1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Hash algorithms supported by the CESA: MD5, SHA1 and SHA256.
4 *
5 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
6 * Author: Arnaud Ebalard <arno@natisbad.org>
7 *
8 * This work is based on an initial version written by
9 * Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
10 */
11
12 #include <crypto/hmac.h>
13 #include <crypto/md5.h>
14 #include <crypto/sha1.h>
15 #include <crypto/sha2.h>
16 #include <linux/device.h>
17 #include <linux/dma-mapping.h>
18
19 #include "cesa.h"
20
21 struct mv_cesa_ahash_dma_iter {
22 struct mv_cesa_dma_iter base;
23 struct mv_cesa_sg_dma_iter src;
24 };
25
26 static inline void
mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter * iter,struct ahash_request * req)27 mv_cesa_ahash_req_iter_init(struct mv_cesa_ahash_dma_iter *iter,
28 struct ahash_request *req)
29 {
30 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
31 unsigned int len = req->nbytes + creq->cache_ptr;
32
33 if (!creq->last_req)
34 len &= ~CESA_HASH_BLOCK_SIZE_MSK;
35
36 mv_cesa_req_dma_iter_init(&iter->base, len);
37 mv_cesa_sg_dma_iter_init(&iter->src, req->src, DMA_TO_DEVICE);
38 iter->src.op_offset = creq->cache_ptr;
39 }
40
41 static inline bool
mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter * iter)42 mv_cesa_ahash_req_iter_next_op(struct mv_cesa_ahash_dma_iter *iter)
43 {
44 iter->src.op_offset = 0;
45
46 return mv_cesa_req_dma_iter_next_op(&iter->base);
47 }
48
49 static inline int
mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req * req,gfp_t flags)50 mv_cesa_ahash_dma_alloc_cache(struct mv_cesa_ahash_dma_req *req, gfp_t flags)
51 {
52 req->cache = dma_pool_alloc(cesa_dev->dma->cache_pool, flags,
53 &req->cache_dma);
54 if (!req->cache)
55 return -ENOMEM;
56
57 return 0;
58 }
59
60 static inline void
mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req * req)61 mv_cesa_ahash_dma_free_cache(struct mv_cesa_ahash_dma_req *req)
62 {
63 if (!req->cache)
64 return;
65
66 dma_pool_free(cesa_dev->dma->cache_pool, req->cache,
67 req->cache_dma);
68 }
69
mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req * req,gfp_t flags)70 static int mv_cesa_ahash_dma_alloc_padding(struct mv_cesa_ahash_dma_req *req,
71 gfp_t flags)
72 {
73 if (req->padding)
74 return 0;
75
76 req->padding = dma_pool_alloc(cesa_dev->dma->padding_pool, flags,
77 &req->padding_dma);
78 if (!req->padding)
79 return -ENOMEM;
80
81 return 0;
82 }
83
mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req * req)84 static void mv_cesa_ahash_dma_free_padding(struct mv_cesa_ahash_dma_req *req)
85 {
86 if (!req->padding)
87 return;
88
89 dma_pool_free(cesa_dev->dma->padding_pool, req->padding,
90 req->padding_dma);
91 req->padding = NULL;
92 }
93
mv_cesa_ahash_dma_last_cleanup(struct ahash_request * req)94 static inline void mv_cesa_ahash_dma_last_cleanup(struct ahash_request *req)
95 {
96 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
97
98 mv_cesa_ahash_dma_free_padding(&creq->req.dma);
99 }
100
mv_cesa_ahash_dma_cleanup(struct ahash_request * req)101 static inline void mv_cesa_ahash_dma_cleanup(struct ahash_request *req)
102 {
103 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
104
105 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
106 mv_cesa_ahash_dma_free_cache(&creq->req.dma);
107 mv_cesa_dma_cleanup(&creq->base);
108 }
109
mv_cesa_ahash_cleanup(struct ahash_request * req)110 static inline void mv_cesa_ahash_cleanup(struct ahash_request *req)
111 {
112 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
113
114 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
115 mv_cesa_ahash_dma_cleanup(req);
116 }
117
mv_cesa_ahash_last_cleanup(struct ahash_request * req)118 static void mv_cesa_ahash_last_cleanup(struct ahash_request *req)
119 {
120 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
121
122 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
123 mv_cesa_ahash_dma_last_cleanup(req);
124 }
125
mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req * creq)126 static int mv_cesa_ahash_pad_len(struct mv_cesa_ahash_req *creq)
127 {
128 unsigned int index, padlen;
129
130 index = creq->len & CESA_HASH_BLOCK_SIZE_MSK;
131 padlen = (index < 56) ? (56 - index) : (64 + 56 - index);
132
133 return padlen;
134 }
135
mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req * creq,u8 * buf)136 static int mv_cesa_ahash_pad_req(struct mv_cesa_ahash_req *creq, u8 *buf)
137 {
138 unsigned int padlen;
139
140 buf[0] = 0x80;
141 /* Pad out to 56 mod 64 */
142 padlen = mv_cesa_ahash_pad_len(creq);
143 memset(buf + 1, 0, padlen - 1);
144
145 if (creq->algo_le) {
146 __le64 bits = cpu_to_le64(creq->len << 3);
147
148 memcpy(buf + padlen, &bits, sizeof(bits));
149 } else {
150 __be64 bits = cpu_to_be64(creq->len << 3);
151
152 memcpy(buf + padlen, &bits, sizeof(bits));
153 }
154
155 return padlen + 8;
156 }
157
mv_cesa_ahash_std_step(struct ahash_request * req)158 static void mv_cesa_ahash_std_step(struct ahash_request *req)
159 {
160 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
161 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
162 struct mv_cesa_engine *engine = creq->base.engine;
163 struct mv_cesa_op_ctx *op;
164 unsigned int new_cache_ptr = 0;
165 u32 frag_mode;
166 size_t len;
167 unsigned int digsize;
168 int i;
169
170 mv_cesa_adjust_op(engine, &creq->op_tmpl);
171 if (engine->pool)
172 memcpy(engine->sram_pool, &creq->op_tmpl,
173 sizeof(creq->op_tmpl));
174 else
175 memcpy_toio(engine->sram, &creq->op_tmpl,
176 sizeof(creq->op_tmpl));
177
178 if (!sreq->offset) {
179 digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
180 for (i = 0; i < digsize / 4; i++)
181 writel_relaxed(creq->state[i],
182 engine->regs + CESA_IVDIG(i));
183 }
184
185 if (creq->cache_ptr) {
186 if (engine->pool)
187 memcpy(engine->sram_pool + CESA_SA_DATA_SRAM_OFFSET,
188 creq->cache, creq->cache_ptr);
189 else
190 memcpy_toio(engine->sram + CESA_SA_DATA_SRAM_OFFSET,
