xref: /freebsd/contrib/llvm-project/llvm/lib/Target/SystemZ/SystemZLongBranch.cpp (revision bdd1243df58e60e85101c09001d9812a789b6bc4)
1 //===-- SystemZLongBranch.cpp - Branch lengthening for SystemZ ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass makes sure that all branches are in range.  There are several ways
10 // in which this could be done.  One aggressive approach is to assume that all
11 // branches are in range and successively replace those that turn out not
12 // to be in range with a longer form (branch relaxation).  A simple
13 // implementation is to continually walk through the function relaxing
14 // branches until no more changes are needed and a fixed point is reached.
15 // However, in the pathological worst case, this implementation is
16 // quadratic in the number of blocks; relaxing branch N can make branch N-1
17 // go out of range, which in turn can make branch N-2 go out of range,
18 // and so on.
19 //
20 // An alternative approach is to assume that all branches must be
21 // converted to their long forms, then reinstate the short forms of
22 // branches that, even under this pessimistic assumption, turn out to be
23 // in range (branch shortening).  This too can be implemented as a function
24 // walk that is repeated until a fixed point is reached.  In general,
25 // the result of shortening is not as good as that of relaxation, and
26 // shortening is also quadratic in the worst case; shortening branch N
27 // can bring branch N-1 in range of the short form, which in turn can do
28 // the same for branch N-2, and so on.  The main advantage of shortening
29 // is that each walk through the function produces valid code, so it is
30 // possible to stop at any point after the first walk.  The quadraticness
31 // could therefore be handled with a maximum pass count, although the
32 // question then becomes: what maximum count should be used?
33 //
34 // On SystemZ, long branches are only needed for functions bigger than 64k,
35 // which are relatively rare to begin with, and the long branch sequences
36 // are actually relatively cheap.  It therefore doesn't seem worth spending
37 // much compilation time on the problem.  Instead, the approach we take is:
38 //
39 // (1) Work out the address that each block would have if no branches
40 //     need relaxing.  Exit the pass early if all branches are in range
41 //     according to this assumption.
42 //
43 // (2) Work out the address that each block would have if all branches
44 //     need relaxing.
45 //
46 // (3) Walk through the block calculating the final address of each instruction
47 //     and relaxing those that need to be relaxed.  For backward branches,
48 //     this check uses the final address of the target block, as calculated
49 //     earlier in the walk.  For forward branches, this check uses the
50 //     address of the target block that was calculated in (2).  Both checks
51 //     give a conservatively-correct range.
52 //
53 //===----------------------------------------------------------------------===//
54 
55 #include "SystemZ.h"
56 #include "SystemZInstrInfo.h"
57 #include "SystemZTargetMachine.h"
58 #include "llvm/ADT/SmallVector.h"
59 #include "llvm/ADT/Statistic.h"
60 #include "llvm/ADT/StringRef.h"
61 #include "llvm/CodeGen/MachineBasicBlock.h"
62 #include "llvm/CodeGen/MachineFunction.h"
63 #include "llvm/CodeGen/MachineFunctionPass.h"
64 #include "llvm/CodeGen/MachineInstr.h"
65 #include "llvm/CodeGen/MachineInstrBuilder.h"
66 #include "llvm/IR/DebugLoc.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include <cassert>
69 #include <cstdint>
70 
71 using namespace llvm;
72 
73 #define DEBUG_TYPE "systemz-long-branch"
74 
75 STATISTIC(LongBranches, "Number of long branches.");
76 
77 namespace {
78 
79 // Represents positional information about a basic block.
80 struct MBBInfo {
81   // The address that we currently assume the block has.
82   uint64_t Address = 0;
83 
84   // The size of the block in bytes, excluding terminators.
85   // This value never changes.
86   uint64_t Size = 0;
87 
88   // The minimum alignment of the block.
89   // This value never changes.
90   Align Alignment;
91 
92   // The number of terminators in this block.  This value never changes.
93   unsigned NumTerminators = 0;
94 
95   MBBInfo() = default;
96 };
97 
98 // Represents the state of a block terminator.
99 struct TerminatorInfo {
100   // If this terminator is a relaxable branch, this points to the branch
101   // instruction, otherwise it is null.
