1 /*
2 * services/outside_network.c - implement sending of queries and wait answer.
3 *
4 * Copyright (c) 2007, NLnet Labs. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of the NLNET LABS nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /**
37 * \file
38 *
39 * This file has functions to send queries to authoritative servers and
40 * wait for the pending answer events.
41 */
42 #include "config.h"
43 #include <ctype.h>
44 #ifdef HAVE_SYS_TYPES_H
45 # include <sys/types.h>
46 #endif
47 #include <sys/time.h>
48 #include "services/outside_network.h"
49 #include "services/listen_dnsport.h"
50 #include "services/cache/infra.h"
51 #include "iterator/iterator.h"
52 #include "util/data/msgparse.h"
53 #include "util/data/msgreply.h"
54 #include "util/data/msgencode.h"
55 #include "util/data/dname.h"
56 #include "util/netevent.h"
57 #include "util/log.h"
58 #include "util/net_help.h"
59 #include "util/random.h"
60 #include "util/fptr_wlist.h"
61 #include "util/edns.h"
62 #include "sldns/sbuffer.h"
63 #include "dnstap/dnstap.h"
64 #ifdef HAVE_OPENSSL_SSL_H
65 #include <openssl/ssl.h>
66 #endif
67 #ifdef HAVE_X509_VERIFY_PARAM_SET1_HOST
68 #include <openssl/x509v3.h>
69 #endif
70
71 #ifdef HAVE_NETDB_H
72 #include <netdb.h>
73 #endif
74 #include <fcntl.h>
75
76 /** number of times to retry making a random ID that is unique. */
77 #define MAX_ID_RETRY 1000
78 /** number of times to retry finding interface, port that can be opened. */
79 #define MAX_PORT_RETRY 10000
80 /** number of retries on outgoing UDP queries */
81 #define OUTBOUND_UDP_RETRY 1
82
83 /** initiate TCP transaction for serviced query */
84 static void serviced_tcp_initiate(struct serviced_query* sq, sldns_buffer* buff);
85 /** with a fd available, randomize and send UDP */
86 static int randomize_and_send_udp(struct pending* pend, sldns_buffer* packet,
87 int timeout);
88
89 /** select a DNS ID for a TCP stream */
90 static uint16_t tcp_select_id(struct outside_network* outnet,
91 struct reuse_tcp* reuse);
92
93 /** Perform serviced query UDP sending operation */
94 static int serviced_udp_send(struct serviced_query* sq, sldns_buffer* buff);
95
96 /** Send serviced query over TCP return false on initial failure */
97 static int serviced_tcp_send(struct serviced_query* sq, sldns_buffer* buff);
98
99 /** call the callbacks for a serviced query */
100 static void serviced_callbacks(struct serviced_query* sq, int error,
101 struct comm_point* c, struct comm_reply* rep);
102
103 int
pending_cmp(const void * key1,const void * key2)104 pending_cmp(const void* key1, const void* key2)
105 {
106 struct pending *p1 = (struct pending*)key1;
107 struct pending *p2 = (struct pending*)key2;
108 if(p1->id < p2->id)
109 return -1;
110 if(p1->id > p2->id)
111 return 1;
112 log_assert(p1->id == p2->id);
113 return sockaddr_cmp(&p1->addr, p1->addrlen, &p2->addr, p2->addrlen);
114 }
115
116 int
serviced_cmp(const void * key1,const void * key2)117 serviced_cmp(const void* key1, const void* key2)
118 {
119 struct serviced_query* q1 = (struct serviced_query*)key1;
120 struct serviced_query* q2 = (struct serviced_query*)key2;
121 int r;
122 if(q1->qbuflen < q2->qbuflen)
123 return -1;
124 if(q1->qbuflen > q2->qbuflen)
125 return 1;
126 log_assert(q1->qbuflen == q2->qbuflen);
127 log_assert(q1->qbuflen >= 15 /* 10 header, root, type, class */);
128 /* alternate casing of qname is still the same query */
129 if((r = memcmp(q1->qbuf, q2->qbuf, 10)) != 0)
130 return r;
131 if((r = memcmp(q1->qbuf+q1->qbuflen-4, q2->qbuf+q2->qbuflen-4, 4)) != 0)
132 return r;
133 if(q1->dnssec != q2->dnssec) {
134 if(q1->dnssec < q2->dnssec)
135 return -1;
136 return 1;
137 }
138 if((r = query_dname_compare(q1->qbuf+10, q2->qbuf+10)) != 0)
139 return r;
140 if((r = edns_opt_list_compare(q1->opt_list, q2->opt_list)) != 0)
141 return r;
142 return sockaddr_cmp(&q1->addr, q1->addrlen, &q2->addr, q2->addrlen);
143 }
144
145 /** compare if the reuse element has the same address, port and same ssl-is
146 * used-for-it characteristic */
147 static int
reuse_cmp_addrportssl(const void * key1,const void * key2)148 reuse_cmp_addrportssl(const void* key1, const void* key2)
149 {
150 struct reuse_tcp* r1 = (struct reuse_tcp*)key1;
151 struct reuse_tcp* r2 = (struct reuse_tcp*)key2;
152 int r;
153 /* compare address and port */
154 r = sockaddr_cmp(&r1->addr, r1->addrlen, &r2->addr, r2->addrlen);
155 if(r != 0)
156 return r;
157
158 /* compare if SSL-enabled */
159 if(r1->is_ssl && !r2->is_ssl)
160 return 1;
161 if(!r1->is_ssl && r2->is_ssl)
162 return -1;
163 return 0;
164 }
165
166 int
reuse_cmp(const void * key1,const void * key2)167 reuse_cmp(const void* key1, const void* key2)
168 {
169 int r;
170 r = reuse_cmp_addrportssl(key1, key2);
171 if(r != 0)
172 return r;
173
174 /* compare ptr value */
175 if(key1 < key2) return -1;
176 if(key1 > key2) return 1;
177 return 0;
178 }
179
reuse_id_cmp(const void * key1,const void * key2)180 int reuse_id_cmp(const void* key1, const void* key2)
181 {
182 struct waiting_tcp* w1 = (struct waiting_tcp*)key1;
183 struct waiting_tcp* w2 = (struct waiting_tcp*)key2;
184 if(w1->id < w2->id)
185 return -1;
186 if(w1->id > w2->id)
187 return 1;
188 return 0;
189 }
190
191 /** delete waiting_tcp entry. Does not unlink from waiting list.
192 * @param w: to delete.
193 */
194 static void
waiting_tcp_delete(struct waiting_tcp * w)195 waiting_tcp_delete(struct waiting_tcp* w)
196 {
197 if(!w) return;
198 if(w->timer)
199 comm_timer_delete(w->timer);
200 free(w);
201 }
202
203 /**
204 * Pick random outgoing-interface of that family, and bind it.
205 * port set to 0 so OS picks a port number for us.
206 * if it is the ANY address, do not bind.
207 * @param pend: pending tcp structure, for storing the local address choice.
208 * @param w: tcp structure with destination address.
209 * @param s: socket fd.
210 * @return false on error, socket closed.
211 */
212 static int
pick_outgoing_tcp(struct pending_tcp * pend,struct waiting_tcp * w,int s)213 pick_outgoing_tcp(struct pending_tcp* pend, struct waiting_tcp* w, int s)
214 {
215 struct port_if* pi = NULL;
216 int num;
217 pend->pi = NULL;
218 #ifdef INET6
219 if(addr_is_ip6(&w->addr, w->addrlen))
220 num = w->outnet->num_ip6;
221 else
222 #endif
223 num = w->outnet->num_ip4;
224 if(num == 0) {
225 log_err("no TCP outgoing interfaces of family");
226 log_addr(VERB_OPS, "for addr", &w->addr, w->addrlen);
227 sock_close(s);
228 return 0;
229 }
230 #ifdef INET6
231 if(addr_is_ip6(&w->addr, w->addrlen))
232 pi = &w->outnet->ip6_ifs[ub_random_max(w->outnet->rnd, num)];
233 else
234 #endif
235 pi = &w->outnet->ip4_ifs[ub_random_max(w->outnet->rnd, num)];
236 log_assert(pi);
237 pend->pi = pi;
238 if(addr_is_any(&pi->addr, pi->addrlen)) {
239 /* binding to the ANY interface is for listening sockets */
240 return 1;
241 }
242 /* set port to 0 */
243 if(addr_is_ip6(&pi->addr, pi->addrlen))
244 ((struct sockaddr_in6*)&pi->addr)->sin6_port = 0;
245 else ((struct sockaddr_in*)&pi->addr)->sin_port = 0;
246 if(bind(s, (struct sockaddr*)&pi->addr, pi->addrlen) != 0) {
247 #ifndef USE_WINSOCK
248 #ifdef EADDRNOTAVAIL
249 if(!(verbosity < 4 && errno == EADDRNOTAVAIL))
250 #endif
251 #else /* USE_WINSOCK */
252 if(!(verbosity < 4 && WSAGetLastError() == WSAEADDRNOTAVAIL))
253 #endif
254 log_err("outgoing tcp: bind: %s", sock_strerror(errno));
255 sock_close(s);
256 return 0;
257 }
258 log_addr(VERB_ALGO, "tcp bound to src", &pi->addr, pi->addrlen);
259 return 1;
260 }
261
262 /** get TCP file descriptor for address, returns -1 on failure,
263 * tcp_mss is 0 or maxseg size to set for TCP packets. */
264 int
outnet_get_tcp_fd(struct sockaddr_storage * addr,socklen_t addrlen,int tcp_mss,int dscp,int nodelay)265 outnet_get_tcp_fd(struct sockaddr_storage* addr, socklen_t addrlen,
266 int tcp_mss, int dscp, int nodelay)
267 {
268 int s;
269 int af;
270 char* err;
271 #if defined(SO_REUSEADDR) || defined(IP_BIND_ADDRESS_NO_PORT) \
272 || defined(TCP_NODELAY)
273 int on = 1;
274 #endif
275 #ifdef INET6
276 if(addr_is_ip6(addr, addrlen)){
277 s = socket(PF_INET6, SOCK_STREAM, IPPROTO_TCP);
278 af = AF_INET6;
279 } else {
280 #else
281 {
282 #endif
283 af = AF_INET;
284 s = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);
285 }
286 if(s == -1) {
287 log_err_addr("outgoing tcp: socket", sock_strerror(errno),
288 addr, addrlen);
289 return -1;
290 }
291
292 #ifdef SO_REUSEADDR
293 if(setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (void*)&on,
294 (socklen_t)sizeof(on)) < 0) {
295 verbose(VERB_ALGO, "outgoing tcp:"
296 " setsockopt(.. SO_REUSEADDR ..) failed");
297 }
298 #endif
299
300 err = set_ip_dscp(s, af, dscp);
301 if(err != NULL) {
302 verbose(VERB_ALGO, "outgoing tcp:"
303 "error setting IP DiffServ codepoint on socket");
304 }
305
306 if(tcp_mss > 0) {
307 #if defined(IPPROTO_TCP) && defined(TCP_MAXSEG)
308 if(setsockopt(s, IPPROTO_TCP, TCP_MAXSEG,
309 (void*)&tcp_mss, (socklen_t)sizeof(tcp_mss)) < 0) {
310 verbose(VERB_ALGO, "outgoing tcp:"
311 " setsockopt(.. TCP_MAXSEG ..) failed");
312 }
313 #else
314 verbose(VERB_ALGO, "outgoing tcp:"
315 " setsockopt(TCP_MAXSEG) unsupported");
316 #endif /* defined(IPPROTO_TCP) && defined(TCP_MAXSEG) */
317 }
318 #ifdef IP_BIND_ADDRESS_NO_PORT
319 if(setsockopt(s, IPPROTO_IP, IP_BIND_ADDRESS_NO_PORT, (void*)&on,
320 (socklen_t)sizeof(on)) < 0) {
321 verbose(VERB_ALGO, "outgoing tcp:"
322 " setsockopt(.. IP_BIND_ADDRESS_NO_PORT ..) failed");
323 }
324 #endif /* IP_BIND_ADDRESS_NO_PORT */
325 if(nodelay) {
326 #if defined(IPPROTO_TCP) && defined(TCP_NODELAY)
327 if(setsockopt(s, IPPROTO_TCP, TCP_NODELAY, (void*)&on,
328 (socklen_t)sizeof(on)) < 0) {
329 verbose(VERB_ALGO, "outgoing tcp:"
330 " setsockopt(.. TCP_NODELAY ..) failed");
331 }
332 #else
333 verbose(VERB_ALGO, "outgoing tcp:"
334 " setsockopt(.. TCP_NODELAY ..) unsupported");
335 #endif /* defined(IPPROTO_TCP) && defined(TCP_NODELAY) */
336 }
337 return s;
338 }
339
340 /** connect tcp connection to addr, 0 on failure */
341 int
342 outnet_tcp_connect(int s, struct sockaddr_storage* addr, socklen_t addrlen)
343 {
344 if(connect(s, (struct sockaddr*)addr, addrlen) == -1) {
345 #ifndef USE_WINSOCK
346 #ifdef EINPROGRESS
347 if(errno != EINPROGRESS) {
348 #endif
349 if(tcp_connect_errno_needs_log(
350 (struct sockaddr*)addr, addrlen))
351 log_err_addr("outgoing tcp: connect",
352 strerror(errno), addr, addrlen);
353 close(s);
354 return 0;
355 #ifdef EINPROGRESS
356 }
357 #endif
358 #else /* USE_WINSOCK */
359 if(WSAGetLastError() != WSAEINPROGRESS &&
360 WSAGetLastError() != WSAEWOULDBLOCK) {
361 closesocket(s);
362 return 0;
363 }
364 #endif
365 }
366 return 1;
367 }
368
369 /** log reuse item addr and ptr with message */
370 static void
371 log_reuse_tcp(enum verbosity_value v, const char* msg, struct reuse_tcp* reuse)
372 {
373 uint16_t port;
374 char addrbuf[128];
375 if(verbosity < v) return;
376 if(!reuse || !reuse->pending || !reuse->pending->c)
377 return;
378 addr_to_str(&reuse->addr, reuse->addrlen, addrbuf, sizeof(addrbuf));
379 port = ntohs(((struct sockaddr_in*)&reuse->addr)->sin_port);
380 verbose(v, "%s %s#%u fd %d", msg, addrbuf, (unsigned)port,
381 reuse->pending->c->fd);
382 }
383
384 /** pop the first element from the writewait list */
385 struct waiting_tcp*
386 reuse_write_wait_pop(struct reuse_tcp* reuse)
387 {
388 struct waiting_tcp* w = reuse->write_wait_first;
389 if(!w)
390 return NULL;
391 log_assert(w->write_wait_queued);
392 log_assert(!w->write_wait_prev);
393 reuse->write_wait_first = w->write_wait_next;
394 if(w->write_wait_next)
395 w->write_wait_next->write_wait_prev = NULL;
396 else reuse->write_wait_last = NULL;
397 w->write_wait_queued = 0;
398 w->write_wait_next = NULL;
399 w->write_wait_prev = NULL;
400 return w;
401 }
402
403 /** remove the element from the writewait list */
404 void
405 reuse_write_wait_remove(struct reuse_tcp* reuse, struct waiting_tcp* w)
406 {
407 log_assert(w);
408 log_assert(w->write_wait_queued);
409 if(!w)
410 return;
411 if(!w->write_wait_queued)
412 return;
413 if(w->write_wait_prev)
414 w->write_wait_prev->write_wait_next = w->write_wait_next;
415 else reuse->write_wait_first = w->write_wait_next;
416 log_assert(!w->write_wait_prev ||
417 w->write_wait_prev->write_wait_next != w->write_wait_prev);
418 if(w->write_wait_next)
419 w->write_wait_next->write_wait_prev = w->write_wait_prev;
420 else reuse->write_wait_last = w->write_wait_prev;
421 log_assert(!w->write_wait_next
422 || w->write_wait_next->write_wait_prev != w->write_wait_next);
423 w->write_wait_queued = 0;
424 w->write_wait_next = NULL;
425 w->write_wait_prev = NULL;
426 }
427
428 /** push the element after the last on the writewait list */
429 void
430 reuse_write_wait_push_back(struct reuse_tcp* reuse, struct waiting_tcp* w)
431 {
432 if(!w) return;
433 log_assert(!w->write_wait_queued);
434 if(reuse->write_wait_last) {
435 reuse->write_wait_last->write_wait_next = w;
436 log_assert(reuse->write_wait_last->write_wait_next !=
437 reuse->write_wait_last);
438 w->write_wait_prev = reuse->write_wait_last;
439 } else {
440 reuse->write_wait_first = w;
441 w->write_wait_prev = NULL;
442 }
443 w->write_wait_next = NULL;
444 reuse->write_wait_last = w;
445 w->write_wait_queued = 1;
446 }
447
448 /** insert element in tree by id */
449 void
450 reuse_tree_by_id_insert(struct reuse_tcp* reuse, struct waiting_tcp* w)
451 {
452 #ifdef UNBOUND_DEBUG
453 rbnode_type* added;
454 #endif
455 log_assert(w->id_node.key == NULL);
456 w->id_node.key = w;
457 #ifdef UNBOUND_DEBUG
458 added =
459 #else
460 (void)
461 #endif
462 rbtree_insert(&reuse->tree_by_id, &w->id_node);
463 log_assert(added); /* should have been added */
464 }
465
466 /** find element in tree by id */
467 struct waiting_tcp*
468 reuse_tcp_by_id_find(struct reuse_tcp* reuse, uint16_t id)
469 {
470 struct waiting_tcp key_w;
471 rbnode_type* n;
472 memset(&key_w, 0, sizeof(key_w));
473 key_w.id_node.key = &key_w;
474 key_w.id = id;
475 n = rbtree_search(&reuse->tree_by_id, &key_w);
476 if(!n) return NULL;
477 return (struct waiting_tcp*)n->key;
478 }
479
480 /** return ID value of rbnode in tree_by_id */
481 static uint16_t
482 tree_by_id_get_id(rbnode_type* node)
483 {
484 struct waiting_tcp* w = (struct waiting_tcp*)node->key;
485 return w->id;
486 }
487
488 /** insert into reuse tcp tree and LRU, false on failure (duplicate) */
489 int
490 reuse_tcp_insert(struct outside_network* outnet, struct pending_tcp* pend_tcp)
491 {
492 log_reuse_tcp(VERB_CLIENT, "reuse_tcp_insert", &pend_tcp->reuse);
493 if(pend_tcp->reuse.item_on_lru_list) {
494 if(!pend_tcp->reuse.node.key)
495 log_err("internal error: reuse_tcp_insert: "
496 "in lru list without key");
497 return 1;
498 }
499 pend_tcp->reuse.node.key = &pend_tcp->reuse;
500 pend_tcp->reuse.pending = pend_tcp;
501 if(!rbtree_insert(&outnet->tcp_reuse, &pend_tcp->reuse.node)) {
502 /* We are not in the LRU list but we are already in the
503 * tcp_reuse tree, strange.
504 * Continue to add ourselves to the LRU list. */
505 log_err("internal error: reuse_tcp_insert: in lru list but "
506 "not in the tree");
507 }
508 /* insert into LRU, first is newest */
509 pend_tcp->reuse.lru_prev = NULL;
510 if(outnet->tcp_reuse_first) {
511 pend_tcp->reuse.lru_next = outnet->tcp_reuse_first;
512 log_assert(pend_tcp->reuse.lru_next != &pend_tcp->reuse);
513 outnet->tcp_reuse_first->lru_prev = &pend_tcp->reuse;
514 log_assert(outnet->tcp_reuse_first->lru_prev !=
515 outnet->tcp_reuse_first);
516 } else {
517 pend_tcp->reuse.lru_next = NULL;
518 outnet->tcp_reuse_last = &pend_tcp->reuse;
519 }
520 outnet->tcp_reuse_first = &pend_tcp->reuse;
521 pend_tcp->reuse.item_on_lru_list = 1;
522 log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) ||
523 (outnet->tcp_reuse_first && outnet->tcp_reuse_last));
524 log_assert(outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_next &&
525 outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_prev);
526 log_assert(outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_next &&
527 outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_prev);
528 return 1;
529 }
530
531 /** find reuse tcp stream to destination for query, or NULL if none */
532 static struct reuse_tcp*
533 reuse_tcp_find(struct outside_network* outnet, struct sockaddr_storage* addr,
534 socklen_t addrlen, int use_ssl)
535 {
536 struct waiting_tcp key_w;
537 struct pending_tcp key_p;
538 struct comm_point c;
539 rbnode_type* result = NULL, *prev;
540 verbose(VERB_CLIENT, "reuse_tcp_find");
541 memset(&key_w, 0, sizeof(key_w));
542 memset(&key_p, 0, sizeof(key_p));
543 memset(&c, 0, sizeof(c));
544 key_p.query = &key_w;
545 key_p.c = &c;
546 key_p.reuse.pending = &key_p;
547 key_p.reuse.node.key = &key_p.reuse;
548 if(use_ssl)
549 key_p.reuse.is_ssl = 1;
550 if(addrlen > (socklen_t)sizeof(key_p.reuse.addr))
551 return NULL;
552 memmove(&key_p.reuse.addr, addr, addrlen);
553 key_p.reuse.addrlen = addrlen;
554
555 verbose(VERB_CLIENT, "reuse_tcp_find: num reuse streams %u",
556 (unsigned)outnet->tcp_reuse.count);
557 if(outnet->tcp_reuse.root == NULL ||
558 outnet->tcp_reuse.root == RBTREE_NULL)
559 return NULL;
560 if(rbtree_find_less_equal(&outnet->tcp_reuse, &key_p.reuse,
561 &result)) {
562 /* exact match */
563 /* but the key is on stack, and ptr is compared, impossible */
564 log_assert(&key_p.reuse != (struct reuse_tcp*)result);
565 log_assert(&key_p != ((struct reuse_tcp*)result)->pending);
566 }
567
568 /* It is possible that we search for something before the first element
569 * in the tree. Replace a null pointer with the first element.