191 creq->cache, creq->cache_ptr);
192 }
193
194 len = min_t(size_t, req->nbytes + creq->cache_ptr - sreq->offset,
195 CESA_SA_SRAM_PAYLOAD_SIZE);
196
197 if (!creq->last_req) {
198 new_cache_ptr = len & CESA_HASH_BLOCK_SIZE_MSK;
199 len &= ~CESA_HASH_BLOCK_SIZE_MSK;
200 }
201
202 if (len - creq->cache_ptr)
203 sreq->offset += mv_cesa_sg_copy_to_sram(
204 engine, req->src, creq->src_nents,
205 CESA_SA_DATA_SRAM_OFFSET + creq->cache_ptr,
206 len - creq->cache_ptr, sreq->offset);
207
208 op = &creq->op_tmpl;
209
210 frag_mode = mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK;
211
212 if (creq->last_req && sreq->offset == req->nbytes &&
213 creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
214 if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
215 frag_mode = CESA_SA_DESC_CFG_NOT_FRAG;
216 else if (frag_mode == CESA_SA_DESC_CFG_MID_FRAG)
217 frag_mode = CESA_SA_DESC_CFG_LAST_FRAG;
218 }
219
220 if (frag_mode == CESA_SA_DESC_CFG_NOT_FRAG ||
221 frag_mode == CESA_SA_DESC_CFG_LAST_FRAG) {
222 if (len &&
223 creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX) {
224 mv_cesa_set_mac_op_total_len(op, creq->len);
225 } else {
226 int trailerlen = mv_cesa_ahash_pad_len(creq) + 8;
227
228 if (len + trailerlen > CESA_SA_SRAM_PAYLOAD_SIZE) {
229 len &= CESA_HASH_BLOCK_SIZE_MSK;
230 new_cache_ptr = 64 - trailerlen;
231 if (engine->pool)
232 memcpy(creq->cache,
233 engine->sram_pool +
234 CESA_SA_DATA_SRAM_OFFSET + len,
235 new_cache_ptr);
236 else
237 memcpy_fromio(creq->cache,
238 engine->sram +
239 CESA_SA_DATA_SRAM_OFFSET +
240 len,
241 new_cache_ptr);
242 } else {
243 i = mv_cesa_ahash_pad_req(creq, creq->cache);
244 len += i;
245 if (engine->pool)
246 memcpy(engine->sram_pool + len +
247 CESA_SA_DATA_SRAM_OFFSET,
248 creq->cache, i);
249 else
250 memcpy_toio(engine->sram + len +
251 CESA_SA_DATA_SRAM_OFFSET,
252 creq->cache, i);
253 }
254
255 if (frag_mode == CESA_SA_DESC_CFG_LAST_FRAG)
256 frag_mode = CESA_SA_DESC_CFG_MID_FRAG;
257 else
258 frag_mode = CESA_SA_DESC_CFG_FIRST_FRAG;
259 }
260 }
261
262 mv_cesa_set_mac_op_frag_len(op, len);
263 mv_cesa_update_op_cfg(op, frag_mode, CESA_SA_DESC_CFG_FRAG_MSK);
264
265 /* FIXME: only update enc_len field */
266 if (engine->pool)
267 memcpy(engine->sram_pool, op, sizeof(*op));
268 else
269 memcpy_toio(engine->sram, op, sizeof(*op));
270
271 if (frag_mode == CESA_SA_DESC_CFG_FIRST_FRAG)
272 mv_cesa_update_op_cfg(op, CESA_SA_DESC_CFG_MID_FRAG,
273 CESA_SA_DESC_CFG_FRAG_MSK);
274
275 creq->cache_ptr = new_cache_ptr;
276
277 mv_cesa_set_int_mask(engine, CESA_SA_INT_ACCEL0_DONE);
278 writel_relaxed(CESA_SA_CFG_PARA_DIS, engine->regs + CESA_SA_CFG);
279 WARN_ON(readl(engine->regs + CESA_SA_CMD) &
280 CESA_SA_CMD_EN_CESA_SA_ACCL0);
281 writel(CESA_SA_CMD_EN_CESA_SA_ACCL0, engine->regs + CESA_SA_CMD);
282 }
283
mv_cesa_ahash_std_process(struct ahash_request * req,u32 status)284 static int mv_cesa_ahash_std_process(struct ahash_request *req, u32 status)
285 {
286 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
287 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
288
289 if (sreq->offset < (req->nbytes - creq->cache_ptr))
290 return -EINPROGRESS;
291
292 return 0;
293 }
294
mv_cesa_ahash_dma_prepare(struct ahash_request * req)295 static inline void mv_cesa_ahash_dma_prepare(struct ahash_request *req)
296 {
297 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
298 struct mv_cesa_req *basereq = &creq->base;
299
300 mv_cesa_dma_prepare(basereq, basereq->engine);
301 }
302
mv_cesa_ahash_std_prepare(struct ahash_request * req)303 static void mv_cesa_ahash_std_prepare(struct ahash_request *req)
304 {
305 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
306 struct mv_cesa_ahash_std_req *sreq = &creq->req.std;
307
308 sreq->offset = 0;
309 }
310
mv_cesa_ahash_dma_step(struct ahash_request * req)311 static void mv_cesa_ahash_dma_step(struct ahash_request *req)
312 {
313 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
314 struct mv_cesa_req *base = &creq->base;
315
316 /* We must explicitly set the digest state. */
317 if (base->chain.first->flags & CESA_TDMA_SET_STATE) {
318 struct mv_cesa_engine *engine = base->engine;
319 int i;
320
321 /* Set the hash state in the IVDIG regs. */
322 for (i = 0; i < ARRAY_SIZE(creq->state); i++)
323 writel_relaxed(creq->state[i], engine->regs +
324 CESA_IVDIG(i));
325 }
326
327 mv_cesa_dma_step(base);
328 }
329
mv_cesa_ahash_step(struct crypto_async_request * req)330 static void mv_cesa_ahash_step(struct crypto_async_request *req)
331 {
332 struct ahash_request *ahashreq = ahash_request_cast(req);
333 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
334
335 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
336 mv_cesa_ahash_dma_step(ahashreq);
337 else
338 mv_cesa_ahash_std_step(ahashreq);
339 }
340
mv_cesa_ahash_process(struct crypto_async_request * req,u32 status)341 static int mv_cesa_ahash_process(struct crypto_async_request *req, u32 status)
342 {
343 struct ahash_request *ahashreq = ahash_request_cast(req);
344 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
345
346 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
347 return mv_cesa_dma_process(&creq->base, status);
348
349 return mv_cesa_ahash_std_process(ahashreq, status);
350 }
351
mv_cesa_ahash_complete(struct crypto_async_request * req)352 static void mv_cesa_ahash_complete(struct crypto_async_request *req)
353 {
354 struct ahash_request *ahashreq = ahash_request_cast(req);
355 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
356 struct mv_cesa_engine *engine = creq->base.engine;
357 unsigned int digsize;
358 int i;
359
360 digsize = crypto_ahash_digestsize(crypto_ahash_reqtfm(ahashreq));
361
362 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ &&
363 (creq->base.chain.last->flags & CESA_TDMA_TYPE_MSK) ==
364 CESA_TDMA_RESULT) {
365 __le32 *data = NULL;
366
367 /*
368 * Result is already in the correct endianness when the SA is
