1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 * Copyright (c) 2023 ByteDance
8 * Author: Peng Zhang <zhangpeng.00@bytedance.com>
9 */
10
11 /*
12 * DOC: Interesting implementation details of the Maple Tree
13 *
14 * Each node type has a number of slots for entries and a number of slots for
15 * pivots. In the case of dense nodes, the pivots are implied by the position
16 * and are simply the slot index + the minimum of the node.
17 *
18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
19 * indicate that the tree is specifying ranges. Pivots may appear in the
20 * subtree with an entry attached to the value whereas keys are unique to a
21 * specific position of a B-tree. Pivot values are inclusive of the slot with
22 * the same index.
23 *
24 *
25 * The following illustrates the layout of a range64 nodes slots and pivots.
26 *
27 *
28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
30 * │ │ │ │ │ │ │ │ └─ Implied maximum
31 * │ │ │ │ │ │ │ └─ Pivot 14
32 * │ │ │ │ │ │ └─ Pivot 13
33 * │ │ │ │ │ └─ Pivot 12
34 * │ │ │ │ └─ Pivot 11
35 * │ │ │ └─ Pivot 2
36 * │ │ └─ Pivot 1
37 * │ └─ Pivot 0
38 * └─ Implied minimum
39 *
40 * Slot contents:
41 * Internal (non-leaf) nodes contain pointers to other nodes.
42 * Leaf nodes contain entries.
43 *
44 * The location of interest is often referred to as an offset. All offsets have
45 * a slot, but the last offset has an implied pivot from the node above (or
46 * UINT_MAX for the root node.
47 *
48 * Ranges complicate certain write activities. When modifying any of
49 * the B-tree variants, it is known that one entry will either be added or
50 * deleted. When modifying the Maple Tree, one store operation may overwrite
51 * the entire data set, or one half of the tree, or the middle half of the tree.
52 *
53 */
54
55
56 #include <linux/maple_tree.h>
57 #include <linux/xarray.h>
58 #include <linux/types.h>
59 #include <linux/export.h>
60 #include <linux/slab.h>
61 #include <linux/limits.h>
62 #include <asm/barrier.h>
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/maple_tree.h>
66
67 /*
68 * Kernel pointer hashing renders much of the maple tree dump useless as tagged
69 * pointers get hashed to arbitrary values.
70 *
71 * If CONFIG_DEBUG_VM_MAPLE_TREE is set we are in a debug mode where it is
72 * permissible to bypass this. Otherwise remain cautious and retain the hashing.
73 *
74 * Userland doesn't know about %px so also use %p there.
75 */
76 #if defined(__KERNEL__) && defined(CONFIG_DEBUG_VM_MAPLE_TREE)
77 #define PTR_FMT "%px"
78 #else
79 #define PTR_FMT "%p"
80 #endif
81
82 #define MA_ROOT_PARENT 1
83
84 /*
85 * Maple state flags
86 * * MA_STATE_BULK - Bulk insert mode
87 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
88 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
89 */
90 #define MA_STATE_BULK 1
91 #define MA_STATE_REBALANCE 2
92 #define MA_STATE_PREALLOC 4
93
94 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
95 #define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
96 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
97 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
98 static struct kmem_cache *maple_node_cache;
99
100 #ifdef CONFIG_DEBUG_MAPLE_TREE
101 static const unsigned long mt_max[] = {
102 [maple_dense] = MAPLE_NODE_SLOTS,
103 [maple_leaf_64] = ULONG_MAX,
104 [maple_range_64] = ULONG_MAX,
105 [maple_arange_64] = ULONG_MAX,
106 };
107 #define mt_node_max(x) mt_max[mte_node_type(x)]
108 #endif
109
110 static const unsigned char mt_slots[] = {
111 [maple_dense] = MAPLE_NODE_SLOTS,
112 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
113 [maple_range_64] = MAPLE_RANGE64_SLOTS,
114 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
115 };
116 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
117
118 static const unsigned char mt_pivots[] = {
119 [maple_dense] = 0,
120 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
121 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
122 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
123 };
124 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
125
126 static const unsigned char mt_min_slots[] = {
127 [maple_dense] = MAPLE_NODE_SLOTS / 2,
128 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
129 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
130 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
131 };
132 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
133
134 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
135 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
136
137 struct maple_big_node {
138 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
139 union {
140 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
141 struct {
142 unsigned long padding[MAPLE_BIG_NODE_GAPS];
143 unsigned long gap[MAPLE_BIG_NODE_GAPS];
144 };
145 };
146 unsigned char b_end;
147 enum maple_type type;
148 };
149
150 /*
151 * The maple_subtree_state is used to build a tree to replace a segment of an
152 * existing tree in a more atomic way. Any walkers of the older tree will hit a
153 * dead node and restart on updates.
154 */
155 struct maple_subtree_state {
156 struct ma_state *orig_l; /* Original left side of subtree */
157 struct ma_state *orig_r; /* Original right side of subtree */
158 struct ma_state *l; /* New left side of subtree */
159 struct ma_state *m; /* New middle of subtree (rare) */
160 struct ma_state *r; /* New right side of subtree */
161 struct ma_topiary *free; /* nodes to be freed */
162 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
163 struct maple_big_node *bn;
164 };
165
166 #ifdef CONFIG_KASAN_STACK
167 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
168 #define noinline_for_kasan noinline_for_stack
169 #else
170 #define noinline_for_kasan inline
171 #endif
172
173 /* Functions */
mt_alloc_one(gfp_t gfp)174 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
175 {
176 return kmem_cache_alloc(maple_node_cache, gfp);
177 }
178
mt_alloc_bulk(gfp_t gfp,size_t size,void ** nodes)179 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
180 {
181 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
182 }
183
mt_free_one(struct maple_node * node)184 static inline void mt_free_one(struct maple_node *node)
185 {
186 kmem_cache_free(maple_node_cache, node);
187 }
188
mt_free_bulk(size_t size,void __rcu ** nodes)189 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
190 {
191 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
192 }
193
mt_free_rcu(struct rcu_head * head)194 static void mt_free_rcu(struct rcu_head *head)
195 {
196 struct maple_node *node = container_of(head, struct maple_node, rcu);
197
198 kmem_cache_free(maple_node_cache, node);
199 }
200
201 /*
202 * ma_free_rcu() - Use rcu callback to free a maple node
203 * @node: The node to free
204 *
205 * The maple tree uses the parent pointer to indicate this node is no longer in
206 * use and will be freed.
207 */
ma_free_rcu(struct maple_node * node)208 static void ma_free_rcu(struct maple_node *node)
209 {
210 WARN_ON(node->parent != ma_parent_ptr(node));
211 call_rcu(&node->rcu, mt_free_rcu);
212 }
213
mas_set_height(struct ma_state * mas)214 static void mas_set_height(struct ma_state *mas)
215 {
216 unsigned int new_flags = mas->tree->ma_flags;
217
218 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
219 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
220 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
221 mas->tree->ma_flags = new_flags;
222 }
223
mas_mt_height(struct ma_state * mas)224 static unsigned int mas_mt_height(struct ma_state *mas)
225 {
226 return mt_height(mas->tree);
227 }
228
mt_attr(struct maple_tree * mt)229 static inline unsigned int mt_attr(struct maple_tree *mt)
230 {
231 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
232 }
233
mte_node_type(const struct maple_enode * entry)234 static __always_inline enum maple_type mte_node_type(
235 const struct maple_enode *entry)
236 {
237 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
238 MAPLE_NODE_TYPE_MASK;
239 }
240
ma_is_dense(const enum maple_type type)241 static __always_inline bool ma_is_dense(const enum maple_type type)
242 {
243 return type < maple_leaf_64;
244 }
245
ma_is_leaf(const enum maple_type type)246 static __always_inline bool ma_is_leaf(const enum maple_type type)
247 {
248 return type < maple_range_64;
249 }
250
mte_is_leaf(const struct maple_enode * entry)251 static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
252 {
253 return ma_is_leaf(mte_node_type(entry));
254 }
255
256 /*
257 * We also reserve values with the bottom two bits set to '10' which are
258 * below 4096
259 */
mt_is_reserved(const void * entry)260 static __always_inline bool mt_is_reserved(const void *entry)
261 {
262 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
263 xa_is_internal(entry);
264 }
265
mas_set_err(struct ma_state * mas,long err)266 static __always_inline void mas_set_err(struct ma_state *mas, long err)
267 {
268 mas->node = MA_ERROR(err);
269 mas->status = ma_error;
270 }
271
mas_is_ptr(const struct ma_state * mas)272 static __always_inline bool mas_is_ptr(const struct ma_state *mas)
273 {
274 return mas->status == ma_root;
275 }
276
mas_is_start(const struct ma_state * mas)277 static __always_inline bool mas_is_start(const struct ma_state *mas)
278 {
279 return mas->status == ma_start;
280 }
281
mas_is_none(const struct ma_state * mas)282 static __always_inline bool mas_is_none(const struct ma_state *mas)
283 {
284 return mas->status == ma_none;
285 }
286
mas_is_paused(const struct ma_state * mas)287 static __always_inline bool mas_is_paused(const struct ma_state *mas)
288 {
289 return mas->status == ma_pause;
290 }
291
mas_is_overflow(struct ma_state * mas)292 static __always_inline bool mas_is_overflow(struct ma_state *mas)
293 {
294 return mas->status == ma_overflow;
295 }
296
mas_is_underflow(struct ma_state * mas)297 static inline bool mas_is_underflow(struct ma_state *mas)
298 {
299 return mas->status == ma_underflow;
300 }
301
mte_to_node(const struct maple_enode * entry)302 static __always_inline struct maple_node *mte_to_node(
303 const struct maple_enode *entry)
304 {
305 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
306 }
307
308 /*
309 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
310 * @entry: The maple encoded node
311 *
312 * Return: a maple topiary pointer
313 */
mte_to_mat(const struct maple_enode * entry)314 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
315 {
316 return (struct maple_topiary *)
317 ((unsigned long)entry & ~MAPLE_NODE_MASK);
318 }
319
320 /*
321 * mas_mn() - Get the maple state node.
322 * @mas: The maple state
323 *
324 * Return: the maple node (not encoded - bare pointer).
325 */
mas_mn(const struct ma_state * mas)326 static inline struct maple_node *mas_mn(const struct ma_state *mas)
327 {
328 return mte_to_node(mas->node);
329 }
330
331 /*
332 * mte_set_node_dead() - Set a maple encoded node as dead.
333 * @mn: The maple encoded node.
334 */
mte_set_node_dead(struct maple_enode * mn)335 static inline void mte_set_node_dead(struct maple_enode *mn)
336 {
337 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
338 smp_wmb(); /* Needed for RCU */
339 }
340
341 /* Bit 1 indicates the root is a node */
342 #define MAPLE_ROOT_NODE 0x02
343 /* maple_type stored bit 3-6 */
344 #define MAPLE_ENODE_TYPE_SHIFT 0x03
345 /* Bit 2 means a NULL somewhere below */
346 #define MAPLE_ENODE_NULL 0x04
347
mt_mk_node(const struct maple_node * node,enum maple_type type)348 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
349 enum maple_type type)
350 {
351 return (void *)((unsigned long)node |
352 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
353 }
354
mte_mk_root(const struct maple_enode * node)355 static inline void *mte_mk_root(const struct maple_enode *node)
356 {
357 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
358 }
359
mte_safe_root(const struct maple_enode * node)360 static inline void *mte_safe_root(const struct maple_enode *node)
361 {
362 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
363 }
364
mte_set_full(const struct maple_enode * node)365 static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
366 {
367 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
368 }
369
mte_clear_full(const struct maple_enode * node)370 static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
371 {
372 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
373 }
374
mte_has_null(const struct maple_enode * node)375 static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
376 {
377 return (unsigned long)node & MAPLE_ENODE_NULL;
378 }
379
ma_is_root(struct maple_node * node)380 static __always_inline bool ma_is_root(struct maple_node *node)
381 {
382 return ((unsigned long)node->parent & MA_ROOT_PARENT);
383 }
384
mte_is_root(const struct maple_enode * node)385 static __always_inline bool mte_is_root(const struct maple_enode *node)
386 {
387 return ma_is_root(mte_to_node(node));
388 }
389
mas_is_root_limits(const struct ma_state * mas)390 static inline bool mas_is_root_limits(const struct ma_state *mas)
391 {
392 return !mas->min && mas->max == ULONG_MAX;
393 }
394
mt_is_alloc(struct maple_tree * mt)395 static __always_inline bool mt_is_alloc(struct maple_tree *mt)
396 {
397 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
398 }
399
400 /*
401 * The Parent Pointer
402 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
403 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
404 * bit values need an extra bit to store the offset. This extra bit comes from
405 * a reuse of the last bit in the node type. This is possible by using bit 1 to
406 * indicate if bit 2 is part of the type or the slot.
407 *
408 * Note types:
409 * 0x??1 = Root
410 * 0x?00 = 16 bit nodes
411 * 0x010 = 32 bit nodes
412 * 0x110 = 64 bit nodes
413 *
414 * Slot size and alignment
415 * 0b??1 : Root
416 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
417 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
418 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
419 */
420
421 #define MAPLE_PARENT_ROOT 0x01
422
423 #define MAPLE_PARENT_SLOT_SHIFT 0x03
424 #define MAPLE_PARENT_SLOT_MASK 0xF8
425
426 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
427 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC
428
429 #define MAPLE_PARENT_RANGE64 0x06
430 #define MAPLE_PARENT_RANGE32 0x04
431 #define MAPLE_PARENT_NOT_RANGE16 0x02
432
433 /*
434 * mte_parent_shift() - Get the parent shift for the slot storage.
435 * @parent: The parent pointer cast as an unsigned long
436 * Return: The shift into that pointer to the star to of the slot
437 */
mte_parent_shift(unsigned long parent)438 static inline unsigned long mte_parent_shift(unsigned long parent)
439 {
440 /* Note bit 1 == 0 means 16B */
441 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 return MAPLE_PARENT_SLOT_SHIFT;
443
444 return MAPLE_PARENT_16B_SLOT_SHIFT;
445 }
446
447 /*
448 * mte_parent_slot_mask() - Get the slot mask for the parent.
449 * @parent: The parent pointer cast as an unsigned long.
450 * Return: The slot mask for that parent.
451 */
mte_parent_slot_mask(unsigned long parent)452 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
453 {
454 /* Note bit 1 == 0 means 16B */
455 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
456 return MAPLE_PARENT_SLOT_MASK;
457
458 return MAPLE_PARENT_16B_SLOT_MASK;
459 }
460
461 /*
462 * mas_parent_type() - Return the maple_type of the parent from the stored
463 * parent type.
464 * @mas: The maple state
465 * @enode: The maple_enode to extract the parent's enum
466 * Return: The node->parent maple_type
467 */
468 static inline
mas_parent_type(struct ma_state * mas,struct maple_enode * enode)469 enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
470 {
471 unsigned long p_type;
472
473 p_type = (unsigned long)mte_to_node(enode)->parent;
474 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
475 return 0;
476
477 p_type &= MAPLE_NODE_MASK;
478 p_type &= ~mte_parent_slot_mask(p_type);
479 switch (p_type) {
480 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
481 if (mt_is_alloc(mas->tree))
482 return maple_arange_64;
483 return maple_range_64;
484 }
485
486 return 0;
487 }
488
489 /*
490 * mas_set_parent() - Set the parent node and encode the slot
491 * @mas: The maple state
492 * @enode: The encoded maple node.
493 * @parent: The encoded maple node that is the parent of @enode.
494 * @slot: The slot that @enode resides in @parent.
495 *
496 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
497 * parent type.
498 */
499 static inline
mas_set_parent(struct ma_state * mas,struct maple_enode * enode,const struct maple_enode * parent,unsigned char slot)500 void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
501 const struct maple_enode *parent, unsigned char slot)
502 {
503 unsigned long val = (unsigned long)parent;
504 unsigned long shift;
505 unsigned long type;
506 enum maple_type p_type = mte_node_type(parent);
507
508 MAS_BUG_ON(mas, p_type == maple_dense);
509 MAS_BUG_ON(mas, p_type == maple_leaf_64);
510
511 switch (p_type) {
512 case maple_range_64:
513 case maple_arange_64:
514 shift = MAPLE_PARENT_SLOT_SHIFT;
515 type = MAPLE_PARENT_RANGE64;
516 break;
517 default:
518 case maple_dense:
519 case maple_leaf_64:
520 shift = type = 0;
521 break;
522 }
523
524 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
525 val |= (slot << shift) | type;
526 mte_to_node(enode)->parent = ma_parent_ptr(val);
527 }
528
529 /*
530 * mte_parent_slot() - get the parent slot of @enode.
531 * @enode: The encoded maple node.
532 *
533 * Return: The slot in the parent node where @enode resides.
534 */
535 static __always_inline
mte_parent_slot(const struct maple_enode * enode)536 unsigned int mte_parent_slot(const struct maple_enode *enode)
537 {
538 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
539
540 if (unlikely(val & MA_ROOT_PARENT))
541 return 0;
542
543 /*
544 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
545 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
546 */
547 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
548 }
549
550 /*
551 * mte_parent() - Get the parent of @node.
552 * @enode: The encoded maple node.
553 *
554 * Return: The parent maple node.
555 */
556 static __always_inline
mte_parent(const struct maple_enode * enode)557 struct maple_node *mte_parent(const struct maple_enode *enode)
558 {
559 return (void *)((unsigned long)
560 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
561 }
562
563 /*
564 * ma_dead_node() - check if the @enode is dead.
565 * @enode: The encoded maple node
566 *
567 * Return: true if dead, false otherwise.
568 */
ma_dead_node(const struct maple_node * node)569 static __always_inline bool ma_dead_node(const struct maple_node *node)
570 {
571 struct maple_node *parent;
572
573 /* Do not reorder reads from the node prior to the parent check */
574 smp_rmb();
575 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
576 return (parent == node);
577 }
578
579 /*
580 * mte_dead_node() - check if the @enode is dead.
581 * @enode: The encoded maple node
582 *
583 * Return: true if dead, false otherwise.
584 */
mte_dead_node(const struct maple_enode * enode)585 static __always_inline bool mte_dead_node(const struct maple_enode *enode)
586 {
587 struct maple_node *parent, *node;
588
589 node = mte_to_node(enode);
590 /* Do not reorder reads from the node prior to the parent check */
591 smp_rmb();
592 parent = mte_parent(enode);
593 return (parent == node);
594 }
595
596 /*
597 * mas_allocated() - Get the number of nodes allocated in a maple state.
598 * @mas: The maple state
599 *
600 * The ma_state alloc member is overloaded to hold a pointer to the first
601 * allocated node or to the number of requested nodes to allocate. If bit 0 is
602 * set, then the alloc contains the number of requested nodes. If there is an
603 * allocated node, then the total allocated nodes is in that node.
604 *
605 * Return: The total number of nodes allocated
606 */
mas_allocated(const struct ma_state * mas)607 static inline unsigned long mas_allocated(const struct ma_state *mas)
608 {
609 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
610 return 0;
611
612 return mas->alloc->total;
613 }
614
615 /*
616 * mas_set_alloc_req() - Set the requested number of allocations.
617 * @mas: the maple state
618 * @count: the number of allocations.
619 *
620 * The requested number of allocations is either in the first allocated node,
621 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
622 * no allocated node. Set the request either in the node or do the necessary
623 * encoding to store in @mas->alloc directly.
624 */
mas_set_alloc_req(struct ma_state * mas,unsigned long count)625 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
626 {
627 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
628 if (!count)
629 mas->alloc = NULL;
630 else
631 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
632 return;
633 }
634
635 mas->alloc->request_count = count;
636 }
637
638 /*
639 * mas_alloc_req() - get the requested number of allocations.
640 * @mas: The maple state
641 *
642 * The alloc count is either stored directly in @mas, or in
643 * @mas->alloc->request_count if there is at least one node allocated. Decode
644 * the request count if it's stored directly in @mas->alloc.
645 *
646 * Return: The allocation request count.
647 */
mas_alloc_req(const struct ma_state * mas)648 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
649 {
650 if ((unsigned long)mas->alloc & 0x1)
651 return (unsigned long)(mas->alloc) >> 1;
652 else if (mas->alloc)
653 return mas->alloc->request_count;
654 return 0;
655 }
656
657 /*
658 * ma_pivots() - Get a pointer to the maple node pivots.
659 * @node: the maple node
660 * @type: the node type
661 *
662 * In the event of a dead node, this array may be %NULL
663 *
664 * Return: A pointer to the maple node pivots
665 */
ma_pivots(struct maple_node * node,enum maple_type type)666 static inline unsigned long *ma_pivots(struct maple_node *node,
667 enum maple_type type)
668 {
669 switch (type) {
670 case maple_arange_64:
671 return node->ma64.pivot;
672 case maple_range_64:
673 case maple_leaf_64:
674 return node->mr64.pivot;
675 case maple_dense:
676 return NULL;
677 }
678 return NULL;
679 }
680
681 /*
682 * ma_gaps() - Get a pointer to the maple node gaps.
683 * @node: the maple node
684 * @type: the node type
685 *
686 * Return: A pointer to the maple node gaps
687 */
ma_gaps(struct maple_node * node,enum maple_type type)688 static inline unsigned long *ma_gaps(struct maple_node *node,
689 enum maple_type type)
690 {
691 switch (type) {
692 case maple_arange_64:
693 return node->ma64.gap;
694 case maple_range_64:
695 case maple_leaf_64:
696 case maple_dense:
697 return NULL;
698 }
699 return NULL;
700 }
701
702 /*
703 * mas_safe_pivot() - get the pivot at @piv or mas->max.
704 * @mas: The maple state
705 * @pivots: The pointer to the maple node pivots
706 * @piv: The pivot to fetch
707 * @type: The maple node type
708 *
709 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
710 * otherwise.
711 */
712 static __always_inline unsigned long
mas_safe_pivot(const struct ma_state * mas,unsigned long * pivots,unsigned char piv,enum maple_type type)713 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
714 unsigned char piv, enum maple_type type)
715 {
716 if (piv >= mt_pivots[type])
717 return mas->max;
718
719 return pivots[piv];
720 }
721
722 /*
723 * mas_safe_min() - Return the minimum for a given offset.
724 * @mas: The maple state
725 * @pivots: The pointer to the maple node pivots
726 * @offset: The offset into the pivot array
727 *
728 * Return: The minimum range value that is contained in @offset.
729 */
730 static inline unsigned long
mas_safe_min(struct ma_state * mas,unsigned long * pivots,unsigned char offset)731 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
732 {
733 if (likely(offset))
734 return pivots[offset - 1] + 1;
735
736 return mas->min;
737 }
738
739 /*
740 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
741 * @mn: The encoded maple node
742 * @piv: The pivot offset
743 * @val: The value of the pivot
744 */
mte_set_pivot(struct maple_enode * mn,unsigned char piv,unsigned long val)745 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
746 unsigned long val)
747 {
748 struct maple_node *node = mte_to_node(mn);
749 enum maple_type type = mte_node_type(mn);
750
751 BUG_ON(piv >= mt_pivots[type]);
752 switch (type) {
753 case maple_range_64:
754 case maple_leaf_64:
755 node->mr64.pivot[piv] = val;
756 break;
757 case maple_arange_64:
758 node->ma64.pivot[piv] = val;
759 break;
760 case maple_dense:
761 break;
762 }
763
764 }
765
766 /*
767 * ma_slots() - Get a pointer to the maple node slots.
768 * @mn: The maple node
769 * @mt: The maple node type
770 *
771 * Return: A pointer to the maple node slots
772 */
ma_slots(struct maple_node * mn,enum maple_type mt)773 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
774 {
775 switch (mt) {
776 case maple_arange_64:
777 return mn->ma64.slot;
778 case maple_range_64:
779 case maple_leaf_64:
780 return mn->mr64.slot;
781 case maple_dense:
782 return mn->slot;
783 }
784
785 return NULL;
786 }
787
mt_write_locked(const struct maple_tree * mt)788 static inline bool mt_write_locked(const struct maple_tree *mt)
789 {
790 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
791 lockdep_is_held(&mt->ma_lock);
792 }
793
mt_locked(const struct maple_tree * mt)794 static __always_inline bool mt_locked(const struct maple_tree *mt)
795 {
796 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
797 lockdep_is_held(&mt->ma_lock);
798 }
799
mt_slot(const struct maple_tree * mt,void __rcu ** slots,unsigned char offset)800 static __always_inline void *mt_slot(const struct maple_tree *mt,
801 void __rcu **slots, unsigned char offset)
802 {
803 return rcu_dereference_check(slots[offset], mt_locked(mt));
804 }
805
mt_slot_locked(struct maple_tree * mt,void __rcu ** slots,unsigned char offset)806 static __always_inline void *mt_slot_locked(struct maple_tree *mt,
807 void __rcu **slots, unsigned char offset)
808 {
809 return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
810 }
811 /*
812 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
813 * @mas: The maple state
814 * @slots: The pointer to the slots
815 * @offset: The offset into the slots array to fetch
816 *
817 * Return: The entry stored in @slots at the @offset.
818 */
mas_slot_locked(struct ma_state * mas,void __rcu ** slots,unsigned char offset)819 static __always_inline void *mas_slot_locked(struct ma_state *mas,
820 void __rcu **slots, unsigned char offset)
821 {
822 return mt_slot_locked(mas->tree, slots, offset);
823 }
824
825 /*
826 * mas_slot() - Get the slot value when not holding the maple tree lock.
827 * @mas: The maple state
828 * @slots: The pointer to the slots
829 * @offset: The offset into the slots array to fetch
830 *
831 * Return: The entry stored in @slots at the @offset
832 */
mas_slot(struct ma_state * mas,void __rcu ** slots,unsigned char offset)833 static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
834 unsigned char offset)
835 {
836 return mt_slot(mas->tree, slots, offset);
837 }
838
839 /*
840 * mas_root() - Get the maple tree root.
841 * @mas: The maple state.
842 *
843 * Return: The pointer to the root of the tree
844 */
mas_root(struct ma_state * mas)845 static __always_inline void *mas_root(struct ma_state *mas)
846 {
847 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
848 }
849
mt_root_locked(struct maple_tree * mt)850 static inline void *mt_root_locked(struct maple_tree *mt)
851 {
852 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
853 }
854
855 /*
856 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
857 * @mas: The maple state.
858 *
859 * Return: The pointer to the root of the tree
860 */
mas_root_locked(struct ma_state * mas)861 static inline void *mas_root_locked(struct ma_state *mas)
862 {
863 return mt_root_locked(mas->tree);
864 }
865
ma_meta(struct maple_node * mn,enum maple_type mt)866 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
867 enum maple_type mt)
868 {
869 switch (mt) {
870 case maple_arange_64:
871 return &mn->ma64.meta;
872 default:
873 return &mn->mr64.meta;
874 }
875 }
876
877 /*
878 * ma_set_meta() - Set the metadata information of a node.
879 * @mn: The maple node
880 * @mt: The maple node type
881 * @offset: The offset of the highest sub-gap in this node.
882 * @end: The end of the data in this node.
883 */
ma_set_meta(struct maple_node * mn,enum maple_type mt,unsigned char offset,unsigned char end)884 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
885 unsigned char offset, unsigned char end)
886 {
887 struct maple_metadata *meta = ma_meta(mn, mt);
888
889 meta->gap = offset;
890 meta->end = end;
891 }
892
893 /*
894 * mt_clear_meta() - clear the metadata information of a node, if it exists
895 * @mt: The maple tree
896 * @mn: The maple node
897 * @type: The maple node type
898 */
mt_clear_meta(struct maple_tree * mt,struct maple_node * mn,enum maple_type type)899 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
900 enum maple_type type)
901 {
902 struct maple_metadata *meta;
903 unsigned long *pivots;
904 void __rcu **slots;
905 void *next;
906
907 switch (type) {
908 case maple_range_64:
909 pivots = mn->mr64.pivot;
910 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
911 slots = mn->mr64.slot;
912 next = mt_slot_locked(mt, slots,
913 MAPLE_RANGE64_SLOTS - 1);
914 if (unlikely((mte_to_node(next) &&
915 mte_node_type(next))))
916 return; /* no metadata, could be node */
917 }
918 fallthrough;
919 case maple_arange_64:
920 meta = ma_meta(mn, type);
921 break;
922 default:
923 return;
924 }
925
926 meta->gap = 0;
927 meta->end = 0;
928 }
929
930 /*
931 * ma_meta_end() - Get the data end of a node from the metadata
932 * @mn: The maple node
933 * @mt: The maple node type
934 */
ma_meta_end(struct maple_node * mn,enum maple_type mt)935 static inline unsigned char ma_meta_end(struct maple_node *mn,
936 enum maple_type mt)
937 {
938 struct maple_metadata *meta = ma_meta(mn, mt);
939
940 return meta->end;
941 }
942
943 /*
944 * ma_meta_gap() - Get the largest gap location of a node from the metadata
945 * @mn: The maple node
946 */
ma_meta_gap(struct maple_node * mn)947 static inline unsigned char ma_meta_gap(struct maple_node *mn)
948 {
949 return mn->ma64.meta.gap;
950 }
951
952 /*
953 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
954 * @mn: The maple node
955 * @mt: The maple node type
956 * @offset: The location of the largest gap.
957 */
ma_set_meta_gap(struct maple_node * mn,enum maple_type mt,unsigned char offset)958 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
959 unsigned char offset)
960 {
961
962 struct maple_metadata *meta = ma_meta(mn, mt);
963
964 meta->gap = offset;
965 }
966
967 /*
968 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
969 * @mat: the ma_topiary, a linked list of dead nodes.
970 * @dead_enode: the node to be marked as dead and added to the tail of the list
971 *
972 * Add the @dead_enode to the linked list in @mat.
973 */
mat_add(struct ma_topiary * mat,struct maple_enode * dead_enode)974 static inline void mat_add(struct ma_topiary *mat,
975 struct maple_enode *dead_enode)
976 {
977 mte_set_node_dead(dead_enode);
978 mte_to_mat(dead_enode)->next = NULL;
979 if (!mat->tail) {
980 mat->tail = mat->head = dead_enode;
981 return;
982 }
983
984 mte_to_mat(mat->tail)->next = dead_enode;
985 mat->tail = dead_enode;
986 }
987
988 static void mt_free_walk(struct rcu_head *head);
989 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
990 bool free);
991 /*
992 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
993 * @mas: the maple state
994 * @mat: the ma_topiary linked list of dead nodes to free.
995 *
996 * Destroy walk a dead list.
997 */
mas_mat_destroy(struct ma_state * mas,struct ma_topiary * mat)998 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
999 {
1000 struct maple_enode *next;
1001 struct maple_node *node;
1002 bool in_rcu = mt_in_rcu(mas->tree);
1003
1004 while (mat->head) {
1005 next = mte_to_mat(mat->head)->next;
1006 node = mte_to_node(mat->head);
1007 mt_destroy_walk(mat->head, mas->tree, !in_rcu);
1008 if (in_rcu)
1009 call_rcu(&node->rcu, mt_free_walk);
1010 mat->head = next;
1011 }
1012 }
1013 /*
1014 * mas_descend() - Descend into the slot stored in the ma_state.