570 */
571 if (!result) {
572 verbose(VERB_CLIENT, "reuse_tcp_find: taking first");
573 result = rbtree_first(&outnet->tcp_reuse);
574 }
575
576 /* not found, return null */
577 if(!result || result == RBTREE_NULL)
578 return NULL;
579
580 /* It is possible that we got the previous address, but that the
581 * address we are looking for is in the tree. If the address we got
582 * is less than the address we are looking, then take the next entry.
583 */
584 if (reuse_cmp_addrportssl(result->key, &key_p.reuse) < 0) {
585 verbose(VERB_CLIENT, "reuse_tcp_find: key too low");
586 result = rbtree_next(result);
587 }
588
589 verbose(VERB_CLIENT, "reuse_tcp_find check inexact match");
590 /* inexact match, find one of possibly several connections to the
591 * same destination address, with the correct port, ssl, and
592 * also less than max number of open queries, or else, fail to open
593 * a new one */
594 /* rewind to start of sequence of same address,port,ssl */
595 prev = rbtree_previous(result);
596 while(prev && prev != RBTREE_NULL &&
597 reuse_cmp_addrportssl(prev->key, &key_p.reuse) == 0) {
598 result = prev;
599 prev = rbtree_previous(result);
600 }
601
602 /* loop to find first one that has correct characteristics */
603 while(result && result != RBTREE_NULL &&
604 reuse_cmp_addrportssl(result->key, &key_p.reuse) == 0) {
605 if(((struct reuse_tcp*)result)->tree_by_id.count <
606 outnet->max_reuse_tcp_queries) {
607 /* same address, port, ssl-yes-or-no, and has
608 * space for another query */
609 return (struct reuse_tcp*)result;
610 }
611 result = rbtree_next(result);
612 }
613 return NULL;
614 }
615
616 /** use the buffer to setup writing the query */
617 static void
618 outnet_tcp_take_query_setup(int s, struct pending_tcp* pend,
619 struct waiting_tcp* w)
620 {
621 struct timeval tv;
622 verbose(VERB_CLIENT, "outnet_tcp_take_query_setup: setup packet to write "
623 "len %d timeout %d msec",
624 (int)w->pkt_len, w->timeout);
625 pend->c->tcp_write_pkt = w->pkt;
626 pend->c->tcp_write_pkt_len = w->pkt_len;
627 pend->c->tcp_write_and_read = 1;
628 pend->c->tcp_write_byte_count = 0;
629 pend->c->tcp_is_reading = 0;
630 comm_point_start_listening(pend->c, s, -1);
631 /* set timer on the waiting_tcp entry, this is the write timeout
632 * for the written packet. The timer on pend->c is the timer
633 * for when there is no written packet and we have readtimeouts */
634 #ifndef S_SPLINT_S
635 tv.tv_sec = w->timeout/1000;
636 tv.tv_usec = (w->timeout%1000)*1000;
637 #endif
638 /* if the waiting_tcp was previously waiting for a buffer in the
639 * outside_network.tcpwaitlist, then the timer is reset now that
640 * we start writing it */
641 comm_timer_set(w->timer, &tv);
642 }
643
644 /** use next free buffer to service a tcp query */
645 static int
646 outnet_tcp_take_into_use(struct waiting_tcp* w)
647 {
648 struct pending_tcp* pend = w->outnet->tcp_free;
649 int s;
650 log_assert(pend);
651 log_assert(w->pkt);
652 log_assert(w->pkt_len > 0);
653 log_assert(w->addrlen > 0);
654 pend->c->tcp_do_toggle_rw = 0;
655 pend->c->tcp_do_close = 0;
656
657 /* Consistency check, if we have ssl_upstream but no sslctx, then
658 * log an error and return failure.
659 */
660 if (w->ssl_upstream && !w->outnet->sslctx) {
661 log_err("SSL upstream requested but no SSL context");
662 return 0;
663 }
664
665 /* open socket */
666 s = outnet_get_tcp_fd(&w->addr, w->addrlen, w->outnet->tcp_mss,
667 w->outnet->ip_dscp, w->ssl_upstream);
668
669 if(s == -1)
670 return 0;
671
672 if(!pick_outgoing_tcp(pend, w, s))
673 return 0;
674
675 fd_set_nonblock(s);
676 #ifdef USE_OSX_MSG_FASTOPEN
677 /* API for fast open is different here. We use a connectx() function and
678 then writes can happen as normal even using SSL.*/
679 /* connectx requires that the len be set in the sockaddr struct*/
680 struct sockaddr_in *addr_in = (struct sockaddr_in *)&w->addr;
681 addr_in->sin_len = w->addrlen;
682 sa_endpoints_t endpoints;
683 endpoints.sae_srcif = 0;
684 endpoints.sae_srcaddr = NULL;
685 endpoints.sae_srcaddrlen = 0;
686 endpoints.sae_dstaddr = (struct sockaddr *)&w->addr;
687 endpoints.sae_dstaddrlen = w->addrlen;
688 if (connectx(s, &endpoints, SAE_ASSOCID_ANY,
689 CONNECT_DATA_IDEMPOTENT | CONNECT_RESUME_ON_READ_WRITE,
690 NULL, 0, NULL, NULL) == -1) {
691 /* if fails, failover to connect for OSX 10.10 */
692 #ifdef EINPROGRESS
693 if(errno != EINPROGRESS) {
694 #else
695 if(1) {
696 #endif
697 if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) {
698 #else /* USE_OSX_MSG_FASTOPEN*/
699 #ifdef USE_MSG_FASTOPEN
700 pend->c->tcp_do_fastopen = 1;
701 /* Only do TFO for TCP in which case no connect() is required here.
702 Don't combine client TFO with SSL, since OpenSSL can't
703 currently support doing a handshake on fd that already isn't connected*/
704 if (w->outnet->sslctx && w->ssl_upstream) {
705 if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) {
706 #else /* USE_MSG_FASTOPEN*/
707 if(connect(s, (struct sockaddr*)&w->addr, w->addrlen) == -1) {
708 #endif /* USE_MSG_FASTOPEN*/
709 #endif /* USE_OSX_MSG_FASTOPEN*/
710 #ifndef USE_WINSOCK
711 #ifdef EINPROGRESS
712 if(errno != EINPROGRESS) {
713 #else
714 if(1) {
715 #endif
716 if(tcp_connect_errno_needs_log(
717 (struct sockaddr*)&w->addr, w->addrlen))
718 log_err_addr("outgoing tcp: connect",
719 strerror(errno), &w->addr, w->addrlen);
720 close(s);
721 #else /* USE_WINSOCK */
722 if(WSAGetLastError() != WSAEINPROGRESS &&
723 WSAGetLastError() != WSAEWOULDBLOCK) {
724 closesocket(s);
725 #endif
726 return 0;
727 }
728 }
729 #ifdef USE_MSG_FASTOPEN
730 }
731 #endif /* USE_MSG_FASTOPEN */
732 #ifdef USE_OSX_MSG_FASTOPEN
733 }
734 }
735 #endif /* USE_OSX_MSG_FASTOPEN */
736 if(w->outnet->sslctx && w->ssl_upstream) {
737 pend->c->ssl = outgoing_ssl_fd(w->outnet->sslctx, s);
738 if(!pend->c->ssl) {
739 pend->c->fd = s;
740 comm_point_close(pend->c);
741 return 0;
742 }
743 verbose(VERB_ALGO, "the query is using TLS encryption, for %s",
744 (w->tls_auth_name?w->tls_auth_name:"an unauthenticated connection"));
745 #ifdef USE_WINSOCK
746 comm_point_tcp_win_bio_cb(pend->c, pend->c->ssl);
747 #endif
748 pend->c->ssl_shake_state = comm_ssl_shake_write;
749 if(!set_auth_name_on_ssl(pend->c->ssl, w->tls_auth_name,
750 w->outnet->tls_use_sni)) {
751 pend->c->fd = s;
752 #ifdef HAVE_SSL
753 SSL_free(pend->c->ssl);
754 #endif
755 pend->c->ssl = NULL;
756 comm_point_close(pend->c);
757 return 0;
758 }
759 }
760 w->next_waiting = (void*)pend;
761 w->outnet->num_tcp_outgoing++;
762 w->outnet->tcp_free = pend->next_free;
763 pend->next_free = NULL;
764 pend->query = w;
765 pend->reuse.outnet = w->outnet;
766 pend->c->repinfo.remote_addrlen = w->addrlen;
767 pend->c->tcp_more_read_again = &pend->reuse.cp_more_read_again;
768 pend->c->tcp_more_write_again = &pend->reuse.cp_more_write_again;
769 pend->reuse.cp_more_read_again = 0;
770 pend->reuse.cp_more_write_again = 0;
771 memcpy(&pend->c->repinfo.remote_addr, &w->addr, w->addrlen);
772 pend->reuse.pending = pend;
773
774 /* Remove from tree in case the is_ssl will be different and causes the
775 * identity of the reuse_tcp to change; could result in nodes not being
776 * deleted from the tree (because the new identity does not match the
777 * previous node) but their ->key would be changed to NULL. */
778 if(pend->reuse.node.key)
779 reuse_tcp_remove_tree_list(w->outnet, &pend->reuse);
780
781 if(pend->c->ssl)
782 pend->reuse.is_ssl = 1;
783 else pend->reuse.is_ssl = 0;
784 /* insert in reuse by address tree if not already inserted there */
785 (void)reuse_tcp_insert(w->outnet, pend);
786 reuse_tree_by_id_insert(&pend->reuse, w);
787 outnet_tcp_take_query_setup(s, pend, w);
788 return 1;
789 }
790
791 /** Touch the lru of a reuse_tcp element, it is in use.
792 * This moves it to the front of the list, where it is not likely to
793 * be closed. Items at the back of the list are closed to make space. */
794 void
795 reuse_tcp_lru_touch(struct outside_network* outnet, struct reuse_tcp* reuse)
796 {
797 if(!reuse->item_on_lru_list) {
798 log_err("internal error: we need to touch the lru_list but item not in list");
799 return; /* not on the list, no lru to modify */
800 }
801 log_assert(reuse->lru_prev ||
802 (!reuse->lru_prev && outnet->tcp_reuse_first == reuse));
803 if(!reuse->lru_prev)
804 return; /* already first in the list */
805 /* remove at current position */
806 /* since it is not first, there is a previous element */
807 reuse->lru_prev->lru_next = reuse->lru_next;
808 log_assert(reuse->lru_prev->lru_next != reuse->lru_prev);
809 if(reuse->lru_next)
810 reuse->lru_next->lru_prev = reuse->lru_prev;
811 else outnet->tcp_reuse_last = reuse->lru_prev;
812 log_assert(!reuse->lru_next || reuse->lru_next->lru_prev != reuse->lru_next);
813 log_assert(outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_next &&
814 outnet->tcp_reuse_last != outnet->tcp_reuse_last->lru_prev);
815 /* insert at the front */
816 reuse->lru_prev = NULL;
817 reuse->lru_next = outnet->tcp_reuse_first;
818 if(outnet->tcp_reuse_first) {
819 outnet->tcp_reuse_first->lru_prev = reuse;
820 }
821 log_assert(reuse->lru_next != reuse);
822 /* since it is not first, it is not the only element and
823 * lru_next is thus not NULL and thus reuse is now not the last in
824 * the list, so outnet->tcp_reuse_last does not need to be modified */
825 outnet->tcp_reuse_first = reuse;
826 log_assert(outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_next &&
827 outnet->tcp_reuse_first != outnet->tcp_reuse_first->lru_prev);
828 log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) ||
829 (outnet->tcp_reuse_first && outnet->tcp_reuse_last));
830 }
831
832 /** Snip the last reuse_tcp element off of the LRU list */
833 struct reuse_tcp*
834 reuse_tcp_lru_snip(struct outside_network* outnet)
835 {
836 struct reuse_tcp* reuse = outnet->tcp_reuse_last;
837 if(!reuse) return NULL;
838 /* snip off of LRU */
839 log_assert(reuse->lru_next == NULL);
840 if(reuse->lru_prev) {
841 outnet->tcp_reuse_last = reuse->lru_prev;
842 reuse->lru_prev->lru_next = NULL;
843 } else {
844 outnet->tcp_reuse_last = NULL;
845 outnet->tcp_reuse_first = NULL;
846 }
847 log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) ||
848 (outnet->tcp_reuse_first && outnet->tcp_reuse_last));
849 reuse->item_on_lru_list = 0;
850 reuse->lru_next = NULL;
851 reuse->lru_prev = NULL;
852 return reuse;
853 }
854
855 /** remove waiting tcp from the outnet waiting list */
856 void
857 outnet_waiting_tcp_list_remove(struct outside_network* outnet, struct waiting_tcp* w)
858 {
859 struct waiting_tcp* p = outnet->tcp_wait_first, *prev = NULL;
860 w->on_tcp_waiting_list = 0;
861 while(p) {
862 if(p == w) {
863 /* remove w */
864 if(prev)
865 prev->next_waiting = w->next_waiting;
866 else outnet->tcp_wait_first = w->next_waiting;
867 if(outnet->tcp_wait_last == w)
868 outnet->tcp_wait_last = prev;
869 w->next_waiting = NULL;
870 return;
871 }
872 prev = p;
873 p = p->next_waiting;
874 }
875 /* outnet_waiting_tcp_list_remove is currently called only with items
876 * that are already in the waiting list. */
877 log_assert(0);
878 }
879
880 /** pop the first waiting tcp from the outnet waiting list */
881 struct waiting_tcp*
882 outnet_waiting_tcp_list_pop(struct outside_network* outnet)
883 {
884 struct waiting_tcp* w = outnet->tcp_wait_first;
885 if(!outnet->tcp_wait_first) return NULL;
886 log_assert(w->on_tcp_waiting_list);
887 outnet->tcp_wait_first = w->next_waiting;
888 if(outnet->tcp_wait_last == w)
889 outnet->tcp_wait_last = NULL;
890 w->on_tcp_waiting_list = 0;
891 w->next_waiting = NULL;
892 return w;
893 }
894
895 /** add waiting_tcp element to the outnet tcp waiting list */
896 void
897 outnet_waiting_tcp_list_add(struct outside_network* outnet,
898 struct waiting_tcp* w, int set_timer)
899 {
900 struct timeval tv;
901 log_assert(!w->on_tcp_waiting_list);
902 if(w->on_tcp_waiting_list)
903 return;
904 w->next_waiting = NULL;
905 if(outnet->tcp_wait_last)
906 outnet->tcp_wait_last->next_waiting = w;
907 else outnet->tcp_wait_first = w;
908 outnet->tcp_wait_last = w;
909 w->on_tcp_waiting_list = 1;
910 if(set_timer) {
911 #ifndef S_SPLINT_S
912 tv.tv_sec = w->timeout/1000;
913 tv.tv_usec = (w->timeout%1000)*1000;
914 #endif
915 comm_timer_set(w->timer, &tv);
916 }
917 }
918
919 /** add waiting_tcp element as first to the outnet tcp waiting list */
920 void
921 outnet_waiting_tcp_list_add_first(struct outside_network* outnet,
922 struct waiting_tcp* w, int reset_timer)
923 {
924 struct timeval tv;
925 log_assert(!w->on_tcp_waiting_list);
926 if(w->on_tcp_waiting_list)
927 return;
928 w->next_waiting = outnet->tcp_wait_first;
929 log_assert(w->next_waiting != w);
930 if(!outnet->tcp_wait_last)
931 outnet->tcp_wait_last = w;
932 outnet->tcp_wait_first = w;
933 w->on_tcp_waiting_list = 1;
934 if(reset_timer) {
935 #ifndef S_SPLINT_S
936 tv.tv_sec = w->timeout/1000;
937 tv.tv_usec = (w->timeout%1000)*1000;
938 #endif
939 comm_timer_set(w->timer, &tv);
940 }
941 log_assert(
942 (!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) ||
943 (outnet->tcp_reuse_first && outnet->tcp_reuse_last));
944 }
945
946 /** call callback on waiting_tcp, if not NULL */
947 static void
948 waiting_tcp_callback(struct waiting_tcp* w, struct comm_point* c, int error,
949 struct comm_reply* reply_info)
950 {
951 if(w && w->cb) {
952 fptr_ok(fptr_whitelist_pending_tcp(w->cb));
953 (void)(*w->cb)(c, w->cb_arg, error, reply_info);
954 }
955 }
956
957 /** see if buffers can be used to service TCP queries */
958 static void
959 use_free_buffer(struct outside_network* outnet)
960 {
961 struct waiting_tcp* w;
962 while(outnet->tcp_wait_first && !outnet->want_to_quit) {
963 #ifdef USE_DNSTAP
964 struct pending_tcp* pend_tcp = NULL;
965 #endif
966 struct reuse_tcp* reuse = NULL;
967 w = outnet_waiting_tcp_list_pop(outnet);
968 log_assert(
969 (!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) ||
970 (outnet->tcp_reuse_first && outnet->tcp_reuse_last));
971 reuse = reuse_tcp_find(outnet, &w->addr, w->addrlen,
972 w->ssl_upstream);
973 /* re-select an ID when moving to a new TCP buffer */
974 w->id = tcp_select_id(outnet, reuse);
975 LDNS_ID_SET(w->pkt, w->id);
976 if(reuse) {
977 log_reuse_tcp(VERB_CLIENT, "use free buffer for waiting tcp: "
978 "found reuse", reuse);
979 #ifdef USE_DNSTAP
980 pend_tcp = reuse->pending;
981 #endif
982 reuse_tcp_lru_touch(outnet, reuse);
983 comm_timer_disable(w->timer);
984 w->next_waiting = (void*)reuse->pending;
985 reuse_tree_by_id_insert(reuse, w);
986 if(reuse->pending->query) {
987 /* on the write wait list */
988 reuse_write_wait_push_back(reuse, w);
989 } else {
990 /* write straight away */
991 /* stop the timer on read of the fd */
992 comm_point_stop_listening(reuse->pending->c);
993 reuse->pending->query = w;
994 outnet_tcp_take_query_setup(
995 reuse->pending->c->fd, reuse->pending,
996 w);
997 }
998 } else if(outnet->tcp_free) {
999 struct pending_tcp* pend = w->outnet->tcp_free;
1000 rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp);
1001 pend->reuse.pending = pend;
1002 memcpy(&pend->reuse.addr, &w->addr, w->addrlen);
1003 pend->reuse.addrlen = w->addrlen;
1004 if(!outnet_tcp_take_into_use(w)) {
1005 waiting_tcp_callback(w, NULL, NETEVENT_CLOSED,
1006 NULL);
1007 waiting_tcp_delete(w);
1008 #ifdef USE_DNSTAP
1009 w = NULL;
1010 #endif
1011 }
1012 #ifdef USE_DNSTAP
1013 pend_tcp = pend;
1014 #endif
1015 } else {
1016 /* no reuse and no free buffer, put back at the start */
1017 outnet_waiting_tcp_list_add_first(outnet, w, 0);
1018 break;
1019 }
1020 #ifdef USE_DNSTAP
1021 if(outnet->dtenv && pend_tcp && w && w->sq &&
1022 (outnet->dtenv->log_resolver_query_messages ||
1023 outnet->dtenv->log_forwarder_query_messages)) {
1024 sldns_buffer tmp;
1025 sldns_buffer_init_frm_data(&tmp, w->pkt, w->pkt_len);
1026 dt_msg_send_outside_query(outnet->dtenv, &w->sq->addr,
1027 &pend_tcp->pi->addr, comm_tcp, NULL, w->sq->zone,
1028 w->sq->zonelen, &tmp);
1029 }
1030 #endif
1031 }
1032 }
1033
1034 /** delete element from tree by id */
1035 static void
1036 reuse_tree_by_id_delete(struct reuse_tcp* reuse, struct waiting_tcp* w)
1037 {
1038 #ifdef UNBOUND_DEBUG
1039 rbnode_type* rem;
1040 #endif
1041 log_assert(w->id_node.key != NULL);
1042 #ifdef UNBOUND_DEBUG
1043 rem =
1044 #else
1045 (void)
1046 #endif
1047 rbtree_delete(&reuse->tree_by_id, w);
1048 log_assert(rem); /* should have been there */
1049 w->id_node.key = NULL;
1050 }
1051
1052 /** move writewait list to go for another connection. */
1053 static void
1054 reuse_move_writewait_away(struct outside_network* outnet,
1055 struct pending_tcp* pend)
1056 {
1057 /* the writewait list has not been written yet, so if the
1058 * stream was closed, they have not actually been failed, only
1059 * the queries written. Other queries can get written to another
1060 * stream. For upstreams that do not support multiple queries
1061 * and answers, the stream can get closed, and then the queries
1062 * can get written on a new socket */
1063 struct waiting_tcp* w;
1064 if(pend->query && pend->query->error_count == 0 &&
1065 pend->c->tcp_write_pkt == pend->query->pkt &&
1066 pend->c->tcp_write_pkt_len == pend->query->pkt_len) {
1067 /* since the current query is not written, it can also
1068 * move to a free buffer */
1069 if(verbosity >= VERB_CLIENT && pend->query->pkt_len > 12+2+2 &&
1070 LDNS_QDCOUNT(pend->query->pkt) > 0 &&
1071 dname_valid(pend->query->pkt+12, pend->query->pkt_len-12)) {
1072 char buf[LDNS_MAX_DOMAINLEN];