369 * used
370 */
371 data = creq->base.chain.last->op->ctx.hash.hash;
372 for (i = 0; i < digsize / 4; i++)
373 creq->state[i] = le32_to_cpu(data[i]);
374
375 memcpy(ahashreq->result, data, digsize);
376 } else {
377 for (i = 0; i < digsize / 4; i++)
378 creq->state[i] = readl_relaxed(engine->regs +
379 CESA_IVDIG(i));
380 if (creq->last_req) {
381 /*
382 * Hardware's MD5 digest is in little endian format, but
383 * SHA in big endian format
384 */
385 if (creq->algo_le) {
386 __le32 *result = (void *)ahashreq->result;
387
388 for (i = 0; i < digsize / 4; i++)
389 result[i] = cpu_to_le32(creq->state[i]);
390 } else {
391 __be32 *result = (void *)ahashreq->result;
392
393 for (i = 0; i < digsize / 4; i++)
394 result[i] = cpu_to_be32(creq->state[i]);
395 }
396 }
397 }
398
399 atomic_sub(ahashreq->nbytes, &engine->load);
400 }
401
mv_cesa_ahash_prepare(struct crypto_async_request * req,struct mv_cesa_engine * engine)402 static void mv_cesa_ahash_prepare(struct crypto_async_request *req,
403 struct mv_cesa_engine *engine)
404 {
405 struct ahash_request *ahashreq = ahash_request_cast(req);
406 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
407
408 creq->base.engine = engine;
409
410 if (mv_cesa_req_get_type(&creq->base) == CESA_DMA_REQ)
411 mv_cesa_ahash_dma_prepare(ahashreq);
412 else
413 mv_cesa_ahash_std_prepare(ahashreq);
414 }
415
mv_cesa_ahash_req_cleanup(struct crypto_async_request * req)416 static void mv_cesa_ahash_req_cleanup(struct crypto_async_request *req)
417 {
418 struct ahash_request *ahashreq = ahash_request_cast(req);
419 struct mv_cesa_ahash_req *creq = ahash_request_ctx(ahashreq);
420
421 if (creq->last_req)
422 mv_cesa_ahash_last_cleanup(ahashreq);
423
424 mv_cesa_ahash_cleanup(ahashreq);
425
426 if (creq->cache_ptr)
427 sg_pcopy_to_buffer(ahashreq->src, creq->src_nents,
428 creq->cache,
429 creq->cache_ptr,
430 ahashreq->nbytes - creq->cache_ptr);
431 }
432
433 static const struct mv_cesa_req_ops mv_cesa_ahash_req_ops = {
434 .step = mv_cesa_ahash_step,
435 .process = mv_cesa_ahash_process,
436 .cleanup = mv_cesa_ahash_req_cleanup,
437 .complete = mv_cesa_ahash_complete,
438 };
439
mv_cesa_ahash_init(struct ahash_request * req,struct mv_cesa_op_ctx * tmpl,bool algo_le)440 static void mv_cesa_ahash_init(struct ahash_request *req,
441 struct mv_cesa_op_ctx *tmpl, bool algo_le)
442 {
443 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
444
445 memset(creq, 0, sizeof(*creq));
446 mv_cesa_update_op_cfg(tmpl,
447 CESA_SA_DESC_CFG_OP_MAC_ONLY |
448 CESA_SA_DESC_CFG_FIRST_FRAG,
449 CESA_SA_DESC_CFG_OP_MSK |
450 CESA_SA_DESC_CFG_FRAG_MSK);
451 mv_cesa_set_mac_op_total_len(tmpl, 0);
452 mv_cesa_set_mac_op_frag_len(tmpl, 0);
453 creq->op_tmpl = *tmpl;
454 creq->len = 0;
455 creq->algo_le = algo_le;
456 }
457
mv_cesa_ahash_cra_init(struct crypto_tfm * tfm)458 static inline int mv_cesa_ahash_cra_init(struct crypto_tfm *tfm)
459 {
460 struct mv_cesa_hash_ctx *ctx = crypto_tfm_ctx(tfm);
461
462 ctx->base.ops = &mv_cesa_ahash_req_ops;
463
464 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
465 sizeof(struct mv_cesa_ahash_req));
466 return 0;
467 }
468
mv_cesa_ahash_cache_req(struct ahash_request * req)469 static bool mv_cesa_ahash_cache_req(struct ahash_request *req)
470 {
471 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
472 bool cached = false;
473
474 if (creq->cache_ptr + req->nbytes < CESA_MAX_HASH_BLOCK_SIZE &&
475 !creq->last_req) {
476 cached = true;
477
478 if (!req->nbytes)
479 return cached;
480
481 sg_pcopy_to_buffer(req->src, creq->src_nents,
482 creq->cache + creq->cache_ptr,
483 req->nbytes, 0);
484
485 creq->cache_ptr += req->nbytes;
486 }
487
488 return cached;
489 }
490
491 static struct mv_cesa_op_ctx *
mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain * chain,struct mv_cesa_op_ctx * tmpl,unsigned int frag_len,gfp_t flags)492 mv_cesa_dma_add_frag(struct mv_cesa_tdma_chain *chain,
493 struct mv_cesa_op_ctx *tmpl, unsigned int frag_len,
494 gfp_t flags)
495 {
496 struct mv_cesa_op_ctx *op;
497 int ret;
498
499 op = mv_cesa_dma_add_op(chain, tmpl, false, flags);
500 if (IS_ERR(op))
501 return op;
502
503 /* Set the operation block fragment length. */
504 mv_cesa_set_mac_op_frag_len(op, frag_len);
505
506 /* Append dummy desc to launch operation */
507 ret = mv_cesa_dma_add_dummy_launch(chain, flags);
508 if (ret)
509 return ERR_PTR(ret);
510
511 if (mv_cesa_mac_op_is_first_frag(tmpl))
512 mv_cesa_update_op_cfg(tmpl,
513 CESA_SA_DESC_CFG_MID_FRAG,
514 CESA_SA_DESC_CFG_FRAG_MSK);
515
516 return op;
517 }
518
519 static int
mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain * chain,struct mv_cesa_ahash_req * creq,gfp_t flags)520 mv_cesa_ahash_dma_add_cache(struct mv_cesa_tdma_chain *chain,
521 struct mv_cesa_ahash_req *creq,
522 gfp_t flags)
523 {
524 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
525 int ret;
526
527 if (!creq->cache_ptr)
528 return 0;
529
530 ret = mv_cesa_ahash_dma_alloc_cache(ahashdreq, flags);
531 if (ret)
532 return ret;
533
534 memcpy(ahashdreq->cache, creq->cache, creq->cache_ptr);
535
536 return mv_cesa_dma_add_data_transfer(chain,
537 CESA_SA_DATA_SRAM_OFFSET,
538 ahashdreq->cache_dma,
539 creq->cache_ptr,
540 CESA_TDMA_DST_IN_SRAM,
541 flags);
542 }
543
544 static struct mv_cesa_op_ctx *
mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain * chain,struct mv_cesa_ahash_dma_iter * dma_iter,struct mv_cesa_ahash_req * creq,unsigned int frag_len,gfp_t flags)545 mv_cesa_ahash_dma_last_req(struct mv_cesa_tdma_chain *chain,
546 struct mv_cesa_ahash_dma_iter *dma_iter,
547 struct mv_cesa_ahash_req *creq,
548 unsigned int frag_len, gfp_t flags)
549 {
550 struct mv_cesa_ahash_dma_req *ahashdreq = &creq->req.dma;
551 unsigned int len, trailerlen, padoff = 0;
552 struct mv_cesa_op_ctx *op;
553 int ret;
554
555 /*
556 * If the transfer is smaller than our maximum length, and we have
557 * some data outstanding, we can ask the engine to finish the hash.
