1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Copyright (C) 2018 Macronix International Co., Ltd.
4 //
5 // Authors:
6 // Mason Yang <masonccyang@mxic.com.tw>
7 // zhengxunli <zhengxunli@mxic.com.tw>
8 // Boris Brezillon <boris.brezillon@bootlin.com>
9 //
10
11 #include <linux/clk.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/mtd/nand.h>
16 #include <linux/mtd/nand-ecc-mxic.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21
22 #define HC_CFG 0x0
23 #define HC_CFG_IF_CFG(x) ((x) << 27)
24 #define HC_CFG_DUAL_SLAVE BIT(31)
25 #define HC_CFG_INDIVIDUAL BIT(30)
26 #define HC_CFG_NIO(x) (((x) / 4) << 27)
27 #define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
28 #define HC_CFG_TYPE_SPI_NOR 0
29 #define HC_CFG_TYPE_SPI_NAND 1
30 #define HC_CFG_TYPE_SPI_RAM 2
31 #define HC_CFG_TYPE_RAW_NAND 3
32 #define HC_CFG_SLV_ACT(x) ((x) << 21)
33 #define HC_CFG_CLK_PH_EN BIT(20)
34 #define HC_CFG_CLK_POL_INV BIT(19)
35 #define HC_CFG_BIG_ENDIAN BIT(18)
36 #define HC_CFG_DATA_PASS BIT(17)
37 #define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
38 #define HC_CFG_MAN_START_EN BIT(3)
39 #define HC_CFG_MAN_START BIT(2)
40 #define HC_CFG_MAN_CS_EN BIT(1)
41 #define HC_CFG_MAN_CS_ASSERT BIT(0)
42
43 #define INT_STS 0x4
44 #define INT_STS_EN 0x8
45 #define INT_SIG_EN 0xc
46 #define INT_STS_ALL GENMASK(31, 0)
47 #define INT_RDY_PIN BIT(26)
48 #define INT_RDY_SR BIT(25)
49 #define INT_LNR_SUSP BIT(24)
50 #define INT_ECC_ERR BIT(17)
51 #define INT_CRC_ERR BIT(16)
52 #define INT_LWR_DIS BIT(12)
53 #define INT_LRD_DIS BIT(11)
54 #define INT_SDMA_INT BIT(10)
55 #define INT_DMA_FINISH BIT(9)
56 #define INT_RX_NOT_FULL BIT(3)
57 #define INT_RX_NOT_EMPTY BIT(2)
58 #define INT_TX_NOT_FULL BIT(1)
59 #define INT_TX_EMPTY BIT(0)
60
61 #define HC_EN 0x10
62 #define HC_EN_BIT BIT(0)
63
64 #define TXD(x) (0x14 + ((x) * 4))
65 #define RXD 0x24
66
67 #define SS_CTRL(s) (0x30 + ((s) * 4))
68 #define LRD_CFG 0x44
69 #define LWR_CFG 0x80
70 #define RWW_CFG 0x70
71 #define OP_READ BIT(23)
72 #define OP_DUMMY_CYC(x) ((x) << 17)
73 #define OP_ADDR_BYTES(x) ((x) << 14)
74 #define OP_CMD_BYTES(x) (((x) - 1) << 13)
75 #define OP_OCTA_CRC_EN BIT(12)
76 #define OP_DQS_EN BIT(11)
77 #define OP_ENHC_EN BIT(10)
78 #define OP_PREAMBLE_EN BIT(9)
79 #define OP_DATA_DDR BIT(8)
80 #define OP_DATA_BUSW(x) ((x) << 6)
81 #define OP_ADDR_DDR BIT(5)
82 #define OP_ADDR_BUSW(x) ((x) << 3)
83 #define OP_CMD_DDR BIT(2)
84 #define OP_CMD_BUSW(x) (x)
85 #define OP_BUSW_1 0
86 #define OP_BUSW_2 1
87 #define OP_BUSW_4 2
88 #define OP_BUSW_8 3
89
90 #define OCTA_CRC 0x38
91 #define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
92 #define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
93 #define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
94
95 #define ONFI_DIN_CNT(s) (0x3c + (s))
96
97 #define LRD_CTRL 0x48
98 #define RWW_CTRL 0x74
99 #define LWR_CTRL 0x84
100 #define LMODE_EN BIT(31)
101 #define LMODE_SLV_ACT(x) ((x) << 21)
102 #define LMODE_CMD1(x) ((x) << 8)
103 #define LMODE_CMD0(x) (x)
104
105 #define LRD_ADDR 0x4c
106 #define LWR_ADDR 0x88
107 #define LRD_RANGE 0x50
108 #define LWR_RANGE 0x8c
109
110 #define AXI_SLV_ADDR 0x54
111
112 #define DMAC_RD_CFG 0x58