1073 dname_str(pend->query->pkt+12, buf);
1074 verbose(VERB_CLIENT, "reuse_move_writewait_away current %s %d bytes were written",
1075 buf, (int)pend->c->tcp_write_byte_count);
1076 }
1077 pend->c->tcp_write_pkt = NULL;
1078 pend->c->tcp_write_pkt_len = 0;
1079 pend->c->tcp_write_and_read = 0;
1080 pend->reuse.cp_more_read_again = 0;
1081 pend->reuse.cp_more_write_again = 0;
1082 pend->c->tcp_is_reading = 1;
1083 w = pend->query;
1084 pend->query = NULL;
1085 /* increase error count, so that if the next socket fails too
1086 * the server selection is run again with this query failed
1087 * and it can select a different server (if possible), or
1088 * fail the query */
1089 w->error_count ++;
1090 reuse_tree_by_id_delete(&pend->reuse, w);
1091 outnet_waiting_tcp_list_add(outnet, w, 1);
1092 }
1093 while((w = reuse_write_wait_pop(&pend->reuse)) != NULL) {
1094 if(verbosity >= VERB_CLIENT && w->pkt_len > 12+2+2 &&
1095 LDNS_QDCOUNT(w->pkt) > 0 &&
1096 dname_valid(w->pkt+12, w->pkt_len-12)) {
1097 char buf[LDNS_MAX_DOMAINLEN];
1098 dname_str(w->pkt+12, buf);
1099 verbose(VERB_CLIENT, "reuse_move_writewait_away item %s", buf);
1100 }
1101 reuse_tree_by_id_delete(&pend->reuse, w);
1102 outnet_waiting_tcp_list_add(outnet, w, 1);
1103 }
1104 }
1105
1106 /** remove reused element from tree and lru list */
1107 void
1108 reuse_tcp_remove_tree_list(struct outside_network* outnet,
1109 struct reuse_tcp* reuse)
1110 {
1111 verbose(VERB_CLIENT, "reuse_tcp_remove_tree_list");
1112 if(reuse->node.key) {
1113 /* delete it from reuse tree */
1114 if(!rbtree_delete(&outnet->tcp_reuse, reuse)) {
1115 /* should not be possible, it should be there */
1116 char buf[256];
1117 addr_to_str(&reuse->addr, reuse->addrlen, buf,
1118 sizeof(buf));
1119 log_err("reuse tcp delete: node not present, internal error, %s ssl %d lru %d", buf, reuse->is_ssl, reuse->item_on_lru_list);
1120 }
1121 reuse->node.key = NULL;
1122 /* defend against loops on broken tree by zeroing the
1123 * rbnode structure */
1124 memset(&reuse->node, 0, sizeof(reuse->node));
1125 }
1126 /* delete from reuse list */
1127 if(reuse->item_on_lru_list) {
1128 if(reuse->lru_prev) {
1129 /* assert that members of the lru list are waiting
1130 * and thus have a pending pointer to the struct */
1131 log_assert(reuse->lru_prev->pending);
1132 reuse->lru_prev->lru_next = reuse->lru_next;
1133 log_assert(reuse->lru_prev->lru_next != reuse->lru_prev);
1134 } else {
1135 log_assert(!reuse->lru_next || reuse->lru_next->pending);
1136 outnet->tcp_reuse_first = reuse->lru_next;
1137 log_assert(!outnet->tcp_reuse_first ||
1138 (outnet->tcp_reuse_first !=
1139 outnet->tcp_reuse_first->lru_next &&
1140 outnet->tcp_reuse_first !=
1141 outnet->tcp_reuse_first->lru_prev));
1142 }
1143 if(reuse->lru_next) {
1144 /* assert that members of the lru list are waiting
1145 * and thus have a pending pointer to the struct */
1146 log_assert(reuse->lru_next->pending);
1147 reuse->lru_next->lru_prev = reuse->lru_prev;
1148 log_assert(reuse->lru_next->lru_prev != reuse->lru_next);
1149 } else {
1150 log_assert(!reuse->lru_prev || reuse->lru_prev->pending);
1151 outnet->tcp_reuse_last = reuse->lru_prev;
1152 log_assert(!outnet->tcp_reuse_last ||
1153 (outnet->tcp_reuse_last !=
1154 outnet->tcp_reuse_last->lru_next &&
1155 outnet->tcp_reuse_last !=
1156 outnet->tcp_reuse_last->lru_prev));
1157 }
1158 log_assert((!outnet->tcp_reuse_first && !outnet->tcp_reuse_last) ||
1159 (outnet->tcp_reuse_first && outnet->tcp_reuse_last));
1160 reuse->item_on_lru_list = 0;
1161 reuse->lru_next = NULL;
1162 reuse->lru_prev = NULL;
1163 }
1164 reuse->pending = NULL;
1165 }
1166
1167 /** helper function that deletes an element from the tree of readwait
1168 * elements in tcp reuse structure */
1169 static void reuse_del_readwait_elem(rbnode_type* node, void* ATTR_UNUSED(arg))
1170 {
1171 struct waiting_tcp* w = (struct waiting_tcp*)node->key;
1172 waiting_tcp_delete(w);
1173 }
1174
1175 /** delete readwait waiting_tcp elements, deletes the elements in the list */
1176 void reuse_del_readwait(rbtree_type* tree_by_id)
1177 {
1178 if(tree_by_id->root == NULL ||
1179 tree_by_id->root == RBTREE_NULL)
1180 return;
1181 traverse_postorder(tree_by_id, &reuse_del_readwait_elem, NULL);
1182 rbtree_init(tree_by_id, reuse_id_cmp);
1183 }
1184
1185 /** decommission a tcp buffer, closes commpoint and frees waiting_tcp entry */
1186 static void
1187 decommission_pending_tcp(struct outside_network* outnet,
1188 struct pending_tcp* pend)
1189 {
1190 verbose(VERB_CLIENT, "decommission_pending_tcp");
1191 /* A certain code path can lead here twice for the same pending_tcp
1192 * creating a loop in the free pending_tcp list. */
1193 if(outnet->tcp_free != pend) {
1194 pend->next_free = outnet->tcp_free;
1195 outnet->tcp_free = pend;
1196 }
1197 if(pend->reuse.node.key) {
1198 /* needs unlink from the reuse tree to get deleted */
1199 reuse_tcp_remove_tree_list(outnet, &pend->reuse);
1200 }
1201 /* free SSL structure after remove from outnet tcp reuse tree,
1202 * because the c->ssl null or not is used for sorting in the tree */
1203 if(pend->c->ssl) {
1204 #ifdef HAVE_SSL
1205 SSL_shutdown(pend->c->ssl);
1206 SSL_free(pend->c->ssl);
1207 pend->c->ssl = NULL;
1208 #endif
1209 }
1210 comm_point_close(pend->c);
1211 pend->reuse.cp_more_read_again = 0;
1212 pend->reuse.cp_more_write_again = 0;
1213 /* unlink the query and writewait list, it is part of the tree
1214 * nodes and is deleted */
1215 pend->query = NULL;
1216 pend->reuse.write_wait_first = NULL;
1217 pend->reuse.write_wait_last = NULL;
1218 reuse_del_readwait(&pend->reuse.tree_by_id);
1219 }
1220
1221 /** perform failure callbacks for waiting queries in reuse read rbtree */
1222 static void reuse_cb_readwait_for_failure(rbtree_type* tree_by_id, int err)
1223 {
1224 rbnode_type* node;
1225 if(tree_by_id->root == NULL ||
1226 tree_by_id->root == RBTREE_NULL)
1227 return;
1228 node = rbtree_first(tree_by_id);
1229 while(node && node != RBTREE_NULL) {
1230 struct waiting_tcp* w = (struct waiting_tcp*)node->key;
1231 waiting_tcp_callback(w, NULL, err, NULL);
1232 node = rbtree_next(node);
1233 }
1234 }
1235
1236 /** mark the entry for being in the cb_and_decommission stage */
1237 static void mark_for_cb_and_decommission(rbnode_type* node,
1238 void* ATTR_UNUSED(arg))
1239 {
1240 struct waiting_tcp* w = (struct waiting_tcp*)node->key;
1241 /* Mark the waiting_tcp to signal later code (serviced_delete) that
1242 * this item is part of the backed up tree_by_id and will be deleted
1243 * later. */
1244 w->in_cb_and_decommission = 1;
1245 /* Mark the serviced_query for deletion so that later code through
1246 * callbacks (iter_clear .. outnet_serviced_query_stop) won't
1247 * prematurely delete it. */
1248 if(w->cb)
1249 ((struct serviced_query*)w->cb_arg)->to_be_deleted = 1;
1250 }
1251
1252 /** perform callbacks for failure and also decommission pending tcp.
1253 * the callbacks remove references in sq->pending to the waiting_tcp
1254 * members of the tree_by_id in the pending tcp. The pending_tcp is
1255 * removed before the callbacks, so that the callbacks do not modify
1256 * the pending_tcp due to its reference in the outside_network reuse tree */
1257 static void reuse_cb_and_decommission(struct outside_network* outnet,
1258 struct pending_tcp* pend, int error)
1259 {
1260 rbtree_type store;
1261 store = pend->reuse.tree_by_id;
1262 pend->query = NULL;
1263 rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp);
1264 pend->reuse.write_wait_first = NULL;
1265 pend->reuse.write_wait_last = NULL;
1266 decommission_pending_tcp(outnet, pend);
1267 if(store.root != NULL && store.root != RBTREE_NULL) {
1268 traverse_postorder(&store, &mark_for_cb_and_decommission, NULL);
1269 }
1270 reuse_cb_readwait_for_failure(&store, error);
1271 reuse_del_readwait(&store);
1272 }
1273
1274 /** set timeout on tcp fd and setup read event to catch incoming dns msgs */
1275 static void
1276 reuse_tcp_setup_timeout(struct pending_tcp* pend_tcp, int tcp_reuse_timeout)
1277 {
1278 log_reuse_tcp(VERB_CLIENT, "reuse_tcp_setup_timeout", &pend_tcp->reuse);
1279 comm_point_start_listening(pend_tcp->c, -1, tcp_reuse_timeout);
1280 }
1281
1282 /** set timeout on tcp fd and setup read event to catch incoming dns msgs */
1283 static void
1284 reuse_tcp_setup_read_and_timeout(struct pending_tcp* pend_tcp, int tcp_reuse_timeout)
1285 {
1286 log_reuse_tcp(VERB_CLIENT, "reuse_tcp_setup_readtimeout", &pend_tcp->reuse);
1287 sldns_buffer_clear(pend_tcp->c->buffer);
1288 pend_tcp->c->tcp_is_reading = 1;
1289 pend_tcp->c->tcp_byte_count = 0;
1290 comm_point_stop_listening(pend_tcp->c);
1291 comm_point_start_listening(pend_tcp->c, -1, tcp_reuse_timeout);
1292 }
1293
1294 int
1295 outnet_tcp_cb(struct comm_point* c, void* arg, int error,
1296 struct comm_reply *reply_info)
1297 {
1298 struct pending_tcp* pend = (struct pending_tcp*)arg;
1299 struct outside_network* outnet = pend->reuse.outnet;
1300 struct waiting_tcp* w = NULL;
1301 log_assert(pend->reuse.item_on_lru_list && pend->reuse.node.key);
1302 verbose(VERB_ALGO, "outnettcp cb");
1303 if(error == NETEVENT_TIMEOUT) {
1304 if(pend->c->tcp_write_and_read) {
1305 verbose(VERB_QUERY, "outnettcp got tcp timeout "
1306 "for read, ignored because write underway");
1307 /* if we are writing, ignore readtimer, wait for write timer
1308 * or write is done */
1309 return 0;
1310 } else {
1311 verbose(VERB_QUERY, "outnettcp got tcp timeout %s",
1312 (pend->reuse.tree_by_id.count?"for reading pkt":
1313 "for keepalive for reuse"));
1314 }
1315 /* must be timeout for reading or keepalive reuse,
1316 * close it. */
1317 reuse_tcp_remove_tree_list(outnet, &pend->reuse);
1318 } else if(error == NETEVENT_PKT_WRITTEN) {
1319 /* the packet we want to write has been written. */
1320 verbose(VERB_ALGO, "outnet tcp pkt was written event");
1321 log_assert(c == pend->c);
1322 log_assert(pend->query->pkt == pend->c->tcp_write_pkt);
1323 log_assert(pend->query->pkt_len == pend->c->tcp_write_pkt_len);
1324 pend->c->tcp_write_pkt = NULL;
1325 pend->c->tcp_write_pkt_len = 0;
1326 /* the pend.query is already in tree_by_id */
1327 log_assert(pend->query->id_node.key);
1328 pend->query = NULL;
1329 /* setup to write next packet or setup read timeout */
1330 if(pend->reuse.write_wait_first) {
1331 verbose(VERB_ALGO, "outnet tcp setup next pkt");
1332 /* we can write it straight away perhaps, set flag
1333 * because this callback called after a tcp write
1334 * succeeded and likely more buffer space is available
1335 * and we can write some more. */
1336 pend->reuse.cp_more_write_again = 1;
1337 pend->query = reuse_write_wait_pop(&pend->reuse);
1338 comm_point_stop_listening(pend->c);
1339 outnet_tcp_take_query_setup(pend->c->fd, pend,
1340 pend->query);
1341 } else {
1342 verbose(VERB_ALGO, "outnet tcp writes done, wait");
1343 pend->c->tcp_write_and_read = 0;
1344 pend->reuse.cp_more_read_again = 0;
1345 pend->reuse.cp_more_write_again = 0;
1346 pend->c->tcp_is_reading = 1;
1347 comm_point_stop_listening(pend->c);
1348 reuse_tcp_setup_timeout(pend, outnet->tcp_reuse_timeout);
1349 }
1350 return 0;
1351 } else if(error != NETEVENT_NOERROR) {
1352 verbose(VERB_QUERY, "outnettcp got tcp error %d", error);
1353 reuse_move_writewait_away(outnet, pend);
1354 /* pass error below and exit */
1355 } else {
1356 /* check ID */
1357 if(sldns_buffer_limit(c->buffer) < sizeof(uint16_t)) {
1358 log_addr(VERB_QUERY,
1359 "outnettcp: bad ID in reply, too short, from:",
1360 &pend->reuse.addr, pend->reuse.addrlen);
1361 error = NETEVENT_CLOSED;
1362 } else {
1363 uint16_t id = LDNS_ID_WIRE(sldns_buffer_begin(
1364 c->buffer));
1365 /* find the query the reply is for */
1366 w = reuse_tcp_by_id_find(&pend->reuse, id);
1367 /* Make sure that the reply we got is at least for a
1368 * sent query with the same ID; the waiting_tcp that
1369 * gets a reply is assumed to not be waiting to be
1370 * sent. */
1371 if(w && (w->on_tcp_waiting_list || w->write_wait_queued))
1372 w = NULL;
1373 }
1374 }
1375 if(error == NETEVENT_NOERROR && !w) {
1376 /* no struct waiting found in tree, no reply to call */
1377 log_addr(VERB_QUERY, "outnettcp: bad ID in reply, from:",
1378 &pend->reuse.addr, pend->reuse.addrlen);
1379 error = NETEVENT_CLOSED;
1380 }
1381 if(error == NETEVENT_NOERROR) {
1382 /* add to reuse tree so it can be reused, if not a failure.
1383 * This is possible if the state machine wants to make a tcp
1384 * query again to the same destination. */
1385 if(outnet->tcp_reuse.count < outnet->tcp_reuse_max) {
1386 (void)reuse_tcp_insert(outnet, pend);
1387 }
1388 }
1389 if(w) {
1390 log_assert(!w->on_tcp_waiting_list);
1391 log_assert(!w->write_wait_queued);
1392 reuse_tree_by_id_delete(&pend->reuse, w);
1393 verbose(VERB_CLIENT, "outnet tcp callback query err %d buflen %d",
1394 error, (int)sldns_buffer_limit(c->buffer));
1395 waiting_tcp_callback(w, c, error, reply_info);
1396 waiting_tcp_delete(w);
1397 }
1398 verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb");
1399 if(error == NETEVENT_NOERROR && pend->reuse.node.key) {
1400 verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb: keep it");
1401 /* it is in the reuse_tcp tree, with other queries, or
1402 * on the empty list. do not decommission it */
1403 /* if there are more outstanding queries, we could try to
1404 * read again, to see if it is on the input,
1405 * because this callback called after a successful read
1406 * and there could be more bytes to read on the input */
1407 if(pend->reuse.tree_by_id.count != 0)
1408 pend->reuse.cp_more_read_again = 1;
1409 reuse_tcp_setup_read_and_timeout(pend, outnet->tcp_reuse_timeout);
1410 return 0;
1411 }
1412 verbose(VERB_CLIENT, "outnet_tcp_cb reuse after cb: decommission it");
1413 /* no queries on it, no space to keep it. or timeout or closed due
1414 * to error. Close it */
1415 reuse_cb_and_decommission(outnet, pend, (error==NETEVENT_TIMEOUT?
1416 NETEVENT_TIMEOUT:NETEVENT_CLOSED));
1417 use_free_buffer(outnet);
1418 return 0;
1419 }
1420
1421 /** lower use count on pc, see if it can be closed */
1422 static void
1423 portcomm_loweruse(struct outside_network* outnet, struct port_comm* pc)
1424 {
1425 struct port_if* pif;
1426 pc->num_outstanding--;
1427 if(pc->num_outstanding > 0) {
1428 return;
1429 }
1430 /* close it and replace in unused list */
1431 verbose(VERB_ALGO, "close of port %d", pc->number);
1432 comm_point_close(pc->cp);
1433 pif = pc->pif;
1434 log_assert(pif->inuse > 0);
1435 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION
1436 pif->avail_ports[pif->avail_total - pif->inuse] = pc->number;
1437 #endif
1438 pif->inuse--;
1439 pif->out[pc->index] = pif->out[pif->inuse];
1440 pif->out[pc->index]->index = pc->index;
1441 pc->next = outnet->unused_fds;
1442 outnet->unused_fds = pc;
1443 }
1444
1445 /** try to send waiting UDP queries */
1446 static void
1447 outnet_send_wait_udp(struct outside_network* outnet)
1448 {
1449 struct pending* pend;
1450 /* process waiting queries */
1451 while(outnet->udp_wait_first && outnet->unused_fds
1452 && !outnet->want_to_quit) {
1453 pend = outnet->udp_wait_first;
1454 outnet->udp_wait_first = pend->next_waiting;
1455 if(!pend->next_waiting) outnet->udp_wait_last = NULL;
1456 sldns_buffer_clear(outnet->udp_buff);
1457 sldns_buffer_write(outnet->udp_buff, pend->pkt, pend->pkt_len);
1458 sldns_buffer_flip(outnet->udp_buff);
1459 free(pend->pkt); /* freeing now makes get_mem correct */
1460 pend->pkt = NULL;
1461 pend->pkt_len = 0;
1462 log_assert(!pend->sq->busy);
1463 pend->sq->busy = 1;
1464 if(!randomize_and_send_udp(pend, outnet->udp_buff,
1465 pend->timeout)) {
1466 /* callback error on pending */
1467 if(pend->cb) {
1468 fptr_ok(fptr_whitelist_pending_udp(pend->cb));
1469 (void)(*pend->cb)(outnet->unused_fds->cp, pend->cb_arg,
1470 NETEVENT_CLOSED, NULL);
1471 }
1472 pending_delete(outnet, pend);
1473 } else {
1474 pend->sq->busy = 0;
1475 }
1476 }
1477 }
1478
1479 int
1480 outnet_udp_cb(struct comm_point* c, void* arg, int error,
1481 struct comm_reply *reply_info)
1482 {
1483 struct outside_network* outnet = (struct outside_network*)arg;
1484 struct pending key;
1485 struct pending* p;
1486 verbose(VERB_ALGO, "answer cb");
1487
1488 if(error != NETEVENT_NOERROR) {
1489 verbose(VERB_QUERY, "outnetudp got udp error %d", error);
1490 return 0;
1491 }
1492 if(sldns_buffer_limit(c->buffer) < LDNS_HEADER_SIZE) {
1493 verbose(VERB_QUERY, "outnetudp udp too short");
1494 return 0;
1495 }
1496 log_assert(reply_info);
1497
1498 /* setup lookup key */
1499 key.id = (unsigned)LDNS_ID_WIRE(sldns_buffer_begin(c->buffer));
1500 memcpy(&key.addr, &reply_info->remote_addr, reply_info->remote_addrlen);
1501 key.addrlen = reply_info->remote_addrlen;
1502 verbose(VERB_ALGO, "Incoming reply id = %4.4x", key.id);
1503 log_addr(VERB_ALGO, "Incoming reply addr =",
1504 &reply_info->remote_addr, reply_info->remote_addrlen);
1505
1506 /* find it, see if this thing is a valid query response */
1507 verbose(VERB_ALGO, "lookup size is %d entries", (int)outnet->pending->count);
1508 p = (struct pending*)rbtree_search(outnet->pending, &key);
1509 if(!p) {
1510 verbose(VERB_QUERY, "received unwanted or unsolicited udp reply dropped.");
1511 log_buf(VERB_ALGO, "dropped message", c->buffer);
1512 outnet->unwanted_replies++;
1513 if(outnet->unwanted_threshold && ++outnet->unwanted_total
1514 >= outnet->unwanted_threshold) {
1515 log_warn("unwanted reply total reached threshold (%u)"
1516 " you may be under attack."
