1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Freescale i.MX23/i.MX28 Data Co-Processor driver
4 *
5 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 */
7
8 #include <linux/dma-mapping.h>
9 #include <linux/interrupt.h>
10 #include <linux/io.h>
11 #include <linux/kernel.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/stmp_device.h>
17 #include <linux/clk.h>
18 #include <soc/fsl/dcp.h>
19
20 #include <crypto/aes.h>
21 #include <crypto/sha1.h>
22 #include <crypto/sha2.h>
23 #include <crypto/internal/hash.h>
24 #include <crypto/internal/skcipher.h>
25 #include <crypto/scatterwalk.h>
26
27 #define DCP_MAX_CHANS 4
28 #define DCP_BUF_SZ PAGE_SIZE
29 #define DCP_SHA_PAY_SZ 64
30
31 #define DCP_ALIGNMENT 64
32
33 /*
34 * Null hashes to align with hw behavior on imx6sl and ull
35 * these are flipped for consistency with hw output
36 */
37 static const uint8_t sha1_null_hash[] =
38 "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
39 "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
40
41 static const uint8_t sha256_null_hash[] =
42 "\x55\xb8\x52\x78\x1b\x99\x95\xa4"
43 "\x4c\x93\x9b\x64\xe4\x41\xae\x27"
44 "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
45 "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
46
47 /* DCP DMA descriptor. */
48 struct dcp_dma_desc {
49 uint32_t next_cmd_addr;
50 uint32_t control0;
51 uint32_t control1;
52 uint32_t source;
53 uint32_t destination;
54 uint32_t size;
55 uint32_t payload;
56 uint32_t status;
57 };
58
59 /* Coherent aligned block for bounce buffering. */
60 struct dcp_coherent_block {
61 uint8_t aes_in_buf[DCP_BUF_SZ];
62 uint8_t aes_out_buf[DCP_BUF_SZ];
63 uint8_t sha_in_buf[DCP_BUF_SZ];
64 uint8_t sha_out_buf[DCP_SHA_PAY_SZ];
65
66 uint8_t aes_key[2 * AES_KEYSIZE_128];
67
68 struct dcp_dma_desc desc[DCP_MAX_CHANS];
69 };
70
71 struct dcp {
72 struct device *dev;
73 void __iomem *base;
74
75 uint32_t caps;
76
77 struct dcp_coherent_block *coh;
78
79 struct completion completion[DCP_MAX_CHANS];
80 spinlock_t lock[DCP_MAX_CHANS];
81 struct task_struct *thread[DCP_MAX_CHANS];
82 struct crypto_queue queue[DCP_MAX_CHANS];
83 struct clk *dcp_clk;
84 };
85
86 enum dcp_chan {
87 DCP_CHAN_HASH_SHA = 0,
88 DCP_CHAN_CRYPTO = 2,
89 };
90
91 struct dcp_async_ctx {
92 /* Common context */
93 enum dcp_chan chan;
94 uint32_t fill;
95
96 /* SHA Hash-specific context */
97 struct mutex mutex;
98 uint32_t alg;
99 unsigned int hot:1;
100
101 /* Crypto-specific context */
102 struct crypto_skcipher *fallback;
103 unsigned int key_len;
104 uint8_t key[AES_KEYSIZE_128];
105 bool key_referenced;
106 };
107
108 struct dcp_aes_req_ctx {
109 unsigned int enc:1;
110 unsigned int ecb:1;
111 struct skcipher_request fallback_req; // keep at the end
112 };
113
114 struct dcp_sha_req_ctx {
115 unsigned int init:1;
116 unsigned int fini:1;
117 };
118
119 struct dcp_export_state {
120 struct dcp_sha_req_ctx req_ctx;
121 struct dcp_async_ctx async_ctx;
122 };
123
124 /*
125 * There can even be only one instance of the MXS DCP due to the
126 * design of Linux Crypto API.