1015 * @mas: the maple state.
1016 *
1017 * Note: Not RCU safe, only use in write side or debug code.
1018 */
mas_descend(struct ma_state * mas)1019 static inline void mas_descend(struct ma_state *mas)
1020 {
1021 enum maple_type type;
1022 unsigned long *pivots;
1023 struct maple_node *node;
1024 void __rcu **slots;
1025
1026 node = mas_mn(mas);
1027 type = mte_node_type(mas->node);
1028 pivots = ma_pivots(node, type);
1029 slots = ma_slots(node, type);
1030
1031 if (mas->offset)
1032 mas->min = pivots[mas->offset - 1] + 1;
1033 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1034 mas->node = mas_slot(mas, slots, mas->offset);
1035 }
1036
1037 /*
1038 * mte_set_gap() - Set a maple node gap.
1039 * @mn: The encoded maple node
1040 * @gap: The offset of the gap to set
1041 * @val: The gap value
1042 */
mte_set_gap(const struct maple_enode * mn,unsigned char gap,unsigned long val)1043 static inline void mte_set_gap(const struct maple_enode *mn,
1044 unsigned char gap, unsigned long val)
1045 {
1046 switch (mte_node_type(mn)) {
1047 default:
1048 break;
1049 case maple_arange_64:
1050 mte_to_node(mn)->ma64.gap[gap] = val;
1051 break;
1052 }
1053 }
1054
1055 /*
1056 * mas_ascend() - Walk up a level of the tree.
1057 * @mas: The maple state
1058 *
1059 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1060 * may cause several levels of walking up to find the correct min and max.
1061 * May find a dead node which will cause a premature return.
1062 * Return: 1 on dead node, 0 otherwise
1063 */
mas_ascend(struct ma_state * mas)1064 static int mas_ascend(struct ma_state *mas)
1065 {
1066 struct maple_enode *p_enode; /* parent enode. */
1067 struct maple_enode *a_enode; /* ancestor enode. */
1068 struct maple_node *a_node; /* ancestor node. */
1069 struct maple_node *p_node; /* parent node. */
1070 unsigned char a_slot;
1071 enum maple_type a_type;
1072 unsigned long min, max;
1073 unsigned long *pivots;
1074 bool set_max = false, set_min = false;
1075
1076 a_node = mas_mn(mas);
1077 if (ma_is_root(a_node)) {
1078 mas->offset = 0;
1079 return 0;
1080 }
1081
1082 p_node = mte_parent(mas->node);
1083 if (unlikely(a_node == p_node))
1084 return 1;
1085
1086 a_type = mas_parent_type(mas, mas->node);
1087 mas->offset = mte_parent_slot(mas->node);
1088 a_enode = mt_mk_node(p_node, a_type);
1089
1090 /* Check to make sure all parent information is still accurate */
1091 if (p_node != mte_parent(mas->node))
1092 return 1;
1093
1094 mas->node = a_enode;
1095
1096 if (mte_is_root(a_enode)) {
1097 mas->max = ULONG_MAX;
1098 mas->min = 0;
1099 return 0;
1100 }
1101
1102 min = 0;
1103 max = ULONG_MAX;
1104 if (!mas->offset) {
1105 min = mas->min;
1106 set_min = true;
1107 }
1108
1109 if (mas->max == ULONG_MAX)
1110 set_max = true;
1111
1112 do {
1113 p_enode = a_enode;
1114 a_type = mas_parent_type(mas, p_enode);
1115 a_node = mte_parent(p_enode);
1116 a_slot = mte_parent_slot(p_enode);
1117 a_enode = mt_mk_node(a_node, a_type);
1118 pivots = ma_pivots(a_node, a_type);
1119
1120 if (unlikely(ma_dead_node(a_node)))
1121 return 1;
1122
1123 if (!set_min && a_slot) {
1124 set_min = true;
1125 min = pivots[a_slot - 1] + 1;
1126 }
1127
1128 if (!set_max && a_slot < mt_pivots[a_type]) {
1129 set_max = true;
1130 max = pivots[a_slot];
1131 }
1132
1133 if (unlikely(ma_dead_node(a_node)))
1134 return 1;
1135
1136 if (unlikely(ma_is_root(a_node)))
1137 break;
1138
1139 } while (!set_min || !set_max);
1140
1141 mas->max = max;
1142 mas->min = min;
1143 return 0;
1144 }
1145
1146 /*
1147 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1148 * @mas: The maple state
1149 *
1150 * Return: A pointer to a maple node.
1151 */
mas_pop_node(struct ma_state * mas)1152 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1153 {
1154 struct maple_alloc *ret, *node = mas->alloc;
1155 unsigned long total = mas_allocated(mas);
1156 unsigned int req = mas_alloc_req(mas);
1157
1158 /* nothing or a request pending. */
1159 if (WARN_ON(!total))
1160 return NULL;
1161
1162 if (total == 1) {
1163 /* single allocation in this ma_state */
1164 mas->alloc = NULL;
1165 ret = node;
1166 goto single_node;
1167 }
1168
1169 if (node->node_count == 1) {
1170 /* Single allocation in this node. */
1171 mas->alloc = node->slot[0];
1172 mas->alloc->total = node->total - 1;
1173 ret = node;
1174 goto new_head;
1175 }
1176 node->total--;
1177 ret = node->slot[--node->node_count];
1178 node->slot[node->node_count] = NULL;
1179
1180 single_node:
1181 new_head:
1182 if (req) {
1183 req++;
1184 mas_set_alloc_req(mas, req);
1185 }
1186
1187 memset(ret, 0, sizeof(*ret));
1188 return (struct maple_node *)ret;
1189 }
1190
1191 /*
1192 * mas_push_node() - Push a node back on the maple state allocation.
1193 * @mas: The maple state
1194 * @used: The used maple node
1195 *
1196 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1197 * requested node count as necessary.
1198 */
mas_push_node(struct ma_state * mas,struct maple_node * used)1199 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1200 {
1201 struct maple_alloc *reuse = (struct maple_alloc *)used;
1202 struct maple_alloc *head = mas->alloc;
1203 unsigned long count;
1204 unsigned int requested = mas_alloc_req(mas);
1205
1206 count = mas_allocated(mas);
1207
1208 reuse->request_count = 0;
1209 reuse->node_count = 0;
1210 if (count) {
1211 if (head->node_count < MAPLE_ALLOC_SLOTS) {
1212 head->slot[head->node_count++] = reuse;
1213 head->total++;
1214 goto done;
1215 }
1216 reuse->slot[0] = head;
1217 reuse->node_count = 1;
1218 }
1219
1220 reuse->total = count + 1;
1221 mas->alloc = reuse;
1222 done:
1223 if (requested > 1)
1224 mas_set_alloc_req(mas, requested - 1);
1225 }
1226
1227 /*
1228 * mas_alloc_nodes() - Allocate nodes into a maple state
1229 * @mas: The maple state
1230 * @gfp: The GFP Flags
1231 */
mas_alloc_nodes(struct ma_state * mas,gfp_t gfp)1232 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1233 {
1234 struct maple_alloc *node;
1235 unsigned long allocated = mas_allocated(mas);
1236 unsigned int requested = mas_alloc_req(mas);
1237 unsigned int count;
1238 void **slots = NULL;
1239 unsigned int max_req = 0;
1240
1241 if (!requested)
1242 return;
1243
1244 mas_set_alloc_req(mas, 0);
1245 if (mas->mas_flags & MA_STATE_PREALLOC) {
1246 if (allocated)
1247 return;
1248 BUG_ON(!allocated);
1249 WARN_ON(!allocated);
1250 }
1251
1252 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1253 node = (struct maple_alloc *)mt_alloc_one(gfp);
1254 if (!node)
1255 goto nomem_one;
1256
1257 if (allocated) {
1258 node->slot[0] = mas->alloc;
1259 node->node_count = 1;
1260 } else {
1261 node->node_count = 0;
1262 }
1263
1264 mas->alloc = node;
1265 node->total = ++allocated;
1266 node->request_count = 0;
1267 requested--;
1268 }
1269
1270 node = mas->alloc;
1271 while (requested) {
1272 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1273 slots = (void **)&node->slot[node->node_count];
1274 max_req = min(requested, max_req);
1275 count = mt_alloc_bulk(gfp, max_req, slots);
1276 if (!count)
1277 goto nomem_bulk;
1278
1279 if (node->node_count == 0) {
1280 node->slot[0]->node_count = 0;
1281 node->slot[0]->request_count = 0;
1282 }
1283
1284 node->node_count += count;
1285 allocated += count;
1286 /* find a non-full node*/
1287 do {
1288 node = node->slot[0];
1289 } while (unlikely(node->node_count == MAPLE_ALLOC_SLOTS));
1290 requested -= count;
1291 }
1292 mas->alloc->total = allocated;
1293 return;
1294
1295 nomem_bulk:
1296 /* Clean up potential freed allocations on bulk failure */
1297 memset(slots, 0, max_req * sizeof(unsigned long));
1298 mas->alloc->total = allocated;
1299 nomem_one:
1300 mas_set_alloc_req(mas, requested);
1301 mas_set_err(mas, -ENOMEM);
1302 }
1303
1304 /*
1305 * mas_free() - Free an encoded maple node
1306 * @mas: The maple state
1307 * @used: The encoded maple node to free.
1308 *
1309 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1310 * otherwise.
1311 */
mas_free(struct ma_state * mas,struct maple_enode * used)1312 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1313 {
1314 struct maple_node *tmp = mte_to_node(used);
1315
1316 if (mt_in_rcu(mas->tree))
1317 ma_free_rcu(tmp);
1318 else
1319 mas_push_node(mas, tmp);
1320 }
1321
1322 /*
1323 * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1324 * if there is not enough nodes.
1325 * @mas: The maple state
1326 * @count: The number of nodes needed
1327 * @gfp: the gfp flags
1328 */
mas_node_count_gfp(struct ma_state * mas,int count,gfp_t gfp)1329 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1330 {
1331 unsigned long allocated = mas_allocated(mas);
1332
1333 if (allocated < count) {
1334 mas_set_alloc_req(mas, count - allocated);
1335 mas_alloc_nodes(mas, gfp);
1336 }
1337 }
1338
1339 /*
1340 * mas_node_count() - Check if enough nodes are allocated and request more if
1341 * there is not enough nodes.
1342 * @mas: The maple state
1343 * @count: The number of nodes needed
1344 *
1345 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1346 */
mas_node_count(struct ma_state * mas,int count)1347 static void mas_node_count(struct ma_state *mas, int count)
1348 {
1349 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1350 }
1351
1352 /*
1353 * mas_start() - Sets up maple state for operations.
1354 * @mas: The maple state.
1355 *
1356 * If mas->status == mas_start, then set the min, max and depth to
1357 * defaults.
1358 *
1359 * Return:
1360 * - If mas->node is an error or not mas_start, return NULL.
1361 * - If it's an empty tree: NULL & mas->status == ma_none
1362 * - If it's a single entry: The entry & mas->status == ma_root
1363 * - If it's a tree: NULL & mas->status == ma_active
1364 */
mas_start(struct ma_state * mas)1365 static inline struct maple_enode *mas_start(struct ma_state *mas)
1366 {
1367 if (likely(mas_is_start(mas))) {
1368 struct maple_enode *root;
1369
1370 mas->min = 0;
1371 mas->max = ULONG_MAX;
1372
1373 retry:
1374 mas->depth = 0;
1375 root = mas_root(mas);
1376 /* Tree with nodes */
1377 if (likely(xa_is_node(root))) {
1378 mas->depth = 1;
1379 mas->status = ma_active;
1380 mas->node = mte_safe_root(root);
1381 mas->offset = 0;
1382 if (mte_dead_node(mas->node))
1383 goto retry;
1384
1385 return NULL;
1386 }
1387
1388 mas->node = NULL;
1389 /* empty tree */
1390 if (unlikely(!root)) {
1391 mas->status = ma_none;
1392 mas->offset = MAPLE_NODE_SLOTS;
1393 return NULL;
1394 }
1395
1396 /* Single entry tree */
1397 mas->status = ma_root;
1398 mas->offset = MAPLE_NODE_SLOTS;
1399
1400 /* Single entry tree. */
1401 if (mas->index > 0)
1402 return NULL;
1403
1404 return root;
1405 }
1406
1407 return NULL;
1408 }
1409
1410 /*
1411 * ma_data_end() - Find the end of the data in a node.
1412 * @node: The maple node
1413 * @type: The maple node type
1414 * @pivots: The array of pivots in the node
1415 * @max: The maximum value in the node
1416 *
1417 * Uses metadata to find the end of the data when possible.
1418 * Return: The zero indexed last slot with data (may be null).
1419 */
ma_data_end(struct maple_node * node,enum maple_type type,unsigned long * pivots,unsigned long max)1420 static __always_inline unsigned char ma_data_end(struct maple_node *node,
1421 enum maple_type type, unsigned long *pivots, unsigned long max)
1422 {
1423 unsigned char offset;
1424
1425 if (!pivots)
1426 return 0;
1427
1428 if (type == maple_arange_64)
1429 return ma_meta_end(node, type);
1430
1431 offset = mt_pivots[type] - 1;
1432 if (likely(!pivots[offset]))
1433 return ma_meta_end(node, type);
1434
1435 if (likely(pivots[offset] == max))
1436 return offset;
1437
1438 return mt_pivots[type];
1439 }
1440
1441 /*
1442 * mas_data_end() - Find the end of the data (slot).
1443 * @mas: the maple state
1444 *
1445 * This method is optimized to check the metadata of a node if the node type
1446 * supports data end metadata.
1447 *
1448 * Return: The zero indexed last slot with data (may be null).
1449 */
mas_data_end(struct ma_state * mas)1450 static inline unsigned char mas_data_end(struct ma_state *mas)
1451 {
1452 enum maple_type type;
1453 struct maple_node *node;
1454 unsigned char offset;
1455 unsigned long *pivots;
1456
1457 type = mte_node_type(mas->node);
1458 node = mas_mn(mas);
1459 if (type == maple_arange_64)
1460 return ma_meta_end(node, type);
1461
1462 pivots = ma_pivots(node, type);
1463 if (unlikely(ma_dead_node(node)))
1464 return 0;
1465
1466 offset = mt_pivots[type] - 1;
1467 if (likely(!pivots[offset]))
1468 return ma_meta_end(node, type);
1469
1470 if (likely(pivots[offset] == mas->max))
1471 return offset;
1472
1473 return mt_pivots[type];
1474 }
1475
1476 /*
1477 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1478 * @mas: the maple state
1479 *
1480 * Return: The maximum gap in the leaf.
1481 */
mas_leaf_max_gap(struct ma_state * mas)1482 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1483 {
1484 enum maple_type mt;
1485 unsigned long pstart, gap, max_gap;
1486 struct maple_node *mn;
1487 unsigned long *pivots;
1488 void __rcu **slots;
1489 unsigned char i;
1490 unsigned char max_piv;
1491
1492 mt = mte_node_type(mas->node);
1493 mn = mas_mn(mas);
1494 slots = ma_slots(mn, mt);
1495 max_gap = 0;
1496 if (unlikely(ma_is_dense(mt))) {
1497 gap = 0;
1498 for (i = 0; i < mt_slots[mt]; i++) {
1499 if (slots[i]) {
1500 if (gap > max_gap)
1501 max_gap = gap;
1502 gap = 0;
1503 } else {
1504 gap++;
1505 }
1506 }
1507 if (gap > max_gap)
1508 max_gap = gap;
1509 return max_gap;
1510 }
1511
1512 /*
1513 * Check the first implied pivot optimizes the loop below and slot 1 may
1514 * be skipped if there is a gap in slot 0.
1515 */
1516 pivots = ma_pivots(mn, mt);
1517 if (likely(!slots[0])) {
1518 max_gap = pivots[0] - mas->min + 1;
1519 i = 2;
1520 } else {
1521 i = 1;
1522 }
1523
1524 /* reduce max_piv as the special case is checked before the loop */
1525 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1526 /*
1527 * Check end implied pivot which can only be a gap on the right most
1528 * node.
1529 */
1530 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1531 gap = ULONG_MAX - pivots[max_piv];
1532 if (gap > max_gap)
1533 max_gap = gap;
1534
1535 if (max_gap > pivots[max_piv] - mas->min)
1536 return max_gap;
1537 }
1538
1539 for (; i <= max_piv; i++) {
1540 /* data == no gap. */
1541 if (likely(slots[i]))
1542 continue;
1543
1544 pstart = pivots[i - 1];
1545 gap = pivots[i] - pstart;
1546 if (gap > max_gap)
1547 max_gap = gap;
1548
1549 /* There cannot be two gaps in a row. */
1550 i++;
1551 }
1552 return max_gap;
1553 }
1554
1555 /*
1556 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1557 * @node: The maple node
1558 * @gaps: The pointer to the gaps
1559 * @mt: The maple node type
1560 * @off: Pointer to store the offset location of the gap.
1561 *
1562 * Uses the metadata data end to scan backwards across set gaps.
1563 *
1564 * Return: The maximum gap value
1565 */
1566 static inline unsigned long
ma_max_gap(struct maple_node * node,unsigned long * gaps,enum maple_type mt,unsigned char * off)1567 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1568 unsigned char *off)
1569 {
1570 unsigned char offset, i;
1571 unsigned long max_gap = 0;
1572
1573 i = offset = ma_meta_end(node, mt);
1574 do {
1575 if (gaps[i] > max_gap) {
1576 max_gap = gaps[i];
1577 offset = i;
1578 }
1579 } while (i--);
1580
1581 *off = offset;
1582 return max_gap;
1583 }
1584
1585 /*
1586 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1587 * @mas: The maple state.
1588 *
1589 * Return: The gap value.
1590 */
mas_max_gap(struct ma_state * mas)1591 static inline unsigned long mas_max_gap(struct ma_state *mas)
1592 {
1593 unsigned long *gaps;
1594 unsigned char offset;
1595 enum maple_type mt;
1596 struct maple_node *node;
1597
1598 mt = mte_node_type(mas->node);
1599 if (ma_is_leaf(mt))
1600 return mas_leaf_max_gap(mas);
1601
1602 node = mas_mn(mas);
1603 MAS_BUG_ON(mas, mt != maple_arange_64);
1604 offset = ma_meta_gap(node);
1605 gaps = ma_gaps(node, mt);
1606 return gaps[offset];
1607 }
1608
1609 /*
1610 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1611 * @mas: The maple state
1612 * @offset: The gap offset in the parent to set
1613 * @new: The new gap value.
1614 *
1615 * Set the parent gap then continue to set the gap upwards, using the metadata
1616 * of the parent to see if it is necessary to check the node above.
1617 */
mas_parent_gap(struct ma_state * mas,unsigned char offset,unsigned long new)1618 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1619 unsigned long new)
1620 {
1621 unsigned long meta_gap = 0;
1622 struct maple_node *pnode;
1623 struct maple_enode *penode;
1624 unsigned long *pgaps;
1625 unsigned char meta_offset;
1626 enum maple_type pmt;
1627
1628 pnode = mte_parent(mas->node);
1629 pmt = mas_parent_type(mas, mas->node);
1630 penode = mt_mk_node(pnode, pmt);
1631 pgaps = ma_gaps(pnode, pmt);
1632
1633 ascend:
1634 MAS_BUG_ON(mas, pmt != maple_arange_64);
1635 meta_offset = ma_meta_gap(pnode);
1636 meta_gap = pgaps[meta_offset];
1637
1638 pgaps[offset] = new;
1639
1640 if (meta_gap == new)
1641 return;
1642
1643 if (offset != meta_offset) {
1644 if (meta_gap > new)
1645 return;
1646
1647 ma_set_meta_gap(pnode, pmt, offset);
1648 } else if (new < meta_gap) {
1649 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1650 ma_set_meta_gap(pnode, pmt, meta_offset);
1651 }
1652
1653 if (ma_is_root(pnode))
1654 return;
1655
1656 /* Go to the parent node. */
1657 pnode = mte_parent(penode);
1658 pmt = mas_parent_type(mas, penode);
1659 pgaps = ma_gaps(pnode, pmt);
1660 offset = mte_parent_slot(penode);
1661 penode = mt_mk_node(pnode, pmt);
1662 goto ascend;
1663 }
1664
1665 /*
1666 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1667 * @mas: the maple state.
1668 */
mas_update_gap(struct ma_state * mas)1669 static inline void mas_update_gap(struct ma_state *mas)
1670 {
1671 unsigned char pslot;
1672 unsigned long p_gap;
1673 unsigned long max_gap;
1674
1675 if (!mt_is_alloc(mas->tree))
1676 return;
1677
1678 if (mte_is_root(mas->node))
1679 return;
1680
1681 max_gap = mas_max_gap(mas);
1682
1683 pslot = mte_parent_slot(mas->node);
1684 p_gap = ma_gaps(mte_parent(mas->node),
1685 mas_parent_type(mas, mas->node))[pslot];
1686
1687 if (p_gap != max_gap)
1688 mas_parent_gap(mas, pslot, max_gap);
1689 }
1690
1691 /*
1692 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1693 * @parent with the slot encoded.
1694 * @mas: the maple state (for the tree)
1695 * @parent: the maple encoded node containing the children.
1696 */
mas_adopt_children(struct ma_state * mas,struct maple_enode * parent)1697 static inline void mas_adopt_children(struct ma_state *mas,
1698 struct maple_enode *parent)
1699 {
1700 enum maple_type type = mte_node_type(parent);
1701 struct maple_node *node = mte_to_node(parent);
1702 void __rcu **slots = ma_slots(node, type);
1703 unsigned long *pivots = ma_pivots(node, type);
1704 struct maple_enode *child;
1705 unsigned char offset;
1706
1707 offset = ma_data_end(node, type, pivots, mas->max);
1708 do {
1709 child = mas_slot_locked(mas, slots, offset);
1710 mas_set_parent(mas, child, parent, offset);
1711 } while (offset--);
1712 }
1713
1714 /*
1715 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1716 * node as dead.
1717 * @mas: the maple state with the new node
1718 * @old_enode: The old maple encoded node to replace.
1719 */
mas_put_in_tree(struct ma_state * mas,struct maple_enode * old_enode)1720 static inline void mas_put_in_tree(struct ma_state *mas,
1721 struct maple_enode *old_enode)
1722 __must_hold(mas->tree->ma_lock)
1723 {
1724 unsigned char offset;
1725 void __rcu **slots;
1726
1727 if (mte_is_root(mas->node)) {
1728 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
1729 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1730 mas_set_height(mas);
1731 } else {
1732
1733 offset = mte_parent_slot(mas->node);
1734 slots = ma_slots(mte_parent(mas->node),
1735 mas_parent_type(mas, mas->node));
1736 rcu_assign_pointer(slots[offset], mas->node);
1737 }
1738
1739 mte_set_node_dead(old_enode);
1740 }
1741
1742 /*
1743 * mas_replace_node() - Replace a node by putting it in the tree, marking it
1744 * dead, and freeing it.
1745 * the parent encoding to locate the maple node in the tree.
1746 * @mas: the ma_state with @mas->node pointing to the new node.
1747 * @old_enode: The old maple encoded node.
1748 */
mas_replace_node(struct ma_state * mas,struct maple_enode * old_enode)1749 static inline void mas_replace_node(struct ma_state *mas,
1750 struct maple_enode *old_enode)
1751 __must_hold(mas->tree->ma_lock)
1752 {
1753 mas_put_in_tree(mas, old_enode);
1754 mas_free(mas, old_enode);
1755 }
1756
1757 /*
1758 * mas_find_child() - Find a child who has the parent @mas->node.
1759 * @mas: the maple state with the parent.
1760 * @child: the maple state to store the child.
1761 */
mas_find_child(struct ma_state * mas,struct ma_state * child)1762 static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
1763 __must_hold(mas->tree->ma_lock)
1764 {
1765 enum maple_type mt;
1766 unsigned char offset;
1767 unsigned char end;
1768 unsigned long *pivots;
1769 struct maple_enode *entry;
1770 struct maple_node *node;
1771 void __rcu **slots;
1772
1773 mt = mte_node_type(mas->node);
1774 node = mas_mn(mas);
1775 slots = ma_slots(node, mt);
1776 pivots = ma_pivots(node, mt);
1777 end = ma_data_end(node, mt, pivots, mas->max);
1778 for (offset = mas->offset; offset <= end; offset++) {
1779 entry = mas_slot_locked(mas, slots, offset);
1780 if (mte_parent(entry) == node) {
1781 *child = *mas;
1782 mas->offset = offset + 1;
1783 child->offset = offset;
1784 mas_descend(child);
1785 child->offset = 0;
1786 return true;
1787 }
1788 }
1789 return false;
1790 }
1791
1792 /*
1793 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1794 * old data or set b_node->b_end.
1795 * @b_node: the maple_big_node
1796 * @shift: the shift count
1797 */
mab_shift_right(struct maple_big_node * b_node,unsigned char shift)1798 static inline void mab_shift_right(struct maple_big_node *b_node,
1799 unsigned char shift)
1800 {
1801 unsigned long size = b_node->b_end * sizeof(unsigned long);
1802
1803 memmove(b_node->pivot + shift, b_node->pivot, size);
1804 memmove(b_node->slot + shift, b_node->slot, size);
1805 if (b_node->type == maple_arange_64)
1806 memmove(b_node->gap + shift, b_node->gap, size);
1807 }
1808
1809 /*
1810 * mab_middle_node() - Check if a middle node is needed (unlikely)
1811 * @b_node: the maple_big_node that contains the data.
1812 * @split: the potential split location
1813 * @slot_count: the size that can be stored in a single node being considered.
1814 *
1815 * Return: true if a middle node is required.
1816 */
mab_middle_node(struct maple_big_node * b_node,int split,unsigned char slot_count)1817 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1818 unsigned char slot_count)
1819 {
1820 unsigned char size = b_node->b_end;
1821
1822 if (size >= 2 * slot_count)
1823 return true;
1824
1825 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1826 return true;
1827
1828 return false;
1829 }
1830
1831 /*
1832 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1833 * @b_node: the maple_big_node with the data
1834 * @split: the suggested split location
1835 * @slot_count: the number of slots in the node being considered.
1836 *
1837 * Return: the split location.
1838 */
mab_no_null_split(struct maple_big_node * b_node,unsigned char split,unsigned char slot_count)1839 static inline int mab_no_null_split(struct maple_big_node *b_node,
1840 unsigned char split, unsigned char slot_count)
1841 {
1842 if (!b_node->slot[split]) {
1843 /*
1844 * If the split is less than the max slot && the right side will
1845 * still be sufficient, then increment the split on NULL.
1846 */
1847 if ((split < slot_count - 1) &&
1848 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1849 split++;
1850 else
1851 split--;
1852 }
1853 return split;
1854 }
1855
1856 /*
1857 * mab_calc_split() - Calculate the split location and if there needs to be two
1858 * splits.
1859 * @mas: The maple state
1860 * @bn: The maple_big_node with the data
1861 * @mid_split: The second split, if required. 0 otherwise.
1862 *
1863 * Return: The first split location. The middle split is set in @mid_split.
1864 */
mab_calc_split(struct ma_state * mas,struct maple_big_node * bn,unsigned char * mid_split,unsigned long min)1865 static inline int mab_calc_split(struct ma_state *mas,
1866 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1867 {
1868 unsigned char b_end = bn->b_end;
1869 int split = b_end / 2; /* Assume equal split. */
1870 unsigned char slot_min, slot_count = mt_slots[bn->type];
1871
1872 /*
1873 * To support gap tracking, all NULL entries are kept together and a node cannot
1874 * end on a NULL entry, with the exception of the left-most leaf. The
1875 * limitation means that the split of a node must be checked for this condition
1876 * and be able to put more data in one direction or the other.
1877 */
1878 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1879 *mid_split = 0;
1880 split = b_end - mt_min_slots[bn->type];
1881
1882 if (!ma_is_leaf(bn->type))
1883 return split;
1884
1885 mas->mas_flags |= MA_STATE_REBALANCE;
1886 if (!bn->slot[split])
1887 split--;
1888 return split;
1889 }
1890
1891 /*
1892 * Although extremely rare, it is possible to enter what is known as the 3-way
1893 * split scenario. The 3-way split comes about by means of a store of a range
1894 * that overwrites the end and beginning of two full nodes. The result is a set
1895 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1896 * also be located in different parent nodes which are also full. This can
1897 * carry upwards all the way to the root in the worst case.
1898 */
1899 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1900 split = b_end / 3;
1901 *mid_split = split * 2;
1902 } else {
1903 slot_min = mt_min_slots[bn->type];
1904
1905 *mid_split = 0;
1906 /*
1907 * Avoid having a range less than the slot count unless it
1908 * causes one node to be deficient.
1909 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1910 */
1911 while ((split < slot_count - 1) &&
1912 ((bn->pivot[split] - min) < slot_count - 1) &&
1913 (b_end - split > slot_min))
1914 split++;
1915 }
1916
1917 /* Avoid ending a node on a NULL entry */
1918 split = mab_no_null_split(bn, split, slot_count);
1919
1920 if (unlikely(*mid_split))
1921 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1922
1923 return split;
1924 }
1925
1926 /*
1927 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1928 * and set @b_node->b_end to the next free slot.
1929 * @mas: The maple state
1930 * @mas_start: The starting slot to copy
1931 * @mas_end: The end slot to copy (inclusively)
1932 * @b_node: The maple_big_node to place the data
1933 * @mab_start: The starting location in maple_big_node to store the data.
1934 */
mas_mab_cp(struct ma_state * mas,unsigned char mas_start,unsigned char mas_end,struct maple_big_node * b_node,unsigned char mab_start)1935 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1936 unsigned char mas_end, struct maple_big_node *b_node,
1937 unsigned char mab_start)
1938 {
1939 enum maple_type mt;
1940 struct maple_node *node;
1941 void __rcu **slots;
1942 unsigned long *pivots, *gaps;
1943 int i = mas_start, j = mab_start;
1944 unsigned char piv_end;
1945
1946 node = mas_mn(mas);
1947 mt = mte_node_type(mas->node);
1948 pivots = ma_pivots(node, mt);
1949 if (!i) {
1950 b_node->pivot[j] = pivots[i++];
1951 if (unlikely(i > mas_end))
1952 goto complete;
1953 j++;
1954 }
1955
1956 piv_end = min(mas_end, mt_pivots[mt]);
1957 for (; i < piv_end; i++, j++) {
1958 b_node->pivot[j] = pivots[i];
1959 if (unlikely(!b_node->pivot[j]))
1960 goto complete;
1961
1962 if (unlikely(mas->max == b_node->pivot[j]))
1963 goto complete;
1964 }
1965
1966 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1967
1968 complete:
1969 b_node->b_end = ++j;
1970 j -= mab_start;
1971 slots = ma_slots(node, mt);
1972 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1973 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1974 gaps = ma_gaps(node, mt);
1975 memcpy(b_node->gap + mab_start, gaps + mas_start,
1976 sizeof(unsigned long) * j);
1977 }
1978 }
1979
1980 /*
1981 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1982 * @node: The maple node
1983 * @mt: The maple type
1984 * @end: The node end
1985 */
mas_leaf_set_meta(struct maple_node * node,enum maple_type mt,unsigned char end)1986 static inline void mas_leaf_set_meta(struct maple_node *node,
1987 enum maple_type mt, unsigned char end)
1988 {
1989 if (end < mt_slots[mt] - 1)
1990 ma_set_meta(node, mt, 0, end);
1991 }
1992
1993 /*
1994 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1995 * @b_node: the maple_big_node that has the data
1996 * @mab_start: the start location in @b_node.