1517 " defensive action: clearing the cache",
1518 (unsigned)outnet->unwanted_threshold);
1519 fptr_ok(fptr_whitelist_alloc_cleanup(
1520 outnet->unwanted_action));
1521 (*outnet->unwanted_action)(outnet->unwanted_param);
1522 outnet->unwanted_total = 0;
1523 }
1524 return 0;
1525 }
1526
1527 verbose(VERB_ALGO, "received udp reply.");
1528 log_buf(VERB_ALGO, "udp message", c->buffer);
1529 if(p->pc->cp != c) {
1530 verbose(VERB_QUERY, "received reply id,addr on wrong port. "
1531 "dropped.");
1532 outnet->unwanted_replies++;
1533 if(outnet->unwanted_threshold && ++outnet->unwanted_total
1534 >= outnet->unwanted_threshold) {
1535 log_warn("unwanted reply total reached threshold (%u)"
1536 " you may be under attack."
1537 " defensive action: clearing the cache",
1538 (unsigned)outnet->unwanted_threshold);
1539 fptr_ok(fptr_whitelist_alloc_cleanup(
1540 outnet->unwanted_action));
1541 (*outnet->unwanted_action)(outnet->unwanted_param);
1542 outnet->unwanted_total = 0;
1543 }
1544 return 0;
1545 }
1546 comm_timer_disable(p->timer);
1547 verbose(VERB_ALGO, "outnet handle udp reply");
1548 /* delete from tree first in case callback creates a retry */
1549 (void)rbtree_delete(outnet->pending, p->node.key);
1550 if(p->cb) {
1551 fptr_ok(fptr_whitelist_pending_udp(p->cb));
1552 (void)(*p->cb)(p->pc->cp, p->cb_arg, NETEVENT_NOERROR, reply_info);
1553 }
1554 portcomm_loweruse(outnet, p->pc);
1555 pending_delete(NULL, p);
1556 outnet_send_wait_udp(outnet);
1557 return 0;
1558 }
1559
1560 /** calculate number of ip4 and ip6 interfaces*/
1561 static void
1562 calc_num46(char** ifs, int num_ifs, int do_ip4, int do_ip6,
1563 int* num_ip4, int* num_ip6)
1564 {
1565 int i;
1566 *num_ip4 = 0;
1567 *num_ip6 = 0;
1568 if(num_ifs <= 0) {
1569 if(do_ip4)
1570 *num_ip4 = 1;
1571 if(do_ip6)
1572 *num_ip6 = 1;
1573 return;
1574 }
1575 for(i=0; i<num_ifs; i++)
1576 {
1577 if(str_is_ip6(ifs[i])) {
1578 if(do_ip6)
1579 (*num_ip6)++;
1580 } else {
1581 if(do_ip4)
1582 (*num_ip4)++;
1583 }
1584 }
1585 }
1586
1587 void
1588 pending_udp_timer_delay_cb(void* arg)
1589 {
1590 struct pending* p = (struct pending*)arg;
1591 struct outside_network* outnet = p->outnet;
1592 verbose(VERB_ALGO, "timeout udp with delay");
1593 portcomm_loweruse(outnet, p->pc);
1594 pending_delete(outnet, p);
1595 outnet_send_wait_udp(outnet);
1596 }
1597
1598 void
1599 pending_udp_timer_cb(void *arg)
1600 {
1601 struct pending* p = (struct pending*)arg;
1602 struct outside_network* outnet = p->outnet;
1603 /* it timed out */
1604 verbose(VERB_ALGO, "timeout udp");
1605 if(p->cb) {
1606 fptr_ok(fptr_whitelist_pending_udp(p->cb));
1607 (void)(*p->cb)(p->pc->cp, p->cb_arg, NETEVENT_TIMEOUT, NULL);
1608 }
1609 /* if delayclose, keep port open for a longer time.
1610 * But if the udpwaitlist exists, then we are struggling to
1611 * keep up with demand for sockets, so do not wait, but service
1612 * the customer (customer service more important than portICMPs) */
1613 if(outnet->delayclose && !outnet->udp_wait_first) {
1614 p->cb = NULL;
1615 p->timer->callback = &pending_udp_timer_delay_cb;
1616 comm_timer_set(p->timer, &outnet->delay_tv);
1617 return;
1618 }
1619 portcomm_loweruse(outnet, p->pc);
1620 pending_delete(outnet, p);
1621 outnet_send_wait_udp(outnet);
1622 }
1623
1624 /** create pending_tcp buffers */
1625 static int
1626 create_pending_tcp(struct outside_network* outnet, size_t bufsize)
1627 {
1628 size_t i;
1629 if(outnet->num_tcp == 0)
1630 return 1; /* no tcp needed, nothing to do */
1631 if(!(outnet->tcp_conns = (struct pending_tcp **)calloc(
1632 outnet->num_tcp, sizeof(struct pending_tcp*))))
1633 return 0;
1634 for(i=0; i<outnet->num_tcp; i++) {
1635 if(!(outnet->tcp_conns[i] = (struct pending_tcp*)calloc(1,
1636 sizeof(struct pending_tcp))))
1637 return 0;
1638 outnet->tcp_conns[i]->next_free = outnet->tcp_free;
1639 outnet->tcp_free = outnet->tcp_conns[i];
1640 outnet->tcp_conns[i]->c = comm_point_create_tcp_out(
1641 outnet->base, bufsize, outnet_tcp_cb,
1642 outnet->tcp_conns[i]);
1643 if(!outnet->tcp_conns[i]->c)
1644 return 0;
1645 }
1646 return 1;
1647 }
1648
1649 /** setup an outgoing interface, ready address */
1650 static int setup_if(struct port_if* pif, const char* addrstr,
1651 int* avail, int numavail, size_t numfd)
1652 {
1653 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION
1654 pif->avail_total = numavail;
1655 pif->avail_ports = (int*)memdup(avail, (size_t)numavail*sizeof(int));
1656 if(!pif->avail_ports)
1657 return 0;
1658 #endif
1659 if(!ipstrtoaddr(addrstr, UNBOUND_DNS_PORT, &pif->addr, &pif->addrlen) &&
1660 !netblockstrtoaddr(addrstr, UNBOUND_DNS_PORT,
1661 &pif->addr, &pif->addrlen, &pif->pfxlen))
1662 return 0;
1663 pif->maxout = (int)numfd;
1664 pif->inuse = 0;
1665 pif->out = (struct port_comm**)calloc(numfd,
1666 sizeof(struct port_comm*));
1667 if(!pif->out)
1668 return 0;
1669 return 1;
1670 }
1671
1672 struct outside_network*
1673 outside_network_create(struct comm_base *base, size_t bufsize,
1674 size_t num_ports, char** ifs, int num_ifs, int do_ip4,
1675 int do_ip6, size_t num_tcp, int dscp, struct infra_cache* infra,
1676 struct ub_randstate* rnd, int use_caps_for_id, int* availports,
1677 int numavailports, size_t unwanted_threshold, int tcp_mss,
1678 void (*unwanted_action)(void*), void* unwanted_param, int do_udp,
1679 void* sslctx, int delayclose, int tls_use_sni, struct dt_env* dtenv,
1680 int udp_connect, int max_reuse_tcp_queries, int tcp_reuse_timeout,
1681 int tcp_auth_query_timeout)
1682 {
1683 struct outside_network* outnet = (struct outside_network*)
1684 calloc(1, sizeof(struct outside_network));
1685 size_t k;
1686 if(!outnet) {
1687 log_err("malloc failed");
1688 return NULL;
1689 }
1690 comm_base_timept(base, &outnet->now_secs, &outnet->now_tv);
1691 outnet->base = base;
1692 outnet->num_tcp = num_tcp;
1693 outnet->max_reuse_tcp_queries = max_reuse_tcp_queries;
1694 outnet->tcp_reuse_timeout= tcp_reuse_timeout;
1695 outnet->tcp_auth_query_timeout = tcp_auth_query_timeout;
1696 outnet->num_tcp_outgoing = 0;
1697 outnet->num_udp_outgoing = 0;
1698 outnet->infra = infra;
1699 outnet->rnd = rnd;
1700 outnet->sslctx = sslctx;
1701 outnet->tls_use_sni = tls_use_sni;
1702 #ifdef USE_DNSTAP
1703 outnet->dtenv = dtenv;
1704 #else
1705 (void)dtenv;
1706 #endif
1707 outnet->svcd_overhead = 0;
1708 outnet->want_to_quit = 0;
1709 outnet->unwanted_threshold = unwanted_threshold;
1710 outnet->unwanted_action = unwanted_action;
1711 outnet->unwanted_param = unwanted_param;
1712 outnet->use_caps_for_id = use_caps_for_id;
1713 outnet->do_udp = do_udp;
1714 outnet->tcp_mss = tcp_mss;
1715 outnet->ip_dscp = dscp;
1716 #ifndef S_SPLINT_S
1717 if(delayclose) {
1718 outnet->delayclose = 1;
1719 outnet->delay_tv.tv_sec = delayclose/1000;
1720 outnet->delay_tv.tv_usec = (delayclose%1000)*1000;
1721 }
1722 #endif
1723 if(udp_connect) {
1724 outnet->udp_connect = 1;
1725 }
1726 if(numavailports == 0 || num_ports == 0) {
1727 log_err("no outgoing ports available");
1728 outside_network_delete(outnet);
1729 return NULL;
1730 }
1731 #ifndef INET6
1732 do_ip6 = 0;
1733 #endif
1734 calc_num46(ifs, num_ifs, do_ip4, do_ip6,
1735 &outnet->num_ip4, &outnet->num_ip6);
1736 if(outnet->num_ip4 != 0) {
1737 if(!(outnet->ip4_ifs = (struct port_if*)calloc(
1738 (size_t)outnet->num_ip4, sizeof(struct port_if)))) {
1739 log_err("malloc failed");
1740 outside_network_delete(outnet);
1741 return NULL;
1742 }
1743 }
1744 if(outnet->num_ip6 != 0) {
1745 if(!(outnet->ip6_ifs = (struct port_if*)calloc(
1746 (size_t)outnet->num_ip6, sizeof(struct port_if)))) {
1747 log_err("malloc failed");
1748 outside_network_delete(outnet);
1749 return NULL;
1750 }
1751 }
1752 if( !(outnet->udp_buff = sldns_buffer_new(bufsize)) ||
1753 !(outnet->pending = rbtree_create(pending_cmp)) ||
1754 !(outnet->serviced = rbtree_create(serviced_cmp)) ||
1755 !create_pending_tcp(outnet, bufsize)) {
1756 log_err("malloc failed");
1757 outside_network_delete(outnet);
1758 return NULL;
1759 }
1760 rbtree_init(&outnet->tcp_reuse, reuse_cmp);
1761 outnet->tcp_reuse_max = num_tcp;
1762
1763 /* allocate commpoints */
1764 for(k=0; k<num_ports; k++) {
1765 struct port_comm* pc;
1766 pc = (struct port_comm*)calloc(1, sizeof(*pc));
1767 if(!pc) {
1768 log_err("malloc failed");
1769 outside_network_delete(outnet);
1770 return NULL;
1771 }
1772 pc->cp = comm_point_create_udp(outnet->base, -1,
1773 outnet->udp_buff, 0, outnet_udp_cb, outnet, NULL);
1774 if(!pc->cp) {
1775 log_err("malloc failed");
1776 free(pc);
1777 outside_network_delete(outnet);
1778 return NULL;
1779 }
1780 pc->next = outnet->unused_fds;
1781 outnet->unused_fds = pc;
1782 }
1783
1784 /* allocate interfaces */
1785 if(num_ifs == 0) {
1786 if(do_ip4 && !setup_if(&outnet->ip4_ifs[0], "0.0.0.0",
1787 availports, numavailports, num_ports)) {
1788 log_err("malloc failed");
1789 outside_network_delete(outnet);
1790 return NULL;
1791 }
1792 if(do_ip6 && !setup_if(&outnet->ip6_ifs[0], "::",
1793 availports, numavailports, num_ports)) {
1794 log_err("malloc failed");
1795 outside_network_delete(outnet);
1796 return NULL;
1797 }
1798 } else {
1799 size_t done_4 = 0, done_6 = 0;
1800 int i;
1801 for(i=0; i<num_ifs; i++) {
1802 if(str_is_ip6(ifs[i]) && do_ip6) {
1803 if(!setup_if(&outnet->ip6_ifs[done_6], ifs[i],
1804 availports, numavailports, num_ports)){
1805 log_err("malloc failed");
1806 outside_network_delete(outnet);
1807 return NULL;
1808 }
1809 done_6++;
1810 }
1811 if(!str_is_ip6(ifs[i]) && do_ip4) {
1812 if(!setup_if(&outnet->ip4_ifs[done_4], ifs[i],
1813 availports, numavailports, num_ports)){
1814 log_err("malloc failed");
1815 outside_network_delete(outnet);
1816 return NULL;
1817 }
1818 done_4++;
1819 }
1820 }
1821 }
1822 return outnet;
1823 }
1824
1825 /** helper pending delete */
1826 static void
1827 pending_node_del(rbnode_type* node, void* arg)
1828 {
1829 struct pending* pend = (struct pending*)node;
1830 struct outside_network* outnet = (struct outside_network*)arg;
1831 pending_delete(outnet, pend);
1832 }
1833
1834 /** helper serviced delete */
1835 static void
1836 serviced_node_del(rbnode_type* node, void* ATTR_UNUSED(arg))
1837 {
1838 struct serviced_query* sq = (struct serviced_query*)node;
1839 alloc_reg_release(sq->alloc, sq->region);
1840 if(sq->timer)
1841 comm_timer_delete(sq->timer);
1842 free(sq);
1843 }
1844
1845 void
1846 outside_network_quit_prepare(struct outside_network* outnet)
1847 {
1848 if(!outnet)
1849 return;
1850 /* prevent queued items from being sent */
1851 outnet->want_to_quit = 1;
1852 }
1853
1854 void
1855 outside_network_delete(struct outside_network* outnet)
1856 {
1857 if(!outnet)
1858 return;
1859 outnet->want_to_quit = 1;
1860 /* check every element, since we can be called on malloc error */
1861 if(outnet->pending) {
1862 /* free pending elements, but do no unlink from tree. */
1863 traverse_postorder(outnet->pending, pending_node_del, NULL);
1864 free(outnet->pending);
1865 }
1866 if(outnet->serviced) {
1867 traverse_postorder(outnet->serviced, serviced_node_del, NULL);
1868 free(outnet->serviced);
1869 }
1870 if(outnet->udp_buff)
1871 sldns_buffer_free(outnet->udp_buff);
1872 if(outnet->unused_fds) {
1873 struct port_comm* p = outnet->unused_fds, *np;
1874 while(p) {
1875 np = p->next;
1876 comm_point_delete(p->cp);
1877 free(p);
1878 p = np;
1879 }
1880 outnet->unused_fds = NULL;
1881 }
1882 if(outnet->ip4_ifs) {
1883 int i, k;
1884 for(i=0; i<outnet->num_ip4; i++) {
1885 for(k=0; k<outnet->ip4_ifs[i].inuse; k++) {
1886 struct port_comm* pc = outnet->ip4_ifs[i].
1887 out[k];
1888 comm_point_delete(pc->cp);
1889 free(pc);
1890 }
1891 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION
1892 free(outnet->ip4_ifs[i].avail_ports);
1893 #endif
1894 free(outnet->ip4_ifs[i].out);
1895 }
1896 free(outnet->ip4_ifs);
1897 }
1898 if(outnet->ip6_ifs) {
1899 int i, k;
1900 for(i=0; i<outnet->num_ip6; i++) {
1901 for(k=0; k<outnet->ip6_ifs[i].inuse; k++) {
1902 struct port_comm* pc = outnet->ip6_ifs[i].
1903 out[k];
1904 comm_point_delete(pc->cp);
1905 free(pc);
1906 }
1907 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION
1908 free(outnet->ip6_ifs[i].avail_ports);
1909 #endif
1910 free(outnet->ip6_ifs[i].out);
1911 }
1912 free(outnet->ip6_ifs);
1913 }
1914 if(outnet->tcp_conns) {
1915 size_t i;
1916 for(i=0; i<outnet->num_tcp; i++)
1917 if(outnet->tcp_conns[i]) {
1918 struct pending_tcp* pend;
1919 pend = outnet->tcp_conns[i];
1920 if(pend->reuse.item_on_lru_list) {
1921 /* delete waiting_tcp elements that
1922 * the tcp conn is working on */
1923 decommission_pending_tcp(outnet, pend);
1924 }
1925 comm_point_delete(outnet->tcp_conns[i]->c);
1926 free(outnet->tcp_conns[i]);
1927 outnet->tcp_conns[i] = NULL;
1928 }
1929 free(outnet->tcp_conns);
1930 outnet->tcp_conns = NULL;
1931 }
1932 if(outnet->tcp_wait_first) {
1933 struct waiting_tcp* p = outnet->tcp_wait_first, *np;
1934 while(p) {
1935 np = p->next_waiting;
1936 waiting_tcp_delete(p);
1937 p = np;
1938 }
1939 }
1940 /* was allocated in struct pending that was deleted above */
1941 rbtree_init(&outnet->tcp_reuse, reuse_cmp);
1942 outnet->tcp_reuse_first = NULL;
1943 outnet->tcp_reuse_last = NULL;
1944 if(outnet->udp_wait_first) {
1945 struct pending* p = outnet->udp_wait_first, *np;
1946 while(p) {
1947 np = p->next_waiting;
1948 pending_delete(NULL, p);
1949 p = np;
1950 }
1951 }
1952 free(outnet);
1953 }
1954
1955 void
1956 pending_delete(struct outside_network* outnet, struct pending* p)
1957 {
1958 if(!p)
1959 return;
1960 if(outnet && outnet->udp_wait_first &&
1961 (p->next_waiting || p == outnet->udp_wait_last) ) {
1962 /* delete from waiting list, if it is in the waiting list */
1963 struct pending* prev = NULL, *x = outnet->udp_wait_first;
1964 while(x && x != p) {
1965 prev = x;
1966 x = x->next_waiting;
1967 }
1968 if(x) {
1969 log_assert(x == p);
1970 if(prev)
1971 prev->next_waiting = p->next_waiting;
1972 else outnet->udp_wait_first = p->next_waiting;
1973 if(outnet->udp_wait_last == p)
1974 outnet->udp_wait_last = prev;
1975 }
1976 }
1977 if(outnet) {
1978 (void)rbtree_delete(outnet->pending, p->node.key);
1979 }
1980 if(p->timer)
1981 comm_timer_delete(p->timer);
1982 free(p->pkt);
1983 free(p);
1984 }
1985
1986 static void
1987 sai6_putrandom(struct sockaddr_in6 *sa, int pfxlen, struct ub_randstate *rnd)
1988 {
1989 int i, last;
1990 if(!(pfxlen > 0 && pfxlen < 128))
1991 return;
1992 for(i = 0; i < (128 - pfxlen) / 8; i++) {
1993 sa->sin6_addr.s6_addr[15-i] = (uint8_t)ub_random_max(rnd, 256);
1994 }
1995 last = pfxlen & 7;
1996 if(last != 0) {
1997 sa->sin6_addr.s6_addr[15-i] |=
1998 ((0xFF >> last) & ub_random_max(rnd, 256));
1999 }
2000 }
2001
2002 /**
2003 * Try to open a UDP socket for outgoing communication.
2004 * Sets sockets options as needed.
2005 * @param addr: socket address.
2006 * @param addrlen: length of address.
2007 * @param pfxlen: length of network prefix (for address randomisation).
2008 * @param port: port override for addr.
2009 * @param inuse: if -1 is returned, this bool means the port was in use.
2010 * @param rnd: random state (for address randomisation).
2011 * @param dscp: DSCP to use.
