ldev_present = cs->ctlr_info->ldev_present;
168 ldev_critical = cs->ctlr_info->ldev_critical;
169 ldev_offline = cs->ctlr_info->ldev_offline;
170
171 ctlr_info_addr = dma_map_single(&cs->pdev->dev, cs->ctlr_info,
172 sizeof(struct myrs_ctlr_info),
173 DMA_FROM_DEVICE);
174 if (dma_mapping_error(&cs->pdev->dev, ctlr_info_addr))
175 return MYRS_STATUS_FAILED;
176
177 mutex_lock(&cs->dcmd_mutex);
178 myrs_reset_cmd(cmd_blk);
179 mbox->ctlr_info.id = MYRS_DCMD_TAG;
180 mbox->ctlr_info.opcode = MYRS_CMD_OP_IOCTL;
181 mbox->ctlr_info.control.dma_ctrl_to_host = true;
182 mbox->ctlr_info.control.no_autosense = true;
183 mbox->ctlr_info.dma_size = sizeof(struct myrs_ctlr_info);
184 mbox->ctlr_info.ctlr_num = 0;
185 mbox->ctlr_info.ioctl_opcode = MYRS_IOCTL_GET_CTLR_INFO;
186 sgl = &mbox->ctlr_info.dma_addr;
187 sgl->sge[0].sge_addr = ctlr_info_addr;
188 sgl->sge[0].sge_count = mbox->ctlr_info.dma_size;
189 dev_dbg(&cs->host->shost_gendev, "Sending GetControllerInfo\n");
190 myrs_exec_cmd(cs, cmd_blk);
191 status = cmd_blk->status;
192 mutex_unlock(&cs->dcmd_mutex);
193 dma_unmap_single(&cs->pdev->dev, ctlr_info_addr,
194 sizeof(struct myrs_ctlr_info), DMA_FROM_DEVICE);
195 if (status == MYRS_STATUS_SUCCESS) {
196 if (cs->ctlr_info->bg_init_active +
197 cs->ctlr_info->ldev_init_active +
198 cs->ctlr_info->pdev_init_active +
199 cs->ctlr_info->cc_active +
200 cs->ctlr_info->rbld_active +
201 cs->ctlr_info->exp_active != 0)
202 cs->needs_update = true;
203 if (cs->ctlr_info->ldev_present != ldev_present ||
204 cs->ctlr_info->ldev_critical != ldev_critical ||
205 cs->ctlr_info->ldev_offline != ldev_offline)
206 shost_printk(KERN_INFO, cs->host,
207 "Logical drive count changes (%d/%d/%d)\n",
208 cs->ctlr_info->ldev_critical,
209 cs->ctlr_info->ldev_offline,
210 cs->ctlr_info->ldev_present);
211 }
212
213 return status;
214 }
215
216 /*
217 * myrs_get_ldev_info - executes a Logical Device Information IOCTL Command
218 */
myrs_get_ldev_info(struct myrs_hba * cs,unsigned short ldev_num,struct myrs_ldev_info * ldev_info)219 static unsigned char myrs_get_ldev_info(struct myrs_hba *cs,
220 unsigned short ldev_num, struct myrs_ldev_info *ldev_info)
221 {
222 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
223 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
224 dma_addr_t ldev_info_addr;
225 struct myrs_ldev_info ldev_info_orig;
226 union myrs_sgl *sgl;
227 unsigned char status;
228
229 memcpy(&ldev_info_orig, ldev_info, sizeof(struct myrs_ldev_info));
230 ldev_info_addr = dma_map_single(&cs->pdev->dev, ldev_info,
231 sizeof(struct myrs_ldev_info),
232 DMA_FROM_DEVICE);
233 if (dma_mapping_error(&cs->pdev->dev, ldev_info_addr))
234 return MYRS_STATUS_FAILED;
235
236 mutex_lock(&cs->dcmd_mutex);
237 myrs_reset_cmd(cmd_blk);
238 mbox->ldev_info.id = MYRS_DCMD_TAG;
239 mbox->ldev_info.opcode = MYRS_CMD_OP_IOCTL;
240 mbox->ldev_info.control.dma_ctrl_to_host = true;
241 mbox->ldev_info.control.no_autosense = true;
242 mbox->ldev_info.dma_size = sizeof(struct myrs_ldev_info);
243 mbox->ldev_info.ldev.ldev_num = ldev_num;
244 mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_GET_LDEV_INFO_VALID;
245 sgl = &mbox->ldev_info.dma_addr;
246 sgl->sge[0].sge_addr = ldev_info_addr;
247 sgl->sge[0].sge_count = mbox->ldev_info.dma_size;
248 dev_dbg(&cs->host->shost_gendev,
249 "Sending GetLogicalDeviceInfoValid for ldev %d\n", ldev_num);
250 myrs_exec_cmd(cs, cmd_blk);
251 status = cmd_blk->status;
252 mutex_unlock(&cs->dcmd_mutex);
253 dma_unmap_single(&cs->pdev->dev, ldev_info_addr,
254 sizeof(struct myrs_ldev_info), DMA_FROM_DEVICE);
255 if (status == MYRS_STATUS_SUCCESS) {
256 unsigned short ldev_num = ldev_info->ldev_num;
257 struct myrs_ldev_info *new = ldev_info;
258 struct myrs_ldev_info *old = &ldev_info_orig;
259 unsigned long ldev_size = new->cfg_devsize;
260
261 if (new->dev_state != old->dev_state) {
262 const char *name;
263
264 name = myrs_devstate_name(new->dev_state);
265 shost_printk(KERN_INFO, cs->host,
266 "Logical Drive %d is now %s\n",
267 ldev_num, name ? name : "Invalid");
268 }
269 if ((new->soft_errs != old->soft_errs) ||
270 (new->cmds_failed != old->cmds_failed) ||
271 (new->deferred_write_errs != old->deferred_write_errs))
272 shost_printk(KERN_INFO, cs->host,
273 "Logical Drive %d Errors: Soft = %d, Failed = %d, Deferred Write = %d\n",
274 ldev_num, new->soft_errs,
275 new->cmds_failed,
276 new->deferred_write_errs);
277 if (new->bg_init_active)
278 myrs_report_progress(cs, ldev_num,
279 "Background Initialization",
280 new->bg_init_lba, ldev_size);
281 else if (new->fg_init_active)
282 myrs_report_progress(cs, ldev_num,
283 "Foreground Initialization",
284 new->fg_init_lba, ldev_size);
285 else if (new->migration_active)
286 myrs_report_progress(cs, ldev_num,
287 "Data Migration",
288 new->migration_lba, ldev_size);
289 else if (new->patrol_active)
290 myrs_report_progress(cs, ldev_num,
291 "Patrol Operation",
292 new->patrol_lba, ldev_size);
293 if (old->bg_init_active && !new->bg_init_active)
294 shost_printk(KERN_INFO, cs->host,
295 "Logical Drive %d: Background Initialization %s\n",
296 ldev_num,
297 (new->ldev_control.ldev_init_done ?
298 "Completed" : "Failed"));
299 }
300 return status;
301 }
302
303 /*
304 * myrs_get_pdev_info - executes a "Read Physical Device Information" Command
305 */
myrs_get_pdev_info(struct myrs_hba * cs,unsigned char channel,unsigned char target,unsigned char lun,struct myrs_pdev_info * pdev_info)306 static unsigned char myrs_get_pdev_info(struct myrs_hba *cs,
307 unsigned char channel, unsigned char target, unsigned char lun,
308 struct myrs_pdev_info *pdev_info)
309 {
310 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
311 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
312 dma_addr_t pdev_info_addr;
313 union myrs_sgl *sgl;
314 unsigned char status;
315
316 pdev_info_addr = dma_map_single(&cs->pdev->dev, pdev_info,
317 sizeof(struct myrs_pdev_info),
318 DMA_FROM_DEVICE);
319 if (dma_mapping_error(&cs->pdev->dev, pdev_info_addr))
320 return MYRS_STATUS_FAILED;
321
322 mutex_lock(&cs->dcmd_mutex);
323 myrs_reset_cmd(cmd_blk);
324 mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL;
325 mbox->pdev_info.id = MYRS_DCMD_TAG;
326 mbox->pdev_info.control.dma_ctrl_to_host = true;
327 mbox->pdev_info.control.no_autosense = true;
328 mbox->pdev_info.dma_size = sizeof(struct myrs_pdev_info);
329 mbox->pdev_info.pdev.lun = lun;
330 mbox->pdev_info.pdev.target = target;
331 mbox->pdev_info.pdev.channel = channel;
332 mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_GET_PDEV_INFO_VALID;
333 sgl = &mbox->pdev_info.dma_addr;
334 sgl->sge[0].sge_addr = pdev_info_addr;
335 sgl->sge[0].sge_count = mbox->pdev_info.dma_size;
336 dev_dbg(&cs->host->shost_gendev,
337 "Sending GetPhysicalDeviceInfoValid for pdev %d:%d:%d\n",
338 channel, target, lun);
339 myrs_exec_cmd(cs, cmd_blk);
340 status = cmd_blk->status;
341 mutex_unlock(&cs->dcmd_mutex);
342 dma_unmap_single(&cs->pdev->dev, pdev_info_addr,
343 sizeof(struct myrs_pdev_info), DMA_FROM_DEVICE);
344 return status;
345 }
346
347 /*
348 * myrs_dev_op - executes a "Device Operation" Command
349 */
myrs_dev_op(struct myrs_hba * cs,enum myrs_ioctl_opcode opcode,enum myrs_opdev opdev)350 static unsigned char myrs_dev_op(struct myrs_hba *cs,
351 enum myrs_ioctl_opcode opcode, enum myrs_opdev opdev)
352 {
353 struct myrs_cmdblk *cmd_blk = &cs->dcmd_blk;
354 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
355 unsigned char status;
356
357 mutex_lock(&cs->dcmd_mutex);
358 myrs_reset_cmd(cmd_blk);
359 mbox->dev_op.opcode = MYRS_CMD_OP_IOCTL;
360 mbox->dev_op.id = MYRS_DCMD_TAG;
361 mbox->dev_op.control.dma_ctrl_to_host = true;
362 mbox->dev_op.control.no_autosense = true;
363 mbox->dev_op.ioctl_opcode = opcode;
364 mbox->dev_op.opdev = opdev;
365 myrs_exec_cmd(cs, cmd_blk);
366 status = cmd_blk->status;
367 mutex_unlock(&cs->dcmd_mutex);
368 return status;
369 }
370
371 /*
372 * myrs_translate_pdev - translates a Physical Device Channel and
373 * TargetID into a Logical Device.
374 */
myrs_translate_pdev(struct myrs_hba * cs,unsigned char channel,unsigned char target,unsigned char lun,struct myrs_devmap * devmap)375 static unsigned char myrs_translate_pdev(struct myrs_hba *cs,
376 unsigned char channel, unsigned char target, unsigned char lun,
377 struct myrs_devmap *devmap)
378 {
379 struct pci_dev *pdev = cs->pdev;
380 dma_addr_t devmap_addr;
381 struct myrs_cmdblk *cmd_blk;
382 union myrs_cmd_mbox *mbox;
383 union myrs_sgl *sgl;
384 unsigned char status;
385
386 memset(devmap, 0x0, sizeof(struct myrs_devmap));
387 devmap_addr = dma_map_single(&pdev->dev, devmap,
388 sizeof(struct myrs_devmap),
389 DMA_FROM_DEVICE);
390 if (dma_mapping_error(&pdev->dev, devmap_addr))
391 return MYRS_STATUS_FAILED;
392
393 mutex_lock(&cs->dcmd_mutex);
394 cmd_blk = &cs->dcmd_blk;
395 mbox = &cmd_blk->mbox;
396 mbox->pdev_info.opcode = MYRS_CMD_OP_IOCTL;
397 mbox->pdev_info.control.dma_ctrl_to_host = true;
398 mbox->pdev_info.control.no_autosense = true;
399 mbox->pdev_info.dma_size = sizeof(struct myrs_devmap);
400 mbox->pdev_info.pdev.target = target;
401 mbox->pdev_info.pdev.channel = channel;
402 mbox->pdev_info.pdev.lun = lun;
403 mbox->pdev_info.ioctl_opcode = MYRS_IOCTL_XLATE_PDEV_TO_LDEV;
404 sgl = &mbox->pdev_info.dma_addr;
405 sgl->sge[0].sge_addr = devmap_addr;
406 sgl->sge[0].sge_count = mbox->pdev_info.dma_size;
407
408 myrs_exec_cmd(cs, cmd_blk);
409 status = cmd_blk->status;
410 mutex_unlock(&cs->dcmd_mutex);
411 dma_unmap_single(&pdev->dev, devmap_addr,
412 sizeof(struct myrs_devmap), DMA_FROM_DEVICE);
413 return status;
414 }
415
416 /*
417 * myrs_get_event - executes a Get Event Command
418 */
myrs_get_event(struct myrs_hba * cs,unsigned int event_num,struct myrs_event * event_buf)419 static unsigned char myrs_get_event(struct myrs_hba *cs,
420 unsigned int event_num, struct myrs_event *event_buf)
421 {
422 struct pci_dev *pdev = cs->pdev;
423 dma_addr_t event_addr;
424 struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk;
425 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
426 union myrs_sgl *sgl;
427 unsigned char status;
428
429 event_addr = dma_map_single(&pdev->dev, event_buf,
430 sizeof(struct myrs_event), DMA_FROM_DEVICE);
431 if (dma_mapping_error(&pdev->dev, event_addr))
432 return MYRS_STATUS_FAILED;
433
434 mbox->get_event.opcode = MYRS_CMD_OP_IOCTL;
435 mbox->get_event.dma_size = sizeof(struct myrs_event);
436 mbox->get_event.evnum_upper = event_num >> 16;
437 mbox->get_event.ctlr_num = 0;
438 mbox->get_event.ioctl_opcode = MYRS_IOCTL_GET_EVENT;
439 mbox->get_event.evnum_lower = event_num & 0xFFFF;
440 sgl = &mbox->get_event.dma_addr;
441 sgl->sge[0].sge_addr = event_addr;
442 sgl->sge[0].sge_count = mbox->get_event.dma_size;
443 myrs_exec_cmd(cs, cmd_blk);
444 status = cmd_blk->status;
445 dma_unmap_single(&pdev->dev, event_addr,
446 sizeof(struct myrs_event), DMA_FROM_DEVICE);
447
448 return status;
449 }
450
451 /*
452 * myrs_get_fwstatus - executes a Get Health Status Command
453 */
myrs_get_fwstatus(struct myrs_hba * cs)454 static unsigned char myrs_get_fwstatus(struct myrs_hba *cs)
455 {
456 struct myrs_cmdblk *cmd_blk = &cs->mcmd_blk;
457 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
458 union myrs_sgl *sgl;
459 unsigned char status = cmd_blk->status;
460
461 myrs_reset_cmd(cmd_blk);
462 mbox->common.opcode = MYRS_CMD_OP_IOCTL;
463 mbox->common.id = MYRS_MCMD_TAG;
464 mbox->common.control.dma_ctrl_to_host = true;
465 mbox->common.control.no_autosense = true;
466 mbox->common.dma_size = sizeof(struct myrs_fwstat);
467 mbox->common.ioctl_opcode = MYRS_IOCTL_GET_HEALTH_STATUS;
468 sgl = &mbox->common.dma_addr;
469 sgl->sge[0].sge_addr = cs->fwstat_addr;
470 sgl->sge[0].sge_count = mbox->ctlr_info.dma_size;
471 dev_dbg(&cs->host->shost_gendev, "Sending GetHealthStatus\n");
472 myrs_exec_cmd(cs, cmd_blk);
473 status = cmd_blk->status;
474
475 return status;
476 }
477
478 /*
479 * myrs_enable_mmio_mbox - enables the Memory Mailbox Interface
480 */
myrs_enable_mmio_mbox(struct myrs_hba * cs,enable_mbox_t enable_mbox_fn)481 static bool myrs_enable_mmio_mbox(struct myrs_hba *cs,
482 enable_mbox_t enable_mbox_fn)
483 {
484 void __iomem *base = cs->io_base;
485 struct pci_dev *pdev = cs->pdev;
486 union myrs_cmd_mbox *cmd_mbox;
487 struct myrs_stat_mbox *stat_mbox;
488 union myrs_cmd_mbox *mbox;
489 dma_addr_t mbox_addr;
490 unsigned char status = MYRS_STATUS_FAILED;
491
492 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
493 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
494 dev_err(&pdev->dev, "DMA mask out of range\n");
495 return false;
496 }
497
498 /* Temporary dma mapping, used only in the scope of this function */