102   MachineInstr *Branch = nullptr;
103 
104   // The address that we currently assume the terminator has.
105   uint64_t Address = 0;
106 
107   // The current size of the terminator in bytes.
108   uint64_t Size = 0;
109 
110   // If Branch is nonnull, this is the number of the target block,
111   // otherwise it is unused.
112   unsigned TargetBlock = 0;
113 
114   // If Branch is nonnull, this is the length of the longest relaxed form,
115   // otherwise it is zero.
116   unsigned ExtraRelaxSize = 0;
117 
118   TerminatorInfo() = default;
119 };
120 
121 // Used to keep track of the current position while iterating over the blocks.
122 struct BlockPosition {
123   // The address that we assume this position has.
124   uint64_t Address = 0;
125 
126   // The number of low bits in Address that are known to be the same
127   // as the runtime address.
128   unsigned KnownBits;
129 
BlockPosition__anona4a2e8f10111::BlockPosition130   BlockPosition(unsigned InitialLogAlignment)
131       : KnownBits(InitialLogAlignment) {}
132 };
133 
134 class SystemZLongBranch : public MachineFunctionPass {
135 public:
136   static char ID;
137 
SystemZLongBranch()138   SystemZLongBranch() : MachineFunctionPass(ID) {
139     initializeSystemZLongBranchPass(*PassRegistry::getPassRegistry());
140   }
141 
142   bool runOnMachineFunction(MachineFunction &F) override;
143 
getRequiredProperties() const144   MachineFunctionProperties getRequiredProperties() const override {
145     return MachineFunctionProperties().set(
146         MachineFunctionProperties::Property::NoVRegs);
147   }
148 
149 private:
150   void skipNonTerminators(BlockPosition &Position, MBBInfo &Block);
151   void skipTerminator(BlockPosition &Position, TerminatorInfo &Terminator,
152                       bool AssumeRelaxed);
153   TerminatorInfo describeTerminator(MachineInstr &MI);
154   uint64_t initMBBInfo();
155   bool mustRelaxBranch(const TerminatorInfo &Terminator, uint64_t Address);
156   bool mustRelaxABranch();
157   void setWorstCaseAddresses();
158   void splitBranchOnCount(MachineInstr *MI, unsigned AddOpcode);
159   void splitCompareBranch(MachineInstr *MI, unsigned CompareOpcode);
160   void relaxBranch(TerminatorInfo &Terminator);
161   void relaxBranches();
162 
163   const SystemZInstrInfo *TII = nullptr;
164   MachineFunction *MF = nullptr;
165   SmallVector<MBBInfo, 16> MBBs;
166   SmallVector<TerminatorInfo, 16> Terminators;
167 };
168 
169 char SystemZLongBranch::ID = 0;
170 
171 const uint64_t MaxBackwardRange = 0x10000;
172 const uint64_t MaxForwardRange = 0xfffe;
173 
174 } // end anonymous namespace
175 
176 INITIALIZE_PASS(SystemZLongBranch, DEBUG_TYPE, "SystemZ Long Branch", false,
177                 false)
178 
179 // Position describes the state immediately before Block.  Update Block
180 // accordingly and move Position to the end of the block's non-terminator
181 // instructions.
skipNonTerminators(BlockPosition & Position,MBBInfo & Block)182 void SystemZLongBranch::skipNonTerminators(BlockPosition &Position,
183                                            MBBInfo &Block) {
184   if (Log2(Block.Alignment) > Position.KnownBits) {
185     // When calculating the address of Block, we need to conservatively
186     // assume that Block had the worst possible misalignment.
187     Position.Address +=
188         (Block.Alignment.value() - (uint64_t(1) << Position.KnownBits));
189     Position.KnownBits = Log2(Block.Alignment);
190   }
191 
192   // Align the addresses.
193   Position.Address = alignTo(Position.Address, Block.Alignment);
194 
195   // Record the block's position.
196   Block.Address = Position.Address;
197 
198   // Move past the non-terminators in the block.
199   Position.Address += Block.Size;
200 }
201 
202 // Position describes the state immediately before Terminator.
203 // Update Terminator accordingly and move Position past it.