2012 * @return fd or -1
2013 */
2014 static int
2015 udp_sockport(struct sockaddr_storage* addr, socklen_t addrlen, int pfxlen,
2016 int port, int* inuse, struct ub_randstate* rnd, int dscp)
2017 {
2018 int fd, noproto;
2019 if(addr_is_ip6(addr, addrlen)) {
2020 int freebind = 0;
2021 struct sockaddr_in6 sa = *(struct sockaddr_in6*)addr;
2022 sa.sin6_port = (in_port_t)htons((uint16_t)port);
2023 sa.sin6_flowinfo = 0;
2024 sa.sin6_scope_id = 0;
2025 if(pfxlen != 0) {
2026 freebind = 1;
2027 sai6_putrandom(&sa, pfxlen, rnd);
2028 }
2029 fd = create_udp_sock(AF_INET6, SOCK_DGRAM,
2030 (struct sockaddr*)&sa, addrlen, 1, inuse, &noproto,
2031 0, 0, 0, NULL, 0, freebind, 0, dscp);
2032 } else {
2033 struct sockaddr_in* sa = (struct sockaddr_in*)addr;
2034 sa->sin_port = (in_port_t)htons((uint16_t)port);
2035 fd = create_udp_sock(AF_INET, SOCK_DGRAM,
2036 (struct sockaddr*)addr, addrlen, 1, inuse, &noproto,
2037 0, 0, 0, NULL, 0, 0, 0, dscp);
2038 }
2039 return fd;
2040 }
2041
2042 /** Select random ID */
2043 static int
2044 select_id(struct outside_network* outnet, struct pending* pend,
2045 sldns_buffer* packet)
2046 {
2047 int id_tries = 0;
2048 pend->id = GET_RANDOM_ID(outnet->rnd);
2049 LDNS_ID_SET(sldns_buffer_begin(packet), pend->id);
2050
2051 /* insert in tree */
2052 pend->node.key = pend;
2053 while(!rbtree_insert(outnet->pending, &pend->node)) {
2054 /* change ID to avoid collision */
2055 pend->id = GET_RANDOM_ID(outnet->rnd);
2056 LDNS_ID_SET(sldns_buffer_begin(packet), pend->id);
2057 id_tries++;
2058 if(id_tries == MAX_ID_RETRY) {
2059 pend->id=99999; /* non existent ID */
2060 log_err("failed to generate unique ID, drop msg");
2061 return 0;
2062 }
2063 }
2064 verbose(VERB_ALGO, "inserted new pending reply id=%4.4x", pend->id);
2065 return 1;
2066 }
2067
2068 /** return true is UDP connect error needs to be logged */
2069 static int udp_connect_needs_log(int err, struct sockaddr_storage* addr,
2070 socklen_t addrlen)
2071 {
2072 switch(err) {
2073 case ECONNREFUSED:
2074 # ifdef ENETUNREACH
2075 case ENETUNREACH:
2076 # endif
2077 # ifdef EHOSTDOWN
2078 case EHOSTDOWN:
2079 # endif
2080 # ifdef EHOSTUNREACH
2081 case EHOSTUNREACH:
2082 # endif
2083 # ifdef ENETDOWN
2084 case ENETDOWN:
2085 # endif
2086 # ifdef EADDRNOTAVAIL
2087 case EADDRNOTAVAIL:
2088 # endif
2089 case EPERM:
2090 case EACCES:
2091 if(verbosity >= VERB_ALGO)
2092 return 1;
2093 return 0;
2094 case EINVAL:
2095 /* Stop 'Invalid argument for fe80::/10' addresses appearing
2096 * in the logs, at low verbosity. They cannot be sent to. */
2097 if(addr_is_ip6linklocal(addr, addrlen)) {
2098 if(verbosity >= VERB_ALGO)
2099 return 1;
2100 return 0;
2101 }
2102 break;
2103 default:
2104 break;
2105 }
2106 return 1;
2107 }
2108
2109
2110 /** Select random interface and port */
2111 static int
2112 select_ifport(struct outside_network* outnet, struct pending* pend,
2113 int num_if, struct port_if* ifs)
2114 {
2115 int my_if, my_port, fd, portno, inuse, tries=0;
2116 struct port_if* pif;
2117 /* randomly select interface and port */
2118 if(num_if == 0) {
2119 verbose(VERB_QUERY, "Need to send query but have no "
2120 "outgoing interfaces of that family");
2121 return 0;
2122 }
2123 log_assert(outnet->unused_fds);
2124 tries = 0;
2125 while(1) {
2126 my_if = ub_random_max(outnet->rnd, num_if);
2127 pif = &ifs[my_if];
2128 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION
2129 if(outnet->udp_connect) {
2130 /* if we connect() we cannot reuse fds for a port */
2131 if(pif->inuse >= pif->avail_total) {
2132 tries++;
2133 if(tries < MAX_PORT_RETRY)
2134 continue;
2135 log_err("failed to find an open port, drop msg");
2136 return 0;
2137 }
2138 my_port = pif->inuse + ub_random_max(outnet->rnd,
2139 pif->avail_total - pif->inuse);
2140 } else {
2141 my_port = ub_random_max(outnet->rnd, pif->avail_total);
2142 if(my_port < pif->inuse) {
2143 /* port already open */
2144 pend->pc = pif->out[my_port];
2145 verbose(VERB_ALGO, "using UDP if=%d port=%d",
2146 my_if, pend->pc->number);
2147 break;
2148 }
2149 }
2150 /* try to open new port, if fails, loop to try again */
2151 log_assert(pif->inuse < pif->maxout);
2152 portno = pif->avail_ports[my_port - pif->inuse];
2153 #else
2154 my_port = portno = 0;
2155 #endif
2156 fd = udp_sockport(&pif->addr, pif->addrlen, pif->pfxlen,
2157 portno, &inuse, outnet->rnd, outnet->ip_dscp);
2158 if(fd == -1 && !inuse) {
2159 /* nonrecoverable error making socket */
2160 return 0;
2161 }
2162 if(fd != -1) {
2163 verbose(VERB_ALGO, "opened UDP if=%d port=%d",
2164 my_if, portno);
2165 if(outnet->udp_connect) {
2166 /* connect() to the destination */
2167 if(connect(fd, (struct sockaddr*)&pend->addr,
2168 pend->addrlen) < 0) {
2169 if(udp_connect_needs_log(errno,
2170 &pend->addr, pend->addrlen)) {
2171 log_err_addr("udp connect failed",
2172 strerror(errno), &pend->addr,
2173 pend->addrlen);
2174 }
2175 sock_close(fd);
2176 return 0;
2177 }
2178 }
2179 /* grab fd */
2180 pend->pc = outnet->unused_fds;
2181 outnet->unused_fds = pend->pc->next;
2182
2183 /* setup portcomm */
2184 pend->pc->next = NULL;
2185 pend->pc->number = portno;
2186 pend->pc->pif = pif;
2187 pend->pc->index = pif->inuse;
2188 pend->pc->num_outstanding = 0;
2189 comm_point_start_listening(pend->pc->cp, fd, -1);
2190
2191 /* grab port in interface */
2192 pif->out[pif->inuse] = pend->pc;
2193 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION
2194 pif->avail_ports[my_port - pif->inuse] =
2195 pif->avail_ports[pif->avail_total-pif->inuse-1];
2196 #endif
2197 pif->inuse++;
2198 break;
2199 }
2200 /* failed, already in use */
2201 verbose(VERB_QUERY, "port %d in use, trying another", portno);
2202 tries++;
2203 if(tries == MAX_PORT_RETRY) {
2204 log_err("failed to find an open port, drop msg");
2205 return 0;
2206 }
2207 }
2208 log_assert(pend->pc);
2209 pend->pc->num_outstanding++;
2210
2211 return 1;
2212 }
2213
2214 static int
2215 randomize_and_send_udp(struct pending* pend, sldns_buffer* packet, int timeout)
2216 {
2217 struct timeval tv;
2218 struct outside_network* outnet = pend->sq->outnet;
2219
2220 /* select id */
2221 if(!select_id(outnet, pend, packet)) {
2222 return 0;
2223 }
2224
2225 /* select src_if, port */
2226 if(addr_is_ip6(&pend->addr, pend->addrlen)) {
2227 if(!select_ifport(outnet, pend,
2228 outnet->num_ip6, outnet->ip6_ifs))
2229 return 0;
2230 } else {
2231 if(!select_ifport(outnet, pend,
2232 outnet->num_ip4, outnet->ip4_ifs))
2233 return 0;
2234 }
2235 log_assert(pend->pc && pend->pc->cp);
2236
2237 /* send it over the commlink */
2238 if(!comm_point_send_udp_msg(pend->pc->cp, packet,
2239 (struct sockaddr*)&pend->addr, pend->addrlen, outnet->udp_connect)) {
2240 portcomm_loweruse(outnet, pend->pc);
2241 return 0;
2242 }
2243 outnet->num_udp_outgoing++;
2244
2245 /* system calls to set timeout after sending UDP to make roundtrip
2246 smaller. */
2247 #ifndef S_SPLINT_S
2248 tv.tv_sec = timeout/1000;
2249 tv.tv_usec = (timeout%1000)*1000;
2250 #endif
2251 comm_timer_set(pend->timer, &tv);
2252
2253 #ifdef USE_DNSTAP
2254 /*
2255 * sending src (local service)/dst (upstream) addresses over DNSTAP
2256 * There are no chances to get the src (local service) addr if unbound
2257 * is not configured with specific outgoing IP-addresses. So we will
2258 * pass 0.0.0.0 (::) to argument for
2259 * dt_msg_send_outside_query()/dt_msg_send_outside_response() calls.
2260 */
2261 if(outnet->dtenv &&
2262 (outnet->dtenv->log_resolver_query_messages ||
2263 outnet->dtenv->log_forwarder_query_messages)) {
2264 log_addr(VERB_ALGO, "from local addr", &pend->pc->pif->addr, pend->pc->pif->addrlen);
2265 log_addr(VERB_ALGO, "request to upstream", &pend->addr, pend->addrlen);
2266 dt_msg_send_outside_query(outnet->dtenv, &pend->addr, &pend->pc->pif->addr, comm_udp, NULL,
2267 pend->sq->zone, pend->sq->zonelen, packet);
2268 }
2269 #endif
2270 return 1;
2271 }
2272
2273 struct pending*
2274 pending_udp_query(struct serviced_query* sq, struct sldns_buffer* packet,
2275 int timeout, comm_point_callback_type* cb, void* cb_arg)
2276 {
2277 struct pending* pend = (struct pending*)calloc(1, sizeof(*pend));
2278 if(!pend) return NULL;
2279 pend->outnet = sq->outnet;
2280 pend->sq = sq;
2281 pend->addrlen = sq->addrlen;
2282 memmove(&pend->addr, &sq->addr, sq->addrlen);
2283 pend->cb = cb;
2284 pend->cb_arg = cb_arg;
2285 pend->node.key = pend;
2286 pend->timer = comm_timer_create(sq->outnet->base, pending_udp_timer_cb,
2287 pend);
2288 if(!pend->timer) {
2289 free(pend);
2290 return NULL;
2291 }
2292
2293 if(sq->outnet->unused_fds == NULL) {
2294 /* no unused fd, cannot create a new port (randomly) */
2295 verbose(VERB_ALGO, "no fds available, udp query waiting");
2296 pend->timeout = timeout;
2297 pend->pkt_len = sldns_buffer_limit(packet);
2298 pend->pkt = (uint8_t*)memdup(sldns_buffer_begin(packet),
2299 pend->pkt_len);
2300 if(!pend->pkt) {
2301 comm_timer_delete(pend->timer);
2302 free(pend);
2303 return NULL;
2304 }
2305 /* put at end of waiting list */
2306 if(sq->outnet->udp_wait_last)
2307 sq->outnet->udp_wait_last->next_waiting = pend;
2308 else
2309 sq->outnet->udp_wait_first = pend;
2310 sq->outnet->udp_wait_last = pend;
2311 return pend;
2312 }
2313 log_assert(!sq->busy);
2314 sq->busy = 1;
2315 if(!randomize_and_send_udp(pend, packet, timeout)) {
2316 pending_delete(sq->outnet, pend);
2317 return NULL;
2318 }
2319 sq->busy = 0;
2320 return pend;
2321 }
2322
2323 void
2324 outnet_tcptimer(void* arg)
2325 {
2326 struct waiting_tcp* w = (struct waiting_tcp*)arg;
2327 struct outside_network* outnet = w->outnet;
2328 verbose(VERB_CLIENT, "outnet_tcptimer");
2329 if(w->on_tcp_waiting_list) {
2330 /* it is on the waiting list */
2331 outnet_waiting_tcp_list_remove(outnet, w);
2332 waiting_tcp_callback(w, NULL, NETEVENT_TIMEOUT, NULL);
2333 waiting_tcp_delete(w);
2334 } else {
2335 /* it was in use */
2336 struct pending_tcp* pend=(struct pending_tcp*)w->next_waiting;
2337 reuse_cb_and_decommission(outnet, pend, NETEVENT_TIMEOUT);
2338 }
2339 use_free_buffer(outnet);
2340 }
2341
2342 /** close the oldest reuse_tcp connection to make a fd and struct pend
2343 * available for a new stream connection */
2344 static void
2345 reuse_tcp_close_oldest(struct outside_network* outnet)
2346 {
2347 struct reuse_tcp* reuse;
2348 verbose(VERB_CLIENT, "reuse_tcp_close_oldest");
2349 reuse = reuse_tcp_lru_snip(outnet);
2350 if(!reuse) return;
2351 /* free up */
2352 reuse_cb_and_decommission(outnet, reuse->pending, NETEVENT_CLOSED);
2353 }
2354
2355 static uint16_t
2356 tcp_select_id(struct outside_network* outnet, struct reuse_tcp* reuse)
2357 {
2358 if(reuse)
2359 return reuse_tcp_select_id(reuse, outnet);
2360 return GET_RANDOM_ID(outnet->rnd);
2361 }
2362
2363 /** find spare ID value for reuse tcp stream. That is random and also does
2364 * not collide with an existing query ID that is in use or waiting */
2365 uint16_t
2366 reuse_tcp_select_id(struct reuse_tcp* reuse, struct outside_network* outnet)
2367 {
2368 uint16_t id = 0, curid, nextid;
2369 const int try_random = 2000;
2370 int i;
2371 unsigned select, count, space;
2372 rbnode_type* node;
2373
2374 /* make really sure the tree is not empty */
2375 if(reuse->tree_by_id.count == 0) {
2376 id = GET_RANDOM_ID(outnet->rnd);
2377 return id;
2378 }
2379
2380 /* try to find random empty spots by picking them */
2381 for(i = 0; i<try_random; i++) {
2382 id = GET_RANDOM_ID(outnet->rnd);
2383 if(!reuse_tcp_by_id_find(reuse, id)) {
2384 return id;
2385 }
2386 }
2387
2388 /* equally pick a random unused element from the tree that is
2389 * not in use. Pick a the n-th index of an unused number,
2390 * then loop over the empty spaces in the tree and find it */
2391 log_assert(reuse->tree_by_id.count < 0xffff);
2392 select = ub_random_max(outnet->rnd, 0xffff - reuse->tree_by_id.count);
2393 /* select value now in 0 .. num free - 1 */
2394
2395 count = 0; /* number of free spaces passed by */
2396 node = rbtree_first(&reuse->tree_by_id);
2397 log_assert(node && node != RBTREE_NULL); /* tree not empty */
2398 /* see if select is before first node */
2399 if(select < (unsigned)tree_by_id_get_id(node))
2400 return select;
2401 count += tree_by_id_get_id(node);
2402 /* perhaps select is between nodes */
2403 while(node && node != RBTREE_NULL) {
2404 rbnode_type* next = rbtree_next(node);
2405 if(next && next != RBTREE_NULL) {
2406 curid = tree_by_id_get_id(node);
2407 nextid = tree_by_id_get_id(next);
2408 log_assert(curid < nextid);
2409 if(curid != 0xffff && curid + 1 < nextid) {
2410 /* space between nodes */
2411 space = nextid - curid - 1;
2412 log_assert(select >= count);
2413 if(select < count + space) {
2414 /* here it is */
2415 return curid + 1 + (select - count);
2416 }
2417 count += space;
2418 }
2419 }
2420 node = next;
2421 }
2422
2423 /* select is after the last node */
2424 /* count is the number of free positions before the nodes in the
2425 * tree */
2426 node = rbtree_last(&reuse->tree_by_id);
2427 log_assert(node && node != RBTREE_NULL); /* tree not empty */
2428 curid = tree_by_id_get_id(node);
2429 log_assert(count + (0xffff-curid) + reuse->tree_by_id.count == 0xffff);
2430 return curid + 1 + (select - count);
2431 }
2432
2433 struct waiting_tcp*
2434 pending_tcp_query(struct serviced_query* sq, sldns_buffer* packet,
2435 int timeout, comm_point_callback_type* callback, void* callback_arg)
2436 {
2437 struct pending_tcp* pend = sq->outnet->tcp_free;
2438 struct reuse_tcp* reuse = NULL;
2439 struct waiting_tcp* w;
2440
2441 verbose(VERB_CLIENT, "pending_tcp_query");
2442 if(sldns_buffer_limit(packet) < sizeof(uint16_t)) {
2443 verbose(VERB_ALGO, "pending tcp query with too short buffer < 2");
2444 return NULL;
2445 }
2446
2447 /* find out if a reused stream to the target exists */
2448 /* if so, take it into use */
2449 reuse = reuse_tcp_find(sq->outnet, &sq->addr, sq->addrlen,
2450 sq->ssl_upstream);
2451 if(reuse) {
2452 log_reuse_tcp(VERB_CLIENT, "pending_tcp_query: found reuse", reuse);
2453 log_assert(reuse->pending);
2454 pend = reuse->pending;
2455 reuse_tcp_lru_touch(sq->outnet, reuse);
2456 }
2457
2458 log_assert(!reuse || (reuse && pend));
2459 /* if !pend but we have reuse streams, close a reuse stream
2460 * to be able to open a new one to this target, no use waiting
2461 * to reuse a file descriptor while another query needs to use
2462 * that buffer and file descriptor now. */
2463 if(!pend) {
2464 reuse_tcp_close_oldest(sq->outnet);
2465 pend = sq->outnet->tcp_free;
2466 log_assert(!reuse || (pend == reuse->pending));
2467 }
2468
2469 /* allocate space to store query */
2470 w = (struct waiting_tcp*)malloc(sizeof(struct waiting_tcp)
2471 + sldns_buffer_limit(packet));
2472 if(!w) {
2473 return NULL;
2474 }
2475 if(!(w->timer = comm_timer_create(sq->outnet->base, outnet_tcptimer, w))) {
2476 free(w);
2477 return NULL;
2478 }
2479 w->pkt = (uint8_t*)w + sizeof(struct waiting_tcp);
2480 w->pkt_len = sldns_buffer_limit(packet);
2481 memmove(w->pkt, sldns_buffer_begin(packet), w->pkt_len);
2482 w->id = tcp_select_id(sq->outnet, reuse);
2483 LDNS_ID_SET(w->pkt, w->id);
2484 memcpy(&w->addr, &sq->addr, sq->addrlen);
2485 w->addrlen = sq->addrlen;
2486 w->outnet = sq->outnet;
2487 w->on_tcp_waiting_list = 0;
2488 w->next_waiting = NULL;
2489 w->cb = callback;
2490 w->cb_arg = callback_arg;
2491 w->ssl_upstream = sq->ssl_upstream;
2492 w->tls_auth_name = sq->tls_auth_name;
2493 w->timeout = timeout;
2494 w->id_node.key = NULL;
2495 w->write_wait_prev = NULL;
2496 w->write_wait_next = NULL;
2497 w->write_wait_queued = 0;
2498 w->error_count = 0;
2499 #ifdef USE_DNSTAP
2500 w->sq = NULL;
2501 #endif
2502 w->in_cb_and_decommission = 0;
2503 if(pend) {
2504 /* we have a buffer available right now */
2505 if(reuse) {
2506 log_assert(reuse == &pend->reuse);
2507 /* reuse existing fd, write query and continue */
2508 /* store query in tree by id */
2509 verbose(VERB_CLIENT, "pending_tcp_query: reuse, store");
2510 w->next_waiting = (void*)pend;
2511 reuse_tree_by_id_insert(&pend->reuse, w);
2512 /* can we write right now? */
2513 if(pend->query == NULL) {
2514 /* write straight away */
2515 /* stop the timer on read of the fd */
2516 comm_point_stop_listening(pend->c);
2517 pend->query = w;
2518 outnet_tcp_take_query_setup(pend->c->fd, pend,
2519 w);
2520 } else {
2521 /* put it in the waiting list for
2522 * this stream */
2523 reuse_write_wait_push_back(&pend->reuse, w);
2524 }
2525 } else {
2526 /* create new fd and connect to addr, setup to
2527 * write query */
2528 verbose(VERB_CLIENT, "pending_tcp_query: new fd, connect");
2529 rbtree_init(&pend->reuse.tree_by_id, reuse_id_cmp);
2530 pend->reuse.pending = pend;
2531 memcpy(&pend->reuse.addr, &sq->addr, sq->addrlen);
2532 pend->reuse.addrlen = sq->addrlen;
2533 if(!outnet_tcp_take_into_use(w)) {
2534 waiting_tcp_delete(w);
2535 return NULL;
2536 }
2537 }
2538 #ifdef USE_DNSTAP
2539 if(sq->outnet->dtenv &&
2540 (sq->outnet->dtenv->log_resolver_query_messages ||
2541 sq->outnet->dtenv->log_forwarder_query_messages)) {
2542 /* use w->pkt, because it has the ID value */
2543 sldns_buffer tmp;
2544 sldns_buffer_init_frm_data(&tmp, w->pkt, w->pkt_len);
2545 dt_msg_send_outside_query(sq->outnet->dtenv, &sq->addr,
2546 &pend->pi->addr, comm_tcp, NULL, sq->zone,
2547 sq->zonelen, &tmp);
2548 }
2549 #endif
2550 } else {
2551 /* queue up */