1997 * @mab_end: The end location in @b_node (inclusively)
1998 * @mas: The maple state with the maple encoded node.
1999 */
mab_mas_cp(struct maple_big_node * b_node,unsigned char mab_start,unsigned char mab_end,struct ma_state * mas,bool new_max)2000 static inline void mab_mas_cp(struct maple_big_node *b_node,
2001 unsigned char mab_start, unsigned char mab_end,
2002 struct ma_state *mas, bool new_max)
2003 {
2004 int i, j = 0;
2005 enum maple_type mt = mte_node_type(mas->node);
2006 struct maple_node *node = mte_to_node(mas->node);
2007 void __rcu **slots = ma_slots(node, mt);
2008 unsigned long *pivots = ma_pivots(node, mt);
2009 unsigned long *gaps = NULL;
2010 unsigned char end;
2011
2012 if (mab_end - mab_start > mt_pivots[mt])
2013 mab_end--;
2014
2015 if (!pivots[mt_pivots[mt] - 1])
2016 slots[mt_pivots[mt]] = NULL;
2017
2018 i = mab_start;
2019 do {
2020 pivots[j++] = b_node->pivot[i++];
2021 } while (i <= mab_end && likely(b_node->pivot[i]));
2022
2023 memcpy(slots, b_node->slot + mab_start,
2024 sizeof(void *) * (i - mab_start));
2025
2026 if (new_max)
2027 mas->max = b_node->pivot[i - 1];
2028
2029 end = j - 1;
2030 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2031 unsigned long max_gap = 0;
2032 unsigned char offset = 0;
2033
2034 gaps = ma_gaps(node, mt);
2035 do {
2036 gaps[--j] = b_node->gap[--i];
2037 if (gaps[j] > max_gap) {
2038 offset = j;
2039 max_gap = gaps[j];
2040 }
2041 } while (j);
2042
2043 ma_set_meta(node, mt, offset, end);
2044 } else {
2045 mas_leaf_set_meta(node, mt, end);
2046 }
2047 }
2048
2049 /*
2050 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2051 * @mas: The maple state
2052 * @end: The maple node end
2053 * @mt: The maple node type
2054 */
mas_bulk_rebalance(struct ma_state * mas,unsigned char end,enum maple_type mt)2055 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2056 enum maple_type mt)
2057 {
2058 if (!(mas->mas_flags & MA_STATE_BULK))
2059 return;
2060
2061 if (mte_is_root(mas->node))
2062 return;
2063
2064 if (end > mt_min_slots[mt]) {
2065 mas->mas_flags &= ~MA_STATE_REBALANCE;
2066 return;
2067 }
2068 }
2069
2070 /*
2071 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2072 * data from a maple encoded node.
2073 * @wr_mas: the maple write state
2074 * @b_node: the maple_big_node to fill with data
2075 * @offset_end: the offset to end copying
2076 *
2077 * Return: The actual end of the data stored in @b_node
2078 */
mas_store_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node,unsigned char offset_end)2079 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2080 struct maple_big_node *b_node, unsigned char offset_end)
2081 {
2082 unsigned char slot;
2083 unsigned char b_end;
2084 /* Possible underflow of piv will wrap back to 0 before use. */
2085 unsigned long piv;
2086 struct ma_state *mas = wr_mas->mas;
2087
2088 b_node->type = wr_mas->type;
2089 b_end = 0;
2090 slot = mas->offset;
2091 if (slot) {
2092 /* Copy start data up to insert. */
2093 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2094 b_end = b_node->b_end;
2095 piv = b_node->pivot[b_end - 1];
2096 } else
2097 piv = mas->min - 1;
2098
2099 if (piv + 1 < mas->index) {
2100 /* Handle range starting after old range */
2101 b_node->slot[b_end] = wr_mas->content;
2102 if (!wr_mas->content)
2103 b_node->gap[b_end] = mas->index - 1 - piv;
2104 b_node->pivot[b_end++] = mas->index - 1;
2105 }
2106
2107 /* Store the new entry. */
2108 mas->offset = b_end;
2109 b_node->slot[b_end] = wr_mas->entry;
2110 b_node->pivot[b_end] = mas->last;
2111
2112 /* Appended. */
2113 if (mas->last >= mas->max)
2114 goto b_end;
2115
2116 /* Handle new range ending before old range ends */
2117 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2118 if (piv > mas->last) {
2119 if (piv == ULONG_MAX)
2120 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2121
2122 if (offset_end != slot)
2123 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2124 offset_end);
2125
2126 b_node->slot[++b_end] = wr_mas->content;
2127 if (!wr_mas->content)
2128 b_node->gap[b_end] = piv - mas->last + 1;
2129 b_node->pivot[b_end] = piv;
2130 }
2131
2132 slot = offset_end + 1;
2133 if (slot > mas->end)
2134 goto b_end;
2135
2136 /* Copy end data to the end of the node. */
2137 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
2138 b_node->b_end--;
2139 return;
2140
2141 b_end:
2142 b_node->b_end = b_end;
2143 }
2144
2145 /*
2146 * mas_prev_sibling() - Find the previous node with the same parent.
2147 * @mas: the maple state
2148 *
2149 * Return: True if there is a previous sibling, false otherwise.
2150 */
mas_prev_sibling(struct ma_state * mas)2151 static inline bool mas_prev_sibling(struct ma_state *mas)
2152 {
2153 unsigned int p_slot = mte_parent_slot(mas->node);
2154
2155 /* For root node, p_slot is set to 0 by mte_parent_slot(). */
2156 if (!p_slot)
2157 return false;
2158
2159 mas_ascend(mas);
2160 mas->offset = p_slot - 1;
2161 mas_descend(mas);
2162 return true;
2163 }
2164
2165 /*
2166 * mas_next_sibling() - Find the next node with the same parent.
2167 * @mas: the maple state
2168 *
2169 * Return: true if there is a next sibling, false otherwise.
2170 */
mas_next_sibling(struct ma_state * mas)2171 static inline bool mas_next_sibling(struct ma_state *mas)
2172 {
2173 MA_STATE(parent, mas->tree, mas->index, mas->last);
2174
2175 if (mte_is_root(mas->node))
2176 return false;
2177
2178 parent = *mas;
2179 mas_ascend(&parent);
2180 parent.offset = mte_parent_slot(mas->node) + 1;
2181 if (parent.offset > mas_data_end(&parent))
2182 return false;
2183
2184 *mas = parent;
2185 mas_descend(mas);
2186 return true;
2187 }
2188
2189 /*
2190 * mas_node_or_none() - Set the enode and state.
2191 * @mas: the maple state
2192 * @enode: The encoded maple node.
2193 *
2194 * Set the node to the enode and the status.
2195 */
mas_node_or_none(struct ma_state * mas,struct maple_enode * enode)2196 static inline void mas_node_or_none(struct ma_state *mas,
2197 struct maple_enode *enode)
2198 {
2199 if (enode) {
2200 mas->node = enode;
2201 mas->status = ma_active;
2202 } else {
2203 mas->node = NULL;
2204 mas->status = ma_none;
2205 }
2206 }
2207
2208 /*
2209 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2210 * If @mas->index cannot be found within the containing
2211 * node, we traverse to the last entry in the node.
2212 * @wr_mas: The maple write state
2213 *
2214 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2215 */
mas_wr_node_walk(struct ma_wr_state * wr_mas)2216 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2217 {
2218 struct ma_state *mas = wr_mas->mas;
2219 unsigned char count, offset;
2220
2221 if (unlikely(ma_is_dense(wr_mas->type))) {
2222 wr_mas->r_max = wr_mas->r_min = mas->index;
2223 mas->offset = mas->index = mas->min;
2224 return;
2225 }
2226
2227 wr_mas->node = mas_mn(wr_mas->mas);
2228 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2229 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2230 wr_mas->pivots, mas->max);
2231 offset = mas->offset;
2232
2233 while (offset < count && mas->index > wr_mas->pivots[offset])
2234 offset++;
2235
2236 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2237 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
2238 wr_mas->offset_end = mas->offset = offset;
2239 }
2240
2241 /*
2242 * mast_rebalance_next() - Rebalance against the next node
2243 * @mast: The maple subtree state
2244 */
mast_rebalance_next(struct maple_subtree_state * mast)2245 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2246 {
2247 unsigned char b_end = mast->bn->b_end;
2248
2249 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2250 mast->bn, b_end);
2251 mast->orig_r->last = mast->orig_r->max;
2252 }
2253
2254 /*
2255 * mast_rebalance_prev() - Rebalance against the previous node
2256 * @mast: The maple subtree state
2257 */
mast_rebalance_prev(struct maple_subtree_state * mast)2258 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2259 {
2260 unsigned char end = mas_data_end(mast->orig_l) + 1;
2261 unsigned char b_end = mast->bn->b_end;
2262
2263 mab_shift_right(mast->bn, end);
2264 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2265 mast->l->min = mast->orig_l->min;
2266 mast->orig_l->index = mast->orig_l->min;
2267 mast->bn->b_end = end + b_end;
2268 mast->l->offset += end;
2269 }
2270
2271 /*
2272 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2273 * the node to the right. Checking the nodes to the right then the left at each
2274 * level upwards until root is reached.
2275 * Data is copied into the @mast->bn.
2276 * @mast: The maple_subtree_state.
2277 */
2278 static inline
mast_spanning_rebalance(struct maple_subtree_state * mast)2279 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2280 {
2281 struct ma_state r_tmp = *mast->orig_r;
2282 struct ma_state l_tmp = *mast->orig_l;
2283 unsigned char depth = 0;
2284
2285 do {
2286 mas_ascend(mast->orig_r);
2287 mas_ascend(mast->orig_l);
2288 depth++;
2289 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2290 mast->orig_r->offset++;
2291 do {
2292 mas_descend(mast->orig_r);
2293 mast->orig_r->offset = 0;
2294 } while (--depth);
2295
2296 mast_rebalance_next(mast);
2297 *mast->orig_l = l_tmp;
2298 return true;
2299 } else if (mast->orig_l->offset != 0) {
2300 mast->orig_l->offset--;
2301 do {
2302 mas_descend(mast->orig_l);
2303 mast->orig_l->offset =
2304 mas_data_end(mast->orig_l);
2305 } while (--depth);
2306
2307 mast_rebalance_prev(mast);
2308 *mast->orig_r = r_tmp;
2309 return true;
2310 }
2311 } while (!mte_is_root(mast->orig_r->node));
2312
2313 *mast->orig_r = r_tmp;
2314 *mast->orig_l = l_tmp;
2315 return false;
2316 }
2317
2318 /*
2319 * mast_ascend() - Ascend the original left and right maple states.
2320 * @mast: the maple subtree state.
2321 *
2322 * Ascend the original left and right sides. Set the offsets to point to the
2323 * data already in the new tree (@mast->l and @mast->r).
2324 */
mast_ascend(struct maple_subtree_state * mast)2325 static inline void mast_ascend(struct maple_subtree_state *mast)
2326 {
2327 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2328 mas_ascend(mast->orig_l);
2329 mas_ascend(mast->orig_r);
2330
2331 mast->orig_r->offset = 0;
2332 mast->orig_r->index = mast->r->max;
2333 /* last should be larger than or equal to index */
2334 if (mast->orig_r->last < mast->orig_r->index)
2335 mast->orig_r->last = mast->orig_r->index;
2336
2337 wr_mas.type = mte_node_type(mast->orig_r->node);
2338 mas_wr_node_walk(&wr_mas);
2339 /* Set up the left side of things */
2340 mast->orig_l->offset = 0;
2341 mast->orig_l->index = mast->l->min;
2342 wr_mas.mas = mast->orig_l;
2343 wr_mas.type = mte_node_type(mast->orig_l->node);
2344 mas_wr_node_walk(&wr_mas);
2345
2346 mast->bn->type = wr_mas.type;
2347 }
2348
2349 /*
2350 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2351 * @mas: the maple state with the allocations.
2352 * @b_node: the maple_big_node with the type encoding.
2353 *
2354 * Use the node type from the maple_big_node to allocate a new node from the
2355 * ma_state. This function exists mainly for code readability.
2356 *
2357 * Return: A new maple encoded node
2358 */
2359 static inline struct maple_enode
mas_new_ma_node(struct ma_state * mas,struct maple_big_node * b_node)2360 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2361 {
2362 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2363 }
2364
2365 /*
2366 * mas_mab_to_node() - Set up right and middle nodes
2367 *
2368 * @mas: the maple state that contains the allocations.
2369 * @b_node: the node which contains the data.
2370 * @left: The pointer which will have the left node
2371 * @right: The pointer which may have the right node
2372 * @middle: the pointer which may have the middle node (rare)
2373 * @mid_split: the split location for the middle node
2374 *
2375 * Return: the split of left.
2376 */
mas_mab_to_node(struct ma_state * mas,struct maple_big_node * b_node,struct maple_enode ** left,struct maple_enode ** right,struct maple_enode ** middle,unsigned char * mid_split,unsigned long min)2377 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2378 struct maple_big_node *b_node, struct maple_enode **left,
2379 struct maple_enode **right, struct maple_enode **middle,
2380 unsigned char *mid_split, unsigned long min)
2381 {
2382 unsigned char split = 0;
2383 unsigned char slot_count = mt_slots[b_node->type];
2384
2385 *left = mas_new_ma_node(mas, b_node);
2386 *right = NULL;
2387 *middle = NULL;
2388 *mid_split = 0;
2389
2390 if (b_node->b_end < slot_count) {
2391 split = b_node->b_end;
2392 } else {
2393 split = mab_calc_split(mas, b_node, mid_split, min);
2394 *right = mas_new_ma_node(mas, b_node);
2395 }
2396
2397 if (*mid_split)
2398 *middle = mas_new_ma_node(mas, b_node);
2399
2400 return split;
2401
2402 }
2403
2404 /*
2405 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2406 * pointer.
2407 * @b_node: the big node to add the entry
2408 * @mas: the maple state to get the pivot (mas->max)
2409 * @entry: the entry to add, if NULL nothing happens.
2410 */
mab_set_b_end(struct maple_big_node * b_node,struct ma_state * mas,void * entry)2411 static inline void mab_set_b_end(struct maple_big_node *b_node,
2412 struct ma_state *mas,
2413 void *entry)
2414 {
2415 if (!entry)
2416 return;
2417
2418 b_node->slot[b_node->b_end] = entry;
2419 if (mt_is_alloc(mas->tree))
2420 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2421 b_node->pivot[b_node->b_end++] = mas->max;
2422 }
2423
2424 /*
2425 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2426 * of @mas->node to either @left or @right, depending on @slot and @split
2427 *
2428 * @mas: the maple state with the node that needs a parent
2429 * @left: possible parent 1
2430 * @right: possible parent 2
2431 * @slot: the slot the mas->node was placed
2432 * @split: the split location between @left and @right
2433 */
mas_set_split_parent(struct ma_state * mas,struct maple_enode * left,struct maple_enode * right,unsigned char * slot,unsigned char split)2434 static inline void mas_set_split_parent(struct ma_state *mas,
2435 struct maple_enode *left,
2436 struct maple_enode *right,
2437 unsigned char *slot, unsigned char split)
2438 {
2439 if (mas_is_none(mas))
2440 return;
2441
2442 if ((*slot) <= split)
2443 mas_set_parent(mas, mas->node, left, *slot);
2444 else if (right)
2445 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
2446
2447 (*slot)++;
2448 }
2449
2450 /*
2451 * mte_mid_split_check() - Check if the next node passes the mid-split
2452 * @l: Pointer to left encoded maple node.
2453 * @m: Pointer to middle encoded maple node.
2454 * @r: Pointer to right encoded maple node.
2455 * @slot: The offset
2456 * @split: The split location.
2457 * @mid_split: The middle split.
2458 */
mte_mid_split_check(struct maple_enode ** l,struct maple_enode ** r,struct maple_enode * right,unsigned char slot,unsigned char * split,unsigned char mid_split)2459 static inline void mte_mid_split_check(struct maple_enode **l,
2460 struct maple_enode **r,
2461 struct maple_enode *right,
2462 unsigned char slot,
2463 unsigned char *split,
2464 unsigned char mid_split)
2465 {
2466 if (*r == right)
2467 return;
2468
2469 if (slot < mid_split)
2470 return;
2471
2472 *l = *r;
2473 *r = right;
2474 *split = mid_split;
2475 }
2476
2477 /*
2478 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2479 * is taken from @mast->l.
2480 * @mast: the maple subtree state
2481 * @left: the left node
2482 * @right: the right node
2483 * @split: the split location.
2484 */
mast_set_split_parents(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2485 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2486 struct maple_enode *left,
2487 struct maple_enode *middle,
2488 struct maple_enode *right,
2489 unsigned char split,
2490 unsigned char mid_split)
2491 {
2492 unsigned char slot;
2493 struct maple_enode *l = left;
2494 struct maple_enode *r = right;
2495
2496 if (mas_is_none(mast->l))
2497 return;
2498
2499 if (middle)
2500 r = middle;
2501
2502 slot = mast->l->offset;
2503
2504 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2505 mas_set_split_parent(mast->l, l, r, &slot, split);
2506
2507 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2508 mas_set_split_parent(mast->m, l, r, &slot, split);
2509
2510 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2511 mas_set_split_parent(mast->r, l, r, &slot, split);
2512 }
2513
2514 /*
2515 * mas_topiary_node() - Dispose of a single node
2516 * @mas: The maple state for pushing nodes
2517 * @in_rcu: If the tree is in rcu mode
2518 *
2519 * The node will either be RCU freed or pushed back on the maple state.
2520 */
mas_topiary_node(struct ma_state * mas,struct ma_state * tmp_mas,bool in_rcu)2521 static inline void mas_topiary_node(struct ma_state *mas,
2522 struct ma_state *tmp_mas, bool in_rcu)
2523 {
2524 struct maple_node *tmp;
2525 struct maple_enode *enode;
2526
2527 if (mas_is_none(tmp_mas))
2528 return;
2529
2530 enode = tmp_mas->node;
2531 tmp = mte_to_node(enode);
2532 mte_set_node_dead(enode);
2533 if (in_rcu)
2534 ma_free_rcu(tmp);
2535 else
2536 mas_push_node(mas, tmp);
2537 }
2538
2539 /*
2540 * mas_topiary_replace() - Replace the data with new data, then repair the
2541 * parent links within the new tree. Iterate over the dead sub-tree and collect
2542 * the dead subtrees and topiary the nodes that are no longer of use.
2543 *
2544 * The new tree will have up to three children with the correct parent. Keep
2545 * track of the new entries as they need to be followed to find the next level
2546 * of new entries.
2547 *
2548 * The old tree will have up to three children with the old parent. Keep track
2549 * of the old entries as they may have more nodes below replaced. Nodes within
2550 * [index, last] are dead subtrees, others need to be freed and followed.
2551 *
2552 * @mas: The maple state pointing at the new data
2553 * @old_enode: The maple encoded node being replaced
2554 *
2555 */
mas_topiary_replace(struct ma_state * mas,struct maple_enode * old_enode)2556 static inline void mas_topiary_replace(struct ma_state *mas,
2557 struct maple_enode *old_enode)
2558 {
2559 struct ma_state tmp[3], tmp_next[3];
2560 MA_TOPIARY(subtrees, mas->tree);
2561 bool in_rcu;
2562 int i, n;
2563
2564 /* Place data in tree & then mark node as old */
2565 mas_put_in_tree(mas, old_enode);
2566
2567 /* Update the parent pointers in the tree */
2568 tmp[0] = *mas;
2569 tmp[0].offset = 0;
2570 tmp[1].status = ma_none;
2571 tmp[2].status = ma_none;
2572 while (!mte_is_leaf(tmp[0].node)) {
2573 n = 0;
2574 for (i = 0; i < 3; i++) {
2575 if (mas_is_none(&tmp[i]))
2576 continue;
2577
2578 while (n < 3) {
2579 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2580 break;
2581 n++;
2582 }
2583
2584 mas_adopt_children(&tmp[i], tmp[i].node);
2585 }
2586
2587 if (MAS_WARN_ON(mas, n == 0))
2588 break;
2589
2590 while (n < 3)
2591 tmp_next[n++].status = ma_none;
2592
2593 for (i = 0; i < 3; i++)
2594 tmp[i] = tmp_next[i];
2595 }
2596
2597 /* Collect the old nodes that need to be discarded */
2598 if (mte_is_leaf(old_enode))
2599 return mas_free(mas, old_enode);
2600
2601 tmp[0] = *mas;
2602 tmp[0].offset = 0;
2603 tmp[0].node = old_enode;
2604 tmp[1].status = ma_none;
2605 tmp[2].status = ma_none;
2606 in_rcu = mt_in_rcu(mas->tree);
2607 do {
2608 n = 0;
2609 for (i = 0; i < 3; i++) {
2610 if (mas_is_none(&tmp[i]))
2611 continue;
2612
2613 while (n < 3) {
2614 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2615 break;
2616
2617 if ((tmp_next[n].min >= tmp_next->index) &&
2618 (tmp_next[n].max <= tmp_next->last)) {
2619 mat_add(&subtrees, tmp_next[n].node);
2620 tmp_next[n].status = ma_none;
2621 } else {
2622 n++;
2623 }
2624 }
2625 }
2626
2627 if (MAS_WARN_ON(mas, n == 0))
2628 break;
2629
2630 while (n < 3)
2631 tmp_next[n++].status = ma_none;
2632
2633 for (i = 0; i < 3; i++) {
2634 mas_topiary_node(mas, &tmp[i], in_rcu);
2635 tmp[i] = tmp_next[i];
2636 }
2637 } while (!mte_is_leaf(tmp[0].node));
2638
2639 for (i = 0; i < 3; i++)
2640 mas_topiary_node(mas, &tmp[i], in_rcu);
2641
2642 mas_mat_destroy(mas, &subtrees);
2643 }
2644
2645 /*
2646 * mas_wmb_replace() - Write memory barrier and replace
2647 * @mas: The maple state
2648 * @old_enode: The old maple encoded node that is being replaced.
2649 *
2650 * Updates gap as necessary.
2651 */
mas_wmb_replace(struct ma_state * mas,struct maple_enode * old_enode)2652 static inline void mas_wmb_replace(struct ma_state *mas,
2653 struct maple_enode *old_enode)
2654 {
2655 /* Insert the new data in the tree */
2656 mas_topiary_replace(mas, old_enode);
2657
2658 if (mte_is_leaf(mas->node))
2659 return;
2660
2661 mas_update_gap(mas);
2662 }
2663
2664 /*
2665 * mast_cp_to_nodes() - Copy data out to nodes.
2666 * @mast: The maple subtree state
2667 * @left: The left encoded maple node
2668 * @middle: The middle encoded maple node
2669 * @right: The right encoded maple node
2670 * @split: The location to split between left and (middle ? middle : right)
2671 * @mid_split: The location to split between middle and right.
2672 */
mast_cp_to_nodes(struct maple_subtree_state * mast,struct maple_enode * left,struct maple_enode * middle,struct maple_enode * right,unsigned char split,unsigned char mid_split)2673 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2674 struct maple_enode *left, struct maple_enode *middle,
2675 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2676 {
2677 bool new_lmax = true;
2678
2679 mas_node_or_none(mast->l, left);
2680 mas_node_or_none(mast->m, middle);
2681 mas_node_or_none(mast->r, right);
2682
2683 mast->l->min = mast->orig_l->min;
2684 if (split == mast->bn->b_end) {
2685 mast->l->max = mast->orig_r->max;
2686 new_lmax = false;
2687 }
2688
2689 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2690
2691 if (middle) {
2692 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2693 mast->m->min = mast->bn->pivot[split] + 1;
2694 split = mid_split;
2695 }
2696
2697 mast->r->max = mast->orig_r->max;
2698 if (right) {
2699 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2700 mast->r->min = mast->bn->pivot[split] + 1;
2701 }
2702 }
2703
2704 /*
2705 * mast_combine_cp_left - Copy in the original left side of the tree into the
2706 * combined data set in the maple subtree state big node.
2707 * @mast: The maple subtree state
2708 */
mast_combine_cp_left(struct maple_subtree_state * mast)2709 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2710 {
2711 unsigned char l_slot = mast->orig_l->offset;
2712
2713 if (!l_slot)
2714 return;
2715
2716 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2717 }
2718
2719 /*
2720 * mast_combine_cp_right: Copy in the original right side of the tree into the
2721 * combined data set in the maple subtree state big node.
2722 * @mast: The maple subtree state
2723 */
mast_combine_cp_right(struct maple_subtree_state * mast)2724 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2725 {
2726 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2727 return;
2728
2729 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2730 mt_slot_count(mast->orig_r->node), mast->bn,
2731 mast->bn->b_end);
2732 mast->orig_r->last = mast->orig_r->max;
2733 }
2734
2735 /*
2736 * mast_sufficient: Check if the maple subtree state has enough data in the big
2737 * node to create at least one sufficient node
2738 * @mast: the maple subtree state
2739 */
mast_sufficient(struct maple_subtree_state * mast)2740 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2741 {
2742 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2743 return true;
2744
2745 return false;
2746 }
2747
2748 /*
2749 * mast_overflow: Check if there is too much data in the subtree state for a
2750 * single node.
2751 * @mast: The maple subtree state
2752 */
mast_overflow(struct maple_subtree_state * mast)2753 static inline bool mast_overflow(struct maple_subtree_state *mast)
2754 {
2755 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2756 return true;
2757
2758 return false;
2759 }
2760
mtree_range_walk(struct ma_state * mas)2761 static inline void *mtree_range_walk(struct ma_state *mas)
2762 {
2763 unsigned long *pivots;
2764 unsigned char offset;
2765 struct maple_node *node;
2766 struct maple_enode *next, *last;
2767 enum maple_type type;
2768 void __rcu **slots;
2769 unsigned char end;
2770 unsigned long max, min;
2771 unsigned long prev_max, prev_min;
2772
2773 next = mas->node;
2774 min = mas->min;
2775 max = mas->max;
2776 do {
2777 last = next;
2778 node = mte_to_node(next);
2779 type = mte_node_type(next);
2780 pivots = ma_pivots(node, type);
2781 end = ma_data_end(node, type, pivots, max);
2782 prev_min = min;
2783 prev_max = max;
2784 if (pivots[0] >= mas->index) {
2785 offset = 0;
2786 max = pivots[0];
2787 goto next;
2788 }
2789
2790 offset = 1;
2791 while (offset < end) {
2792 if (pivots[offset] >= mas->index) {
2793 max = pivots[offset];
2794 break;
2795 }
2796 offset++;
2797 }
2798
2799 min = pivots[offset - 1] + 1;
2800 next:
2801 slots = ma_slots(node, type);
2802 next = mt_slot(mas->tree, slots, offset);
2803 if (unlikely(ma_dead_node(node)))
2804 goto dead_node;
2805 } while (!ma_is_leaf(type));
2806
2807 mas->end = end;
2808 mas->offset = offset;
2809 mas->index = min;
2810 mas->last = max;
2811 mas->min = prev_min;
2812 mas->max = prev_max;
2813 mas->node = last;
2814 return (void *)next;
2815
2816 dead_node:
2817 mas_reset(mas);
2818 return NULL;
2819 }
2820
2821 /*
2822 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2823 * @mas: The starting maple state
2824 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2825 * @count: The estimated count of iterations needed.
2826 *
2827 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2828 * is hit. First @b_node is split into two entries which are inserted into the
2829 * next iteration of the loop. @b_node is returned populated with the final
2830 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2831 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2832 * to account of what has been copied into the new sub-tree. The update of
2833 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2834 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2835 * the new sub-tree in case the sub-tree becomes the full tree.
2836 */
mas_spanning_rebalance(struct ma_state * mas,struct maple_subtree_state * mast,unsigned char count)2837 static void mas_spanning_rebalance(struct ma_state *mas,
2838 struct maple_subtree_state *mast, unsigned char count)
2839 {
2840 unsigned char split, mid_split;
2841 unsigned char slot = 0;
2842 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2843 struct maple_enode *old_enode;
2844
2845 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2846 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2847 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2848
2849 /*
2850 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2851 * Rebalancing is done by use of the ``struct maple_topiary``.
2852 */
2853 mast->l = &l_mas;
2854 mast->m = &m_mas;
2855 mast->r = &r_mas;
2856 l_mas.status = r_mas.status = m_mas.status = ma_none;
2857
2858 /* Check if this is not root and has sufficient data. */
2859 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2860 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2861 mast_spanning_rebalance(mast);
2862
2863 l_mas.depth = 0;
2864
2865 /*
2866 * Each level of the tree is examined and balanced, pushing data to the left or
2867 * right, or rebalancing against left or right nodes is employed to avoid
2868 * rippling up the tree to limit the amount of churn. Once a new sub-section of
2869 * the tree is created, there may be a mix of new and old nodes. The old nodes
2870 * will have the incorrect parent pointers and currently be in two trees: the
2871 * original tree and the partially new tree. To remedy the parent pointers in
2872 * the old tree, the new data is swapped into the active tree and a walk down
2873 * the tree is performed and the parent pointers are updated.
2874 * See mas_topiary_replace() for more information.
2875 */
2876 while (count--) {
2877 mast->bn->b_end--;
2878 mast->bn->type = mte_node_type(mast->orig_l->node);
2879 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
2880 &mid_split, mast->orig_l->min);
2881 mast_set_split_parents(mast, left, middle, right, split,
2882 mid_split);
2883 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
2884
2885 /*
2886 * Copy data from next level in the tree to mast->bn from next
2887 * iteration
2888 */
2889 memset(mast->bn, 0, sizeof(struct maple_big_node));
2890 mast->bn->type = mte_node_type(left);
2891 l_mas.depth++;
2892
2893 /* Root already stored in l->node. */
2894 if (mas_is_root_limits(mast->l))
2895 goto new_root;
2896
2897 mast_ascend(mast);
2898 mast_combine_cp_left(mast);
2899 l_mas.offset = mast->bn->b_end;
2900 mab_set_b_end(mast->bn, &l_mas, left);
2901 mab_set_b_end(mast->bn, &m_mas, middle);
2902 mab_set_b_end(mast->bn, &r_mas, right);
2903
2904 /* Copy anything necessary out of the right node. */
2905 mast_combine_cp_right(mast);
2906 mast->orig_l->last = mast->orig_l->max;
2907
2908 if (mast_sufficient(mast))
2909 continue;
2910
2911 if (mast_overflow(mast))
2912 continue;
2913
2914 /* May be a new root stored in mast->bn */
2915 if (mas_is_root_limits(mast->orig_l))
2916 break;
2917
2918 mast_spanning_rebalance(mast);
2919
2920 /* rebalancing from other nodes may require another loop. */
2921 if (!count)
2922 count++;
2923 }
2924
2925 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2926 mte_node_type(mast->orig_l->node));
2927 l_mas.depth++;
2928 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
2929 mas_set_parent(mas, left, l_mas.node, slot);
2930 if (middle)
2931 mas_set_parent(mas, middle, l_mas.node, ++slot);
2932
2933 if (right)
2934 mas_set_parent(mas, right, l_mas.node, ++slot);
2935
2936 if (mas_is_root_limits(mast->l)) {
2937 new_root:
2938 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2939 while (!mte_is_root(mast->orig_l->node))
2940 mast_ascend(mast);
2941 } else {
2942 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2943 }
2944
2945 old_enode = mast->orig_l->node;
2946 mas->depth = l_mas.depth;
2947 mas->node = l_mas.node;
2948 mas->min = l_mas.min;
2949 mas->max = l_mas.max;
2950 mas->offset = l_mas.offset;
2951 mas_wmb_replace(mas, old_enode);
2952 mtree_range_walk(mas);
2953 return;
2954 }
2955
2956 /*
2957 * mas_rebalance() - Rebalance a given node.