558 */
559 if (creq->len <= CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX && frag_len) {
560 op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len,
561 flags);
562 if (IS_ERR(op))
563 return op;
564
565 mv_cesa_set_mac_op_total_len(op, creq->len);
566 mv_cesa_update_op_cfg(op, mv_cesa_mac_op_is_first_frag(op) ?
567 CESA_SA_DESC_CFG_NOT_FRAG :
568 CESA_SA_DESC_CFG_LAST_FRAG,
569 CESA_SA_DESC_CFG_FRAG_MSK);
570
571 ret = mv_cesa_dma_add_result_op(chain,
572 CESA_SA_CFG_SRAM_OFFSET,
573 CESA_SA_DATA_SRAM_OFFSET,
574 CESA_TDMA_SRC_IN_SRAM, flags);
575 if (ret)
576 return ERR_PTR(-ENOMEM);
577 return op;
578 }
579
580 /*
581 * The request is longer than the engine can handle, or we have
582 * no data outstanding. Manually generate the padding, adding it
583 * as a "mid" fragment.
584 */
585 ret = mv_cesa_ahash_dma_alloc_padding(ahashdreq, flags);
586 if (ret)
587 return ERR_PTR(ret);
588
589 trailerlen = mv_cesa_ahash_pad_req(creq, ahashdreq->padding);
590
591 len = min(CESA_SA_SRAM_PAYLOAD_SIZE - frag_len, trailerlen);
592 if (len) {
593 ret = mv_cesa_dma_add_data_transfer(chain,
594 CESA_SA_DATA_SRAM_OFFSET +
595 frag_len,
596 ahashdreq->padding_dma,
597 len, CESA_TDMA_DST_IN_SRAM,
598 flags);
599 if (ret)
600 return ERR_PTR(ret);
601
602 op = mv_cesa_dma_add_frag(chain, &creq->op_tmpl, frag_len + len,
603 flags);
604 if (IS_ERR(op))
605 return op;
606
607 if (len == trailerlen)
608 return op;
609
610 padoff += len;
611 }
612
613 ret = mv_cesa_dma_add_data_transfer(chain,
614 CESA_SA_DATA_SRAM_OFFSET,
615 ahashdreq->padding_dma +
616 padoff,
617 trailerlen - padoff,
618 CESA_TDMA_DST_IN_SRAM,
619 flags);
620 if (ret)
621 return ERR_PTR(ret);
622
623 return mv_cesa_dma_add_frag(chain, &creq->op_tmpl, trailerlen - padoff,
624 flags);
625 }
626
mv_cesa_ahash_dma_req_init(struct ahash_request * req)627 static int mv_cesa_ahash_dma_req_init(struct ahash_request *req)
628 {
629 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
630 gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
631 GFP_KERNEL : GFP_ATOMIC;
632 struct mv_cesa_req *basereq = &creq->base;
633 struct mv_cesa_ahash_dma_iter iter;
634 struct mv_cesa_op_ctx *op = NULL;
635 unsigned int frag_len;
636 bool set_state = false;
637 int ret;
638 u32 type;
639
640 basereq->chain.first = NULL;
641 basereq->chain.last = NULL;
642
643 if (!mv_cesa_mac_op_is_first_frag(&creq->op_tmpl))
644 set_state = true;
645
646 if (creq->src_nents) {
647 ret = dma_map_sg(cesa_dev->dev, req->src, creq->src_nents,
648 DMA_TO_DEVICE);
649 if (!ret) {
650 ret = -ENOMEM;
651 goto err;
652 }
653 }
654
655 mv_cesa_tdma_desc_iter_init(&basereq->chain);
656 mv_cesa_ahash_req_iter_init(&iter, req);
657
658 /*
659 * Add the cache (left-over data from a previous block) first.
660 * This will never overflow the SRAM size.
661 */
662 ret = mv_cesa_ahash_dma_add_cache(&basereq->chain, creq, flags);
663 if (ret)
664 goto err_free_tdma;
665
666 if (iter.src.sg) {
667 /*
668 * Add all the new data, inserting an operation block and
669 * launch command between each full SRAM block-worth of
670 * data. We intentionally do not add the final op block.
671 */
672 while (true) {
673 ret = mv_cesa_dma_add_op_transfers(&basereq->chain,
674 &iter.base,
675 &iter.src, flags);
676 if (ret)
677 goto err_free_tdma;
678
679 frag_len = iter.base.op_len;
680
681 if (!mv_cesa_ahash_req_iter_next_op(&iter))
682 break;
683
684 op = mv_cesa_dma_add_frag(&basereq->chain,
685 &creq->op_tmpl,
686 frag_len, flags);
687 if (IS_ERR(op)) {
688 ret = PTR_ERR(op);
689 goto err_free_tdma;
690 }
691 }
692 } else {
693 /* Account for the data that was in the cache. */
694 frag_len = iter.base.op_len;
695 }
696
697 /*
698 * At this point, frag_len indicates whether we have any data
699 * outstanding which needs an operation. Queue up the final
700 * operation, which depends whether this is the final request.
701 */
702 if (creq->last_req)
703 op = mv_cesa_ahash_dma_last_req(&basereq->chain, &iter, creq,
704 frag_len, flags);
705 else if (frag_len)
706 op = mv_cesa_dma_add_frag(&basereq->chain, &creq->op_tmpl,
707 frag_len, flags);
708
709 if (IS_ERR(op)) {
710 ret = PTR_ERR(op);
711 goto err_free_tdma;
712 }
713
714 /*
715 * If results are copied via DMA, this means that this
716 * request can be directly processed by the engine,
717 * without partial updates. So we can chain it at the
718 * DMA level with other requests.