499 mbox = dma_alloc_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox),
500 &mbox_addr, GFP_KERNEL);
501 if (dma_mapping_error(&pdev->dev, mbox_addr))
502 return false;
503
504 /* These are the base addresses for the command memory mailbox array */
505 cs->cmd_mbox_size = MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox);
506 cmd_mbox = dma_alloc_coherent(&pdev->dev, cs->cmd_mbox_size,
507 &cs->cmd_mbox_addr, GFP_KERNEL);
508 if (dma_mapping_error(&pdev->dev, cs->cmd_mbox_addr)) {
509 dev_err(&pdev->dev, "Failed to map command mailbox\n");
510 goto out_free;
511 }
512 cs->first_cmd_mbox = cmd_mbox;
513 cmd_mbox += MYRS_MAX_CMD_MBOX - 1;
514 cs->last_cmd_mbox = cmd_mbox;
515 cs->next_cmd_mbox = cs->first_cmd_mbox;
516 cs->prev_cmd_mbox1 = cs->last_cmd_mbox;
517 cs->prev_cmd_mbox2 = cs->last_cmd_mbox - 1;
518
519 /* These are the base addresses for the status memory mailbox array */
520 cs->stat_mbox_size = MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox);
521 stat_mbox = dma_alloc_coherent(&pdev->dev, cs->stat_mbox_size,
522 &cs->stat_mbox_addr, GFP_KERNEL);
523 if (dma_mapping_error(&pdev->dev, cs->stat_mbox_addr)) {
524 dev_err(&pdev->dev, "Failed to map status mailbox\n");
525 goto out_free;
526 }
527
528 cs->first_stat_mbox = stat_mbox;
529 stat_mbox += MYRS_MAX_STAT_MBOX - 1;
530 cs->last_stat_mbox = stat_mbox;
531 cs->next_stat_mbox = cs->first_stat_mbox;
532
533 cs->fwstat_buf = dma_alloc_coherent(&pdev->dev,
534 sizeof(struct myrs_fwstat),
535 &cs->fwstat_addr, GFP_KERNEL);
536 if (dma_mapping_error(&pdev->dev, cs->fwstat_addr)) {
537 dev_err(&pdev->dev, "Failed to map firmware health buffer\n");
538 cs->fwstat_buf = NULL;
539 goto out_free;
540 }
541 cs->ctlr_info = kzalloc(sizeof(struct myrs_ctlr_info), GFP_KERNEL);
542 if (!cs->ctlr_info)
543 goto out_free;
544
545 cs->event_buf = kzalloc(sizeof(struct myrs_event), GFP_KERNEL);
546 if (!cs->event_buf)
547 goto out_free;
548
549 /* Enable the Memory Mailbox Interface. */
550 memset(mbox, 0, sizeof(union myrs_cmd_mbox));
551 mbox->set_mbox.id = 1;
552 mbox->set_mbox.opcode = MYRS_CMD_OP_IOCTL;
553 mbox->set_mbox.control.no_autosense = true;
554 mbox->set_mbox.first_cmd_mbox_size_kb =
555 (MYRS_MAX_CMD_MBOX * sizeof(union myrs_cmd_mbox)) >> 10;
556 mbox->set_mbox.first_stat_mbox_size_kb =
557 (MYRS_MAX_STAT_MBOX * sizeof(struct myrs_stat_mbox)) >> 10;
558 mbox->set_mbox.second_cmd_mbox_size_kb = 0;
559 mbox->set_mbox.second_stat_mbox_size_kb = 0;
560 mbox->set_mbox.sense_len = 0;
561 mbox->set_mbox.ioctl_opcode = MYRS_IOCTL_SET_MEM_MBOX;
562 mbox->set_mbox.fwstat_buf_size_kb = 1;
563 mbox->set_mbox.fwstat_buf_addr = cs->fwstat_addr;
564 mbox->set_mbox.first_cmd_mbox_addr = cs->cmd_mbox_addr;
565 mbox->set_mbox.first_stat_mbox_addr = cs->stat_mbox_addr;
566 status = enable_mbox_fn(base, mbox_addr);
567
568 out_free:
569 dma_free_coherent(&pdev->dev, sizeof(union myrs_cmd_mbox),
570 mbox, mbox_addr);
571 if (status != MYRS_STATUS_SUCCESS)
572 dev_err(&pdev->dev, "Failed to enable mailbox, status %X\n",
573 status);
574 return (status == MYRS_STATUS_SUCCESS);
575 }
576
577 /*
578 * myrs_get_config - reads the Configuration Information
579 */
myrs_get_config(struct myrs_hba * cs)580 static int myrs_get_config(struct myrs_hba *cs)
581 {
582 struct myrs_ctlr_info *info = cs->ctlr_info;
583 struct Scsi_Host *shost = cs->host;
584 unsigned char status;
585 unsigned char model[20];
586 unsigned char fw_version[12];
587 int i, model_len;
588
589 /* Get data into dma-able area, then copy into permanent location */
590 mutex_lock(&cs->cinfo_mutex);
591 status = myrs_get_ctlr_info(cs);
592 mutex_unlock(&cs->cinfo_mutex);
593 if (status != MYRS_STATUS_SUCCESS) {
594 shost_printk(KERN_ERR, shost,
595 "Failed to get controller information\n");
596 return -ENODEV;
597 }
598
599 /* Initialize the Controller Model Name and Full Model Name fields. */
600 model_len = sizeof(info->ctlr_name);
601 if (model_len > sizeof(model)-1)
602 model_len = sizeof(model)-1;
603 memcpy(model, info->ctlr_name, model_len);
604 model_len--;
605 while (model[model_len] == ' ' || model[model_len] == '\0')
606 model_len--;
607 model[++model_len] = '\0';
608 strcpy(cs->model_name, "DAC960 ");
609 strcat(cs->model_name, model);
610 /* Initialize the Controller Firmware Version field. */
611 sprintf(fw_version, "%d.%02d-%02d",
612 info->fw_major_version, info->fw_minor_version,
613 info->fw_turn_number);
614 if (info->fw_major_version == 6 &&
615 info->fw_minor_version == 0 &&
616 info->fw_turn_number < 1) {
617 shost_printk(KERN_WARNING, shost,
618 "FIRMWARE VERSION %s DOES NOT PROVIDE THE CONTROLLER\n"
619 "STATUS MONITORING FUNCTIONALITY NEEDED BY THIS DRIVER.\n"
620 "PLEASE UPGRADE TO VERSION 6.00-01 OR ABOVE.\n",
621 fw_version);
622 return -ENODEV;
623 }
624 /* Initialize the Controller Channels and Targets. */
625 shost->max_channel = info->physchan_present + info->virtchan_present;
626 shost->max_id = info->max_targets[0];
627 for (i = 1; i < 16; i++) {
628 if (!info->max_targets[i])
629 continue;
630 if (shost->max_id < info->max_targets[i])
631 shost->max_id = info->max_targets[i];
632 }
633
634 /*
635 * Initialize the Controller Queue Depth, Driver Queue Depth,
636 * Logical Drive Count, Maximum Blocks per Command, Controller
637 * Scatter/Gather Limit, and Driver Scatter/Gather Limit.
638 * The Driver Queue Depth must be at most three less than
639 * the Controller Queue Depth; tag '1' is reserved for
640 * direct commands, and tag '2' for monitoring commands.
641 */
642 shost->can_queue = info->max_tcq - 3;
643 if (shost->can_queue > MYRS_MAX_CMD_MBOX - 3)
644 shost->can_queue = MYRS_MAX_CMD_MBOX - 3;
645 shost->max_sectors = info->max_transfer_size;
646 shost->sg_tablesize = info->max_sge;
647 if (shost->sg_tablesize > MYRS_SG_LIMIT)
648 shost->sg_tablesize = MYRS_SG_LIMIT;
649
650 shost_printk(KERN_INFO, shost,
651 "Configuring %s PCI RAID Controller\n", model);
652 shost_printk(KERN_INFO, shost,
653 " Firmware Version: %s, Channels: %d, Memory Size: %dMB\n",
654 fw_version, info->physchan_present, info->mem_size_mb);
655
656 shost_printk(KERN_INFO, shost,
657 " Controller Queue Depth: %d, Maximum Blocks per Command: %d\n",
658 shost->can_queue, shost->max_sectors);
659
660 shost_printk(KERN_INFO, shost,
661 " Driver Queue Depth: %d, Scatter/Gather Limit: %d of %d Segments\n",
662 shost->can_queue, shost->sg_tablesize, MYRS_SG_LIMIT);
663 for (i = 0; i < info->physchan_max; i++) {
664 if (!info->max_targets[i])
665 continue;
666 shost_printk(KERN_INFO, shost,
667 " Device Channel %d: max %d devices\n",
668 i, info->max_targets[i]);
669 }
670 shost_printk(KERN_INFO, shost,
671 " Physical: %d/%d channels, %d disks, %d devices\n",
672 info->physchan_present, info->physchan_max,
673 info->pdisk_present, info->pdev_present);
674
675 shost_printk(KERN_INFO, shost,
676 " Logical: %d/%d channels, %d disks\n",
677 info->virtchan_present, info->virtchan_max,
678 info->ldev_present);
679 return 0;
680 }
681
682 /*
683 * myrs_log_event - prints a Controller Event message
684 */
685 static struct {
686 int ev_code;
687 unsigned char *ev_msg;
688 } myrs_ev_list[] = {
689 /* Physical Device Events (0x0000 - 0x007F) */
690 { 0x0001, "P Online" },
691 { 0x0002, "P Standby" },
692 { 0x0005, "P Automatic Rebuild Started" },
693 { 0x0006, "P Manual Rebuild Started" },
694 { 0x0007, "P Rebuild Completed" },
695 { 0x0008, "P Rebuild Cancelled" },
696 { 0x0009, "P Rebuild Failed for Unknown Reasons" },
697 { 0x000A, "P Rebuild Failed due to New Physical Device" },
698 { 0x000B, "P Rebuild Failed due to Logical Drive Failure" },
699 { 0x000C, "S Offline" },
700 { 0x000D, "P Found" },
701 { 0x000E, "P Removed" },
702 { 0x000F, "P Unconfigured" },
703 { 0x0010, "P Expand Capacity Started" },
704 { 0x0011, "P Expand Capacity Completed" },
705 { 0x0012, "P Expand Capacity Failed" },
706 { 0x0013, "P Command Timed Out" },
707 { 0x0014, "P Command Aborted" },
708 { 0x0015, "P Command Retried" },
709 { 0x0016, "P Parity Error" },
710 { 0x0017, "P Soft Error" },
711 { 0x0018, "P Miscellaneous Error" },
712 { 0x0019, "P Reset" },
713 { 0x001A, "P Active Spare Found" },
714 { 0x001B, "P Warm Spare Found" },
715 { 0x001C, "S Sense Data Received" },
716 { 0x001D, "P Initialization Started" },
717 { 0x001E, "P Initialization Completed" },
718 { 0x001F, "P Initialization Failed" },
719 { 0x0020, "P Initialization Cancelled" },
720 { 0x0021, "P Failed because Write Recovery Failed" },
721 { 0x0022, "P Failed because SCSI Bus Reset Failed" },
722 { 0x0023, "P Failed because of Double Check Condition" },
723 { 0x0024, "P Failed because Device Cannot Be Accessed" },
724 { 0x0025, "P Failed because of Gross Error on SCSI Processor" },
725 { 0x0026, "P Failed because of Bad Tag from Device" },
726 { 0x0027, "P Failed because of Command Timeout" },
727 { 0x0028, "P Failed because of System Reset" },
728 { 0x0029, "P Failed because of Busy Status or Parity Error" },
729 { 0x002A, "P Failed because Host Set Device to Failed State" },
730 { 0x002B, "P Failed because of Selection Timeout" },
731 { 0x002C, "P Failed because of SCSI Bus Phase Error" },
732 { 0x002D, "P Failed because Device Returned Unknown Status" },
733 { 0x002E, "P Failed because Device Not Ready" },
734 { 0x002F, "P Failed because Device Not Found at Startup" },
735 { 0x0030, "P Failed because COD Write Operation Failed" },
736 { 0x0031, "P Failed because BDT Write Operation Failed" },
737 { 0x0039, "P Missing at Startup" },
738 { 0x003A, "P Start Rebuild Failed due to Physical Drive Too Small" },
739 { 0x003C, "P Temporarily Offline Device Automatically Made Online" },
740 { 0x003D, "P Standby Rebuild Started" },
741 /* Logical Device Events (0x0080 - 0x00FF) */
742 { 0x0080, "M Consistency Check Started" },
743 { 0x0081, "M Consistency Check Completed" },
744 { 0x0082, "M Consistency Check Cancelled" },
745 { 0x0083, "M Consistency Check Completed With Errors" },
746 { 0x0084, "M Consistency Check Failed due to Logical Drive Failure" },
747 { 0x0085, "M Consistency Check Failed due to Physical Device Failure" },
748 { 0x0086, "L Offline" },
749 { 0x0087, "L Critical" },
750 { 0x0088, "L Online" },
751 { 0x0089, "M Automatic Rebuild Started" },
752 { 0x008A, "M Manual Rebuild Started" },
753 { 0x008B, "M Rebuild Completed" },
754 { 0x008C, "M Rebuild Cancelled" },
755 { 0x008D, "M Rebuild Failed for Unknown Reasons" },
756 { 0x008E, "M Rebuild Failed due to New Physical Device" },
757 { 0x008F, "M Rebuild Failed due to Logical Drive Failure" },
758 { 0x0090, "M Initialization Started" },
759 { 0x0091, "M Initialization Completed" },
760 { 0x0092, "M Initialization Cancelled" },
761 { 0x0093, "M Initialization Failed" },
762 { 0x0094, "L Found" },
763 { 0x0095, "L Deleted" },
764 { 0x0096, "M Expand Capacity Started" },
765 { 0x0097, "M Expand Capacity Completed" },
766 { 0x0098, "M Expand Capacity Failed" },
767 { 0x0099, "L Bad Block Found" },
768 { 0x009A, "L Size Changed" },
769 { 0x009B, "L Type Changed" },
770 { 0x009C, "L Bad Data Block Found" },
771 { 0x009E, "L Read of Data Block in BDT" },
772 { 0x009F, "L Write Back Data for Disk Block Lost" },
773 { 0x00A0, "L Temporarily Offline RAID-5/3 Drive Made Online" },
774 { 0x00A1, "L Temporarily Offline RAID-6/1/0/7 Drive Made Online" },
775 { 0x00A2, "L Standby Rebuild Started" },
776 /* Fault Management Events (0x0100 - 0x017F) */
777 { 0x0140, "E Fan %d Failed" },
778 { 0x0141, "E Fan %d OK" },
779 { 0x0142, "E Fan %d Not Present" },
780 { 0x0143, "E Power Supply %d Failed" },
781 { 0x0144, "E Power Supply %d OK" },
782 { 0x0145, "E Power Supply %d Not Present" },
783 { 0x0146, "E Temperature Sensor %d Temperature Exceeds Safe Limit" },
784 { 0x0147, "E Temperature Sensor %d Temperature Exceeds Working Limit" },
785 { 0x0148, "E Temperature Sensor %d Temperature Normal" },
786 { 0x0149, "E Temperature Sensor %d Not Present" },
787 { 0x014A, "E Enclosure Management Unit %d Access Critical" },
788 { 0x014B, "E Enclosure Management Unit %d Access OK" },
789 { 0x014C, "E Enclosure Management Unit %d Access Offline" },
790 /* Controller Events (0x0180 - 0x01FF) */
791 { 0x0181, "C Cache Write Back Error" },
792 { 0x0188, "C Battery Backup Unit Found" },
793 { 0x0189, "C Battery Backup Unit Charge Level Low" },
794 { 0x018A, "C Battery Backup Unit Charge Level OK" },
795 { 0x0193, "C Installation Aborted" },
796 { 0x0195, "C Battery Backup Unit Physically Removed" },
797 { 0x0196, "C Memory Error During Warm Boot" },
798 { 0x019E, "C Memory Soft ECC Error Corrected" },
799 { 0x019F, "C Memory Hard ECC Error Corrected" },
800 { 0x01A2, "C Battery Backup Unit Failed" },
801 { 0x01AB, "C Mirror Race Recovery Failed" },
802 { 0x01AC, "C Mirror Race on Critical Drive" },