2958 * @mas: The maple state
2959 * @b_node: The big maple node.
2960 *
2961 * Rebalance two nodes into a single node or two new nodes that are sufficient.
2962 * Continue upwards until tree is sufficient.
2963 */
mas_rebalance(struct ma_state * mas,struct maple_big_node * b_node)2964 static inline void mas_rebalance(struct ma_state *mas,
2965 struct maple_big_node *b_node)
2966 {
2967 char empty_count = mas_mt_height(mas);
2968 struct maple_subtree_state mast;
2969 unsigned char shift, b_end = ++b_node->b_end;
2970
2971 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2972 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2973
2974 trace_ma_op(__func__, mas);
2975
2976 /*
2977 * Rebalancing occurs if a node is insufficient. Data is rebalanced
2978 * against the node to the right if it exists, otherwise the node to the
2979 * left of this node is rebalanced against this node. If rebalancing
2980 * causes just one node to be produced instead of two, then the parent
2981 * is also examined and rebalanced if it is insufficient. Every level
2982 * tries to combine the data in the same way. If one node contains the
2983 * entire range of the tree, then that node is used as a new root node.
2984 */
2985
2986 mast.orig_l = &l_mas;
2987 mast.orig_r = &r_mas;
2988 mast.bn = b_node;
2989 mast.bn->type = mte_node_type(mas->node);
2990
2991 l_mas = r_mas = *mas;
2992
2993 if (mas_next_sibling(&r_mas)) {
2994 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2995 r_mas.last = r_mas.index = r_mas.max;
2996 } else {
2997 mas_prev_sibling(&l_mas);
2998 shift = mas_data_end(&l_mas) + 1;
2999 mab_shift_right(b_node, shift);
3000 mas->offset += shift;
3001 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3002 b_node->b_end = shift + b_end;
3003 l_mas.index = l_mas.last = l_mas.min;
3004 }
3005
3006 return mas_spanning_rebalance(mas, &mast, empty_count);
3007 }
3008
3009 /*
3010 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3011 * state.
3012 * @mas: The maple state
3013 * @end: The end of the left-most node.
3014 *
3015 * During a mass-insert event (such as forking), it may be necessary to
3016 * rebalance the left-most node when it is not sufficient.
3017 */
mas_destroy_rebalance(struct ma_state * mas,unsigned char end)3018 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3019 {
3020 enum maple_type mt = mte_node_type(mas->node);
3021 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3022 struct maple_enode *eparent, *old_eparent;
3023 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3024 void __rcu **l_slots, **slots;
3025 unsigned long *l_pivs, *pivs, gap;
3026 bool in_rcu = mt_in_rcu(mas->tree);
3027
3028 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3029
3030 l_mas = *mas;
3031 mas_prev_sibling(&l_mas);
3032
3033 /* set up node. */
3034 if (in_rcu) {
3035 newnode = mas_pop_node(mas);
3036 } else {
3037 newnode = &reuse;
3038 }
3039
3040 node = mas_mn(mas);
3041 newnode->parent = node->parent;
3042 slots = ma_slots(newnode, mt);
3043 pivs = ma_pivots(newnode, mt);
3044 left = mas_mn(&l_mas);
3045 l_slots = ma_slots(left, mt);
3046 l_pivs = ma_pivots(left, mt);
3047 if (!l_slots[split])
3048 split++;
3049 tmp = mas_data_end(&l_mas) - split;
3050
3051 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3052 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3053 pivs[tmp] = l_mas.max;
3054 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3055 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3056
3057 l_mas.max = l_pivs[split];
3058 mas->min = l_mas.max + 1;
3059 old_eparent = mt_mk_node(mte_parent(l_mas.node),
3060 mas_parent_type(&l_mas, l_mas.node));
3061 tmp += end;
3062 if (!in_rcu) {
3063 unsigned char max_p = mt_pivots[mt];
3064 unsigned char max_s = mt_slots[mt];
3065
3066 if (tmp < max_p)
3067 memset(pivs + tmp, 0,
3068 sizeof(unsigned long) * (max_p - tmp));
3069
3070 if (tmp < mt_slots[mt])
3071 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3072
3073 memcpy(node, newnode, sizeof(struct maple_node));
3074 ma_set_meta(node, mt, 0, tmp - 1);
3075 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
3076 l_pivs[split]);
3077
3078 /* Remove data from l_pivs. */
3079 tmp = split + 1;
3080 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3081 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3082 ma_set_meta(left, mt, 0, split);
3083 eparent = old_eparent;
3084
3085 goto done;
3086 }
3087
3088 /* RCU requires replacing both l_mas, mas, and parent. */
3089 mas->node = mt_mk_node(newnode, mt);
3090 ma_set_meta(newnode, mt, 0, tmp);
3091
3092 new_left = mas_pop_node(mas);
3093 new_left->parent = left->parent;
3094 mt = mte_node_type(l_mas.node);
3095 slots = ma_slots(new_left, mt);
3096 pivs = ma_pivots(new_left, mt);
3097 memcpy(slots, l_slots, sizeof(void *) * split);
3098 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3099 ma_set_meta(new_left, mt, 0, split);
3100 l_mas.node = mt_mk_node(new_left, mt);
3101
3102 /* replace parent. */
3103 offset = mte_parent_slot(mas->node);
3104 mt = mas_parent_type(&l_mas, l_mas.node);
3105 parent = mas_pop_node(mas);
3106 slots = ma_slots(parent, mt);
3107 pivs = ma_pivots(parent, mt);
3108 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
3109 rcu_assign_pointer(slots[offset], mas->node);
3110 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3111 pivs[offset - 1] = l_mas.max;
3112 eparent = mt_mk_node(parent, mt);
3113 done:
3114 gap = mas_leaf_max_gap(mas);
3115 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3116 gap = mas_leaf_max_gap(&l_mas);
3117 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3118 mas_ascend(mas);
3119
3120 if (in_rcu) {
3121 mas_replace_node(mas, old_eparent);
3122 mas_adopt_children(mas, mas->node);
3123 }
3124
3125 mas_update_gap(mas);
3126 }
3127
3128 /*
3129 * mas_split_final_node() - Split the final node in a subtree operation.
3130 * @mast: the maple subtree state
3131 * @mas: The maple state
3132 * @height: The height of the tree in case it's a new root.
3133 */
mas_split_final_node(struct maple_subtree_state * mast,struct ma_state * mas,int height)3134 static inline void mas_split_final_node(struct maple_subtree_state *mast,
3135 struct ma_state *mas, int height)
3136 {
3137 struct maple_enode *ancestor;
3138
3139 if (mte_is_root(mas->node)) {
3140 if (mt_is_alloc(mas->tree))
3141 mast->bn->type = maple_arange_64;
3142 else
3143 mast->bn->type = maple_range_64;
3144 mas->depth = height;
3145 }
3146 /*
3147 * Only a single node is used here, could be root.
3148 * The Big_node data should just fit in a single node.
3149 */
3150 ancestor = mas_new_ma_node(mas, mast->bn);
3151 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3152 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
3153 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3154
3155 mast->l->node = ancestor;
3156 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3157 mas->offset = mast->bn->b_end - 1;
3158 }
3159
3160 /*
3161 * mast_fill_bnode() - Copy data into the big node in the subtree state
3162 * @mast: The maple subtree state
3163 * @mas: the maple state
3164 * @skip: The number of entries to skip for new nodes insertion.
3165 */
mast_fill_bnode(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char skip)3166 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3167 struct ma_state *mas,
3168 unsigned char skip)
3169 {
3170 bool cp = true;
3171 unsigned char split;
3172
3173 memset(mast->bn, 0, sizeof(struct maple_big_node));
3174
3175 if (mte_is_root(mas->node)) {
3176 cp = false;
3177 } else {
3178 mas_ascend(mas);
3179 mas->offset = mte_parent_slot(mas->node);
3180 }
3181
3182 if (cp && mast->l->offset)
3183 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3184
3185 split = mast->bn->b_end;
3186 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3187 mast->r->offset = mast->bn->b_end;
3188 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3189 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3190 cp = false;
3191
3192 if (cp)
3193 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3194 mast->bn, mast->bn->b_end);
3195
3196 mast->bn->b_end--;
3197 mast->bn->type = mte_node_type(mas->node);
3198 }
3199
3200 /*
3201 * mast_split_data() - Split the data in the subtree state big node into regular
3202 * nodes.
3203 * @mast: The maple subtree state
3204 * @mas: The maple state
3205 * @split: The location to split the big node
3206 */
mast_split_data(struct maple_subtree_state * mast,struct ma_state * mas,unsigned char split)3207 static inline void mast_split_data(struct maple_subtree_state *mast,
3208 struct ma_state *mas, unsigned char split)
3209 {
3210 unsigned char p_slot;
3211
3212 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3213 mte_set_pivot(mast->r->node, 0, mast->r->max);
3214 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3215 mast->l->offset = mte_parent_slot(mas->node);
3216 mast->l->max = mast->bn->pivot[split];
3217 mast->r->min = mast->l->max + 1;
3218 if (mte_is_leaf(mas->node))
3219 return;
3220
3221 p_slot = mast->orig_l->offset;
3222 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3223 &p_slot, split);
3224 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3225 &p_slot, split);
3226 }
3227
3228 /*
3229 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3230 * data to the right or left node if there is room.
3231 * @mas: The maple state
3232 * @height: The current height of the maple state
3233 * @mast: The maple subtree state
3234 * @left: Push left or not.
3235 *
3236 * Keeping the height of the tree low means faster lookups.
3237 *
3238 * Return: True if pushed, false otherwise.
3239 */
mas_push_data(struct ma_state * mas,int height,struct maple_subtree_state * mast,bool left)3240 static inline bool mas_push_data(struct ma_state *mas, int height,
3241 struct maple_subtree_state *mast, bool left)
3242 {
3243 unsigned char slot_total = mast->bn->b_end;
3244 unsigned char end, space, split;
3245
3246 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3247 tmp_mas = *mas;
3248 tmp_mas.depth = mast->l->depth;
3249
3250 if (left && !mas_prev_sibling(&tmp_mas))
3251 return false;
3252 else if (!left && !mas_next_sibling(&tmp_mas))
3253 return false;
3254
3255 end = mas_data_end(&tmp_mas);
3256 slot_total += end;
3257 space = 2 * mt_slot_count(mas->node) - 2;
3258 /* -2 instead of -1 to ensure there isn't a triple split */
3259 if (ma_is_leaf(mast->bn->type))
3260 space--;
3261
3262 if (mas->max == ULONG_MAX)
3263 space--;
3264
3265 if (slot_total >= space)
3266 return false;
3267
3268 /* Get the data; Fill mast->bn */
3269 mast->bn->b_end++;
3270 if (left) {
3271 mab_shift_right(mast->bn, end + 1);
3272 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3273 mast->bn->b_end = slot_total + 1;
3274 } else {
3275 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3276 }
3277
3278 /* Configure mast for splitting of mast->bn */
3279 split = mt_slots[mast->bn->type] - 2;
3280 if (left) {
3281 /* Switch mas to prev node */
3282 *mas = tmp_mas;
3283 /* Start using mast->l for the left side. */
3284 tmp_mas.node = mast->l->node;
3285 *mast->l = tmp_mas;
3286 } else {
3287 tmp_mas.node = mast->r->node;
3288 *mast->r = tmp_mas;
3289 split = slot_total - split;
3290 }
3291 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3292 /* Update parent slot for split calculation. */
3293 if (left)
3294 mast->orig_l->offset += end + 1;
3295
3296 mast_split_data(mast, mas, split);
3297 mast_fill_bnode(mast, mas, 2);
3298 mas_split_final_node(mast, mas, height + 1);
3299 return true;
3300 }
3301
3302 /*
3303 * mas_split() - Split data that is too big for one node into two.
3304 * @mas: The maple state
3305 * @b_node: The maple big node
3306 */
mas_split(struct ma_state * mas,struct maple_big_node * b_node)3307 static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3308 {
3309 struct maple_subtree_state mast;
3310 int height = 0;
3311 unsigned char mid_split, split = 0;
3312 struct maple_enode *old;
3313
3314 /*
3315 * Splitting is handled differently from any other B-tree; the Maple
3316 * Tree splits upwards. Splitting up means that the split operation
3317 * occurs when the walk of the tree hits the leaves and not on the way
3318 * down. The reason for splitting up is that it is impossible to know
3319 * how much space will be needed until the leaf is (or leaves are)
3320 * reached. Since overwriting data is allowed and a range could
3321 * overwrite more than one range or result in changing one entry into 3
3322 * entries, it is impossible to know if a split is required until the
3323 * data is examined.
3324 *
3325 * Splitting is a balancing act between keeping allocations to a minimum
3326 * and avoiding a 'jitter' event where a tree is expanded to make room
3327 * for an entry followed by a contraction when the entry is removed. To
3328 * accomplish the balance, there are empty slots remaining in both left
3329 * and right nodes after a split.
3330 */
3331 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3332 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3333 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3334 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3335
3336 trace_ma_op(__func__, mas);
3337 mas->depth = mas_mt_height(mas);
3338
3339 mast.l = &l_mas;
3340 mast.r = &r_mas;
3341 mast.orig_l = &prev_l_mas;
3342 mast.orig_r = &prev_r_mas;
3343 mast.bn = b_node;
3344
3345 while (height++ <= mas->depth) {
3346 if (mt_slots[b_node->type] > b_node->b_end) {
3347 mas_split_final_node(&mast, mas, height);
3348 break;
3349 }
3350
3351 l_mas = r_mas = *mas;
3352 l_mas.node = mas_new_ma_node(mas, b_node);
3353 r_mas.node = mas_new_ma_node(mas, b_node);
3354 /*
3355 * Another way that 'jitter' is avoided is to terminate a split up early if the
3356 * left or right node has space to spare. This is referred to as "pushing left"
3357 * or "pushing right" and is similar to the B* tree, except the nodes left or
3358 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3359 * is a significant savings.
3360 */
3361 /* Try to push left. */
3362 if (mas_push_data(mas, height, &mast, true))
3363 break;
3364 /* Try to push right. */
3365 if (mas_push_data(mas, height, &mast, false))
3366 break;
3367
3368 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3369 mast_split_data(&mast, mas, split);
3370 /*
3371 * Usually correct, mab_mas_cp in the above call overwrites
3372 * r->max.
3373 */
3374 mast.r->max = mas->max;
3375 mast_fill_bnode(&mast, mas, 1);
3376 prev_l_mas = *mast.l;
3377 prev_r_mas = *mast.r;
3378 }
3379
3380 /* Set the original node as dead */
3381 old = mas->node;
3382 mas->node = l_mas.node;
3383 mas_wmb_replace(mas, old);
3384 mtree_range_walk(mas);
3385 return;
3386 }
3387
3388 /*
3389 * mas_commit_b_node() - Commit the big node into the tree.
3390 * @wr_mas: The maple write state
3391 * @b_node: The maple big node
3392 */
mas_commit_b_node(struct ma_wr_state * wr_mas,struct maple_big_node * b_node)3393 static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
3394 struct maple_big_node *b_node)
3395 {
3396 enum store_type type = wr_mas->mas->store_type;
3397
3398 WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store);
3399
3400 if (type == wr_rebalance)
3401 return mas_rebalance(wr_mas->mas, b_node);
3402
3403 return mas_split(wr_mas->mas, b_node);
3404 }
3405
3406 /*
3407 * mas_root_expand() - Expand a root to a node
3408 * @mas: The maple state
3409 * @entry: The entry to store into the tree
3410 */
mas_root_expand(struct ma_state * mas,void * entry)3411 static inline void mas_root_expand(struct ma_state *mas, void *entry)
3412 {
3413 void *contents = mas_root_locked(mas);
3414 enum maple_type type = maple_leaf_64;
3415 struct maple_node *node;
3416 void __rcu **slots;
3417 unsigned long *pivots;
3418 int slot = 0;
3419
3420 node = mas_pop_node(mas);
3421 pivots = ma_pivots(node, type);
3422 slots = ma_slots(node, type);
3423 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3424 mas->node = mt_mk_node(node, type);
3425 mas->status = ma_active;
3426
3427 if (mas->index) {
3428 if (contents) {
3429 rcu_assign_pointer(slots[slot], contents);
3430 if (likely(mas->index > 1))
3431 slot++;
3432 }
3433 pivots[slot++] = mas->index - 1;
3434 }
3435
3436 rcu_assign_pointer(slots[slot], entry);
3437 mas->offset = slot;
3438 pivots[slot] = mas->last;
3439 if (mas->last != ULONG_MAX)
3440 pivots[++slot] = ULONG_MAX;
3441
3442 mas->depth = 1;
3443 mas_set_height(mas);
3444 ma_set_meta(node, maple_leaf_64, 0, slot);
3445 /* swap the new root into the tree */
3446 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3447 return;
3448 }
3449
3450 /*
3451 * mas_store_root() - Storing value into root.
3452 * @mas: The maple state
3453 * @entry: The entry to store.
3454 *
3455 * There is no root node now and we are storing a value into the root - this
3456 * function either assigns the pointer or expands into a node.
3457 */
mas_store_root(struct ma_state * mas,void * entry)3458 static inline void mas_store_root(struct ma_state *mas, void *entry)
3459 {
3460 if (!entry) {
3461 if (!mas->index)
3462 rcu_assign_pointer(mas->tree->ma_root, NULL);
3463 } else if (likely((mas->last != 0) || (mas->index != 0)))
3464 mas_root_expand(mas, entry);
3465 else if (((unsigned long) (entry) & 3) == 2)
3466 mas_root_expand(mas, entry);
3467 else {
3468 rcu_assign_pointer(mas->tree->ma_root, entry);
3469 mas->status = ma_start;
3470 }
3471 }
3472
3473 /*
3474 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3475 * spans the node.
3476 * @wr_mas: The maple write state
3477 *
3478 * Spanning writes are writes that start in one node and end in another OR if
3479 * the write of a %NULL will cause the node to end with a %NULL.
3480 *
3481 * Return: True if this is a spanning write, false otherwise.
3482 */
mas_is_span_wr(struct ma_wr_state * wr_mas)3483 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3484 {
3485 unsigned long max = wr_mas->r_max;
3486 unsigned long last = wr_mas->mas->last;
3487 enum maple_type type = wr_mas->type;
3488 void *entry = wr_mas->entry;
3489
3490 /* Contained in this pivot, fast path */
3491 if (last < max)
3492 return false;
3493
3494 if (ma_is_leaf(type)) {
3495 max = wr_mas->mas->max;
3496 if (last < max)
3497 return false;
3498 }
3499
3500 if (last == max) {
3501 /*
3502 * The last entry of leaf node cannot be NULL unless it is the
3503 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
3504 */
3505 if (entry || last == ULONG_MAX)
3506 return false;
3507 }
3508
3509 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
3510 return true;
3511 }
3512
mas_wr_walk_descend(struct ma_wr_state * wr_mas)3513 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3514 {
3515 wr_mas->type = mte_node_type(wr_mas->mas->node);
3516 mas_wr_node_walk(wr_mas);
3517 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3518 }
3519
mas_wr_walk_traverse(struct ma_wr_state * wr_mas)3520 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3521 {
3522 wr_mas->mas->max = wr_mas->r_max;
3523 wr_mas->mas->min = wr_mas->r_min;
3524 wr_mas->mas->node = wr_mas->content;
3525 wr_mas->mas->offset = 0;
3526 wr_mas->mas->depth++;
3527 }
3528 /*
3529 * mas_wr_walk() - Walk the tree for a write.
3530 * @wr_mas: The maple write state
3531 *
3532 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3533 *
3534 * Return: True if it's contained in a node, false on spanning write.
3535 */
mas_wr_walk(struct ma_wr_state * wr_mas)3536 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3537 {
3538 struct ma_state *mas = wr_mas->mas;
3539
3540 while (true) {
3541 mas_wr_walk_descend(wr_mas);
3542 if (unlikely(mas_is_span_wr(wr_mas)))
3543 return false;
3544
3545 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3546 mas->offset);
3547 if (ma_is_leaf(wr_mas->type))
3548 return true;
3549
3550 mas_wr_walk_traverse(wr_mas);
3551 }
3552
3553 return true;
3554 }
3555
mas_wr_walk_index(struct ma_wr_state * wr_mas)3556 static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
3557 {
3558 struct ma_state *mas = wr_mas->mas;
3559
3560 while (true) {
3561 mas_wr_walk_descend(wr_mas);
3562 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3563 mas->offset);
3564 if (ma_is_leaf(wr_mas->type))
3565 return;
3566 mas_wr_walk_traverse(wr_mas);
3567 }
3568 }
3569 /*
3570 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3571 * @l_wr_mas: The left maple write state
3572 * @r_wr_mas: The right maple write state
3573 */
mas_extend_spanning_null(struct ma_wr_state * l_wr_mas,struct ma_wr_state * r_wr_mas)3574 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3575 struct ma_wr_state *r_wr_mas)
3576 {
3577 struct ma_state *r_mas = r_wr_mas->mas;
3578 struct ma_state *l_mas = l_wr_mas->mas;
3579 unsigned char l_slot;
3580
3581 l_slot = l_mas->offset;
3582 if (!l_wr_mas->content)
3583 l_mas->index = l_wr_mas->r_min;
3584
3585 if ((l_mas->index == l_wr_mas->r_min) &&
3586 (l_slot &&
3587 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3588 if (l_slot > 1)
3589 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3590 else
3591 l_mas->index = l_mas->min;
3592
3593 l_mas->offset = l_slot - 1;
3594 }
3595
3596 if (!r_wr_mas->content) {
3597 if (r_mas->last < r_wr_mas->r_max)
3598 r_mas->last = r_wr_mas->r_max;
3599 r_mas->offset++;
3600 } else if ((r_mas->last == r_wr_mas->r_max) &&
3601 (r_mas->last < r_mas->max) &&
3602 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3603 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3604 r_wr_mas->type, r_mas->offset + 1);
3605 r_mas->offset++;
3606 }
3607 }
3608
mas_state_walk(struct ma_state * mas)3609 static inline void *mas_state_walk(struct ma_state *mas)
3610 {
3611 void *entry;
3612
3613 entry = mas_start(mas);
3614 if (mas_is_none(mas))
3615 return NULL;
3616
3617 if (mas_is_ptr(mas))
3618 return entry;
3619
3620 return mtree_range_walk(mas);
3621 }
3622
3623 /*
3624 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3625 * to date.
3626 *
3627 * @mas: The maple state.
3628 *
3629 * Note: Leaves mas in undesirable state.
3630 * Return: The entry for @mas->index or %NULL on dead node.
3631 */
mtree_lookup_walk(struct ma_state * mas)3632 static inline void *mtree_lookup_walk(struct ma_state *mas)
3633 {
3634 unsigned long *pivots;
3635 unsigned char offset;
3636 struct maple_node *node;
3637 struct maple_enode *next;
3638 enum maple_type type;
3639 void __rcu **slots;
3640 unsigned char end;
3641
3642 next = mas->node;
3643 do {
3644 node = mte_to_node(next);
3645 type = mte_node_type(next);
3646 pivots = ma_pivots(node, type);
3647 end = mt_pivots[type];
3648 offset = 0;
3649 do {
3650 if (pivots[offset] >= mas->index)
3651 break;
3652 } while (++offset < end);
3653
3654 slots = ma_slots(node, type);
3655 next = mt_slot(mas->tree, slots, offset);
3656 if (unlikely(ma_dead_node(node)))
3657 goto dead_node;
3658 } while (!ma_is_leaf(type));
3659
3660 return (void *)next;
3661
3662 dead_node:
3663 mas_reset(mas);
3664 return NULL;
3665 }
3666
3667 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
3668 /*
3669 * mas_new_root() - Create a new root node that only contains the entry passed
3670 * in.
3671 * @mas: The maple state
3672 * @entry: The entry to store.
3673 *
3674 * Only valid when the index == 0 and the last == ULONG_MAX
3675 */
mas_new_root(struct ma_state * mas,void * entry)3676 static inline void mas_new_root(struct ma_state *mas, void *entry)
3677 {
3678 struct maple_enode *root = mas_root_locked(mas);
3679 enum maple_type type = maple_leaf_64;
3680 struct maple_node *node;
3681 void __rcu **slots;
3682 unsigned long *pivots;
3683
3684 WARN_ON_ONCE(mas->index || mas->last != ULONG_MAX);
3685
3686 if (!entry) {
3687 mas->depth = 0;
3688 mas_set_height(mas);
3689 rcu_assign_pointer(mas->tree->ma_root, entry);
3690 mas->status = ma_start;
3691 goto done;
3692 }
3693
3694 node = mas_pop_node(mas);
3695 pivots = ma_pivots(node, type);
3696 slots = ma_slots(node, type);
3697 node->parent = ma_parent_ptr(mas_tree_parent(mas));
3698 mas->node = mt_mk_node(node, type);
3699 mas->status = ma_active;
3700 rcu_assign_pointer(slots[0], entry);
3701 pivots[0] = mas->last;
3702 mas->depth = 1;
3703 mas_set_height(mas);
3704 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3705
3706 done:
3707 if (xa_is_node(root))
3708 mte_destroy_walk(root, mas->tree);
3709
3710 return;
3711 }
3712 /*
3713 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3714 * and new nodes where necessary, then place the sub-tree in the actual tree.
3715 * Note that mas is expected to point to the node which caused the store to
3716 * span.
3717 * @wr_mas: The maple write state
3718 */
mas_wr_spanning_store(struct ma_wr_state * wr_mas)3719 static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3720 {
3721 struct maple_subtree_state mast;
3722 struct maple_big_node b_node;
3723 struct ma_state *mas;
3724 unsigned char height;
3725
3726 /* Left and Right side of spanning store */
3727 MA_STATE(l_mas, NULL, 0, 0);
3728 MA_STATE(r_mas, NULL, 0, 0);
3729 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3730 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3731
3732 /*
3733 * A store operation that spans multiple nodes is called a spanning
3734 * store and is handled early in the store call stack by the function
3735 * mas_is_span_wr(). When a spanning store is identified, the maple
3736 * state is duplicated. The first maple state walks the left tree path
3737 * to ``index``, the duplicate walks the right tree path to ``last``.
3738 * The data in the two nodes are combined into a single node, two nodes,
3739 * or possibly three nodes (see the 3-way split above). A ``NULL``
3740 * written to the last entry of a node is considered a spanning store as
3741 * a rebalance is required for the operation to complete and an overflow
3742 * of data may happen.
3743 */
3744 mas = wr_mas->mas;
3745 trace_ma_op(__func__, mas);
3746
3747 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3748 return mas_new_root(mas, wr_mas->entry);
3749 /*
3750 * Node rebalancing may occur due to this store, so there may be three new
3751 * entries per level plus a new root.
3752 */
3753 height = mas_mt_height(mas);
3754
3755 /*
3756 * Set up right side. Need to get to the next offset after the spanning
3757 * store to ensure it's not NULL and to combine both the next node and
3758 * the node with the start together.
3759 */
3760 r_mas = *mas;
3761 /* Avoid overflow, walk to next slot in the tree. */
3762 if (r_mas.last + 1)
3763 r_mas.last++;
3764
3765 r_mas.index = r_mas.last;
3766 mas_wr_walk_index(&r_wr_mas);
3767 r_mas.last = r_mas.index = mas->last;
3768
3769 /* Set up left side. */
3770 l_mas = *mas;
3771 mas_wr_walk_index(&l_wr_mas);
3772
3773 if (!wr_mas->entry) {
3774 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3775 mas->offset = l_mas.offset;
3776 mas->index = l_mas.index;
3777 mas->last = l_mas.last = r_mas.last;
3778 }
3779
3780 /* expanding NULLs may make this cover the entire range */
3781 if (!l_mas.index && r_mas.last == ULONG_MAX) {
3782 mas_set_range(mas, 0, ULONG_MAX);
3783 return mas_new_root(mas, wr_mas->entry);
3784 }
3785
3786 memset(&b_node, 0, sizeof(struct maple_big_node));
3787 /* Copy l_mas and store the value in b_node. */
3788 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
3789 /* Copy r_mas into b_node if there is anything to copy. */
3790 if (r_mas.max > r_mas.last)
3791 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
3792 &b_node, b_node.b_end + 1);
3793 else
3794 b_node.b_end++;
3795
3796 /* Stop spanning searches by searching for just index. */
3797 l_mas.index = l_mas.last = mas->index;
3798
3799 mast.bn = &b_node;
3800 mast.orig_l = &l_mas;
3801 mast.orig_r = &r_mas;
3802 /* Combine l_mas and r_mas and split them up evenly again. */
3803 return mas_spanning_rebalance(mas, &mast, height + 1);
3804 }
3805
3806 /*
3807 * mas_wr_node_store() - Attempt to store the value in a node
3808 * @wr_mas: The maple write state
3809 *
3810 * Attempts to reuse the node, but may allocate.
3811 */
mas_wr_node_store(struct ma_wr_state * wr_mas,unsigned char new_end)3812 static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
3813 unsigned char new_end)
3814 {
3815 struct ma_state *mas = wr_mas->mas;
3816 void __rcu **dst_slots;
3817 unsigned long *dst_pivots;
3818 unsigned char dst_offset, offset_end = wr_mas->offset_end;
3819 struct maple_node reuse, *newnode;
3820 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
3821 bool in_rcu = mt_in_rcu(mas->tree);
3822
3823 if (mas->last == wr_mas->end_piv)
3824 offset_end++; /* don't copy this offset */
3825 else if (unlikely(wr_mas->r_max == ULONG_MAX))
3826 mas_bulk_rebalance(mas, mas->end, wr_mas->type);
3827
3828 /* set up node. */
3829 if (in_rcu) {
3830 newnode = mas_pop_node(mas);
3831 } else {
3832 memset(&reuse, 0, sizeof(struct maple_node));
3833 newnode = &reuse;
3834 }
3835
3836 newnode->parent = mas_mn(mas)->parent;
3837 dst_pivots = ma_pivots(newnode, wr_mas->type);
3838 dst_slots = ma_slots(newnode, wr_mas->type);
3839 /* Copy from start to insert point */
3840 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3841 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
3842
3843 /* Handle insert of new range starting after old range */
3844 if (wr_mas->r_min < mas->index) {
3845 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3846 dst_pivots[mas->offset++] = mas->index - 1;
3847 }
3848
3849 /* Store the new entry and range end. */
3850 if (mas->offset < node_pivots)
3851 dst_pivots[mas->offset] = mas->last;
3852 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
3853
3854 /*
3855 * this range wrote to the end of the node or it overwrote the rest of
3856 * the data
3857 */
3858 if (offset_end > mas->end)
3859 goto done;
3860
3861 dst_offset = mas->offset + 1;
3862 /* Copy to the end of node if necessary. */
3863 copy_size = mas->end - offset_end + 1;
3864 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
3865 sizeof(void *) * copy_size);
3866 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3867 sizeof(unsigned long) * (copy_size - 1));
3868
3869 if (new_end < node_pivots)
3870 dst_pivots[new_end] = mas->max;
3871
3872 done:
3873 mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
3874 if (in_rcu) {
3875 struct maple_enode *old_enode = mas->node;
3876
3877 mas->node = mt_mk_node(newnode, wr_mas->type);
3878 mas_replace_node(mas, old_enode);
3879 } else {
3880 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3881 }
3882 trace_ma_write(__func__, mas, 0, wr_mas->entry);
3883 mas_update_gap(mas);
3884 mas->end = new_end;
3885 return;
3886 }
3887
3888 /*
3889 * mas_wr_slot_store: Attempt to store a value in a slot.