127 */
128 static struct dcp *global_sdcp;
129
130 /* DCP register layout. */
131 #define MXS_DCP_CTRL 0x00
132 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
133 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
134
135 #define MXS_DCP_STAT 0x10
136 #define MXS_DCP_STAT_CLR 0x18
137 #define MXS_DCP_STAT_IRQ_MASK 0xf
138
139 #define MXS_DCP_CHANNELCTRL 0x20
140 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
141
142 #define MXS_DCP_CAPABILITY1 0x40
143 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
144 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
145 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
146
147 #define MXS_DCP_CONTEXT 0x50
148
149 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
150
151 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
152
153 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
154 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
155
156 /* DMA descriptor bits. */
157 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
158 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
159 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
160 #define MXS_DCP_CONTROL0_OTP_KEY (1 << 10)
161 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
162 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
163 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
164 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
165 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
166 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
167
168 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
169 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
170 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
171 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
172 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
173
174 #define MXS_DCP_CONTROL1_KEY_SELECT_SHIFT 8
175
mxs_dcp_start_dma(struct dcp_async_ctx * actx)176 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
177 {
178 int dma_err;
179 struct dcp *sdcp = global_sdcp;
180 const int chan = actx->chan;
181 uint32_t stat;
182 unsigned long ret;
183 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
184 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
185 DMA_TO_DEVICE);
186
187 dma_err = dma_mapping_error(sdcp->dev, desc_phys);
188 if (dma_err)
189 return dma_err;
190
191 reinit_completion(&sdcp->completion[chan]);
192
193 /* Clear status register. */
194 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
195
196 /* Load the DMA descriptor. */
197 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
198
199 /* Increment the semaphore to start the DMA transfer. */
200 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
201
202 ret = wait_for_completion_timeout(&sdcp->completion[chan],
203 msecs_to_jiffies(1000));
204 if (!ret) {
205 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
206 chan, readl(sdcp->base + MXS_DCP_STAT));
207 return -ETIMEDOUT;
208 }
209
210 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
211 if (stat & 0xff) {
212 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
213 chan, stat);
214 return -EINVAL;
215 }
216
217 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
218
219 return 0;
220 }
221
222 /*
223 * Encryption (AES128)
224 */
mxs_dcp_run_aes(struct dcp_async_ctx * actx,struct skcipher_request * req,int init)225 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
226 struct skcipher_request *req, int init)
227 {
228 dma_addr_t key_phys = 0;
229 dma_addr_t src_phys, dst_phys;
230 struct dcp *sdcp = global_sdcp;
231 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
232 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
233 bool key_referenced = actx->key_referenced;
234 int ret;
235
236 if (!key_referenced) {
237 key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
238 2 * AES_KEYSIZE_128, DMA_TO_DEVICE);
239 ret = dma_mapping_error(sdcp->dev, key_phys);
240 if (ret)
241 return ret;
242 }
243
244 src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
245 DCP_BUF_SZ, DMA_TO_DEVICE);
246 ret = dma_mapping_error(sdcp->dev, src_phys);
247 if (ret)
248 goto err_src;
249
250 dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
251 DCP_BUF_SZ, DMA_FROM_DEVICE);
252 ret = dma_mapping_error(sdcp->dev, dst_phys);
253 if (ret)
254 goto err_dst;
255
256 if (actx->fill % AES_BLOCK_SIZE) {
257 dev_err(sdcp->dev, "Invalid block size!\n");
258 ret = -EINVAL;
259 goto aes_done_run;
260 }
261
262 /* Fill in the DMA descriptor. */
263 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
264 MXS_DCP_CONTROL0_INTERRUPT |
265 MXS_DCP_CONTROL0_ENABLE_CIPHER;
266
267 if (key_referenced)
268 /* Set OTP key bit to select the key via KEY_SELECT. */
269 desc->control0 |= MXS_DCP_CONTROL0_OTP_KEY;
270 else
271 /* Payload contains the key. */
272 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
273
274 if (rctx->enc)
275 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
276 if (init)
277 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
278
279 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
280
281 if (rctx->ecb)
282 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
283 else
284 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
285
286 if (key_referenced)
287 desc->control1 |= sdcp->coh->aes_key[0] << MXS_DCP_CONTROL1_KEY_SELECT_SHIFT;
288
289 desc->next_cmd_addr = 0;
290 desc->source = src_phys;
291 desc->destination = dst_phys;
292 desc->size = actx->fill;
293 desc->payload = key_phys;
294 desc->status = 0;
295
296 ret = mxs_dcp_start_dma(actx);
297
298 aes_done_run:
299 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
300 err_dst:
301 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
302 err_src:
303 if (!key_referenced)
304 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
305 DMA_TO_DEVICE);
306 return ret;
307 }
308
mxs_dcp_aes_block_crypt(struct crypto_async_request * arq)309 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
310 {
311 struct dcp *sdcp = global_sdcp;
312
313 struct skcipher_request *req = skcipher_request_cast(arq);
314 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
315 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
316
317 struct scatterlist *dst = req->dst;
318 struct scatterlist *src = req->src;
319 int dst_nents = sg_nents(dst);
320
321 const int out_off = DCP_BUF_SZ;
322 uint8_t *in_buf = sdcp->coh->aes_in_buf;
323 uint8_t *out_buf = sdcp->coh->aes_out_buf;
324
325 uint32_t dst_off = 0;
326 uint8_t *src_buf = NULL;
327 uint32_t last_out_len = 0;
328
329 uint8_t *key = sdcp->coh->aes_key;
330
331 int ret = 0;
332 unsigned int i, len, clen, tlen = 0;
333 int init = 0;
334 bool limit_hit = false;
335
336 actx->fill = 0;
337
338 /* Copy the key from the temporary location. */
339 memcpy(key, actx->key, actx->key_len);
340
341 if (!rctx->ecb) {
342 /* Copy the CBC IV just past the key. */
343 memcpy(key + AES_KEYSIZE_128, req->iv, AES_KEYSIZE_128);
344 /* CBC needs the INIT set. */
345 init = 1;
346 } else {
347 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
348 }
349
350 for_each_sg(req->src, src, sg_nents(req->src), i) {
351 src_buf = sg_virt(src);
352 len = sg_dma_len(src);
353 tlen += len;
354 limit_hit = tlen > req->cryptlen;
355
356 if (limit_hit)
357 len = req->cryptlen - (tlen - len);
358
359 do {
360 if (actx->fill + len > out_off)
361 clen = out_off - actx->fill;
362 else
363 clen = len;
364
365 memcpy(in_buf + actx->fill, src_buf, clen);
366 len -= clen;
367 src_buf += clen;
368 actx->fill += clen;
369
370 /*
371 * If we filled the buffer or this is the last SG,
372 * submit the buffer.