719 */
720 type = basereq->chain.last->flags & CESA_TDMA_TYPE_MSK;
721
722 if (op && type != CESA_TDMA_RESULT) {
723 /* Add dummy desc to wait for crypto operation end */
724 ret = mv_cesa_dma_add_dummy_end(&basereq->chain, flags);
725 if (ret)
726 goto err_free_tdma;
727 }
728
729 if (!creq->last_req)
730 creq->cache_ptr = req->nbytes + creq->cache_ptr -
731 iter.base.len;
732 else
733 creq->cache_ptr = 0;
734
735 basereq->chain.last->flags |= CESA_TDMA_END_OF_REQ;
736
737 if (type != CESA_TDMA_RESULT)
738 basereq->chain.last->flags |= CESA_TDMA_BREAK_CHAIN;
739
740 if (set_state) {
741 /*
742 * Put the CESA_TDMA_SET_STATE flag on the first tdma desc to
743 * let the step logic know that the IVDIG registers should be
744 * explicitly set before launching a TDMA chain.
745 */
746 basereq->chain.first->flags |= CESA_TDMA_SET_STATE;
747 }
748
749 return 0;
750
751 err_free_tdma:
752 mv_cesa_dma_cleanup(basereq);
753 dma_unmap_sg(cesa_dev->dev, req->src, creq->src_nents, DMA_TO_DEVICE);
754
755 err:
756 mv_cesa_ahash_last_cleanup(req);
757
758 return ret;
759 }
760
mv_cesa_ahash_req_init(struct ahash_request * req,bool * cached)761 static int mv_cesa_ahash_req_init(struct ahash_request *req, bool *cached)
762 {
763 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
764
765 creq->src_nents = sg_nents_for_len(req->src, req->nbytes);
766 if (creq->src_nents < 0) {
767 dev_err(cesa_dev->dev, "Invalid number of src SG");
768 return creq->src_nents;
769 }
770
771 *cached = mv_cesa_ahash_cache_req(req);
772
773 if (*cached)
774 return 0;
775
776 if (cesa_dev->caps->has_tdma)
777 return mv_cesa_ahash_dma_req_init(req);
778 else
779 return 0;
780 }
781
mv_cesa_ahash_queue_req(struct ahash_request * req)782 static int mv_cesa_ahash_queue_req(struct ahash_request *req)
783 {
784 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
785 struct mv_cesa_engine *engine;
786 bool cached = false;
787 int ret;
788
789 ret = mv_cesa_ahash_req_init(req, &cached);
790 if (ret)
791 return ret;
792
793 if (cached)
794 return 0;
795
796 engine = mv_cesa_select_engine(req->nbytes);
797 mv_cesa_ahash_prepare(&req->base, engine);
798
799 ret = mv_cesa_queue_req(&req->base, &creq->base);
800
801 if (mv_cesa_req_needs_cleanup(&req->base, ret))
802 mv_cesa_ahash_cleanup(req);
803
804 return ret;
805 }
806
mv_cesa_ahash_update(struct ahash_request * req)807 static int mv_cesa_ahash_update(struct ahash_request *req)
808 {
809 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
810
811 creq->len += req->nbytes;
812
813 return mv_cesa_ahash_queue_req(req);
814 }
815
mv_cesa_ahash_final(struct ahash_request * req)816 static int mv_cesa_ahash_final(struct ahash_request *req)
817 {
818 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
819 struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
820
821 mv_cesa_set_mac_op_total_len(tmpl, creq->len);
822 creq->last_req = true;
823 req->nbytes = 0;
824
825 return mv_cesa_ahash_queue_req(req);
826 }
827
mv_cesa_ahash_finup(struct ahash_request * req)828 static int mv_cesa_ahash_finup(struct ahash_request *req)
829 {
830 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
831 struct mv_cesa_op_ctx *tmpl = &creq->op_tmpl;
832
833 creq->len += req->nbytes;
834 mv_cesa_set_mac_op_total_len(tmpl, creq->len);
835 creq->last_req = true;
836
837 return mv_cesa_ahash_queue_req(req);
838 }
839
mv_cesa_ahash_export(struct ahash_request * req,void * hash,u64 * len,void * cache)840 static int mv_cesa_ahash_export(struct ahash_request *req, void *hash,
841 u64 *len, void *cache)
842 {
843 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
844 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
845 unsigned int digsize = crypto_ahash_digestsize(ahash);
846 unsigned int blocksize;
847
848 blocksize = crypto_ahash_blocksize(ahash);
849
850 *len = creq->len;
851 memcpy(hash, creq->state, digsize);
852 memset(cache, 0, blocksize);
853 memcpy(cache, creq->cache, creq->cache_ptr);
854
855 return 0;
856 }
857
mv_cesa_ahash_import(struct ahash_request * req,const void * hash,u64 len,const void * cache)858 static int mv_cesa_ahash_import(struct ahash_request *req, const void *hash,
859 u64 len, const void *cache)
860 {
861 struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
862 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
863 unsigned int digsize = crypto_ahash_digestsize(ahash);
864 unsigned int blocksize;
865 unsigned int cache_ptr;
866 int ret;
867
868 ret = crypto_ahash_init(req);
869 if (ret)
870 return ret;
871
872 blocksize = crypto_ahash_blocksize(ahash);
873 if (len >= blocksize)
874 mv_cesa_update_op_cfg(&creq->op_tmpl,
875 CESA_SA_DESC_CFG_MID_FRAG,
876 CESA_SA_DESC_CFG_FRAG_MSK);
877
878 creq->len = len;
879 memcpy(creq->state, hash, digsize);
880 creq->cache_ptr = 0;
881
882 cache_ptr = do_div(len, blocksize);
883 if (!cache_ptr)
884 return 0;
885
886 memcpy(creq->cache, cache, cache_ptr);
887 creq->cache_ptr = cache_ptr;
888
889 return 0;
890 }
891
mv_cesa_md5_init(struct ahash_request * req)892 static int mv_cesa_md5_init(struct ahash_request *req)
893 {
894 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
895 struct mv_cesa_op_ctx tmpl = { };
896
897 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_MD5);
898
899 mv_cesa_ahash_init(req, &tmpl, true);
900
901 creq->state[0] = MD5_H0;
902 creq->state[1] = MD5_H1;
903 creq->state[2] = MD5_H2;
904 creq->state[3] = MD5_H3;
905
906 return 0;
907 }
908
mv_cesa_md5_export(struct ahash_request * req,void * out)909 static int mv_cesa_md5_export(struct ahash_request *req, void *out)