803 /* Controller Internal Processor Events */
804 { 0x0380, "C Internal Controller Hung" },
805 { 0x0381, "C Internal Controller Firmware Breakpoint" },
806 { 0x0390, "C Internal Controller i960 Processor Specific Error" },
807 { 0x03A0, "C Internal Controller StrongARM Processor Specific Error" },
808 { 0, "" }
809 };
810
myrs_log_event(struct myrs_hba * cs,struct myrs_event * ev)811 static void myrs_log_event(struct myrs_hba *cs, struct myrs_event *ev)
812 {
813 unsigned char msg_buf[MYRS_LINE_BUFFER_SIZE];
814 int ev_idx = 0, ev_code;
815 unsigned char ev_type, *ev_msg;
816 struct Scsi_Host *shost = cs->host;
817 struct scsi_device *sdev;
818 struct scsi_sense_hdr sshdr = {0};
819 unsigned char sense_info[4];
820 unsigned char cmd_specific[4];
821
822 if (ev->ev_code == 0x1C) {
823 if (!scsi_normalize_sense(ev->sense_data, 40, &sshdr)) {
824 memset(&sshdr, 0x0, sizeof(sshdr));
825 memset(sense_info, 0x0, sizeof(sense_info));
826 memset(cmd_specific, 0x0, sizeof(cmd_specific));
827 } else {
828 memcpy(sense_info, &ev->sense_data[3], 4);
829 memcpy(cmd_specific, &ev->sense_data[7], 4);
830 }
831 }
832 if (sshdr.sense_key == VENDOR_SPECIFIC &&
833 (sshdr.asc == 0x80 || sshdr.asc == 0x81))
834 ev->ev_code = ((sshdr.asc - 0x80) << 8 | sshdr.ascq);
835 while (true) {
836 ev_code = myrs_ev_list[ev_idx].ev_code;
837 if (ev_code == ev->ev_code || ev_code == 0)
838 break;
839 ev_idx++;
840 }
841 ev_type = myrs_ev_list[ev_idx].ev_msg[0];
842 ev_msg = &myrs_ev_list[ev_idx].ev_msg[2];
843 if (ev_code == 0) {
844 shost_printk(KERN_WARNING, shost,
845 "Unknown Controller Event Code %04X\n",
846 ev->ev_code);
847 return;
848 }
849 switch (ev_type) {
850 case 'P':
851 sdev = scsi_device_lookup(shost, ev->channel,
852 ev->target, 0);
853 sdev_printk(KERN_INFO, sdev, "event %d: Physical Device %s\n",
854 ev->ev_seq, ev_msg);
855 if (sdev && sdev->hostdata &&
856 sdev->channel < cs->ctlr_info->physchan_present) {
857 struct myrs_pdev_info *pdev_info = sdev->hostdata;
858
859 switch (ev->ev_code) {
860 case 0x0001:
861 case 0x0007:
862 pdev_info->dev_state = MYRS_DEVICE_ONLINE;
863 break;
864 case 0x0002:
865 pdev_info->dev_state = MYRS_DEVICE_STANDBY;
866 break;
867 case 0x000C:
868 pdev_info->dev_state = MYRS_DEVICE_OFFLINE;
869 break;
870 case 0x000E:
871 pdev_info->dev_state = MYRS_DEVICE_MISSING;
872 break;
873 case 0x000F:
874 pdev_info->dev_state = MYRS_DEVICE_UNCONFIGURED;
875 break;
876 }
877 }
878 break;
879 case 'L':
880 shost_printk(KERN_INFO, shost,
881 "event %d: Logical Drive %d %s\n",
882 ev->ev_seq, ev->lun, ev_msg);
883 cs->needs_update = true;
884 break;
885 case 'M':
886 shost_printk(KERN_INFO, shost,
887 "event %d: Logical Drive %d %s\n",
888 ev->ev_seq, ev->lun, ev_msg);
889 cs->needs_update = true;
890 break;
891 case 'S':
892 if (sshdr.sense_key == NO_SENSE ||
893 (sshdr.sense_key == NOT_READY &&
894 sshdr.asc == 0x04 && (sshdr.ascq == 0x01 ||
895 sshdr.ascq == 0x02)))
896 break;
897 shost_printk(KERN_INFO, shost,
898 "event %d: Physical Device %d:%d %s\n",
899 ev->ev_seq, ev->channel, ev->target, ev_msg);
900 shost_printk(KERN_INFO, shost,
901 "Physical Device %d:%d Sense Key = %X, ASC = %02X, ASCQ = %02X\n",
902 ev->channel, ev->target,
903 sshdr.sense_key, sshdr.asc, sshdr.ascq);
904 shost_printk(KERN_INFO, shost,
905 "Physical Device %d:%d Sense Information = %02X%02X%02X%02X %02X%02X%02X%02X\n",
906 ev->channel, ev->target,
907 sense_info[0], sense_info[1],
908 sense_info[2], sense_info[3],
909 cmd_specific[0], cmd_specific[1],
910 cmd_specific[2], cmd_specific[3]);
911 break;
912 case 'E':
913 if (cs->disable_enc_msg)
914 break;
915 sprintf(msg_buf, ev_msg, ev->lun);
916 shost_printk(KERN_INFO, shost, "event %d: Enclosure %d %s\n",
917 ev->ev_seq, ev->target, msg_buf);
918 break;
919 case 'C':
920 shost_printk(KERN_INFO, shost, "event %d: Controller %s\n",
921 ev->ev_seq, ev_msg);
922 break;
923 default:
924 shost_printk(KERN_INFO, shost,
925 "event %d: Unknown Event Code %04X\n",
926 ev->ev_seq, ev->ev_code);
927 break;
928 }
929 }
930
931 /*
932 * SCSI sysfs interface functions
933 */
raid_state_show(struct device * dev,struct device_attribute * attr,char * buf)934 static ssize_t raid_state_show(struct device *dev,
935 struct device_attribute *attr, char *buf)
936 {
937 struct scsi_device *sdev = to_scsi_device(dev);
938 struct myrs_hba *cs = shost_priv(sdev->host);
939 int ret;
940
941 if (!sdev->hostdata)
942 return snprintf(buf, 16, "Unknown\n");
943
944 if (sdev->channel >= cs->ctlr_info->physchan_present) {
945 struct myrs_ldev_info *ldev_info = sdev->hostdata;
946 const char *name;
947
948 name = myrs_devstate_name(ldev_info->dev_state);
949 if (name)
950 ret = snprintf(buf, 64, "%s\n", name);
951 else
952 ret = snprintf(buf, 64, "Invalid (%02X)\n",
953 ldev_info->dev_state);
954 } else {
955 struct myrs_pdev_info *pdev_info;
956 const char *name;
957
958 pdev_info = sdev->hostdata;
959 name = myrs_devstate_name(pdev_info->dev_state);
960 if (name)
961 ret = snprintf(buf, 64, "%s\n", name);
962 else
963 ret = snprintf(buf, 64, "Invalid (%02X)\n",
964 pdev_info->dev_state);
965 }
966 return ret;
967 }
968
raid_state_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)969 static ssize_t raid_state_store(struct device *dev,
970 struct device_attribute *attr, const char *buf, size_t count)
971 {
972 struct scsi_device *sdev = to_scsi_device(dev);
973 struct myrs_hba *cs = shost_priv(sdev->host);
974 struct myrs_cmdblk *cmd_blk;
975 union myrs_cmd_mbox *mbox;
976 enum myrs_devstate new_state;
977 unsigned short ldev_num;
978 unsigned char status;
979
980 if (!strncmp(buf, "offline", 7) ||
981 !strncmp(buf, "kill", 4))
982 new_state = MYRS_DEVICE_OFFLINE;
983 else if (!strncmp(buf, "online", 6))
984 new_state = MYRS_DEVICE_ONLINE;
985 else if (!strncmp(buf, "standby", 7))
986 new_state = MYRS_DEVICE_STANDBY;
987 else
988 return -EINVAL;
989
990 if (sdev->channel < cs->ctlr_info->physchan_present) {
991 struct myrs_pdev_info *pdev_info = sdev->hostdata;
992 struct myrs_devmap *pdev_devmap =
993 (struct myrs_devmap *)&pdev_info->rsvd13;
994
995 if (pdev_info->dev_state == new_state) {
996 sdev_printk(KERN_INFO, sdev,
997 "Device already in %s\n",
998 myrs_devstate_name(new_state));
999 return count;
1000 }
1001 status = myrs_translate_pdev(cs, sdev->channel, sdev->id,
1002 sdev->lun, pdev_devmap);
1003 if (status != MYRS_STATUS_SUCCESS)
1004 return -ENXIO;
1005 ldev_num = pdev_devmap->ldev_num;
1006 } else {
1007 struct myrs_ldev_info *ldev_info = sdev->hostdata;
1008
1009 if (ldev_info->dev_state == new_state) {
1010 sdev_printk(KERN_INFO, sdev,
1011 "Device already in %s\n",
1012 myrs_devstate_name(new_state));
1013 return count;
1014 }
1015 ldev_num = ldev_info->ldev_num;
1016 }
1017 mutex_lock(&cs->dcmd_mutex);
1018 cmd_blk = &cs->dcmd_blk;
1019 myrs_reset_cmd(cmd_blk);
1020 mbox = &cmd_blk->mbox;
1021 mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1022 mbox->common.id = MYRS_DCMD_TAG;
1023 mbox->common.control.dma_ctrl_to_host = true;
1024 mbox->common.control.no_autosense = true;
1025 mbox->set_devstate.ioctl_opcode = MYRS_IOCTL_SET_DEVICE_STATE;
1026 mbox->set_devstate.state = new_state;
1027 mbox->set_devstate.ldev.ldev_num = ldev_num;
1028 myrs_exec_cmd(cs, cmd_blk);
1029 status = cmd_blk->status;
1030 mutex_unlock(&cs->dcmd_mutex);
1031 if (status == MYRS_STATUS_SUCCESS) {
1032 if (sdev->channel < cs->ctlr_info->physchan_present) {
1033 struct myrs_pdev_info *pdev_info = sdev->hostdata;
1034
1035 pdev_info->dev_state = new_state;
1036 } else {
1037 struct myrs_ldev_info *ldev_info = sdev->hostdata;
1038
1039 ldev_info->dev_state = new_state;
1040 }
1041 sdev_printk(KERN_INFO, sdev,
1042 "Set device state to %s\n",
1043 myrs_devstate_name(new_state));
1044 return count;
1045 }
1046 sdev_printk(KERN_INFO, sdev,
1047 "Failed to set device state to %s, status 0x%02x\n",
1048 myrs_devstate_name(new_state), status);
1049 return -EINVAL;
1050 }
1051 static DEVICE_ATTR_RW(raid_state);
1052
raid_level_show(struct device * dev,struct device_attribute * attr,char * buf)1053 static ssize_t raid_level_show(struct device *dev,
1054 struct device_attribute *attr, char *buf)
1055 {
1056 struct scsi_device *sdev = to_scsi_device(dev);
1057 struct myrs_hba *cs = shost_priv(sdev->host);
1058 const char *name = NULL;
1059
1060 if (!sdev->hostdata)
1061 return snprintf(buf, 16, "Unknown\n");
1062
1063 if (sdev->channel >= cs->ctlr_info->physchan_present) {
1064 struct myrs_ldev_info *ldev_info;
1065
1066 ldev_info = sdev->hostdata;
1067 name = myrs_raid_level_name(ldev_info->raid_level);
1068 if (!name)
1069 return snprintf(buf, 64, "Invalid (%02X)\n",
1070 ldev_info->dev_state);
1071
1072 } else
1073 name = myrs_raid_level_name(MYRS_RAID_PHYSICAL);
1074
1075 return snprintf(buf, 64, "%s\n", name);
1076 }
1077 static DEVICE_ATTR_RO(raid_level);
1078
rebuild_show(struct device * dev,struct device_attribute * attr,char * buf)1079 static ssize_t rebuild_show(struct device *dev,
1080 struct device_attribute *attr, char *buf)
1081 {
1082 struct scsi_device *sdev = to_scsi_device(dev);
1083 struct myrs_hba *cs = shost_priv(sdev->host);
1084 struct myrs_ldev_info *ldev_info;
1085 unsigned short ldev_num;
1086 unsigned char status;
1087
1088 if (sdev->channel < cs->ctlr_info->physchan_present)
1089 return snprintf(buf, 64, "physical device - not rebuilding\n");
1090
1091 ldev_info = sdev->hostdata;
1092 ldev_num = ldev_info->ldev_num;
1093 status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1094 if (status != MYRS_STATUS_SUCCESS) {
1095 sdev_printk(KERN_INFO, sdev,
1096 "Failed to get device information, status 0x%02x\n",
1097 status);
1098 return -EIO;
1099 }
1100 if (ldev_info->rbld_active) {
1101 return snprintf(buf, 64, "rebuilding block %zu of %zu\n",
1102 (size_t)ldev_info->rbld_lba,
1103 (size_t)ldev_info->cfg_devsize);
1104 } else
1105 return snprintf(buf, 64, "not rebuilding\n");
1106 }
1107
rebuild_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1108 static ssize_t rebuild_store(struct device *dev,
1109 struct device_attribute *attr, const char *buf, size_t count)
1110 {
1111 struct scsi_device *sdev = to_scsi_device(dev);
1112 struct myrs_hba *cs = shost_priv(sdev->host);
1113 struct myrs_ldev_info *ldev_info;
1114 struct myrs_cmdblk *cmd_blk;
1115 union myrs_cmd_mbox *mbox;
1116 unsigned short ldev_num;
1117 unsigned char status;
1118 int rebuild, ret;
1119
1120 if (sdev->channel < cs->ctlr_info->physchan_present)
1121 return -EINVAL;
1122
1123 ldev_info = sdev->hostdata;
1124 if (!ldev_info)
1125 return -ENXIO;
1126 ldev_num = ldev_info->ldev_num;
1127
1128 ret = kstrtoint(buf, 0, &rebuild);
1129 if (ret)
1130 return ret;
1131
1132 status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1133 if (status != MYRS_STATUS_SUCCESS) {
1134 sdev_printk(KERN_INFO, sdev,
1135 "Failed to get device information, status 0x%02x\n",
1136 status);
1137 return -EIO;
1138 }
1139
1140 if (rebuild && ldev_info->rbld_active) {
1141 sdev_printk(KERN_INFO, sdev,
1142 "Rebuild Not Initiated; already in progress\n");
1143 return -EALREADY;
1144 }
1145 if (!rebuild && !ldev_info->rbld_active) {
1146 sdev_printk(KERN_INFO, sdev,
1147 "Rebuild Not Cancelled; no rebuild in progress\n");
1148 return count;
1149 }
1150
1151 mutex_lock(&cs->dcmd_mutex);
1152 cmd_blk = &cs->dcmd_blk;
1153 myrs_reset_cmd(cmd_blk);
1154 mbox = &cmd_blk->mbox;
1155 mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1156 mbox->common.id = MYRS_DCMD_TAG;
1157 mbox->common.control.dma_ctrl_to_host = true;
1158 mbox->common.control.no_autosense = true;
1159 if (rebuild) {
1160 mbox->ldev_info.ldev.ldev_num = ldev_num;
1161 mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_START;
1162 } else {
1163 mbox->ldev_info.ldev.ldev_num = ldev_num;
1164 mbox->ldev_info.ioctl_opcode = MYRS_IOCTL_RBLD_DEVICE_STOP;
1165 }
1166 myrs_exec_cmd(cs, cmd_blk);
1167 status = cmd_blk->status;
1168 mutex_unlock(&cs->dcmd_mutex);
1169 if (status) {
1170 sdev_printk(KERN_INFO, sdev,
1171 "Rebuild Not %s, status 0x%02x\n",
1172 rebuild ? "Initiated" : "Cancelled", status);
1173 ret = -EIO;
1174 } else {
1175 sdev_printk(KERN_INFO, sdev, "Rebuild %s\n",
1176 rebuild ? "Initiated" : "Cancelled");
1177 ret = count;
1178 }
1179
1180 return ret;
1181 }
1182 static DEVICE_ATTR_RW(rebuild);
1183
consistency_check_show(struct device * dev,struct device_attribute * attr,char * buf)1184 static ssize_t consistency_check_show(struct device *dev,
1185 struct device_attribute *attr, char *buf)
1186 {
1187 struct scsi_device *sdev = to_scsi_device(dev);
1188 struct myrs_hba *cs = shost_priv(sdev->host);
1189 struct myrs_ldev_info *ldev_info;
1190 unsigned short ldev_num;
1191
1192 if (sdev->channel < cs->ctlr_info->physchan_present)