2552 /* waiting for a buffer on the outside network buffer wait
2553 * list */
2554 verbose(VERB_CLIENT, "pending_tcp_query: queue to wait");
2555 #ifdef USE_DNSTAP
2556 w->sq = sq;
2557 #endif
2558 outnet_waiting_tcp_list_add(sq->outnet, w, 1);
2559 }
2560 return w;
2561 }
2562
2563 /** create query for serviced queries */
2564 static void
2565 serviced_gen_query(sldns_buffer* buff, uint8_t* qname, size_t qnamelen,
2566 uint16_t qtype, uint16_t qclass, uint16_t flags)
2567 {
2568 sldns_buffer_clear(buff);
2569 /* skip id */
2570 sldns_buffer_write_u16(buff, flags);
2571 sldns_buffer_write_u16(buff, 1); /* qdcount */
2572 sldns_buffer_write_u16(buff, 0); /* ancount */
2573 sldns_buffer_write_u16(buff, 0); /* nscount */
2574 sldns_buffer_write_u16(buff, 0); /* arcount */
2575 sldns_buffer_write(buff, qname, qnamelen);
2576 sldns_buffer_write_u16(buff, qtype);
2577 sldns_buffer_write_u16(buff, qclass);
2578 sldns_buffer_flip(buff);
2579 }
2580
2581 /** lookup serviced query in serviced query rbtree */
2582 static struct serviced_query*
2583 lookup_serviced(struct outside_network* outnet, sldns_buffer* buff, int dnssec,
2584 struct sockaddr_storage* addr, socklen_t addrlen,
2585 struct edns_option* opt_list)
2586 {
2587 struct serviced_query key;
2588 key.node.key = &key;
2589 key.qbuf = sldns_buffer_begin(buff);
2590 key.qbuflen = sldns_buffer_limit(buff);
2591 key.dnssec = dnssec;
2592 memcpy(&key.addr, addr, addrlen);
2593 key.addrlen = addrlen;
2594 key.outnet = outnet;
2595 key.opt_list = opt_list;
2596 return (struct serviced_query*)rbtree_search(outnet->serviced, &key);
2597 }
2598
2599 void
2600 serviced_timer_cb(void* arg)
2601 {
2602 struct serviced_query* sq = (struct serviced_query*)arg;
2603 struct outside_network* outnet = sq->outnet;
2604 verbose(VERB_ALGO, "serviced send timer");
2605 /* By the time this cb is called, if we don't have any registered
2606 * callbacks for this serviced_query anymore; do not send. */
2607 if(!sq->cblist)
2608 goto delete;
2609 /* perform first network action */
2610 if(outnet->do_udp && !(sq->tcp_upstream || sq->ssl_upstream)) {
2611 if(!serviced_udp_send(sq, outnet->udp_buff))
2612 goto delete;
2613 } else {
2614 if(!serviced_tcp_send(sq, outnet->udp_buff))
2615 goto delete;
2616 }
2617 /* Maybe by this time we don't have callbacks attached anymore. Don't
2618 * proactively try to delete; let it run and maybe another callback
2619 * will get attached by the time we get an answer. */
2620 return;
2621 delete:
2622 serviced_callbacks(sq, NETEVENT_CLOSED, NULL, NULL);
2623 }
2624
2625 /** Create new serviced entry */
2626 static struct serviced_query*
2627 serviced_create(struct outside_network* outnet, sldns_buffer* buff, int dnssec,
2628 int want_dnssec, int nocaps, int tcp_upstream, int ssl_upstream,
2629 char* tls_auth_name, struct sockaddr_storage* addr, socklen_t addrlen,
2630 uint8_t* zone, size_t zonelen, int qtype, struct edns_option* opt_list,
2631 size_t pad_queries_block_size, struct alloc_cache* alloc,
2632 struct regional* region)
2633 {
2634 struct serviced_query* sq = (struct serviced_query*)malloc(sizeof(*sq));
2635 struct timeval t;
2636 #ifdef UNBOUND_DEBUG
2637 rbnode_type* ins;
2638 #endif
2639 if(!sq) {
2640 alloc_reg_release(alloc, region);
2641 return NULL;
2642 }
2643 sq->node.key = sq;
2644 sq->alloc = alloc;
2645 sq->region = region;
2646 sq->qbuf = regional_alloc_init(region, sldns_buffer_begin(buff),
2647 sldns_buffer_limit(buff));
2648 if(!sq->qbuf) {
2649 alloc_reg_release(alloc, region);
2650 free(sq);
2651 return NULL;
2652 }
2653 sq->qbuflen = sldns_buffer_limit(buff);
2654 sq->zone = regional_alloc_init(region, zone, zonelen);
2655 if(!sq->zone) {
2656 alloc_reg_release(alloc, region);
2657 free(sq);
2658 return NULL;
2659 }
2660 sq->zonelen = zonelen;
2661 sq->qtype = qtype;
2662 sq->dnssec = dnssec;
2663 sq->want_dnssec = want_dnssec;
2664 sq->nocaps = nocaps;
2665 sq->tcp_upstream = tcp_upstream;
2666 sq->ssl_upstream = ssl_upstream;
2667 if(tls_auth_name) {
2668 sq->tls_auth_name = regional_strdup(region, tls_auth_name);
2669 if(!sq->tls_auth_name) {
2670 alloc_reg_release(alloc, region);
2671 free(sq);
2672 return NULL;
2673 }
2674 } else {
2675 sq->tls_auth_name = NULL;
2676 }
2677 memcpy(&sq->addr, addr, addrlen);
2678 sq->addrlen = addrlen;
2679 sq->opt_list = opt_list;
2680 sq->busy = 0;
2681 sq->timer = comm_timer_create(outnet->base, serviced_timer_cb, sq);
2682 if(!sq->timer) {
2683 alloc_reg_release(alloc, region);
2684 free(sq);
2685 return NULL;
2686 }
2687 memset(&t, 0, sizeof(t));
2688 comm_timer_set(sq->timer, &t);
2689 sq->outnet = outnet;
2690 sq->cblist = NULL;
2691 sq->pending = NULL;
2692 sq->status = serviced_initial;
2693 sq->retry = 0;
2694 sq->to_be_deleted = 0;
2695 sq->padding_block_size = pad_queries_block_size;
2696 #ifdef UNBOUND_DEBUG
2697 ins =
2698 #else
2699 (void)
2700 #endif
2701 rbtree_insert(outnet->serviced, &sq->node);
2702 log_assert(ins != NULL); /* must not be already present */
2703 return sq;
2704 }
2705
2706 /** reuse tcp stream, remove serviced query from stream,
2707 * return true if the stream is kept, false if it is to be closed */
2708 static int
2709 reuse_tcp_remove_serviced_keep(struct waiting_tcp* w,
2710 struct serviced_query* sq)
2711 {
2712 struct pending_tcp* pend_tcp = (struct pending_tcp*)w->next_waiting;
2713 verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep");
2714 /* remove the callback. let query continue to write to not cancel
2715 * the stream itself. also keep it as an entry in the tree_by_id,
2716 * in case the answer returns (that we no longer want), but we cannot
2717 * pick the same ID number meanwhile */
2718 w->cb = NULL;
2719 /* see if can be entered in reuse tree
2720 * for that the FD has to be non-1 */
2721 if(pend_tcp->c->fd == -1) {
2722 verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: -1 fd");
2723 return 0;
2724 }
2725 /* if in tree and used by other queries */
2726 if(pend_tcp->reuse.node.key) {
2727 verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: in use by other queries");
2728 /* do not reset the keepalive timer, for that
2729 * we'd need traffic, and this is where the serviced is
2730 * removed due to state machine internal reasons,
2731 * eg. iterator no longer interested in this query */
2732 return 1;
2733 }
2734 /* if still open and want to keep it open */
2735 if(pend_tcp->c->fd != -1 && sq->outnet->tcp_reuse.count <
2736 sq->outnet->tcp_reuse_max) {
2737 verbose(VERB_CLIENT, "reuse_tcp_remove_serviced_keep: keep open");
2738 /* set a keepalive timer on it */
2739 if(!reuse_tcp_insert(sq->outnet, pend_tcp)) {
2740 return 0;
2741 }
2742 reuse_tcp_setup_timeout(pend_tcp, sq->outnet->tcp_reuse_timeout);
2743 return 1;
2744 }
2745 return 0;
2746 }
2747
2748 /** cleanup serviced query entry */
2749 static void
2750 serviced_delete(struct serviced_query* sq)
2751 {
2752 verbose(VERB_CLIENT, "serviced_delete");
2753 if(sq->pending) {
2754 /* clear up the pending query */
2755 if(sq->status == serviced_query_UDP_EDNS ||
2756 sq->status == serviced_query_UDP ||
2757 sq->status == serviced_query_UDP_EDNS_FRAG ||
2758 sq->status == serviced_query_UDP_EDNS_fallback) {
2759 struct pending* p = (struct pending*)sq->pending;
2760 verbose(VERB_CLIENT, "serviced_delete: UDP");
2761 if(p->pc)
2762 portcomm_loweruse(sq->outnet, p->pc);
2763 pending_delete(sq->outnet, p);
2764 /* this call can cause reentrant calls back into the
2765 * mesh */
2766 outnet_send_wait_udp(sq->outnet);
2767 } else {
2768 struct waiting_tcp* w = (struct waiting_tcp*)
2769 sq->pending;
2770 verbose(VERB_CLIENT, "serviced_delete: TCP");
2771 log_assert(!(w->write_wait_queued && w->on_tcp_waiting_list));
2772 /* if on stream-write-waiting list then
2773 * remove from waiting list and waiting_tcp_delete */
2774 if(w->write_wait_queued) {
2775 struct pending_tcp* pend =
2776 (struct pending_tcp*)w->next_waiting;
2777 verbose(VERB_CLIENT, "serviced_delete: writewait");
2778 if(!w->in_cb_and_decommission)
2779 reuse_tree_by_id_delete(&pend->reuse, w);
2780 reuse_write_wait_remove(&pend->reuse, w);
2781 if(!w->in_cb_and_decommission)
2782 waiting_tcp_delete(w);
2783 } else if(!w->on_tcp_waiting_list) {
2784 struct pending_tcp* pend =
2785 (struct pending_tcp*)w->next_waiting;
2786 verbose(VERB_CLIENT, "serviced_delete: tcpreusekeep");
2787 /* w needs to stay on tree_by_id to not assign
2788 * the same ID; remove the callback since its
2789 * serviced_query will be gone. */
2790 w->cb = NULL;
2791 if(!reuse_tcp_remove_serviced_keep(w, sq)) {
2792 if(!w->in_cb_and_decommission)
2793 reuse_cb_and_decommission(sq->outnet,
2794 pend, NETEVENT_CLOSED);
2795 use_free_buffer(sq->outnet);
2796 }
2797 sq->pending = NULL;
2798 } else {
2799 verbose(VERB_CLIENT, "serviced_delete: tcpwait");
2800 outnet_waiting_tcp_list_remove(sq->outnet, w);
2801 if(!w->in_cb_and_decommission)
2802 waiting_tcp_delete(w);
2803 }
2804 }
2805 }
2806 /* does not delete from tree, caller has to do that */
2807 serviced_node_del(&sq->node, NULL);
2808 }
2809
2810 /** perturb a dname capitalization randomly */
2811 static void
2812 serviced_perturb_qname(struct ub_randstate* rnd, uint8_t* qbuf, size_t len)
2813 {
2814 uint8_t lablen;
2815 uint8_t* d = qbuf + 10;
2816 long int random = 0;
2817 int bits = 0;
2818 log_assert(len >= 10 + 5 /* offset qname, root, qtype, qclass */);
2819 (void)len;
2820 lablen = *d++;
2821 while(lablen) {
2822 while(lablen--) {
2823 /* only perturb A-Z, a-z */
2824 if(isalpha((unsigned char)*d)) {
2825 /* get a random bit */
2826 if(bits == 0) {
2827 random = ub_random(rnd);
2828 bits = 30;
2829 }
2830 if((random & 0x1)) {
2831 *d = (uint8_t)toupper((unsigned char)*d);
2832 } else {
2833 *d = (uint8_t)tolower((unsigned char)*d);
2834 }
2835 random >>= 1;
2836 bits--;
2837 }
2838 d++;
2839 }
2840 lablen = *d++;
2841 }
2842 if(verbosity >= VERB_ALGO) {
2843 char buf[LDNS_MAX_DOMAINLEN];
2844 dname_str(qbuf+10, buf);
2845 verbose(VERB_ALGO, "qname perturbed to %s", buf);
2846 }
2847 }
2848
2849 static uint16_t
2850 serviced_query_udp_size(struct serviced_query* sq, enum serviced_query_status status) {
2851 uint16_t udp_size;
2852 if(status == serviced_query_UDP_EDNS_FRAG) {
2853 if(addr_is_ip6(&sq->addr, sq->addrlen)) {
2854 if(EDNS_FRAG_SIZE_IP6 < EDNS_ADVERTISED_SIZE)
2855 udp_size = EDNS_FRAG_SIZE_IP6;
2856 else udp_size = EDNS_ADVERTISED_SIZE;
2857 } else {
2858 if(EDNS_FRAG_SIZE_IP4 < EDNS_ADVERTISED_SIZE)
2859 udp_size = EDNS_FRAG_SIZE_IP4;
2860 else udp_size = EDNS_ADVERTISED_SIZE;
2861 }
2862 } else {
2863 udp_size = EDNS_ADVERTISED_SIZE;
2864 }
2865 return udp_size;
2866 }
2867
2868 /** put serviced query into a buffer */
2869 static void
2870 serviced_encode(struct serviced_query* sq, sldns_buffer* buff, int with_edns)
2871 {
2872 /* if we are using 0x20 bits for ID randomness, perturb them */
2873 if(sq->outnet->use_caps_for_id && !sq->nocaps) {
2874 serviced_perturb_qname(sq->outnet->rnd, sq->qbuf, sq->qbuflen);
2875 }
2876 /* generate query */
2877 sldns_buffer_clear(buff);
2878 sldns_buffer_write_u16(buff, 0); /* id placeholder */
2879 sldns_buffer_write(buff, sq->qbuf, sq->qbuflen);
2880 sldns_buffer_flip(buff);
2881 if(with_edns) {
2882 /* add edns section */
2883 struct edns_data edns;
2884 struct edns_option padding_option;
2885 edns.edns_present = 1;
2886 edns.ext_rcode = 0;
2887 edns.edns_version = EDNS_ADVERTISED_VERSION;
2888 edns.opt_list_in = NULL;
2889 edns.opt_list_out = sq->opt_list;
2890 edns.opt_list_inplace_cb_out = NULL;
2891 edns.udp_size = serviced_query_udp_size(sq, sq->status);
2892 edns.bits = 0;
2893 if((sq->dnssec & EDNS_DO))
2894 edns.bits = EDNS_DO;
2895 if((sq->dnssec & BIT_CD))
2896 LDNS_CD_SET(sldns_buffer_begin(buff));
2897 if (sq->ssl_upstream && sq->padding_block_size) {
2898 padding_option.opt_code = LDNS_EDNS_PADDING;
2899 padding_option.opt_len = 0;
2900 padding_option.opt_data = NULL;
2901 padding_option.next = edns.opt_list_out;
2902 edns.opt_list_out = &padding_option;
2903 edns.padding_block_size = sq->padding_block_size;
2904 }
2905 attach_edns_record(buff, &edns);
2906 }
2907 }
2908
2909 /**
2910 * Perform serviced query UDP sending operation.
2911 * Sends UDP with EDNS, unless infra host marked non EDNS.
2912 * @param sq: query to send.
2913 * @param buff: buffer scratch space.
2914 * @return 0 on error.
2915 */
2916 static int
2917 serviced_udp_send(struct serviced_query* sq, sldns_buffer* buff)
2918 {
2919 int rtt, vs;
2920 uint8_t edns_lame_known;
2921 time_t now = *sq->outnet->now_secs;
2922
2923 if(!infra_host(sq->outnet->infra, &sq->addr, sq->addrlen, sq->zone,
2924 sq->zonelen, now, &vs, &edns_lame_known, &rtt))
2925 return 0;
2926 sq->last_rtt = rtt;
2927 verbose(VERB_ALGO, "EDNS lookup known=%d vs=%d", edns_lame_known, vs);
2928 if(sq->status == serviced_initial) {
2929 if(vs != -1) {
2930 sq->status = serviced_query_UDP_EDNS;
2931 } else {
2932 sq->status = serviced_query_UDP;
2933 }
2934 }
2935 serviced_encode(sq, buff, (sq->status == serviced_query_UDP_EDNS) ||
2936 (sq->status == serviced_query_UDP_EDNS_FRAG));
2937 sq->last_sent_time = *sq->outnet->now_tv;
2938 sq->edns_lame_known = (int)edns_lame_known;
2939 verbose(VERB_ALGO, "serviced query UDP timeout=%d msec", rtt);
2940 sq->pending = pending_udp_query(sq, buff, rtt,
2941 serviced_udp_callback, sq);
2942 if(!sq->pending)
2943 return 0;
2944 return 1;
2945 }
2946
2947 /** check that perturbed qname is identical */
2948 static int
2949 serviced_check_qname(sldns_buffer* pkt, uint8_t* qbuf, size_t qbuflen)
2950 {
2951 uint8_t* d1 = sldns_buffer_begin(pkt)+12;
2952 uint8_t* d2 = qbuf+10;
2953 uint8_t len1, len2;
2954 int count = 0;
2955 if(sldns_buffer_limit(pkt) < 12+1+4) /* packet too small for qname */
2956 return 0;
2957 log_assert(qbuflen >= 15 /* 10 header, root, type, class */);
2958 len1 = *d1++;
2959 len2 = *d2++;
2960 while(len1 != 0 || len2 != 0) {
2961 if(LABEL_IS_PTR(len1)) {
2962 /* check if we can read *d1 with compression ptr rest */
2963 if(d1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt)))
2964 return 0;
2965 d1 = sldns_buffer_begin(pkt)+PTR_OFFSET(len1, *d1);
2966 /* check if we can read the destination *d1 */
2967 if(d1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt)))
2968 return 0;
2969 len1 = *d1++;
2970 if(count++ > MAX_COMPRESS_PTRS)
2971 return 0;
2972 continue;
2973 }
2974 if(d2 > qbuf+qbuflen)
2975 return 0;
2976 if(len1 != len2)
2977 return 0;
2978 if(len1 > LDNS_MAX_LABELLEN)
2979 return 0;
2980 /* check len1 + 1(next length) are okay to read */
2981 if(d1+len1 >= sldns_buffer_at(pkt, sldns_buffer_limit(pkt)))
2982 return 0;
2983 log_assert(len1 <= LDNS_MAX_LABELLEN);
2984 log_assert(len2 <= LDNS_MAX_LABELLEN);
2985 log_assert(len1 == len2 && len1 != 0);
2986 /* compare the labels - bitwise identical */
2987 if(memcmp(d1, d2, len1) != 0)
2988 return 0;
2989 d1 += len1;
2990 d2 += len2;
2991 len1 = *d1++;
2992 len2 = *d2++;
2993 }
2994 return 1;
2995 }
2996
2997 /** call the callbacks for a serviced query */
2998 static void
2999 serviced_callbacks(struct serviced_query* sq, int error, struct comm_point* c,
3000 struct comm_reply* rep)
3001 {
3002 struct service_callback* p;
3003 int dobackup = (sq->cblist && sq->cblist->next); /* >1 cb*/
3004 uint8_t *backup_p = NULL;
3005 size_t backlen = 0;
3006 #ifdef UNBOUND_DEBUG
3007 rbnode_type* rem =
3008 #else
3009 (void)
3010 #endif
3011 /* remove from tree, and schedule for deletion, so that callbacks
3012 * can safely deregister themselves and even create new serviced
3013 * queries that are identical to this one. */
3014 rbtree_delete(sq->outnet->serviced, sq);
3015 log_assert(rem); /* should have been present */
3016 sq->to_be_deleted = 1;
3017 verbose(VERB_ALGO, "svcd callbacks start");
3018 if(sq->outnet->use_caps_for_id && error == NETEVENT_NOERROR && c &&
3019 !sq->nocaps && sq->qtype != LDNS_RR_TYPE_PTR) {
3020 /* for type PTR do not check perturbed name in answer,
3021 * compatibility with cisco dns guard boxes that mess up
3022 * reverse queries 0x20 contents */
3023 /* noerror and nxdomain must have a qname in reply */
3024 if(sldns_buffer_read_u16_at(c->buffer, 4) == 0 &&
3025 (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))
3026 == LDNS_RCODE_NOERROR ||
3027 LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))
3028 == LDNS_RCODE_NXDOMAIN)) {
3029 verbose(VERB_DETAIL, "no qname in reply to check 0x20ID");
3030 log_addr(VERB_DETAIL, "from server",
3031 &sq->addr, sq->addrlen);
3032 log_buf(VERB_DETAIL, "for packet", c->buffer);
3033 error = NETEVENT_CLOSED;
3034 c = NULL;
3035 } else if(sldns_buffer_read_u16_at(c->buffer, 4) > 0 &&
3036 !serviced_check_qname(c->buffer, sq->qbuf,
3037 sq->qbuflen)) {
3038 verbose(VERB_DETAIL, "wrong 0x20-ID in reply qname");
3039 log_addr(VERB_DETAIL, "from server",
3040 &sq->addr, sq->addrlen);
3041 log_buf(VERB_DETAIL, "for packet", c->buffer);
3042 error = NETEVENT_CAPSFAIL;
3043 /* and cleanup too */
3044 pkt_dname_tolower(c->buffer,
3045 sldns_buffer_at(c->buffer, 12));
3046 } else {
3047 verbose(VERB_ALGO, "good 0x20-ID in reply qname");
3048 /* cleanup caps, prettier cache contents. */
3049 pkt_dname_tolower(c->buffer,
3050 sldns_buffer_at(c->buffer, 12));
3051 }
3052 }
3053 if(dobackup && c) {
3054 /* make a backup of the query, since the querystate processing
3055 * may send outgoing queries that overwrite the buffer.
