1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * multiorder.c: Multi-order radix tree entry testing
4 * Copyright (c) 2016 Intel Corporation
5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
7 */
8 #include <linux/radix-tree.h>
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include <pthread.h>
12
13 #include "test.h"
14
item_insert_order(struct xarray * xa,unsigned long index,unsigned order)15 static int item_insert_order(struct xarray *xa, unsigned long index,
16 unsigned order)
17 {
18 XA_STATE_ORDER(xas, xa, index, order);
19 struct item *item = item_create(index, order);
20
21 do {
22 xas_lock(&xas);
23 xas_store(&xas, item);
24 xas_unlock(&xas);
25 } while (xas_nomem(&xas, GFP_KERNEL));
26
27 if (!xas_error(&xas))
28 return 0;
29
30 free(item);
31 return xas_error(&xas);
32 }
33
multiorder_iteration(struct xarray * xa)34 void multiorder_iteration(struct xarray *xa)
35 {
36 XA_STATE(xas, xa, 0);
37 struct item *item;
38 int i, j, err;
39
40 #define NUM_ENTRIES 11
41 int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
42 int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
43
44 printv(1, "Multiorder iteration test\n");
45
46 for (i = 0; i < NUM_ENTRIES; i++) {
47 err = item_insert_order(xa, index[i], order[i]);
48 assert(!err);
49 }
50
51 for (j = 0; j < 256; j++) {
52 for (i = 0; i < NUM_ENTRIES; i++)
53 if (j <= (index[i] | ((1 << order[i]) - 1)))
54 break;
55
56 xas_set(&xas, j);
57 xas_for_each(&xas, item, ULONG_MAX) {
58 int height = order[i] / XA_CHUNK_SHIFT;
59 int shift = height * XA_CHUNK_SHIFT;
60 unsigned long mask = (1UL << order[i]) - 1;
61
62 assert((xas.xa_index | mask) == (index[i] | mask));
63 assert(xas.xa_node->shift == shift);
64 assert(!radix_tree_is_internal_node(item));
65 assert((item->index | mask) == (index[i] | mask));
66 assert(item->order == order[i]);
67 i++;
68 }
69 }
70
71 item_kill_tree(xa);
72 }
73
multiorder_tagged_iteration(struct xarray * xa)74 void multiorder_tagged_iteration(struct xarray *xa)
75 {
76 XA_STATE(xas, xa, 0);
77 struct item *item;
78 int i, j;
79
80 #define MT_NUM_ENTRIES 9
81 int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
82 int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
83
84 #define TAG_ENTRIES 7
85 int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
86
87 printv(1, "Multiorder tagged iteration test\n");
88
89 for (i = 0; i < MT_NUM_ENTRIES; i++)
90 assert(!item_insert_order(xa, index[i], order[i]));
91
92 assert(!xa_marked(xa, XA_MARK_1));
93
94 for (i = 0; i < TAG_ENTRIES; i++)
95 xa_set_mark(xa, tag_index[i], XA_MARK_1);
96
97 for (j = 0; j < 256; j++) {
98 int k;
99
100 for (i = 0; i < TAG_ENTRIES; i++) {
101 for (k = i; index[k] < tag_index[i]; k++)
102 ;
103 if (j <= (index[k] | ((1 << order[k]) - 1)))
104 break;
105 }
106
107 xas_set(&xas, j);
108 xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_1) {
109 unsigned long mask;
110 for (k = i; index[k] < tag_index[i]; k++)
111 ;
112 mask = (1UL << order[k]) - 1;
113
114 assert((xas.xa_index | mask) == (tag_index[i] | mask));
115 assert(!xa_is_internal(item));
116 assert((item->index | mask) == (tag_index[i] | mask));
117 assert(item->order == order[k]);
118 i++;
119 }
120 }
121
122 assert(tag_tagged_items(xa, 0, ULONG_MAX, TAG_ENTRIES, XA_MARK_1,
123 XA_MARK_2) == TAG_ENTRIES);
124
125 for (j = 0; j < 256; j++) {
126 int mask, k;
127
128 for (i = 0; i < TAG_ENTRIES; i++) {
129 for (k = i; index[k] < tag_index[i]; k++)
130 ;
131 if (j <= (index[k] | ((1 << order[k]) - 1)))
132 break;
133 }
134
135 xas_set(&xas, j);
136 xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_2) {
137 for (k = i; index[k] < tag_index[i]; k++)
138 ;
139 mask = (1 << order[k]) - 1;
140
141 assert((xas.xa_index | mask) == (tag_index[i] | mask));
142 assert(!xa_is_internal(item));
143 assert((item->index | mask) == (tag_index[i] | mask));
144 assert(item->order == order[k]);