1193 return snprintf(buf, 64, "physical device - not checking\n");
1194
1195 ldev_info = sdev->hostdata;
1196 if (!ldev_info)
1197 return -ENXIO;
1198 ldev_num = ldev_info->ldev_num;
1199 myrs_get_ldev_info(cs, ldev_num, ldev_info);
1200 if (ldev_info->cc_active)
1201 return snprintf(buf, 64, "checking block %zu of %zu\n",
1202 (size_t)ldev_info->cc_lba,
1203 (size_t)ldev_info->cfg_devsize);
1204 else
1205 return snprintf(buf, 64, "not checking\n");
1206 }
1207
consistency_check_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1208 static ssize_t consistency_check_store(struct device *dev,
1209 struct device_attribute *attr, const char *buf, size_t count)
1210 {
1211 struct scsi_device *sdev = to_scsi_device(dev);
1212 struct myrs_hba *cs = shost_priv(sdev->host);
1213 struct myrs_ldev_info *ldev_info;
1214 struct myrs_cmdblk *cmd_blk;
1215 union myrs_cmd_mbox *mbox;
1216 unsigned short ldev_num;
1217 unsigned char status;
1218 int check, ret;
1219
1220 if (sdev->channel < cs->ctlr_info->physchan_present)
1221 return -EINVAL;
1222
1223 ldev_info = sdev->hostdata;
1224 if (!ldev_info)
1225 return -ENXIO;
1226 ldev_num = ldev_info->ldev_num;
1227
1228 ret = kstrtoint(buf, 0, &check);
1229 if (ret)
1230 return ret;
1231
1232 status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1233 if (status != MYRS_STATUS_SUCCESS) {
1234 sdev_printk(KERN_INFO, sdev,
1235 "Failed to get device information, status 0x%02x\n",
1236 status);
1237 return -EIO;
1238 }
1239 if (check && ldev_info->cc_active) {
1240 sdev_printk(KERN_INFO, sdev,
1241 "Consistency Check Not Initiated; "
1242 "already in progress\n");
1243 return -EALREADY;
1244 }
1245 if (!check && !ldev_info->cc_active) {
1246 sdev_printk(KERN_INFO, sdev,
1247 "Consistency Check Not Cancelled; "
1248 "check not in progress\n");
1249 return count;
1250 }
1251
1252 mutex_lock(&cs->dcmd_mutex);
1253 cmd_blk = &cs->dcmd_blk;
1254 myrs_reset_cmd(cmd_blk);
1255 mbox = &cmd_blk->mbox;
1256 mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1257 mbox->common.id = MYRS_DCMD_TAG;
1258 mbox->common.control.dma_ctrl_to_host = true;
1259 mbox->common.control.no_autosense = true;
1260 if (check) {
1261 mbox->cc.ldev.ldev_num = ldev_num;
1262 mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_START;
1263 mbox->cc.restore_consistency = true;
1264 mbox->cc.initialized_area_only = false;
1265 } else {
1266 mbox->cc.ldev.ldev_num = ldev_num;
1267 mbox->cc.ioctl_opcode = MYRS_IOCTL_CC_STOP;
1268 }
1269 myrs_exec_cmd(cs, cmd_blk);
1270 status = cmd_blk->status;
1271 mutex_unlock(&cs->dcmd_mutex);
1272 if (status != MYRS_STATUS_SUCCESS) {
1273 sdev_printk(KERN_INFO, sdev,
1274 "Consistency Check Not %s, status 0x%02x\n",
1275 check ? "Initiated" : "Cancelled", status);
1276 ret = -EIO;
1277 } else {
1278 sdev_printk(KERN_INFO, sdev, "Consistency Check %s\n",
1279 check ? "Initiated" : "Cancelled");
1280 ret = count;
1281 }
1282
1283 return ret;
1284 }
1285 static DEVICE_ATTR_RW(consistency_check);
1286
1287 static struct attribute *myrs_sdev_attrs[] = {
1288 &dev_attr_consistency_check.attr,
1289 &dev_attr_rebuild.attr,
1290 &dev_attr_raid_state.attr,
1291 &dev_attr_raid_level.attr,
1292 NULL,
1293 };
1294
1295 ATTRIBUTE_GROUPS(myrs_sdev);
1296
serial_show(struct device * dev,struct device_attribute * attr,char * buf)1297 static ssize_t serial_show(struct device *dev,
1298 struct device_attribute *attr, char *buf)
1299 {
1300 struct Scsi_Host *shost = class_to_shost(dev);
1301 struct myrs_hba *cs = shost_priv(shost);
1302 char serial[17];
1303
1304 memcpy(serial, cs->ctlr_info->serial_number, 16);
1305 serial[16] = '\0';
1306 return snprintf(buf, 16, "%s\n", serial);
1307 }
1308 static DEVICE_ATTR_RO(serial);
1309
ctlr_num_show(struct device * dev,struct device_attribute * attr,char * buf)1310 static ssize_t ctlr_num_show(struct device *dev,
1311 struct device_attribute *attr, char *buf)
1312 {
1313 struct Scsi_Host *shost = class_to_shost(dev);
1314 struct myrs_hba *cs = shost_priv(shost);
1315
1316 return snprintf(buf, 20, "%d\n", cs->host->host_no);
1317 }
1318 static DEVICE_ATTR_RO(ctlr_num);
1319
1320 static struct myrs_cpu_type_tbl {
1321 enum myrs_cpu_type type;
1322 char *name;
1323 } myrs_cpu_type_names[] = {
1324 { MYRS_CPUTYPE_i960CA, "i960CA" },
1325 { MYRS_CPUTYPE_i960RD, "i960RD" },
1326 { MYRS_CPUTYPE_i960RN, "i960RN" },
1327 { MYRS_CPUTYPE_i960RP, "i960RP" },
1328 { MYRS_CPUTYPE_NorthBay, "NorthBay" },
1329 { MYRS_CPUTYPE_StrongArm, "StrongARM" },
1330 { MYRS_CPUTYPE_i960RM, "i960RM" },
1331 };
1332
processor_show(struct device * dev,struct device_attribute * attr,char * buf)1333 static ssize_t processor_show(struct device *dev,
1334 struct device_attribute *attr, char *buf)
1335 {
1336 struct Scsi_Host *shost = class_to_shost(dev);
1337 struct myrs_hba *cs = shost_priv(shost);
1338 struct myrs_cpu_type_tbl *tbl;
1339 const char *first_processor = NULL;
1340 const char *second_processor = NULL;
1341 struct myrs_ctlr_info *info = cs->ctlr_info;
1342 ssize_t ret;
1343 int i;
1344
1345 if (info->cpu[0].cpu_count) {
1346 tbl = myrs_cpu_type_names;
1347 for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) {
1348 if (tbl[i].type == info->cpu[0].cpu_type) {
1349 first_processor = tbl[i].name;
1350 break;
1351 }
1352 }
1353 }
1354 if (info->cpu[1].cpu_count) {
1355 tbl = myrs_cpu_type_names;
1356 for (i = 0; i < ARRAY_SIZE(myrs_cpu_type_names); i++) {
1357 if (tbl[i].type == info->cpu[1].cpu_type) {
1358 second_processor = tbl[i].name;
1359 break;
1360 }
1361 }
1362 }
1363 if (first_processor && second_processor)
1364 ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n"
1365 "2: %s (%s, %d cpus)\n",
1366 info->cpu[0].cpu_name,
1367 first_processor, info->cpu[0].cpu_count,
1368 info->cpu[1].cpu_name,
1369 second_processor, info->cpu[1].cpu_count);
1370 else if (first_processor && !second_processor)
1371 ret = snprintf(buf, 64, "1: %s (%s, %d cpus)\n2: absent\n",
1372 info->cpu[0].cpu_name,
1373 first_processor, info->cpu[0].cpu_count);
1374 else if (!first_processor && second_processor)
1375 ret = snprintf(buf, 64, "1: absent\n2: %s (%s, %d cpus)\n",
1376 info->cpu[1].cpu_name,
1377 second_processor, info->cpu[1].cpu_count);
1378 else
1379 ret = snprintf(buf, 64, "1: absent\n2: absent\n");
1380
1381 return ret;
1382 }
1383 static DEVICE_ATTR_RO(processor);
1384
model_show(struct device * dev,struct device_attribute * attr,char * buf)1385 static ssize_t model_show(struct device *dev,
1386 struct device_attribute *attr, char *buf)
1387 {
1388 struct Scsi_Host *shost = class_to_shost(dev);
1389 struct myrs_hba *cs = shost_priv(shost);
1390
1391 return snprintf(buf, 28, "%s\n", cs->model_name);
1392 }
1393 static DEVICE_ATTR_RO(model);
1394
ctlr_type_show(struct device * dev,struct device_attribute * attr,char * buf)1395 static ssize_t ctlr_type_show(struct device *dev,
1396 struct device_attribute *attr, char *buf)
1397 {
1398 struct Scsi_Host *shost = class_to_shost(dev);
1399 struct myrs_hba *cs = shost_priv(shost);
1400
1401 return snprintf(buf, 4, "%d\n", cs->ctlr_info->ctlr_type);
1402 }
1403 static DEVICE_ATTR_RO(ctlr_type);
1404
cache_size_show(struct device * dev,struct device_attribute * attr,char * buf)1405 static ssize_t cache_size_show(struct device *dev,
1406 struct device_attribute *attr, char *buf)
1407 {
1408 struct Scsi_Host *shost = class_to_shost(dev);
1409 struct myrs_hba *cs = shost_priv(shost);
1410
1411 return snprintf(buf, 8, "%d MB\n", cs->ctlr_info->cache_size_mb);
1412 }
1413 static DEVICE_ATTR_RO(cache_size);
1414
firmware_show(struct device * dev,struct device_attribute * attr,char * buf)1415 static ssize_t firmware_show(struct device *dev,
1416 struct device_attribute *attr, char *buf)
1417 {
1418 struct Scsi_Host *shost = class_to_shost(dev);
1419 struct myrs_hba *cs = shost_priv(shost);
1420
1421 return snprintf(buf, 16, "%d.%02d-%02d\n",
1422 cs->ctlr_info->fw_major_version,
1423 cs->ctlr_info->fw_minor_version,
1424 cs->ctlr_info->fw_turn_number);
1425 }
1426 static DEVICE_ATTR_RO(firmware);
1427
discovery_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1428 static ssize_t discovery_store(struct device *dev,
1429 struct device_attribute *attr, const char *buf, size_t count)
1430 {
1431 struct Scsi_Host *shost = class_to_shost(dev);
1432 struct myrs_hba *cs = shost_priv(shost);
1433 struct myrs_cmdblk *cmd_blk;
1434 union myrs_cmd_mbox *mbox;
1435 unsigned char status;
1436
1437 mutex_lock(&cs->dcmd_mutex);
1438 cmd_blk = &cs->dcmd_blk;
1439 myrs_reset_cmd(cmd_blk);
1440 mbox = &cmd_blk->mbox;
1441 mbox->common.opcode = MYRS_CMD_OP_IOCTL;
1442 mbox->common.id = MYRS_DCMD_TAG;
1443 mbox->common.control.dma_ctrl_to_host = true;
1444 mbox->common.control.no_autosense = true;
1445 mbox->common.ioctl_opcode = MYRS_IOCTL_START_DISCOVERY;
1446 myrs_exec_cmd(cs, cmd_blk);
1447 status = cmd_blk->status;
1448 mutex_unlock(&cs->dcmd_mutex);
1449 if (status != MYRS_STATUS_SUCCESS) {
1450 shost_printk(KERN_INFO, shost,
1451 "Discovery Not Initiated, status %02X\n",
1452 status);
1453 return -EINVAL;
1454 }
1455 shost_printk(KERN_INFO, shost, "Discovery Initiated\n");
1456 cs->next_evseq = 0;
1457 cs->needs_update = true;
1458 queue_delayed_work(cs->work_q, &cs->monitor_work, 1);
1459 flush_delayed_work(&cs->monitor_work);
1460 shost_printk(KERN_INFO, shost, "Discovery Completed\n");
1461
1462 return count;
1463 }
1464 static DEVICE_ATTR_WO(discovery);
1465
flush_cache_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1466 static ssize_t flush_cache_store(struct device *dev,
1467 struct device_attribute *attr, const char *buf, size_t count)
1468 {
1469 struct Scsi_Host *shost = class_to_shost(dev);
1470 struct myrs_hba *cs = shost_priv(shost);
1471 unsigned char status;
1472
1473 status = myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA,
1474 MYRS_RAID_CONTROLLER);
1475 if (status == MYRS_STATUS_SUCCESS) {
1476 shost_printk(KERN_INFO, shost, "Cache Flush Completed\n");
1477 return count;
1478 }
1479 shost_printk(KERN_INFO, shost,
1480 "Cache Flush failed, status 0x%02x\n", status);
1481 return -EIO;
1482 }
1483 static DEVICE_ATTR_WO(flush_cache);
1484
disable_enclosure_messages_show(struct device * dev,struct device_attribute * attr,char * buf)1485 static ssize_t disable_enclosure_messages_show(struct device *dev,
1486 struct device_attribute *attr, char *buf)
1487 {
1488 struct Scsi_Host *shost = class_to_shost(dev);
1489 struct myrs_hba *cs = shost_priv(shost);
1490
1491 return snprintf(buf, 3, "%d\n", cs->disable_enc_msg);
1492 }
1493
disable_enclosure_messages_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1494 static ssize_t disable_enclosure_messages_store(struct device *dev,
1495 struct device_attribute *attr, const char *buf, size_t count)
1496 {
1497 struct scsi_device *sdev = to_scsi_device(dev);
1498 struct myrs_hba *cs = shost_priv(sdev->host);
1499 int value, ret;
1500
1501 ret = kstrtoint(buf, 0, &value);
1502 if (ret)
1503 return ret;
1504
1505 if (value > 2)
1506 return -EINVAL;
1507
1508 cs->disable_enc_msg = value;
1509 return count;
1510 }
1511 static DEVICE_ATTR_RW(disable_enclosure_messages);
1512
1513 static struct attribute *myrs_shost_attrs[] = {
1514 &dev_attr_serial.attr,
1515 &dev_attr_ctlr_num.attr,
1516 &dev_attr_processor.attr,
1517 &dev_attr_model.attr,
1518 &dev_attr_ctlr_type.attr,
1519 &dev_attr_cache_size.attr,
1520 &dev_attr_firmware.attr,
1521 &dev_attr_discovery.attr,
1522 &dev_attr_flush_cache.attr,
1523 &dev_attr_disable_enclosure_messages.attr,
1524 NULL,
1525 };
1526
1527 ATTRIBUTE_GROUPS(myrs_shost);
1528
1529 /*
1530 * SCSI midlayer interface
1531 */
myrs_host_reset(struct scsi_cmnd * scmd)1532 static int myrs_host_reset(struct scsi_cmnd *scmd)
1533 {
1534 struct Scsi_Host *shost = scmd->device->host;
1535 struct myrs_hba *cs = shost_priv(shost);
1536
1537 cs->reset(cs->io_base);
1538 return SUCCESS;
1539 }
1540
myrs_mode_sense(struct myrs_hba * cs,struct scsi_cmnd * scmd,struct myrs_ldev_info * ldev_info)1541 static void myrs_mode_sense(struct myrs_hba *cs, struct scsi_cmnd *scmd,
1542 struct myrs_ldev_info *ldev_info)
1543 {
1544 unsigned char modes[32], *mode_pg;
1545 bool dbd;
1546 size_t mode_len;
1547
1548 dbd = (scmd->cmnd[1] & 0x08) == 0x08;
1549 if (dbd) {
1550 mode_len = 24;
1551 mode_pg = &modes[4];
1552 } else {
1553 mode_len = 32;
1554 mode_pg = &modes[12];
1555 }
1556 memset(modes, 0, sizeof(modes));
1557 modes[0] = mode_len - 1;
1558 modes[2] = 0x10; /* Enable FUA */
1559 if (ldev_info->ldev_control.wce == MYRS_LOGICALDEVICE_RO)
1560 modes[2] |= 0x80;
1561 if (!dbd) {
1562 unsigned char *block_desc = &modes[4];
1563
1564 modes[3] = 8;
1565 put_unaligned_be32(ldev_info->cfg_devsize, &block_desc[0]);