373 */
374 if (actx->fill == out_off || sg_is_last(src) ||
375 limit_hit) {
376 ret = mxs_dcp_run_aes(actx, req, init);
377 if (ret)
378 return ret;
379 init = 0;
380
381 sg_pcopy_from_buffer(dst, dst_nents, out_buf,
382 actx->fill, dst_off);
383 dst_off += actx->fill;
384 last_out_len = actx->fill;
385 actx->fill = 0;
386 }
387 } while (len);
388
389 if (limit_hit)
390 break;
391 }
392
393 /* Copy the IV for CBC for chaining */
394 if (!rctx->ecb) {
395 if (rctx->enc)
396 memcpy(req->iv, out_buf+(last_out_len-AES_BLOCK_SIZE),
397 AES_BLOCK_SIZE);
398 else
399 memcpy(req->iv, in_buf+(last_out_len-AES_BLOCK_SIZE),
400 AES_BLOCK_SIZE);
401 }
402
403 return ret;
404 }
405
dcp_chan_thread_aes(void * data)406 static int dcp_chan_thread_aes(void *data)
407 {
408 struct dcp *sdcp = global_sdcp;
409 const int chan = DCP_CHAN_CRYPTO;
410
411 struct crypto_async_request *backlog;
412 struct crypto_async_request *arq;
413
414 int ret;
415
416 while (!kthread_should_stop()) {
417 set_current_state(TASK_INTERRUPTIBLE);
418
419 spin_lock(&sdcp->lock[chan]);
420 backlog = crypto_get_backlog(&sdcp->queue[chan]);
421 arq = crypto_dequeue_request(&sdcp->queue[chan]);
422 spin_unlock(&sdcp->lock[chan]);
423
424 if (!backlog && !arq) {
425 schedule();
426 continue;
427 }
428
429 set_current_state(TASK_RUNNING);
430
431 if (backlog)
432 crypto_request_complete(backlog, -EINPROGRESS);
433
434 if (arq) {
435 ret = mxs_dcp_aes_block_crypt(arq);
436 crypto_request_complete(arq, ret);
437 }
438 }
439
440 return 0;
441 }
442
mxs_dcp_block_fallback(struct skcipher_request * req,int enc)443 static int mxs_dcp_block_fallback(struct skcipher_request *req, int enc)
444 {
445 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
446 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
447 struct dcp_async_ctx *ctx = crypto_skcipher_ctx(tfm);
448 int ret;
449
450 skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback);
451 skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
452 req->base.complete, req->base.data);
453 skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
454 req->cryptlen, req->iv);
455
456 if (enc)
457 ret = crypto_skcipher_encrypt(&rctx->fallback_req);
458 else
459 ret = crypto_skcipher_decrypt(&rctx->fallback_req);
460
461 return ret;
462 }
463
mxs_dcp_aes_enqueue(struct skcipher_request * req,int enc,int ecb)464 static int mxs_dcp_aes_enqueue(struct skcipher_request *req, int enc, int ecb)
465 {
466 struct dcp *sdcp = global_sdcp;
467 struct crypto_async_request *arq = &req->base;
468 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
469 struct dcp_aes_req_ctx *rctx = skcipher_request_ctx(req);
470 int ret;
471
472 if (unlikely(actx->key_len != AES_KEYSIZE_128 && !actx->key_referenced))
473 return mxs_dcp_block_fallback(req, enc);
474
475 rctx->enc = enc;
476 rctx->ecb = ecb;
477 actx->chan = DCP_CHAN_CRYPTO;
478
479 spin_lock(&sdcp->lock[actx->chan]);
480 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
481 spin_unlock(&sdcp->lock[actx->chan]);
482
483 wake_up_process(sdcp->thread[actx->chan]);
484
485 return ret;
486 }
487
mxs_dcp_aes_ecb_decrypt(struct skcipher_request * req)488 static int mxs_dcp_aes_ecb_decrypt(struct skcipher_request *req)
489 {
490 return mxs_dcp_aes_enqueue(req, 0, 1);
491 }
492
mxs_dcp_aes_ecb_encrypt(struct skcipher_request * req)493 static int mxs_dcp_aes_ecb_encrypt(struct skcipher_request *req)
494 {
495 return mxs_dcp_aes_enqueue(req, 1, 1);
496 }
497
mxs_dcp_aes_cbc_decrypt(struct skcipher_request * req)498 static int mxs_dcp_aes_cbc_decrypt(struct skcipher_request *req)
499 {
500 return mxs_dcp_aes_enqueue(req, 0, 0);
501 }
502
mxs_dcp_aes_cbc_encrypt(struct skcipher_request * req)503 static int mxs_dcp_aes_cbc_encrypt(struct skcipher_request *req)
504 {
505 return mxs_dcp_aes_enqueue(req, 1, 0);
506 }
507
mxs_dcp_aes_setkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)508 static int mxs_dcp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
509 unsigned int len)
510 {
511 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
512
513 /*
514 * AES 128 is supposed by the hardware, store key into temporary
515 * buffer and exit. We must use the temporary buffer here, since
516 * there can still be an operation in progress.