3890 * @wr_mas: the maple write state
3891 */
mas_wr_slot_store(struct ma_wr_state * wr_mas)3892 static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
3893 {
3894 struct ma_state *mas = wr_mas->mas;
3895 unsigned char offset = mas->offset;
3896 void __rcu **slots = wr_mas->slots;
3897 bool gap = false;
3898
3899 gap |= !mt_slot_locked(mas->tree, slots, offset);
3900 gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
3901
3902 if (wr_mas->offset_end - offset == 1) {
3903 if (mas->index == wr_mas->r_min) {
3904 /* Overwriting the range and a part of the next one */
3905 rcu_assign_pointer(slots[offset], wr_mas->entry);
3906 wr_mas->pivots[offset] = mas->last;
3907 } else {
3908 /* Overwriting a part of the range and the next one */
3909 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3910 wr_mas->pivots[offset] = mas->index - 1;
3911 mas->offset++; /* Keep mas accurate. */
3912 }
3913 } else {
3914 WARN_ON_ONCE(mt_in_rcu(mas->tree));
3915 /*
3916 * Expand the range, only partially overwriting the previous and
3917 * next ranges
3918 */
3919 gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3920 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3921 wr_mas->pivots[offset] = mas->index - 1;
3922 wr_mas->pivots[offset + 1] = mas->last;
3923 mas->offset++; /* Keep mas accurate. */
3924 }
3925
3926 trace_ma_write(__func__, mas, 0, wr_mas->entry);
3927 /*
3928 * Only update gap when the new entry is empty or there is an empty
3929 * entry in the original two ranges.
3930 */
3931 if (!wr_mas->entry || gap)
3932 mas_update_gap(mas);
3933
3934 return;
3935 }
3936
mas_wr_extend_null(struct ma_wr_state * wr_mas)3937 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
3938 {
3939 struct ma_state *mas = wr_mas->mas;
3940
3941 if (!wr_mas->slots[wr_mas->offset_end]) {
3942 /* If this one is null, the next and prev are not */
3943 mas->last = wr_mas->end_piv;
3944 } else {
3945 /* Check next slot(s) if we are overwriting the end */
3946 if ((mas->last == wr_mas->end_piv) &&
3947 (mas->end != wr_mas->offset_end) &&
3948 !wr_mas->slots[wr_mas->offset_end + 1]) {
3949 wr_mas->offset_end++;
3950 if (wr_mas->offset_end == mas->end)
3951 mas->last = mas->max;
3952 else
3953 mas->last = wr_mas->pivots[wr_mas->offset_end];
3954 wr_mas->end_piv = mas->last;
3955 }
3956 }
3957
3958 if (!wr_mas->content) {
3959 /* If this one is null, the next and prev are not */
3960 mas->index = wr_mas->r_min;
3961 } else {
3962 /* Check prev slot if we are overwriting the start */
3963 if (mas->index == wr_mas->r_min && mas->offset &&
3964 !wr_mas->slots[mas->offset - 1]) {
3965 mas->offset--;
3966 wr_mas->r_min = mas->index =
3967 mas_safe_min(mas, wr_mas->pivots, mas->offset);
3968 wr_mas->r_max = wr_mas->pivots[mas->offset];
3969 }
3970 }
3971 }
3972
mas_wr_end_piv(struct ma_wr_state * wr_mas)3973 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
3974 {
3975 while ((wr_mas->offset_end < wr_mas->mas->end) &&
3976 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
3977 wr_mas->offset_end++;
3978
3979 if (wr_mas->offset_end < wr_mas->mas->end)
3980 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
3981 else
3982 wr_mas->end_piv = wr_mas->mas->max;
3983 }
3984
mas_wr_new_end(struct ma_wr_state * wr_mas)3985 static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
3986 {
3987 struct ma_state *mas = wr_mas->mas;
3988 unsigned char new_end = mas->end + 2;
3989
3990 new_end -= wr_mas->offset_end - mas->offset;
3991 if (wr_mas->r_min == mas->index)
3992 new_end--;
3993
3994 if (wr_mas->end_piv == mas->last)
3995 new_end--;
3996
3997 return new_end;
3998 }
3999
4000 /*
4001 * mas_wr_append: Attempt to append
4002 * @wr_mas: the maple write state
4003 * @new_end: The end of the node after the modification
4004 *
4005 * This is currently unsafe in rcu mode since the end of the node may be cached
4006 * by readers while the node contents may be updated which could result in
4007 * inaccurate information.
4008 */
mas_wr_append(struct ma_wr_state * wr_mas,unsigned char new_end)4009 static inline void mas_wr_append(struct ma_wr_state *wr_mas,
4010 unsigned char new_end)
4011 {
4012 struct ma_state *mas = wr_mas->mas;
4013 void __rcu **slots;
4014 unsigned char end = mas->end;
4015
4016 if (new_end < mt_pivots[wr_mas->type]) {
4017 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4018 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
4019 }
4020
4021 slots = wr_mas->slots;
4022 if (new_end == end + 1) {
4023 if (mas->last == wr_mas->r_max) {
4024 /* Append to end of range */
4025 rcu_assign_pointer(slots[new_end], wr_mas->entry);
4026 wr_mas->pivots[end] = mas->index - 1;
4027 mas->offset = new_end;
4028 } else {
4029 /* Append to start of range */
4030 rcu_assign_pointer(slots[new_end], wr_mas->content);
4031 wr_mas->pivots[end] = mas->last;
4032 rcu_assign_pointer(slots[end], wr_mas->entry);
4033 }
4034 } else {
4035 /* Append to the range without touching any boundaries. */
4036 rcu_assign_pointer(slots[new_end], wr_mas->content);
4037 wr_mas->pivots[end + 1] = mas->last;
4038 rcu_assign_pointer(slots[end + 1], wr_mas->entry);
4039 wr_mas->pivots[end] = mas->index - 1;
4040 mas->offset = end + 1;
4041 }
4042
4043 if (!wr_mas->content || !wr_mas->entry)
4044 mas_update_gap(mas);
4045
4046 mas->end = new_end;
4047 trace_ma_write(__func__, mas, new_end, wr_mas->entry);
4048 return;
4049 }
4050
4051 /*
4052 * mas_wr_bnode() - Slow path for a modification.
4053 * @wr_mas: The write maple state
4054 *
4055 * This is where split, rebalance end up.
4056 */
mas_wr_bnode(struct ma_wr_state * wr_mas)4057 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4058 {
4059 struct maple_big_node b_node;
4060
4061 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4062 memset(&b_node, 0, sizeof(struct maple_big_node));
4063 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4064 mas_commit_b_node(wr_mas, &b_node);
4065 }
4066
4067 /*
4068 * mas_wr_store_entry() - Internal call to store a value
4069 * @wr_mas: The maple write state
4070 */
mas_wr_store_entry(struct ma_wr_state * wr_mas)4071 static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
4072 {
4073 struct ma_state *mas = wr_mas->mas;
4074 unsigned char new_end = mas_wr_new_end(wr_mas);
4075
4076 switch (mas->store_type) {
4077 case wr_invalid:
4078 MT_BUG_ON(mas->tree, 1);
4079 return;
4080 case wr_new_root:
4081 mas_new_root(mas, wr_mas->entry);
4082 break;
4083 case wr_store_root:
4084 mas_store_root(mas, wr_mas->entry);
4085 break;
4086 case wr_exact_fit:
4087 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4088 if (!!wr_mas->entry ^ !!wr_mas->content)
4089 mas_update_gap(mas);
4090 break;
4091 case wr_append:
4092 mas_wr_append(wr_mas, new_end);
4093 break;
4094 case wr_slot_store:
4095 mas_wr_slot_store(wr_mas);
4096 break;
4097 case wr_node_store:
4098 mas_wr_node_store(wr_mas, new_end);
4099 break;
4100 case wr_spanning_store:
4101 mas_wr_spanning_store(wr_mas);
4102 break;
4103 case wr_split_store:
4104 case wr_rebalance:
4105 mas_wr_bnode(wr_mas);
4106 break;
4107 }
4108
4109 return;
4110 }
4111
mas_wr_prealloc_setup(struct ma_wr_state * wr_mas)4112 static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
4113 {
4114 struct ma_state *mas = wr_mas->mas;
4115
4116 if (!mas_is_active(mas)) {
4117 if (mas_is_start(mas))
4118 goto set_content;
4119
4120 if (unlikely(mas_is_paused(mas)))
4121 goto reset;
4122
4123 if (unlikely(mas_is_none(mas)))
4124 goto reset;
4125
4126 if (unlikely(mas_is_overflow(mas)))
4127 goto reset;
4128
4129 if (unlikely(mas_is_underflow(mas)))
4130 goto reset;
4131 }
4132
4133 /*
4134 * A less strict version of mas_is_span_wr() where we allow spanning
4135 * writes within this node. This is to stop partial walks in
4136 * mas_prealloc() from being reset.
4137 */
4138 if (mas->last > mas->max)
4139 goto reset;
4140
4141 if (wr_mas->entry)
4142 goto set_content;
4143
4144 if (mte_is_leaf(mas->node) && mas->last == mas->max)
4145 goto reset;
4146
4147 goto set_content;
4148
4149 reset:
4150 mas_reset(mas);
4151 set_content:
4152 wr_mas->content = mas_start(mas);
4153 }
4154
4155 /**
4156 * mas_prealloc_calc() - Calculate number of nodes needed for a
4157 * given store oepration
4158 * @mas: The maple state
4159 * @entry: The entry to store into the tree
4160 *
4161 * Return: Number of nodes required for preallocation.
4162 */
mas_prealloc_calc(struct ma_state * mas,void * entry)4163 static inline int mas_prealloc_calc(struct ma_state *mas, void *entry)
4164 {
4165 int ret = mas_mt_height(mas) * 3 + 1;
4166
4167 switch (mas->store_type) {
4168 case wr_invalid:
4169 WARN_ON_ONCE(1);
4170 break;
4171 case wr_new_root:
4172 ret = 1;
4173 break;
4174 case wr_store_root:
4175 if (likely((mas->last != 0) || (mas->index != 0)))
4176 ret = 1;
4177 else if (((unsigned long) (entry) & 3) == 2)
4178 ret = 1;
4179 else
4180 ret = 0;
4181 break;
4182 case wr_spanning_store:
4183 ret = mas_mt_height(mas) * 3 + 1;
4184 break;
4185 case wr_split_store:
4186 ret = mas_mt_height(mas) * 2 + 1;
4187 break;
4188 case wr_rebalance:
4189 ret = mas_mt_height(mas) * 2 - 1;
4190 break;
4191 case wr_node_store:
4192 ret = mt_in_rcu(mas->tree) ? 1 : 0;
4193 break;
4194 case wr_append:
4195 case wr_exact_fit:
4196 case wr_slot_store:
4197 ret = 0;
4198 }
4199
4200 return ret;
4201 }
4202
4203 /*
4204 * mas_wr_store_type() - Determine the store type for a given
4205 * store operation.
4206 * @wr_mas: The maple write state
4207 *
4208 * Return: the type of store needed for the operation
4209 */
mas_wr_store_type(struct ma_wr_state * wr_mas)4210 static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas)
4211 {
4212 struct ma_state *mas = wr_mas->mas;
4213 unsigned char new_end;
4214
4215 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
4216 return wr_store_root;
4217
4218 if (unlikely(!mas_wr_walk(wr_mas)))
4219 return wr_spanning_store;
4220
4221 /* At this point, we are at the leaf node that needs to be altered. */
4222 mas_wr_end_piv(wr_mas);
4223 if (!wr_mas->entry)
4224 mas_wr_extend_null(wr_mas);
4225
4226 if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last))
4227 return wr_exact_fit;
4228
4229 if (unlikely(!mas->index && mas->last == ULONG_MAX))
4230 return wr_new_root;
4231
4232 new_end = mas_wr_new_end(wr_mas);
4233 /* Potential spanning rebalance collapsing a node */
4234 if (new_end < mt_min_slots[wr_mas->type]) {
4235 if (!mte_is_root(mas->node) && !(mas->mas_flags & MA_STATE_BULK))
4236 return wr_rebalance;
4237 return wr_node_store;
4238 }
4239
4240 if (new_end >= mt_slots[wr_mas->type])
4241 return wr_split_store;
4242
4243 if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end))
4244 return wr_append;
4245
4246 if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) ||
4247 (wr_mas->offset_end - mas->offset == 1)))
4248 return wr_slot_store;
4249
4250 return wr_node_store;
4251 }
4252
4253 /**
4254 * mas_wr_preallocate() - Preallocate enough nodes for a store operation
4255 * @wr_mas: The maple write state
4256 * @entry: The entry that will be stored
4257 *
4258 */
mas_wr_preallocate(struct ma_wr_state * wr_mas,void * entry)4259 static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
4260 {
4261 struct ma_state *mas = wr_mas->mas;
4262 int request;
4263
4264 mas_wr_prealloc_setup(wr_mas);
4265 mas->store_type = mas_wr_store_type(wr_mas);
4266 request = mas_prealloc_calc(mas, entry);
4267 if (!request)
4268 return;
4269
4270 mas_node_count(mas, request);
4271 }
4272
4273 /**
4274 * mas_insert() - Internal call to insert a value
4275 * @mas: The maple state
4276 * @entry: The entry to store
4277 *
4278 * Return: %NULL or the contents that already exists at the requested index
4279 * otherwise. The maple state needs to be checked for error conditions.
4280 */
mas_insert(struct ma_state * mas,void * entry)4281 static inline void *mas_insert(struct ma_state *mas, void *entry)
4282 {
4283 MA_WR_STATE(wr_mas, mas, entry);
4284
4285 /*
4286 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4287 * tree. If the insert fits exactly into an existing gap with a value
4288 * of NULL, then the slot only needs to be written with the new value.
4289 * If the range being inserted is adjacent to another range, then only a
4290 * single pivot needs to be inserted (as well as writing the entry). If
4291 * the new range is within a gap but does not touch any other ranges,
4292 * then two pivots need to be inserted: the start - 1, and the end. As
4293 * usual, the entry must be written. Most operations require a new node
4294 * to be allocated and replace an existing node to ensure RCU safety,
4295 * when in RCU mode. The exception to requiring a newly allocated node
4296 * is when inserting at the end of a node (appending). When done
4297 * carefully, appending can reuse the node in place.
4298 */
4299 wr_mas.content = mas_start(mas);
4300 if (wr_mas.content)
4301 goto exists;
4302
4303 mas_wr_preallocate(&wr_mas, entry);
4304 if (mas_is_err(mas))
4305 return NULL;
4306
4307 /* spanning writes always overwrite something */
4308 if (mas->store_type == wr_spanning_store)
4309 goto exists;
4310
4311 /* At this point, we are at the leaf node that needs to be altered. */
4312 if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) {
4313 wr_mas.offset_end = mas->offset;
4314 wr_mas.end_piv = wr_mas.r_max;
4315
4316 if (wr_mas.content || (mas->last > wr_mas.r_max))
4317 goto exists;
4318 }
4319
4320 mas_wr_store_entry(&wr_mas);
4321 return wr_mas.content;
4322
4323 exists:
4324 mas_set_err(mas, -EEXIST);
4325 return wr_mas.content;
4326
4327 }
4328
4329 /**
4330 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4331 * @mas: The maple state.
4332 * @startp: Pointer to ID.
4333 * @range_lo: Lower bound of range to search.
4334 * @range_hi: Upper bound of range to search.
4335 * @entry: The entry to store.
4336 * @next: Pointer to next ID to allocate.
4337 * @gfp: The GFP_FLAGS to use for allocations.
4338 *
4339 * Return: 0 if the allocation succeeded without wrapping, 1 if the
4340 * allocation succeeded after wrapping, or -EBUSY if there are no
4341 * free entries.
4342 */
mas_alloc_cyclic(struct ma_state * mas,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)4343 int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4344 void *entry, unsigned long range_lo, unsigned long range_hi,
4345 unsigned long *next, gfp_t gfp)
4346 {
4347 unsigned long min = range_lo;
4348 int ret = 0;
4349
4350 range_lo = max(min, *next);
4351 ret = mas_empty_area(mas, range_lo, range_hi, 1);
4352 if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4353 mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4354 ret = 1;
4355 }
4356 if (ret < 0 && range_lo > min) {
4357 mas_reset(mas);
4358 ret = mas_empty_area(mas, min, range_hi, 1);
4359 if (ret == 0)
4360 ret = 1;
4361 }
4362 if (ret < 0)
4363 return ret;
4364
4365 do {
4366 mas_insert(mas, entry);
4367 } while (mas_nomem(mas, gfp));
4368 if (mas_is_err(mas))
4369 return xa_err(mas->node);
4370
4371 *startp = mas->index;
4372 *next = *startp + 1;
4373 if (*next == 0)
4374 mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4375
4376 mas_destroy(mas);
4377 return ret;
4378 }
4379 EXPORT_SYMBOL(mas_alloc_cyclic);
4380
mas_rewalk(struct ma_state * mas,unsigned long index)4381 static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4382 {
4383 retry:
4384 mas_set(mas, index);
4385 mas_state_walk(mas);
4386 if (mas_is_start(mas))
4387 goto retry;
4388 }
4389
mas_rewalk_if_dead(struct ma_state * mas,struct maple_node * node,const unsigned long index)4390 static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
4391 struct maple_node *node, const unsigned long index)
4392 {
4393 if (unlikely(ma_dead_node(node))) {
4394 mas_rewalk(mas, index);
4395 return true;
4396 }
4397 return false;
4398 }
4399
4400 /*
4401 * mas_prev_node() - Find the prev non-null entry at the same level in the
4402 * tree. The prev value will be mas->node[mas->offset] or the status will be
4403 * ma_none.
4404 * @mas: The maple state
4405 * @min: The lower limit to search
4406 *
4407 * The prev node value will be mas->node[mas->offset] or the status will be
4408 * ma_none.
4409 * Return: 1 if the node is dead, 0 otherwise.
4410 */
mas_prev_node(struct ma_state * mas,unsigned long min)4411 static int mas_prev_node(struct ma_state *mas, unsigned long min)
4412 {
4413 enum maple_type mt;
4414 int offset, level;
4415 void __rcu **slots;
4416 struct maple_node *node;
4417 unsigned long *pivots;
4418 unsigned long max;
4419
4420 node = mas_mn(mas);
4421 if (!mas->min)
4422 goto no_entry;
4423
4424 max = mas->min - 1;
4425 if (max < min)
4426 goto no_entry;
4427
4428 level = 0;
4429 do {
4430 if (ma_is_root(node))
4431 goto no_entry;
4432
4433 /* Walk up. */
4434 if (unlikely(mas_ascend(mas)))
4435 return 1;
4436 offset = mas->offset;
4437 level++;
4438 node = mas_mn(mas);
4439 } while (!offset);
4440
4441 offset--;
4442 mt = mte_node_type(mas->node);
4443 while (level > 1) {
4444 level--;
4445 slots = ma_slots(node, mt);
4446 mas->node = mas_slot(mas, slots, offset);
4447 if (unlikely(ma_dead_node(node)))
4448 return 1;
4449
4450 mt = mte_node_type(mas->node);
4451 node = mas_mn(mas);
4452 pivots = ma_pivots(node, mt);
4453 offset = ma_data_end(node, mt, pivots, max);
4454 if (unlikely(ma_dead_node(node)))
4455 return 1;
4456 }
4457
4458 slots = ma_slots(node, mt);
4459 mas->node = mas_slot(mas, slots, offset);
4460 pivots = ma_pivots(node, mt);
4461 if (unlikely(ma_dead_node(node)))
4462 return 1;
4463
4464 if (likely(offset))
4465 mas->min = pivots[offset - 1] + 1;
4466 mas->max = max;
4467 mas->offset = mas_data_end(mas);
4468 if (unlikely(mte_dead_node(mas->node)))
4469 return 1;
4470
4471 mas->end = mas->offset;
4472 return 0;
4473
4474 no_entry:
4475 if (unlikely(ma_dead_node(node)))
4476 return 1;
4477
4478 mas->status = ma_underflow;
4479 return 0;
4480 }
4481
4482 /*
4483 * mas_prev_slot() - Get the entry in the previous slot
4484 *
4485 * @mas: The maple state
4486 * @min: The minimum starting range
4487 * @empty: Can be empty
4488 *
4489 * Return: The entry in the previous slot which is possibly NULL
4490 */
mas_prev_slot(struct ma_state * mas,unsigned long min,bool empty)4491 static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4492 {
4493 void *entry;
4494 void __rcu **slots;
4495 unsigned long pivot;
4496 enum maple_type type;
4497 unsigned long *pivots;
4498 struct maple_node *node;
4499 unsigned long save_point = mas->index;
4500
4501 retry:
4502 node = mas_mn(mas);
4503 type = mte_node_type(mas->node);
4504 pivots = ma_pivots(node, type);
4505 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4506 goto retry;
4507
4508 if (mas->min <= min) {
4509 pivot = mas_safe_min(mas, pivots, mas->offset);
4510
4511 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4512 goto retry;
4513
4514 if (pivot <= min)
4515 goto underflow;
4516 }
4517
4518 again:
4519 if (likely(mas->offset)) {
4520 mas->offset--;
4521 mas->last = mas->index - 1;
4522 mas->index = mas_safe_min(mas, pivots, mas->offset);
4523 } else {
4524 if (mas->index <= min)
4525 goto underflow;
4526
4527 if (mas_prev_node(mas, min)) {
4528 mas_rewalk(mas, save_point);
4529 goto retry;
4530 }
4531
4532 if (WARN_ON_ONCE(mas_is_underflow(mas)))
4533 return NULL;
4534
4535 mas->last = mas->max;
4536 node = mas_mn(mas);
4537 type = mte_node_type(mas->node);
4538 pivots = ma_pivots(node, type);
4539 mas->index = pivots[mas->offset - 1] + 1;
4540 }
4541
4542 slots = ma_slots(node, type);
4543 entry = mas_slot(mas, slots, mas->offset);
4544 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4545 goto retry;
4546
4547
4548 if (likely(entry))
4549 return entry;
4550
4551 if (!empty) {
4552 if (mas->index <= min) {
4553 mas->status = ma_underflow;
4554 return NULL;
4555 }
4556
4557 goto again;
4558 }
4559
4560 return entry;
4561
4562 underflow:
4563 mas->status = ma_underflow;
4564 return NULL;
4565 }
4566
4567 /*
4568 * mas_next_node() - Get the next node at the same level in the tree.
4569 * @mas: The maple state
4570 * @node: The maple node
4571 * @max: The maximum pivot value to check.
4572 *
4573 * The next value will be mas->node[mas->offset] or the status will have
4574 * overflowed.
4575 * Return: 1 on dead node, 0 otherwise.
4576 */
mas_next_node(struct ma_state * mas,struct maple_node * node,unsigned long max)4577 static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4578 unsigned long max)
4579 {
4580 unsigned long min;
4581 unsigned long *pivots;
4582 struct maple_enode *enode;
4583 struct maple_node *tmp;
4584 int level = 0;
4585 unsigned char node_end;
4586 enum maple_type mt;
4587 void __rcu **slots;
4588
4589 if (mas->max >= max)
4590 goto overflow;
4591
4592 min = mas->max + 1;
4593 level = 0;
4594 do {
4595 if (ma_is_root(node))
4596 goto overflow;
4597
4598 /* Walk up. */
4599 if (unlikely(mas_ascend(mas)))
4600 return 1;
4601
4602 level++;
4603 node = mas_mn(mas);
4604 mt = mte_node_type(mas->node);
4605 pivots = ma_pivots(node, mt);
4606 node_end = ma_data_end(node, mt, pivots, mas->max);
4607 if (unlikely(ma_dead_node(node)))
4608 return 1;
4609
4610 } while (unlikely(mas->offset == node_end));
4611
4612 slots = ma_slots(node, mt);
4613 mas->offset++;
4614 enode = mas_slot(mas, slots, mas->offset);
4615 if (unlikely(ma_dead_node(node)))
4616 return 1;
4617
4618 if (level > 1)
4619 mas->offset = 0;
4620
4621 while (unlikely(level > 1)) {
4622 level--;
4623 mas->node = enode;
4624 node = mas_mn(mas);
4625 mt = mte_node_type(mas->node);
4626 slots = ma_slots(node, mt);
4627 enode = mas_slot(mas, slots, 0);
4628 if (unlikely(ma_dead_node(node)))
4629 return 1;
4630 }
4631
4632 if (!mas->offset)
4633 pivots = ma_pivots(node, mt);
4634
4635 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
4636 tmp = mte_to_node(enode);
4637 mt = mte_node_type(enode);
4638 pivots = ma_pivots(tmp, mt);
4639 mas->end = ma_data_end(tmp, mt, pivots, mas->max);
4640 if (unlikely(ma_dead_node(node)))
4641 return 1;
4642
4643 mas->node = enode;
4644 mas->min = min;
4645 return 0;
4646
4647 overflow:
4648 if (unlikely(ma_dead_node(node)))
4649 return 1;
4650
4651 mas->status = ma_overflow;
4652 return 0;
4653 }
4654
4655 /*
4656 * mas_next_slot() - Get the entry in the next slot
4657 *
4658 * @mas: The maple state
4659 * @max: The maximum starting range
4660 * @empty: Can be empty
4661 *
4662 * Return: The entry in the next slot which is possibly NULL
4663 */
mas_next_slot(struct ma_state * mas,unsigned long max,bool empty)4664 static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
4665 {
4666 void __rcu **slots;
4667 unsigned long *pivots;
4668 unsigned long pivot;
4669 enum maple_type type;
4670 struct maple_node *node;
4671 unsigned long save_point = mas->last;
4672 void *entry;
4673
4674 retry:
4675 node = mas_mn(mas);
4676 type = mte_node_type(mas->node);
4677 pivots = ma_pivots(node, type);
4678 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4679 goto retry;
4680
4681 if (mas->max >= max) {
4682 if (likely(mas->offset < mas->end))
4683 pivot = pivots[mas->offset];
4684 else
4685 pivot = mas->max;
4686
4687 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4688 goto retry;
4689
4690 if (pivot >= max) { /* Was at the limit, next will extend beyond */
4691 mas->status = ma_overflow;
4692 return NULL;
4693 }
4694 }
4695
4696 if (likely(mas->offset < mas->end)) {
4697 mas->index = pivots[mas->offset] + 1;
4698 again:
4699 mas->offset++;
4700 if (likely(mas->offset < mas->end))
4701 mas->last = pivots[mas->offset];
4702 else
4703 mas->last = mas->max;
4704 } else {
4705 if (mas->last >= max) {
4706 mas->status = ma_overflow;
4707 return NULL;
4708 }
4709
4710 if (mas_next_node(mas, node, max)) {
4711 mas_rewalk(mas, save_point);
4712 goto retry;
4713 }
4714
4715 if (WARN_ON_ONCE(mas_is_overflow(mas)))
4716 return NULL;
4717
4718 mas->offset = 0;
4719 mas->index = mas->min;
4720 node = mas_mn(mas);
4721 type = mte_node_type(mas->node);
4722 pivots = ma_pivots(node, type);
4723 mas->last = pivots[0];
4724 }
4725
4726 slots = ma_slots(node, type);
4727 entry = mt_slot(mas->tree, slots, mas->offset);
4728 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4729 goto retry;
4730
4731 if (entry)
4732 return entry;
4733
4734
4735 if (!empty) {
4736 if (mas->last >= max) {
4737 mas->status = ma_overflow;
4738 return NULL;
4739 }
4740
4741 mas->index = mas->last + 1;
4742 goto again;
4743 }
4744
4745 return entry;
4746 }
4747
4748 /*
4749 * mas_next_entry() - Internal function to get the next entry.
4750 * @mas: The maple state
4751 * @limit: The maximum range start.
4752 *
4753 * Set the @mas->node to the next entry and the range_start to
4754 * the beginning value for the entry. Does not check beyond @limit.
4755 * Sets @mas->index and @mas->last to the range, Does not update @mas->index and
4756 * @mas->last on overflow.
4757 * Restarts on dead nodes.
4758 *
4759 * Return: the next entry or %NULL.
4760 */
mas_next_entry(struct ma_state * mas,unsigned long limit)4761 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4762 {
4763 if (mas->last >= limit) {
4764 mas->status = ma_overflow;
4765 return NULL;
4766 }
4767
4768 return mas_next_slot(mas, limit, false);
4769 }
4770
4771 /*
4772 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4773 * highest gap address of a given size in a given node and descend.
4774 * @mas: The maple state
4775 * @size: The needed size.
4776 *
4777 * Return: True if found in a leaf, false otherwise.