113 #define DMAC_WR_CFG 0x94
114 #define DMAC_CFG_PERIPH_EN BIT(31)
115 #define DMAC_CFG_ALLFLUSH_EN BIT(30)
116 #define DMAC_CFG_LASTFLUSH_EN BIT(29)
117 #define DMAC_CFG_QE(x) (((x) + 1) << 16)
118 #define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
119 #define DMAC_CFG_BURST_SZ(x) ((x) << 8)
120 #define DMAC_CFG_DIR_READ BIT(1)
121 #define DMAC_CFG_START BIT(0)
122
123 #define DMAC_RD_CNT 0x5c
124 #define DMAC_WR_CNT 0x98
125
126 #define SDMA_ADDR 0x60
127
128 #define DMAM_CFG 0x64
129 #define DMAM_CFG_START BIT(31)
130 #define DMAM_CFG_CONT BIT(30)
131 #define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
132 #define DMAM_CFG_DIR_READ BIT(1)
133 #define DMAM_CFG_EN BIT(0)
134
135 #define DMAM_CNT 0x68
136
137 #define LNR_TIMER_TH 0x6c
138
139 #define RDM_CFG0 0x78
140 #define RDM_CFG0_POLY(x) (x)
141
142 #define RDM_CFG1 0x7c
143 #define RDM_CFG1_RDM_EN BIT(31)
144 #define RDM_CFG1_SEED(x) (x)
145
146 #define LWR_SUSP_CTRL 0x90
147 #define LWR_SUSP_CTRL_EN BIT(31)
148
149 #define DMAS_CTRL 0x9c
150 #define DMAS_CTRL_EN BIT(31)
151 #define DMAS_CTRL_DIR_READ BIT(30)
152
153 #define DATA_STROB 0xa0
154 #define DATA_STROB_EDO_EN BIT(2)
155 #define DATA_STROB_INV_POL BIT(1)
156 #define DATA_STROB_DELAY_2CYC BIT(0)
157
158 #define IDLY_CODE(x) (0xa4 + ((x) * 4))
159 #define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
160
161 #define GPIO 0xc4
162 #define GPIO_PT(x) BIT(3 + ((x) * 16))
163 #define GPIO_RESET(x) BIT(2 + ((x) * 16))
164 #define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
165 #define GPIO_WPB(x) BIT((x) * 16)
166
167 #define HC_VER 0xd0
168
169 #define HW_TEST(x) (0xe0 + ((x) * 4))
170
171 struct mxic_spi {
172 struct device *dev;
173 struct clk *ps_clk;
174 struct clk *send_clk;
175 struct clk *send_dly_clk;
176 void __iomem *regs;
177 u32 cur_speed_hz;
178 struct {
179 void __iomem *map;
180 dma_addr_t dma;
181 size_t size;
182 } linear;
183
184 struct {
185 bool use_pipelined_conf;
186 struct nand_ecc_engine *pipelined_engine;
187 void *ctx;
188 } ecc;
189 };
190
mxic_spi_clk_enable(struct mxic_spi * mxic)191 static int mxic_spi_clk_enable(struct mxic_spi *mxic)
192 {
193 int ret;
194
195 ret = clk_prepare_enable(mxic->send_clk);
196 if (ret)
197 return ret;
198
199 ret = clk_prepare_enable(mxic->send_dly_clk);
200 if (ret)
201 goto err_send_dly_clk;
202
203 return ret;
204
205 err_send_dly_clk:
206 clk_disable_unprepare(mxic->send_clk);
207
208 return ret;
209 }
210
mxic_spi_clk_disable(struct mxic_spi * mxic)211 static void mxic_spi_clk_disable(struct mxic_spi *mxic)
212 {
213 clk_disable_unprepare(mxic->send_clk);
214 clk_disable_unprepare(mxic->send_dly_clk);
215 }
216
mxic_spi_set_input_delay_dqs(struct mxic_spi * mxic,u8 idly_code)217 static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code)
218 {
219 writel(IDLY_CODE_VAL(0, idly_code) |
220 IDLY_CODE_VAL(1, idly_code) |
221 IDLY_CODE_VAL(2, idly_code) |
222 IDLY_CODE_VAL(3, idly_code),
223 mxic->regs + IDLY_CODE(0));
224 writel(IDLY_CODE_VAL(4, idly_code) |
225 IDLY_CODE_VAL(5, idly_code) |
226 IDLY_CODE_VAL(6, idly_code) |
227 IDLY_CODE_VAL(7, idly_code),
228 mxic->regs + IDLY_CODE(1));
229 }
230
mxic_spi_clk_setup(struct mxic_spi * mxic,unsigned long freq)231 static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq)
