1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass makes sure that all branches are in range. There are several ways
10 // in which this could be done. One aggressive approach is to assume that all
11 // branches are in range and successively replace those that turn out not
12 // to be in range with a longer form (branch relaxation). A simple
13 // implementation is to continually walk through the function relaxing
14 // branches until no more changes are needed and a fixed point is reached.
15 // However, in the pathological worst case, this implementation is
16 // quadratic in the number of blocks; relaxing branch N can make branch N-1
17 // go out of range, which in turn can make branch N-2 go out of range,
18 // and so on.
19 //
20 // An alternative approach is to assume that all branches must be
21 // converted to their long forms, then reinstate the short forms of
22 // branches that, even under this pessimistic assumption, turn out to be
23 // in range (branch shortening). This too can be implemented as a function
24 // walk that is repeated until a fixed point is reached. In general,
25 // the result of shortening is not as good as that of relaxation, and
26 // shortening is also quadratic in the worst case; shortening branch N
27 // can bring branch N-1 in range of the short form, which in turn can do
28 // the same for branch N-2, and so on. The main advantage of shortening
29 // is that each walk through the function produces valid code, so it is
30 // possible to stop at any point after the first walk. The quadraticness
31 // could therefore be handled with a maximum pass count, although the
32 // question then becomes: what maximum count should be used?
33 //
34 // On SystemZ, long branches are only needed for functions bigger than 64k,
35 // which are relatively rare to begin with, and the long branch sequences
36 // are actually relatively cheap. It therefore doesn't seem worth spending
37 // much compilation time on the problem. Instead, the approach we take is:
38 //
39 // (1) Work out the address that each block would have if no branches
40 // need relaxing. Exit the pass early if all branches are in range
41 // according to this assumption.
42 //
43 // (2) Work out the address that each block would have if all branches
44 // need relaxing.
45 //
46 // (3) Walk through the block calculating the final address of each instruction
47 // and relaxing those that need to be relaxed. For backward branches,
48 // this check uses the final address of the target block, as calculated
49 // earlier in the walk. For forward branches, this check uses the
50 // address of the target block that was calculated in (2). Both checks
51 // give a conservatively-correct range.
52 //
53 //===----------------------------------------------------------------------===//
54
55 #include "SystemZ.h"
56 #include "SystemZInstrInfo.h"
57 #include "SystemZTargetMachine.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/CodeGen/MachineBasicBlock.h"
62 #include "llvm/CodeGen/MachineFunction.h"
63 #include "llvm/CodeGen/MachineFunctionPass.h"
64 #include "llvm/CodeGen/MachineInstr.h"
65 #include "llvm/CodeGen/MachineInstrBuilder.h"
66 #include "llvm/IR/DebugLoc.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include <cassert>
69 #include <cstdint>
70
71 using namespace llvm;
72
73 #define DEBUG_TYPE "systemz-long-branch"
74
75 STATISTIC(LongBranches, "Number of long branches.");
76
77 namespace {
78
79 // Represents positional information about a basic block.
80 struct MBBInfo {
81 // The address that we currently assume the block has.
82 uint64_t Address = 0;
83
84 // The size of the block in bytes, excluding terminators.
85 // This value never changes.
86 uint64_t Size = 0;
87
88 // The minimum alignment of the block.
89 // This value never changes.
90 Align Alignment;
91
92 // The number of terminators in this block. This value never changes.
93 unsigned NumTerminators = 0;
94
95 MBBInfo() = default;
96 };
97
98 // Represents the state of a block terminator.
99 struct TerminatorInfo {
100 // If this terminator is a relaxable branch, this points to the branch
101 // instruction, otherwise it is null.
102 MachineInstr *Branch = nullptr;
103
104 // The address that we currently assume the terminator has.
105 uint64_t Address = 0;
106
107 // The current size of the terminator in bytes.
108 uint64_t Size = 0;
109
110 // If Branch is nonnull, this is the number of the target block,
111 // otherwise it is unused.
112 unsigned TargetBlock = 0;
113
114 // If Branch is nonnull, this is the length of the longest relaxed form,
115 // otherwise it is zero.
116 unsigned ExtraRelaxSize = 0;
117
118 TerminatorInfo() = default;
119 };
120
121 // Used to keep track of the current position while iterating over the blocks.
122 struct BlockPosition {
123 // The address that we assume this position has.
124 uint64_t Address = 0;
125
126 // The number of low bits in Address that are known to be the same
127 // as the runtime address.