204 // Assume that Terminator will be relaxed if AssumeRelaxed.
skipTerminator(BlockPosition & Position,TerminatorInfo & Terminator,bool AssumeRelaxed)205 void SystemZLongBranch::skipTerminator(BlockPosition &Position,
206                                        TerminatorInfo &Terminator,
207                                        bool AssumeRelaxed) {
208   Terminator.Address = Position.Address;
209   Position.Address += Terminator.Size;
210   if (AssumeRelaxed)
211     Position.Address += Terminator.ExtraRelaxSize;
212 }
213 
getInstSizeInBytes(const MachineInstr & MI,const SystemZInstrInfo * TII)214 static unsigned getInstSizeInBytes(const MachineInstr &MI,
215                                    const SystemZInstrInfo *TII) {
216   unsigned Size = TII->getInstSizeInBytes(MI);
217   assert((Size ||
218           // These do not have a size:
219           MI.isDebugOrPseudoInstr() || MI.isPosition() || MI.isKill() ||
220           MI.isImplicitDef() || MI.getOpcode() == TargetOpcode::MEMBARRIER ||
221           // These have a size that may be zero:
222           MI.isInlineAsm() || MI.getOpcode() == SystemZ::STACKMAP ||
223           MI.getOpcode() == SystemZ::PATCHPOINT) &&
224          "Missing size value for instruction.");
225   return Size;
226 }
227 
228 // Return a description of terminator instruction MI.
describeTerminator(MachineInstr & MI)229 TerminatorInfo SystemZLongBranch::describeTerminator(MachineInstr &MI) {
230   TerminatorInfo Terminator;
231   Terminator.Size = getInstSizeInBytes(MI, TII);
232   if (MI.isConditionalBranch() || MI.isUnconditionalBranch()) {
233     switch (MI.getOpcode()) {
234     case SystemZ::J:
235       // Relaxes to JG, which is 2 bytes longer.
236       Terminator.ExtraRelaxSize = 2;
237       break;
238     case SystemZ::BRC:
239       // Relaxes to BRCL, which is 2 bytes longer.
240       Terminator.ExtraRelaxSize = 2;
241       break;
242     case SystemZ::BRCT:
243     case SystemZ::BRCTG:
244       // Relaxes to A(G)HI and BRCL, which is 6 bytes longer.
245       Terminator.ExtraRelaxSize = 6;
246       break;
247     case SystemZ::BRCTH:
248       // Never needs to be relaxed.
249       Terminator.ExtraRelaxSize = 0;
250       break;
251     case SystemZ::CRJ:
252     case SystemZ::CLRJ:
253       // Relaxes to a C(L)R/BRCL sequence, which is 2 bytes longer.
254       Terminator.ExtraRelaxSize = 2;
255       break;
256     case SystemZ::CGRJ:
257     case SystemZ::CLGRJ:
258       // Relaxes to a C(L)GR/BRCL sequence, which is 4 bytes longer.
259       Terminator.ExtraRelaxSize = 4;
260       break;
261     case SystemZ::CIJ:
262     case SystemZ::CGIJ:
263       // Relaxes to a C(G)HI/BRCL sequence, which is 4 bytes longer.
264       Terminator.ExtraRelaxSize = 4;
265       break;
266     case SystemZ::CLIJ:
267     case SystemZ::CLGIJ:
268       // Relaxes to a CL(G)FI/BRCL sequence, which is 6 bytes longer.
269       Terminator.ExtraRelaxSize = 6;
270       break;
271     default:
272       llvm_unreachable("Unrecognized branch instruction");
273     }
274     Terminator.Branch = &MI;
275     Terminator.TargetBlock =
276       TII->getBranchInfo(MI).getMBBTarget()->getNumber();
277   }
278   return Terminator;
279 }
280 
281 // Fill MBBs and Terminators, setting the addresses on the assumption
282 // that no branches need relaxation.  Return the size of the function under
283 // this assumption.
initMBBInfo()284 uint64_t SystemZLongBranch::initMBBInfo() {
285   MF->RenumberBlocks();
286   unsigned NumBlocks = MF->size();
287 
288   MBBs.clear();
289   MBBs.resize(NumBlocks);
290 
291   Terminators.clear();
292   Terminators.reserve(NumBlocks);
293 
294   BlockPosition Position(Log2(MF->getAlignment()));
295   for (unsigned I = 0; I < NumBlocks; ++I) {
296     MachineBasicBlock *MBB = MF->getBlockNumbered(I);
297     MBBInfo &Block = MBBs[I];
298 
299     // Record the alignment, for quick access.