232 {
233 int ret;
234
235 ret = clk_set_rate(mxic->send_clk, freq);
236 if (ret)
237 return ret;
238
239 ret = clk_set_rate(mxic->send_dly_clk, freq);
240 if (ret)
241 return ret;
242
243 /*
244 * A constant delay range from 0x0 ~ 0x1F for input delay,
245 * the unit is 78 ps, the max input delay is 2.418 ns.
246 */
247 mxic_spi_set_input_delay_dqs(mxic, 0xf);
248
249 /*
250 * Phase degree = 360 * freq * output-delay
251 * where output-delay is a constant value 1 ns in FPGA.
252 *
253 * Get Phase degree = 360 * freq * 1 ns
254 * = 360 * freq * 1 sec / 1000000000
255 * = 9 * freq / 25000000
256 */
257 ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000);
258 if (ret)
259 return ret;
260
261 return 0;
262 }
263
mxic_spi_set_freq(struct mxic_spi * mxic,unsigned long freq)264 static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq)
265 {
266 int ret;
267
268 if (mxic->cur_speed_hz == freq)
269 return 0;
270
271 mxic_spi_clk_disable(mxic);
272 ret = mxic_spi_clk_setup(mxic, freq);
273 if (ret)
274 return ret;
275
276 ret = mxic_spi_clk_enable(mxic);
277 if (ret)
278 return ret;
279
280 mxic->cur_speed_hz = freq;
281
282 return 0;
283 }
284
mxic_spi_hw_init(struct mxic_spi * mxic)285 static void mxic_spi_hw_init(struct mxic_spi *mxic)
286 {
287 writel(0, mxic->regs + DATA_STROB);
288 writel(INT_STS_ALL, mxic->regs + INT_STS_EN);
289 writel(0, mxic->regs + HC_EN);
290 writel(0, mxic->regs + LRD_CFG);
291 writel(0, mxic->regs + LRD_CTRL);
292 writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) |
293 HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
294 mxic->regs + HC_CFG);
295 }
296
mxic_spi_prep_hc_cfg(struct spi_device * spi,u32 flags,bool swap16)297 static u32 mxic_spi_prep_hc_cfg(struct spi_device *spi, u32 flags,
298 bool swap16)
299 {
300 int nio = 1;
301
302 if (spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL))
303 nio = 8;
304 else if (spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
305 nio = 4;
306 else if (spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
307 nio = 2;
308
309 if (swap16)
310 flags &= ~HC_CFG_DATA_PASS;
311 else
312 flags |= HC_CFG_DATA_PASS;
313
314 return flags | HC_CFG_NIO(nio) |
315 HC_CFG_TYPE(spi_get_chipselect(spi, 0), HC_CFG_TYPE_SPI_NOR) |
316 HC_CFG_SLV_ACT(spi_get_chipselect(spi, 0)) | HC_CFG_IDLE_SIO_LVL(1);
317 }
318
mxic_spi_mem_prep_op_cfg(const struct spi_mem_op * op,unsigned int data_len)319 static u32 mxic_spi_mem_prep_op_cfg(const struct spi_mem_op *op,
320 unsigned int data_len)
321 {
322 u32 cfg = OP_CMD_BYTES(op->cmd.nbytes) |
323 OP_CMD_BUSW(fls(op->cmd.buswidth) - 1) |
324 (op->cmd.dtr ? OP_CMD_DDR : 0);
325
326 if (op->addr.nbytes)
327 cfg |= OP_ADDR_BYTES(op->addr.nbytes) |
328 OP_ADDR_BUSW(fls(op->addr.buswidth) - 1) |
329 (op->addr.dtr ? OP_ADDR_DDR : 0);
330
331 if (op->dummy.nbytes)
332 cfg |= OP_DUMMY_CYC(op->dummy.nbytes);
333
334 /* Direct mapping data.nbytes field is not populated */
335 if (data_len) {
336 cfg |= OP_DATA_BUSW(fls(op->data.buswidth) - 1) |
337 (op->data.dtr ? OP_DATA_DDR : 0);
338 if (op->data.dir == SPI_MEM_DATA_IN) {
339 cfg |= OP_READ;
340 if (op->data.dtr)
341 cfg |= OP_DQS_EN;
342 }