145 i++;
146 }
147 }
148
149 assert(tag_tagged_items(xa, 1, ULONG_MAX, MT_NUM_ENTRIES * 2, XA_MARK_1,
150 XA_MARK_0) == TAG_ENTRIES);
151 i = 0;
152 xas_set(&xas, 0);
153 xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_0) {
154 assert(xas.xa_index == tag_index[i]);
155 i++;
156 }
157 assert(i == TAG_ENTRIES);
158
159 item_kill_tree(xa);
160 }
161
162 bool stop_iteration;
163
creator_func(void * ptr)164 static void *creator_func(void *ptr)
165 {
166 /* 'order' is set up to ensure we have sibling entries */
167 unsigned int order = RADIX_TREE_MAP_SHIFT - 1;
168 struct radix_tree_root *tree = ptr;
169 int i;
170
171 for (i = 0; i < 10000; i++) {
172 item_insert_order(tree, 0, order);
173 item_delete_rcu(tree, 0);
174 }
175
176 stop_iteration = true;
177 return NULL;
178 }
179
iterator_func(void * ptr)180 static void *iterator_func(void *ptr)
181 {
182 XA_STATE(xas, ptr, 0);
183 struct item *item;
184
185 while (!stop_iteration) {
186 rcu_read_lock();
187 xas_for_each(&xas, item, ULONG_MAX) {
188 if (xas_retry(&xas, item))
189 continue;
190
191 item_sanity(item, xas.xa_index);
192 }
193 rcu_read_unlock();
194 }
195 return NULL;
196 }
197
multiorder_iteration_race(struct xarray * xa)198 static void multiorder_iteration_race(struct xarray *xa)
199 {
200 const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
201 pthread_t worker_thread[num_threads];
202 int i;
203
204 stop_iteration = false;
205 pthread_create(&worker_thread[0], NULL, &creator_func, xa);
206 for (i = 1; i < num_threads; i++)
207 pthread_create(&worker_thread[i], NULL, &iterator_func, xa);
208
209 for (i = 0; i < num_threads; i++)
210 pthread_join(worker_thread[i], NULL);
211
212 item_kill_tree(xa);
213 }
214
load_creator(void * ptr)215 static void *load_creator(void *ptr)
216 {
217 /* 'order' is set up to ensure we have sibling entries */
218 unsigned int order;
219 struct radix_tree_root *tree = ptr;
220 int i;
221
222 rcu_register_thread();
223 item_insert_order(tree, 3 << RADIX_TREE_MAP_SHIFT, 0);
224 item_insert_order(tree, 2 << RADIX_TREE_MAP_SHIFT, 0);
225 for (i = 0; i < 10000; i++) {
226 for (order = 1; order < RADIX_TREE_MAP_SHIFT; order++) {
227 unsigned long index = (3 << RADIX_TREE_MAP_SHIFT) -
228 (1 << order);
229 item_insert_order(tree, index, order);
230 item_delete_rcu(tree, index);
231 }
232 }
233 rcu_unregister_thread();
234
235 stop_iteration = true;
236 return NULL;
237 }
238
load_worker(void * ptr)239 static void *load_worker(void *ptr)
240 {
241 unsigned long index = (3 << RADIX_TREE_MAP_SHIFT) - 1;
242
243 rcu_register_thread();
244 while (!stop_iteration) {
245 struct item *item = xa_load(ptr, index);
246 assert(!xa_is_internal(item));
247 }
248 rcu_unregister_thread();
249
250 return NULL;
251 }
252
load_race(struct xarray * xa)253 static void load_race(struct xarray *xa)
254 {
255 const int num_threads = sysconf(_SC_NPROCESSORS_ONLN) * 4;
256 pthread_t worker_thread[num_threads];
257 int i;
258
259 stop_iteration = false;
260 pthread_create(&worker_thread[0], NULL, &load_creator, xa);
261 for (i = 1; i < num_threads; i++)
262 pthread_create(&worker_thread[i], NULL, &load_worker, xa);
263
264 for (i = 0; i < num_threads; i++)
265 pthread_join(worker_thread[i], NULL);
266
267 item_kill_tree(xa);
268 }
269
270 static DEFINE_XARRAY(array);
271
multiorder_checks(void)272 void multiorder_checks(void)
273 {
274 multiorder_iteration(&array);
275 multiorder_tagged_iteration(&array);
276 multiorder_iteration_race(&array);
277 load_race(&array);
278
279 radix_tree_cpu_dead(0);
280 }
281
main(int argc,char ** argv)282 int __weak main(int argc, char **argv)
283 {
284 int opt;
285
286 while ((opt = getopt(argc, argv, "ls:v")) != -1) {
287 if (opt == 'v')
288 test_verbose++;
289 }
290
291 rcu_register_thread();
292 radix_tree_init();
293 multiorder_checks();
294 rcu_unregister_thread();
295 return 0;
296 }
297