517 */
518 actx->key_len = len;
519 actx->key_referenced = false;
520 if (len == AES_KEYSIZE_128) {
521 memcpy(actx->key, key, len);
522 return 0;
523 }
524
525 /*
526 * If the requested AES key size is not supported by the hardware,
527 * but is supported by in-kernel software implementation, we use
528 * software fallback.
529 */
530 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
531 crypto_skcipher_set_flags(actx->fallback,
532 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
533 return crypto_skcipher_setkey(actx->fallback, key, len);
534 }
535
mxs_dcp_aes_setrefkey(struct crypto_skcipher * tfm,const u8 * key,unsigned int len)536 static int mxs_dcp_aes_setrefkey(struct crypto_skcipher *tfm, const u8 *key,
537 unsigned int len)
538 {
539 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
540
541 if (len != DCP_PAES_KEYSIZE)
542 return -EINVAL;
543
544 switch (key[0]) {
545 case DCP_PAES_KEY_SLOT0:
546 case DCP_PAES_KEY_SLOT1:
547 case DCP_PAES_KEY_SLOT2:
548 case DCP_PAES_KEY_SLOT3:
549 case DCP_PAES_KEY_UNIQUE:
550 case DCP_PAES_KEY_OTP:
551 memcpy(actx->key, key, len);
552 actx->key_len = len;
553 actx->key_referenced = true;
554 break;
555 default:
556 return -EINVAL;
557 }
558
559 return 0;
560 }
561
mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher * tfm)562 static int mxs_dcp_aes_fallback_init_tfm(struct crypto_skcipher *tfm)
563 {
564 const char *name = crypto_tfm_alg_name(crypto_skcipher_tfm(tfm));
565 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
566 struct crypto_skcipher *blk;
567
568 blk = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
569 if (IS_ERR(blk))
570 return PTR_ERR(blk);
571
572 actx->fallback = blk;
573 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx) +
574 crypto_skcipher_reqsize(blk));
575 return 0;
576 }
577
mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher * tfm)578 static void mxs_dcp_aes_fallback_exit_tfm(struct crypto_skcipher *tfm)
579 {
580 struct dcp_async_ctx *actx = crypto_skcipher_ctx(tfm);
581
582 crypto_free_skcipher(actx->fallback);
583 }
584
mxs_dcp_paes_init_tfm(struct crypto_skcipher * tfm)585 static int mxs_dcp_paes_init_tfm(struct crypto_skcipher *tfm)
586 {
587 crypto_skcipher_set_reqsize(tfm, sizeof(struct dcp_aes_req_ctx));
588
589 return 0;
590 }
591
592 /*
593 * Hashing (SHA1/SHA256)
594 */
mxs_dcp_run_sha(struct ahash_request * req)595 static int mxs_dcp_run_sha(struct ahash_request *req)
596 {
597 struct dcp *sdcp = global_sdcp;
598 int ret;
599
600 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
601 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
602 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
603 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
604
605 dma_addr_t digest_phys = 0;
606 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
607 DCP_BUF_SZ, DMA_TO_DEVICE);
608
609 ret = dma_mapping_error(sdcp->dev, buf_phys);
610 if (ret)
611 return ret;
612
613 /* Fill in the DMA descriptor. */
614 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
615 MXS_DCP_CONTROL0_INTERRUPT |
616 MXS_DCP_CONTROL0_ENABLE_HASH;
617 if (rctx->init)
618 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
619
620 desc->control1 = actx->alg;
621 desc->next_cmd_addr = 0;
622 desc->source = buf_phys;
623 desc->destination = 0;
624 desc->size = actx->fill;
625 desc->payload = 0;
626 desc->status = 0;
627
628 /*
629 * Align driver with hw behavior when generating null hashes
630 */
631 if (rctx->init && rctx->fini && desc->size == 0) {
632 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
633 const uint8_t *sha_buf =
634 (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
635 sha1_null_hash : sha256_null_hash;
636 memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
637 ret = 0;
638 goto done_run;
639 }
640
641 /* Set HASH_TERM bit for last transfer block. */
642 if (rctx->fini) {
643 digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
644 DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
645 ret = dma_mapping_error(sdcp->dev, digest_phys);
646 if (ret)
647 goto done_run;
648
649 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
650 desc->payload = digest_phys;
651 }
652
653 ret = mxs_dcp_start_dma(actx);
654
655 if (rctx->fini)
656 dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
657 DMA_FROM_DEVICE);
658
659 done_run:
660 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
661
662 return ret;
663 }
664
dcp_sha_req_to_buf(struct crypto_async_request * arq)665 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
666 {
667 struct dcp *sdcp = global_sdcp;
668
669 struct ahash_request *req = ahash_request_cast(arq);
670 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
671 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
672 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
673 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
674
675 uint8_t *in_buf = sdcp->coh->sha_in_buf;
676 uint8_t *out_buf = sdcp->coh->sha_out_buf;
677
678 struct scatterlist *src;
679
680 unsigned int i, len, clen, oft = 0;
681 int ret;
682
683 int fin = rctx->fini;
684 if (fin)
685 rctx->fini = 0;
686
687 src = req->src;
688 len = req->nbytes;
689
690 while (len) {
691 if (actx->fill + len > DCP_BUF_SZ)
692 clen = DCP_BUF_SZ - actx->fill;
693 else
694 clen = len;
695
696 scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
697 0);
698
699 len -= clen;
700 oft += clen;
701 actx->fill += clen;
702
703 /*
704 * If we filled the buffer and still have some
705 * more data, submit the buffer.