343 }
344
345 return cfg;
346 }
347
mxic_spi_data_xfer(struct mxic_spi * mxic,const void * txbuf,void * rxbuf,unsigned int len)348 static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf,
349 void *rxbuf, unsigned int len)
350 {
351 unsigned int pos = 0;
352
353 while (pos < len) {
354 unsigned int nbytes = len - pos;
355 u32 data = 0xffffffff;
356 u32 sts;
357 int ret;
358
359 if (nbytes > 4)
360 nbytes = 4;
361
362 if (txbuf)
363 memcpy(&data, txbuf + pos, nbytes);
364
365 ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
366 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
367 if (ret)
368 return ret;
369
370 writel(data, mxic->regs + TXD(nbytes % 4));
371
372 ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
373 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
374 if (ret)
375 return ret;
376
377 ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
378 sts & INT_RX_NOT_EMPTY, 0,
379 USEC_PER_SEC);
380 if (ret)
381 return ret;
382
383 data = readl(mxic->regs + RXD);
384 if (rxbuf) {
385 data >>= (8 * (4 - nbytes));
386 memcpy(rxbuf + pos, &data, nbytes);
387 }
388 WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
389
390 pos += nbytes;
391 }
392
393 return 0;
394 }
395
mxic_spi_mem_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)396 static ssize_t mxic_spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
397 u64 offs, size_t len, void *buf)
398 {
399 struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller);
400 int ret;
401 u32 sts;
402
403 if (WARN_ON(offs + desc->info.offset + len > U32_MAX))
404 return -EINVAL;
405
406 writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0, desc->info.op_tmpl.data.swap16),
407 mxic->regs + HC_CFG);
408
409 writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len),
410 mxic->regs + LRD_CFG);
411 writel(desc->info.offset + offs, mxic->regs + LRD_ADDR);
412 len = min_t(size_t, len, mxic->linear.size);
413 writel(len, mxic->regs + LRD_RANGE);
414 writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) |
415 LMODE_SLV_ACT(spi_get_chipselect(desc->mem->spi, 0)) |
416 LMODE_EN,
417 mxic->regs + LRD_CTRL);
418
419 if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) {
420 ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine,
421 NAND_PAGE_READ,
422 mxic->linear.dma + offs);
423 if (ret)
424 return ret;
425 } else {
426 memcpy_fromio(buf, mxic->linear.map, len);
427 }
428
429 writel(INT_LRD_DIS, mxic->regs + INT_STS);
430 writel(0, mxic->regs + LRD_CTRL);
431
432 ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
433 sts & INT_LRD_DIS, 0, USEC_PER_SEC);
434 if (ret)
435 return ret;
436
437 return len;
438 }
439
mxic_spi_mem_dirmap_write(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,const void * buf)440 static ssize_t mxic_spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
441 u64 offs, size_t len,
442 const void *buf)
443 {
444 struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller);
445 u32 sts;
446 int ret;
447
448 if (WARN_ON(offs + desc->info.offset + len > U32_MAX))
449 return -EINVAL;
450
451 writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0, desc->info.op_tmpl.data.swap16),
452 mxic->regs + HC_CFG);
453