1566 put_unaligned_be32(ldev_info->devsize_bytes, &block_desc[5]);
1567 }
1568 mode_pg[0] = 0x08;
1569 mode_pg[1] = 0x12;
1570 if (ldev_info->ldev_control.rce == MYRS_READCACHE_DISABLED)
1571 mode_pg[2] |= 0x01;
1572 if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED ||
1573 ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED)
1574 mode_pg[2] |= 0x04;
1575 if (ldev_info->cacheline_size) {
1576 mode_pg[2] |= 0x08;
1577 put_unaligned_be16(1 << ldev_info->cacheline_size,
1578 &mode_pg[14]);
1579 }
1580
1581 scsi_sg_copy_from_buffer(scmd, modes, mode_len);
1582 }
1583
myrs_queuecommand(struct Scsi_Host * shost,struct scsi_cmnd * scmd)1584 static int myrs_queuecommand(struct Scsi_Host *shost,
1585 struct scsi_cmnd *scmd)
1586 {
1587 struct request *rq = scsi_cmd_to_rq(scmd);
1588 struct myrs_hba *cs = shost_priv(shost);
1589 struct myrs_cmdblk *cmd_blk = scsi_cmd_priv(scmd);
1590 union myrs_cmd_mbox *mbox = &cmd_blk->mbox;
1591 struct scsi_device *sdev = scmd->device;
1592 union myrs_sgl *hw_sge;
1593 dma_addr_t sense_addr;
1594 struct scatterlist *sgl;
1595 unsigned long flags, timeout;
1596 int nsge;
1597
1598 if (!scmd->device->hostdata) {
1599 scmd->result = (DID_NO_CONNECT << 16);
1600 scsi_done(scmd);
1601 return 0;
1602 }
1603
1604 switch (scmd->cmnd[0]) {
1605 case REPORT_LUNS:
1606 scsi_build_sense(scmd, 0, ILLEGAL_REQUEST, 0x20, 0x0);
1607 scsi_done(scmd);
1608 return 0;
1609 case MODE_SENSE:
1610 if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1611 struct myrs_ldev_info *ldev_info = sdev->hostdata;
1612
1613 if ((scmd->cmnd[2] & 0x3F) != 0x3F &&
1614 (scmd->cmnd[2] & 0x3F) != 0x08) {
1615 /* Illegal request, invalid field in CDB */
1616 scsi_build_sense(scmd, 0, ILLEGAL_REQUEST, 0x24, 0);
1617 } else {
1618 myrs_mode_sense(cs, scmd, ldev_info);
1619 scmd->result = (DID_OK << 16);
1620 }
1621 scsi_done(scmd);
1622 return 0;
1623 }
1624 break;
1625 }
1626
1627 myrs_reset_cmd(cmd_blk);
1628 cmd_blk->sense = dma_pool_alloc(cs->sense_pool, GFP_ATOMIC,
1629 &sense_addr);
1630 if (!cmd_blk->sense)
1631 return SCSI_MLQUEUE_HOST_BUSY;
1632 cmd_blk->sense_addr = sense_addr;
1633
1634 timeout = rq->timeout;
1635 if (scmd->cmd_len <= 10) {
1636 if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1637 struct myrs_ldev_info *ldev_info = sdev->hostdata;
1638
1639 mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10;
1640 mbox->SCSI_10.pdev.lun = ldev_info->lun;
1641 mbox->SCSI_10.pdev.target = ldev_info->target;
1642 mbox->SCSI_10.pdev.channel = ldev_info->channel;
1643 mbox->SCSI_10.pdev.ctlr = 0;
1644 } else {
1645 mbox->SCSI_10.opcode = MYRS_CMD_OP_SCSI_10_PASSTHRU;
1646 mbox->SCSI_10.pdev.lun = sdev->lun;
1647 mbox->SCSI_10.pdev.target = sdev->id;
1648 mbox->SCSI_10.pdev.channel = sdev->channel;
1649 }
1650 mbox->SCSI_10.id = rq->tag + 3;
1651 mbox->SCSI_10.control.dma_ctrl_to_host =
1652 (scmd->sc_data_direction == DMA_FROM_DEVICE);
1653 if (rq->cmd_flags & REQ_FUA)
1654 mbox->SCSI_10.control.fua = true;
1655 mbox->SCSI_10.dma_size = scsi_bufflen(scmd);
1656 mbox->SCSI_10.sense_addr = cmd_blk->sense_addr;
1657 mbox->SCSI_10.sense_len = MYRS_SENSE_SIZE;
1658 mbox->SCSI_10.cdb_len = scmd->cmd_len;
1659 if (timeout > 60) {
1660 mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES;
1661 mbox->SCSI_10.tmo.tmo_val = timeout / 60;
1662 } else {
1663 mbox->SCSI_10.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS;
1664 mbox->SCSI_10.tmo.tmo_val = timeout;
1665 }
1666 memcpy(&mbox->SCSI_10.cdb, scmd->cmnd, scmd->cmd_len);
1667 hw_sge = &mbox->SCSI_10.dma_addr;
1668 cmd_blk->dcdb = NULL;
1669 } else {
1670 dma_addr_t dcdb_dma;
1671
1672 cmd_blk->dcdb = dma_pool_alloc(cs->dcdb_pool, GFP_ATOMIC,
1673 &dcdb_dma);
1674 if (!cmd_blk->dcdb) {
1675 dma_pool_free(cs->sense_pool, cmd_blk->sense,
1676 cmd_blk->sense_addr);
1677 cmd_blk->sense = NULL;
1678 cmd_blk->sense_addr = 0;
1679 return SCSI_MLQUEUE_HOST_BUSY;
1680 }
1681 cmd_blk->dcdb_dma = dcdb_dma;
1682 if (scmd->device->channel >= cs->ctlr_info->physchan_present) {
1683 struct myrs_ldev_info *ldev_info = sdev->hostdata;
1684
1685 mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_256;
1686 mbox->SCSI_255.pdev.lun = ldev_info->lun;
1687 mbox->SCSI_255.pdev.target = ldev_info->target;
1688 mbox->SCSI_255.pdev.channel = ldev_info->channel;
1689 mbox->SCSI_255.pdev.ctlr = 0;
1690 } else {
1691 mbox->SCSI_255.opcode = MYRS_CMD_OP_SCSI_255_PASSTHRU;
1692 mbox->SCSI_255.pdev.lun = sdev->lun;
1693 mbox->SCSI_255.pdev.target = sdev->id;
1694 mbox->SCSI_255.pdev.channel = sdev->channel;
1695 }
1696 mbox->SCSI_255.id = rq->tag + 3;
1697 mbox->SCSI_255.control.dma_ctrl_to_host =
1698 (scmd->sc_data_direction == DMA_FROM_DEVICE);
1699 if (rq->cmd_flags & REQ_FUA)
1700 mbox->SCSI_255.control.fua = true;
1701 mbox->SCSI_255.dma_size = scsi_bufflen(scmd);
1702 mbox->SCSI_255.sense_addr = cmd_blk->sense_addr;
1703 mbox->SCSI_255.sense_len = MYRS_SENSE_SIZE;
1704 mbox->SCSI_255.cdb_len = scmd->cmd_len;
1705 mbox->SCSI_255.cdb_addr = cmd_blk->dcdb_dma;
1706 if (timeout > 60) {
1707 mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_MINUTES;
1708 mbox->SCSI_255.tmo.tmo_val = timeout / 60;
1709 } else {
1710 mbox->SCSI_255.tmo.tmo_scale = MYRS_TMO_SCALE_SECONDS;
1711 mbox->SCSI_255.tmo.tmo_val = timeout;
1712 }
1713 memcpy(cmd_blk->dcdb, scmd->cmnd, scmd->cmd_len);
1714 hw_sge = &mbox->SCSI_255.dma_addr;
1715 }
1716 if (scmd->sc_data_direction == DMA_NONE)
1717 goto submit;
1718 nsge = scsi_dma_map(scmd);
1719 if (nsge == 1) {
1720 sgl = scsi_sglist(scmd);
1721 hw_sge->sge[0].sge_addr = (u64)sg_dma_address(sgl);
1722 hw_sge->sge[0].sge_count = (u64)sg_dma_len(sgl);
1723 } else {
1724 struct myrs_sge *hw_sgl;
1725 dma_addr_t hw_sgl_addr;
1726 int i;
1727
1728 if (nsge > 2) {
1729 hw_sgl = dma_pool_alloc(cs->sg_pool, GFP_ATOMIC,
1730 &hw_sgl_addr);
1731 if (WARN_ON(!hw_sgl)) {
1732 if (cmd_blk->dcdb) {
1733 dma_pool_free(cs->dcdb_pool,
1734 cmd_blk->dcdb,
1735 cmd_blk->dcdb_dma);
1736 cmd_blk->dcdb = NULL;
1737 cmd_blk->dcdb_dma = 0;
1738 }
1739 dma_pool_free(cs->sense_pool,
1740 cmd_blk->sense,
1741 cmd_blk->sense_addr);
1742 cmd_blk->sense = NULL;
1743 cmd_blk->sense_addr = 0;
1744 return SCSI_MLQUEUE_HOST_BUSY;
1745 }
1746 cmd_blk->sgl = hw_sgl;
1747 cmd_blk->sgl_addr = hw_sgl_addr;
1748 if (scmd->cmd_len <= 10)
1749 mbox->SCSI_10.control.add_sge_mem = true;
1750 else
1751 mbox->SCSI_255.control.add_sge_mem = true;
1752 hw_sge->ext.sge0_len = nsge;
1753 hw_sge->ext.sge0_addr = cmd_blk->sgl_addr;
1754 } else
1755 hw_sgl = hw_sge->sge;
1756
1757 scsi_for_each_sg(scmd, sgl, nsge, i) {
1758 if (WARN_ON(!hw_sgl)) {
1759 scsi_dma_unmap(scmd);
1760 scmd->result = (DID_ERROR << 16);
1761 scsi_done(scmd);
1762 return 0;
1763 }
1764 hw_sgl->sge_addr = (u64)sg_dma_address(sgl);
1765 hw_sgl->sge_count = (u64)sg_dma_len(sgl);
1766 hw_sgl++;
1767 }
1768 }
1769 submit:
1770 spin_lock_irqsave(&cs->queue_lock, flags);
1771 myrs_qcmd(cs, cmd_blk);
1772 spin_unlock_irqrestore(&cs->queue_lock, flags);
1773
1774 return 0;
1775 }
1776
myrs_translate_ldev(struct myrs_hba * cs,struct scsi_device * sdev)1777 static unsigned short myrs_translate_ldev(struct myrs_hba *cs,
1778 struct scsi_device *sdev)
1779 {
1780 unsigned short ldev_num;
1781 unsigned int chan_offset =
1782 sdev->channel - cs->ctlr_info->physchan_present;
1783
1784 ldev_num = sdev->id + chan_offset * sdev->host->max_id;
1785
1786 return ldev_num;
1787 }
1788
myrs_slave_alloc(struct scsi_device * sdev)1789 static int myrs_slave_alloc(struct scsi_device *sdev)
1790 {
1791 struct myrs_hba *cs = shost_priv(sdev->host);
1792 unsigned char status;
1793
1794 if (sdev->channel > sdev->host->max_channel)
1795 return 0;
1796
1797 if (sdev->channel >= cs->ctlr_info->physchan_present) {
1798 struct myrs_ldev_info *ldev_info;
1799 unsigned short ldev_num;
1800
1801 if (sdev->lun > 0)
1802 return -ENXIO;
1803
1804 ldev_num = myrs_translate_ldev(cs, sdev);
1805
1806 ldev_info = kzalloc(sizeof(*ldev_info), GFP_KERNEL);
1807 if (!ldev_info)
1808 return -ENOMEM;
1809
1810 status = myrs_get_ldev_info(cs, ldev_num, ldev_info);
1811 if (status != MYRS_STATUS_SUCCESS) {
1812 sdev->hostdata = NULL;
1813 kfree(ldev_info);
1814 } else {
1815 enum raid_level level;
1816
1817 dev_dbg(&sdev->sdev_gendev,
1818 "Logical device mapping %d:%d:%d -> %d\n",
1819 ldev_info->channel, ldev_info->target,
1820 ldev_info->lun, ldev_info->ldev_num);
1821
1822 sdev->hostdata = ldev_info;
1823 switch (ldev_info->raid_level) {
1824 case MYRS_RAID_LEVEL0:
1825 level = RAID_LEVEL_LINEAR;
1826 break;
1827 case MYRS_RAID_LEVEL1:
1828 level = RAID_LEVEL_1;
1829 break;
1830 case MYRS_RAID_LEVEL3:
1831 case MYRS_RAID_LEVEL3F:
1832 case MYRS_RAID_LEVEL3L:
1833 level = RAID_LEVEL_3;
1834 break;
1835 case MYRS_RAID_LEVEL5:
1836 case MYRS_RAID_LEVEL5L:
1837 level = RAID_LEVEL_5;
1838 break;
1839 case MYRS_RAID_LEVEL6:
1840 level = RAID_LEVEL_6;
1841 break;
1842 case MYRS_RAID_LEVELE:
1843 case MYRS_RAID_NEWSPAN:
1844 case MYRS_RAID_SPAN:
1845 level = RAID_LEVEL_LINEAR;
1846 break;
1847 case MYRS_RAID_JBOD:
1848 level = RAID_LEVEL_JBOD;
1849 break;
1850 default:
1851 level = RAID_LEVEL_UNKNOWN;
1852 break;
1853 }
1854 raid_set_level(myrs_raid_template,
1855 &sdev->sdev_gendev, level);
1856 if (ldev_info->dev_state != MYRS_DEVICE_ONLINE) {
1857 const char *name;
1858
1859 name = myrs_devstate_name(ldev_info->dev_state);
1860 sdev_printk(KERN_DEBUG, sdev,
1861 "logical device in state %s\n",
1862 name ? name : "Invalid");
1863 }
1864 }
1865 } else {
1866 struct myrs_pdev_info *pdev_info;
1867
1868 pdev_info = kzalloc(sizeof(*pdev_info), GFP_KERNEL);
1869 if (!pdev_info)
1870 return -ENOMEM;
1871
1872 status = myrs_get_pdev_info(cs, sdev->channel,
1873 sdev->id, sdev->lun,
1874 pdev_info);
1875 if (status != MYRS_STATUS_SUCCESS) {
1876 sdev->hostdata = NULL;
1877 kfree(pdev_info);
1878 return -ENXIO;
1879 }
1880 sdev->hostdata = pdev_info;
1881 }
1882 return 0;
1883 }
1884
myrs_slave_configure(struct scsi_device * sdev)1885 static int myrs_slave_configure(struct scsi_device *sdev)
1886 {
1887 struct myrs_hba *cs = shost_priv(sdev->host);
1888 struct myrs_ldev_info *ldev_info;
1889
1890 if (sdev->channel > sdev->host->max_channel)
1891 return -ENXIO;
1892
1893 if (sdev->channel < cs->ctlr_info->physchan_present) {
1894 /* Skip HBA device */
1895 if (sdev->type == TYPE_RAID)
1896 return -ENXIO;
1897 sdev->no_uld_attach = 1;
1898 return 0;
1899 }
1900 if (sdev->lun != 0)
1901 return -ENXIO;
1902
1903 ldev_info = sdev->hostdata;
1904 if (!ldev_info)
1905 return -ENXIO;
1906 if (ldev_info->ldev_control.wce == MYRS_WRITECACHE_ENABLED ||
1907 ldev_info->ldev_control.wce == MYRS_INTELLIGENT_WRITECACHE_ENABLED)
1908 sdev->wce_default_on = 1;
1909 sdev->tagged_supported = 1;
1910 return 0;
1911 }
1912
myrs_slave_destroy(struct scsi_device * sdev)1913 static void myrs_slave_destroy(struct scsi_device *sdev)
1914 {
1915 kfree(sdev->hostdata);
1916 }
1917
1918 static const struct scsi_host_template myrs_template = {
1919 .module = THIS_MODULE,
1920 .name = "DAC960",
1921 .proc_name = "myrs",
1922 .queuecommand = myrs_queuecommand,
1923 .eh_host_reset_handler = myrs_host_reset,
1924 .slave_alloc = myrs_slave_alloc,
1925 .slave_configure = myrs_slave_configure,
1926 .slave_destroy = myrs_slave_destroy,
1927 .cmd_size = sizeof(struct myrs_cmdblk),
1928 .shost_groups = myrs_shost_groups,
1929 .sdev_groups = myrs_sdev_groups,
1930 .this_id = -1,
1931 };
1932
myrs_alloc_host(struct pci_dev * pdev,const struct pci_device_id * entry)1933 static struct myrs_hba *myrs_alloc_host(struct pci_dev *pdev,
1934 const struct pci_device_id *entry)
1935 {
1936 struct Scsi_Host *shost;
1937 struct myrs_hba *cs;
1938
1939 shost = scsi_host_alloc(&myrs_template, sizeof(struct myrs_hba));
1940 if (!shost)
1941 return NULL;
1942
1943 shost->max_cmd_len = 16;
1944 shost->max_lun = 256;
1945 cs = shost_priv(shost);
1946 mutex_init(&cs->dcmd_mutex);
1947 mutex_init(&cs->cinfo_mutex);
1948 cs->host = shost;
1949
1950 return cs;
1951 }
1952
1953 /*
1954 * RAID template functions
1955 */
1956
1957 /**
1958 * myrs_is_raid - return boolean indicating device is raid volume
1959 * @dev: the device struct object
1960 */
1961 static int
myrs_is_raid(struct device * dev)1962 myrs_is_raid(struct device *dev)
1963 {
1964 struct scsi_device *sdev = to_scsi_device(dev);
1965 struct myrs_hba *cs = shost_priv(sdev->host);
1966
1967 return (sdev->channel >= cs->ctlr_info->physchan_present) ? 1 : 0;
1968 }
1969
1970 /**
1971 * myrs_get_resync - get raid volume resync percent complete
1972 * @dev: the device struct object
1973 */
1974 static void
myrs_get_resync(struct device * dev)1975 myrs_get_resync(struct device *dev)
1976 {
1977 struct scsi_device *sdev = to_scsi_device(dev);
1978 struct myrs_hba *cs = shost_priv(sdev->host);