128 unsigned KnownBits;
129
BlockPosition__anona4a2e8f10111::BlockPosition130 BlockPosition(unsigned InitialLogAlignment)
131 : KnownBits(InitialLogAlignment) {}
132 };
133
134 class SystemZLongBranch : public MachineFunctionPass {
135 public:
136 static char ID;
137
SystemZLongBranch()138 SystemZLongBranch() : MachineFunctionPass(ID) {
139 initializeSystemZLongBranchPass(*PassRegistry::getPassRegistry());
140 }
141
142 bool runOnMachineFunction(MachineFunction &F) override;
143
getRequiredProperties() const144 MachineFunctionProperties getRequiredProperties() const override {
145 return MachineFunctionProperties().set(
146 MachineFunctionProperties::Property::NoVRegs);
147 }
148
149 private:
150 void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
151 void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
152 bool AssumeRelaxed);
153 TerminatorInfo describeTerminator(MachineInstr &MI);
154 uint64_t initMBBInfo();
155 bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
156 bool mustRelaxABranch();
157 void setWorstCaseAddresses();
158 void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
159 void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
160 void relaxBranch(TerminatorInfo &Terminator);
161 void relaxBranches();
162
163 const SystemZInstrInfo *TII = nullptr;
164 MachineFunction *MF = nullptr;
165 SmallVector<MBBInfo, 16> MBBs;
166 SmallVector<TerminatorInfo, 16> Terminators;
167 };
168
169 char SystemZLongBranch::ID = 0;
170
171 const uint64_t MaxBackwardRange = 0x10000;
172 const uint64_t MaxForwardRange = 0xfffe;
173
174 } // end anonymous namespace
175
176 INITIALIZE_PASS(SystemZLongBranch, DEBUG_TYPE, "SystemZ Long Branch", false,
177 false)
178
179 // Position describes the state immediately before Block. Update Block
180 // accordingly and move Position to the end of the block's non-terminator
181 // instructions.
skipNonTerminators(BlockPosition & Position,MBBInfo & Block)182 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
183 MBBInfo &Block) {
184 if (Log2(Block.Alignment) > Position.KnownBits) {
185 // When calculating the address of Block, we need to conservatively
186 // assume that Block had the worst possible misalignment.
187 Position.Address +=
188 (Block.Alignment.value() - (uint64_t(1) << Position.KnownBits));
189 Position.KnownBits = Log2(Block.Alignment);
190 }
191
192 // Align the addresses.
193 Position.Address = alignTo(Position.Address, Block.Alignment);
194
195 // Record the block's position.
196 Block.Address = Position.Address;
197
198 // Move past the non-terminators in the block.
199 Position.Address += Block.Size;
200 }
201
202 // Position describes the state immediately before Terminator.
203 // Update Terminator accordingly and move Position past it.
204 // Assume that Terminator will be relaxed if AssumeRelaxed.
skipTerminator(BlockPosition & Position,TerminatorInfo & Terminator,bool AssumeRelaxed)205 void SystemZLongBranch::skipTerminator(BlockPosition &Position,
206 TerminatorInfo &Terminator,
207 bool AssumeRelaxed) {
208 Terminator.Address = Position.Address;
209 Position.Address += Terminator.Size;
210 if (AssumeRelaxed)
211 Position.Address += Terminator.ExtraRelaxSize;
212 }
213
getInstSizeInBytes(const MachineInstr & MI,const SystemZInstrInfo * TII)214 static unsigned getInstSizeInBytes(const MachineInstr &MI,
215 const SystemZInstrInfo *TII) {
216 unsigned Size = TII->getInstSizeInBytes(MI);
217 assert((Size ||
218 // These do not have a size:
219 MI.isDebugOrPseudoInstr() || MI.isPosition() || MI.isKill() ||
220 MI.isImplicitDef() || MI.getOpcode() == TargetOpcode::MEMBARRIER ||
221 // These have a size that may be zero:
222 MI.isInlineAsm() || MI.getOpcode() == SystemZ::STACKMAP ||
223 MI.getOpcode() == SystemZ::PATCHPOINT) &&
224 "Missing size value for instruction.");
225 return Size;
226 }
227
228 // Return a description of terminator instruction MI.
describeTerminator(MachineInstr & MI)229 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr &MI) {
230 TerminatorInfo Terminator;
231 Terminator.Size = getInstSizeInBytes(MI, TII);
232 if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) {
233 switch (MI.getOpcode()) {
234 case SystemZ::J:
235 // Relaxes to JG, which is 2 bytes longer.