454 writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len),
455 mxic->regs + LWR_CFG);
456 writel(desc->info.offset + offs, mxic->regs + LWR_ADDR);
457 len = min_t(size_t, len, mxic->linear.size);
458 writel(len, mxic->regs + LWR_RANGE);
459 writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) |
460 LMODE_SLV_ACT(spi_get_chipselect(desc->mem->spi, 0)) |
461 LMODE_EN,
462 mxic->regs + LWR_CTRL);
463
464 if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) {
465 ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine,
466 NAND_PAGE_WRITE,
467 mxic->linear.dma + offs);
468 if (ret)
469 return ret;
470 } else {
471 memcpy_toio(mxic->linear.map, buf, len);
472 }
473
474 writel(INT_LWR_DIS, mxic->regs + INT_STS);
475 writel(0, mxic->regs + LWR_CTRL);
476
477 ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
478 sts & INT_LWR_DIS, 0, USEC_PER_SEC);
479 if (ret)
480 return ret;
481
482 return len;
483 }
484
mxic_spi_mem_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)485 static bool mxic_spi_mem_supports_op(struct spi_mem *mem,
486 const struct spi_mem_op *op)
487 {
488 if (op->data.buswidth > 8 || op->addr.buswidth > 8 ||
489 op->dummy.buswidth > 8 || op->cmd.buswidth > 8)
490 return false;
491
492 if (op->data.nbytes && op->dummy.nbytes &&
493 op->data.buswidth != op->dummy.buswidth)
494 return false;
495
496 if (op->addr.nbytes > 7)
497 return false;
498
499 return spi_mem_default_supports_op(mem, op);
500 }
501
mxic_spi_mem_dirmap_create(struct spi_mem_dirmap_desc * desc)502 static int mxic_spi_mem_dirmap_create(struct spi_mem_dirmap_desc *desc)
503 {
504 struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller);
505
506 if (!mxic->linear.map)
507 return -EOPNOTSUPP;
508
509 if (desc->info.offset + desc->info.length > U32_MAX)
510 return -EINVAL;
511
512 if (!mxic_spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
513 return -EOPNOTSUPP;
514
515 return 0;
516 }
517
mxic_spi_mem_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)518 static int mxic_spi_mem_exec_op(struct spi_mem *mem,
519 const struct spi_mem_op *op)
520 {
521 struct mxic_spi *mxic = spi_controller_get_devdata(mem->spi->controller);
522 int i, ret;
523 u8 addr[8], cmd[2];
524
525 ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz);
526 if (ret)
527 return ret;
528
529 writel(mxic_spi_prep_hc_cfg(mem->spi, HC_CFG_MAN_CS_EN, op->data.swap16),
530 mxic->regs + HC_CFG);
531
532 writel(HC_EN_BIT, mxic->regs + HC_EN);
533
534 writel(mxic_spi_mem_prep_op_cfg(op, op->data.nbytes),
535 mxic->regs + SS_CTRL(spi_get_chipselect(mem->spi, 0)));
536
537 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
538 mxic->regs + HC_CFG);
539
540 for (i = 0; i < op->cmd.nbytes; i++)
541 cmd[i] = op->cmd.opcode >> (8 * (op->cmd.nbytes - i - 1));
542
543 ret = mxic_spi_data_xfer(mxic, cmd, NULL, op->cmd.nbytes);
544 if (ret)
545 goto out;
546
547 for (i = 0; i < op->addr.nbytes; i++)
548 addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
549
550 ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes);
551 if (ret)
552 goto out;
553
554 ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes);
555 if (ret)
556 goto out;
557
558 ret = mxic_spi_data_xfer(mxic,
559 op->data.dir == SPI_MEM_DATA_OUT ?