706 */
707 if (len && actx->fill == DCP_BUF_SZ) {
708 ret = mxs_dcp_run_sha(req);
709 if (ret)
710 return ret;
711 actx->fill = 0;
712 rctx->init = 0;
713 }
714 }
715
716 if (fin) {
717 rctx->fini = 1;
718
719 /* Submit whatever is left. */
720 if (!req->result)
721 return -EINVAL;
722
723 ret = mxs_dcp_run_sha(req);
724 if (ret)
725 return ret;
726
727 actx->fill = 0;
728
729 /* For some reason the result is flipped */
730 for (i = 0; i < halg->digestsize; i++)
731 req->result[i] = out_buf[halg->digestsize - i - 1];
732 }
733
734 return 0;
735 }
736
dcp_chan_thread_sha(void * data)737 static int dcp_chan_thread_sha(void *data)
738 {
739 struct dcp *sdcp = global_sdcp;
740 const int chan = DCP_CHAN_HASH_SHA;
741
742 struct crypto_async_request *backlog;
743 struct crypto_async_request *arq;
744 int ret;
745
746 while (!kthread_should_stop()) {
747 set_current_state(TASK_INTERRUPTIBLE);
748
749 spin_lock(&sdcp->lock[chan]);
750 backlog = crypto_get_backlog(&sdcp->queue[chan]);
751 arq = crypto_dequeue_request(&sdcp->queue[chan]);
752 spin_unlock(&sdcp->lock[chan]);
753
754 if (!backlog && !arq) {
755 schedule();
756 continue;
757 }
758
759 set_current_state(TASK_RUNNING);
760
761 if (backlog)
762 crypto_request_complete(backlog, -EINPROGRESS);
763
764 if (arq) {
765 ret = dcp_sha_req_to_buf(arq);
766 crypto_request_complete(arq, ret);
767 }
768 }
769
770 return 0;
771 }
772
dcp_sha_init(struct ahash_request * req)773 static int dcp_sha_init(struct ahash_request *req)
774 {
775 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
776 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
777
778 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
779
780 /*
781 * Start hashing session. The code below only inits the
782 * hashing session context, nothing more.
783 */
784 memset(actx, 0, sizeof(*actx));
785
786 if (strcmp(halg->base.cra_name, "sha1") == 0)
787 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
788 else
789 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
790
791 actx->fill = 0;
792 actx->hot = 0;
793 actx->chan = DCP_CHAN_HASH_SHA;
794
795 mutex_init(&actx->mutex);
796
797 return 0;
798 }
799
dcp_sha_update_fx(struct ahash_request * req,int fini)800 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
801 {
802 struct dcp *sdcp = global_sdcp;
803
804 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
805 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
806 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
807
808 int ret;
809
810 /*
811 * Ignore requests that have no data in them and are not
812 * the trailing requests in the stream of requests.