3056 * use secondary buffer to store the query.
3057 * This is a data copy, but faster than packet to server */
3058 backlen = sldns_buffer_limit(c->buffer);
3059 backup_p = regional_alloc_init(sq->region,
3060 sldns_buffer_begin(c->buffer), backlen);
3061 if(!backup_p) {
3062 log_err("malloc failure in serviced query callbacks");
3063 error = NETEVENT_CLOSED;
3064 c = NULL;
3065 }
3066 sq->outnet->svcd_overhead = backlen;
3067 }
3068 /* test the actual sq->cblist, because the next elem could be deleted*/
3069 while((p=sq->cblist) != NULL) {
3070 sq->cblist = p->next; /* remove this element */
3071 if(dobackup && c) {
3072 sldns_buffer_clear(c->buffer);
3073 sldns_buffer_write(c->buffer, backup_p, backlen);
3074 sldns_buffer_flip(c->buffer);
3075 }
3076 fptr_ok(fptr_whitelist_serviced_query(p->cb));
3077 (void)(*p->cb)(c, p->cb_arg, error, rep);
3078 }
3079 if(backup_p) {
3080 sq->outnet->svcd_overhead = 0;
3081 }
3082 verbose(VERB_ALGO, "svcd callbacks end");
3083 log_assert(sq->cblist == NULL);
3084 serviced_delete(sq);
3085 }
3086
3087 int
3088 serviced_tcp_callback(struct comm_point* c, void* arg, int error,
3089 struct comm_reply* rep)
3090 {
3091 struct serviced_query* sq = (struct serviced_query*)arg;
3092 struct comm_reply r2;
3093 #ifdef USE_DNSTAP
3094 struct waiting_tcp* w = (struct waiting_tcp*)sq->pending;
3095 struct pending_tcp* pend_tcp = NULL;
3096 struct port_if* pi = NULL;
3097 if(w && !w->on_tcp_waiting_list && w->next_waiting) {
3098 pend_tcp = (struct pending_tcp*)w->next_waiting;
3099 pi = pend_tcp->pi;
3100 }
3101 #endif
3102 sq->pending = NULL; /* removed after this callback */
3103 if(error != NETEVENT_NOERROR)
3104 log_addr(VERB_QUERY, "tcp error for address",
3105 &sq->addr, sq->addrlen);
3106 if(error==NETEVENT_NOERROR)
3107 infra_update_tcp_works(sq->outnet->infra, &sq->addr,
3108 sq->addrlen, sq->zone, sq->zonelen);
3109 #ifdef USE_DNSTAP
3110 /*
3111 * sending src (local service)/dst (upstream) addresses over DNSTAP
3112 */
3113 if(error==NETEVENT_NOERROR && pi && sq->outnet->dtenv &&
3114 (sq->outnet->dtenv->log_resolver_response_messages ||
3115 sq->outnet->dtenv->log_forwarder_response_messages)) {
3116 log_addr(VERB_ALGO, "response from upstream", &sq->addr, sq->addrlen);
3117 log_addr(VERB_ALGO, "to local addr", &pi->addr, pi->addrlen);
3118 dt_msg_send_outside_response(sq->outnet->dtenv, &sq->addr,
3119 &pi->addr, c->type, c->ssl, sq->zone, sq->zonelen, sq->qbuf,
3120 sq->qbuflen, &sq->last_sent_time, sq->outnet->now_tv,
3121 c->buffer);
3122 }
3123 #endif
3124 if(error==NETEVENT_NOERROR && sq->status == serviced_query_TCP_EDNS &&
3125 (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) ==
3126 LDNS_RCODE_FORMERR || LDNS_RCODE_WIRE(sldns_buffer_begin(
3127 c->buffer)) == LDNS_RCODE_NOTIMPL) ) {
3128 /* attempt to fallback to nonEDNS */
3129 sq->status = serviced_query_TCP_EDNS_fallback;
3130 serviced_tcp_initiate(sq, c->buffer);
3131 return 0;
3132 } else if(error==NETEVENT_NOERROR &&
3133 sq->status == serviced_query_TCP_EDNS_fallback &&
3134 (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) ==
3135 LDNS_RCODE_NOERROR || LDNS_RCODE_WIRE(
3136 sldns_buffer_begin(c->buffer)) == LDNS_RCODE_NXDOMAIN
3137 || LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))
3138 == LDNS_RCODE_YXDOMAIN)) {
3139 /* the fallback produced a result that looks promising, note
3140 * that this server should be approached without EDNS */
3141 /* only store noEDNS in cache if domain is noDNSSEC */
3142 if(!sq->want_dnssec)
3143 if(!infra_edns_update(sq->outnet->infra, &sq->addr,
3144 sq->addrlen, sq->zone, sq->zonelen, -1,
3145 *sq->outnet->now_secs))
3146 log_err("Out of memory caching no edns for host");
3147 sq->status = serviced_query_TCP;
3148 }
3149 if(sq->tcp_upstream || sq->ssl_upstream) {
3150 struct timeval now = *sq->outnet->now_tv;
3151 if(error!=NETEVENT_NOERROR) {
3152 if(!infra_rtt_update(sq->outnet->infra, &sq->addr,
3153 sq->addrlen, sq->zone, sq->zonelen, sq->qtype,
3154 -1, sq->last_rtt, (time_t)now.tv_sec))
3155 log_err("out of memory in TCP exponential backoff.");
3156 } else if(now.tv_sec > sq->last_sent_time.tv_sec ||
3157 (now.tv_sec == sq->last_sent_time.tv_sec &&
3158 now.tv_usec > sq->last_sent_time.tv_usec)) {
3159 /* convert from microseconds to milliseconds */
3160 int roundtime = ((int)(now.tv_sec - sq->last_sent_time.tv_sec))*1000
3161 + ((int)now.tv_usec - (int)sq->last_sent_time.tv_usec)/1000;
3162 verbose(VERB_ALGO, "measured TCP-time at %d msec", roundtime);
3163 log_assert(roundtime >= 0);
3164 /* only store if less then AUTH_TIMEOUT seconds, it could be
3165 * huge due to system-hibernated and we woke up */
3166 if(roundtime < 60000) {
3167 if(!infra_rtt_update(sq->outnet->infra, &sq->addr,
3168 sq->addrlen, sq->zone, sq->zonelen, sq->qtype,
3169 roundtime, sq->last_rtt, (time_t)now.tv_sec))
3170 log_err("out of memory noting rtt.");
3171 }
3172 }
3173 }
3174 /* insert address into reply info */
3175 if(!rep) {
3176 /* create one if there isn't (on errors) */
3177 rep = &r2;
3178 r2.c = c;
3179 }
3180 memcpy(&rep->remote_addr, &sq->addr, sq->addrlen);
3181 rep->remote_addrlen = sq->addrlen;
3182 serviced_callbacks(sq, error, c, rep);
3183 return 0;
3184 }
3185
3186 static void
3187 serviced_tcp_initiate(struct serviced_query* sq, sldns_buffer* buff)
3188 {
3189 verbose(VERB_ALGO, "initiate TCP query %s",
3190 sq->status==serviced_query_TCP_EDNS?"EDNS":"");
3191 serviced_encode(sq, buff, sq->status == serviced_query_TCP_EDNS);
3192 sq->last_sent_time = *sq->outnet->now_tv;
3193 log_assert(!sq->busy);
3194 sq->busy = 1;
3195 sq->pending = pending_tcp_query(sq, buff, sq->outnet->tcp_auth_query_timeout,
3196 serviced_tcp_callback, sq);
3197 sq->busy = 0;
3198 if(!sq->pending) {
3199 /* delete from tree so that a retry by above layer does not
3200 * clash with this entry */
3201 verbose(VERB_ALGO, "serviced_tcp_initiate: failed to send tcp query");
3202 serviced_callbacks(sq, NETEVENT_CLOSED, NULL, NULL);
3203 }
3204 }
3205
3206 /** Send serviced query over TCP return false on initial failure */
3207 static int
3208 serviced_tcp_send(struct serviced_query* sq, sldns_buffer* buff)
3209 {
3210 int vs, rtt, timeout;
3211 uint8_t edns_lame_known;
3212 if(!infra_host(sq->outnet->infra, &sq->addr, sq->addrlen, sq->zone,
3213 sq->zonelen, *sq->outnet->now_secs, &vs, &edns_lame_known,
3214 &rtt))
3215 return 0;
3216 sq->last_rtt = rtt;
3217 if(vs != -1)
3218 sq->status = serviced_query_TCP_EDNS;
3219 else sq->status = serviced_query_TCP;
3220 serviced_encode(sq, buff, sq->status == serviced_query_TCP_EDNS);
3221 sq->last_sent_time = *sq->outnet->now_tv;
3222 if(sq->tcp_upstream || sq->ssl_upstream) {
3223 timeout = rtt;
3224 if(rtt >= UNKNOWN_SERVER_NICENESS && rtt < sq->outnet->tcp_auth_query_timeout)
3225 timeout = sq->outnet->tcp_auth_query_timeout;
3226 } else {
3227 timeout = sq->outnet->tcp_auth_query_timeout;
3228 }
3229 log_assert(!sq->busy);
3230 sq->busy = 1;
3231 sq->pending = pending_tcp_query(sq, buff, timeout,
3232 serviced_tcp_callback, sq);
3233 sq->busy = 0;
3234 return sq->pending != NULL;
3235 }
3236
3237 /* see if packet is edns malformed; got zeroes at start.
3238 * This is from servers that return malformed packets to EDNS0 queries,
3239 * but they return good packets for nonEDNS0 queries.
3240 * We try to detect their output; without resorting to a full parse or
3241 * check for too many bytes after the end of the packet. */
3242 static int
3243 packet_edns_malformed(struct sldns_buffer* buf, int qtype)
3244 {
3245 size_t len;
3246 if(sldns_buffer_limit(buf) < LDNS_HEADER_SIZE)
3247 return 1; /* malformed */
3248 /* they have NOERROR rcode, 1 answer. */
3249 if(LDNS_RCODE_WIRE(sldns_buffer_begin(buf)) != LDNS_RCODE_NOERROR)
3250 return 0;
3251 /* one query (to skip) and answer records */
3252 if(LDNS_QDCOUNT(sldns_buffer_begin(buf)) != 1 ||
3253 LDNS_ANCOUNT(sldns_buffer_begin(buf)) == 0)
3254 return 0;
3255 /* skip qname */
3256 len = dname_valid(sldns_buffer_at(buf, LDNS_HEADER_SIZE),
3257 sldns_buffer_limit(buf)-LDNS_HEADER_SIZE);
3258 if(len == 0)
3259 return 0;
3260 if(len == 1 && qtype == 0)
3261 return 0; /* we asked for '.' and type 0 */
3262 /* and then 4 bytes (type and class of query) */
3263 if(sldns_buffer_limit(buf) < LDNS_HEADER_SIZE + len + 4 + 3)
3264 return 0;
3265
3266 /* and start with 11 zeroes as the answer RR */
3267 /* so check the qtype of the answer record, qname=0, type=0 */
3268 if(sldns_buffer_at(buf, LDNS_HEADER_SIZE+len+4)[0] == 0 &&
3269 sldns_buffer_at(buf, LDNS_HEADER_SIZE+len+4)[1] == 0 &&
3270 sldns_buffer_at(buf, LDNS_HEADER_SIZE+len+4)[2] == 0)
3271 return 1;
3272 return 0;
3273 }
3274
3275 int
3276 serviced_udp_callback(struct comm_point* c, void* arg, int error,
3277 struct comm_reply* rep)
3278 {
3279 struct serviced_query* sq = (struct serviced_query*)arg;
3280 struct outside_network* outnet = sq->outnet;
3281 struct timeval now = *sq->outnet->now_tv;
3282 #ifdef USE_DNSTAP
3283 struct pending* p = (struct pending*)sq->pending;
3284 #endif
3285
3286 sq->pending = NULL; /* removed after callback */
3287 if(error == NETEVENT_TIMEOUT) {
3288 if(sq->status == serviced_query_UDP_EDNS && sq->last_rtt < 5000 &&
3289 (serviced_query_udp_size(sq, serviced_query_UDP_EDNS_FRAG) < serviced_query_udp_size(sq, serviced_query_UDP_EDNS))) {
3290 /* fallback to 1480/1280 */
3291 sq->status = serviced_query_UDP_EDNS_FRAG;
3292 log_name_addr(VERB_ALGO, "try edns1xx0", sq->qbuf+10,
3293 &sq->addr, sq->addrlen);
3294 if(!serviced_udp_send(sq, c->buffer)) {
3295 serviced_callbacks(sq, NETEVENT_CLOSED, c, rep);
3296 }
3297 return 0;
3298 }
3299 if(sq->status == serviced_query_UDP_EDNS_FRAG) {
3300 /* fragmentation size did not fix it */
3301 sq->status = serviced_query_UDP_EDNS;
3302 }
3303 sq->retry++;
3304 if(!infra_rtt_update(outnet->infra, &sq->addr, sq->addrlen,
3305 sq->zone, sq->zonelen, sq->qtype, -1, sq->last_rtt,
3306 (time_t)now.tv_sec))
3307 log_err("out of memory in UDP exponential backoff");
3308 if(sq->retry < OUTBOUND_UDP_RETRY) {
3309 log_name_addr(VERB_ALGO, "retry query", sq->qbuf+10,
3310 &sq->addr, sq->addrlen);
3311 if(!serviced_udp_send(sq, c->buffer)) {
3312 serviced_callbacks(sq, NETEVENT_CLOSED, c, rep);
3313 }
3314 return 0;
3315 }
3316 }
3317 if(error != NETEVENT_NOERROR) {
3318 /* udp returns error (due to no ID or interface available) */
3319 serviced_callbacks(sq, error, c, rep);
3320 return 0;
3321 }
3322 #ifdef USE_DNSTAP
3323 /*
3324 * sending src (local service)/dst (upstream) addresses over DNSTAP
3325 */
3326 if(error == NETEVENT_NOERROR && outnet->dtenv && p->pc &&
3327 (outnet->dtenv->log_resolver_response_messages ||
3328 outnet->dtenv->log_forwarder_response_messages)) {
3329 log_addr(VERB_ALGO, "response from upstream", &sq->addr, sq->addrlen);
3330 log_addr(VERB_ALGO, "to local addr", &p->pc->pif->addr,
3331 p->pc->pif->addrlen);
3332 dt_msg_send_outside_response(outnet->dtenv, &sq->addr,
3333 &p->pc->pif->addr, c->type, c->ssl, sq->zone, sq->zonelen,
3334 sq->qbuf, sq->qbuflen, &sq->last_sent_time,
3335 sq->outnet->now_tv, c->buffer);
3336 }
3337 #endif
3338 if( (sq->status == serviced_query_UDP_EDNS
3339 ||sq->status == serviced_query_UDP_EDNS_FRAG)
3340 && (LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer))
3341 == LDNS_RCODE_FORMERR || LDNS_RCODE_WIRE(
3342 sldns_buffer_begin(c->buffer)) == LDNS_RCODE_NOTIMPL
3343 || packet_edns_malformed(c->buffer, sq->qtype)
3344 )) {
3345 /* try to get an answer by falling back without EDNS */
3346 verbose(VERB_ALGO, "serviced query: attempt without EDNS");
3347 sq->status = serviced_query_UDP_EDNS_fallback;
3348 sq->retry = 0;
3349 if(!serviced_udp_send(sq, c->buffer)) {
3350 serviced_callbacks(sq, NETEVENT_CLOSED, c, rep);
3351 }
3352 return 0;
3353 } else if(sq->status == serviced_query_UDP_EDNS &&
3354 !sq->edns_lame_known) {
3355 /* now we know that edns queries received answers store that */
3356 log_addr(VERB_ALGO, "serviced query: EDNS works for",
3357 &sq->addr, sq->addrlen);
3358 if(!infra_edns_update(outnet->infra, &sq->addr, sq->addrlen,
3359 sq->zone, sq->zonelen, 0, (time_t)now.tv_sec)) {
3360 log_err("Out of memory caching edns works");
3361 }
3362 sq->edns_lame_known = 1;
3363 } else if(sq->status == serviced_query_UDP_EDNS_fallback &&
3364 !sq->edns_lame_known && (LDNS_RCODE_WIRE(
3365 sldns_buffer_begin(c->buffer)) == LDNS_RCODE_NOERROR ||
3366 LDNS_RCODE_WIRE(sldns_buffer_begin(c->buffer)) ==
3367 LDNS_RCODE_NXDOMAIN || LDNS_RCODE_WIRE(sldns_buffer_begin(
3368 c->buffer)) == LDNS_RCODE_YXDOMAIN)) {
3369 /* the fallback produced a result that looks promising, note
3370 * that this server should be approached without EDNS */
3371 /* only store noEDNS in cache if domain is noDNSSEC */
3372 if(!sq->want_dnssec) {
3373 log_addr(VERB_ALGO, "serviced query: EDNS fails for",
3374 &sq->addr, sq->addrlen);
3375 if(!infra_edns_update(outnet->infra, &sq->addr, sq->addrlen,
3376 sq->zone, sq->zonelen, -1, (time_t)now.tv_sec)) {
3377 log_err("Out of memory caching no edns for host");
3378 }
3379 } else {
3380 log_addr(VERB_ALGO, "serviced query: EDNS fails, but "
3381 "not stored because need DNSSEC for", &sq->addr,
3382 sq->addrlen);
3383 }
3384 sq->status = serviced_query_UDP;
3385 }
3386 if(now.tv_sec > sq->last_sent_time.tv_sec ||
3387 (now.tv_sec == sq->last_sent_time.tv_sec &&
3388 now.tv_usec > sq->last_sent_time.tv_usec)) {
3389 /* convert from microseconds to milliseconds */
3390 int roundtime = ((int)(now.tv_sec - sq->last_sent_time.tv_sec))*1000
3391 + ((int)now.tv_usec - (int)sq->last_sent_time.tv_usec)/1000;
3392 verbose(VERB_ALGO, "measured roundtrip at %d msec", roundtime);
3393 log_assert(roundtime >= 0);
3394 /* in case the system hibernated, do not enter a huge value,
3395 * above this value gives trouble with server selection */
3396 if(roundtime < 60000) {
3397 if(!infra_rtt_update(outnet->infra, &sq->addr, sq->addrlen,
3398 sq->zone, sq->zonelen, sq->qtype, roundtime,
3399 sq->last_rtt, (time_t)now.tv_sec))
3400 log_err("out of memory noting rtt.");
3401 }
3402 }
3403 /* perform TC flag check and TCP fallback after updating our
3404 * cache entries for EDNS status and RTT times */
3405 if(LDNS_TC_WIRE(sldns_buffer_begin(c->buffer))) {
3406 /* fallback to TCP */
3407 /* this discards partial UDP contents */
3408 if(sq->status == serviced_query_UDP_EDNS ||
3409 sq->status == serviced_query_UDP_EDNS_FRAG ||
3410 sq->status == serviced_query_UDP_EDNS_fallback)
3411 /* if we have unfinished EDNS_fallback, start again */
3412 sq->status = serviced_query_TCP_EDNS;
3413 else sq->status = serviced_query_TCP;
3414 serviced_tcp_initiate(sq, c->buffer);
3415 return 0;
3416 }
3417 /* yay! an answer */
3418 serviced_callbacks(sq, error, c, rep);
3419 return 0;
3420 }
3421
3422 struct serviced_query*
3423 outnet_serviced_query(struct outside_network* outnet,
3424 struct query_info* qinfo, uint16_t flags, int dnssec, int want_dnssec,
3425 int nocaps, int check_ratelimit, int tcp_upstream, int ssl_upstream,
3426 char* tls_auth_name, struct sockaddr_storage* addr, socklen_t addrlen,
3427 uint8_t* zone, size_t zonelen, struct module_qstate* qstate,
3428 comm_point_callback_type* callback, void* callback_arg,
3429 sldns_buffer* buff, struct module_env* env, int* was_ratelimited)
3430 {
3431 struct serviced_query* sq;
3432 struct service_callback* cb;
3433 struct edns_string_addr* client_string_addr;
3434 struct regional* region;
3435 struct edns_option* backed_up_opt_list = qstate->edns_opts_back_out;
3436 struct edns_option* per_upstream_opt_list = NULL;
3437 time_t timenow = 0;
3438
3439 /* If we have an already populated EDNS option list make a copy since
3440 * we may now add upstream specific EDNS options. */
3441 /* Use a region that could be attached to a serviced_query, if it needs
3442 * to be created. If an existing one is found then this region will be
3443 * destroyed here. */
3444 region = alloc_reg_obtain(env->alloc);
3445 if(!region) return NULL;
3446 if(qstate->edns_opts_back_out) {
3447 per_upstream_opt_list = edns_opt_copy_region(
3448 qstate->edns_opts_back_out, region);
3449 if(!per_upstream_opt_list) {
3450 alloc_reg_release(env->alloc, region);
3451 return NULL;
3452 }
3453 qstate->edns_opts_back_out = per_upstream_opt_list;