236 Terminator.ExtraRelaxSize = 2;
237 break;
238 case SystemZ::BRC:
239 // Relaxes to BRCL, which is 2 bytes longer.
240 Terminator.ExtraRelaxSize = 2;
241 break;
242 case SystemZ::BRCT:
243 case SystemZ::BRCTG:
244 // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
245 Terminator.ExtraRelaxSize = 6;
246 break;
247 case SystemZ::BRCTH:
248 // Never needs to be relaxed.
249 Terminator.ExtraRelaxSize = 0;
250 break;
251 case SystemZ::CRJ:
252 case SystemZ::CLRJ:
253 // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
254 Terminator.ExtraRelaxSize = 2;
255 break;
256 case SystemZ::CGRJ:
257 case SystemZ::CLGRJ:
258 // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
259 Terminator.ExtraRelaxSize = 4;
260 break;
261 case SystemZ::CIJ:
262 case SystemZ::CGIJ:
263 // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
264 Terminator.ExtraRelaxSize = 4;
265 break;
266 case SystemZ::CLIJ:
267 case SystemZ::CLGIJ:
268 // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
269 Terminator.ExtraRelaxSize = 6;
270 break;
271 default:
272 llvm_unreachable("Unrecognized branch instruction");
273 }
274 Terminator.Branch = &MI;
275 Terminator.TargetBlock =
276 TII->getBranchInfo(MI).getMBBTarget()->getNumber();
277 }
278 return Terminator;
279 }
280
281 // Fill MBBs and Terminators, setting the addresses on the assumption
282 // that no branches need relaxation. Return the size of the function under
283 // this assumption.
initMBBInfo()284 uint64_t SystemZLongBranch::initMBBInfo() {
285 MF->RenumberBlocks();
286 unsigned NumBlocks = MF->size();
287
288 MBBs.clear();
289 MBBs.resize(NumBlocks);
290
291 Terminators.clear();
292 Terminators.reserve(NumBlocks);
293
294 BlockPosition Position(Log2(MF->getAlignment()));
295 for (unsigned I = 0; I < NumBlocks; ++I) {
296 MachineBasicBlock *MBB = MF->getBlockNumbered(I);
297 MBBInfo &Block = MBBs[I];
298
299 // Record the alignment, for quick access.
300 Block.Alignment = MBB->getAlignment();
301
302 // Calculate the size of the fixed part of the block.
303 MachineBasicBlock::iterator MI = MBB->begin();
304 MachineBasicBlock::iterator End = MBB->end();
305 while (MI != End && !MI->isTerminator()) {
306 Block.Size += getInstSizeInBytes(*MI, TII);
307 ++MI;
308 }
309 skipNonTerminators(Position, Block);
310
311 // Add the terminators.
312 while (MI != End) {
313 if (!MI->isDebugInstr()) {
314 assert(MI->isTerminator() && "Terminator followed by non-terminator");
315 Terminators.push_back(describeTerminator(*MI));
316 skipTerminator(Position, Terminators.back(), false);
317 ++Block.NumTerminators;
318 }
319 ++MI;
320 }
321 }
322
323 return Position.Address;
324 }
325
326 // Return true if, under current assumptions, Terminator would need to be
327 // relaxed if it were placed at address Address.
mustRelaxBranch(const TerminatorInfo & Terminator,uint64_t Address)328 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
329 uint64_t Address) {
330 if (!Terminator.Branch || Terminator.ExtraRelaxSize == 0)
331 return false;
332
333 const MBBInfo &Target = MBBs[Terminator.TargetBlock];
334 if (Address >= Target.Address) {
335 if (Address - Target.Address <= MaxBackwardRange)
336 return false;
337 } else {
338 if (Target.Address - Address <= MaxForwardRange)
339 return false;
340 }
341
342 return true;
343 }
344
345 // Return true if, under current assumptions, any terminator needs
346 // to be relaxed.
mustRelaxABranch()347 bool SystemZLongBranch::mustRelaxABranch() {
348 for (auto &Terminator : Terminators)
349 if (mustRelaxBranch(Terminator, Terminator.Address))
350 return true;
351 return false;
352 }
353
354 // Set the address of each block on the assumption that all branches
355 // must be long.
setWorstCaseAddresses()356 void SystemZLongBranch::setWorstCaseAddresses() {
357 SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
358 BlockPosition Position(Log2(MF->getAlignment()));
359 for (auto &Block : MBBs) {
360 skipNonTerminators(Position, Block);
361 for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
362 skipTerminator(Position, *TI, true);
363 ++TI;
364 }
365 }
366 }
367
368 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
369 // by a BRCL on the result.