813 */
814 if (!req->nbytes && !fini)
815 return 0;
816
817 mutex_lock(&actx->mutex);
818
819 rctx->fini = fini;
820
821 if (!actx->hot) {
822 actx->hot = 1;
823 rctx->init = 1;
824 }
825
826 spin_lock(&sdcp->lock[actx->chan]);
827 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
828 spin_unlock(&sdcp->lock[actx->chan]);
829
830 wake_up_process(sdcp->thread[actx->chan]);
831 mutex_unlock(&actx->mutex);
832
833 return ret;
834 }
835
dcp_sha_update(struct ahash_request * req)836 static int dcp_sha_update(struct ahash_request *req)
837 {
838 return dcp_sha_update_fx(req, 0);
839 }
840
dcp_sha_final(struct ahash_request * req)841 static int dcp_sha_final(struct ahash_request *req)
842 {
843 ahash_request_set_crypt(req, NULL, req->result, 0);
844 req->nbytes = 0;
845 return dcp_sha_update_fx(req, 1);
846 }
847
dcp_sha_finup(struct ahash_request * req)848 static int dcp_sha_finup(struct ahash_request *req)
849 {
850 return dcp_sha_update_fx(req, 1);
851 }
852
dcp_sha_digest(struct ahash_request * req)853 static int dcp_sha_digest(struct ahash_request *req)
854 {
855 int ret;
856
857 ret = dcp_sha_init(req);
858 if (ret)
859 return ret;
860
861 return dcp_sha_finup(req);
862 }
863
dcp_sha_import(struct ahash_request * req,const void * in)864 static int dcp_sha_import(struct ahash_request *req, const void *in)
865 {
866 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
867 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
868 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
869 const struct dcp_export_state *export = in;
870
871 memset(rctx, 0, sizeof(struct dcp_sha_req_ctx));
872 memset(actx, 0, sizeof(struct dcp_async_ctx));
873 memcpy(rctx, &export->req_ctx, sizeof(struct dcp_sha_req_ctx));
874 memcpy(actx, &export->async_ctx, sizeof(struct dcp_async_ctx));
875
876 return 0;
877 }
878
dcp_sha_export(struct ahash_request * req,void * out)879 static int dcp_sha_export(struct ahash_request *req, void *out)
880 {
881 struct dcp_sha_req_ctx *rctx_state = ahash_request_ctx(req);
882 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
883 struct dcp_async_ctx *actx_state = crypto_ahash_ctx(tfm);
884 struct dcp_export_state *export = out;
885
886 memcpy(&export->req_ctx, rctx_state, sizeof(struct dcp_sha_req_ctx));
887 memcpy(&export->async_ctx, actx_state, sizeof(struct dcp_async_ctx));
888
889 return 0;
890 }
891
dcp_sha_cra_init(struct crypto_tfm * tfm)892 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
893 {
894 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
895 sizeof(struct dcp_sha_req_ctx));
896 return 0;
897 }
898
dcp_sha_cra_exit(struct crypto_tfm * tfm)899 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
900 {
901 }
902
903 /* AES 128 ECB and AES 128 CBC */
904 static struct skcipher_alg dcp_aes_algs[] = {
905 {
906 .base.cra_name = "ecb(aes)",
907 .base.cra_driver_name = "ecb-aes-dcp",
908 .base.cra_priority = 400,
909 .base.cra_alignmask = 15,
910 .base.cra_flags = CRYPTO_ALG_ASYNC |
911 CRYPTO_ALG_NEED_FALLBACK,
912 .base.cra_blocksize = AES_BLOCK_SIZE,
913 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
914 .base.cra_module = THIS_MODULE,
915
916 .min_keysize = AES_MIN_KEY_SIZE,
917 .max_keysize = AES_MAX_KEY_SIZE,
918 .setkey = mxs_dcp_aes_setkey,
919 .encrypt = mxs_dcp_aes_ecb_encrypt,
920 .decrypt = mxs_dcp_aes_ecb_decrypt,
921 .init = mxs_dcp_aes_fallback_init_tfm,
922 .exit = mxs_dcp_aes_fallback_exit_tfm,
923 }, {
924 .base.cra_name = "cbc(aes)",
925 .base.cra_driver_name = "cbc-aes-dcp",
926 .base.cra_priority = 400,
927 .base.cra_alignmask = 15,
928 .base.cra_flags = CRYPTO_ALG_ASYNC |
929 CRYPTO_ALG_NEED_FALLBACK,
930 .base.cra_blocksize = AES_BLOCK_SIZE,
931 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
932 .base.cra_module = THIS_MODULE,
933
934 .min_keysize = AES_MIN_KEY_SIZE,
935 .max_keysize = AES_MAX_KEY_SIZE,
936 .setkey = mxs_dcp_aes_setkey,
937 .encrypt = mxs_dcp_aes_cbc_encrypt,
938 .decrypt = mxs_dcp_aes_cbc_decrypt,
939 .ivsize = AES_BLOCK_SIZE,
940 .init = mxs_dcp_aes_fallback_init_tfm,
941 .exit = mxs_dcp_aes_fallback_exit_tfm,
942 }, {
943 .base.cra_name = "ecb(paes)",
944 .base.cra_driver_name = "ecb-paes-dcp",
945 .base.cra_priority = 401,
946 .base.cra_alignmask = 15,
947 .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
948 .base.cra_blocksize = AES_BLOCK_SIZE,
949 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
950 .base.cra_module = THIS_MODULE,
951
952 .min_keysize = DCP_PAES_KEYSIZE,
953 .max_keysize = DCP_PAES_KEYSIZE,
954 .setkey = mxs_dcp_aes_setrefkey,
955 .encrypt = mxs_dcp_aes_ecb_encrypt,
956 .decrypt = mxs_dcp_aes_ecb_decrypt,
957 .init = mxs_dcp_paes_init_tfm,
958 }, {
959 .base.cra_name = "cbc(paes)",
960 .base.cra_driver_name = "cbc-paes-dcp",
961 .base.cra_priority = 401,
962 .base.cra_alignmask = 15,
963 .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_INTERNAL,