1979 struct myrs_ldev_info *ldev_info = sdev->hostdata;
1980 u64 percent_complete = 0;
1981
1982 if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info)
1983 return;
1984 if (ldev_info->rbld_active) {
1985 unsigned short ldev_num = ldev_info->ldev_num;
1986
1987 myrs_get_ldev_info(cs, ldev_num, ldev_info);
1988 percent_complete = ldev_info->rbld_lba * 100;
1989 do_div(percent_complete, ldev_info->cfg_devsize);
1990 }
1991 raid_set_resync(myrs_raid_template, dev, percent_complete);
1992 }
1993
1994 /**
1995 * myrs_get_state - get raid volume status
1996 * @dev: the device struct object
1997 */
1998 static void
myrs_get_state(struct device * dev)1999 myrs_get_state(struct device *dev)
2000 {
2001 struct scsi_device *sdev = to_scsi_device(dev);
2002 struct myrs_hba *cs = shost_priv(sdev->host);
2003 struct myrs_ldev_info *ldev_info = sdev->hostdata;
2004 enum raid_state state = RAID_STATE_UNKNOWN;
2005
2006 if (sdev->channel < cs->ctlr_info->physchan_present || !ldev_info)
2007 state = RAID_STATE_UNKNOWN;
2008 else {
2009 switch (ldev_info->dev_state) {
2010 case MYRS_DEVICE_ONLINE:
2011 state = RAID_STATE_ACTIVE;
2012 break;
2013 case MYRS_DEVICE_SUSPECTED_CRITICAL:
2014 case MYRS_DEVICE_CRITICAL:
2015 state = RAID_STATE_DEGRADED;
2016 break;
2017 case MYRS_DEVICE_REBUILD:
2018 state = RAID_STATE_RESYNCING;
2019 break;
2020 case MYRS_DEVICE_UNCONFIGURED:
2021 case MYRS_DEVICE_INVALID_STATE:
2022 state = RAID_STATE_UNKNOWN;
2023 break;
2024 default:
2025 state = RAID_STATE_OFFLINE;
2026 }
2027 }
2028 raid_set_state(myrs_raid_template, dev, state);
2029 }
2030
2031 static struct raid_function_template myrs_raid_functions = {
2032 .cookie = &myrs_template,
2033 .is_raid = myrs_is_raid,
2034 .get_resync = myrs_get_resync,
2035 .get_state = myrs_get_state,
2036 };
2037
2038 /*
2039 * PCI interface functions
2040 */
myrs_flush_cache(struct myrs_hba * cs)2041 static void myrs_flush_cache(struct myrs_hba *cs)
2042 {
2043 myrs_dev_op(cs, MYRS_IOCTL_FLUSH_DEVICE_DATA, MYRS_RAID_CONTROLLER);
2044 }
2045
myrs_handle_scsi(struct myrs_hba * cs,struct myrs_cmdblk * cmd_blk,struct scsi_cmnd * scmd)2046 static void myrs_handle_scsi(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk,
2047 struct scsi_cmnd *scmd)
2048 {
2049 unsigned char status;
2050
2051 if (!cmd_blk)
2052 return;
2053
2054 scsi_dma_unmap(scmd);
2055 status = cmd_blk->status;
2056 if (cmd_blk->sense) {
2057 if (status == MYRS_STATUS_FAILED && cmd_blk->sense_len) {
2058 unsigned int sense_len = SCSI_SENSE_BUFFERSIZE;
2059
2060 if (sense_len > cmd_blk->sense_len)
2061 sense_len = cmd_blk->sense_len;
2062 memcpy(scmd->sense_buffer, cmd_blk->sense, sense_len);
2063 }
2064 dma_pool_free(cs->sense_pool, cmd_blk->sense,
2065 cmd_blk->sense_addr);
2066 cmd_blk->sense = NULL;
2067 cmd_blk->sense_addr = 0;
2068 }
2069 if (cmd_blk->dcdb) {
2070 dma_pool_free(cs->dcdb_pool, cmd_blk->dcdb,
2071 cmd_blk->dcdb_dma);
2072 cmd_blk->dcdb = NULL;
2073 cmd_blk->dcdb_dma = 0;
2074 }
2075 if (cmd_blk->sgl) {
2076 dma_pool_free(cs->sg_pool, cmd_blk->sgl,
2077 cmd_blk->sgl_addr);
2078 cmd_blk->sgl = NULL;
2079 cmd_blk->sgl_addr = 0;
2080 }
2081 if (cmd_blk->residual)
2082 scsi_set_resid(scmd, cmd_blk->residual);
2083 if (status == MYRS_STATUS_DEVICE_NON_RESPONSIVE ||
2084 status == MYRS_STATUS_DEVICE_NON_RESPONSIVE2)
2085 scmd->result = (DID_BAD_TARGET << 16);
2086 else
2087 scmd->result = (DID_OK << 16) | status;
2088 scsi_done(scmd);
2089 }
2090
myrs_handle_cmdblk(struct myrs_hba * cs,struct myrs_cmdblk * cmd_blk)2091 static void myrs_handle_cmdblk(struct myrs_hba *cs, struct myrs_cmdblk *cmd_blk)
2092 {
2093 if (!cmd_blk)
2094 return;
2095
2096 if (cmd_blk->complete) {
2097 complete(cmd_blk->complete);
2098 cmd_blk->complete = NULL;
2099 }
2100 }
2101
myrs_monitor(struct work_struct * work)2102 static void myrs_monitor(struct work_struct *work)
2103 {
2104 struct myrs_hba *cs = container_of(work, struct myrs_hba,
2105 monitor_work.work);
2106 struct Scsi_Host *shost = cs->host;
2107 struct myrs_ctlr_info *info = cs->ctlr_info;
2108 unsigned int epoch = cs->fwstat_buf->epoch;
2109 unsigned long interval = MYRS_PRIMARY_MONITOR_INTERVAL;
2110 unsigned char status;
2111
2112 dev_dbg(&shost->shost_gendev, "monitor tick\n");
2113
2114 status = myrs_get_fwstatus(cs);
2115
2116 if (cs->needs_update) {
2117 cs->needs_update = false;
2118 mutex_lock(&cs->cinfo_mutex);
2119 status = myrs_get_ctlr_info(cs);
2120 mutex_unlock(&cs->cinfo_mutex);
2121 }
2122 if (cs->fwstat_buf->next_evseq - cs->next_evseq > 0) {
2123 status = myrs_get_event(cs, cs->next_evseq,
2124 cs->event_buf);
2125 if (status == MYRS_STATUS_SUCCESS) {
2126 myrs_log_event(cs, cs->event_buf);
2127 cs->next_evseq++;
2128 interval = 1;
2129 }
2130 }
2131
2132 if (time_after(jiffies, cs->secondary_monitor_time
2133 + MYRS_SECONDARY_MONITOR_INTERVAL))
2134 cs->secondary_monitor_time = jiffies;
2135
2136 if (info->bg_init_active +
2137 info->ldev_init_active +
2138 info->pdev_init_active +
2139 info->cc_active +
2140 info->rbld_active +
2141 info->exp_active != 0) {
2142 struct scsi_device *sdev;
2143
2144 shost_for_each_device(sdev, shost) {
2145 struct myrs_ldev_info *ldev_info;
2146 int ldev_num;
2147
2148 if (sdev->channel < info->physchan_present)
2149 continue;
2150 ldev_info = sdev->hostdata;
2151 if (!ldev_info)
2152 continue;
2153 ldev_num = ldev_info->ldev_num;
2154 myrs_get_ldev_info(cs, ldev_num, ldev_info);
2155 }
2156 cs->needs_update = true;
2157 }
2158 if (epoch == cs->epoch &&
2159 cs->fwstat_buf->next_evseq == cs->next_evseq &&
2160 (cs->needs_update == false ||
2161 time_before(jiffies, cs->primary_monitor_time
2162 + MYRS_PRIMARY_MONITOR_INTERVAL))) {
2163 interval = MYRS_SECONDARY_MONITOR_INTERVAL;
2164 }
2165
2166 if (interval > 1)
2167 cs->primary_monitor_time = jiffies;
2168 queue_delayed_work(cs->work_q, &cs->monitor_work, interval);
2169 }
2170
myrs_create_mempools(struct pci_dev * pdev,struct myrs_hba * cs)2171 static bool myrs_create_mempools(struct pci_dev *pdev, struct myrs_hba *cs)
2172 {
2173 struct Scsi_Host *shost = cs->host;
2174 size_t elem_size, elem_align;
2175
2176 elem_align = sizeof(struct myrs_sge);
2177 elem_size = shost->sg_tablesize * elem_align;
2178 cs->sg_pool = dma_pool_create("myrs_sg", &pdev->dev,
2179 elem_size, elem_align, 0);
2180 if (cs->sg_pool == NULL) {
2181 shost_printk(KERN_ERR, shost,
2182 "Failed to allocate SG pool\n");
2183 return false;
2184 }
2185
2186 cs->sense_pool = dma_pool_create("myrs_sense", &pdev->dev,
2187 MYRS_SENSE_SIZE, sizeof(int), 0);
2188 if (cs->sense_pool == NULL) {
2189 dma_pool_destroy(cs->sg_pool);
2190 cs->sg_pool = NULL;
2191 shost_printk(KERN_ERR, shost,
2192 "Failed to allocate sense data pool\n");
2193 return false;
2194 }
2195
2196 cs->dcdb_pool = dma_pool_create("myrs_dcdb", &pdev->dev,
2197 MYRS_DCDB_SIZE,
2198 sizeof(unsigned char), 0);
2199 if (!cs->dcdb_pool) {
2200 dma_pool_destroy(cs->sg_pool);
2201 cs->sg_pool = NULL;
2202 dma_pool_destroy(cs->sense_pool);
2203 cs->sense_pool = NULL;
2204 shost_printk(KERN_ERR, shost,
2205 "Failed to allocate DCDB pool\n");
2206 return false;
2207 }
2208
2209 cs->work_q = alloc_ordered_workqueue("myrs_wq_%d", WQ_MEM_RECLAIM,
2210 shost->host_no);
2211 if (!cs->work_q) {
2212 dma_pool_destroy(cs->dcdb_pool);
2213 cs->dcdb_pool = NULL;
2214 dma_pool_destroy(cs->sg_pool);
2215 cs->sg_pool = NULL;
2216 dma_pool_destroy(cs->sense_pool);
2217 cs->sense_pool = NULL;
2218 shost_printk(KERN_ERR, shost,
2219 "Failed to create workqueue\n");
2220 return false;
2221 }
2222
2223 /* Initialize the Monitoring Timer. */
2224 INIT_DELAYED_WORK(&cs->monitor_work, myrs_monitor);
2225 queue_delayed_work(cs->work_q, &cs->monitor_work, 1);
2226
2227 return true;
2228 }
2229
myrs_destroy_mempools(struct myrs_hba * cs)2230 static void myrs_destroy_mempools(struct myrs_hba *cs)
2231 {
2232 cancel_delayed_work_sync(&cs->monitor_work);
2233 destroy_workqueue(cs->work_q);
2234
2235 dma_pool_destroy(cs->sg_pool);
2236 dma_pool_destroy(cs->dcdb_pool);
2237 dma_pool_destroy(cs->sense_pool);
2238 }
2239
myrs_unmap(struct myrs_hba * cs)2240 static void myrs_unmap(struct myrs_hba *cs)
2241 {
2242 kfree(cs->event_buf);
2243 kfree(cs->ctlr_info);
2244 if (cs->fwstat_buf) {
2245 dma_free_coherent(&cs->pdev->dev, sizeof(struct myrs_fwstat),
2246 cs->fwstat_buf, cs->fwstat_addr);
2247 cs->fwstat_buf = NULL;
2248 }
2249 if (cs->first_stat_mbox) {
2250 dma_free_coherent(&cs->pdev->dev, cs->stat_mbox_size,
2251 cs->first_stat_mbox, cs->stat_mbox_addr);
2252 cs->first_stat_mbox = NULL;
2253 }
2254 if (cs->first_cmd_mbox) {
2255 dma_free_coherent(&cs->pdev->dev, cs->cmd_mbox_size,
2256 cs->first_cmd_mbox, cs->cmd_mbox_addr);
2257 cs->first_cmd_mbox = NULL;
2258 }
2259 }
2260
myrs_cleanup(struct myrs_hba * cs)2261 static void myrs_cleanup(struct myrs_hba *cs)
2262 {
2263 struct pci_dev *pdev = cs->pdev;
2264
2265 /* Free the memory mailbox, status, and related structures */
2266 myrs_unmap(cs);
2267
2268 if (cs->mmio_base) {
2269 if (cs->disable_intr)
2270 cs->disable_intr(cs);
2271 iounmap(cs->mmio_base);
2272 cs->mmio_base = NULL;
2273 }
2274 if (cs->irq)
2275 free_irq(cs->irq, cs);
2276 if (cs->io_addr)
2277 release_region(cs->io_addr, 0x80);
2278 pci_set_drvdata(pdev, NULL);
2279 pci_disable_device(pdev);
2280 scsi_host_put(cs->host);
2281 }
2282
myrs_detect(struct pci_dev * pdev,const struct pci_device_id * entry)2283 static struct myrs_hba *myrs_detect(struct pci_dev *pdev,
2284 const struct pci_device_id *entry)
2285 {
2286 struct myrs_privdata *privdata =
2287 (struct myrs_privdata *)entry->driver_data;
2288 irq_handler_t irq_handler = privdata->irq_handler;
2289 unsigned int mmio_size = privdata->mmio_size;
2290 struct myrs_hba *cs = NULL;
2291
2292 cs = myrs_alloc_host(pdev, entry);
2293 if (!cs) {
2294 dev_err(&pdev->dev, "Unable to allocate Controller\n");
2295 return NULL;
2296 }
2297 cs->pdev = pdev;
2298
2299 if (pci_enable_device(pdev))
2300 goto Failure;
2301
2302 cs->pci_addr = pci_resource_start(pdev, 0);
2303
2304 pci_set_drvdata(pdev, cs);
2305 spin_lock_init(&cs->queue_lock);
2306 /* Map the Controller Register Window. */
2307 if (mmio_size < PAGE_SIZE)
2308 mmio_size = PAGE_SIZE;
2309 cs->mmio_base = ioremap(cs->pci_addr & PAGE_MASK, mmio_size);
2310 if (cs->mmio_base == NULL) {
2311 dev_err(&pdev->dev,
2312 "Unable to map Controller Register Window\n");
2313 goto Failure;
2314 }
2315
2316 cs->io_base = cs->mmio_base + (cs->pci_addr & ~PAGE_MASK);
2317 if (privdata->hw_init(pdev, cs, cs->io_base))
2318 goto Failure;
2319
2320 /* Acquire shared access to the IRQ Channel. */
2321 if (request_irq(pdev->irq, irq_handler, IRQF_SHARED, "myrs", cs) < 0) {
2322 dev_err(&pdev->dev,
2323 "Unable to acquire IRQ Channel %d\n", pdev->irq);
2324 goto Failure;
2325 }
2326 cs->irq = pdev->irq;
2327 return cs;
2328
2329 Failure:
2330 dev_err(&pdev->dev,
2331 "Failed to initialize Controller\n");
2332 myrs_cleanup(cs);
2333 return NULL;
2334 }
2335
2336 /*
2337 * myrs_err_status reports Controller BIOS Messages passed through
2338 * the Error Status Register when the driver performs the BIOS handshaking.
2339 * It returns true for fatal errors and false otherwise.
2340 */
2341
myrs_err_status(struct myrs_hba * cs,unsigned char status,unsigned char parm0,unsigned char parm1)2342 static bool myrs_err_status(struct myrs_hba *cs, unsigned char status,
2343 unsigned char parm0, unsigned char parm1)
2344 {
2345 struct pci_dev *pdev = cs->pdev;
2346
2347 switch (status) {
2348 case 0x00:
2349 dev_info(&pdev->dev,
2350 "Physical Device %d:%d Not Responding\n",
2351 parm1, parm0);
2352 break;
2353 case 0x08:
2354 dev_notice(&pdev->dev, "Spinning Up Drives\n");
2355 break;
2356 case 0x30:
2357 dev_notice(&pdev->dev, "Configuration Checksum Error\n");
2358 break;
2359 case 0x60:
2360 dev_notice(&pdev->dev, "Mirror Race Recovery Failed\n");
2361 break;
2362 case 0x70:
2363 dev_notice(&pdev->dev, "Mirror Race Recovery In Progress\n");
2364 break;
2365 case 0x90:
2366 dev_notice(&pdev->dev, "Physical Device %d:%d COD Mismatch\n",
2367 parm1, parm0);
2368 break;
2369 case 0xA0:
2370 dev_notice(&pdev->dev, "Logical Drive Installation Aborted\n");
2371 break;
2372 case 0xB0:
2373 dev_notice(&pdev->dev, "Mirror Race On A Critical Logical Drive\n");
2374 break;
2375 case 0xD0:
2376 dev_notice(&pdev->dev, "New Controller Configuration Found\n");
2377 break;
2378 case 0xF0:
2379 dev_err(&pdev->dev, "Fatal Memory Parity Error\n");
2380 return true;
2381 default:
2382 dev_err(&pdev->dev, "Unknown Initialization Error %02X\n",
2383 status);
2384 return true;
2385 }
2386 return false;
2387 }
2388
2389 /*
2390 * Hardware-specific functions
2391 */
2392
2393 /*
2394 * DAC960 GEM Series Controllers.