4778 *
4779 */
mas_rev_awalk(struct ma_state * mas,unsigned long size,unsigned long * gap_min,unsigned long * gap_max)4780 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4781 unsigned long *gap_min, unsigned long *gap_max)
4782 {
4783 enum maple_type type = mte_node_type(mas->node);
4784 struct maple_node *node = mas_mn(mas);
4785 unsigned long *pivots, *gaps;
4786 void __rcu **slots;
4787 unsigned long gap = 0;
4788 unsigned long max, min;
4789 unsigned char offset;
4790
4791 if (unlikely(mas_is_err(mas)))
4792 return true;
4793
4794 if (ma_is_dense(type)) {
4795 /* dense nodes. */
4796 mas->offset = (unsigned char)(mas->index - mas->min);
4797 return true;
4798 }
4799
4800 pivots = ma_pivots(node, type);
4801 slots = ma_slots(node, type);
4802 gaps = ma_gaps(node, type);
4803 offset = mas->offset;
4804 min = mas_safe_min(mas, pivots, offset);
4805 /* Skip out of bounds. */
4806 while (mas->last < min)
4807 min = mas_safe_min(mas, pivots, --offset);
4808
4809 max = mas_safe_pivot(mas, pivots, offset, type);
4810 while (mas->index <= max) {
4811 gap = 0;
4812 if (gaps)
4813 gap = gaps[offset];
4814 else if (!mas_slot(mas, slots, offset))
4815 gap = max - min + 1;
4816
4817 if (gap) {
4818 if ((size <= gap) && (size <= mas->last - min + 1))
4819 break;
4820
4821 if (!gaps) {
4822 /* Skip the next slot, it cannot be a gap. */
4823 if (offset < 2)
4824 goto ascend;
4825
4826 offset -= 2;
4827 max = pivots[offset];
4828 min = mas_safe_min(mas, pivots, offset);
4829 continue;
4830 }
4831 }
4832
4833 if (!offset)
4834 goto ascend;
4835
4836 offset--;
4837 max = min - 1;
4838 min = mas_safe_min(mas, pivots, offset);
4839 }
4840
4841 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4842 goto no_space;
4843
4844 if (unlikely(ma_is_leaf(type))) {
4845 mas->offset = offset;
4846 *gap_min = min;
4847 *gap_max = min + gap - 1;
4848 return true;
4849 }
4850
4851 /* descend, only happens under lock. */
4852 mas->node = mas_slot(mas, slots, offset);
4853 mas->min = min;
4854 mas->max = max;
4855 mas->offset = mas_data_end(mas);
4856 return false;
4857
4858 ascend:
4859 if (!mte_is_root(mas->node))
4860 return false;
4861
4862 no_space:
4863 mas_set_err(mas, -EBUSY);
4864 return false;
4865 }
4866
mas_anode_descend(struct ma_state * mas,unsigned long size)4867 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4868 {
4869 enum maple_type type = mte_node_type(mas->node);
4870 unsigned long pivot, min, gap = 0;
4871 unsigned char offset, data_end;
4872 unsigned long *gaps, *pivots;
4873 void __rcu **slots;
4874 struct maple_node *node;
4875 bool found = false;
4876
4877 if (ma_is_dense(type)) {
4878 mas->offset = (unsigned char)(mas->index - mas->min);
4879 return true;
4880 }
4881
4882 node = mas_mn(mas);
4883 pivots = ma_pivots(node, type);
4884 slots = ma_slots(node, type);
4885 gaps = ma_gaps(node, type);
4886 offset = mas->offset;
4887 min = mas_safe_min(mas, pivots, offset);
4888 data_end = ma_data_end(node, type, pivots, mas->max);
4889 for (; offset <= data_end; offset++) {
4890 pivot = mas_safe_pivot(mas, pivots, offset, type);
4891
4892 /* Not within lower bounds */
4893 if (mas->index > pivot)
4894 goto next_slot;
4895
4896 if (gaps)
4897 gap = gaps[offset];
4898 else if (!mas_slot(mas, slots, offset))
4899 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4900 else
4901 goto next_slot;
4902
4903 if (gap >= size) {
4904 if (ma_is_leaf(type)) {
4905 found = true;
4906 goto done;
4907 }
4908 if (mas->index <= pivot) {
4909 mas->node = mas_slot(mas, slots, offset);
4910 mas->min = min;
4911 mas->max = pivot;
4912 offset = 0;
4913 break;
4914 }
4915 }
4916 next_slot:
4917 min = pivot + 1;
4918 if (mas->last <= pivot) {
4919 mas_set_err(mas, -EBUSY);
4920 return true;
4921 }
4922 }
4923
4924 if (mte_is_root(mas->node))
4925 found = true;
4926 done:
4927 mas->offset = offset;
4928 return found;
4929 }
4930
4931 /**
4932 * mas_walk() - Search for @mas->index in the tree.
4933 * @mas: The maple state.
4934 *
4935 * mas->index and mas->last will be set to the range if there is a value. If
4936 * mas->status is ma_none, reset to ma_start
4937 *
4938 * Return: the entry at the location or %NULL.
4939 */
mas_walk(struct ma_state * mas)4940 void *mas_walk(struct ma_state *mas)
4941 {
4942 void *entry;
4943
4944 if (!mas_is_active(mas) || !mas_is_start(mas))
4945 mas->status = ma_start;
4946 retry:
4947 entry = mas_state_walk(mas);
4948 if (mas_is_start(mas)) {
4949 goto retry;
4950 } else if (mas_is_none(mas)) {
4951 mas->index = 0;
4952 mas->last = ULONG_MAX;
4953 } else if (mas_is_ptr(mas)) {
4954 if (!mas->index) {
4955 mas->last = 0;
4956 return entry;
4957 }
4958
4959 mas->index = 1;
4960 mas->last = ULONG_MAX;
4961 mas->status = ma_none;
4962 return NULL;
4963 }
4964
4965 return entry;
4966 }
4967 EXPORT_SYMBOL_GPL(mas_walk);
4968
mas_rewind_node(struct ma_state * mas)4969 static inline bool mas_rewind_node(struct ma_state *mas)
4970 {
4971 unsigned char slot;
4972
4973 do {
4974 if (mte_is_root(mas->node)) {
4975 slot = mas->offset;
4976 if (!slot)
4977 return false;
4978 } else {
4979 mas_ascend(mas);
4980 slot = mas->offset;
4981 }
4982 } while (!slot);
4983
4984 mas->offset = --slot;
4985 return true;
4986 }
4987
4988 /*
4989 * mas_skip_node() - Internal function. Skip over a node.
4990 * @mas: The maple state.
4991 *
4992 * Return: true if there is another node, false otherwise.
4993 */
mas_skip_node(struct ma_state * mas)4994 static inline bool mas_skip_node(struct ma_state *mas)
4995 {
4996 if (mas_is_err(mas))
4997 return false;
4998
4999 do {
5000 if (mte_is_root(mas->node)) {
5001 if (mas->offset >= mas_data_end(mas)) {
5002 mas_set_err(mas, -EBUSY);
5003 return false;
5004 }
5005 } else {
5006 mas_ascend(mas);
5007 }
5008 } while (mas->offset >= mas_data_end(mas));
5009
5010 mas->offset++;
5011 return true;
5012 }
5013
5014 /*
5015 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5016 * @size
5017 * @mas: The maple state
5018 * @size: The size of the gap required
5019 *
5020 * Search between @mas->index and @mas->last for a gap of @size.
5021 */
mas_awalk(struct ma_state * mas,unsigned long size)5022 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5023 {
5024 struct maple_enode *last = NULL;
5025
5026 /*
5027 * There are 4 options:
5028 * go to child (descend)
5029 * go back to parent (ascend)
5030 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5031 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5032 */
5033 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5034 if (last == mas->node)
5035 mas_skip_node(mas);
5036 else
5037 last = mas->node;
5038 }
5039 }
5040
5041 /*
5042 * mas_sparse_area() - Internal function. Return upper or lower limit when
5043 * searching for a gap in an empty tree.
5044 * @mas: The maple state
5045 * @min: the minimum range
5046 * @max: The maximum range
5047 * @size: The size of the gap
5048 * @fwd: Searching forward or back
5049 */
mas_sparse_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size,bool fwd)5050 static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
5051 unsigned long max, unsigned long size, bool fwd)
5052 {
5053 if (!unlikely(mas_is_none(mas)) && min == 0) {
5054 min++;
5055 /*
5056 * At this time, min is increased, we need to recheck whether
5057 * the size is satisfied.
5058 */
5059 if (min > max || max - min + 1 < size)
5060 return -EBUSY;
5061 }
5062 /* mas_is_ptr */
5063
5064 if (fwd) {
5065 mas->index = min;
5066 mas->last = min + size - 1;
5067 } else {
5068 mas->last = max;
5069 mas->index = max - size + 1;
5070 }
5071 return 0;
5072 }
5073
5074 /*
5075 * mas_empty_area() - Get the lowest address within the range that is
5076 * sufficient for the size requested.
5077 * @mas: The maple state
5078 * @min: The lowest value of the range
5079 * @max: The highest value of the range
5080 * @size: The size needed
5081 */
mas_empty_area(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5082 int mas_empty_area(struct ma_state *mas, unsigned long min,
5083 unsigned long max, unsigned long size)
5084 {
5085 unsigned char offset;
5086 unsigned long *pivots;
5087 enum maple_type mt;
5088 struct maple_node *node;
5089
5090 if (min > max)
5091 return -EINVAL;
5092
5093 if (size == 0 || max - min < size - 1)
5094 return -EINVAL;
5095
5096 if (mas_is_start(mas))
5097 mas_start(mas);
5098 else if (mas->offset >= 2)
5099 mas->offset -= 2;
5100 else if (!mas_skip_node(mas))
5101 return -EBUSY;
5102
5103 /* Empty set */
5104 if (mas_is_none(mas) || mas_is_ptr(mas))
5105 return mas_sparse_area(mas, min, max, size, true);
5106
5107 /* The start of the window can only be within these values */
5108 mas->index = min;
5109 mas->last = max;
5110 mas_awalk(mas, size);
5111
5112 if (unlikely(mas_is_err(mas)))
5113 return xa_err(mas->node);
5114
5115 offset = mas->offset;
5116 if (unlikely(offset == MAPLE_NODE_SLOTS))
5117 return -EBUSY;
5118
5119 node = mas_mn(mas);
5120 mt = mte_node_type(mas->node);
5121 pivots = ma_pivots(node, mt);
5122 min = mas_safe_min(mas, pivots, offset);
5123 if (mas->index < min)
5124 mas->index = min;
5125 mas->last = mas->index + size - 1;
5126 mas->end = ma_data_end(node, mt, pivots, mas->max);
5127 return 0;
5128 }
5129 EXPORT_SYMBOL_GPL(mas_empty_area);
5130
5131 /*
5132 * mas_empty_area_rev() - Get the highest address within the range that is
5133 * sufficient for the size requested.
5134 * @mas: The maple state
5135 * @min: The lowest value of the range
5136 * @max: The highest value of the range
5137 * @size: The size needed
5138 */
mas_empty_area_rev(struct ma_state * mas,unsigned long min,unsigned long max,unsigned long size)5139 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5140 unsigned long max, unsigned long size)
5141 {
5142 struct maple_enode *last = mas->node;
5143
5144 if (min > max)
5145 return -EINVAL;
5146
5147 if (size == 0 || max - min < size - 1)
5148 return -EINVAL;
5149
5150 if (mas_is_start(mas))
5151 mas_start(mas);
5152 else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
5153 return -EBUSY;
5154
5155 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5156 return mas_sparse_area(mas, min, max, size, false);
5157 else if (mas->offset >= 2)
5158 mas->offset -= 2;
5159 else
5160 mas->offset = mas_data_end(mas);
5161
5162
5163 /* The start of the window can only be within these values. */
5164 mas->index = min;
5165 mas->last = max;
5166
5167 while (!mas_rev_awalk(mas, size, &min, &max)) {
5168 if (last == mas->node) {
5169 if (!mas_rewind_node(mas))
5170 return -EBUSY;
5171 } else {
5172 last = mas->node;
5173 }
5174 }
5175
5176 if (mas_is_err(mas))
5177 return xa_err(mas->node);
5178
5179 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5180 return -EBUSY;
5181
5182 /* Trim the upper limit to the max. */
5183 if (max < mas->last)
5184 mas->last = max;
5185
5186 mas->index = mas->last - size + 1;
5187 mas->end = mas_data_end(mas);
5188 return 0;
5189 }
5190 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5191
5192 /*
5193 * mte_dead_leaves() - Mark all leaves of a node as dead.
5194 * @enode: the encoded node
5195 * @mt: the maple tree
5196 * @slots: Pointer to the slot array
5197 *
5198 * Must hold the write lock.
5199 *
5200 * Return: The number of leaves marked as dead.
5201 */
5202 static inline
mte_dead_leaves(struct maple_enode * enode,struct maple_tree * mt,void __rcu ** slots)5203 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5204 void __rcu **slots)
5205 {
5206 struct maple_node *node;
5207 enum maple_type type;
5208 void *entry;
5209 int offset;
5210
5211 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5212 entry = mt_slot(mt, slots, offset);
5213 type = mte_node_type(entry);
5214 node = mte_to_node(entry);
5215 /* Use both node and type to catch LE & BE metadata */
5216 if (!node || !type)
5217 break;
5218
5219 mte_set_node_dead(entry);
5220 node->type = type;
5221 rcu_assign_pointer(slots[offset], node);
5222 }
5223
5224 return offset;
5225 }
5226
5227 /**
5228 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5229 * @enode: The maple encoded node
5230 * @offset: The starting offset
5231 *
5232 * Note: This can only be used from the RCU callback context.
5233 */
mte_dead_walk(struct maple_enode ** enode,unsigned char offset)5234 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5235 {
5236 struct maple_node *node, *next;
5237 void __rcu **slots = NULL;
5238
5239 next = mte_to_node(*enode);
5240 do {
5241 *enode = ma_enode_ptr(next);
5242 node = mte_to_node(*enode);
5243 slots = ma_slots(node, node->type);
5244 next = rcu_dereference_protected(slots[offset],
5245 lock_is_held(&rcu_callback_map));
5246 offset = 0;
5247 } while (!ma_is_leaf(next->type));
5248
5249 return slots;
5250 }
5251
5252 /**
5253 * mt_free_walk() - Walk & free a tree in the RCU callback context
5254 * @head: The RCU head that's within the node.
5255 *
5256 * Note: This can only be used from the RCU callback context.
5257 */
mt_free_walk(struct rcu_head * head)5258 static void mt_free_walk(struct rcu_head *head)
5259 {
5260 void __rcu **slots;
5261 struct maple_node *node, *start;
5262 struct maple_enode *enode;
5263 unsigned char offset;
5264 enum maple_type type;
5265
5266 node = container_of(head, struct maple_node, rcu);
5267
5268 if (ma_is_leaf(node->type))
5269 goto free_leaf;
5270
5271 start = node;
5272 enode = mt_mk_node(node, node->type);
5273 slots = mte_dead_walk(&enode, 0);
5274 node = mte_to_node(enode);
5275 do {
5276 mt_free_bulk(node->slot_len, slots);
5277 offset = node->parent_slot + 1;
5278 enode = node->piv_parent;
5279 if (mte_to_node(enode) == node)
5280 goto free_leaf;
5281
5282 type = mte_node_type(enode);
5283 slots = ma_slots(mte_to_node(enode), type);
5284 if ((offset < mt_slots[type]) &&
5285 rcu_dereference_protected(slots[offset],
5286 lock_is_held(&rcu_callback_map)))
5287 slots = mte_dead_walk(&enode, offset);
5288 node = mte_to_node(enode);
5289 } while ((node != start) || (node->slot_len < offset));
5290
5291 slots = ma_slots(node, node->type);
5292 mt_free_bulk(node->slot_len, slots);
5293
5294 free_leaf:
5295 mt_free_rcu(&node->rcu);
5296 }
5297
mte_destroy_descend(struct maple_enode ** enode,struct maple_tree * mt,struct maple_enode * prev,unsigned char offset)5298 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5299 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5300 {
5301 struct maple_node *node;
5302 struct maple_enode *next = *enode;
5303 void __rcu **slots = NULL;
5304 enum maple_type type;
5305 unsigned char next_offset = 0;
5306
5307 do {
5308 *enode = next;
5309 node = mte_to_node(*enode);
5310 type = mte_node_type(*enode);
5311 slots = ma_slots(node, type);
5312 next = mt_slot_locked(mt, slots, next_offset);
5313 if ((mte_dead_node(next)))
5314 next = mt_slot_locked(mt, slots, ++next_offset);
5315
5316 mte_set_node_dead(*enode);
5317 node->type = type;
5318 node->piv_parent = prev;
5319 node->parent_slot = offset;
5320 offset = next_offset;
5321 next_offset = 0;
5322 prev = *enode;
5323 } while (!mte_is_leaf(next));
5324
5325 return slots;
5326 }
5327
mt_destroy_walk(struct maple_enode * enode,struct maple_tree * mt,bool free)5328 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5329 bool free)
5330 {
5331 void __rcu **slots;
5332 struct maple_node *node = mte_to_node(enode);
5333 struct maple_enode *start;
5334
5335 if (mte_is_leaf(enode)) {
5336 node->type = mte_node_type(enode);
5337 goto free_leaf;
5338 }
5339
5340 start = enode;
5341 slots = mte_destroy_descend(&enode, mt, start, 0);
5342 node = mte_to_node(enode); // Updated in the above call.
5343 do {
5344 enum maple_type type;
5345 unsigned char offset;
5346 struct maple_enode *parent, *tmp;
5347
5348 node->slot_len = mte_dead_leaves(enode, mt, slots);
5349 if (free)
5350 mt_free_bulk(node->slot_len, slots);
5351 offset = node->parent_slot + 1;
5352 enode = node->piv_parent;
5353 if (mte_to_node(enode) == node)
5354 goto free_leaf;
5355
5356 type = mte_node_type(enode);
5357 slots = ma_slots(mte_to_node(enode), type);
5358 if (offset >= mt_slots[type])
5359 goto next;
5360
5361 tmp = mt_slot_locked(mt, slots, offset);
5362 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5363 parent = enode;
5364 enode = tmp;
5365 slots = mte_destroy_descend(&enode, mt, parent, offset);
5366 }
5367 next:
5368 node = mte_to_node(enode);
5369 } while (start != enode);
5370
5371 node = mte_to_node(enode);
5372 node->slot_len = mte_dead_leaves(enode, mt, slots);
5373 if (free)
5374 mt_free_bulk(node->slot_len, slots);
5375
5376 free_leaf:
5377 if (free)
5378 mt_free_rcu(&node->rcu);
5379 else
5380 mt_clear_meta(mt, node, node->type);
5381 }
5382
5383 /*
5384 * mte_destroy_walk() - Free a tree or sub-tree.
5385 * @enode: the encoded maple node (maple_enode) to start
5386 * @mt: the tree to free - needed for node types.
5387 *
5388 * Must hold the write lock.
5389 */
mte_destroy_walk(struct maple_enode * enode,struct maple_tree * mt)5390 static inline void mte_destroy_walk(struct maple_enode *enode,
5391 struct maple_tree *mt)
5392 {
5393 struct maple_node *node = mte_to_node(enode);
5394
5395 if (mt_in_rcu(mt)) {
5396 mt_destroy_walk(enode, mt, false);
5397 call_rcu(&node->rcu, mt_free_walk);
5398 } else {
5399 mt_destroy_walk(enode, mt, true);
5400 }
5401 }
5402 /* Interface */
5403
5404 /**
5405 * mas_store() - Store an @entry.
5406 * @mas: The maple state.
5407 * @entry: The entry to store.
5408 *
5409 * The @mas->index and @mas->last is used to set the range for the @entry.
5410 *
5411 * Return: the first entry between mas->index and mas->last or %NULL.
5412 */
mas_store(struct ma_state * mas,void * entry)5413 void *mas_store(struct ma_state *mas, void *entry)
5414 {
5415 int request;
5416 MA_WR_STATE(wr_mas, mas, entry);
5417
5418 trace_ma_write(__func__, mas, 0, entry);
5419 #ifdef CONFIG_DEBUG_MAPLE_TREE
5420 if (MAS_WARN_ON(mas, mas->index > mas->last))
5421 pr_err("Error %lX > %lX " PTR_FMT "\n", mas->index, mas->last,
5422 entry);
5423
5424 if (mas->index > mas->last) {
5425 mas_set_err(mas, -EINVAL);
5426 return NULL;
5427 }
5428
5429 #endif
5430
5431 /*
5432 * Storing is the same operation as insert with the added caveat that it
5433 * can overwrite entries. Although this seems simple enough, one may
5434 * want to examine what happens if a single store operation was to
5435 * overwrite multiple entries within a self-balancing B-Tree.
5436 */
5437 mas_wr_prealloc_setup(&wr_mas);
5438 mas->store_type = mas_wr_store_type(&wr_mas);
5439 if (mas->mas_flags & MA_STATE_PREALLOC) {
5440 mas_wr_store_entry(&wr_mas);
5441 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5442 return wr_mas.content;
5443 }
5444
5445 request = mas_prealloc_calc(mas, entry);
5446 if (!request)
5447 goto store;
5448
5449 mas_node_count(mas, request);
5450 if (mas_is_err(mas))
5451 return NULL;
5452
5453 store:
5454 mas_wr_store_entry(&wr_mas);
5455 mas_destroy(mas);
5456 return wr_mas.content;
5457 }
5458 EXPORT_SYMBOL_GPL(mas_store);
5459
5460 /**
5461 * mas_store_gfp() - Store a value into the tree.
5462 * @mas: The maple state
5463 * @entry: The entry to store
5464 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5465 *
5466 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5467 * be allocated.
5468 */
mas_store_gfp(struct ma_state * mas,void * entry,gfp_t gfp)5469 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5470 {
5471 unsigned long index = mas->index;
5472 unsigned long last = mas->last;
5473 MA_WR_STATE(wr_mas, mas, entry);
5474 int ret = 0;
5475
5476 retry:
5477 mas_wr_preallocate(&wr_mas, entry);
5478 if (unlikely(mas_nomem(mas, gfp))) {
5479 if (!entry)
5480 __mas_set_range(mas, index, last);
5481 goto retry;
5482 }
5483
5484 if (mas_is_err(mas)) {
5485 ret = xa_err(mas->node);
5486 goto out;
5487 }
5488
5489 mas_wr_store_entry(&wr_mas);
5490 out:
5491 mas_destroy(mas);
5492 return ret;
5493 }
5494 EXPORT_SYMBOL_GPL(mas_store_gfp);
5495
5496 /**
5497 * mas_store_prealloc() - Store a value into the tree using memory
5498 * preallocated in the maple state.
5499 * @mas: The maple state
5500 * @entry: The entry to store.
5501 */
mas_store_prealloc(struct ma_state * mas,void * entry)5502 void mas_store_prealloc(struct ma_state *mas, void *entry)
5503 {
5504 MA_WR_STATE(wr_mas, mas, entry);
5505
5506 if (mas->store_type == wr_store_root) {
5507 mas_wr_prealloc_setup(&wr_mas);
5508 goto store;
5509 }
5510
5511 mas_wr_walk_descend(&wr_mas);
5512 if (mas->store_type != wr_spanning_store) {
5513 /* set wr_mas->content to current slot */
5514 wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset);
5515 mas_wr_end_piv(&wr_mas);
5516 }
5517
5518 store:
5519 trace_ma_write(__func__, mas, 0, entry);
5520 mas_wr_store_entry(&wr_mas);
5521 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5522 mas_destroy(mas);
5523 }
5524 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5525
5526 /**
5527 * mas_preallocate() - Preallocate enough nodes for a store operation
5528 * @mas: The maple state
5529 * @entry: The entry that will be stored
5530 * @gfp: The GFP_FLAGS to use for allocations.
5531 *
5532 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5533 */
mas_preallocate(struct ma_state * mas,void * entry,gfp_t gfp)5534 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5535 {
5536 MA_WR_STATE(wr_mas, mas, entry);
5537 int ret = 0;
5538 int request;
5539
5540 mas_wr_prealloc_setup(&wr_mas);
5541 mas->store_type = mas_wr_store_type(&wr_mas);
5542 request = mas_prealloc_calc(mas, entry);
5543 if (!request)
5544 return ret;
5545
5546 mas_node_count_gfp(mas, request, gfp);
5547 if (mas_is_err(mas)) {
5548 mas_set_alloc_req(mas, 0);
5549 ret = xa_err(mas->node);
5550 mas_destroy(mas);
5551 mas_reset(mas);
5552 return ret;
5553 }
5554
5555 mas->mas_flags |= MA_STATE_PREALLOC;
5556 return ret;
5557 }
5558 EXPORT_SYMBOL_GPL(mas_preallocate);
5559
5560 /*
5561 * mas_destroy() - destroy a maple state.
5562 * @mas: The maple state
5563 *
5564 * Upon completion, check the left-most node and rebalance against the node to
5565 * the right if necessary. Frees any allocated nodes associated with this maple
5566 * state.
5567 */
mas_destroy(struct ma_state * mas)5568 void mas_destroy(struct ma_state *mas)
5569 {
5570 struct maple_alloc *node;
5571 unsigned long total;
5572
5573 /*
5574 * When using mas_for_each() to insert an expected number of elements,
5575 * it is possible that the number inserted is less than the expected
5576 * number. To fix an invalid final node, a check is performed here to
5577 * rebalance the previous node with the final node.
5578 */
5579 if (mas->mas_flags & MA_STATE_REBALANCE) {
5580 unsigned char end;
5581 if (mas_is_err(mas))
5582 mas_reset(mas);
5583 mas_start(mas);
5584 mtree_range_walk(mas);
5585 end = mas->end + 1;
5586 if (end < mt_min_slot_count(mas->node) - 1)
5587 mas_destroy_rebalance(mas, end);
5588
5589 mas->mas_flags &= ~MA_STATE_REBALANCE;
5590 }
5591 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5592
5593 total = mas_allocated(mas);
5594 while (total) {
5595 node = mas->alloc;
5596 mas->alloc = node->slot[0];
5597 if (node->node_count > 1) {
5598 size_t count = node->node_count - 1;
5599
5600 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5601 total -= count;
5602 }
5603 mt_free_one(ma_mnode_ptr(node));
5604 total--;
5605 }
5606
5607 mas->alloc = NULL;
5608 }
5609 EXPORT_SYMBOL_GPL(mas_destroy);
5610
5611 /*
5612 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5613 * @mas: The maple state
5614 * @nr_entries: The number of expected entries.
5615 *
5616 * This will attempt to pre-allocate enough nodes to store the expected number
5617 * of entries. The allocations will occur using the bulk allocator interface
5618 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5619 * to ensure any unused nodes are freed.
5620 *
5621 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5622 */
mas_expected_entries(struct ma_state * mas,unsigned long nr_entries)5623 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5624 {
5625 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5626 struct maple_enode *enode = mas->node;
5627 int nr_nodes;
5628 int ret;
5629
5630 /*
5631 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5632 * forking a process and duplicating the VMAs from one tree to a new
5633 * tree. When such a situation arises, it is known that the new tree is
5634 * not going to be used until the entire tree is populated. For
5635 * performance reasons, it is best to use a bulk load with RCU disabled.
5636 * This allows for optimistic splitting that favours the left and reuse
5637 * of nodes during the operation.
5638 */
5639
5640 /* Optimize splitting for bulk insert in-order */
5641 mas->mas_flags |= MA_STATE_BULK;
5642
5643 /*
5644 * Avoid overflow, assume a gap between each entry and a trailing null.
5645 * If this is wrong, it just means allocation can happen during
5646 * insertion of entries.
5647 */
5648 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5649 if (!mt_is_alloc(mas->tree))
5650 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5651
5652 /* Leaves; reduce slots to keep space for expansion */
5653 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5654 /* Internal nodes */
5655 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5656 /* Add working room for split (2 nodes) + new parents */
5657 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
5658
5659 /* Detect if allocations run out */
5660 mas->mas_flags |= MA_STATE_PREALLOC;
5661
5662 if (!mas_is_err(mas))
5663 return 0;
5664
5665 ret = xa_err(mas->node);
5666 mas->node = enode;
5667 mas_destroy(mas);
5668 return ret;
5669
5670 }
5671 EXPORT_SYMBOL_GPL(mas_expected_entries);
5672
mas_next_setup(struct ma_state * mas,unsigned long max,void ** entry)5673 static bool mas_next_setup(struct ma_state *mas, unsigned long max,
5674 void **entry)
5675 {
5676 bool was_none = mas_is_none(mas);
5677
5678 if (unlikely(mas->last >= max)) {
5679 mas->status = ma_overflow;
5680 return true;
5681 }
5682
5683 switch (mas->status) {
5684 case ma_active:
5685 return false;
5686 case ma_none:
5687 fallthrough;
5688 case ma_pause:
5689 mas->status = ma_start;
5690 fallthrough;
5691 case ma_start:
5692 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5693 break;
5694 case ma_overflow:
5695 /* Overflowed before, but the max changed */
5696 mas->status = ma_active;
5697 break;
5698 case ma_underflow:
5699 /* The user expects the mas to be one before where it is */
5700 mas->status = ma_active;
5701 *entry = mas_walk(mas);
5702 if (*entry)
5703 return true;
5704 break;
5705 case ma_root:
5706 break;
5707 case ma_error:
5708 return true;
5709 }
5710
5711 if (likely(mas_is_active(mas))) /* Fast path */
5712 return false;
5713
5714 if (mas_is_ptr(mas)) {
5715 *entry = NULL;
5716 if (was_none && mas->index == 0) {
5717 mas->index = mas->last = 0;
5718 return true;
5719 }
5720 mas->index = 1;
5721 mas->last = ULONG_MAX;
5722 mas->status = ma_none;
5723 return true;
5724 }
5725
5726 if (mas_is_none(mas))
5727 return true;
5728
5729 return false;
5730 }
5731
5732 /**
5733 * mas_next() - Get the next entry.
5734 * @mas: The maple state
5735 * @max: The maximum index to check.
5736 *
5737 * Returns the next entry after @mas->index.
5738 * Must hold rcu_read_lock or the write lock.
5739 * Can return the zero entry.
5740 *
5741 * Return: The next entry or %NULL
5742 */
mas_next(struct ma_state * mas,unsigned long max)5743 void *mas_next(struct ma_state *mas, unsigned long max)
5744 {
5745 void *entry = NULL;
5746
5747 if (mas_next_setup(mas, max, &entry))
5748 return entry;
5749
5750 /* Retries on dead nodes handled by mas_next_slot */
5751 return mas_next_slot(mas, max, false);
5752 }
5753 EXPORT_SYMBOL_GPL(mas_next);
5754
5755 /**
5756 * mas_next_range() - Advance the maple state to the next range
5757 * @mas: The maple state
5758 * @max: The maximum index to check.
5759 *
5760 * Sets @mas->index and @mas->last to the range.
5761 * Must hold rcu_read_lock or the write lock.
5762 * Can return the zero entry.
5763 *
5764 * Return: The next entry or %NULL
5765 */
mas_next_range(struct ma_state * mas,unsigned long max)5766 void *mas_next_range(struct ma_state *mas, unsigned long max)
5767 {
5768 void *entry = NULL;
5769
5770 if (mas_next_setup(mas, max, &entry))
5771 return entry;
5772
5773 /* Retries on dead nodes handled by mas_next_slot */
5774 return mas_next_slot(mas, max, true);
5775 }
5776 EXPORT_SYMBOL_GPL(mas_next_range);
5777
5778 /**
5779 * mt_next() - get the next value in the maple tree
5780 * @mt: The maple tree
5781 * @index: The start index
5782 * @max: The maximum index to check
5783 *
5784 * Takes RCU read lock internally to protect the search, which does not
5785 * protect the returned pointer after dropping RCU read lock.
5786 * See also: Documentation/core-api/maple_tree.rst
5787 *
5788 * Return: The entry higher than @index or %NULL if nothing is found.