560 op->data.buf.out : NULL,
561 op->data.dir == SPI_MEM_DATA_IN ?
562 op->data.buf.in : NULL,
563 op->data.nbytes);
564
565 out:
566 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
567 mxic->regs + HC_CFG);
568 writel(0, mxic->regs + HC_EN);
569
570 return ret;
571 }
572
573 static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
574 .supports_op = mxic_spi_mem_supports_op,
575 .exec_op = mxic_spi_mem_exec_op,
576 .dirmap_create = mxic_spi_mem_dirmap_create,
577 .dirmap_read = mxic_spi_mem_dirmap_read,
578 .dirmap_write = mxic_spi_mem_dirmap_write,
579 };
580
581 static const struct spi_controller_mem_caps mxic_spi_mem_caps = {
582 .dtr = true,
583 .ecc = true,
584 .swap16 = true,
585 };
586
mxic_spi_set_cs(struct spi_device * spi,bool lvl)587 static void mxic_spi_set_cs(struct spi_device *spi, bool lvl)
588 {
589 struct mxic_spi *mxic = spi_controller_get_devdata(spi->controller);
590
591 if (!lvl) {
592 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
593 mxic->regs + HC_CFG);
594 writel(HC_EN_BIT, mxic->regs + HC_EN);
595 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
596 mxic->regs + HC_CFG);
597 } else {
598 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
599 mxic->regs + HC_CFG);
600 writel(0, mxic->regs + HC_EN);
601 }
602 }
603
mxic_spi_transfer_one(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * t)604 static int mxic_spi_transfer_one(struct spi_controller *host,
605 struct spi_device *spi,
606 struct spi_transfer *t)
607 {
608 struct mxic_spi *mxic = spi_controller_get_devdata(host);
609 unsigned int busw = OP_BUSW_1;
610 int ret;
611
612 if (t->rx_buf && t->tx_buf) {
613 if (((spi->mode & SPI_TX_QUAD) &&
614 !(spi->mode & SPI_RX_QUAD)) ||
615 ((spi->mode & SPI_TX_DUAL) &&
616 !(spi->mode & SPI_RX_DUAL)))
617 return -ENOTSUPP;
618 }
619
620 ret = mxic_spi_set_freq(mxic, t->speed_hz);
621 if (ret)
622 return ret;
623
624 if (t->tx_buf) {
625 if (spi->mode & SPI_TX_QUAD)
626 busw = OP_BUSW_4;
627 else if (spi->mode & SPI_TX_DUAL)
628 busw = OP_BUSW_2;
629 } else if (t->rx_buf) {
630 if (spi->mode & SPI_RX_QUAD)
631 busw = OP_BUSW_4;
632 else if (spi->mode & SPI_RX_DUAL)
633 busw = OP_BUSW_2;
634 }
635
636 writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
637 OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0),
638 mxic->regs + SS_CTRL(0));
639
640 ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len);
641 if (ret)
642 return ret;
643
644 spi_finalize_current_transfer(host);
645
646 return 0;
647 }
648
649 /* ECC wrapper */
mxic_spi_mem_ecc_init_ctx(struct nand_device * nand)650 static int mxic_spi_mem_ecc_init_ctx(struct nand_device *nand)
651 {
652 const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
653 struct mxic_spi *mxic = nand->ecc.engine->priv;
654
655 mxic->ecc.use_pipelined_conf = true;
656
657 return ops->init_ctx(nand);
658 }
659
mxic_spi_mem_ecc_cleanup_ctx(struct nand_device * nand)660 static void mxic_spi_mem_ecc_cleanup_ctx(struct nand_device *nand)
661 {
662 const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