910 {
911 struct md5_state *out_state = out;
912
913 return mv_cesa_ahash_export(req, out_state->hash,
914 &out_state->byte_count, out_state->block);
915 }
916
mv_cesa_md5_import(struct ahash_request * req,const void * in)917 static int mv_cesa_md5_import(struct ahash_request *req, const void *in)
918 {
919 const struct md5_state *in_state = in;
920
921 return mv_cesa_ahash_import(req, in_state->hash, in_state->byte_count,
922 in_state->block);
923 }
924
mv_cesa_md5_digest(struct ahash_request * req)925 static int mv_cesa_md5_digest(struct ahash_request *req)
926 {
927 int ret;
928
929 ret = mv_cesa_md5_init(req);
930 if (ret)
931 return ret;
932
933 return mv_cesa_ahash_finup(req);
934 }
935
936 struct ahash_alg mv_md5_alg = {
937 .init = mv_cesa_md5_init,
938 .update = mv_cesa_ahash_update,
939 .final = mv_cesa_ahash_final,
940 .finup = mv_cesa_ahash_finup,
941 .digest = mv_cesa_md5_digest,
942 .export = mv_cesa_md5_export,
943 .import = mv_cesa_md5_import,
944 .halg = {
945 .digestsize = MD5_DIGEST_SIZE,
946 .statesize = sizeof(struct md5_state),
947 .base = {
948 .cra_name = "md5",
949 .cra_driver_name = "mv-md5",
950 .cra_priority = 0,
951 .cra_flags = CRYPTO_ALG_ASYNC |
952 CRYPTO_ALG_ALLOCATES_MEMORY |
953 CRYPTO_ALG_KERN_DRIVER_ONLY,
954 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
955 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
956 .cra_init = mv_cesa_ahash_cra_init,
957 .cra_module = THIS_MODULE,
958 }
959 }
960 };
961
mv_cesa_sha1_init(struct ahash_request * req)962 static int mv_cesa_sha1_init(struct ahash_request *req)
963 {
964 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
965 struct mv_cesa_op_ctx tmpl = { };
966
967 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA1);
968
969 mv_cesa_ahash_init(req, &tmpl, false);
970
971 creq->state[0] = SHA1_H0;
972 creq->state[1] = SHA1_H1;
973 creq->state[2] = SHA1_H2;
974 creq->state[3] = SHA1_H3;
975 creq->state[4] = SHA1_H4;
976
977 return 0;
978 }
979
mv_cesa_sha1_export(struct ahash_request * req,void * out)980 static int mv_cesa_sha1_export(struct ahash_request *req, void *out)
981 {
982 struct sha1_state *out_state = out;
983
984 return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
985 out_state->buffer);
986 }
987
mv_cesa_sha1_import(struct ahash_request * req,const void * in)988 static int mv_cesa_sha1_import(struct ahash_request *req, const void *in)
989 {
990 const struct sha1_state *in_state = in;
991
992 return mv_cesa_ahash_import(req, in_state->state, in_state->count,
993 in_state->buffer);
994 }
995
mv_cesa_sha1_digest(struct ahash_request * req)996 static int mv_cesa_sha1_digest(struct ahash_request *req)
997 {
998 int ret;
999
1000 ret = mv_cesa_sha1_init(req);
1001 if (ret)
1002 return ret;
1003
1004 return mv_cesa_ahash_finup(req);
1005 }
1006
1007 struct ahash_alg mv_sha1_alg = {
1008 .init = mv_cesa_sha1_init,
1009 .update = mv_cesa_ahash_update,
1010 .final = mv_cesa_ahash_final,
1011 .finup = mv_cesa_ahash_finup,
1012 .digest = mv_cesa_sha1_digest,
1013 .export = mv_cesa_sha1_export,
1014 .import = mv_cesa_sha1_import,
1015 .halg = {
1016 .digestsize = SHA1_DIGEST_SIZE,
1017 .statesize = sizeof(struct sha1_state),
1018 .base = {
1019 .cra_name = "sha1",
1020 .cra_driver_name = "mv-sha1",
1021 .cra_priority = 0,
1022 .cra_flags = CRYPTO_ALG_ASYNC |
1023 CRYPTO_ALG_ALLOCATES_MEMORY |
1024 CRYPTO_ALG_KERN_DRIVER_ONLY,
1025 .cra_blocksize = SHA1_BLOCK_SIZE,
1026 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
1027 .cra_init = mv_cesa_ahash_cra_init,
1028 .cra_module = THIS_MODULE,
1029 }
1030 }
1031 };
1032
mv_cesa_sha256_init(struct ahash_request * req)1033 static int mv_cesa_sha256_init(struct ahash_request *req)
1034 {
1035 struct mv_cesa_ahash_req *creq = ahash_request_ctx(req);
1036 struct mv_cesa_op_ctx tmpl = { };
1037
1038 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_SHA256);
1039
1040 mv_cesa_ahash_init(req, &tmpl, false);
1041
1042 creq->state[0] = SHA256_H0;
1043 creq->state[1] = SHA256_H1;
1044 creq->state[2] = SHA256_H2;
1045 creq->state[3] = SHA256_H3;
1046 creq->state[4] = SHA256_H4;
1047 creq->state[5] = SHA256_H5;
1048 creq->state[6] = SHA256_H6;
1049 creq->state[7] = SHA256_H7;
1050
1051 return 0;
1052 }
1053
mv_cesa_sha256_digest(struct ahash_request * req)1054 static int mv_cesa_sha256_digest(struct ahash_request *req)
1055 {
1056 int ret;
1057
1058 ret = mv_cesa_sha256_init(req);
1059 if (ret)
1060 return ret;
1061
1062 return mv_cesa_ahash_finup(req);
1063 }
1064
mv_cesa_sha256_export(struct ahash_request * req,void * out)1065 static int mv_cesa_sha256_export(struct ahash_request *req, void *out)
1066 {
1067 struct sha256_state *out_state = out;
1068
1069 return mv_cesa_ahash_export(req, out_state->state, &out_state->count,
1070 out_state->buf);
1071 }
1072
mv_cesa_sha256_import(struct ahash_request * req,const void * in)1073 static int mv_cesa_sha256_import(struct ahash_request *req, const void *in)
1074 {
1075 const struct sha256_state *in_state = in;
1076
1077 return mv_cesa_ahash_import(req, in_state->state, in_state->count,
1078 in_state->buf);
1079 }
1080
1081 struct ahash_alg mv_sha256_alg = {
1082 .init = mv_cesa_sha256_init,
1083 .update = mv_cesa_ahash_update,
1084 .final = mv_cesa_ahash_final,
1085 .finup = mv_cesa_ahash_finup,
1086 .digest = mv_cesa_sha256_digest,
1087 .export = mv_cesa_sha256_export,
1088 .import = mv_cesa_sha256_import,
1089 .halg = {
1090 .digestsize = SHA256_DIGEST_SIZE,