964 .base.cra_blocksize = AES_BLOCK_SIZE,
965 .base.cra_ctxsize = sizeof(struct dcp_async_ctx),
966 .base.cra_module = THIS_MODULE,
967
968 .min_keysize = DCP_PAES_KEYSIZE,
969 .max_keysize = DCP_PAES_KEYSIZE,
970 .setkey = mxs_dcp_aes_setrefkey,
971 .encrypt = mxs_dcp_aes_cbc_encrypt,
972 .decrypt = mxs_dcp_aes_cbc_decrypt,
973 .ivsize = AES_BLOCK_SIZE,
974 .init = mxs_dcp_paes_init_tfm,
975 },
976 };
977
978 /* SHA1 */
979 static struct ahash_alg dcp_sha1_alg = {
980 .init = dcp_sha_init,
981 .update = dcp_sha_update,
982 .final = dcp_sha_final,
983 .finup = dcp_sha_finup,
984 .digest = dcp_sha_digest,
985 .import = dcp_sha_import,
986 .export = dcp_sha_export,
987 .halg = {
988 .digestsize = SHA1_DIGEST_SIZE,
989 .statesize = sizeof(struct dcp_export_state),
990 .base = {
991 .cra_name = "sha1",
992 .cra_driver_name = "sha1-dcp",
993 .cra_priority = 400,
994 .cra_flags = CRYPTO_ALG_ASYNC,
995 .cra_blocksize = SHA1_BLOCK_SIZE,
996 .cra_ctxsize = sizeof(struct dcp_async_ctx),
997 .cra_module = THIS_MODULE,
998 .cra_init = dcp_sha_cra_init,
999 .cra_exit = dcp_sha_cra_exit,
1000 },
1001 },
1002 };
1003
1004 /* SHA256 */
1005 static struct ahash_alg dcp_sha256_alg = {
1006 .init = dcp_sha_init,
1007 .update = dcp_sha_update,
1008 .final = dcp_sha_final,
1009 .finup = dcp_sha_finup,
1010 .digest = dcp_sha_digest,
1011 .import = dcp_sha_import,
1012 .export = dcp_sha_export,
1013 .halg = {
1014 .digestsize = SHA256_DIGEST_SIZE,
1015 .statesize = sizeof(struct dcp_export_state),
1016 .base = {
1017 .cra_name = "sha256",
1018 .cra_driver_name = "sha256-dcp",
1019 .cra_priority = 400,
1020 .cra_flags = CRYPTO_ALG_ASYNC,
1021 .cra_blocksize = SHA256_BLOCK_SIZE,
1022 .cra_ctxsize = sizeof(struct dcp_async_ctx),
1023 .cra_module = THIS_MODULE,
1024 .cra_init = dcp_sha_cra_init,
1025 .cra_exit = dcp_sha_cra_exit,
1026 },
1027 },
1028 };
1029
mxs_dcp_irq(int irq,void * context)1030 static irqreturn_t mxs_dcp_irq(int irq, void *context)
1031 {
1032 struct dcp *sdcp = context;
1033 uint32_t stat;
1034 int i;
1035
1036 stat = readl(sdcp->base + MXS_DCP_STAT);
1037 stat &= MXS_DCP_STAT_IRQ_MASK;
1038 if (!stat)
1039 return IRQ_NONE;
1040
1041 /* Clear the interrupts. */
1042 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
1043
1044 /* Complete the DMA requests that finished. */
1045 for (i = 0; i < DCP_MAX_CHANS; i++)
1046 if (stat & (1 << i))
1047 complete(&sdcp->completion[i]);
1048
1049 return IRQ_HANDLED;
1050 }
1051
mxs_dcp_probe(struct platform_device * pdev)1052 static int mxs_dcp_probe(struct platform_device *pdev)
1053 {
1054 struct device *dev = &pdev->dev;
1055 struct dcp *sdcp = NULL;
1056 int i, ret;
1057 int dcp_vmi_irq, dcp_irq;
1058
1059 if (global_sdcp) {
1060 dev_err(dev, "Only one DCP instance allowed!\n");
1061 return -ENODEV;
1062 }
1063
1064 dcp_vmi_irq = platform_get_irq(pdev, 0);
1065 if (dcp_vmi_irq < 0)
1066 return dcp_vmi_irq;
1067
1068 dcp_irq = platform_get_irq(pdev, 1);
1069 if (dcp_irq < 0)
1070 return dcp_irq;
1071
1072 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
1073 if (!sdcp)
1074 return -ENOMEM;
1075
1076 sdcp->dev = dev;
1077 sdcp->base = devm_platform_ioremap_resource(pdev, 0);
1078 if (IS_ERR(sdcp->base))
1079 return PTR_ERR(sdcp->base);
1080
1081
1082 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1083 "dcp-vmi-irq", sdcp);
1084 if (ret) {
1085 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1086 return ret;
1087 }
1088
1089 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1090 "dcp-irq", sdcp);
1091 if (ret) {
1092 dev_err(dev, "Failed to claim DCP IRQ!\n");
1093 return ret;
1094 }
1095
1096 /* Allocate coherent helper block. */
1097 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1098 GFP_KERNEL);
1099 if (!sdcp->coh)
1100 return -ENOMEM;
1101
1102 /* Re-align the structure so it fits the DCP constraints. */
1103 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1104
1105 /* DCP clock is optional, only used on some SOCs */
1106 sdcp->dcp_clk = devm_clk_get_optional_enabled(dev, "dcp");
1107 if (IS_ERR(sdcp->dcp_clk))
1108 return PTR_ERR(sdcp->dcp_clk);
1109
1110 /* Restart the DCP block. */
1111 ret = stmp_reset_block(sdcp->base);
1112 if (ret) {
1113 dev_err(dev, "Failed reset\n");
1114 return ret;
1115 }
1116
1117 /* Initialize control register. */
1118 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1119 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1120 sdcp->base + MXS_DCP_CTRL);
1121
1122 /* Enable all DCP DMA channels. */
1123 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1124 sdcp->base + MXS_DCP_CHANNELCTRL);
1125
1126 /*
1127 * We do not enable context switching. Give the context buffer a
1128 * pointer to an illegal address so if context switching is
1129 * inadvertantly enabled, the DCP will return an error instead of
1130 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1131 * address will do.