300     Block.Alignment = MBB->getAlignment();
301 
302     // Calculate the size of the fixed part of the block.
303     MachineBasicBlock::iterator MI = MBB->begin();
304     MachineBasicBlock::iterator End = MBB->end();
305     while (MI != End && !MI->isTerminator()) {
306       Block.Size += getInstSizeInBytes(*MI, TII);
307       ++MI;
308     }
309     skipNonTerminators(Position, Block);
310 
311     // Add the terminators.
312     while (MI != End) {
313       if (!MI->isDebugInstr()) {
314         assert(MI->isTerminator() && "Terminator followed by non-terminator");
315         Terminators.push_back(describeTerminator(*MI));
316         skipTerminator(Position, Terminators.back(), false);
317         ++Block.NumTerminators;
318       }
319       ++MI;
320     }
321   }
322 
323   return Position.Address;
324 }
325 
326 // Return true if, under current assumptions, Terminator would need to be
327 // relaxed if it were placed at address Address.
mustRelaxBranch(const TerminatorInfo & Terminator,uint64_t Address)328 bool SystemZLongBranch::mustRelaxBranch(const TerminatorInfo &Terminator,
329                                         uint64_t Address) {
330   if (!Terminator.Branch || Terminator.ExtraRelaxSize == 0)
331     return false;
332 
333   const MBBInfo &Target = MBBs[Terminator.TargetBlock];
334   if (Address >= Target.Address) {
335     if (Address - Target.Address <= MaxBackwardRange)
336       return false;
337   } else {
338     if (Target.Address - Address <= MaxForwardRange)
339       return false;
340   }
341 
342   return true;
343 }
344 
345 // Return true if, under current assumptions, any terminator needs
346 // to be relaxed.
mustRelaxABranch()347 bool SystemZLongBranch::mustRelaxABranch() {
348   for (auto &Terminator : Terminators)
349     if (mustRelaxBranch(Terminator, Terminator.Address))
350       return true;
351   return false;
352 }
353 
354 // Set the address of each block on the assumption that all branches
355 // must be long.
setWorstCaseAddresses()356 void SystemZLongBranch::setWorstCaseAddresses() {
357   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
358   BlockPosition Position(Log2(MF->getAlignment()));
359   for (auto &Block : MBBs) {
360     skipNonTerminators(Position, Block);
361     for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
362       skipTerminator(Position, *TI, true);
363       ++TI;
364     }
365   }
366 }
367 
368 // Split BRANCH ON COUNT MI into the addition given by AddOpcode followed
369 // by a BRCL on the result.
splitBranchOnCount(MachineInstr * MI,unsigned AddOpcode)370 void SystemZLongBranch::splitBranchOnCount(MachineInstr *MI,
371                                            unsigned AddOpcode) {
372   MachineBasicBlock *MBB = MI->getParent();
373   DebugLoc DL = MI->getDebugLoc();
374   BuildMI(*MBB, MI, DL, TII->get(AddOpcode))
375       .add(MI->getOperand(0))
376       .add(MI->getOperand(1))
377       .addImm(-1);
378   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
379                            .addImm(SystemZ::CCMASK_ICMP)
380                            .addImm(SystemZ::CCMASK_CMP_NE)
381                            .add(MI->getOperand(2));
382   // The implicit use of CC is a killing use.