1091 .statesize = sizeof(struct sha256_state),
1092 .base = {
1093 .cra_name = "sha256",
1094 .cra_driver_name = "mv-sha256",
1095 .cra_priority = 0,
1096 .cra_flags = CRYPTO_ALG_ASYNC |
1097 CRYPTO_ALG_ALLOCATES_MEMORY |
1098 CRYPTO_ALG_KERN_DRIVER_ONLY,
1099 .cra_blocksize = SHA256_BLOCK_SIZE,
1100 .cra_ctxsize = sizeof(struct mv_cesa_hash_ctx),
1101 .cra_init = mv_cesa_ahash_cra_init,
1102 .cra_module = THIS_MODULE,
1103 }
1104 }
1105 };
1106
mv_cesa_ahmac_iv_state_init(struct ahash_request * req,u8 * pad,void * state,unsigned int blocksize)1107 static int mv_cesa_ahmac_iv_state_init(struct ahash_request *req, u8 *pad,
1108 void *state, unsigned int blocksize)
1109 {
1110 DECLARE_CRYPTO_WAIT(result);
1111 struct scatterlist sg;
1112 int ret;
1113
1114 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1115 crypto_req_done, &result);
1116 sg_init_one(&sg, pad, blocksize);
1117 ahash_request_set_crypt(req, &sg, pad, blocksize);
1118
1119 ret = crypto_ahash_init(req);
1120 if (ret)
1121 return ret;
1122
1123 ret = crypto_ahash_update(req);
1124 ret = crypto_wait_req(ret, &result);
1125
1126 if (ret)
1127 return ret;
1128
1129 ret = crypto_ahash_export(req, state);
1130 if (ret)
1131 return ret;
1132
1133 return 0;
1134 }
1135
mv_cesa_ahmac_pad_init(struct ahash_request * req,const u8 * key,unsigned int keylen,u8 * ipad,u8 * opad,unsigned int blocksize)1136 static int mv_cesa_ahmac_pad_init(struct ahash_request *req,
1137 const u8 *key, unsigned int keylen,
1138 u8 *ipad, u8 *opad,
1139 unsigned int blocksize)
1140 {
1141 DECLARE_CRYPTO_WAIT(result);
1142 struct scatterlist sg;
1143 int ret;
1144 int i;
1145
1146 if (keylen <= blocksize) {
1147 memcpy(ipad, key, keylen);
1148 } else {
1149 u8 *keydup = kmemdup(key, keylen, GFP_KERNEL);
1150
1151 if (!keydup)
1152 return -ENOMEM;
1153
1154 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1155 crypto_req_done, &result);
1156 sg_init_one(&sg, keydup, keylen);
1157 ahash_request_set_crypt(req, &sg, ipad, keylen);
1158
1159 ret = crypto_ahash_digest(req);
1160 ret = crypto_wait_req(ret, &result);
1161
1162 /* Set the memory region to 0 to avoid any leak. */
1163 kfree_sensitive(keydup);
1164
1165 if (ret)
1166 return ret;
1167
1168 keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(req));
1169 }
1170
1171 memset(ipad + keylen, 0, blocksize - keylen);
1172 memcpy(opad, ipad, blocksize);
1173
1174 for (i = 0; i < blocksize; i++) {
1175 ipad[i] ^= HMAC_IPAD_VALUE;
1176 opad[i] ^= HMAC_OPAD_VALUE;
1177 }
1178
1179 return 0;
1180 }
1181
mv_cesa_ahmac_setkey(const char * hash_alg_name,const u8 * key,unsigned int keylen,void * istate,void * ostate)1182 static int mv_cesa_ahmac_setkey(const char *hash_alg_name,
1183 const u8 *key, unsigned int keylen,
1184 void *istate, void *ostate)
1185 {
1186 struct ahash_request *req;
1187 struct crypto_ahash *tfm;
1188 unsigned int blocksize;
1189 u8 *ipad = NULL;
1190 u8 *opad;
1191 int ret;
1192
1193 tfm = crypto_alloc_ahash(hash_alg_name, 0, 0);
1194 if (IS_ERR(tfm))
1195 return PTR_ERR(tfm);
1196
1197 req = ahash_request_alloc(tfm, GFP_KERNEL);
1198 if (!req) {
1199 ret = -ENOMEM;
1200 goto free_ahash;
1201 }
1202
1203 crypto_ahash_clear_flags(tfm, ~0);
1204
1205 blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
1206
1207 ipad = kcalloc(2, blocksize, GFP_KERNEL);
1208 if (!ipad) {
1209 ret = -ENOMEM;
1210 goto free_req;
1211 }
1212
1213 opad = ipad + blocksize;
1214
1215 ret = mv_cesa_ahmac_pad_init(req, key, keylen, ipad, opad, blocksize);
1216 if (ret)
1217 goto free_ipad;
1218
1219 ret = mv_cesa_ahmac_iv_state_init(req, ipad, istate, blocksize);
1220 if (ret)
1221 goto free_ipad;
1222
1223 ret = mv_cesa_ahmac_iv_state_init(req, opad, ostate, blocksize);
1224
1225 free_ipad:
1226 kfree(ipad);
1227 free_req:
1228 ahash_request_free(req);
1229 free_ahash:
1230 crypto_free_ahash(tfm);
1231
1232 return ret;
1233 }
1234
mv_cesa_ahmac_cra_init(struct crypto_tfm * tfm)1235 static int mv_cesa_ahmac_cra_init(struct crypto_tfm *tfm)
1236 {
1237 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(tfm);
1238
1239 ctx->base.ops = &mv_cesa_ahash_req_ops;
1240
1241 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1242 sizeof(struct mv_cesa_ahash_req));
1243 return 0;
1244 }
1245
mv_cesa_ahmac_md5_init(struct ahash_request * req)1246 static int mv_cesa_ahmac_md5_init(struct ahash_request *req)
1247 {
1248 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1249 struct mv_cesa_op_ctx tmpl = { };
1250
1251 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_MD5);
1252 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1253
1254 mv_cesa_ahash_init(req, &tmpl, true);
1255
1256 return 0;
1257 }
1258
mv_cesa_ahmac_md5_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1259 static int mv_cesa_ahmac_md5_setkey(struct crypto_ahash *tfm, const u8 *key,
1260 unsigned int keylen)
1261 {
1262 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1263 struct md5_state istate, ostate;
1264 int ret, i;
1265
1266 ret = mv_cesa_ahmac_setkey("mv-md5", key, keylen, &istate, &ostate);
1267 if (ret)
1268 return ret;
1269
1270 for (i = 0; i < ARRAY_SIZE(istate.hash); i++)
1271 ctx->iv[i] = cpu_to_be32(istate.hash[i]);
1272
1273 for (i = 0; i < ARRAY_SIZE(ostate.hash); i++)
1274 ctx->iv[i + 8] = cpu_to_be32(ostate.hash[i]);
1275
1276 return 0;
1277 }
1278
mv_cesa_ahmac_md5_digest(struct ahash_request * req)1279 static int mv_cesa_ahmac_md5_digest(struct ahash_request *req)
1280 {
1281 int ret;
1282