663 struct mxic_spi *mxic = nand->ecc.engine->priv;
664
665 mxic->ecc.use_pipelined_conf = false;
666
667 ops->cleanup_ctx(nand);
668 }
669
mxic_spi_mem_ecc_prepare_io_req(struct nand_device * nand,struct nand_page_io_req * req)670 static int mxic_spi_mem_ecc_prepare_io_req(struct nand_device *nand,
671 struct nand_page_io_req *req)
672 {
673 const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
674
675 return ops->prepare_io_req(nand, req);
676 }
677
mxic_spi_mem_ecc_finish_io_req(struct nand_device * nand,struct nand_page_io_req * req)678 static int mxic_spi_mem_ecc_finish_io_req(struct nand_device *nand,
679 struct nand_page_io_req *req)
680 {
681 const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
682
683 return ops->finish_io_req(nand, req);
684 }
685
686 static const struct nand_ecc_engine_ops mxic_spi_mem_ecc_engine_pipelined_ops = {
687 .init_ctx = mxic_spi_mem_ecc_init_ctx,
688 .cleanup_ctx = mxic_spi_mem_ecc_cleanup_ctx,
689 .prepare_io_req = mxic_spi_mem_ecc_prepare_io_req,
690 .finish_io_req = mxic_spi_mem_ecc_finish_io_req,
691 };
692
mxic_spi_mem_ecc_remove(struct mxic_spi * mxic)693 static void mxic_spi_mem_ecc_remove(struct mxic_spi *mxic)
694 {
695 if (mxic->ecc.pipelined_engine) {
696 mxic_ecc_put_pipelined_engine(mxic->ecc.pipelined_engine);
697 nand_ecc_unregister_on_host_hw_engine(mxic->ecc.pipelined_engine);
698 }
699 }
700
mxic_spi_mem_ecc_probe(struct platform_device * pdev,struct mxic_spi * mxic)701 static int mxic_spi_mem_ecc_probe(struct platform_device *pdev,
702 struct mxic_spi *mxic)
703 {
704 struct nand_ecc_engine *eng;
705
706 if (!mxic_ecc_get_pipelined_ops())
707 return -EOPNOTSUPP;
708
709 eng = mxic_ecc_get_pipelined_engine(pdev);
710 if (IS_ERR(eng))
711 return PTR_ERR(eng);
712
713 eng->dev = &pdev->dev;
714 eng->integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
715 eng->ops = &mxic_spi_mem_ecc_engine_pipelined_ops;
716 eng->priv = mxic;
717 mxic->ecc.pipelined_engine = eng;
718 nand_ecc_register_on_host_hw_engine(eng);
719
720 return 0;
721 }
722
mxic_spi_runtime_suspend(struct device * dev)723 static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev)
724 {
725 struct spi_controller *host = dev_get_drvdata(dev);
726 struct mxic_spi *mxic = spi_controller_get_devdata(host);
727
728 mxic_spi_clk_disable(mxic);
729 clk_disable_unprepare(mxic->ps_clk);
730
731 return 0;
732 }
733
mxic_spi_runtime_resume(struct device * dev)734 static int __maybe_unused mxic_spi_runtime_resume(struct device *dev)
735 {
736 struct spi_controller *host = dev_get_drvdata(dev);
737 struct mxic_spi *mxic = spi_controller_get_devdata(host);
738 int ret;
739
740 ret = clk_prepare_enable(mxic->ps_clk);
741 if (ret) {
742 dev_err(dev, "Cannot enable ps_clock.\n");
743 return ret;
744 }
745
746 return mxic_spi_clk_enable(mxic);
747 }
748
749 static const struct dev_pm_ops mxic_spi_dev_pm_ops = {
750 SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend,
751 mxic_spi_runtime_resume, NULL)
752 };
753
mxic_spi_probe(struct platform_device * pdev)754 static int mxic_spi_probe(struct platform_device *pdev)