1132 */
1133 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1134 for (i = 0; i < DCP_MAX_CHANS; i++)
1135 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1136 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1137
1138 global_sdcp = sdcp;
1139
1140 platform_set_drvdata(pdev, sdcp);
1141
1142 for (i = 0; i < DCP_MAX_CHANS; i++) {
1143 spin_lock_init(&sdcp->lock[i]);
1144 init_completion(&sdcp->completion[i]);
1145 crypto_init_queue(&sdcp->queue[i], 50);
1146 }
1147
1148 /* Create the SHA and AES handler threads. */
1149 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1150 NULL, "mxs_dcp_chan/sha");
1151 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1152 dev_err(dev, "Error starting SHA thread!\n");
1153 ret = PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1154 return ret;
1155 }
1156
1157 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1158 NULL, "mxs_dcp_chan/aes");
1159 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1160 dev_err(dev, "Error starting SHA thread!\n");
1161 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1162 goto err_destroy_sha_thread;
1163 }
1164
1165 /* Register the various crypto algorithms. */
1166 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1167
1168 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1169 ret = crypto_register_skciphers(dcp_aes_algs,
1170 ARRAY_SIZE(dcp_aes_algs));
1171 if (ret) {
1172 /* Failed to register algorithm. */
1173 dev_err(dev, "Failed to register AES crypto!\n");
1174 goto err_destroy_aes_thread;
1175 }
1176 }
1177
1178 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1179 ret = crypto_register_ahash(&dcp_sha1_alg);
1180 if (ret) {
1181 dev_err(dev, "Failed to register %s hash!\n",
1182 dcp_sha1_alg.halg.base.cra_name);
1183 goto err_unregister_aes;
1184 }
1185 }
1186
1187 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1188 ret = crypto_register_ahash(&dcp_sha256_alg);
1189 if (ret) {
1190 dev_err(dev, "Failed to register %s hash!\n",
1191 dcp_sha256_alg.halg.base.cra_name);
1192 goto err_unregister_sha1;
1193 }
1194 }
1195
1196 return 0;
1197
1198 err_unregister_sha1:
1199 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1200 crypto_unregister_ahash(&dcp_sha1_alg);
1201
1202 err_unregister_aes:
1203 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1204 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1205
1206 err_destroy_aes_thread:
1207 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1208
1209 err_destroy_sha_thread:
1210 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1211
1212 return ret;
1213 }
1214
mxs_dcp_remove(struct platform_device * pdev)1215 static void mxs_dcp_remove(struct platform_device *pdev)
1216 {
1217 struct dcp *sdcp = platform_get_drvdata(pdev);
1218
1219 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1220 crypto_unregister_ahash(&dcp_sha256_alg);
1221
1222 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1223 crypto_unregister_ahash(&dcp_sha1_alg);
1224
1225 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1226 crypto_unregister_skciphers(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1227
1228 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1229 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1230
1231 platform_set_drvdata(pdev, NULL);
1232
1233 global_sdcp = NULL;
1234 }
1235
1236 static const struct of_device_id mxs_dcp_dt_ids[] = {
1237 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1238 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1239 { /* sentinel */ }
1240 };
1241
1242 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1243
1244 static struct platform_driver mxs_dcp_driver = {
1245 .probe = mxs_dcp_probe,
1246 .remove_new = mxs_dcp_remove,
1247 .driver = {
1248 .name = "mxs-dcp",
1249 .of_match_table = mxs_dcp_dt_ids,
1250 },
1251 };
1252
1253 module_platform_driver(mxs_dcp_driver);
1254
1255 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1256 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1257 MODULE_LICENSE("GPL");
1258 MODULE_ALIAS("platform:mxs-dcp");
1259