1283 ret = mv_cesa_ahmac_md5_init(req);
1284 if (ret)
1285 return ret;
1286
1287 return mv_cesa_ahash_finup(req);
1288 }
1289
1290 struct ahash_alg mv_ahmac_md5_alg = {
1291 .init = mv_cesa_ahmac_md5_init,
1292 .update = mv_cesa_ahash_update,
1293 .final = mv_cesa_ahash_final,
1294 .finup = mv_cesa_ahash_finup,
1295 .digest = mv_cesa_ahmac_md5_digest,
1296 .setkey = mv_cesa_ahmac_md5_setkey,
1297 .export = mv_cesa_md5_export,
1298 .import = mv_cesa_md5_import,
1299 .halg = {
1300 .digestsize = MD5_DIGEST_SIZE,
1301 .statesize = sizeof(struct md5_state),
1302 .base = {
1303 .cra_name = "hmac(md5)",
1304 .cra_driver_name = "mv-hmac-md5",
1305 .cra_priority = 0,
1306 .cra_flags = CRYPTO_ALG_ASYNC |
1307 CRYPTO_ALG_ALLOCATES_MEMORY |
1308 CRYPTO_ALG_KERN_DRIVER_ONLY,
1309 .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
1310 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1311 .cra_init = mv_cesa_ahmac_cra_init,
1312 .cra_module = THIS_MODULE,
1313 }
1314 }
1315 };
1316
mv_cesa_ahmac_sha1_init(struct ahash_request * req)1317 static int mv_cesa_ahmac_sha1_init(struct ahash_request *req)
1318 {
1319 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1320 struct mv_cesa_op_ctx tmpl = { };
1321
1322 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA1);
1323 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1324
1325 mv_cesa_ahash_init(req, &tmpl, false);
1326
1327 return 0;
1328 }
1329
mv_cesa_ahmac_sha1_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1330 static int mv_cesa_ahmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
1331 unsigned int keylen)
1332 {
1333 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1334 struct sha1_state istate, ostate;
1335 int ret, i;
1336
1337 ret = mv_cesa_ahmac_setkey("mv-sha1", key, keylen, &istate, &ostate);
1338 if (ret)
1339 return ret;
1340
1341 for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1342 ctx->iv[i] = cpu_to_be32(istate.state[i]);
1343
1344 for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1345 ctx->iv[i + 8] = cpu_to_be32(ostate.state[i]);
1346
1347 return 0;
1348 }
1349
mv_cesa_ahmac_sha1_digest(struct ahash_request * req)1350 static int mv_cesa_ahmac_sha1_digest(struct ahash_request *req)
1351 {
1352 int ret;
1353
1354 ret = mv_cesa_ahmac_sha1_init(req);
1355 if (ret)
1356 return ret;
1357
1358 return mv_cesa_ahash_finup(req);
1359 }
1360
1361 struct ahash_alg mv_ahmac_sha1_alg = {
1362 .init = mv_cesa_ahmac_sha1_init,
1363 .update = mv_cesa_ahash_update,
1364 .final = mv_cesa_ahash_final,
1365 .finup = mv_cesa_ahash_finup,
1366 .digest = mv_cesa_ahmac_sha1_digest,
1367 .setkey = mv_cesa_ahmac_sha1_setkey,
1368 .export = mv_cesa_sha1_export,
1369 .import = mv_cesa_sha1_import,
1370 .halg = {
1371 .digestsize = SHA1_DIGEST_SIZE,
1372 .statesize = sizeof(struct sha1_state),
1373 .base = {
1374 .cra_name = "hmac(sha1)",
1375 .cra_driver_name = "mv-hmac-sha1",
1376 .cra_priority = 0,
1377 .cra_flags = CRYPTO_ALG_ASYNC |
1378 CRYPTO_ALG_ALLOCATES_MEMORY |
1379 CRYPTO_ALG_KERN_DRIVER_ONLY,
1380 .cra_blocksize = SHA1_BLOCK_SIZE,
1381 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1382 .cra_init = mv_cesa_ahmac_cra_init,
1383 .cra_module = THIS_MODULE,
1384 }
1385 }
1386 };
1387
mv_cesa_ahmac_sha256_setkey(struct crypto_ahash * tfm,const u8 * key,unsigned int keylen)1388 static int mv_cesa_ahmac_sha256_setkey(struct crypto_ahash *tfm, const u8 *key,
1389 unsigned int keylen)
1390 {
1391 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
1392 struct sha256_state istate, ostate;
1393 int ret, i;
1394
1395 ret = mv_cesa_ahmac_setkey("mv-sha256", key, keylen, &istate, &ostate);
1396 if (ret)
1397 return ret;
1398
1399 for (i = 0; i < ARRAY_SIZE(istate.state); i++)
1400 ctx->iv[i] = cpu_to_be32(istate.state[i]);
1401
1402 for (i = 0; i < ARRAY_SIZE(ostate.state); i++)
1403 ctx->iv[i + 8] = cpu_to_be32(ostate.state[i]);
1404
1405 return 0;
1406 }
1407
mv_cesa_ahmac_sha256_init(struct ahash_request * req)1408 static int mv_cesa_ahmac_sha256_init(struct ahash_request *req)
1409 {
1410 struct mv_cesa_hmac_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
1411 struct mv_cesa_op_ctx tmpl = { };
1412
1413 mv_cesa_set_op_cfg(&tmpl, CESA_SA_DESC_CFG_MACM_HMAC_SHA256);
1414 memcpy(tmpl.ctx.hash.iv, ctx->iv, sizeof(ctx->iv));
1415
1416 mv_cesa_ahash_init(req, &tmpl, false);
1417
1418 return 0;
1419 }
1420
mv_cesa_ahmac_sha256_digest(struct ahash_request * req)1421 static int mv_cesa_ahmac_sha256_digest(struct ahash_request *req)
1422 {
1423 int ret;
1424
1425 ret = mv_cesa_ahmac_sha256_init(req);
1426 if (ret)
1427 return ret;
1428
1429 return mv_cesa_ahash_finup(req);
1430 }
1431
1432 struct ahash_alg mv_ahmac_sha256_alg = {
1433 .init = mv_cesa_ahmac_sha256_init,
1434 .update = mv_cesa_ahash_update,
1435 .final = mv_cesa_ahash_final,
1436 .finup = mv_cesa_ahash_finup,
1437 .digest = mv_cesa_ahmac_sha256_digest,
1438 .setkey = mv_cesa_ahmac_sha256_setkey,
1439 .export = mv_cesa_sha256_export,
1440 .import = mv_cesa_sha256_import,
1441 .halg = {
1442 .digestsize = SHA256_DIGEST_SIZE,
1443 .statesize = sizeof(struct sha256_state),
1444 .base = {
1445 .cra_name = "hmac(sha256)",
1446 .cra_driver_name = "mv-hmac-sha256",
1447 .cra_priority = 0,
1448 .cra_flags = CRYPTO_ALG_ASYNC |
1449 CRYPTO_ALG_ALLOCATES_MEMORY |
1450 CRYPTO_ALG_KERN_DRIVER_ONLY,
1451 .cra_blocksize = SHA256_BLOCK_SIZE,
1452 .cra_ctxsize = sizeof(struct mv_cesa_hmac_ctx),
1453 .cra_init = mv_cesa_ahmac_cra_init,
1454 .cra_module = THIS_MODULE,
1455 }
1456 }
1457 };
1458