5789 */
mt_next(struct maple_tree * mt,unsigned long index,unsigned long max)5790 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5791 {
5792 void *entry = NULL;
5793 MA_STATE(mas, mt, index, index);
5794
5795 rcu_read_lock();
5796 entry = mas_next(&mas, max);
5797 rcu_read_unlock();
5798 return entry;
5799 }
5800 EXPORT_SYMBOL_GPL(mt_next);
5801
mas_prev_setup(struct ma_state * mas,unsigned long min,void ** entry)5802 static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
5803 {
5804 if (unlikely(mas->index <= min)) {
5805 mas->status = ma_underflow;
5806 return true;
5807 }
5808
5809 switch (mas->status) {
5810 case ma_active:
5811 return false;
5812 case ma_start:
5813 break;
5814 case ma_none:
5815 fallthrough;
5816 case ma_pause:
5817 mas->status = ma_start;
5818 break;
5819 case ma_underflow:
5820 /* underflowed before but the min changed */
5821 mas->status = ma_active;
5822 break;
5823 case ma_overflow:
5824 /* User expects mas to be one after where it is */
5825 mas->status = ma_active;
5826 *entry = mas_walk(mas);
5827 if (*entry)
5828 return true;
5829 break;
5830 case ma_root:
5831 break;
5832 case ma_error:
5833 return true;
5834 }
5835
5836 if (mas_is_start(mas))
5837 mas_walk(mas);
5838
5839 if (unlikely(mas_is_ptr(mas))) {
5840 if (!mas->index) {
5841 mas->status = ma_none;
5842 return true;
5843 }
5844 mas->index = mas->last = 0;
5845 *entry = mas_root(mas);
5846 return true;
5847 }
5848
5849 if (mas_is_none(mas)) {
5850 if (mas->index) {
5851 /* Walked to out-of-range pointer? */
5852 mas->index = mas->last = 0;
5853 mas->status = ma_root;
5854 *entry = mas_root(mas);
5855 return true;
5856 }
5857 return true;
5858 }
5859
5860 return false;
5861 }
5862
5863 /**
5864 * mas_prev() - Get the previous entry
5865 * @mas: The maple state
5866 * @min: The minimum value to check.
5867 *
5868 * Must hold rcu_read_lock or the write lock.
5869 * Will reset mas to ma_start if the status is ma_none. Will stop on not
5870 * searchable nodes.
5871 *
5872 * Return: the previous value or %NULL.
5873 */
mas_prev(struct ma_state * mas,unsigned long min)5874 void *mas_prev(struct ma_state *mas, unsigned long min)
5875 {
5876 void *entry = NULL;
5877
5878 if (mas_prev_setup(mas, min, &entry))
5879 return entry;
5880
5881 return mas_prev_slot(mas, min, false);
5882 }
5883 EXPORT_SYMBOL_GPL(mas_prev);
5884
5885 /**
5886 * mas_prev_range() - Advance to the previous range
5887 * @mas: The maple state
5888 * @min: The minimum value to check.
5889 *
5890 * Sets @mas->index and @mas->last to the range.
5891 * Must hold rcu_read_lock or the write lock.
5892 * Will reset mas to ma_start if the node is ma_none. Will stop on not
5893 * searchable nodes.
5894 *
5895 * Return: the previous value or %NULL.
5896 */
mas_prev_range(struct ma_state * mas,unsigned long min)5897 void *mas_prev_range(struct ma_state *mas, unsigned long min)
5898 {
5899 void *entry = NULL;
5900
5901 if (mas_prev_setup(mas, min, &entry))
5902 return entry;
5903
5904 return mas_prev_slot(mas, min, true);
5905 }
5906 EXPORT_SYMBOL_GPL(mas_prev_range);
5907
5908 /**
5909 * mt_prev() - get the previous value in the maple tree
5910 * @mt: The maple tree
5911 * @index: The start index
5912 * @min: The minimum index to check
5913 *
5914 * Takes RCU read lock internally to protect the search, which does not
5915 * protect the returned pointer after dropping RCU read lock.
5916 * See also: Documentation/core-api/maple_tree.rst
5917 *
5918 * Return: The entry before @index or %NULL if nothing is found.
5919 */
mt_prev(struct maple_tree * mt,unsigned long index,unsigned long min)5920 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5921 {
5922 void *entry = NULL;
5923 MA_STATE(mas, mt, index, index);
5924
5925 rcu_read_lock();
5926 entry = mas_prev(&mas, min);
5927 rcu_read_unlock();
5928 return entry;
5929 }
5930 EXPORT_SYMBOL_GPL(mt_prev);
5931
5932 /**
5933 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5934 * @mas: The maple state to pause
5935 *
5936 * Some users need to pause a walk and drop the lock they're holding in
5937 * order to yield to a higher priority thread or carry out an operation
5938 * on an entry. Those users should call this function before they drop
5939 * the lock. It resets the @mas to be suitable for the next iteration
5940 * of the loop after the user has reacquired the lock. If most entries
5941 * found during a walk require you to call mas_pause(), the mt_for_each()
5942 * iterator may be more appropriate.
5943 *
5944 */
mas_pause(struct ma_state * mas)5945 void mas_pause(struct ma_state *mas)
5946 {
5947 mas->status = ma_pause;
5948 mas->node = NULL;
5949 }
5950 EXPORT_SYMBOL_GPL(mas_pause);
5951
5952 /**
5953 * mas_find_setup() - Internal function to set up mas_find*().
5954 * @mas: The maple state
5955 * @max: The maximum index
5956 * @entry: Pointer to the entry
5957 *
5958 * Returns: True if entry is the answer, false otherwise.
5959 */
mas_find_setup(struct ma_state * mas,unsigned long max,void ** entry)5960 static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
5961 {
5962 switch (mas->status) {
5963 case ma_active:
5964 if (mas->last < max)
5965 return false;
5966 return true;
5967 case ma_start:
5968 break;
5969 case ma_pause:
5970 if (unlikely(mas->last >= max))
5971 return true;
5972
5973 mas->index = ++mas->last;
5974 mas->status = ma_start;
5975 break;
5976 case ma_none:
5977 if (unlikely(mas->last >= max))
5978 return true;
5979
5980 mas->index = mas->last;
5981 mas->status = ma_start;
5982 break;
5983 case ma_underflow:
5984 /* mas is pointing at entry before unable to go lower */
5985 if (unlikely(mas->index >= max)) {
5986 mas->status = ma_overflow;
5987 return true;
5988 }
5989
5990 mas->status = ma_active;
5991 *entry = mas_walk(mas);
5992 if (*entry)
5993 return true;
5994 break;
5995 case ma_overflow:
5996 if (unlikely(mas->last >= max))
5997 return true;
5998
5999 mas->status = ma_active;
6000 *entry = mas_walk(mas);
6001 if (*entry)
6002 return true;
6003 break;
6004 case ma_root:
6005 break;
6006 case ma_error:
6007 return true;
6008 }
6009
6010 if (mas_is_start(mas)) {
6011 /* First run or continue */
6012 if (mas->index > max)
6013 return true;
6014
6015 *entry = mas_walk(mas);
6016 if (*entry)
6017 return true;
6018
6019 }
6020
6021 if (unlikely(mas_is_ptr(mas)))
6022 goto ptr_out_of_range;
6023
6024 if (unlikely(mas_is_none(mas)))
6025 return true;
6026
6027 if (mas->index == max)
6028 return true;
6029
6030 return false;
6031
6032 ptr_out_of_range:
6033 mas->status = ma_none;
6034 mas->index = 1;
6035 mas->last = ULONG_MAX;
6036 return true;
6037 }
6038
6039 /**
6040 * mas_find() - On the first call, find the entry at or after mas->index up to
6041 * %max. Otherwise, find the entry after mas->index.
6042 * @mas: The maple state
6043 * @max: The maximum value to check.
6044 *
6045 * Must hold rcu_read_lock or the write lock.
6046 * If an entry exists, last and index are updated accordingly.
6047 * May set @mas->status to ma_overflow.
6048 *
6049 * Return: The entry or %NULL.
6050 */
mas_find(struct ma_state * mas,unsigned long max)6051 void *mas_find(struct ma_state *mas, unsigned long max)
6052 {
6053 void *entry = NULL;
6054
6055 if (mas_find_setup(mas, max, &entry))
6056 return entry;
6057
6058 /* Retries on dead nodes handled by mas_next_slot */
6059 entry = mas_next_slot(mas, max, false);
6060 /* Ignore overflow */
6061 mas->status = ma_active;
6062 return entry;
6063 }
6064 EXPORT_SYMBOL_GPL(mas_find);
6065
6066 /**
6067 * mas_find_range() - On the first call, find the entry at or after
6068 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
6069 * @mas: The maple state
6070 * @max: The maximum value to check.
6071 *
6072 * Must hold rcu_read_lock or the write lock.
6073 * If an entry exists, last and index are updated accordingly.
6074 * May set @mas->status to ma_overflow.
6075 *
6076 * Return: The entry or %NULL.
6077 */
mas_find_range(struct ma_state * mas,unsigned long max)6078 void *mas_find_range(struct ma_state *mas, unsigned long max)
6079 {
6080 void *entry = NULL;
6081
6082 if (mas_find_setup(mas, max, &entry))
6083 return entry;
6084
6085 /* Retries on dead nodes handled by mas_next_slot */
6086 return mas_next_slot(mas, max, true);
6087 }
6088 EXPORT_SYMBOL_GPL(mas_find_range);
6089
6090 /**
6091 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
6092 * @mas: The maple state
6093 * @min: The minimum index
6094 * @entry: Pointer to the entry
6095 *
6096 * Returns: True if entry is the answer, false otherwise.
6097 */
mas_find_rev_setup(struct ma_state * mas,unsigned long min,void ** entry)6098 static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6099 void **entry)
6100 {
6101
6102 switch (mas->status) {
6103 case ma_active:
6104 goto active;
6105 case ma_start:
6106 break;
6107 case ma_pause:
6108 if (unlikely(mas->index <= min)) {
6109 mas->status = ma_underflow;
6110 return true;
6111 }
6112 mas->last = --mas->index;
6113 mas->status = ma_start;
6114 break;
6115 case ma_none:
6116 if (mas->index <= min)
6117 goto none;
6118
6119 mas->last = mas->index;
6120 mas->status = ma_start;
6121 break;
6122 case ma_overflow: /* user expects the mas to be one after where it is */
6123 if (unlikely(mas->index <= min)) {
6124 mas->status = ma_underflow;
6125 return true;
6126 }
6127
6128 mas->status = ma_active;
6129 break;
6130 case ma_underflow: /* user expects the mas to be one before where it is */
6131 if (unlikely(mas->index <= min))
6132 return true;
6133
6134 mas->status = ma_active;
6135 break;
6136 case ma_root:
6137 break;
6138 case ma_error:
6139 return true;
6140 }
6141
6142 if (mas_is_start(mas)) {
6143 /* First run or continue */
6144 if (mas->index < min)
6145 return true;
6146
6147 *entry = mas_walk(mas);
6148 if (*entry)
6149 return true;
6150 }
6151
6152 if (unlikely(mas_is_ptr(mas)))
6153 goto none;
6154
6155 if (unlikely(mas_is_none(mas))) {
6156 /*
6157 * Walked to the location, and there was nothing so the previous
6158 * location is 0.
6159 */
6160 mas->last = mas->index = 0;
6161 mas->status = ma_root;
6162 *entry = mas_root(mas);
6163 return true;
6164 }
6165
6166 active:
6167 if (mas->index < min)
6168 return true;
6169
6170 return false;
6171
6172 none:
6173 mas->status = ma_none;
6174 return true;
6175 }
6176
6177 /**
6178 * mas_find_rev: On the first call, find the first non-null entry at or below
6179 * mas->index down to %min. Otherwise find the first non-null entry below
6180 * mas->index down to %min.
6181 * @mas: The maple state
6182 * @min: The minimum value to check.
6183 *
6184 * Must hold rcu_read_lock or the write lock.
6185 * If an entry exists, last and index are updated accordingly.
6186 * May set @mas->status to ma_underflow.
6187 *
6188 * Return: The entry or %NULL.
6189 */
mas_find_rev(struct ma_state * mas,unsigned long min)6190 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6191 {
6192 void *entry = NULL;
6193
6194 if (mas_find_rev_setup(mas, min, &entry))
6195 return entry;
6196
6197 /* Retries on dead nodes handled by mas_prev_slot */
6198 return mas_prev_slot(mas, min, false);
6199
6200 }
6201 EXPORT_SYMBOL_GPL(mas_find_rev);
6202
6203 /**
6204 * mas_find_range_rev: On the first call, find the first non-null entry at or
6205 * below mas->index down to %min. Otherwise advance to the previous slot after
6206 * mas->index down to %min.
6207 * @mas: The maple state
6208 * @min: The minimum value to check.
6209 *
6210 * Must hold rcu_read_lock or the write lock.
6211 * If an entry exists, last and index are updated accordingly.
6212 * May set @mas->status to ma_underflow.
6213 *
6214 * Return: The entry or %NULL.
6215 */
mas_find_range_rev(struct ma_state * mas,unsigned long min)6216 void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6217 {
6218 void *entry = NULL;
6219
6220 if (mas_find_rev_setup(mas, min, &entry))
6221 return entry;
6222
6223 /* Retries on dead nodes handled by mas_prev_slot */
6224 return mas_prev_slot(mas, min, true);
6225 }
6226 EXPORT_SYMBOL_GPL(mas_find_range_rev);
6227
6228 /**
6229 * mas_erase() - Find the range in which index resides and erase the entire
6230 * range.
6231 * @mas: The maple state
6232 *
6233 * Must hold the write lock.
6234 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6235 * erases that range.
6236 *
6237 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6238 */
mas_erase(struct ma_state * mas)6239 void *mas_erase(struct ma_state *mas)
6240 {
6241 void *entry;
6242 unsigned long index = mas->index;
6243 MA_WR_STATE(wr_mas, mas, NULL);
6244
6245 if (!mas_is_active(mas) || !mas_is_start(mas))
6246 mas->status = ma_start;
6247
6248 write_retry:
6249 entry = mas_state_walk(mas);
6250 if (!entry)
6251 return NULL;
6252
6253 /* Must reset to ensure spanning writes of last slot are detected */
6254 mas_reset(mas);
6255 mas_wr_preallocate(&wr_mas, NULL);
6256 if (mas_nomem(mas, GFP_KERNEL)) {
6257 /* in case the range of entry changed when unlocked */
6258 mas->index = mas->last = index;
6259 goto write_retry;
6260 }
6261
6262 if (mas_is_err(mas))
6263 goto out;
6264
6265 mas_wr_store_entry(&wr_mas);
6266 out:
6267 mas_destroy(mas);
6268 return entry;
6269 }
6270 EXPORT_SYMBOL_GPL(mas_erase);
6271
6272 /**
6273 * mas_nomem() - Check if there was an error allocating and do the allocation
6274 * if necessary If there are allocations, then free them.
6275 * @mas: The maple state
6276 * @gfp: The GFP_FLAGS to use for allocations
6277 * Return: true on allocation, false otherwise.
6278 */
mas_nomem(struct ma_state * mas,gfp_t gfp)6279 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6280 __must_hold(mas->tree->ma_lock)
6281 {
6282 if (likely(mas->node != MA_ERROR(-ENOMEM)))
6283 return false;
6284
6285 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6286 mtree_unlock(mas->tree);
6287 mas_alloc_nodes(mas, gfp);
6288 mtree_lock(mas->tree);
6289 } else {
6290 mas_alloc_nodes(mas, gfp);
6291 }
6292
6293 if (!mas_allocated(mas))
6294 return false;
6295
6296 mas->status = ma_start;
6297 return true;
6298 }
6299
maple_tree_init(void)6300 void __init maple_tree_init(void)
6301 {
6302 maple_node_cache = kmem_cache_create("maple_node",
6303 sizeof(struct maple_node), sizeof(struct maple_node),
6304 SLAB_PANIC, NULL);
6305 }
6306
6307 /**
6308 * mtree_load() - Load a value stored in a maple tree
6309 * @mt: The maple tree
6310 * @index: The index to load
6311 *
6312 * Return: the entry or %NULL
6313 */
mtree_load(struct maple_tree * mt,unsigned long index)6314 void *mtree_load(struct maple_tree *mt, unsigned long index)
6315 {
6316 MA_STATE(mas, mt, index, index);
6317 void *entry;
6318
6319 trace_ma_read(__func__, &mas);
6320 rcu_read_lock();
6321 retry:
6322 entry = mas_start(&mas);
6323 if (unlikely(mas_is_none(&mas)))
6324 goto unlock;
6325
6326 if (unlikely(mas_is_ptr(&mas))) {
6327 if (index)
6328 entry = NULL;
6329
6330 goto unlock;
6331 }
6332
6333 entry = mtree_lookup_walk(&mas);
6334 if (!entry && unlikely(mas_is_start(&mas)))
6335 goto retry;
6336 unlock:
6337 rcu_read_unlock();
6338 if (xa_is_zero(entry))
6339 return NULL;
6340
6341 return entry;
6342 }
6343 EXPORT_SYMBOL(mtree_load);
6344
6345 /**
6346 * mtree_store_range() - Store an entry at a given range.
6347 * @mt: The maple tree
6348 * @index: The start of the range
6349 * @last: The end of the range
6350 * @entry: The entry to store
6351 * @gfp: The GFP_FLAGS to use for allocations
6352 *
6353 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6354 * be allocated.
6355 */
mtree_store_range(struct maple_tree * mt,unsigned long index,unsigned long last,void * entry,gfp_t gfp)6356 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6357 unsigned long last, void *entry, gfp_t gfp)
6358 {
6359 MA_STATE(mas, mt, index, last);
6360 int ret = 0;
6361
6362 trace_ma_write(__func__, &mas, 0, entry);
6363 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6364 return -EINVAL;
6365
6366 if (index > last)
6367 return -EINVAL;
6368
6369 mtree_lock(mt);
6370 ret = mas_store_gfp(&mas, entry, gfp);
6371 mtree_unlock(mt);
6372
6373 return ret;
6374 }
6375 EXPORT_SYMBOL(mtree_store_range);
6376
6377 /**
6378 * mtree_store() - Store an entry at a given index.
6379 * @mt: The maple tree
6380 * @index: The index to store the value
6381 * @entry: The entry to store
6382 * @gfp: The GFP_FLAGS to use for allocations
6383 *
6384 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6385 * be allocated.
6386 */
mtree_store(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6387 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6388 gfp_t gfp)
6389 {
6390 return mtree_store_range(mt, index, index, entry, gfp);
6391 }
6392 EXPORT_SYMBOL(mtree_store);
6393
6394 /**
6395 * mtree_insert_range() - Insert an entry at a given range if there is no value.
6396 * @mt: The maple tree
6397 * @first: The start of the range
6398 * @last: The end of the range
6399 * @entry: The entry to store
6400 * @gfp: The GFP_FLAGS to use for allocations.
6401 *
6402 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6403 * request, -ENOMEM if memory could not be allocated.
6404 */
mtree_insert_range(struct maple_tree * mt,unsigned long first,unsigned long last,void * entry,gfp_t gfp)6405 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6406 unsigned long last, void *entry, gfp_t gfp)
6407 {
6408 MA_STATE(ms, mt, first, last);
6409 int ret = 0;
6410
6411 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6412 return -EINVAL;
6413
6414 if (first > last)
6415 return -EINVAL;
6416
6417 mtree_lock(mt);
6418 retry:
6419 mas_insert(&ms, entry);
6420 if (mas_nomem(&ms, gfp))
6421 goto retry;
6422
6423 mtree_unlock(mt);
6424 if (mas_is_err(&ms))
6425 ret = xa_err(ms.node);
6426
6427 mas_destroy(&ms);
6428 return ret;
6429 }
6430 EXPORT_SYMBOL(mtree_insert_range);
6431
6432 /**
6433 * mtree_insert() - Insert an entry at a given index if there is no value.
6434 * @mt: The maple tree
6435 * @index : The index to store the value
6436 * @entry: The entry to store
6437 * @gfp: The GFP_FLAGS to use for allocations.
6438 *
6439 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6440 * request, -ENOMEM if memory could not be allocated.
6441 */
mtree_insert(struct maple_tree * mt,unsigned long index,void * entry,gfp_t gfp)6442 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6443 gfp_t gfp)
6444 {
6445 return mtree_insert_range(mt, index, index, entry, gfp);
6446 }
6447 EXPORT_SYMBOL(mtree_insert);
6448
mtree_alloc_range(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6449 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6450 void *entry, unsigned long size, unsigned long min,
6451 unsigned long max, gfp_t gfp)
6452 {
6453 int ret = 0;
6454
6455 MA_STATE(mas, mt, 0, 0);
6456 if (!mt_is_alloc(mt))
6457 return -EINVAL;
6458
6459 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6460 return -EINVAL;
6461
6462 mtree_lock(mt);
6463 retry:
6464 ret = mas_empty_area(&mas, min, max, size);
6465 if (ret)
6466 goto unlock;
6467
6468 mas_insert(&mas, entry);
6469 /*
6470 * mas_nomem() may release the lock, causing the allocated area
6471 * to be unavailable, so try to allocate a free area again.
6472 */
6473 if (mas_nomem(&mas, gfp))
6474 goto retry;
6475
6476 if (mas_is_err(&mas))
6477 ret = xa_err(mas.node);
6478 else
6479 *startp = mas.index;
6480
6481 unlock:
6482 mtree_unlock(mt);
6483 mas_destroy(&mas);
6484 return ret;
6485 }
6486 EXPORT_SYMBOL(mtree_alloc_range);
6487
6488 /**
6489 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6490 * @mt: The maple tree.
6491 * @startp: Pointer to ID.
6492 * @range_lo: Lower bound of range to search.
6493 * @range_hi: Upper bound of range to search.
6494 * @entry: The entry to store.
6495 * @next: Pointer to next ID to allocate.
6496 * @gfp: The GFP_FLAGS to use for allocations.
6497 *
6498 * Finds an empty entry in @mt after @next, stores the new index into
6499 * the @id pointer, stores the entry at that index, then updates @next.
6500 *
6501 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6502 *
6503 * Context: Any context. Takes and releases the mt.lock. May sleep if
6504 * the @gfp flags permit.
6505 *
6506 * Return: 0 if the allocation succeeded without wrapping, 1 if the
6507 * allocation succeeded after wrapping, -ENOMEM if memory could not be
6508 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6509 * free entries.
6510 */
mtree_alloc_cyclic(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long range_lo,unsigned long range_hi,unsigned long * next,gfp_t gfp)6511 int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6512 void *entry, unsigned long range_lo, unsigned long range_hi,
6513 unsigned long *next, gfp_t gfp)
6514 {
6515 int ret;
6516
6517 MA_STATE(mas, mt, 0, 0);
6518
6519 if (!mt_is_alloc(mt))
6520 return -EINVAL;
6521 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6522 return -EINVAL;
6523 mtree_lock(mt);
6524 ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6525 next, gfp);
6526 mtree_unlock(mt);
6527 return ret;
6528 }
6529 EXPORT_SYMBOL(mtree_alloc_cyclic);
6530
mtree_alloc_rrange(struct maple_tree * mt,unsigned long * startp,void * entry,unsigned long size,unsigned long min,unsigned long max,gfp_t gfp)6531 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6532 void *entry, unsigned long size, unsigned long min,
6533 unsigned long max, gfp_t gfp)
6534 {
6535 int ret = 0;
6536
6537 MA_STATE(mas, mt, 0, 0);
6538 if (!mt_is_alloc(mt))
6539 return -EINVAL;
6540
6541 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6542 return -EINVAL;
6543
6544 mtree_lock(mt);
6545 retry:
6546 ret = mas_empty_area_rev(&mas, min, max, size);
6547 if (ret)
6548 goto unlock;
6549
6550 mas_insert(&mas, entry);
6551 /*
6552 * mas_nomem() may release the lock, causing the allocated area
6553 * to be unavailable, so try to allocate a free area again.
6554 */
6555 if (mas_nomem(&mas, gfp))
6556 goto retry;
6557
6558 if (mas_is_err(&mas))
6559 ret = xa_err(mas.node);
6560 else
6561 *startp = mas.index;
6562
6563 unlock:
6564 mtree_unlock(mt);
6565 mas_destroy(&mas);
6566 return ret;
6567 }
6568 EXPORT_SYMBOL(mtree_alloc_rrange);
6569
6570 /**
6571 * mtree_erase() - Find an index and erase the entire range.
6572 * @mt: The maple tree
6573 * @index: The index to erase
6574 *
6575 * Erasing is the same as a walk to an entry then a store of a NULL to that
6576 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6577 *
6578 * Return: The entry stored at the @index or %NULL
6579 */
mtree_erase(struct maple_tree * mt,unsigned long index)6580 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6581 {
6582 void *entry = NULL;
6583
6584 MA_STATE(mas, mt, index, index);
6585 trace_ma_op(__func__, &mas);
6586
6587 mtree_lock(mt);
6588 entry = mas_erase(&mas);
6589 mtree_unlock(mt);
6590
6591 return entry;
6592 }
6593 EXPORT_SYMBOL(mtree_erase);
6594
6595 /*
6596 * mas_dup_free() - Free an incomplete duplication of a tree.
6597 * @mas: The maple state of a incomplete tree.
6598 *
6599 * The parameter @mas->node passed in indicates that the allocation failed on
6600 * this node. This function frees all nodes starting from @mas->node in the
6601 * reverse order of mas_dup_build(). There is no need to hold the source tree
6602 * lock at this time.
6603 */
mas_dup_free(struct ma_state * mas)6604 static void mas_dup_free(struct ma_state *mas)
6605 {
6606 struct maple_node *node;
6607 enum maple_type type;
6608 void __rcu **slots;
6609 unsigned char count, i;
6610
6611 /* Maybe the first node allocation failed. */
6612 if (mas_is_none(mas))
6613 return;
6614
6615 while (!mte_is_root(mas->node)) {
6616 mas_ascend(mas);
6617 if (mas->offset) {
6618 mas->offset--;
6619 do {
6620 mas_descend(mas);
6621 mas->offset = mas_data_end(mas);
6622 } while (!mte_is_leaf(mas->node));
6623
6624 mas_ascend(mas);
6625 }
6626
6627 node = mte_to_node(mas->node);
6628 type = mte_node_type(mas->node);
6629 slots = ma_slots(node, type);
6630 count = mas_data_end(mas) + 1;
6631 for (i = 0; i < count; i++)
6632 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6633 mt_free_bulk(count, slots);
6634 }
6635
6636 node = mte_to_node(mas->node);
6637 mt_free_one(node);
6638 }
6639
6640 /*
6641 * mas_copy_node() - Copy a maple node and replace the parent.
6642 * @mas: The maple state of source tree.
6643 * @new_mas: The maple state of new tree.
6644 * @parent: The parent of the new node.
6645 *
6646 * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6647 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6648 */
mas_copy_node(struct ma_state * mas,struct ma_state * new_mas,struct maple_pnode * parent)6649 static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6650 struct maple_pnode *parent)
6651 {
6652 struct maple_node *node = mte_to_node(mas->node);
6653 struct maple_node *new_node = mte_to_node(new_mas->node);
6654 unsigned long val;
6655
6656 /* Copy the node completely. */
6657 memcpy(new_node, node, sizeof(struct maple_node));
6658 /* Update the parent node pointer. */
6659 val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6660 new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6661 }
6662
6663 /*
6664 * mas_dup_alloc() - Allocate child nodes for a maple node.
6665 * @mas: The maple state of source tree.
6666 * @new_mas: The maple state of new tree.
6667 * @gfp: The GFP_FLAGS to use for allocations.
6668 *
6669 * This function allocates child nodes for @new_mas->node during the duplication
6670 * process. If memory allocation fails, @mas is set to -ENOMEM.
6671 */
mas_dup_alloc(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6672 static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6673 gfp_t gfp)
6674 {
6675 struct maple_node *node = mte_to_node(mas->node);
6676 struct maple_node *new_node = mte_to_node(new_mas->node);
6677 enum maple_type type;
6678 unsigned char request, count, i;
6679 void __rcu **slots;
6680 void __rcu **new_slots;
6681 unsigned long val;
6682
6683 /* Allocate memory for child nodes. */
6684 type = mte_node_type(mas->node);
6685 new_slots = ma_slots(new_node, type);
6686 request = mas_data_end(mas) + 1;
6687 count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6688 if (unlikely(count < request)) {
6689 memset(new_slots, 0, request * sizeof(void *));
6690 mas_set_err(mas, -ENOMEM);
6691 return;
6692 }
6693
6694 /* Restore node type information in slots. */
6695 slots = ma_slots(node, type);
6696 for (i = 0; i < count; i++) {
6697 val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6698 val &= MAPLE_NODE_MASK;
6699 ((unsigned long *)new_slots)[i] |= val;
6700 }
6701 }
6702
6703 /*
6704 * mas_dup_build() - Build a new maple tree from a source tree
6705 * @mas: The maple state of source tree, need to be in MAS_START state.
6706 * @new_mas: The maple state of new tree, need to be in MAS_START state.
6707 * @gfp: The GFP_FLAGS to use for allocations.
6708 *
6709 * This function builds a new tree in DFS preorder. If the memory allocation
6710 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6711 * last node. mas_dup_free() will free the incomplete duplication of a tree.
6712 *
6713 * Note that the attributes of the two trees need to be exactly the same, and the
6714 * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6715 */
mas_dup_build(struct ma_state * mas,struct ma_state * new_mas,gfp_t gfp)6716 static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6717 gfp_t gfp)
6718 {
6719 struct maple_node *node;
6720 struct maple_pnode *parent = NULL;
6721 struct maple_enode *root;
6722 enum maple_type type;
6723
6724 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6725 unlikely(!mtree_empty(new_mas->tree))) {
6726 mas_set_err(mas, -EINVAL);
6727 return;
6728 }
6729
6730 root = mas_start(mas);
6731 if (mas_is_ptr(mas) || mas_is_none(mas))
6732 goto set_new_tree;
6733
6734 node = mt_alloc_one(gfp);
6735 if (!node) {
6736 new_mas->status = ma_none;
6737 mas_set_err(mas, -ENOMEM);
6738 return;
6739 }
6740
6741 type = mte_node_type(mas->node);
6742 root = mt_mk_node(node, type);
6743 new_mas->node = root;
6744 new_mas->min = 0;
6745 new_mas->max = ULONG_MAX;
6746 root = mte_mk_root(root);
6747 while (1) {
6748 mas_copy_node(mas, new_mas, parent);
6749 if (!mte_is_leaf(mas->node)) {
6750 /* Only allocate child nodes for non-leaf nodes. */
6751 mas_dup_alloc(mas, new_mas, gfp);
6752 if (unlikely(mas_is_err(mas)))
6753 return;
6754 } else {
6755 /*
6756 * This is the last leaf node and duplication is
6757 * completed.
6758 */
6759 if (mas->max == ULONG_MAX)
6760 goto done;
6761
6762 /* This is not the last leaf node and needs to go up. */
6763 do {
6764 mas_ascend(mas);
6765 mas_ascend(new_mas);
6766 } while (mas->offset == mas_data_end(mas));
6767
6768 /* Move to the next subtree. */
6769 mas->offset++;
6770 new_mas->offset++;
6771 }
6772
6773 mas_descend(mas);
6774 parent = ma_parent_ptr(mte_to_node(new_mas->node));
6775 mas_descend(new_mas);
6776 mas->offset = 0;
6777 new_mas->offset = 0;
6778 }
6779 done:
6780 /* Specially handle the parent of the root node. */
6781 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6782 set_new_tree:
6783 /* Make them the same height */
6784 new_mas->tree->ma_flags = mas->tree->ma_flags;
6785 rcu_assign_pointer(new_mas->tree->ma_root, root);
6786 }
6787
6788 /**
6789 * __mt_dup(): Duplicate an entire maple tree
6790 * @mt: The source maple tree
6791 * @new: The new maple tree
6792 * @gfp: The GFP_FLAGS to use for allocations
6793 *
6794 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6795 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6796 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6797 * source node except for all the addresses stored in it. It will be faster than
6798 * traversing all elements in the source tree and inserting them one by one into
6799 * the new tree.