3454 }
3455
3456 if(!inplace_cb_query_call(env, qinfo, flags, addr, addrlen, zone,
3457 zonelen, qstate, region)) {
3458 alloc_reg_release(env->alloc, region);
3459 return NULL;
3460 }
3461 /* Restore the option list; we can explicitly use the copied one from
3462 * now on. */
3463 per_upstream_opt_list = qstate->edns_opts_back_out;
3464 qstate->edns_opts_back_out = backed_up_opt_list;
3465
3466 if((client_string_addr = edns_string_addr_lookup(
3467 &env->edns_strings->client_strings, addr, addrlen))) {
3468 edns_opt_list_append(&per_upstream_opt_list,
3469 env->edns_strings->client_string_opcode,
3470 client_string_addr->string_len,
3471 client_string_addr->string, region);
3472 }
3473
3474 serviced_gen_query(buff, qinfo->qname, qinfo->qname_len, qinfo->qtype,
3475 qinfo->qclass, flags);
3476 sq = lookup_serviced(outnet, buff, dnssec, addr, addrlen,
3477 per_upstream_opt_list);
3478 if(!sq) {
3479 /* Check ratelimit only for new serviced_query */
3480 if(check_ratelimit) {
3481 timenow = *env->now;
3482 if(!infra_ratelimit_inc(env->infra_cache, zone,
3483 zonelen, timenow, env->cfg->ratelimit_backoff,
3484 &qstate->qinfo,
3485 qstate->mesh_info->reply_list
3486 ?&qstate->mesh_info->reply_list->query_reply
3487 :NULL)) {
3488 /* Can we pass through with slip factor? */
3489 if(env->cfg->ratelimit_factor == 0 ||
3490 ub_random_max(env->rnd,
3491 env->cfg->ratelimit_factor) != 1) {
3492 *was_ratelimited = 1;
3493 alloc_reg_release(env->alloc, region);
3494 return NULL;
3495 }
3496 log_nametypeclass(VERB_ALGO,
3497 "ratelimit allowed through for "
3498 "delegation point", zone,
3499 LDNS_RR_TYPE_NS, LDNS_RR_CLASS_IN);
3500 }
3501 }
3502 /* make new serviced query entry */
3503 sq = serviced_create(outnet, buff, dnssec, want_dnssec, nocaps,
3504 tcp_upstream, ssl_upstream, tls_auth_name, addr,
3505 addrlen, zone, zonelen, (int)qinfo->qtype,
3506 per_upstream_opt_list,
3507 ( ssl_upstream && env->cfg->pad_queries
3508 ? env->cfg->pad_queries_block_size : 0 ),
3509 env->alloc, region);
3510 if(!sq) {
3511 if(check_ratelimit) {
3512 infra_ratelimit_dec(env->infra_cache,
3513 zone, zonelen, timenow);
3514 }
3515 return NULL;
3516 }
3517 if(!(cb = (struct service_callback*)regional_alloc(
3518 sq->region, sizeof(*cb)))) {
3519 if(check_ratelimit) {
3520 infra_ratelimit_dec(env->infra_cache,
3521 zone, zonelen, timenow);
3522 }
3523 (void)rbtree_delete(outnet->serviced, sq);
3524 serviced_node_del(&sq->node, NULL);
3525 return NULL;
3526 }
3527 /* No network action at this point; it will be invoked with the
3528 * serviced_query timer instead to run outside of the mesh. */
3529 } else {
3530 /* We don't need this region anymore. */
3531 alloc_reg_release(env->alloc, region);
3532 /* duplicate entries are included in the callback list, because
3533 * there is a counterpart registration by our caller that needs
3534 * to be doubly-removed (with callbacks perhaps). */
3535 if(!(cb = (struct service_callback*)regional_alloc(
3536 sq->region, sizeof(*cb)))) {
3537 return NULL;
3538 }
3539 }
3540 /* add callback to list of callbacks */
3541 cb->cb = callback;
3542 cb->cb_arg = callback_arg;
3543 cb->next = sq->cblist;
3544 sq->cblist = cb;
3545 return sq;
3546 }
3547
3548 /** remove callback from list */
3549 static void
3550 callback_list_remove(struct serviced_query* sq, void* cb_arg)
3551 {
3552 struct service_callback** pp = &sq->cblist;
3553 while(*pp) {
3554 if((*pp)->cb_arg == cb_arg) {
3555 struct service_callback* del = *pp;
3556 *pp = del->next;
3557 return;
3558 }
3559 pp = &(*pp)->next;
3560 }
3561 }
3562
3563 void outnet_serviced_query_stop(struct serviced_query* sq, void* cb_arg)
3564 {
3565 if(!sq)
3566 return;
3567 callback_list_remove(sq, cb_arg);
3568 /* if callbacks() routine scheduled deletion, let it do that */
3569 if(!sq->cblist && !sq->busy && !sq->to_be_deleted) {
3570 (void)rbtree_delete(sq->outnet->serviced, sq);
3571 serviced_delete(sq);
3572 }
3573 }
3574
3575 /** create fd to send to this destination */
3576 static int
3577 fd_for_dest(struct outside_network* outnet, struct sockaddr_storage* to_addr,
3578 socklen_t to_addrlen)
3579 {
3580 struct sockaddr_storage* addr;
3581 socklen_t addrlen;
3582 int i, try, pnum, dscp;
3583 struct port_if* pif;
3584
3585 /* create fd */
3586 dscp = outnet->ip_dscp;
3587 for(try = 0; try<1000; try++) {
3588 int port = 0;
3589 int freebind = 0;
3590 int noproto = 0;
3591 int inuse = 0;
3592 int fd = -1;
3593
3594 /* select interface */
3595 if(addr_is_ip6(to_addr, to_addrlen)) {
3596 if(outnet->num_ip6 == 0) {
3597 char to[64];
3598 addr_to_str(to_addr, to_addrlen, to, sizeof(to));
3599 verbose(VERB_QUERY, "need ipv6 to send, but no ipv6 outgoing interfaces, for %s", to);
3600 return -1;
3601 }
3602 i = ub_random_max(outnet->rnd, outnet->num_ip6);
3603 pif = &outnet->ip6_ifs[i];
3604 } else {
3605 if(outnet->num_ip4 == 0) {
3606 char to[64];
3607 addr_to_str(to_addr, to_addrlen, to, sizeof(to));
3608 verbose(VERB_QUERY, "need ipv4 to send, but no ipv4 outgoing interfaces, for %s", to);
3609 return -1;
3610 }
3611 i = ub_random_max(outnet->rnd, outnet->num_ip4);
3612 pif = &outnet->ip4_ifs[i];
3613 }
3614 addr = &pif->addr;
3615 addrlen = pif->addrlen;
3616 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION
3617 pnum = ub_random_max(outnet->rnd, pif->avail_total);
3618 if(pnum < pif->inuse) {
3619 /* port already open */
3620 port = pif->out[pnum]->number;
3621 } else {
3622 /* unused ports in start part of array */
3623 port = pif->avail_ports[pnum - pif->inuse];
3624 }
3625 #else
3626 pnum = port = 0;
3627 #endif
3628 if(addr_is_ip6(to_addr, to_addrlen)) {
3629 struct sockaddr_in6 sa = *(struct sockaddr_in6*)addr;
3630 sa.sin6_port = (in_port_t)htons((uint16_t)port);
3631 fd = create_udp_sock(AF_INET6, SOCK_DGRAM,
3632 (struct sockaddr*)&sa, addrlen, 1, &inuse, &noproto,
3633 0, 0, 0, NULL, 0, freebind, 0, dscp);
3634 } else {
3635 struct sockaddr_in* sa = (struct sockaddr_in*)addr;
3636 sa->sin_port = (in_port_t)htons((uint16_t)port);
3637 fd = create_udp_sock(AF_INET, SOCK_DGRAM,
3638 (struct sockaddr*)addr, addrlen, 1, &inuse, &noproto,
3639 0, 0, 0, NULL, 0, freebind, 0, dscp);
3640 }
3641 if(fd != -1) {
3642 return fd;
3643 }
3644 if(!inuse) {
3645 return -1;
3646 }
3647 }
3648 /* too many tries */
3649 log_err("cannot send probe, ports are in use");
3650 return -1;
3651 }
3652
3653 struct comm_point*
3654 outnet_comm_point_for_udp(struct outside_network* outnet,
3655 comm_point_callback_type* cb, void* cb_arg,
3656 struct sockaddr_storage* to_addr, socklen_t to_addrlen)
3657 {
3658 struct comm_point* cp;
3659 int fd = fd_for_dest(outnet, to_addr, to_addrlen);
3660 if(fd == -1) {
3661 return NULL;
3662 }
3663 cp = comm_point_create_udp(outnet->base, fd, outnet->udp_buff, 0,
3664 cb, cb_arg, NULL);
3665 if(!cp) {
3666 log_err("malloc failure");
3667 close(fd);
3668 return NULL;
3669 }
3670 return cp;
3671 }
3672
3673 /** setup SSL for comm point */
3674 static int
3675 setup_comm_ssl(struct comm_point* cp, struct outside_network* outnet,
3676 int fd, char* host)
3677 {
3678 cp->ssl = outgoing_ssl_fd(outnet->sslctx, fd);
3679 if(!cp->ssl) {
3680 log_err("cannot create SSL object");
3681 return 0;
3682 }
3683 #ifdef USE_WINSOCK
3684 comm_point_tcp_win_bio_cb(cp, cp->ssl);
3685 #endif
3686 cp->ssl_shake_state = comm_ssl_shake_write;
3687 /* https verification */
3688 #ifdef HAVE_SSL
3689 if(outnet->tls_use_sni) {
3690 (void)SSL_set_tlsext_host_name(cp->ssl, host);
3691 }
3692 #endif
3693 #ifdef HAVE_SSL_SET1_HOST
3694 if((SSL_CTX_get_verify_mode(outnet->sslctx)&SSL_VERIFY_PEER)) {
3695 /* because we set SSL_VERIFY_PEER, in netevent in
3696 * ssl_handshake, it'll check if the certificate
3697 * verification has succeeded */
3698 /* SSL_VERIFY_PEER is set on the sslctx */
3699 /* and the certificates to verify with are loaded into
3700 * it with SSL_load_verify_locations or
3701 * SSL_CTX_set_default_verify_paths */
3702 /* setting the hostname makes openssl verify the
3703 * host name in the x509 certificate in the
3704 * SSL connection*/
3705 if(!SSL_set1_host(cp->ssl, host)) {
3706 log_err("SSL_set1_host failed");
3707 return 0;
3708 }
3709 }
3710 #elif defined(HAVE_X509_VERIFY_PARAM_SET1_HOST)
3711 /* openssl 1.0.2 has this function that can be used for
3712 * set1_host like verification */
3713 if((SSL_CTX_get_verify_mode(outnet->sslctx)&SSL_VERIFY_PEER)) {
3714 X509_VERIFY_PARAM* param = SSL_get0_param(cp->ssl);
3715 # ifdef X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS
3716 X509_VERIFY_PARAM_set_hostflags(param, X509_CHECK_FLAG_NO_PARTIAL_WILDCARDS);
3717 # endif
3718 if(!X509_VERIFY_PARAM_set1_host(param, host, strlen(host))) {
3719 log_err("X509_VERIFY_PARAM_set1_host failed");
3720 return 0;
3721 }
3722 }
3723 #else
3724 (void)host;
3725 #endif /* HAVE_SSL_SET1_HOST */
3726 return 1;
3727 }
3728
3729 struct comm_point*
3730 outnet_comm_point_for_tcp(struct outside_network* outnet,
3731 comm_point_callback_type* cb, void* cb_arg,
3732 struct sockaddr_storage* to_addr, socklen_t to_addrlen,
3733 sldns_buffer* query, int timeout, int ssl, char* host)
3734 {
3735 struct comm_point* cp;
3736 int fd = outnet_get_tcp_fd(to_addr, to_addrlen, outnet->tcp_mss,
3737 outnet->ip_dscp, ssl);
3738 if(fd == -1) {
3739 return 0;
3740 }
3741 fd_set_nonblock(fd);
3742 if(!outnet_tcp_connect(fd, to_addr, to_addrlen)) {
3743 /* outnet_tcp_connect has closed fd on error for us */
3744 return 0;
3745 }
3746 cp = comm_point_create_tcp_out(outnet->base, 65552, cb, cb_arg);
3747 if(!cp) {
3748 log_err("malloc failure");
3749 close(fd);
3750 return 0;
3751 }
3752 cp->repinfo.remote_addrlen = to_addrlen;
3753 memcpy(&cp->repinfo.remote_addr, to_addr, to_addrlen);
3754
3755 /* setup for SSL (if needed) */
3756 if(ssl) {
3757 if(!setup_comm_ssl(cp, outnet, fd, host)) {
3758 log_err("cannot setup XoT");
3759 comm_point_delete(cp);
3760 return NULL;
3761 }
3762 }
3763
3764 /* set timeout on TCP connection */
3765 comm_point_start_listening(cp, fd, timeout);
3766 /* copy scratch buffer to cp->buffer */
3767 sldns_buffer_copy(cp->buffer, query);
3768 return cp;
3769 }
3770
3771 /** setup the User-Agent HTTP header based on http-user-agent configuration */
3772 static void
3773 setup_http_user_agent(sldns_buffer* buf, struct config_file* cfg)
3774 {
3775 if(cfg->hide_http_user_agent) return;
3776 if(cfg->http_user_agent==NULL || cfg->http_user_agent[0] == 0) {
3777 sldns_buffer_printf(buf, "User-Agent: %s/%s\r\n", PACKAGE_NAME,
3778 PACKAGE_VERSION);
3779 } else {
3780 sldns_buffer_printf(buf, "User-Agent: %s\r\n", cfg->http_user_agent);
3781 }
3782 }
3783
3784 /** setup http request headers in buffer for sending query to destination */
3785 static int
3786 setup_http_request(sldns_buffer* buf, char* host, char* path,
3787 struct config_file* cfg)
3788 {
3789 sldns_buffer_clear(buf);
3790 sldns_buffer_printf(buf, "GET /%s HTTP/1.1\r\n", path);
3791 sldns_buffer_printf(buf, "Host: %s\r\n", host);
3792 setup_http_user_agent(buf, cfg);
3793 /* We do not really do multiple queries per connection,
3794 * but this header setting is also not needed.
3795 * sldns_buffer_printf(buf, "Connection: close\r\n") */
3796 sldns_buffer_printf(buf, "\r\n");
3797 if(sldns_buffer_position(buf)+10 > sldns_buffer_capacity(buf))
3798 return 0; /* somehow buffer too short, but it is about 60K
3799 and the request is only a couple bytes long. */
3800 sldns_buffer_flip(buf);
3801 return 1;
3802 }
3803
3804 struct comm_point*
3805 outnet_comm_point_for_http(struct outside_network* outnet,
3806 comm_point_callback_type* cb, void* cb_arg,
3807 struct sockaddr_storage* to_addr, socklen_t to_addrlen, int timeout,
3808 int ssl, char* host, char* path, struct config_file* cfg)
3809 {
3810 /* cp calls cb with err=NETEVENT_DONE when transfer is done */
3811 struct comm_point* cp;
3812 int fd = outnet_get_tcp_fd(to_addr, to_addrlen, outnet->tcp_mss,
3813 outnet->ip_dscp, ssl);
3814 if(fd == -1) {
3815 return 0;
3816 }
3817 fd_set_nonblock(fd);
3818 if(!outnet_tcp_connect(fd, to_addr, to_addrlen)) {
3819 /* outnet_tcp_connect has closed fd on error for us */
3820 return 0;
3821 }
3822 cp = comm_point_create_http_out(outnet->base, 65552, cb, cb_arg,
3823 outnet->udp_buff);
3824 if(!cp) {
3825 log_err("malloc failure");
3826 close(fd);
3827 return 0;
3828 }
3829 cp->repinfo.remote_addrlen = to_addrlen;
3830 memcpy(&cp->repinfo.remote_addr, to_addr, to_addrlen);
3831
3832 /* setup for SSL (if needed) */
3833 if(ssl) {
3834 if(!setup_comm_ssl(cp, outnet, fd, host)) {
3835 log_err("cannot setup https");
3836 comm_point_delete(cp);
3837 return NULL;
3838 }
3839 }
3840
3841 /* set timeout on TCP connection */
3842 comm_point_start_listening(cp, fd, timeout);
3843
3844 /* setup http request in cp->buffer */
3845 if(!setup_http_request(cp->buffer, host, path, cfg)) {
3846 log_err("error setting up http request");
3847 comm_point_delete(cp);
3848 return NULL;
3849 }
3850 return cp;
3851 }
3852
3853 /** get memory used by waiting tcp entry (in use or not) */
3854 static size_t
3855 waiting_tcp_get_mem(struct waiting_tcp* w)
3856 {
3857 size_t s;
3858 if(!w) return 0;
3859 s = sizeof(*w) + w->pkt_len;
3860 if(w->timer)
3861 s += comm_timer_get_mem(w->timer);
3862 return s;
3863 }
3864
3865 /** get memory used by port if */
3866 static size_t
3867 if_get_mem(struct port_if* pif)
3868 {
3869 size_t s;
3870 int i;
3871 s = sizeof(*pif) +
3872 #ifndef DISABLE_EXPLICIT_PORT_RANDOMISATION
3873 sizeof(int)*pif->avail_total +
3874 #endif
3875 sizeof(struct port_comm*)*pif->maxout;
3876 for(i=0; i<pif->inuse; i++)
3877 s += sizeof(*pif->out[i]) +
3878 comm_point_get_mem(pif->out[i]->cp);
3879 return s;
3880 }
3881
3882 /** get memory used by waiting udp */
3883 static size_t
3884 waiting_udp_get_mem(struct pending* w)
3885 {
3886 size_t s;
3887 s = sizeof(*w) + comm_timer_get_mem(w->timer) + w->pkt_len;
3888 return s;
3889 }
3890
3891 size_t outnet_get_mem(struct outside_network* outnet)
3892 {
3893 size_t i;
3894 int k;
3895 struct waiting_tcp* w;
3896 struct pending* u;
3897 struct serviced_query* sq;
3898 struct service_callback* sb;
3899 struct port_comm* pc;
3900 size_t s = sizeof(*outnet) + sizeof(*outnet->base) +
3901 sizeof(*outnet->udp_buff) +
3902 sldns_buffer_capacity(outnet->udp_buff);
3903 /* second buffer is not ours */
3904 for(pc = outnet->unused_fds; pc; pc = pc->next) {
3905 s += sizeof(*pc) + comm_point_get_mem(pc->cp);
3906 }
3907 for(k=0; k<outnet->num_ip4; k++)
3908 s += if_get_mem(&outnet->ip4_ifs[k]);
3909 for(k=0; k<outnet->num_ip6; k++)
3910 s += if_get_mem(&outnet->ip6_ifs[k]);
3911 for(u=outnet->udp_wait_first; u; u=u->next_waiting)
3912 s += waiting_udp_get_mem(u);
3913
3914 s += sizeof(struct pending_tcp*)*outnet->num_tcp;
3915 for(i=0; i<outnet->num_tcp; i++) {
3916 s += sizeof(struct pending_tcp);
3917 s += comm_point_get_mem(outnet->tcp_conns[i]->c);
3918 if(outnet->tcp_conns[i]->query)
3919 s += waiting_tcp_get_mem(outnet->tcp_conns[i]->query);
3920 }
3921 for(w=outnet->tcp_wait_first; w; w = w->next_waiting)
3922 s += waiting_tcp_get_mem(w);
3923 s += sizeof(*outnet->pending);
3924 s += (sizeof(struct pending) + comm_timer_get_mem(NULL)) *
3925 outnet->pending->count;
3926 s += sizeof(*outnet->serviced);
3927 s += outnet->svcd_overhead;
3928 RBTREE_FOR(sq, struct serviced_query*, outnet->serviced) {
3929 s += sizeof(*sq) + sq->qbuflen;
3930 for(sb = sq->cblist; sb; sb = sb->next)
3931 s += sizeof(*sb);
3932 }
3933 return s;
3934 }
3935
3936 size_t
3937 serviced_get_mem(struct serviced_query* sq)
3938 {
3939 struct service_callback* sb;
3940 size_t s;
3941 s = sizeof(*sq) + sq->qbuflen;
3942 for(sb = sq->cblist; sb; sb = sb->next)
3943 s += sizeof(*sb);
3944 if(sq->status == serviced_query_UDP_EDNS ||
3945 sq->status == serviced_query_UDP ||
3946 sq->status == serviced_query_UDP_EDNS_FRAG ||
3947 sq->status == serviced_query_UDP_EDNS_fallback) {
3948 s += sizeof(struct pending);
3949 s += comm_timer_get_mem(NULL);
3950 } else {
3951 /* does not have size of the pkt pointer */
3952 /* always has a timer except on malloc failures */
3953
3954 /* these sizes are part of the main outside network mem */
3955 /*
3956 s += sizeof(struct waiting_tcp);
3957 s += comm_timer_get_mem(NULL);
3958 */
3959 }
3960 return s;
3961 }
3962
3963