383   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
384   MI->eraseFromParent();
385 }
386 
387 // Split MI into the comparison given by CompareOpcode followed
388 // a BRCL on the result.
splitCompareBranch(MachineInstr * MI,unsigned CompareOpcode)389 void SystemZLongBranch::splitCompareBranch(MachineInstr *MI,
390                                            unsigned CompareOpcode) {
391   MachineBasicBlock *MBB = MI->getParent();
392   DebugLoc DL = MI->getDebugLoc();
393   BuildMI(*MBB, MI, DL, TII->get(CompareOpcode))
394       .add(MI->getOperand(0))
395       .add(MI->getOperand(1));
396   MachineInstr *BRCL = BuildMI(*MBB, MI, DL, TII->get(SystemZ::BRCL))
397                            .addImm(SystemZ::CCMASK_ICMP)
398                            .add(MI->getOperand(2))
399                            .add(MI->getOperand(3));
400   // The implicit use of CC is a killing use.
401   BRCL->addRegisterKilled(SystemZ::CC, &TII->getRegisterInfo());
402   MI->eraseFromParent();
403 }
404 
405 // Relax the branch described by Terminator.
relaxBranch(TerminatorInfo & Terminator)406 void SystemZLongBranch::relaxBranch(TerminatorInfo &Terminator) {
407   MachineInstr *Branch = Terminator.Branch;
408   switch (Branch->getOpcode()) {
409   case SystemZ::J:
410     Branch->setDesc(TII->get(SystemZ::JG));
411     break;
412   case SystemZ::BRC:
413     Branch->setDesc(TII->get(SystemZ::BRCL));
414     break;
415   case SystemZ::BRCT:
416     splitBranchOnCount(Branch, SystemZ::AHI);
417     break;
418   case SystemZ::BRCTG:
419     splitBranchOnCount(Branch, SystemZ::AGHI);
420     break;
421   case SystemZ::CRJ:
422     splitCompareBranch(Branch, SystemZ::CR);
423     break;
424   case SystemZ::CGRJ:
425     splitCompareBranch(Branch, SystemZ::CGR);
426     break;
427   case SystemZ::CIJ:
428     splitCompareBranch(Branch, SystemZ::CHI);
429     break;
430   case SystemZ::CGIJ:
431     splitCompareBranch(Branch, SystemZ::CGHI);
432     break;
433   case SystemZ::CLRJ:
434     splitCompareBranch(Branch, SystemZ::CLR);
435     break;
436   case SystemZ::CLGRJ:
437     splitCompareBranch(Branch, SystemZ::CLGR);
438     break;
439   case SystemZ::CLIJ:
440     splitCompareBranch(Branch, SystemZ::CLFI);
441     break;
442   case SystemZ::CLGIJ:
443     splitCompareBranch(Branch, SystemZ::CLGFI);
444     break;
445   default:
446     llvm_unreachable("Unrecognized branch");
447   }
448 
449   Terminator.Size += Terminator.ExtraRelaxSize;
450   Terminator.ExtraRelaxSize = 0;
451   Terminator.Branch = nullptr;
452 
453   ++LongBranches;
454 }
455 
456 // Run a shortening pass and relax any branches that need to be relaxed.
relaxBranches()457 void SystemZLongBranch::relaxBranches() {
458   SmallVector<TerminatorInfo, 16>::iterator TI = Terminators.begin();
459   BlockPosition Position(Log2(MF->getAlignment()));
460   for (auto &Block : MBBs) {
461     skipNonTerminators(Position, Block);
462     for (unsigned BTI = 0, BTE = Block.NumTerminators; BTI != BTE; ++BTI) {
463       assert(Position.Address <= TI->Address &&
464              "Addresses shouldn't go forwards");
465       if (mustRelaxBranch(*TI, Position.Address))
466         relaxBranch(*TI);
467       skipTerminator(Position, *TI, false);
468       ++TI;
469     }
470   }
471 }
472 
runOnMachineFunction(MachineFunction & F)473 bool SystemZLongBranch::runOnMachineFunction(MachineFunction &F) {
474   TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
475   MF = &F;
476   uint64_t Size = initMBBInfo();
477   if (Size <= MaxForwardRange || !mustRelaxABranch())
478     return false;
479 
480   setWorstCaseAddresses();
481   relaxBranches();
482   return true;
483 }
484 
createSystemZLongBranchPass(SystemZTargetMachine & TM)485 FunctionPass *llvm::createSystemZLongBranchPass(SystemZTargetMachine &TM) {
486   return new SystemZLongBranch();
487 }
488