6800 * The user needs to ensure that the attributes of the source tree and the new
6801 * tree are the same, and the new tree needs to be an empty tree, otherwise
6802 * -EINVAL will be returned.
6803 * Note that the user needs to manually lock the source tree and the new tree.
6804 *
6805 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6806 * the attributes of the two trees are different or the new tree is not an empty
6807 * tree.
6808 */
__mt_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6809 int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6810 {
6811 int ret = 0;
6812 MA_STATE(mas, mt, 0, 0);
6813 MA_STATE(new_mas, new, 0, 0);
6814
6815 mas_dup_build(&mas, &new_mas, gfp);
6816 if (unlikely(mas_is_err(&mas))) {
6817 ret = xa_err(mas.node);
6818 if (ret == -ENOMEM)
6819 mas_dup_free(&new_mas);
6820 }
6821
6822 return ret;
6823 }
6824 EXPORT_SYMBOL(__mt_dup);
6825
6826 /**
6827 * mtree_dup(): Duplicate an entire maple tree
6828 * @mt: The source maple tree
6829 * @new: The new maple tree
6830 * @gfp: The GFP_FLAGS to use for allocations
6831 *
6832 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6833 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6834 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6835 * source node except for all the addresses stored in it. It will be faster than
6836 * traversing all elements in the source tree and inserting them one by one into
6837 * the new tree.
6838 * The user needs to ensure that the attributes of the source tree and the new
6839 * tree are the same, and the new tree needs to be an empty tree, otherwise
6840 * -EINVAL will be returned.
6841 *
6842 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6843 * the attributes of the two trees are different or the new tree is not an empty
6844 * tree.
6845 */
mtree_dup(struct maple_tree * mt,struct maple_tree * new,gfp_t gfp)6846 int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6847 {
6848 int ret = 0;
6849 MA_STATE(mas, mt, 0, 0);
6850 MA_STATE(new_mas, new, 0, 0);
6851
6852 mas_lock(&new_mas);
6853 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6854 mas_dup_build(&mas, &new_mas, gfp);
6855 mas_unlock(&mas);
6856 if (unlikely(mas_is_err(&mas))) {
6857 ret = xa_err(mas.node);
6858 if (ret == -ENOMEM)
6859 mas_dup_free(&new_mas);
6860 }
6861
6862 mas_unlock(&new_mas);
6863 return ret;
6864 }
6865 EXPORT_SYMBOL(mtree_dup);
6866
6867 /**
6868 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6869 * @mt: The maple tree
6870 *
6871 * Note: Does not handle locking.
6872 */
__mt_destroy(struct maple_tree * mt)6873 void __mt_destroy(struct maple_tree *mt)
6874 {
6875 void *root = mt_root_locked(mt);
6876
6877 rcu_assign_pointer(mt->ma_root, NULL);
6878 if (xa_is_node(root))
6879 mte_destroy_walk(root, mt);
6880
6881 mt->ma_flags = mt_attr(mt);
6882 }
6883 EXPORT_SYMBOL_GPL(__mt_destroy);
6884
6885 /**
6886 * mtree_destroy() - Destroy a maple tree
6887 * @mt: The maple tree
6888 *
6889 * Frees all resources used by the tree. Handles locking.
6890 */
mtree_destroy(struct maple_tree * mt)6891 void mtree_destroy(struct maple_tree *mt)
6892 {
6893 mtree_lock(mt);
6894 __mt_destroy(mt);
6895 mtree_unlock(mt);
6896 }
6897 EXPORT_SYMBOL(mtree_destroy);
6898
6899 /**
6900 * mt_find() - Search from the start up until an entry is found.
6901 * @mt: The maple tree
6902 * @index: Pointer which contains the start location of the search
6903 * @max: The maximum value of the search range
6904 *
6905 * Takes RCU read lock internally to protect the search, which does not
6906 * protect the returned pointer after dropping RCU read lock.
6907 * See also: Documentation/core-api/maple_tree.rst
6908 *
6909 * In case that an entry is found @index is updated to point to the next
6910 * possible entry independent whether the found entry is occupying a
6911 * single index or a range if indices.
6912 *
6913 * Return: The entry at or after the @index or %NULL
6914 */
mt_find(struct maple_tree * mt,unsigned long * index,unsigned long max)6915 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6916 {
6917 MA_STATE(mas, mt, *index, *index);
6918 void *entry;
6919 #ifdef CONFIG_DEBUG_MAPLE_TREE
6920 unsigned long copy = *index;
6921 #endif
6922
6923 trace_ma_read(__func__, &mas);
6924
6925 if ((*index) > max)
6926 return NULL;
6927
6928 rcu_read_lock();
6929 retry:
6930 entry = mas_state_walk(&mas);
6931 if (mas_is_start(&mas))
6932 goto retry;
6933
6934 if (unlikely(xa_is_zero(entry)))
6935 entry = NULL;
6936
6937 if (entry)
6938 goto unlock;
6939
6940 while (mas_is_active(&mas) && (mas.last < max)) {
6941 entry = mas_next_entry(&mas, max);
6942 if (likely(entry && !xa_is_zero(entry)))
6943 break;
6944 }
6945
6946 if (unlikely(xa_is_zero(entry)))
6947 entry = NULL;
6948 unlock:
6949 rcu_read_unlock();
6950 if (likely(entry)) {
6951 *index = mas.last + 1;
6952 #ifdef CONFIG_DEBUG_MAPLE_TREE
6953 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
6954 pr_err("index not increased! %lx <= %lx\n",
6955 *index, copy);
6956 #endif
6957 }
6958
6959 return entry;
6960 }
6961 EXPORT_SYMBOL(mt_find);
6962
6963 /**
6964 * mt_find_after() - Search from the start up until an entry is found.
6965 * @mt: The maple tree
6966 * @index: Pointer which contains the start location of the search
6967 * @max: The maximum value to check
6968 *
6969 * Same as mt_find() except that it checks @index for 0 before
6970 * searching. If @index == 0, the search is aborted. This covers a wrap
6971 * around of @index to 0 in an iterator loop.
6972 *
6973 * Return: The entry at or after the @index or %NULL
6974 */
mt_find_after(struct maple_tree * mt,unsigned long * index,unsigned long max)6975 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6976 unsigned long max)
6977 {
6978 if (!(*index))
6979 return NULL;
6980
6981 return mt_find(mt, index, max);
6982 }
6983 EXPORT_SYMBOL(mt_find_after);
6984
6985 #ifdef CONFIG_DEBUG_MAPLE_TREE
6986 atomic_t maple_tree_tests_run;
6987 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6988 atomic_t maple_tree_tests_passed;
6989 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6990
6991 #ifndef __KERNEL__
6992 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
mt_set_non_kernel(unsigned int val)6993 void mt_set_non_kernel(unsigned int val)
6994 {
6995 kmem_cache_set_non_kernel(maple_node_cache, val);
6996 }
6997
6998 extern void kmem_cache_set_callback(struct kmem_cache *cachep,
6999 void (*callback)(void *));
mt_set_callback(void (* callback)(void *))7000 void mt_set_callback(void (*callback)(void *))
7001 {
7002 kmem_cache_set_callback(maple_node_cache, callback);
7003 }
7004
7005 extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
mt_set_private(void * private)7006 void mt_set_private(void *private)
7007 {
7008 kmem_cache_set_private(maple_node_cache, private);
7009 }
7010
7011 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
mt_get_alloc_size(void)7012 unsigned long mt_get_alloc_size(void)
7013 {
7014 return kmem_cache_get_alloc(maple_node_cache);
7015 }
7016
7017 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
mt_zero_nr_tallocated(void)7018 void mt_zero_nr_tallocated(void)
7019 {
7020 kmem_cache_zero_nr_tallocated(maple_node_cache);
7021 }
7022
7023 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
mt_nr_tallocated(void)7024 unsigned int mt_nr_tallocated(void)
7025 {
7026 return kmem_cache_nr_tallocated(maple_node_cache);
7027 }
7028
7029 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
mt_nr_allocated(void)7030 unsigned int mt_nr_allocated(void)
7031 {
7032 return kmem_cache_nr_allocated(maple_node_cache);
7033 }
7034
mt_cache_shrink(void)7035 void mt_cache_shrink(void)
7036 {
7037 }
7038 #else
7039 /*
7040 * mt_cache_shrink() - For testing, don't use this.
7041 *
7042 * Certain testcases can trigger an OOM when combined with other memory
7043 * debugging configuration options. This function is used to reduce the
7044 * possibility of an out of memory even due to kmem_cache objects remaining
7045 * around for longer than usual.
7046 */
mt_cache_shrink(void)7047 void mt_cache_shrink(void)
7048 {
7049 kmem_cache_shrink(maple_node_cache);
7050
7051 }
7052 EXPORT_SYMBOL_GPL(mt_cache_shrink);
7053
7054 #endif /* not defined __KERNEL__ */
7055 /*
7056 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7057 * @mas: The maple state
7058 * @offset: The offset into the slot array to fetch.
7059 *
7060 * Return: The entry stored at @offset.
7061 */
mas_get_slot(struct ma_state * mas,unsigned char offset)7062 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7063 unsigned char offset)
7064 {
7065 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7066 offset);
7067 }
7068
7069 /* Depth first search, post-order */
mas_dfs_postorder(struct ma_state * mas,unsigned long max)7070 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7071 {
7072
7073 struct maple_enode *p, *mn = mas->node;
7074 unsigned long p_min, p_max;
7075
7076 mas_next_node(mas, mas_mn(mas), max);
7077 if (!mas_is_overflow(mas))
7078 return;
7079
7080 if (mte_is_root(mn))
7081 return;
7082
7083 mas->node = mn;
7084 mas_ascend(mas);
7085 do {
7086 p = mas->node;
7087 p_min = mas->min;
7088 p_max = mas->max;
7089 mas_prev_node(mas, 0);
7090 } while (!mas_is_underflow(mas));
7091
7092 mas->node = p;
7093 mas->max = p_max;
7094 mas->min = p_min;
7095 }
7096
7097 /* Tree validations */
7098 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7099 unsigned long min, unsigned long max, unsigned int depth,
7100 enum mt_dump_format format);
mt_dump_range(unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7101 static void mt_dump_range(unsigned long min, unsigned long max,
7102 unsigned int depth, enum mt_dump_format format)
7103 {
7104 static const char spaces[] = " ";
7105
7106 switch(format) {
7107 case mt_dump_hex:
7108 if (min == max)
7109 pr_info("%.*s%lx: ", depth * 2, spaces, min);
7110 else
7111 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7112 break;
7113 case mt_dump_dec:
7114 if (min == max)
7115 pr_info("%.*s%lu: ", depth * 2, spaces, min);
7116 else
7117 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7118 }
7119 }
7120
mt_dump_entry(void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7121 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
7122 unsigned int depth, enum mt_dump_format format)
7123 {
7124 mt_dump_range(min, max, depth, format);
7125
7126 if (xa_is_value(entry))
7127 pr_cont("value %ld (0x%lx) [" PTR_FMT "]\n", xa_to_value(entry),
7128 xa_to_value(entry), entry);
7129 else if (xa_is_zero(entry))
7130 pr_cont("zero (%ld)\n", xa_to_internal(entry));
7131 else if (mt_is_reserved(entry))
7132 pr_cont("UNKNOWN ENTRY (" PTR_FMT ")\n", entry);
7133 else
7134 pr_cont(PTR_FMT "\n", entry);
7135 }
7136
mt_dump_range64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7137 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
7138 unsigned long min, unsigned long max, unsigned int depth,
7139 enum mt_dump_format format)
7140 {
7141 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7142 bool leaf = mte_is_leaf(entry);
7143 unsigned long first = min;
7144 int i;
7145
7146 pr_cont(" contents: ");
7147 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7148 switch(format) {
7149 case mt_dump_hex:
7150 pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7151 break;
7152 case mt_dump_dec:
7153 pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7154 }
7155 }
7156 pr_cont(PTR_FMT "\n", node->slot[i]);
7157 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7158 unsigned long last = max;
7159
7160 if (i < (MAPLE_RANGE64_SLOTS - 1))
7161 last = node->pivot[i];
7162 else if (!node->slot[i] && max != mt_node_max(entry))
7163 break;
7164 if (last == 0 && i > 0)
7165 break;
7166 if (leaf)
7167 mt_dump_entry(mt_slot(mt, node->slot, i),
7168 first, last, depth + 1, format);
7169 else if (node->slot[i])
7170 mt_dump_node(mt, mt_slot(mt, node->slot, i),
7171 first, last, depth + 1, format);
7172
7173 if (last == max)
7174 break;
7175 if (last > max) {
7176 switch(format) {
7177 case mt_dump_hex:
7178 pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7179 node, last, max, i);
7180 break;
7181 case mt_dump_dec:
7182 pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7183 node, last, max, i);
7184 }
7185 }
7186 first = last + 1;
7187 }
7188 }
7189
mt_dump_arange64(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7190 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
7191 unsigned long min, unsigned long max, unsigned int depth,
7192 enum mt_dump_format format)
7193 {
7194 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
7195 unsigned long first = min;
7196 int i;
7197
7198 pr_cont(" contents: ");
7199 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7200 switch (format) {
7201 case mt_dump_hex:
7202 pr_cont("%lx ", node->gap[i]);
7203 break;
7204 case mt_dump_dec:
7205 pr_cont("%lu ", node->gap[i]);
7206 }
7207 }
7208 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
7209 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7210 switch (format) {
7211 case mt_dump_hex:
7212 pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
7213 break;
7214 case mt_dump_dec:
7215 pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
7216 }
7217 }
7218 pr_cont(PTR_FMT "\n", node->slot[i]);
7219 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7220 unsigned long last = max;
7221
7222 if (i < (MAPLE_ARANGE64_SLOTS - 1))
7223 last = node->pivot[i];
7224 else if (!node->slot[i])
7225 break;
7226 if (last == 0 && i > 0)
7227 break;
7228 if (node->slot[i])
7229 mt_dump_node(mt, mt_slot(mt, node->slot, i),
7230 first, last, depth + 1, format);
7231
7232 if (last == max)
7233 break;
7234 if (last > max) {
7235 switch(format) {
7236 case mt_dump_hex:
7237 pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
7238 node, last, max, i);
7239 break;
7240 case mt_dump_dec:
7241 pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
7242 node, last, max, i);
7243 }
7244 }
7245 first = last + 1;
7246 }
7247 }
7248
mt_dump_node(const struct maple_tree * mt,void * entry,unsigned long min,unsigned long max,unsigned int depth,enum mt_dump_format format)7249 static void mt_dump_node(const struct maple_tree *mt, void *entry,
7250 unsigned long min, unsigned long max, unsigned int depth,
7251 enum mt_dump_format format)
7252 {
7253 struct maple_node *node = mte_to_node(entry);
7254 unsigned int type = mte_node_type(entry);
7255 unsigned int i;
7256
7257 mt_dump_range(min, max, depth, format);
7258
7259 pr_cont("node " PTR_FMT " depth %d type %d parent " PTR_FMT, node,
7260 depth, type, node ? node->parent : NULL);
7261 switch (type) {
7262 case maple_dense:
7263 pr_cont("\n");
7264 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7265 if (min + i > max)
7266 pr_cont("OUT OF RANGE: ");
7267 mt_dump_entry(mt_slot(mt, node->slot, i),
7268 min + i, min + i, depth, format);
7269 }
7270 break;
7271 case maple_leaf_64:
7272 case maple_range_64:
7273 mt_dump_range64(mt, entry, min, max, depth, format);
7274 break;
7275 case maple_arange_64:
7276 mt_dump_arange64(mt, entry, min, max, depth, format);
7277 break;
7278
7279 default:
7280 pr_cont(" UNKNOWN TYPE\n");
7281 }
7282 }
7283
mt_dump(const struct maple_tree * mt,enum mt_dump_format format)7284 void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
7285 {
7286 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7287
7288 pr_info("maple_tree(" PTR_FMT ") flags %X, height %u root " PTR_FMT "\n",
7289 mt, mt->ma_flags, mt_height(mt), entry);
7290 if (xa_is_node(entry))
7291 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
7292 else if (entry)
7293 mt_dump_entry(entry, 0, 0, 0, format);
7294 else
7295 pr_info("(empty)\n");
7296 }
7297 EXPORT_SYMBOL_GPL(mt_dump);
7298
7299 /*
7300 * Calculate the maximum gap in a node and check if that's what is reported in
7301 * the parent (unless root).
7302 */
mas_validate_gaps(struct ma_state * mas)7303 static void mas_validate_gaps(struct ma_state *mas)
7304 {
7305 struct maple_enode *mte = mas->node;
7306 struct maple_node *p_mn, *node = mte_to_node(mte);
7307 enum maple_type mt = mte_node_type(mas->node);
7308 unsigned long gap = 0, max_gap = 0;
7309 unsigned long p_end, p_start = mas->min;
7310 unsigned char p_slot, offset;
7311 unsigned long *gaps = NULL;
7312 unsigned long *pivots = ma_pivots(node, mt);
7313 unsigned int i;
7314
7315 if (ma_is_dense(mt)) {
7316 for (i = 0; i < mt_slot_count(mte); i++) {
7317 if (mas_get_slot(mas, i)) {
7318 if (gap > max_gap)
7319 max_gap = gap;
7320 gap = 0;
7321 continue;
7322 }
7323 gap++;
7324 }
7325 goto counted;
7326 }
7327
7328 gaps = ma_gaps(node, mt);
7329 for (i = 0; i < mt_slot_count(mte); i++) {
7330 p_end = mas_safe_pivot(mas, pivots, i, mt);
7331
7332 if (!gaps) {
7333 if (!mas_get_slot(mas, i))
7334 gap = p_end - p_start + 1;
7335 } else {
7336 void *entry = mas_get_slot(mas, i);
7337
7338 gap = gaps[i];
7339 MT_BUG_ON(mas->tree, !entry);
7340
7341 if (gap > p_end - p_start + 1) {
7342 pr_err(PTR_FMT "[%u] %lu >= %lu - %lu + 1 (%lu)\n",
7343 mas_mn(mas), i, gap, p_end, p_start,
7344 p_end - p_start + 1);
7345 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
7346 }
7347 }
7348
7349 if (gap > max_gap)
7350 max_gap = gap;
7351
7352 p_start = p_end + 1;
7353 if (p_end >= mas->max)
7354 break;
7355 }
7356
7357 counted:
7358 if (mt == maple_arange_64) {
7359 MT_BUG_ON(mas->tree, !gaps);
7360 offset = ma_meta_gap(node);
7361 if (offset > i) {
7362 pr_err("gap offset " PTR_FMT "[%u] is invalid\n", node, offset);
7363 MT_BUG_ON(mas->tree, 1);
7364 }
7365
7366 if (gaps[offset] != max_gap) {
7367 pr_err("gap " PTR_FMT "[%u] is not the largest gap %lu\n",
7368 node, offset, max_gap);
7369 MT_BUG_ON(mas->tree, 1);
7370 }
7371
7372 for (i++ ; i < mt_slot_count(mte); i++) {
7373 if (gaps[i] != 0) {
7374 pr_err("gap " PTR_FMT "[%u] beyond node limit != 0\n",
7375 node, i);
7376 MT_BUG_ON(mas->tree, 1);
7377 }
7378 }
7379 }
7380
7381 if (mte_is_root(mte))
7382 return;
7383
7384 p_slot = mte_parent_slot(mas->node);
7385 p_mn = mte_parent(mte);
7386 MT_BUG_ON(mas->tree, max_gap > mas->max);
7387 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
7388 pr_err("gap " PTR_FMT "[%u] != %lu\n", p_mn, p_slot, max_gap);
7389 mt_dump(mas->tree, mt_dump_hex);
7390 MT_BUG_ON(mas->tree, 1);
7391 }
7392 }
7393
mas_validate_parent_slot(struct ma_state * mas)7394 static void mas_validate_parent_slot(struct ma_state *mas)
7395 {
7396 struct maple_node *parent;
7397 struct maple_enode *node;
7398 enum maple_type p_type;
7399 unsigned char p_slot;
7400 void __rcu **slots;
7401 int i;
7402
7403 if (mte_is_root(mas->node))
7404 return;
7405
7406 p_slot = mte_parent_slot(mas->node);
7407 p_type = mas_parent_type(mas, mas->node);
7408 parent = mte_parent(mas->node);
7409 slots = ma_slots(parent, p_type);
7410 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7411
7412 /* Check prev/next parent slot for duplicate node entry */
7413
7414 for (i = 0; i < mt_slots[p_type]; i++) {
7415 node = mas_slot(mas, slots, i);
7416 if (i == p_slot) {
7417 if (node != mas->node)
7418 pr_err("parent " PTR_FMT "[%u] does not have " PTR_FMT "\n",
7419 parent, i, mas_mn(mas));
7420 MT_BUG_ON(mas->tree, node != mas->node);
7421 } else if (node == mas->node) {
7422 pr_err("Invalid child " PTR_FMT " at parent " PTR_FMT "[%u] p_slot %u\n",
7423 mas_mn(mas), parent, i, p_slot);
7424 MT_BUG_ON(mas->tree, node == mas->node);
7425 }
7426 }
7427 }
7428
mas_validate_child_slot(struct ma_state * mas)7429 static void mas_validate_child_slot(struct ma_state *mas)
7430 {
7431 enum maple_type type = mte_node_type(mas->node);
7432 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7433 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7434 struct maple_enode *child;
7435 unsigned char i;
7436
7437 if (mte_is_leaf(mas->node))
7438 return;
7439
7440 for (i = 0; i < mt_slots[type]; i++) {
7441 child = mas_slot(mas, slots, i);
7442
7443 if (!child) {
7444 pr_err("Non-leaf node lacks child at " PTR_FMT "[%u]\n",
7445 mas_mn(mas), i);
7446 MT_BUG_ON(mas->tree, 1);
7447 }
7448
7449 if (mte_parent_slot(child) != i) {
7450 pr_err("Slot error at " PTR_FMT "[%u]: child " PTR_FMT " has pslot %u\n",
7451 mas_mn(mas), i, mte_to_node(child),
7452 mte_parent_slot(child));
7453 MT_BUG_ON(mas->tree, 1);
7454 }
7455
7456 if (mte_parent(child) != mte_to_node(mas->node)) {
7457 pr_err("child " PTR_FMT " has parent " PTR_FMT " not " PTR_FMT "\n",
7458 mte_to_node(child), mte_parent(child),
7459 mte_to_node(mas->node));
7460 MT_BUG_ON(mas->tree, 1);
7461 }
7462
7463 if (i < mt_pivots[type] && pivots[i] == mas->max)
7464 break;
7465 }
7466 }
7467
7468 /*
7469 * Validate all pivots are within mas->min and mas->max, check metadata ends
7470 * where the maximum ends and ensure there is no slots or pivots set outside of
7471 * the end of the data.
7472 */
mas_validate_limits(struct ma_state * mas)7473 static void mas_validate_limits(struct ma_state *mas)
7474 {
7475 int i;
7476 unsigned long prev_piv = 0;
7477 enum maple_type type = mte_node_type(mas->node);
7478 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7479 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7480
7481 for (i = 0; i < mt_slots[type]; i++) {
7482 unsigned long piv;
7483
7484 piv = mas_safe_pivot(mas, pivots, i, type);
7485
7486 if (!piv && (i != 0)) {
7487 pr_err("Missing node limit pivot at " PTR_FMT "[%u]",
7488 mas_mn(mas), i);
7489 MAS_WARN_ON(mas, 1);
7490 }
7491
7492 if (prev_piv > piv) {
7493 pr_err(PTR_FMT "[%u] piv %lu < prev_piv %lu\n",
7494 mas_mn(mas), i, piv, prev_piv);
7495 MAS_WARN_ON(mas, piv < prev_piv);
7496 }
7497
7498 if (piv < mas->min) {
7499 pr_err(PTR_FMT "[%u] %lu < %lu\n", mas_mn(mas), i,
7500 piv, mas->min);
7501 MAS_WARN_ON(mas, piv < mas->min);
7502 }
7503 if (piv > mas->max) {
7504 pr_err(PTR_FMT "[%u] %lu > %lu\n", mas_mn(mas), i,
7505 piv, mas->max);
7506 MAS_WARN_ON(mas, piv > mas->max);
7507 }
7508 prev_piv = piv;
7509 if (piv == mas->max)
7510 break;
7511 }
7512
7513 if (mas_data_end(mas) != i) {
7514 pr_err("node" PTR_FMT ": data_end %u != the last slot offset %u\n",
7515 mas_mn(mas), mas_data_end(mas), i);
7516 MT_BUG_ON(mas->tree, 1);
7517 }
7518
7519 for (i += 1; i < mt_slots[type]; i++) {
7520 void *entry = mas_slot(mas, slots, i);
7521
7522 if (entry && (i != mt_slots[type] - 1)) {
7523 pr_err(PTR_FMT "[%u] should not have entry " PTR_FMT "\n",
7524 mas_mn(mas), i, entry);
7525 MT_BUG_ON(mas->tree, entry != NULL);
7526 }
7527
7528 if (i < mt_pivots[type]) {
7529 unsigned long piv = pivots[i];
7530
7531 if (!piv)
7532 continue;
7533
7534 pr_err(PTR_FMT "[%u] should not have piv %lu\n",
7535 mas_mn(mas), i, piv);
7536 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
7537 }
7538 }
7539 }
7540
mt_validate_nulls(struct maple_tree * mt)7541 static void mt_validate_nulls(struct maple_tree *mt)
7542 {
7543 void *entry, *last = (void *)1;
7544 unsigned char offset = 0;
7545 void __rcu **slots;
7546 MA_STATE(mas, mt, 0, 0);
7547
7548 mas_start(&mas);
7549 if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
7550 return;
7551
7552 while (!mte_is_leaf(mas.node))
7553 mas_descend(&mas);
7554
7555 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7556 do {
7557 entry = mas_slot(&mas, slots, offset);
7558 if (!last && !entry) {
7559 pr_err("Sequential nulls end at " PTR_FMT "[%u]\n",
7560 mas_mn(&mas), offset);
7561 }
7562 MT_BUG_ON(mt, !last && !entry);
7563 last = entry;
7564 if (offset == mas_data_end(&mas)) {
7565 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7566 if (mas_is_overflow(&mas))
7567 return;
7568 offset = 0;
7569 slots = ma_slots(mte_to_node(mas.node),
7570 mte_node_type(mas.node));
7571 } else {
7572 offset++;
7573 }
7574
7575 } while (!mas_is_overflow(&mas));
7576 }
7577
7578 /*
7579 * validate a maple tree by checking:
7580 * 1. The limits (pivots are within mas->min to mas->max)
7581 * 2. The gap is correctly set in the parents
7582 */
mt_validate(struct maple_tree * mt)7583 void mt_validate(struct maple_tree *mt)
7584 __must_hold(mas->tree->ma_lock)
7585 {
7586 unsigned char end;
7587
7588 MA_STATE(mas, mt, 0, 0);
7589 mas_start(&mas);
7590 if (!mas_is_active(&mas))
7591 return;
7592
7593 while (!mte_is_leaf(mas.node))
7594 mas_descend(&mas);
7595
7596 while (!mas_is_overflow(&mas)) {
7597 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
7598 end = mas_data_end(&mas);
7599 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7600 (mas.max != ULONG_MAX))) {
7601 pr_err("Invalid size %u of " PTR_FMT "\n",
7602 end, mas_mn(&mas));
7603 }
7604
7605 mas_validate_parent_slot(&mas);
7606 mas_validate_limits(&mas);
7607 mas_validate_child_slot(&mas);
7608 if (mt_is_alloc(mt))
7609 mas_validate_gaps(&mas);
7610 mas_dfs_postorder(&mas, ULONG_MAX);
7611 }
7612 mt_validate_nulls(mt);
7613 }
7614 EXPORT_SYMBOL_GPL(mt_validate);
7615
mas_dump(const struct ma_state * mas)7616 void mas_dump(const struct ma_state *mas)
7617 {
7618 pr_err("MAS: tree=" PTR_FMT " enode=" PTR_FMT " ",
7619 mas->tree, mas->node);
7620 switch (mas->status) {
7621 case ma_active:
7622 pr_err("(ma_active)");
7623 break;
7624 case ma_none:
7625 pr_err("(ma_none)");
7626 break;
7627 case ma_root:
7628 pr_err("(ma_root)");
7629 break;
7630 case ma_start:
7631 pr_err("(ma_start) ");
7632 break;
7633 case ma_pause:
7634 pr_err("(ma_pause) ");
7635 break;
7636 case ma_overflow:
7637 pr_err("(ma_overflow) ");
7638 break;
7639 case ma_underflow:
7640 pr_err("(ma_underflow) ");
7641 break;
7642 case ma_error:
7643 pr_err("(ma_error) ");
7644 break;
7645 }
7646
7647 pr_err("Store Type: ");
7648 switch (mas->store_type) {
7649 case wr_invalid:
7650 pr_err("invalid store type\n");
7651 break;
7652 case wr_new_root:
7653 pr_err("new_root\n");
7654 break;
7655 case wr_store_root:
7656 pr_err("store_root\n");
7657 break;
7658 case wr_exact_fit:
7659 pr_err("exact_fit\n");
7660 break;
7661 case wr_split_store:
7662 pr_err("split_store\n");
7663 break;
7664 case wr_slot_store:
7665 pr_err("slot_store\n");
7666 break;
7667 case wr_append:
7668 pr_err("append\n");
7669 break;
7670 case wr_node_store:
7671 pr_err("node_store\n");
7672 break;
7673 case wr_spanning_store:
7674 pr_err("spanning_store\n");
7675 break;
7676 case wr_rebalance:
7677 pr_err("rebalance\n");
7678 break;
7679 }
7680
7681 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7682 mas->index, mas->last);
7683 pr_err(" min=%lx max=%lx alloc=" PTR_FMT ", depth=%u, flags=%x\n",
7684 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7685 if (mas->index > mas->last)
7686 pr_err("Check index & last\n");
7687 }
7688 EXPORT_SYMBOL_GPL(mas_dump);
7689
mas_wr_dump(const struct ma_wr_state * wr_mas)7690 void mas_wr_dump(const struct ma_wr_state *wr_mas)
7691 {
7692 pr_err("WR_MAS: node=" PTR_FMT " r_min=%lx r_max=%lx\n",
7693 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7694 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7695 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
7696 wr_mas->end_piv);
7697 }
7698 EXPORT_SYMBOL_GPL(mas_wr_dump);
7699
7700 #endif /* CONFIG_DEBUG_MAPLE_TREE */
7701