2395 */
2396
DAC960_GEM_hw_mbox_new_cmd(void __iomem * base)2397 static inline void DAC960_GEM_hw_mbox_new_cmd(void __iomem *base)
2398 {
2399 __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24);
2400
2401 writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2402 }
2403
DAC960_GEM_ack_hw_mbox_status(void __iomem * base)2404 static inline void DAC960_GEM_ack_hw_mbox_status(void __iomem *base)
2405 {
2406 __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_ACK_STS << 24);
2407
2408 writel(val, base + DAC960_GEM_IDB_CLEAR_OFFSET);
2409 }
2410
DAC960_GEM_reset_ctrl(void __iomem * base)2411 static inline void DAC960_GEM_reset_ctrl(void __iomem *base)
2412 {
2413 __le32 val = cpu_to_le32(DAC960_GEM_IDB_CTRL_RESET << 24);
2414
2415 writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2416 }
2417
DAC960_GEM_mem_mbox_new_cmd(void __iomem * base)2418 static inline void DAC960_GEM_mem_mbox_new_cmd(void __iomem *base)
2419 {
2420 __le32 val = cpu_to_le32(DAC960_GEM_IDB_HWMBOX_NEW_CMD << 24);
2421
2422 writel(val, base + DAC960_GEM_IDB_READ_OFFSET);
2423 }
2424
DAC960_GEM_hw_mbox_is_full(void __iomem * base)2425 static inline bool DAC960_GEM_hw_mbox_is_full(void __iomem *base)
2426 {
2427 __le32 val;
2428
2429 val = readl(base + DAC960_GEM_IDB_READ_OFFSET);
2430 return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_HWMBOX_FULL;
2431 }
2432
DAC960_GEM_init_in_progress(void __iomem * base)2433 static inline bool DAC960_GEM_init_in_progress(void __iomem *base)
2434 {
2435 __le32 val;
2436
2437 val = readl(base + DAC960_GEM_IDB_READ_OFFSET);
2438 return (le32_to_cpu(val) >> 24) & DAC960_GEM_IDB_INIT_IN_PROGRESS;
2439 }
2440
DAC960_GEM_ack_hw_mbox_intr(void __iomem * base)2441 static inline void DAC960_GEM_ack_hw_mbox_intr(void __iomem *base)
2442 {
2443 __le32 val = cpu_to_le32(DAC960_GEM_ODB_HWMBOX_ACK_IRQ << 24);
2444
2445 writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
2446 }
2447
DAC960_GEM_ack_intr(void __iomem * base)2448 static inline void DAC960_GEM_ack_intr(void __iomem *base)
2449 {
2450 __le32 val = cpu_to_le32((DAC960_GEM_ODB_HWMBOX_ACK_IRQ |
2451 DAC960_GEM_ODB_MMBOX_ACK_IRQ) << 24);
2452
2453 writel(val, base + DAC960_GEM_ODB_CLEAR_OFFSET);
2454 }
2455
DAC960_GEM_hw_mbox_status_available(void __iomem * base)2456 static inline bool DAC960_GEM_hw_mbox_status_available(void __iomem *base)
2457 {
2458 __le32 val;
2459
2460 val = readl(base + DAC960_GEM_ODB_READ_OFFSET);
2461 return (le32_to_cpu(val) >> 24) & DAC960_GEM_ODB_HWMBOX_STS_AVAIL;
2462 }
2463
DAC960_GEM_enable_intr(void __iomem * base)2464 static inline void DAC960_GEM_enable_intr(void __iomem *base)
2465 {
2466 __le32 val = cpu_to_le32((DAC960_GEM_IRQMASK_HWMBOX_IRQ |
2467 DAC960_GEM_IRQMASK_MMBOX_IRQ) << 24);
2468 writel(val, base + DAC960_GEM_IRQMASK_CLEAR_OFFSET);
2469 }
2470
DAC960_GEM_disable_intr(void __iomem * base)2471 static inline void DAC960_GEM_disable_intr(void __iomem *base)
2472 {
2473 __le32 val = 0;
2474
2475 writel(val, base + DAC960_GEM_IRQMASK_READ_OFFSET);
2476 }
2477
DAC960_GEM_write_cmd_mbox(union myrs_cmd_mbox * mem_mbox,union myrs_cmd_mbox * mbox)2478 static inline void DAC960_GEM_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
2479 union myrs_cmd_mbox *mbox)
2480 {
2481 memcpy(&mem_mbox->words[1], &mbox->words[1],
2482 sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
2483 /* Barrier to avoid reordering */
2484 wmb();
2485 mem_mbox->words[0] = mbox->words[0];
2486 /* Barrier to force PCI access */
2487 mb();
2488 }
2489
DAC960_GEM_write_hw_mbox(void __iomem * base,dma_addr_t cmd_mbox_addr)2490 static inline void DAC960_GEM_write_hw_mbox(void __iomem *base,
2491 dma_addr_t cmd_mbox_addr)
2492 {
2493 dma_addr_writeql(cmd_mbox_addr, base + DAC960_GEM_CMDMBX_OFFSET);
2494 }
2495
DAC960_GEM_read_cmd_status(void __iomem * base)2496 static inline unsigned char DAC960_GEM_read_cmd_status(void __iomem *base)
2497 {
2498 return readw(base + DAC960_GEM_CMDSTS_OFFSET + 2);
2499 }
2500
2501 static inline bool
DAC960_GEM_read_error_status(void __iomem * base,unsigned char * error,unsigned char * param0,unsigned char * param1)2502 DAC960_GEM_read_error_status(void __iomem *base, unsigned char *error,
2503 unsigned char *param0, unsigned char *param1)
2504 {
2505 __le32 val;
2506
2507 val = readl(base + DAC960_GEM_ERRSTS_READ_OFFSET);
2508 if (!((le32_to_cpu(val) >> 24) & DAC960_GEM_ERRSTS_PENDING))
2509 return false;
2510 *error = val & ~(DAC960_GEM_ERRSTS_PENDING << 24);
2511 *param0 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 0);
2512 *param1 = readb(base + DAC960_GEM_CMDMBX_OFFSET + 1);
2513 writel(0x03000000, base + DAC960_GEM_ERRSTS_CLEAR_OFFSET);
2514 return true;
2515 }
2516
2517 static inline unsigned char
DAC960_GEM_mbox_init(void __iomem * base,dma_addr_t mbox_addr)2518 DAC960_GEM_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
2519 {
2520 unsigned char status;
2521
2522 while (DAC960_GEM_hw_mbox_is_full(base))
2523 udelay(1);
2524 DAC960_GEM_write_hw_mbox(base, mbox_addr);
2525 DAC960_GEM_hw_mbox_new_cmd(base);
2526 while (!DAC960_GEM_hw_mbox_status_available(base))
2527 udelay(1);
2528 status = DAC960_GEM_read_cmd_status(base);
2529 DAC960_GEM_ack_hw_mbox_intr(base);
2530 DAC960_GEM_ack_hw_mbox_status(base);
2531
2532 return status;
2533 }
2534
DAC960_GEM_hw_init(struct pci_dev * pdev,struct myrs_hba * cs,void __iomem * base)2535 static int DAC960_GEM_hw_init(struct pci_dev *pdev,
2536 struct myrs_hba *cs, void __iomem *base)
2537 {
2538 int timeout = 0;
2539 unsigned char status, parm0, parm1;
2540
2541 DAC960_GEM_disable_intr(base);
2542 DAC960_GEM_ack_hw_mbox_status(base);
2543 udelay(1000);
2544 while (DAC960_GEM_init_in_progress(base) &&
2545 timeout < MYRS_MAILBOX_TIMEOUT) {
2546 if (DAC960_GEM_read_error_status(base, &status,
2547 &parm0, &parm1) &&
2548 myrs_err_status(cs, status, parm0, parm1))
2549 return -EIO;
2550 udelay(10);
2551 timeout++;
2552 }
2553 if (timeout == MYRS_MAILBOX_TIMEOUT) {
2554 dev_err(&pdev->dev,
2555 "Timeout waiting for Controller Initialisation\n");
2556 return -ETIMEDOUT;
2557 }
2558 if (!myrs_enable_mmio_mbox(cs, DAC960_GEM_mbox_init)) {
2559 dev_err(&pdev->dev,
2560 "Unable to Enable Memory Mailbox Interface\n");
2561 DAC960_GEM_reset_ctrl(base);
2562 return -EAGAIN;
2563 }
2564 DAC960_GEM_enable_intr(base);
2565 cs->write_cmd_mbox = DAC960_GEM_write_cmd_mbox;
2566 cs->get_cmd_mbox = DAC960_GEM_mem_mbox_new_cmd;
2567 cs->disable_intr = DAC960_GEM_disable_intr;
2568 cs->reset = DAC960_GEM_reset_ctrl;
2569 return 0;
2570 }
2571
DAC960_GEM_intr_handler(int irq,void * arg)2572 static irqreturn_t DAC960_GEM_intr_handler(int irq, void *arg)
2573 {
2574 struct myrs_hba *cs = arg;
2575 void __iomem *base = cs->io_base;
2576 struct myrs_stat_mbox *next_stat_mbox;
2577 unsigned long flags;
2578
2579 spin_lock_irqsave(&cs->queue_lock, flags);
2580 DAC960_GEM_ack_intr(base);
2581 next_stat_mbox = cs->next_stat_mbox;
2582 while (next_stat_mbox->id > 0) {
2583 unsigned short id = next_stat_mbox->id;
2584 struct scsi_cmnd *scmd = NULL;
2585 struct myrs_cmdblk *cmd_blk = NULL;
2586
2587 if (id == MYRS_DCMD_TAG)
2588 cmd_blk = &cs->dcmd_blk;
2589 else if (id == MYRS_MCMD_TAG)
2590 cmd_blk = &cs->mcmd_blk;
2591 else {
2592 scmd = scsi_host_find_tag(cs->host, id - 3);
2593 if (scmd)
2594 cmd_blk = scsi_cmd_priv(scmd);
2595 }
2596 if (cmd_blk) {
2597 cmd_blk->status = next_stat_mbox->status;
2598 cmd_blk->sense_len = next_stat_mbox->sense_len;
2599 cmd_blk->residual = next_stat_mbox->residual;
2600 } else
2601 dev_err(&cs->pdev->dev,
2602 "Unhandled command completion %d\n", id);
2603
2604 memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
2605 if (++next_stat_mbox > cs->last_stat_mbox)
2606 next_stat_mbox = cs->first_stat_mbox;
2607
2608 if (cmd_blk) {
2609 if (id < 3)
2610 myrs_handle_cmdblk(cs, cmd_blk);
2611 else
2612 myrs_handle_scsi(cs, cmd_blk, scmd);
2613 }
2614 }
2615 cs->next_stat_mbox = next_stat_mbox;
2616 spin_unlock_irqrestore(&cs->queue_lock, flags);
2617 return IRQ_HANDLED;
2618 }
2619
2620 static struct myrs_privdata DAC960_GEM_privdata = {
2621 .hw_init = DAC960_GEM_hw_init,
2622 .irq_handler = DAC960_GEM_intr_handler,
2623 .mmio_size = DAC960_GEM_mmio_size,
2624 };
2625
2626 /*
2627 * DAC960 BA Series Controllers.
2628 */
2629
DAC960_BA_hw_mbox_new_cmd(void __iomem * base)2630 static inline void DAC960_BA_hw_mbox_new_cmd(void __iomem *base)
2631 {
2632 writeb(DAC960_BA_IDB_HWMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET);
2633 }
2634
DAC960_BA_ack_hw_mbox_status(void __iomem * base)2635 static inline void DAC960_BA_ack_hw_mbox_status(void __iomem *base)
2636 {
2637 writeb(DAC960_BA_IDB_HWMBOX_ACK_STS, base + DAC960_BA_IDB_OFFSET);
2638 }
2639
DAC960_BA_reset_ctrl(void __iomem * base)2640 static inline void DAC960_BA_reset_ctrl(void __iomem *base)
2641 {
2642 writeb(DAC960_BA_IDB_CTRL_RESET, base + DAC960_BA_IDB_OFFSET);
2643 }
2644
DAC960_BA_mem_mbox_new_cmd(void __iomem * base)2645 static inline void DAC960_BA_mem_mbox_new_cmd(void __iomem *base)
2646 {
2647 writeb(DAC960_BA_IDB_MMBOX_NEW_CMD, base + DAC960_BA_IDB_OFFSET);
2648 }
2649
DAC960_BA_hw_mbox_is_full(void __iomem * base)2650 static inline bool DAC960_BA_hw_mbox_is_full(void __iomem *base)
2651 {
2652 u8 val;
2653
2654 val = readb(base + DAC960_BA_IDB_OFFSET);
2655 return !(val & DAC960_BA_IDB_HWMBOX_EMPTY);
2656 }
2657
DAC960_BA_init_in_progress(void __iomem * base)2658 static inline bool DAC960_BA_init_in_progress(void __iomem *base)
2659 {
2660 u8 val;
2661
2662 val = readb(base + DAC960_BA_IDB_OFFSET);
2663 return !(val & DAC960_BA_IDB_INIT_DONE);
2664 }
2665
DAC960_BA_ack_hw_mbox_intr(void __iomem * base)2666 static inline void DAC960_BA_ack_hw_mbox_intr(void __iomem *base)
2667 {
2668 writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ, base + DAC960_BA_ODB_OFFSET);
2669 }
2670
DAC960_BA_ack_intr(void __iomem * base)2671 static inline void DAC960_BA_ack_intr(void __iomem *base)
2672 {
2673 writeb(DAC960_BA_ODB_HWMBOX_ACK_IRQ | DAC960_BA_ODB_MMBOX_ACK_IRQ,
2674 base + DAC960_BA_ODB_OFFSET);
2675 }
2676
DAC960_BA_hw_mbox_status_available(void __iomem * base)2677 static inline bool DAC960_BA_hw_mbox_status_available(void __iomem *base)
2678 {
2679 u8 val;
2680
2681 val = readb(base + DAC960_BA_ODB_OFFSET);
2682 return val & DAC960_BA_ODB_HWMBOX_STS_AVAIL;
2683 }
2684
DAC960_BA_enable_intr(void __iomem * base)2685 static inline void DAC960_BA_enable_intr(void __iomem *base)
2686 {
2687 writeb(~DAC960_BA_IRQMASK_DISABLE_IRQ, base + DAC960_BA_IRQMASK_OFFSET);
2688 }
2689
DAC960_BA_disable_intr(void __iomem * base)2690 static inline void DAC960_BA_disable_intr(void __iomem *base)
2691 {
2692 writeb(0xFF, base + DAC960_BA_IRQMASK_OFFSET);
2693 }
2694
DAC960_BA_write_cmd_mbox(union myrs_cmd_mbox * mem_mbox,union myrs_cmd_mbox * mbox)2695 static inline void DAC960_BA_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
2696 union myrs_cmd_mbox *mbox)
2697 {
2698 memcpy(&mem_mbox->words[1], &mbox->words[1],
2699 sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
2700 /* Barrier to avoid reordering */
2701 wmb();
2702 mem_mbox->words[0] = mbox->words[0];
2703 /* Barrier to force PCI access */
2704 mb();
2705 }
2706
2707
DAC960_BA_write_hw_mbox(void __iomem * base,dma_addr_t cmd_mbox_addr)2708 static inline void DAC960_BA_write_hw_mbox(void __iomem *base,
2709 dma_addr_t cmd_mbox_addr)
2710 {
2711 dma_addr_writeql(cmd_mbox_addr, base + DAC960_BA_CMDMBX_OFFSET);
2712 }
2713
DAC960_BA_read_cmd_status(void __iomem * base)2714 static inline unsigned char DAC960_BA_read_cmd_status(void __iomem *base)
2715 {
2716 return readw(base + DAC960_BA_CMDSTS_OFFSET + 2);
2717 }
2718
2719 static inline bool
DAC960_BA_read_error_status(void __iomem * base,unsigned char * error,unsigned char * param0,unsigned char * param1)2720 DAC960_BA_read_error_status(void __iomem *base, unsigned char *error,
2721 unsigned char *param0, unsigned char *param1)
2722 {
2723 u8 val;
2724
2725 val = readb(base + DAC960_BA_ERRSTS_OFFSET);
2726 if (!(val & DAC960_BA_ERRSTS_PENDING))
2727 return false;
2728 val &= ~DAC960_BA_ERRSTS_PENDING;
2729 *error = val;
2730 *param0 = readb(base + DAC960_BA_CMDMBX_OFFSET + 0);
2731 *param1 = readb(base + DAC960_BA_CMDMBX_OFFSET + 1);
2732 writeb(0xFF, base + DAC960_BA_ERRSTS_OFFSET);
2733 return true;
2734 }
2735
2736 static inline unsigned char
DAC960_BA_mbox_init(void __iomem * base,dma_addr_t mbox_addr)2737 DAC960_BA_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
2738 {
2739 unsigned char status;
2740
2741 while (DAC960_BA_hw_mbox_is_full(base))
2742 udelay(1);
2743 DAC960_BA_write_hw_mbox(base, mbox_addr);
2744 DAC960_BA_hw_mbox_new_cmd(base);
2745 while (!DAC960_BA_hw_mbox_status_available(base))
2746 udelay(1);
2747 status = DAC960_BA_read_cmd_status(base);
2748 DAC960_BA_ack_hw_mbox_intr(base);
2749 DAC960_BA_ack_hw_mbox_status(base);
2750
2751 return status;
2752 }
2753
DAC960_BA_hw_init(struct pci_dev * pdev,struct myrs_hba * cs,void __iomem * base)2754 static int DAC960_BA_hw_init(struct pci_dev *pdev,
2755 struct myrs_hba *cs, void __iomem *base)
2756 {
2757 int timeout = 0;
2758 unsigned char status, parm0, parm1;
2759
2760 DAC960_BA_disable_intr(base);
2761 DAC960_BA_ack_hw_mbox_status(base);
2762 udelay(1000);
2763 while (DAC960_BA_init_in_progress(base) &&
2764 timeout < MYRS_MAILBOX_TIMEOUT) {
2765 if (DAC960_BA_read_error_status(base, &status,
2766 &parm0, &parm1) &&
2767 myrs_err_status(cs, status, parm0, parm1))
2768 return -EIO;
2769 udelay(10);
2770 timeout++;
2771 }
2772 if (timeout == MYRS_MAILBOX_TIMEOUT) {
2773 dev_err(&pdev->dev,
2774 "Timeout waiting for Controller Initialisation\n");
2775 return -ETIMEDOUT;
2776 }
2777 if (!myrs_enable_mmio_mbox(cs, DAC960_BA_mbox_init)) {
2778 dev_err(&pdev->dev,
2779 "Unable to Enable Memory Mailbox Interface\n");
2780 DAC960_BA_reset_ctrl(base);
2781 return -EAGAIN;
2782 }
2783 DAC960_BA_enable_intr(base);
2784 cs->write_cmd_mbox = DAC960_BA_write_cmd_mbox;
2785 cs->get_cmd_mbox = DAC960_BA_mem_mbox_new_cmd;
2786 cs->disable_intr = DAC960_BA_disable_intr;
2787 cs->reset = DAC960_BA_reset_ctrl;
2788 return 0;
2789 }
2790
DAC960_BA_intr_handler(int irq,void * arg)2791 static irqreturn_t DAC960_BA_intr_handler(int irq, void *arg)
2792 {
2793 struct myrs_hba *cs = arg;
2794 void __iomem *base = cs->io_base;
2795 struct myrs_stat_mbox *next_stat_mbox;
2796 unsigned long flags;
2797
2798 spin_lock_irqsave(&cs->queue_lock, flags);
2799 DAC960_BA_ack_intr(base);
2800 next_stat_mbox = cs->next_stat_mbox;
2801 while (next_stat_mbox->id > 0) {
2802 unsigned short id = next_stat_mbox->id;
2803 struct scsi_cmnd *scmd = NULL;
2804 struct myrs_cmdblk *cmd_blk = NULL;
2805
2806 if (id == MYRS_DCMD_TAG)
2807 cmd_blk = &cs->dcmd_blk;
2808 else if (id == MYRS_MCMD_TAG)
2809 cmd_blk = &cs->mcmd_blk;
2810 else {
2811 scmd = scsi_host_find_tag(cs->host, id - 3);
2812 if (scmd)
2813 cmd_blk = scsi_cmd_priv(scmd);
2814 }
2815 if (cmd_blk) {
2816 cmd_blk->status = next_stat_mbox->status;
2817 cmd_blk->sense_len = next_stat_mbox->sense_len;
2818 cmd_blk->residual = next_stat_mbox->residual;
2819 } else
2820 dev_err(&cs->pdev->dev,
2821 "Unhandled command completion %d\n", id);
2822
2823 memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
2824 if (++next_stat_mbox > cs->last_stat_mbox)
2825 next_stat_mbox = cs->first_stat_mbox;
2826
2827 if (cmd_blk) {
2828 if (id < 3)
2829 myrs_handle_cmdblk(cs, cmd_blk);
2830 else
2831 myrs_handle_scsi(cs, cmd_blk, scmd);
2832 }
2833 }
2834 cs->next_stat_mbox = next_stat_mbox;
2835 spin_unlock_irqrestore(&cs->queue_lock, flags);
2836 return IRQ_HANDLED;
2837 }
2838
2839 static struct myrs_privdata DAC960_BA_privdata = {
2840 .hw_init = DAC960_BA_hw_init,
2841 .irq_handler = DAC960_BA_intr_handler,
2842 .mmio_size = DAC960_BA_mmio_size,
2843 };
2844
2845 /*
2846 * DAC960 LP Series Controllers.