755 {
756 struct spi_controller *host;
757 struct resource *res;
758 struct mxic_spi *mxic;
759 int ret;
760
761 host = devm_spi_alloc_host(&pdev->dev, sizeof(struct mxic_spi));
762 if (!host)
763 return -ENOMEM;
764
765 platform_set_drvdata(pdev, host);
766
767 mxic = spi_controller_get_devdata(host);
768 mxic->dev = &pdev->dev;
769
770 host->dev.of_node = pdev->dev.of_node;
771
772 mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk");
773 if (IS_ERR(mxic->ps_clk))
774 return PTR_ERR(mxic->ps_clk);
775
776 mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk");
777 if (IS_ERR(mxic->send_clk))
778 return PTR_ERR(mxic->send_clk);
779
780 mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk");
781 if (IS_ERR(mxic->send_dly_clk))
782 return PTR_ERR(mxic->send_dly_clk);
783
784 mxic->regs = devm_platform_ioremap_resource_byname(pdev, "regs");
785 if (IS_ERR(mxic->regs))
786 return PTR_ERR(mxic->regs);
787
788 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dirmap");
789 mxic->linear.map = devm_ioremap_resource(&pdev->dev, res);
790 if (!IS_ERR(mxic->linear.map)) {
791 mxic->linear.dma = res->start;
792 mxic->linear.size = resource_size(res);
793 } else {
794 mxic->linear.map = NULL;
795 }
796
797 pm_runtime_enable(&pdev->dev);
798 host->auto_runtime_pm = true;
799
800 host->num_chipselect = 1;
801 host->mem_ops = &mxic_spi_mem_ops;
802 host->mem_caps = &mxic_spi_mem_caps;
803
804 host->set_cs = mxic_spi_set_cs;
805 host->transfer_one = mxic_spi_transfer_one;
806 host->bits_per_word_mask = SPI_BPW_MASK(8);
807 host->mode_bits = SPI_CPOL | SPI_CPHA |
808 SPI_RX_DUAL | SPI_TX_DUAL |
809 SPI_RX_QUAD | SPI_TX_QUAD |
810 SPI_RX_OCTAL | SPI_TX_OCTAL;
811
812 mxic_spi_hw_init(mxic);
813
814 ret = mxic_spi_mem_ecc_probe(pdev, mxic);
815 if (ret == -EPROBE_DEFER) {
816 pm_runtime_disable(&pdev->dev);
817 return ret;
818 }
819
820 ret = spi_register_controller(host);
821 if (ret) {
822 dev_err(&pdev->dev, "spi_register_controller failed\n");
823 pm_runtime_disable(&pdev->dev);
824 mxic_spi_mem_ecc_remove(mxic);
825 }
826
827 return ret;
828 }
829
mxic_spi_remove(struct platform_device * pdev)830 static void mxic_spi_remove(struct platform_device *pdev)
831 {
832 struct spi_controller *host = platform_get_drvdata(pdev);
833 struct mxic_spi *mxic = spi_controller_get_devdata(host);
834
835 pm_runtime_disable(&pdev->dev);
836 mxic_spi_mem_ecc_remove(mxic);
837 spi_unregister_controller(host);
838 }
839
840 static const struct of_device_id mxic_spi_of_ids[] = {
841 { .compatible = "mxicy,mx25f0a-spi", },
842 { /* sentinel */ }
843 };
844 MODULE_DEVICE_TABLE(of, mxic_spi_of_ids);
845
846 static struct platform_driver mxic_spi_driver = {
847 .probe = mxic_spi_probe,
848 .remove = mxic_spi_remove,
849 .driver = {
850 .name = "mxic-spi",
851 .of_match_table = mxic_spi_of_ids,
852 .pm = &mxic_spi_dev_pm_ops,
853 },
854 };
855 module_platform_driver(mxic_spi_driver);
856
857 MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
858 MODULE_DESCRIPTION("MX25F0A SPI controller driver");
859 MODULE_LICENSE("GPL v2");
860