splitBranchOnCount(MachineInstr * MI,unsigned AddOpcode)370 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
371 unsigned AddOpcode) {
372 MachineBasicBlock *MBB = MI->getParent();
373 DebugLoc DL = MI->getDebugLoc();
374 BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
375 .add(MI->getOperand(0))
376 .add(MI->getOperand(1))
377 .addImm(-1);
378 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
379 .addImm(SystemZ::CCMASK_ICMP)
380 .addImm(SystemZ::CCMASK_CMP_NE)
381 .add(MI->getOperand(2));
382 // The implicit use of CC is a killing use.
383 BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
384 MI->eraseFromParent();
385 }
386
387 // Split MI into the comparison given by CompareOpcode followed
388 // a BRCL on the result.
splitCompareBranch(MachineInstr * MI,unsigned CompareOpcode)389 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
390 unsigned CompareOpcode) {
391 MachineBasicBlock *MBB = MI->getParent();
392 DebugLoc DL = MI->getDebugLoc();
393 BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
394 .add(MI->getOperand(0))
395 .add(MI->getOperand(1));
396 MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
397 .addImm(SystemZ::CCMASK_ICMP)
398 .add(MI->getOperand(2))
399 .add(MI->getOperand(3));
400 // The implicit use of CC is a killing use.
401 BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
402 MI->eraseFromParent();
403 }
404
405 // Relax the branch described by Terminator.
relaxBranch(TerminatorInfo & Terminator)406 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
407 MachineInstr *Branch = Terminator.Branch;
408 switch (Branch->getOpcode()) {
409 case SystemZ::J:
410 Branch->setDesc(TII->get(SystemZ::JG));
411 break;
412 case SystemZ::BRC:
413 Branch->setDesc(TII->get(SystemZ::BRCL));
414 break;
415 case SystemZ::BRCT:
416 splitBranchOnCount(Branch, SystemZ::AHI);
417 break;
418 case SystemZ::BRCTG:
419 splitBranchOnCount(Branch, SystemZ::AGHI);
420 break;
421 case SystemZ::CRJ:
422 splitCompareBranch(Branch, SystemZ::CR);
423 break;
424 case SystemZ::CGRJ:
425 splitCompareBranch(Branch, SystemZ::CGR);
426 break;
427 case SystemZ::CIJ:
428 splitCompareBranch(Branch, SystemZ::CHI);
429 break;
430 case SystemZ::CGIJ:
431 splitCompareBranch(Branch, SystemZ::CGHI);
432 break;
433 case SystemZ::CLRJ:
434 splitCompareBranch(Branch, SystemZ::CLR);
435 break;
436 case SystemZ::CLGRJ:
437 splitCompareBranch(Branch, SystemZ::CLGR);
438 break;
439 case SystemZ::CLIJ:
440 splitCompareBranch(Branch, SystemZ::CLFI);
441 break;
442 case SystemZ::CLGIJ:
443 splitCompareBranch(Branch, SystemZ::CLGFI);
444 break;
445 default:
446 llvm_unreachable("Unrecognized branch");
447 }
448
449 Terminator.Size += Terminator.ExtraRelaxSize;
450 Terminator.ExtraRelaxSize = 0;
451 Terminator.Branch = nullptr;
452
453 ++LongBranches;
454 }
455
456 // Run a shortening pass and relax any branches that need to be relaxed.
relaxBranches()457 void SystemZLongBranch::relaxBranches() {
458 SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
459 BlockPosition Position(Log2(MF->getAlignment()));
460 for (auto &Block : MBBs) {
461 skipNonTerminators(Position, Block);
462 for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
463 assert(Position.Address <= TI->Address &&
464 "Addresses shouldn't go forwards");
465 if (mustRelaxBranch(*TI, Position.Address))
466 relaxBranch(*TI);
467 skipTerminator(Position, *TI, false);
468 ++TI;
469 }
470 }
471 }
472
runOnMachineFunction(MachineFunction & F)473 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
474 TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
475 MF = &F;
476 uint64_t Size = initMBBInfo();
477 if (Size <= MaxForwardRange || !mustRelaxABranch())
478 return false;
479
480 setWorstCaseAddresses();
481 relaxBranches();
482 return true;
483 }
484
createSystemZLongBranchPass(SystemZTargetMachine & TM)485 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) {
486 return new SystemZLongBranch();
487 }
488