2847 */
2848
DAC960_LP_hw_mbox_new_cmd(void __iomem * base)2849 static inline void DAC960_LP_hw_mbox_new_cmd(void __iomem *base)
2850 {
2851 writeb(DAC960_LP_IDB_HWMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET);
2852 }
2853
DAC960_LP_ack_hw_mbox_status(void __iomem * base)2854 static inline void DAC960_LP_ack_hw_mbox_status(void __iomem *base)
2855 {
2856 writeb(DAC960_LP_IDB_HWMBOX_ACK_STS, base + DAC960_LP_IDB_OFFSET);
2857 }
2858
DAC960_LP_reset_ctrl(void __iomem * base)2859 static inline void DAC960_LP_reset_ctrl(void __iomem *base)
2860 {
2861 writeb(DAC960_LP_IDB_CTRL_RESET, base + DAC960_LP_IDB_OFFSET);
2862 }
2863
DAC960_LP_mem_mbox_new_cmd(void __iomem * base)2864 static inline void DAC960_LP_mem_mbox_new_cmd(void __iomem *base)
2865 {
2866 writeb(DAC960_LP_IDB_MMBOX_NEW_CMD, base + DAC960_LP_IDB_OFFSET);
2867 }
2868
DAC960_LP_hw_mbox_is_full(void __iomem * base)2869 static inline bool DAC960_LP_hw_mbox_is_full(void __iomem *base)
2870 {
2871 u8 val;
2872
2873 val = readb(base + DAC960_LP_IDB_OFFSET);
2874 return val & DAC960_LP_IDB_HWMBOX_FULL;
2875 }
2876
DAC960_LP_init_in_progress(void __iomem * base)2877 static inline bool DAC960_LP_init_in_progress(void __iomem *base)
2878 {
2879 u8 val;
2880
2881 val = readb(base + DAC960_LP_IDB_OFFSET);
2882 return val & DAC960_LP_IDB_INIT_IN_PROGRESS;
2883 }
2884
DAC960_LP_ack_hw_mbox_intr(void __iomem * base)2885 static inline void DAC960_LP_ack_hw_mbox_intr(void __iomem *base)
2886 {
2887 writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ, base + DAC960_LP_ODB_OFFSET);
2888 }
2889
DAC960_LP_ack_intr(void __iomem * base)2890 static inline void DAC960_LP_ack_intr(void __iomem *base)
2891 {
2892 writeb(DAC960_LP_ODB_HWMBOX_ACK_IRQ | DAC960_LP_ODB_MMBOX_ACK_IRQ,
2893 base + DAC960_LP_ODB_OFFSET);
2894 }
2895
DAC960_LP_hw_mbox_status_available(void __iomem * base)2896 static inline bool DAC960_LP_hw_mbox_status_available(void __iomem *base)
2897 {
2898 u8 val;
2899
2900 val = readb(base + DAC960_LP_ODB_OFFSET);
2901 return val & DAC960_LP_ODB_HWMBOX_STS_AVAIL;
2902 }
2903
DAC960_LP_enable_intr(void __iomem * base)2904 static inline void DAC960_LP_enable_intr(void __iomem *base)
2905 {
2906 writeb(~DAC960_LP_IRQMASK_DISABLE_IRQ, base + DAC960_LP_IRQMASK_OFFSET);
2907 }
2908
DAC960_LP_disable_intr(void __iomem * base)2909 static inline void DAC960_LP_disable_intr(void __iomem *base)
2910 {
2911 writeb(0xFF, base + DAC960_LP_IRQMASK_OFFSET);
2912 }
2913
DAC960_LP_write_cmd_mbox(union myrs_cmd_mbox * mem_mbox,union myrs_cmd_mbox * mbox)2914 static inline void DAC960_LP_write_cmd_mbox(union myrs_cmd_mbox *mem_mbox,
2915 union myrs_cmd_mbox *mbox)
2916 {
2917 memcpy(&mem_mbox->words[1], &mbox->words[1],
2918 sizeof(union myrs_cmd_mbox) - sizeof(unsigned int));
2919 /* Barrier to avoid reordering */
2920 wmb();
2921 mem_mbox->words[0] = mbox->words[0];
2922 /* Barrier to force PCI access */
2923 mb();
2924 }
2925
DAC960_LP_write_hw_mbox(void __iomem * base,dma_addr_t cmd_mbox_addr)2926 static inline void DAC960_LP_write_hw_mbox(void __iomem *base,
2927 dma_addr_t cmd_mbox_addr)
2928 {
2929 dma_addr_writeql(cmd_mbox_addr, base + DAC960_LP_CMDMBX_OFFSET);
2930 }
2931
DAC960_LP_read_cmd_status(void __iomem * base)2932 static inline unsigned char DAC960_LP_read_cmd_status(void __iomem *base)
2933 {
2934 return readw(base + DAC960_LP_CMDSTS_OFFSET + 2);
2935 }
2936
2937 static inline bool
DAC960_LP_read_error_status(void __iomem * base,unsigned char * error,unsigned char * param0,unsigned char * param1)2938 DAC960_LP_read_error_status(void __iomem *base, unsigned char *error,
2939 unsigned char *param0, unsigned char *param1)
2940 {
2941 u8 val;
2942
2943 val = readb(base + DAC960_LP_ERRSTS_OFFSET);
2944 if (!(val & DAC960_LP_ERRSTS_PENDING))
2945 return false;
2946 val &= ~DAC960_LP_ERRSTS_PENDING;
2947 *error = val;
2948 *param0 = readb(base + DAC960_LP_CMDMBX_OFFSET + 0);
2949 *param1 = readb(base + DAC960_LP_CMDMBX_OFFSET + 1);
2950 writeb(0xFF, base + DAC960_LP_ERRSTS_OFFSET);
2951 return true;
2952 }
2953
2954 static inline unsigned char
DAC960_LP_mbox_init(void __iomem * base,dma_addr_t mbox_addr)2955 DAC960_LP_mbox_init(void __iomem *base, dma_addr_t mbox_addr)
2956 {
2957 unsigned char status;
2958
2959 while (DAC960_LP_hw_mbox_is_full(base))
2960 udelay(1);
2961 DAC960_LP_write_hw_mbox(base, mbox_addr);
2962 DAC960_LP_hw_mbox_new_cmd(base);
2963 while (!DAC960_LP_hw_mbox_status_available(base))
2964 udelay(1);
2965 status = DAC960_LP_read_cmd_status(base);
2966 DAC960_LP_ack_hw_mbox_intr(base);
2967 DAC960_LP_ack_hw_mbox_status(base);
2968
2969 return status;
2970 }
2971
DAC960_LP_hw_init(struct pci_dev * pdev,struct myrs_hba * cs,void __iomem * base)2972 static int DAC960_LP_hw_init(struct pci_dev *pdev,
2973 struct myrs_hba *cs, void __iomem *base)
2974 {
2975 int timeout = 0;
2976 unsigned char status, parm0, parm1;
2977
2978 DAC960_LP_disable_intr(base);
2979 DAC960_LP_ack_hw_mbox_status(base);
2980 udelay(1000);
2981 while (DAC960_LP_init_in_progress(base) &&
2982 timeout < MYRS_MAILBOX_TIMEOUT) {
2983 if (DAC960_LP_read_error_status(base, &status,
2984 &parm0, &parm1) &&
2985 myrs_err_status(cs, status, parm0, parm1))
2986 return -EIO;
2987 udelay(10);
2988 timeout++;
2989 }
2990 if (timeout == MYRS_MAILBOX_TIMEOUT) {
2991 dev_err(&pdev->dev,
2992 "Timeout waiting for Controller Initialisation\n");
2993 return -ETIMEDOUT;
2994 }
2995 if (!myrs_enable_mmio_mbox(cs, DAC960_LP_mbox_init)) {
2996 dev_err(&pdev->dev,
2997 "Unable to Enable Memory Mailbox Interface\n");
2998 DAC960_LP_reset_ctrl(base);
2999 return -ENODEV;
3000 }
3001 DAC960_LP_enable_intr(base);
3002 cs->write_cmd_mbox = DAC960_LP_write_cmd_mbox;
3003 cs->get_cmd_mbox = DAC960_LP_mem_mbox_new_cmd;
3004 cs->disable_intr = DAC960_LP_disable_intr;
3005 cs->reset = DAC960_LP_reset_ctrl;
3006
3007 return 0;
3008 }
3009
DAC960_LP_intr_handler(int irq,void * arg)3010 static irqreturn_t DAC960_LP_intr_handler(int irq, void *arg)
3011 {
3012 struct myrs_hba *cs = arg;
3013 void __iomem *base = cs->io_base;
3014 struct myrs_stat_mbox *next_stat_mbox;
3015 unsigned long flags;
3016
3017 spin_lock_irqsave(&cs->queue_lock, flags);
3018 DAC960_LP_ack_intr(base);
3019 next_stat_mbox = cs->next_stat_mbox;
3020 while (next_stat_mbox->id > 0) {
3021 unsigned short id = next_stat_mbox->id;
3022 struct scsi_cmnd *scmd = NULL;
3023 struct myrs_cmdblk *cmd_blk = NULL;
3024
3025 if (id == MYRS_DCMD_TAG)
3026 cmd_blk = &cs->dcmd_blk;
3027 else if (id == MYRS_MCMD_TAG)
3028 cmd_blk = &cs->mcmd_blk;
3029 else {
3030 scmd = scsi_host_find_tag(cs->host, id - 3);
3031 if (scmd)
3032 cmd_blk = scsi_cmd_priv(scmd);
3033 }
3034 if (cmd_blk) {
3035 cmd_blk->status = next_stat_mbox->status;
3036 cmd_blk->sense_len = next_stat_mbox->sense_len;
3037 cmd_blk->residual = next_stat_mbox->residual;
3038 } else
3039 dev_err(&cs->pdev->dev,
3040 "Unhandled command completion %d\n", id);
3041
3042 memset(next_stat_mbox, 0, sizeof(struct myrs_stat_mbox));
3043 if (++next_stat_mbox > cs->last_stat_mbox)
3044 next_stat_mbox = cs->first_stat_mbox;
3045
3046 if (cmd_blk) {
3047 if (id < 3)
3048 myrs_handle_cmdblk(cs, cmd_blk);
3049 else
3050 myrs_handle_scsi(cs, cmd_blk, scmd);
3051 }
3052 }
3053 cs->next_stat_mbox = next_stat_mbox;
3054 spin_unlock_irqrestore(&cs->queue_lock, flags);
3055 return IRQ_HANDLED;
3056 }
3057
3058 static struct myrs_privdata DAC960_LP_privdata = {
3059 .hw_init = DAC960_LP_hw_init,
3060 .irq_handler = DAC960_LP_intr_handler,
3061 .mmio_size = DAC960_LP_mmio_size,
3062 };
3063
3064 /*
3065 * Module functions
3066 */
3067 static int
myrs_probe(struct pci_dev * dev,const struct pci_device_id * entry)3068 myrs_probe(struct pci_dev *dev, const struct pci_device_id *entry)
3069 {
3070 struct myrs_hba *cs;
3071 int ret;
3072
3073 cs = myrs_detect(dev, entry);
3074 if (!cs)
3075 return -ENODEV;
3076
3077 ret = myrs_get_config(cs);
3078 if (ret < 0) {
3079 myrs_cleanup(cs);
3080 return ret;
3081 }
3082
3083 if (!myrs_create_mempools(dev, cs)) {
3084 ret = -ENOMEM;
3085 goto failed;
3086 }
3087
3088 ret = scsi_add_host(cs->host, &dev->dev);
3089 if (ret) {
3090 dev_err(&dev->dev, "scsi_add_host failed with %d\n", ret);
3091 myrs_destroy_mempools(cs);
3092 goto failed;
3093 }
3094 scsi_scan_host(cs->host);
3095 return 0;
3096 failed:
3097 myrs_cleanup(cs);
3098 return ret;
3099 }
3100
3101
myrs_remove(struct pci_dev * pdev)3102 static void myrs_remove(struct pci_dev *pdev)
3103 {
3104 struct myrs_hba *cs = pci_get_drvdata(pdev);
3105
3106 if (cs == NULL)
3107 return;
3108
3109 shost_printk(KERN_NOTICE, cs->host, "Flushing Cache...");
3110 myrs_flush_cache(cs);
3111 myrs_destroy_mempools(cs);
3112 myrs_cleanup(cs);
3113 }
3114
3115
3116 static const struct pci_device_id myrs_id_table[] = {
3117 {
3118 PCI_DEVICE_SUB(PCI_VENDOR_ID_MYLEX,
3119 PCI_DEVICE_ID_MYLEX_DAC960_GEM,
3120 PCI_VENDOR_ID_MYLEX, PCI_ANY_ID),
3121 .driver_data = (unsigned long) &DAC960_GEM_privdata,
3122 },
3123 {
3124 PCI_DEVICE_DATA(MYLEX, DAC960_BA, &DAC960_BA_privdata),
3125 },
3126 {
3127 PCI_DEVICE_DATA(MYLEX, DAC960_LP, &DAC960_LP_privdata),
3128 },
3129 {0, },
3130 };
3131
3132 MODULE_DEVICE_TABLE(pci, myrs_id_table);
3133
3134 static struct pci_driver myrs_pci_driver = {
3135 .name = "myrs",
3136 .id_table = myrs_id_table,
3137 .probe = myrs_probe,
3138 .remove = myrs_remove,
3139 };
3140
myrs_init_module(void)3141 static int __init myrs_init_module(void)
3142 {
3143 int ret;
3144
3145 myrs_raid_template = raid_class_attach(&myrs_raid_functions);
3146 if (!myrs_raid_template)
3147 return -ENODEV;
3148
3149 ret = pci_register_driver(&myrs_pci_driver);
3150 if (ret)
3151 raid_class_release(myrs_raid_template);
3152
3153 return ret;
3154 }
3155
myrs_cleanup_module(void)3156 static void __exit myrs_cleanup_module(void)
3157 {
3158 pci_unregister_driver(&myrs_pci_driver);
3159 raid_class_release(myrs_raid_template);
3160 }
3161
3162 module_init(myrs_init_module);
3163 module_exit(myrs_cleanup_module);
3164
3165 MODULE_DESCRIPTION("Mylex DAC960/AcceleRAID/eXtremeRAID driver (SCSI Interface)");
3166 MODULE_AUTHOR("Hannes Reinecke <hare@suse.com>");
3167 MODULE_LICENSE("GPL");
3168